Obesity alters gut microbial ecology

Proceedings of the National Academy of Sciences of the Unite 102, 11070-11075

DOI: 10.1073/pnas.0504978102

Citation Report

#	ARTICLE	IF	Citations
1	Clinical Study Protocol. , 2003, , 25-30.		1
2	The Composition of Infant Formula: A Worldwide Approach. Journal of Pediatric Gastroenterology and Nutrition, 2005, 41, 578-579.	0.9	O
3	UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology, 2005, 71, 8228-8235.	1.4	7,007
4	Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12511-12516.	3.3	948
5	Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat. Applied and Environmental Microbiology, 2006, 72, 3685-3695.	1.4	435
6	Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 2006, 124, 837-848.	13.5	2,744
7	Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection. Cell, 2006, 127, 423-433.	13.5	808
8	RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006, 22, 2688-2690.	1.8	14,675
9	Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Developmental Biology, 2006, 297, 374-386.	0.9	543
10	Beyond diversity: functional microbiomics of the human colon. Trends in Microbiology, 2006, 14, 86-91.	3 . 5	187
11	Leeches and their microbiota: naturally simple symbiosis models. Trends in Microbiology, 2006, 14, 365-371.	3.5	89
12	Assembly of the human intestinal microbiota. Trends in Ecology and Evolution, 2006, 21, 517-523.	4.2	462
13	The significance of prokaryote diversity in the human gastrointestinal tract., 0,, 65-90.		23
15	Prokaryote Diversity of Epithelial Mucosal Biofilms in the Human Digestive Tract., 0,, 127-152.		1
16	Metagenomics: the role of the microbiome in cardiovascular diseases. Current Opinion in Lipidology, 2006, 17, 157-161.	1,2	70
18	Current World Literature. Current Opinion in Anaesthesiology, 2006, 19, 346-374.	0.9	O
20	Human gut microbes associated with obesity. Nature, 2006, 444, 1022-1023.	13.7	7,595
21	Rubber bands reduce the cost of carrying loads. Nature, 2006, 444, 1023-1024.	13.7	135

#	Article	IF	Citations
22	Human and microbe: united we stand. Nature Medicine, 2006, 12, 736-737.	15.2	34
23	Microbes plump up mice. Nature Medicine, 2006, 12, 737-737.	15.2	0
24	An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444, 1027-1031.	13.7	10,136
25	The gut flora as a forgotten organ. EMBO Reports, 2006, 7, 688-693.	2.0	2,226
26	Metagenomic Analysis of the Human Distal Gut Microbiome. Science, 2006, 312, 1355-1359.	6.0	3,964
27	Molecular Approaches to the Role of the Microbiota in Inflammatory Bowel Disease. Annals of the New York Academy of Sciences, 2006, 1072, 39-51.	1.8	16
28	Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Functional and Integrative Genomics, 2006, 6, 165-185.	1.4	156
29	Testing for Differentiation of Microbial Communities Using Phylogenetic Methods: Accounting for Uncertainty of Phylogenetic Inference and Character State Mapping. Microbial Ecology, 2006, 52, 408-417.	1.4	12
30	Nutridynamics $\hat{a} \in \text{``studying the dynamics of food components in products and in the consumer.}$ Current Opinion in Biotechnology, 2006, 17, 217-225.	3.3	27
31	UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 2006, 7, 371.	1.2	1,321
32	An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri. BMC Genomics, 2006, 7, 154.	1.2	43
33	Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions. Advances in Computers, 2006, , 127-176.	1.2	18
35	Genomic and Metabolic Studies of the Impact of Probiotics on a Model Gut Symbiont and Host. PLoS Biology, 2006, 4, e413.	2.6	362
36	Culture-Independent Analysis of Indomethacin-Induced Alterations in the Rat Gastrointestinal Microbiota. Applied and Environmental Microbiology, 2006, 72, 6707-6715.	1.4	48
37	Abundant and Diverse Fungal Microbiota in the Murine Intestine. Applied and Environmental Microbiology, 2006, 72, 793-801.	1.4	154
38	In Vivo Bioluminescence Imaging of the Murine Pathogen Citrobacter rodentium. Infection and Immunity, 2006, 74, 5391-5396.	1.0	111
39	Culture-Independent Characterization of the Digestive-Tract Microbiota of the Medicinal Leech Reveals a Tripartite Symbiosis. Applied and Environmental Microbiology, 2006, 72, 4775-4781.	1.4	72
40	Effect of bowel preparation and colonoscopy on post-procedure intestinal microbiota composition. Gut, 2006, 55, 1822-1823.	6.1	65

#	Article	IF	Citations
41	The human intestinal microbiota and its relationship to energy balance. Food Nutrition Research, 2006, 50, 121-123.	0.3	0
42	Functional Genomic and Metabolic Studies of the Adaptations of a Prominent Adult Human Gut Symbiont, Bacteroides thetaiotaomicron, to the Suckling Period. Journal of Biological Chemistry, 2006, 281, 36269-36279.	1.6	283
43	A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8834-8839.	3.3	155
44	NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research, 2006, 34, W394-W399.	6.5	918
45	New Screening Software Shows that Most Recent Large 16S rRNA Gene Clone Libraries Contain Chimeras. Applied and Environmental Microbiology, 2006, 72, 5734-5741.	1.4	621
46	Application of sequence-based methods in human microbial ecology. Genome Research, 2006, 16, 316-322.	2.4	36
47	Introducing SONS, a Tool for Operational Taxonomic Unit-Based Comparisons of Microbial Community Memberships and Structures. Applied and Environmental Microbiology, 2006, 72, 6773-6779.	1.4	239
48	Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13780-13785.	3.3	3,871
49	Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 979-984.	3.3	2,197
50	Functional Genomic Studies of Uropathogenic Escherichia coli and Host Urothelial Cells when Intracellular Bacterial Communities Are Assembled. Journal of Biological Chemistry, 2007, 282, 21259-21267.	1.6	129
51	Administration of Lactobacillusevokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype in mice. British Journal of Nutrition, 2007, 97, 1117-1127.	1.2	54
52	Has Toll-Like Receptor 4 Been Prematurely Dismissed as an Inflammatory Bowel Disease Gene? Association Study Combined With Meta-Analysis Shows Strong Evidence for Association. American Journal of Gastroenterology, 2007, 102, 2504-2512.	0.2	116
53	Body Traffic: Ecology, Genetics, and Immunity in Inflammatory Bowel Disease. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 401-429.	9.6	37
54	Carboxylic acids in the hindgut of rats fed highly soluble inulin andBifidobacterium lactis(Bb-12),Lactobacillus salivarius(UCC500) orLactobacillus rhamnosus(GG). Food Nutrition Research, 2007, 51, 13-21.	0.3	10
55	Dynamic multigrain parallelization on the cell broadband engine. , 2007, , .		46
56	<i>Bacteroides</i> : the Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 2007, 20, 593-621.	5.7	1,630
57	Spatial and Temporal Population Dynamics of a Naturally Occurring Two-Species Microbial Community inside the Digestive Tract of the Medicinal Leech. Applied and Environmental Microbiology, 2007, 73, 1984-1991.	1.4	53
58	Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space. Applied and Environmental Microbiology, 2007, 73, 2727-2734.	1.4	28

#	Article	IF	Citations
59	Exploring the link between gut microbes and obesity. Future Microbiology, 2007, 2, 261-263.	1.0	0
60	Lectin binding profile of the small intestine of five-week-old pigs in response to the use of chlortetracycline as a growth promotant and under gnotobiotic conditions1,2. Journal of Animal Science, 2007, 85, 1640-1650.	0.2	10
61	Inulin-Type Fructans: Functional Food Ingredients. Journal of Nutrition, 2007, 137, 2493S-2502S.	1.3	550
62	Immunology. Current Opinion in Gastroenterology, 2007, 23, 644-646.	1.0	1
63	Gut microflora as a target for energy and metabolic homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 729-734.	1.3	270
64	The normal intestinal microbiota. Current Opinion in Infectious Diseases, 2007, 20, 508-513.	1.3	114
65	Human gut microbes associated with obesity. Yearbook of Endocrinology, 2007, 2007, 163-165.	0.0	3
66	Metagenomics and biological ontology. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2007, 38, 834-846.	0.8	79
67	Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Seminars in Immunology, 2007, 19, 70-83.	2.7	346
68	Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007, 56, 1761-1772.	0.3	4,964
69	Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System. Cell, 2007, 131, 33-45.	13.5	837
70	Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host and Microbe, 2007, 2, 119-129.	5.1	946
71	Enteric Infection and Inflammation Alter Gut Microbial Ecology. Cell Host and Microbe, 2007, 2, 73-74.	5.1	25
72	Molecular monitoring of the intestinal flora by denaturing high performance liquid chromatography. Journal of Microbiological Methods, 2007, 68, 94-105.	0.7	51
73	Bacterial genome sequencing and its use in infectious diseases. Lancet Infectious Diseases, The, 2007, 7, 711-723.	4.6	79
74	Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research, 2007, 35, e120-e120.	6.5	638
75	The Last Word: Books as a Statistical Metaphor for Microbial Communities. Annual Review of Microbiology, 2007, 61, 23-34.	2.9	41
76	Characterization of the Inhabitancy of Mouse Intestinal Bacteria (MIB) in Rodents and Humans by Realâ€Time PCR with Groupâ€Specific Primers. Microbiology and Immunology, 2007, 51, 349-357.	0.7	12

#	Article	IF	Citations
77	RAxML-Cell: Parallel Phylogenetic Tree Inference on the Cell Broadband Engine. , 2007, , .		30
78	Infectobesity: Obesity of Infectious Origin. Advances in Food and Nutrition Research, 2007, 52, 61-102.	1.5	65
79	Quantitative and Qualitative \hat{l}^2 Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Applied and Environmental Microbiology, 2007, 73, 1576-1585.	1.4	2,418
81	Construction and annotation of large phylogenetic trees. Australian Systematic Botany, 2007, 20, 287.	0.3	19
82	Development of the Human Infant Intestinal Microbiota. PLoS Biology, 2007, 5, e177.	2.6	2,390
83	Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biology, 2007, 5, e244.	2.6	905
84	Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflammatory Bowel Diseases, 2007, 13 , 675 - 683 .	0.9	198
85	Intestinal microbiota: A potential diet-responsive prevention target inApcMin mice. Molecular Carcinogenesis, 2007, 46, 42-48.	1.3	50
86	Metabolism of dietary soy isoflavones to equol by human intestinal microflora â€" implications for health. Molecular Nutrition and Food Research, 2007, 51, 765-781.	1.5	269
88	The Human Microbiome Project. Nature, 2007, 449, 804-810.	13.7	4,750
89	Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental Microbiology, 2007, 9, 1101-1111.	1.8	518
90	Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of woodâ€feeding termites. Molecular Ecology, 2007, 16, 3768-3777.	2.0	64
91	Succession in the intestinal microbiota of preadolescent turkeys. FEMS Microbiology Ecology, 2007, 60, 136-147.	1.3	64
92	Culture-independent analysis of bacterial diversity in a child-care facility. BMC Microbiology, 2007, 7, 27.	1.3	69
94	Metagenomic and Small-Subunit rRNA Analyses Reveal the Genetic Diversity of Bacteria, Archaea, Fungi, and Viruses in Soil. Applied and Environmental Microbiology, 2007, 73, 7059-7066.	1.4	480
95	Microbial Resource Management: The Road To Go for Environmental Biotechnology. Engineering in Life Sciences, 2007, 7, 117-126.	2.0	125
96	Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007, 50, 2374-2383.	2.9	1,507
97	Colonization and Impact of Disease and Other Factors on Intestinal Microbiota. Digestive Diseases and Sciences, 2007, 52, 2069-2077.	1.1	84

#	Article	IF	Citations
98	Bacterial vaginosis: Culture- and PCR-based characterizations of a complex polymicrobial disease's pathobiology. Current Infectious Disease Reports, 2007, 9, 485-500.	1.3	34
101	Microbial Flora of the Stomach after Gastric Bypass for Morbid Obesity. Obesity Surgery, 2007, 17, 752-758.	1.1	59
103	The human gut microbiome: Implications for future health care. Current Gastroenterology Reports, 2008, 10, 396-403.	1.1	122
104	New horizons for the infectious diseases specialist: How gut microflora promote health and disease. Current Infectious Disease Reports, 2008, 10, 92-98.	1.3	22
105	Intestinal microflora and obesity in rats. Folia Microbiologica, 2008, 53, 225-228.	1.1	22
106	Obesity pandemics and the modification of digestive bacterial flora. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 631-634.	1.3	75
107	Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek, 2008, 94, 35-50.	0.7	182
108	Probiotics: Benefits in Human Health and Bacterial Disease Management. , 0, , 275-295.		0
109	Evolution of Mammals and Their Gut Microbes. Science, 2008, 320, 1647-1651.	6.0	3,171
110	Species divergence and the measurement of microbial diversity. FEMS Microbiology Reviews, 2008, 32, 557-578.	3.9	400
111	Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews, 2008, 32, 723-735.	3.9	1,331
112	The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME Journal, 2008, 2, 739-748.	4.4	178
113	Evaluating different approaches that test whether microbial communities have the same structure. ISME Journal, 2008, 2, 265-275.	4.4	164
114	Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008, 455, 1109-1113.	13.7	1,745
115	Developmental Changes of Gut Microflora and Enzyme Activity in Rat Pups Exposed to Fatâ€rich Diet. Obesity, 2008, 16, 2610-2615.	1.5	65
116	Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 2008, 8, 411-420.	10.6	952
117	Nutrient sensing and inflammation in metabolic diseases. Nature Reviews Immunology, 2008, 8, 923-934.	10.6	845
118	Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 2008, 6, 776-788.	13.6	1,342

#	Article	IF	CITATIONS
119	Nuclear receptors of the enteric tract: guarding the frontier. Nutrition Reviews, 2008, 66, S88-S97.	2.6	30
120	Obesity. The food research agenda. International Journal of Dairy Technology, 2008, 61, 11-15.	1.3	5
121	Development of a real-time PCR method for <i>Firmicutes</i> and <i>Bacteroidetes</i> iin faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 2008, 47, 367-373.	1.0	448
122	Dietary fibre and the gut microbiota. Nutrition Bulletin, 2008, 33, 201-211.	0.8	167
123	Probiotics: where are they going next? New and emerging areas of research. Nutrition Bulletin, 2008, 33, 359-363.	0.8	4
124	Cultureâ€independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect. Environmental Microbiology, 2008, 10, 665-675.	1.8	157
125	The role of colonic metabolism in lactose intolerance. European Journal of Clinical Investigation, 2008, 38, 541-547.	1.7	93
126	XplorSeq: A software environment for integrated management and phylogenetic analysis of metagenomic sequence data. BMC Bioinformatics, 2008, 9, 420.	1.2	47
127	Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics, 2008, 9, 576.	1.2	72
128	Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe, 2008, 14, 224-228.	1.0	75
130	Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, 2008, 3, e2836.	1.1	901
131	Gut Microbiota and Its Possible Relationship With Obesity. Mayo Clinic Proceedings, 2008, 83, 460-469.	1.4	499
132	The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biology, 2008, 6, e280.	2.6	2,013
133	The Microbes of the Intestine: An Introduction to Their Metabolic and Signaling Capabilities. Endocrinology and Metabolism Clinics of North America, 2008, 37, 857-871.	1.2	67
134	Asthma and obesity: Common early-life influences in the inception of disease. Journal of Allergy and Clinical Immunology, 2008, 121, 1075-1084.	1.5	117
135	Eukaryotic-Microbiota Crosstalk: Potential Mechanisms for Health Benefits of Prebiotics and Probiotics. Annual Review of Nutrition, 2008, 28, 215-231.	4.3	83
136	Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB Journal, 2008, 22, 2416-2426.	0.2	430
137	Vicious cycle composed of gut flora and visceral fat: A novel explanation of the initiation and progression of atherosclerosis. Medical Hypotheses, 2008, 70, 808-811.	0.8	6

#	Article	IF	Citations
138	A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology, 2008, 11, 442-446.	2.3	418
139	Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie Et Biologie, 2008, 56, 305-309.	2.2	210
140	The role of microbiota in infectious disease. Trends in Microbiology, 2008, 16, 107-114.	3.5	440
141	Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes, 2008, 57, 1470-1481.	0.3	3,897
142	Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host and Microbe, 2008, 3, 213-223.	5.1	2,535
143	Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host and Microbe, 2008, 4, 447-457.	5.1	732
144	Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics, 2008, 9, 387-402.	2.5	1,788
145	Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection. Infection and Immunity, 2008, 76, 4726-4736.	1.0	445
146	The Gut Microbiota Predispose to the Pathophysiology of Acute Postradiotherapy Diarrhea. American Journal of Gastroenterology, 2008, 103, 1754-1761.	0.2	154
147	Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Research, 2008, 36, e120-e120.	6.5	508
148	Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for Fundamental and Biomedical Research. Applied and Environmental Microbiology, 2008, 74, 4985-4996.	1.4	594
149	Formate Acts as a Diffusible Signal To Induce <i>Salmonella</i> Invasion. Journal of Bacteriology, 2008, 190, 4233-4241.	1.0	83
150	The Effect of Gender on the Bacterial Community in the Gastrointestinal Tract of Broilers. Poultry Science, 2008, 87, 964-967.	1.5	32
151	Feeding Our Immune System: Impact on Metabolism. Clinical and Developmental Immunology, 2008, 2008, 1-19.	3.3	207
152	Intestinal microbiota are transiently altered duringSalmonella-induced gastroenteritis. Expert Review of Gastroenterology and Hepatology, 2008, 2, 525-529.	1.4	5
153	Host Transmission of <i>Salmonella enterica</i> Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota. Infection and Immunity, 2008, 76, 403-416.	1.0	263
154	Ethical, legal, and social considerations in conducting the Human Microbiome Project. Genome Research, 2008, 18, 1861-1864.	2.4	68
155	A diversity profile of the human skin microbiota. Genome Research, 2008, 18, 1043-1050.	2.4	818

#	Article	IF	Citations
156	The Human Intestinal Microbiota and Microbiome. , 0, , 635-644.		0
157	Bacterial Community in the Crop of the Hoatzin, a Neotropical Folivorous Flying Bird. Applied and Environmental Microbiology, 2008, 74, 5905-5912.	1.4	61
158	The Macaque Gut Microbiome in Health, Lentiviral Infection, and Chronic Enterocolitis. PLoS Pathogens, 2008, 4, e20.	2.1	371
159	Gut Decontamination with Norfloxacin and Ampicillin Enhances Insulin Sensitivity in Mice. Nestle Nutrition Workshop Series Paediatric Programme, 2008, 62, 127-140.	1.5	47
160	Microbial manipulation of the rat dam changes bacterial colonization and alters properties of the gut in her offspring. American Journal of Physiology - Renal Physiology, 2008, 294, G148-G154.	1.6	52
161	Microfluidic Diagnostic Systems for the Rapid Detection and Quantification of Pathogens. , 2008, , 271-322.		7
162	Role of Intestinal Microbiota in Transformation of Bismuth and Other Metals and Metalloids into Volatile Methyl and Hydride Derivatives in Humans and Mice. Applied and Environmental Microbiology, 2008, 74, 3069-3075.	1.4	64
163	Bacterial succession in the colon during childhood and adolescence: molecular studies in a southern Indian village. American Journal of Clinical Nutrition, 2008, 88, 1643-1647.	2.2	43
164	Maternal consumption of <i>Lactobacillus plantarum </i> 299v affects gastrointestinal growth and function in the suckling rat. British Journal of Nutrition, 2008, 100, 332-338.	1.2	25
165	Gut microbes and obesity in adolescents. Proceedings of the Nutrition Society, 2008, 67, .	0.4	19
166	The Pathogenic Role of Intestinal Flora in IBD and Colon Cancer. Current Drug Targets, 2008, 9, 395-403.	1.0	44
167	Massively parallel pyrosequencing in HIV research. Aids, 2008, 22, 1411-1415.	1.0	56
169	Prebiotics and Lipid Metabolism. , 2008, , 201-218.		4
170	Growth in the First Two Years of Life. , 2008, 61, 135-144.		4
171	Early differences in fecal microbiota composition in children may predict overweight. American Journal of Clinical Nutrition, 2008, 87, 534-538.	2.2	900
172	Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. American Journal of Clinical Nutrition, 2008, 88, 894-899.	2.2	716
173	Novel strategies to combat bacterial virulence. Current Opinion in Critical Care, 2008, 14, 593-599.	1.6	43
174	Microecology, obesity, and probiotics. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, 422-427.	1.2	53

#	Article	IF	CITATIONS
175	Fecal microbiota of a dugong (Dugong dugong) in captivity at Toba Aquarium. Journal of General and Applied Microbiology, 2008, 54, 25-38.	0.4	28
176	Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea: Effects on gut microbial ecology1. Journal of Animal Science, 2008, 86, 836-847.	0.2	122
177	Emerging Insights into Antibiotic-Associated Diarrhea and <i>Clostridium difficile </i> Infection through the Lens of Microbial Ecology. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-7.	0.6	20
178	The Human Microbiome and Infectious Diseases: Beyond Koch. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-2.	0.6	11
179	Insights into the Roles of Gut Microbes in Obesity. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	0.6	34
180	Molecular Basis of Liver Disease. , 2009, , 395-419.		0
181	Raw potato starch in weaned pig diets and its influence on postweaning scours and the molecular microbial ecology of the digestive tract1. Journal of Animal Science, 2009, 87, 984-993.	0.2	43
182	Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. PLoS ONE, 2009, 4, e7125.	1.1	735
183	Bacterial Microbiota Profiling in Gastritis without Helicobacter pylori Infection or Non-Steroidal Anti-Inflammatory Drug Use. PLoS ONE, 2009, 4, e7985.	1.1	204
184	The gut microbiota ecology: a new opportunity for the treatment of metabolic diseases?. Frontiers in Bioscience - Landmark, 2009, 14, 5107.	3.0	52
185	Medical Journal Watch: Context and Applications. Alternative and Complementary Therapies, 2009, 15, 90-95.	0.1	0
186	Perturbation of the Small Intestine Microbial Ecology by Streptomycin Alters Pathology in a <i>Salmonella enterica (i) Serovar Typhimurium Murine Model of Infection. Infection and Immunity, 2009, 77, 2691-2702.</i>	1.0	116
187	Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58, 1091-1103.	6.1	2,061
188	High-Throughput Quantitative Analysis of the Human Intestinal Microbiota with a Phylogenetic Microarray. Applied and Environmental Microbiology, 2009, 75, 3572-3579.	1.4	93
189	Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. Journal of Medical Microbiology, 2009, 58, 663-670.	0.7	85
190	Establishment of an Analytical System for the Human Fecal Microbiota, Based on Reverse Transcription-Quantitative PCR Targeting of Multicopy rRNA Molecules. Applied and Environmental Microbiology, 2009, 75, 1961-1969.	1.4	237
191	The Intestinal Environment in Health and Disease – Recent Insights on the Potential of Intestinal Bacteria to Influence Human Health. Current Pharmaceutical Design, 2009, 15, 2051-2065.	0.9	76
192	Studying the Human Gut Microbiota in the Trans-Omics Era - Focus on Metagenomics and Metabonomics. Current Pharmaceutical Design, 2009, 15, 1415-1427.	0.9	76

#	Article	IF	CITATIONS
193	Changes in Intestinal Microflora in Obesity: Cause or Consequence?. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, S56-7.	0.9	43
194	Gut Microbiota, Obesity and Diabetes. Annales Nestle, 2009, 67, 39-47.	0.1	4
195	The Gut Microbiota as a Target for Improved Surgical Outcome and Improved Patient Care. Current Pharmaceutical Design, 2009, 15, 1537-1545.	0.9	36
196	The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmaceutical Design, 2009, 15, 1546-1558.	0.9	775
197	Developing effective probiotic products: bioavailability and other factors., 2009,, 230-262.		0
198	Drugs, ligation or both for the prevention of variceal rebleeding?. Gut, 2009, 58, 1045-1046.	6.1	3
199	Endotoxin in the gut and chylomicrons: translocation or transportation?. Journal of Lipid Research, 2009, 50, 1-2.	2.0	19
200	Microbial diversity in the human intestine and novel insights from metagenomics. Frontiers in Bioscience - Landmark, 2009, Volume, 3214.	3.0	72
201	Differential adipokine response in genetically predisposed lean and obese rats during inflammation: a role in modulating experimental colitis?. American Journal of Physiology - Renal Physiology, 2009, 297, G869-G877.	1.6	17
202	Microbiology and Aging. , 2009, , .		14
203	In-feed administered sub-therapeutic chlortetracycline alters community composition and structure but not the abundance of community resistance determinants in the fecal flora of the rat. Anaerobe, 2009, 15, 145-154.	1.0	15
204	Debugging the intestinal microbiota in IBD. Gastroenterologie Clinique Et Biologique, 2009, 33, S131-S136.	0.9	4
205	The gut-liver axis in nonalcoholic fatty liver disease: Another pathway to insulin resistance?. Hepatology, 2009, 49, 1790-1792.	3.6	36
206	Gastrointestinal microflora, food components and colon cancer prevention. Journal of Nutritional Biochemistry, 2009, 20, 743-752.	1.9	280
207	The microbiome and obesity: Is obesity linked to our gut flora?. Current Gastroenterology Reports, 2009, 11, 307-313.	1.1	153
208	Probiotics Improve Outcomes After Roux-en-Y Gastric Bypass Surgery: A Prospective Randomized Trial. Journal of Gastrointestinal Surgery, 2009, 13, 1198-1204.	0.9	178
209	The gastrointestinal microbiome: a malleable, third genome of mammals. Mammalian Genome, 2009, 20, 395-403.	1.0	56
210	The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. Journal of Applied Microbiology, 2009, 106, 952-966.	1.4	130

#	Article	IF	CITATIONS
211	The core gut microbiome, energy balance and obesity. Journal of Physiology, 2009, 587, 4153-4158.	1.3	846
212	Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. Journal of Physiology, 2009, 587, 4169-4174.	1.3	93
213	Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3, 700-714.	4.4	728
214	Matriptase-Deficient Mice Exhibit Ichthyotic Skin with a Selective Shift in Skin Microbiota. Journal of Investigative Dermatology, 2009, 129, 2435-2442.	0.3	60
215	A core gut microbiome in obese and lean twins. Nature, 2009, 457, 480-484.	13.7	6,819
216	Getting to the core of the gut microbiome. Nature Biotechnology, 2009, 27, 344-346.	9.4	65
217	Missing lincs in the transcriptome. Nature Biotechnology, 2009, 27, 346-347.	9.4	7
218	What do we mean when we refer to <i>Bacteroidetes</i> À¢Â€Âf populations in the human gastrointestinal microbiota?. FEMS Microbiology Letters, 2009, 299, 175-183.	0.7	39
219	Pattern extraction of structural responses of gut microbiota to rotavirus infection via multivariate statistical analysis of clone library data. FEMS Microbiology Ecology, 2009, 70, 177-185.	1.3	34
220	The phylogeography of Adelie penguin faecal flora. Environmental Microbiology, 2009, 11, 577-588.	1.8	69
221	Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environmental Microbiology, 2009, 11, 2194-2206.	1.8	252
222	Towards the human intestinal microbiota phylogenetic core. Environmental Microbiology, 2009, 11, 2574-2584.	1.8	773
223	Composition and function of the human-associated microbiota. Nutrition Reviews, 2009, 67, S164-S171.	2.6	59
224	Novel 16S rRNA gene analyses reveal new <i>in vitro</i> effects of insoluble barley fibres on the human faecal microbiota. Letters in Applied Microbiology, 2009, 48, 433-439.	1.0	4
225	The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 2009, 1, 6ra14.	5.8	2,492
226	Top-Down Systems Biology Modeling of Host Metabotypeâ ⁻³ Microbiome Associations in Obese Rodents. Journal of Proteome Research, 2009, 8, 2361-2375.	1.8	228
227	Diet-Induced Metabolic Improvements in a Hamster Model of Hypercholesterolemia Are Strongly Linked to Alterations of the Gut Microbiota. Applied and Environmental Microbiology, 2009, 75, 4175-4184.	1.4	299
228	<i>Lactobacillus fermentum</i> ME-3 – an antimicrobial and antioxidative probiotic. Microbial Ecology in Health and Disease, 2009, 21, 1-27.	3.8	179

#	ARTICLE	IF	CITATIONS
229	Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2365-2370.	3.3	1,641
230	Failure to Ferment Dietary Resistant Starch in Specific Mouse Models of Obesity Results in No Body Fat Loss. Journal of Agricultural and Food Chemistry, 2009, 57, 8844-8851.	2.4	47
231	Toll-like receptors as targets in chronic liver diseases. Gut, 2009, 58, 704-720.	6.1	290
232	Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Current Opinion in Pharmacology, 2009, 9, 737-743.	1.7	325
233	Intestinal microflora and metabolic diseases. Diabetes and Metabolism, 2009, 35, 262-272.	1.4	67
234	Gut microbiota affects lens and retinal lipid composition. Experimental Eye Research, 2009, 89, 604-607.	1.2	45
235	Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 816-824.	1.1	128
236	A mixture of Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces body weight gain, visceral fat accumulation, and total cholesterol and insulin increases in male Wistar fatty rats. Nutrition Research, 2009, 29, 55-63.	1.3	24
237	Role of gut microbiota in Crohn's disease. Expert Review of Gastroenterology and Hepatology, 2009, 3, 535-546.	1.4	57
238	Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 2009, 19, 1141-1152.	2.4	805
239	Gastrointestinal Microbiology in the Normal Host. , 2009, , 422-443.		0
240	Patterns and Scales in Gastrointestinal Microbial Ecology. Gastroenterology, 2009, 136, 1989-2002.	0.6	84
241	Obesity and the Microbiota. Gastroenterology, 2009, 136, 1476-1483.	0.6	172
242	Inflammation and Intestinal Metaplasia of the Distal Esophagus Are Associated With Alterations in the Microbiome. Gastroenterology, 2009, 137, 588-597.	0.6	392
243	Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutrition Journal, 2009, 8, 49.	1.5	150
244	Ten Putative Contributors to the Obesity Epidemic. Critical Reviews in Food Science and Nutrition, 2009, 49, 868-913.	5.4	576
245	Le resvératrol en complément thérapeutiqueÂ: une piste pour la prévention du diabète de type 2Â?. Medecine Des Maladies Metaboliques, 2009, 3, 486-490.	0.1	1
246	Community-Wide Response of the Gut Microbiota to Enteropathogenic <i>Citrobacter rodentium</i> Infection Revealed by Deep Sequencing. Infection and Immunity, 2009, 77, 4668-4678.	1.0	121

#	Article	IF	Citations
247	AMPK in Health and Disease. Physiological Reviews, 2009, 89, 1025-1078.	13.1	1,423
248	Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Archives of Physiology and Biochemistry, 2009, 115, 176-190.	1.0	70
249	Probiotic carbohydrates reduce intestinal permeability and inflammation in metabolic diseases. Gut, 2009, 58, 1044-1045.	6.1	34
250	Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1805-1812.	0.8	97
251	Intestinal microbiota and its functions. Digestive and Liver Disease Supplements, 2009, 3, 30-34.	0.2	54
252	The gut microbiota of tollâ€like receptor 2â€deficient mice exhibits lineageâ€specific modifications. Environmental Microbiology Reports, 2009, 1, 65-70.	1.0	13
253	Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biological Psychiatry, 2009, 65, 263-267.	0.7	956
254	Flore intestinale et maladies métaboliques. Medecine Des Maladies Metaboliques, 2009, 3, 159-164.	0.1	O
255	Clinical Evidence for Immunomodulatory Effects of Probiotic Bacteria. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, 126-141.	0.9	57
256	Microbiota intestinal, obesidad y diabetes. Annales Nestlé (Ed Española), 2009, 67, 39-48.	0.1	2
257	Flore intestinale: deÂnouveaux concepts pourÂlaÂrégulation duÂmétabolisme énergétique. Sang Thrombose Vaisseaux, 2009, 21, 322-333.	0.1	0
258	Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World Journal of Gastroenterology, 2009, 15, 81.	1.4	123
259	Microbiote intestinal, obésité et diabète. Annales Nestle [Ed Francaise], 2009, 67, 39-48.	0.0	0
260	Blueberry husks and multi-strain probiotics affect colonic fermentation in rats. British Journal of Nutrition, 2009, 101, 859-870.	1.2	31
261	The Impact of Probiotic on Gut Health. Current Drug Metabolism, 2009, 10, 68-78.	0.7	190
262	Signal Processing for Metagenomics: Extracting Information from the Soup. Current Genomics, 2009, 10, 493-510.	0.7	26
263	Intestinal Microbiota During Infancy and Its Implications for Obesity. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, 249-256.	0.9	149
264	Gut health: predictive biomarkers for preventive medicine and development of functional foods. British Journal of Nutrition, 2010, 103, 1539-1544.	1.2	28

#	Article	IF	Citations
265	Quantitative differences in intestinal <i>Faecalibacterium prausnitzii</i> in obese Indian children. British Journal of Nutrition, 2010, 103, 335-338.	1.2	178
266	Glycaemic index, appetite and body weight. Proceedings of the Nutrition Society, 2010, 69, 199-203.	0.4	18
267	Absence of intestinal microbiota does not protect mice from diet-induced obesity. British Journal of Nutrition, 2010, 104, 919-929.	1.2	369
268	Role of gut microbiota in the control of energy and carbohydrate metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 432-438.	1.3	77
269	Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 569-573.	1.3	89
270	Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders. Current Opinion in Lipidology, 2010, 21, 76-83.	1.2	151
271	Contribution of Inflammation to Fat Redistribution and Metabolic Disturbances in HIV-1 Infected Patients. Current Pharmaceutical Design, 2010, 16, 3361-3371.	0.9	14
272	Nutrigenomics and IBD. Journal of Clinical Gastroenterology, 2010, 44, S6-S9.	1.1	23
273	Obesity, Metabolic Syndrome, and Microbiota. Journal of Clinical Gastroenterology, 2010, 44, S16-S18.	1.1	98
274	Intestinal microbiota and overweight. Beneficial Microbes, 2010, 1, 407-421.	1.0	26
275	Analysis of the intestinal microbiota of oligosaccharide fed mice exhibiting reduced resistance to Salmonella infection. Beneficial Microbes, 2010, 1, 271-281.	1.0	32
276	Early nutritional environment: focus on health effects of microbiota and probiotics. Beneficial Microbes, 2010, 1, 383-390.	1.0	17
277	Unconventional Wisdom About the Obesity Epidemic Symbol. American Journal of the Medical Sciences, 2010, 340, 481-491.	0.4	14
278	Review: Postnatal development of the mucosal immune system and consequences on health in adulthood. Canadian Journal of Animal Science, 2010, 90, 129-136.	0.7	4
279	Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during Salmonella infection1. Journal of Animal Science, 2010, 88, 3896-3908.	0.2	75
280	Molecular Characterisation of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology, 2010, 61, 69-78.	1.0	386
281	The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia, 2010, 53, 606-613.	2.9	270
282	Oral-Derived Bacterial Flora Defends Its Domain by Recognizing and Killing Intruders—A Molecular Analysis Using Escherichia coli as a Model Intestinal Bacterium. Microbial Ecology, 2010, 60, 655-664.	1.4	29

#	Article	IF	CITATIONS
283	In Vitro Communities Derived from Oral and Gut Microbial Floras Inhibit the Growth of Bacteria of Foreign Origins. Microbial Ecology, 2010, 60, 665-676.	1.4	18
284	Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Current Opinion in Biotechnology, 2010, 21, 539-550.	3.3	62
285	Development of gut microflora in obese and lean rats. Folia Microbiologica, 2010, 55, 373-375.	1.1	20
286	Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. Journal of Microbiology, 2010, 48, 712-714.	1.3	122
287	Human microbiomics. Indian Journal of Microbiology, 2010, 50, 109-112.	1.5	18
290	Métagénomique du microbiote intestinal : les applications potentielles. Gastroenterologie Clinique Et Biologique, 2010, 34, 24-30.	0.9	0
294	Obesity: Genes, brain, gut, and environment. Nutrition, 2010, 26, 459-473.	1.1	163
295	Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiology, 2010, 10, 206.	1.3	335
296	Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe, 2010, 16, 420-425.	1.0	85
297	Mining metagenomic data for novel domains: BACON, a new carbohydrateâ€binding module. FEBS Letters, 2010, 584, 2421-2426.	1.3	41
298	In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. International Journal of Food Microbiology, 2010, 139, 168-176.	2.1	68
301	Baboon vaginal microbiota: an overlooked aspect of primate physiology. American Journal of Primatology, 2010, 72, 467-474.	0.8	15
302	Fecal bacterial diversity of humanâ€habituated wild chimpanzees (<i>Pan troglodytes) Tj ETQq0 0 0 rgBT /Overloc Primatology, 2010, 72, 566-574.</i>	ck 10 Tf 50 0.8	0 267 Td (sch 24
303	Why bacteria matter in animal development and evolution. BioEssays, 2010, 32, 571-580.	1.2	257
304	Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Alimentary Pharmacology and Therapeutics, 2010, 32, 1307-1314.	1.9	76
305	Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. Journal of Internal Medicine, 2010, 268, 320-328.	2.7	225
306	Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity, 2010, 18, 190-195.	1.5	1,996
307	Diversification of the gut symbiont <i>Lactobacillus reuteri</i> as a result of host-driven evolution. ISME Journal, 2010, 4, 377-387.	4.4	254

#	Article	IF	CITATIONS
308	Postprandial remodeling of the gut microbiota in Burmese pythons. ISME Journal, 2010, 4, 1375-1385.	4.4	229
309	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	13.7	9,342
310	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: The normal gut microbiota in health and disease. Clinical and Experimental Immunology, 2010, 160, 80-84.	1.1	31
311	Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunology, 2010, 11, 76-82.	7.0	1,013
312	The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature Reviews Microbiology, 2010, 8, 564-577.	13.6	329
313	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2010, 4, 75-77.	0.2	O
314	(Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-like Receptor 5. Science) Tj ETQq0 0 0 rgBT	/Overlock 0.2	10 Tf 50 50
315	The Increase of Lactobacillus Species in the Gut Flora of Newborn Broiler Chicks and Ducks Is Associated with Weight Gain. PLoS ONE, 2010, 5, e10463.	1.1	125
316	Gut Microbial Gene Expression in Mother-Fed and Formula-Fed Piglets. PLoS ONE, 2010, 5, e12459.	1.1	98
317	Regional Mucosa-Associated Microbiota Determine Physiological Expression of TLR2 and TLR4 in Murine Colon. PLoS ONE, 2010, 5, e13607.	1.1	110
318	Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing. PLoS ONE, 2010, 5, e9768.	1.1	223
319	Functional and Mechanistic Integration of Infection and the Metabolic Syndrome. Korean Diabetes Journal, 2010, 34, 71.	0.8	17
320	La microbiota intestinal: Un nuevo actor en el desarrollo de la obesidad. Revista Medica De Chile, 2010, 138, .	0.1	9
321	Application of Nutrigenomics in Gastrointestinal Health. , 2010, , 83-94.		O
322	Probiotics and Prebiotics in Metabolic Disorders and Obesity. , 2010, , 237-258.		3
323	Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE, 2010, 5, e9085.	1.1	2,309
324	Response of Nursery Pigs to a Synbiotic Preparation of Starch and an Anti- <i>Escherichia coli</i> K88 Probiotic. Applied and Environmental Microbiology, 2010, 76, 8192-8200.	1.4	52
325	Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. American Journal of Clinical Nutrition, 2010, 92, 1023-1030.	2.2	317

#	Article	IF	Citations
328	Bacteroides faecis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2572-2576.	0.8	23
329	Stable tRNA-based phylogenies using only 76 nucleotides. Rna, 2010, 16, 1469-1477.	1.6	36
330	Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poultry Science, 2010, 89, 1614-1621.	1.5	71
331	Nutrition, intestinal defence and the microbiome. Proceedings of the Nutrition Society, 2010, 69, 261-268.	0.4	22
332	Probiotics and Obesity. Annals of Nutrition and Metabolism, 2010, 57, 20-23.	1.0	18
333	Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 671-678.	1.8	120
334	Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1527-1531.	0.8	66
335	<i>Lactobacillus plantarum</i> strain No. 14 reduces adipocyte size in mice fed high-fat diet. Experimental Biology and Medicine, 2010, 235, 849-856.	1.1	146
336	Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Laboratory Animals, 2010, 44, 283-289.	0.5	42
337	Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data. Nucleic Acids Research, 2010, 38, e205-e205.	6.5	43
338	Obesity and the human microbiome. Current Opinion in Gastroenterology, 2010, 26, 5-11.	1.0	688
339	A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. British Journal of Nutrition, 2010, 104, 701-708.	1.2	63
340	Technology-driven research will dominate hypothesis-driven research: the future of microbiology. Future Microbiology, 2010, 5, 135-137.	1.0	18
341	Age-Related Inflammation: the Contribution of Different Organs, Tissues and Systems. How to Face it for Therapeutic Approaches. Current Pharmaceutical Design, 2010, 16, 609-618.	0.9	150
342	Medical Journal Watch. Alternative and Complementary Therapies, 2010, 16, 59-63.	0.1	0
343	Antiobesity Effects of <i>Bifidobacterium breve </i> Strain B-3 Supplementation in a Mouse Model with High-Fat Diet-Induced Obesity. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1656-1661.	0.6	189
344	The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 2010, 51, 1101-1112.	2.0	508
345	Growth Factor Regulation of Prostaglandin-Endoperoxide Synthase 2 (Ptgs2) Expression in Colonic Mesenchymal Stem Cells. Journal of Biological Chemistry, 2010, 285, 5026-5039.	1.6	33

#	Article	IF	Citations
346	The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. British Journal of Nutrition, 2010, 103, 227-234.	1.2	191
347	Novel Insights into Human Lactation as a Driver of Infant Formula Development. Nestle Nutrition Workshop Series Paediatric Programme, 2010, 66, 19-29.	1.5	4
348	Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18933-18938.	3.3	1,113
349	Transitions in Oral and Intestinal Microflora Composition and Innate Immune Receptor-Dependent Stimulation during Mouse Development. Infection and Immunity, 2010, 78, 639-650.	1.0	47
350	Orientations of the <i>Bacteroides fragilis </i> Capsular Polysaccharide Biosynthesis Locus Promoters during Symbiosis and Infection. Journal of Bacteriology, 2010, 192, 5832-5836.	1.0	20
351	The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics. PLoS Genetics, 2010, 6, e1000808.	1,5	286
352	Deficits in gastrointestinal responses controlling food intake and body weight. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1423-R1439.	0.9	54
353	Probiotic manipulation of the gastrointestinal microbiota. Gut Microbes, 2010, 1, 335-338.	4.3	21
354	Evolutionary Relationships of Wild Hominids Recapitulated by Gut Microbial Communities. PLoS Biology, 2010, 8, e1000546.	2.6	464
355	Les lipopolysaccharides bactériens et les maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2010, 45, 114-121.	0.2	0
356	The endocannabinoid system links gut microbiota to adipogenesis. Molecular Systems Biology, 2010, 6, 392.	3.2	547
357	Role of the gut microbiota in defining human health. Expert Review of Anti-Infective Therapy, 2010, 8, 435-454.	2.0	339
358	Intestinal Bacteria and the Regulation of Immune Cell Homeostasis. Annual Review of Immunology, 2010, 28, 623-667.	9.5	486
359	Obesity, Diabetes, and Gut Microbiota. Diabetes Care, 2010, 33, 2277-2284.	4.3	557
360	Gut Microbiota, Lipopolysaccharides, and Innate Immunity in the Pathogenesis of Obesity and Cardiovascular Risk. Endocrine Reviews, 2010, 31, 817-844.	8.9	389
361	Insulin resistance, adipose depots and gut: Interactions and pathological implications. Digestive and Liver Disease, 2010, 42, 310-319.	0.4	27
363	Infectious Causes of Colorectal Cancer. Infectious Disease Clinics of North America, 2010, 24, 1019-1039.	1.9	19
364	Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, 2010, 59, 1635-1642.	6.1	808

#	ARTICLE	IF	CITATIONS
365	Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology (United) Tj ETQq0 0 0	O rgBT /Ov	erlock 10 Tf :
366	Gut Microbiota in Health and Disease. Physiological Reviews, 2010, 90, 859-904.	13.1	3,287
367	A role for the gut microbiota in energy harvesting?. Gut, 2010, 59, 1589-1590.	6.1	28
368	Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science, 2010, 328, 228-231.	6.0	1,804
369	A common core microbiota between obese individuals and their lean relatives? Evaluation of the predisposition to obesity on the basis of the fecal microflora profile. Medical Hypotheses, 2010, 75, 350-352.	0.8	24
370	Gut microbiota: Changes throughout the lifespan from infancy to elderly. International Dairy Journal, 2010, 20, 281-291.	1.5	218
371	Addressing the gut microbiome and implications for obesity. International Dairy Journal, 2010, 20, 259-261.	1.5	10
372	Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie, 2010, 92, 753-761.	1.3	122
373	Innate immunity and gut–microbe mutualism in Drosophila. Developmental and Comparative Immunology, 2010, 34, 369-376.	1.0	144
374	Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 240-245.	1.2	61
375	Fatty liver and lipotoxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 299-310.	1,2	232
376	Photoperiod modulates gut bacteria composition in male Siberian hamsters (Phodopus sungorus). Brain, Behavior, and Immunity, 2010, 24, 577-584.	2.0	68
377	Intestinal Ecology in the Metabolic Syndrome. Cell Metabolism, 2010, 11, 345-346.	7.2	18
378	Inflammatory Bowel Disease. Annual Review of Immunology, 2010, 28, 573-621.	9.5	1,642
379	Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Beneficial Microbes, 2010, 1, 189-196.	1.0	92
380	The evolution of animals and plants via symbiosis with microorganisms. Environmental Microbiology Reports, 2010, 2, 500-506.	1.0	133
383	From Structure to Function: the Ecology of Host-Associated Microbial Communities. Microbiology and Molecular Biology Reviews, 2010, 74, 453-476.	2.9	339
384	Multivariate Cutoff Level Analysis (MultiCoLA) of large community data sets. Nucleic Acids Research, 2010, 38, e155-e155.	6.5	108

#	Article	IF	Citations
385	A new vision of immunity: homeostasis of the superorganism. Mucosal Immunology, 2010, 3, 450-460.	2.7	195
386	Specificity of the Adaptive Immune Response to the Gut Microbiota. Advances in Immunology, 2010, 107, 71-107.	1.1	21
387	Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes, 2010, 59, 3049-3057.	0.3	1,065
388	Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids in Health and Disease, 2010, 9, 82.	1.2	85
389	Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance. Diabetes, 2010, 59, 347-357.	0.3	426
390	Direct sequencing of the human microbiome readily reveals community differences. Genome Biology, 2010, 11, 210.	13.9	134
391	Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 2010, 69, 434-441.	0.4	221
392	Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American Journal of Physiology - Renal Physiology, 2010, 299, G440-G448.	1.6	747
393	Gut Microbiota, Intestinal Permeability, Obesityâ€Induced Inflammation, and Liver Injury. Journal of Parenteral and Enteral Nutrition, 2011, 35, 14S-20S.	1.3	259
394	Gut microbiome-host interactions in health and disease. Genome Medicine, 2011, 3, 14.	3.6	550
395	Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4531-4538.	3.3	448
396	Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Research, 2011, 21, 126-136.	2.4	104
397	<i>Bifidobacterium longum</i> supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Experimental Biology and Medicine, 2011, 236, 823-831.	1.1	95
398	The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?. American Journal of Physiology - Renal Physiology, 2011, 301, G401-G424.	1.6	201
399	Effects of NUTRIOSE $<$ sup $>$ Â $ <$ /sup $>$ dietary fiber supplementation on body weight, body composition, energy intake, and hunger in overweight men. International Journal of Food Sciences and Nutrition, 2011, 62, 628-635.	1.3	45
400	Depletion of gut commensal bacteria attenuates intestinal ischemia/reperfusion injury. American Journal of Physiology - Renal Physiology, 2011, 301, G1020-G1030.	1.6	83
401	Gut microbiota and probiotics in maternal and infant health. American Journal of Clinical Nutrition, 2011, 94, S2000-S2005.	2.2	90
402	Nod2 is essential for temporal development of intestinal microbial communities. Gut, 2011, 60, 1354-1362.	6.1	278

#	Article	IF	CITATIONS
403	Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology, 2011, 141, 1773-1781.	0.6	738
404	Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity?. Journal of Allergy and Clinical Immunology, 2011, 127, 1087-1094.	1.5	198
405	Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 2011, 7, 639-646.	4.3	653
408	Contributions of Intestinal Bacteria to Nutrition and Metabolism in the Critically III. Surgical Clinics of North America, 2011, 91, 771-785.	0.5	157
409	Inflammatory Mechanisms in Obesity. Annual Review of Immunology, 2011, 29, 415-445.	9.5	2,936
411	Misdiagnosis of Spider Bites: Bacterial Associates, Mechanical Pathogen Transfer, and Hemolytic Potential of Venom From the Hobo Spider, Tegenaria agrestis (Araneae: Agelenidae). Journal of Medical Entomology, 2011, 48, 382-388.	0.9	26
412	Symbiotic Gut Microbiota and the Modulation of Human Metabolic Phenotypes., 2011,, 297-306.		0
413	Propionate. Anti-obesity and satiety enhancing factor?. Appetite, 2011, 56, 511-515.	1.8	171
414	Gut microbiota and the role of probiotics in therapy. Current Opinion in Pharmacology, 2011, 11, 593-603.	1.7	58
415	Teleost intestinal immunology. Fish and Shellfish Immunology, 2011, 31, 616-626.	1.6	467
416	Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie, 2011, 93, 39-45.	1.3	126
417	Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 2011, 25, 397-407.	2.0	929
418	The gut microbiota: A new player in the innate immune stress response?. Brain, Behavior, and Immunity, 2011, 25, 395-396.	2.0	12
419	Brain?Gut?Microbe Communication in Health and Disease. Frontiers in Physiology, 2011, 2, 94.	1.3	698
420	Themes in fibrosis and gastrointestinal inflammation. American Journal of Physiology - Renal Physiology, 2011, 300, G677-G683.	1.6	89
421	The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition. Journal of Microbiological Methods, 2011, 84, 388-393.	0.7	48
422	Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends in Molecular Medicine, 2011, 17, 320-328.	3.5	222
423	Short photoperiods alter cannabinoid receptor expression in hypothalamic nuclei related to energy balance. Neuroscience Letters, 2011, 491, 99-103.	1.0	2

#	ARTICLE	IF	CITATIONS
425	Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends in Microbiology, 2011, 19, 349-359.	3.5	452
426	Investigating the biological and clinical significance of human dysbioses. Trends in Microbiology, 2011, 19, 427-434.	3.5	157
427	Dietary long-chain n-3 PUFA, gut microbiota and fat mass in early postnatal piglet developmentâ€"exploring a potential interplay. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 85, 345-351.	1.0	24
428	The soluble fiber NUTRIOSE induces a dose-dependent beneficial impact on satiety over time in humans. Nutrition Research, 2011, 31, 665-672.	1.3	54
429	Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 1097-1107.	1.5	187
430	Host-microbial symbiosis in the vertebrate gastrointestinal tract and the <i>Lactobacillus reuteri</i> paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4645-4652.	3.3	283
431	Gut Microbiota and Pediatric Disease. Digestive Diseases, 2011, 29, 531-539.	0.8	34
432	Contribution of the Intestinal Microbiota to Human Health: From Birth to 100ÂYears of Age. Current Topics in Microbiology and Immunology, 2011, 358, 323-346.	0.7	51
433	Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System. PLoS Genetics, 2011, 7, e1002272.	1.5	650
434	Gut microbiome, obesity, and metabolic dysfunction. Journal of Clinical Investigation, 2011, 121, 2126-2132.	3.9	703
435	Pyrosequencingâ€based Molecular Monitoring of the Intestinal Bacterial Colonization in Preterm Infants. Journal of Pediatric Gastroenterology and Nutrition, 2011, 53, 512-519.	0.9	53
436	Restoration of host–microbiota homeostasis for attaining healthy aging: the role of milk and fermented milk. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 159-164.	0.2	0
437	Chemical signaling in the gastrointestinal tract. F1000 Biology Reports, 2011, 3, 4.	4.0	11
438	MICROBIOTA INTESTINAL: ROL EN OBESIDAD. Revista Chilena De Nutricion, 2011, 38, 228-233.	0.1	12
439	GROWTH AND DEVELOPMENT SYMPOSIUM: Promoting healthier humans through healthier livestock: Animal agriculture enters the metagenomics era12. Journal of Animal Science, 2011, 89, 835-844.	0.2	12
440	Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 2011, 17, RA164-RA167.	0.5	109
441	Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 2011, 3, 501-507.	0.4	202
442	Effect of Antibiotic Growth Promoters on Intestinal Microbiota in Food Animals: A Novel Model for Studying the Relationship between Gut Microbiota and Human Obesity?. Frontiers in Microbiology, 2011, 2, 53.	1.5	34

#	Article	IF	Citations
443	The Intestinal Microbiota and Viral Susceptibility. Frontiers in Microbiology, 2011, 2, 92.	1.5	37
444	Gut Microbiota of Healthy and Malnourished Children in Bangladesh. Frontiers in Microbiology, 2011, 2, 228.	1.5	157
445	Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics: Targets and Therapy, 2011, 5, 71.	3.0	181
446	Analysis of the Lung Microbiome in the "Healthy―Smoker and in COPD. PLoS ONE, 2011, 6, e16384.	1.1	767
447	Fish Oil Enhances Recovery of Intestinal Microbiota and Epithelial Integrity in Chronic Rejection of Intestinal Transplant. PLoS ONE, 2011, 6, e20460.	1.1	34
448	Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances. PLoS ONE, 2011, 6, e24585.	1.1	394
449	Restricting Microbial Exposure in Early Life Negates the Immune Benefits Associated with Gut Colonization in Environments of High Microbial Diversity. PLoS ONE, 2011, 6, e28279.	1.1	118
451	Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 483-490.	1.3	116
452	The Human Microbiome and Surgical Disease. Annals of Surgery, 2011, 253, 1094-1101.	2.1	59
453	Probiotics in the Prevention of Necrotizing Enterocolitis. Journal of Clinical Gastroenterology, 2011, 45, S133-S138.	1.1	54
454	Intestinal microbiota in inflammation and insulin resistance: relevance to humans. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 334-340.	1.3	57
455	Current and Future Applications of Probiotics. Current Nutrition and Food Science, 2011, 7, 170-180.	0.3	3
457	MICROBIOTA INTESTINAL, METABOLISMO Y BALANCE CALÓRICO. Revista Chilena De Nutricion, 2011, 38, 477-481.	0.1	0
458	Prebiotics to manage the microbial control of energy homeostasis. Beneficial Microbes, 2011, 2, 305-318.	1.0	12
459	Convergent dynamics of the juvenile European sea bass gut microbiota induced by polyâ€Î²â€hydroxybutyrate. Environmental Microbiology, 2011, 13, 1042-1051.	1.8	28
460	Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?. Obesity Reviews, 2011, 12, 272-281.	3.1	248
461	Leaky gut and diabetes mellitus: what is the link?. Obesity Reviews, 2011, 12, 449-458.	3.1	182
462	Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiology Ecology, 2011, 77, 404-412.	1.3	254

#	Article	IF	CITATIONS
463	Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 2011, 9, 279-290.	13.6	1,305
464	Spatial organization of intestinal microbiota in the mouse ascending colon. ISME Journal, 2011, 5, 627-638.	4.4	228
465	Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME Journal, 2011, 5, 639-649.	4.4	292
466	Fermentation potential of the gut microbiome: implications for energy homeostasis and weight management. Nutrition Reviews, 2011, 69, 99-106.	2.6	81
467	The gut microbiome as therapeutic target. , 2011, 130, 202-212.		299
468	Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiology and Behavior, 2011, 105, 100-105.	1.0	122
469	Influence of photoperiod on hormones, behavior, and immune function. Frontiers in Neuroendocrinology, 2011, 32, 303-319.	2.5	155
470	Impact of dietary counselling and probiotic intervention on maternal anthropometric measurements during and after pregnancy: A randomized placebo-controlled trial. Clinical Nutrition, 2011, 30, 156-164.	2.3	127
471	Animal behaviour meets microbial ecology. Animal Behaviour, 2011, 82, 425-436.	0.8	230
472	In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocolloids, 2011, 25, 180-188.	5.6	65
473	Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology, 2011, 149, 88-105.	2.1	213
474	High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-Biological Interactions, 2011, 189, 1-8.	1.7	150
475	Grain Sorghum Lipids: Extraction, Characterization, and Health Potential. ACS Symposium Series, 2011, , 149-170.	0.5	4
476	Interactions Between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes. Annual Review of Medicine, 2011, 62, 361-380.	5.0	515
477	Variation in Antibiotic-Induced Microbial Recolonization Impacts on the Host Metabolic Phenotypes of Rats. Journal of Proteome Research, 2011, 10, 3590-3603.	1.8	114
478	Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, 2011, 31, 15-31.	4.3	358
479	Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 2011, 9, 356-368.	13.6	932
480	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.3	881

#	ARTICLE	IF	CITATIONS
481	Metagenomics of the human microbiome. Biology Bulletin Reviews, 2011, 1, 83-93.	0.3	0
482	Rectal Administration of Lactobacillus casei DG Modifies Flora Composition and Toll-Like Receptor Expression in Colonic Mucosa of Patients with Mild Ulcerative Colitis. Digestive Diseases and Sciences, 2011, 56, 1178-1187.	1.1	81
483	Comparative analysis of microbial diversity in Longitarsus flea beetles (Coleoptera: Chrysomelidae). Genetica, 2011, 139, 541-550.	0.5	39
484	The unfolded protein response in human skeletal muscle is not involved in the onset of glucose tolerance impairment induced by a fat-rich diet. European Journal of Applied Physiology, 2011, 111, 1553-1558.	1.2	32
485	Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetologica, 2011, 48, 257-273.	1.2	199
486	The Development and Stability of the Genus Bacteriodes from Human Gut Microbiota in HFA Mice Model. Current Microbiology, 2011, 62, 1107-1112.	1.0	15
487	Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 2011, 68, 3635-3641.	2.4	404
488	Genotype Is a Stronger Determinant than Sex of the Mouse Gut Microbiota. Microbial Ecology, 2011, 61, 423-428.	1.4	201
489	A Closer Look at Bacteroides: Phylogenetic Relationship and Genomic Implications of a Life in the Human Gut. Microbial Ecology, 2011, 61, 473-485.	1.4	135
490	Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPAR \hat{I}^3 -related adipogenesis in the white adipose tissue of high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2011, 22, 712-722.	1.9	237
491	Intestinal microbiota in human health and disease: the impact of probiotics. Genes and Nutrition, 2011, 6, 209-240.	1.2	557
492	Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease?. Genes and Nutrition, 2011, 6, 241-260.	1.2	194
493	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 75-77.	0.2	0
494	Restoration of host–microbiota homeostasis for attaining healthy aging: the role of milk and fermented milk. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 159-164.	0.2	0
495	Gut Microbiota and the Pathogenesis of Insulin Resistance. Current Diabetes Reports, 2011, 11, 154-159.	1.7	97
496	The ProPrems trial: investigating the effects of probiotics on late onset sepsis in very preterm infants. BMC Infectious Diseases, 2011, 11, 210.	1.3	47
497	Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, 2011, 10, S10.	1.9	172
498	Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. Journal of Translational Medicine, 2011, 9, 202.	1.8	24

#	Article	IF	Citations
499	Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice. Nutrition and Metabolism, 2011, 8, 44.	1.3	15
500	Intervention, integration and translation in obesity research: Genetic, developmental and metaorganismal approaches. Philosophy, Ethics, and Humanities in Medicine, 2011, 6, 2.	0.7	12
501	Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathogens, 2011, 3, 8.	1.6	126
502	Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinformatics, 2011, 12, 118.	1.2	126
503	Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics, 2011, 12, S17.	1.2	71
504	Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. Journal of Pathology, 2011, 225, 276-284.	2.1	94
505	Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 2011, 3, 559-572.	3.3	694
506	The struggle within: Microbial influences on colorectal cancer. Inflammatory Bowel Diseases, 2011, 17, 396-409.	0.9	103
507	Symbiosis and development: The hologenome concept. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 56-66.	3.6	169
508	Prospects for systems biology and modeling of the gut microbiome. Trends in Biotechnology, 2011, 29, 251-258.	4.9	74
509	The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrition and Diabetes, 2011, 1, e12-e12.	1.5	137
510	Ordering samples along environmental gradients using particle swarm optimization., 2011, 2011, 4382-5.		1
511	Bacterial biogeography of the human digestive tract. Scientific Reports, 2011, 1, 170.	1.6	347
512	Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition, 2011, 106, S5-S78.	1.2	816
513	Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age. British Journal of Nutrition, 2011, 106, 887-895.	1.2	71
514	Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Frontiers in Microbiology, 2011, 2, 166.	1.5	438
515	Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes, 2011, 2, 25-33.	4.3	144
516	Successful Transmission of a Retrovirus Depends on the Commensal Microbiota. Science, 2011, 334, 245-249.	6.0	327

#	Article	IF	CITATIONS
517	Mechanisms Responsible for Excess Weight Loss after Bariatric Surgery. Journal of Diabetes Science and Technology, 2011, 5, 1263-1282.	1.3	73
518	The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Review of Respiratory Medicine, 2011, 5, 809-821.	1.0	89
519	Benefits of bariatric surgery: an issue of microbial-host metabolism interactions?. Gut, 2011, 60, 1166-1167.	6.1	11
520	Medical Journal Watch: Context and Applications. Alternative and Complementary Therapies, 2011, 17, 57-61.	0.1	0
521	Cross-Sectional and Longitudinal Comparisons of the Predominant Fecal Microbiota Compositions of a Group of Pediatric Patients with Cystic Fibrosis and Their Healthy Siblings. Applied and Environmental Microbiology, 2011, 77, 8015-8024.	1.4	105
522	Microbiome Aspects of Perinatal and Neonatal Health. Journal of Perinatal and Neonatal Nursing, 2011, 25, 158-162.	0.5	30
523	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
524	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	1.5	267
525	Advances in comparative genetics: influence of genetics on obesity. British Journal of Nutrition, 2011, 106, S1-S10.	1.2	67
526	Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5354-5359.	3.3	1,224
527	Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 2011, 94, 58-65.	2.2	1,015
528	Roundoc Rx: The Human Microbiome—Humans as Super-Organisms. Alternative and Complementary Therapies, 2011, 17, 70-75.	0.1	3
529	The emerging role of the intestine in metabolic diseases. Archives of Physiology and Biochemistry, 2011, 117, 165-176.	1.0	18
530	Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4578-4585.	3.3	2,108
533	Targeting the innate immune system in pediatric inflammatory bowel disease. Expert Review of Gastroenterology and Hepatology, 2011, 5, 33-41.	1.4	10
534	Gut Microbes, Immunity, and Metabolism. , 2011, , 311-330.		1
535	Probiotics, Nuclear Receptor Signaling, and Anti-Inflammatory Pathways. Gastroenterology Research and Practice, 2011, 2011, 1-16.	0.7	54
536	Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice. PLoS Biology, 2011, 9, e1001212.	2.6	237

#	Article	IF	CITATIONS
537	Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood. Systematic Biology, 2011, 60, 291-302.	2.7	476
538	The Impact of Gut Microbiota in Human Health and Diseases: Implication for Therapeutic Potential. Biomolecules and Therapeutics, 2011, 19, 155-173.	1.1	5
539	COMPANION ANIMALS SYMPOSIUM: Humanized animal models of the microbiome1. Journal of Animal Science, 2011, 89, 1531-1537.	0.2	58
540	Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E374-E386.	1.8	133
541	Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations. Applied and Environmental Microbiology, 2012, 78, 6153-6160.	1.4	87
542	Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut, 2012, 61, 543-553.	6.1	511
543	Does endotoxaemia contribute to osteoarthritis in obese patients?. Clinical Science, 2012, 123, 627-634.	1.8	46
544	The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Frontiers in Physiology, 2012, 3, 402.	1.3	86
545	Management of metabolic syndrome through probiotic and prebiotic interventions. Indian Journal of Endocrinology and Metabolism, 2012, 16, 20.	0.2	72
546	Chapter 12: Human Microbiome Analysis. PLoS Computational Biology, 2012, 8, e1002808.	1.5	408
547	Therapeutic Helminth Infection of Macaques with Idiopathic Chronic Diarrhea Alters the Inflammatory Signature and Mucosal Microbiota of the Colon. PLoS Pathogens, 2012, 8, e1003000.	2.1	206
548	Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes?. Environmental Health Perspectives, 2012, 120, 332-339.	2.8	142
549	Early Origins of Adult Disease: Approaches for Investigating the Programmable Epigenome in Humans, Nonhuman Primates, and Rodents. ILAR Journal, 2012, 53, 306-321.	1.8	57
550	Is bile acid a determinant of the gut microbiota on a high-fat diet?. Gut Microbes, 2012, 3, 455-459.	4.3	170
551	Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes, 2012, 3, 352-365.	4.3	208
552	Quantitative Analysis of the Human Airway Microbial Ecology Reveals a Pervasive Signature for Cystic Fibrosis. Science Translational Medicine, 2012, 4, 153ra130.	5.8	102
553	Bacteroides uniformis CECT 7771 Ameliorates Metabolic and Immunological Dysfunction in Mice with High-Fat-Diet Induced Obesity. PLoS ONE, 2012, 7, e41079.	1.1	311
554	Role of the Gut Microbiota in Age-Related Chronic Inflammation. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 361-367.	0.6	54

#	Article	IF	CITATIONS
555	Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology, 2012, 22, 1128-1139.	1.3	72
556	Early gut colonization and subsequent obesity risk. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 278-284.	1.3	25
557	Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Research, 2012, 22, 2146-2152.	2.4	167
558	Towards a 'Cure' for IBD. Digestive Diseases, 2012, 30, 428-433.	0.8	18
559	Candida albicans and Bacterial Microbiota Interactions in the Cecum during Recolonization following Broad-Spectrum Antibiotic Therapy. Infection and Immunity, 2012, 80, 3371-3380.	1.0	230
560	The Streptomycin-Treated Mouse Intestine Selects <i>Escherichia coli envZ</i> Missense Mutants That Interact with Dense and Diverse Intestinal Microbiota. Infection and Immunity, 2012, 80, 1716-1727.	1.0	49
561	Intestinal MicrobiOMICS to Define Health and Disease in Human and Mice. Current Pharmaceutical Biotechnology, 2012, 13, 746-758.	0.9	34
562	Disruption of the Murine Glp2r Impairs Paneth Cell Function and Increases Susceptibility to Small Bowel Enteritis. Endocrinology, 2012, 153, 1141-1151.	1.4	65
563	Composition of the early intestinal microbiota. Gut Microbes, 2012, 3, 203-220.	4.3	195
564	454 Pyrosequencing Reveals a Shift in Fecal Microbiota of Healthy Adult Men Consuming Polydextrose or Soluble Corn Fiber. Journal of Nutrition, 2012, 142, 1259-1265.	1.3	226
565	Gut Microbiota, Diet, and Heart Disease. Journal of AOAC INTERNATIONAL, 2012, 95, 24-30.	0.7	30
567	Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes, 2012, 3, 234-249.	4.3	113
568	The gut microbiota and its relationship to diet and obesity. Gut Microbes, 2012, 3, 186-202.	4.3	382
569	Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. American Journal of Physiology - Renal Physiology, 2012, 303, G589-G599.	1.6	330
570	Expression of the blood-group-related glycosyltransferase <i>B4galnt2</i> influences the intestinal microbiota in mice. ISME Journal, 2012, 6, 1345-1355.	4.4	60
571	Etiopatogenia de la obesidad. Revista Médica ClÃnica Las Condes, 2012, 23, 129-135.	0.2	1
572	Faecal and caecal microbiota profiles of mice do not cluster in the same way. Laboratory Animals, 2012, 46, 231-236.	0.5	35
573	Remodeling the intestinal ecosystem toward better performance and intestinal health. Journal of Applied Poultry Research, 2012, 21, 432-443.	0.6	9

#	Article	IF	Citations
574	Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 2012, 13, 129-141.	1.4	76
575	Current state of knowledge: the canine gastrointestinal microbiome. Animal Health Research Reviews, 2012, 13, 78-88.	1.4	72
576	Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME Journal, 2012, 6, 1848-1857.	4.4	407
577	Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes, 2012, 3, 29-34.	4.3	151
578	Effect of <i>Lactobacillus acidophilus </i> NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. British Journal of Nutrition, 2012, 108, 1382-1389.	1.2	81
579	Impact of a Resistant Dextrin on Intestinal Ecology: How Altering the Digestive Ecosystem with NUTRIOSE®, a Soluble Fibre with Prebiotic Properties, May Be Beneficial for Health. Journal of International Medical Research, 2012, 40, 211-224.	0.4	66
580	<i>Bifidobacterium adolescentis</i> supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. British Journal of Nutrition, 2012, 107, 1429-1434.	1.2	130
581	Ecological Succession of Bacterial Communities during Conventionalization of Germ-Free Mice. Applied and Environmental Microbiology, 2012, 78, 2359-2366.	1.4	68
582	The Evolutionary Innovation of Nutritional Symbioses in Leaf-Cutter Ants. Insects, 2012, 3, 41-61.	1.0	51
583	The gut microbiome: scourge, sentinel or spectator?. Journal of Oral Microbiology, 2012, 4, 9367.	1.2	48
584	Defining microbiota for developing new probiotics. Microbial Ecology in Health and Disease, 2012, 23, .	3.8	12
585	Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME Journal, 2012, 6, 1858-1868.	4.4	195
586	Environmental Factors and Their Impact on the Intestinal Microbiota: A Role for Human Disease?. Digestive Diseases, 2012, 30, 20-27.	0.8	10
587	The Intestinal Microbiota and Obesity. Journal of Clinical Gastroenterology, 2012, 46, 16-24.	1.1	168
588	Distinct Gut Microbiota in Southeastern African and Northern European Infants. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 812-816.	0.9	143
589	Microbes On-Air. Journal of Clinical Gastroenterology, 2012, 46, S27-S28.	1.1	15
590	Microbes en masse: The sequencing machine. Nature, 2012, 487, 156-158.	13.7	4
591	The Effect of Artificial Rearing on Gut Microbiota in a Mouse Pup-in-a-Cup Model. Experimental Animals, 2012, 61, 453-460.	0.7	7

#	Article	IF	Citations
592	Regulation of Metabolism: A Cross Talk Between Gut Microbiota and Its Human Host. Physiology, 2012, 27, 300-307.	1.6	47
593	Gut Microbiota and Obesity. Digestive Diseases, 2012, 30, 196-200.	0.8	17
594	Defining the human microbiome. Nutrition Reviews, 2012, 70, S38-S44.	2.6	789
595	Microbiome and immunological interactions. Nutrition Reviews, 2012, 70, S18-S30.	2.6	96
596	Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International Journal of Obesity, 2012, 36, 817-825.	1.6	567
597	Gut Microbial Activity, Implications for Health and Disease: The Potential Role of Metabolite Analysis. Journal of Proteome Research, 2012, 11, 5573-5585.	1.8	227
598	Minireview: Epigenetics of Obesity and Diabetes in Humans. Endocrinology, 2012, 153, 1025-1030.	1.4	131
599	Defining a Healthy Human Gut Microbiome: Current Concepts, Future Directions, and Clinical Applications. Cell Host and Microbe, 2012, 12, 611-622.	5.1	615
600	Gastrointestinal Microbial Ecology with Perspectives on Health and Disease. , 2012, , 1119-1134.		6
601	Manipulation of the Gut Microbiota as a Novel Treatment Strategy for Gastrointestinal Disorders. American Journal of Gastroenterology Supplements (Print), 2012, 1, 41-46.	0.7	94
602	Host genetic and environmental effects on mouse intestinal microbiota. ISME Journal, 2012, 6, 2033-2044.	4.4	206
603	Total Parenteral Nutrition Induces a Shift in the Firmicutes to Bacteroidetes Ratio in Association with Paneth Cell Activation in Rats ,2. Journal of Nutrition, 2012, 142, 2141-2147.	1.3	57
604	Microbial contact during pregnancy, intestinal colonization and human disease. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 565-576.	8.2	392
605	The Hologenome Concept. , 2012, , 323-340.		2
606	Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Beneficial Microbes, 2012, 3, 13-22.	1.0	102
607	Toward an Understanding of Changes in Diversity Associated with Fecal Microbiome Transplantation Based on 16S rRNA Gene Deep Sequencing. MBio, 2012, 3, .	1.8	151
608	Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. Journal of Experimental Medicine, 2012, 209, 1445-1456.	4.2	295
609	Women With and Without Metabolic Disorder Differ in Their Gut Microbiota Composition. Obesity, 2012, 20, 1082-1087.	1.5	82

#	Article	IF	CITATIONS
610	Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia, 2012, 55, 2823-2834.	2.9	259
611	Microbial regulation of allergic responses to food. Seminars in Immunopathology, 2012, 34, 671-688.	2.8	40
612	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	13.5	1,603
613	Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host and Microbe, 2012, 12, 277-288.	5.1	717
614	Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Research International, 2012, 48, 916-929.	2.9	49
615	The world within: living with our microbial guests and guides. Translational Research, 2012, 160, 239-245.	2.2	9
616	The contributing role of the intestinal microbiota in stressor-induced increases in susceptibility to enteric infection and systemic immunomodulation. Hormones and Behavior, 2012, 62, 286-294.	1.0	55
617	Efecto de los probi \tilde{A}^3 ticos en el control de la obesidad en humanos: hip \tilde{A}^3 tesis no demostradas. Revista Espanola De Nutricion Humana Y Dietetica, 2012, 16, 100-107.	0.1	0
618	Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. American Journal of Clinical Nutrition, 2012, 95, 1278-1287.	2.2	109
619	Characterizing Kiwifruit Carbohydrate Utilization <i>in vitro</i> and its Consequences for Human Faecal Microbiota. Journal of Proteome Research, 2012, 11, 5863-5875.	1.8	12
620	Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 2012, 27, 201-214.	1,1	596
621	The Microbiota and Its Metabolites in Colonic Mucosal Health and Cancer Risk. Nutrition in Clinical Practice, 2012, 27, 624-635.	1.1	100
622	The Gut Microbiome and Obesity. Nestle Nutrition Institute Workshop Series, 2012, 73, 67-79.	1.5	24
623	Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Seminars in Immunology, 2012, 24, 67-74.	2.7	126
624	Leptin and mucosal immunity. Mucosal Immunology, 2012, 5, 472-479.	2.7	57
625	Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, 2012, 488, 621-626.	13.7	1,358
626	The potential role of prebiotic fibre for treatment and management of nonâ€alcoholic fatty liver disease and associated obesity and insulin resistance. Liver International, 2012, 32, 701-711.	1.9	159
627	A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490, 55-60.	13.7	5,345

#	Article	IF	CITATIONS
628	Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. Journal of Hepatology, 2012, 56, 1283-1292.	1.8	289
629	An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice. Microbial Pathogenesis, 2012, 52, 61-68.	1.3	59
630	Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. International Dairy Journal, 2012, 22, 123-140.	1.5	62
631	The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 2012, 148, 1258-1270.	13.5	2,920
632	Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell, 2012, 149, 1578-1593.	13.5	1,050
634	The function of our microbiota: who is out there and what do they do?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 104.	1.8	352
635	Abundance and shortâ€ŧerm temporal variability of fecal microbiota in healthy dogs. MicrobiologyOpen, 2012, 1, 340-347.	1.2	84
636	Gut microbiota, epithelial function and derangements in obesity. Journal of Physiology, 2012, 590, 441-446.	1.3	92
637	Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena). BMC Genomics, 2012, 13, 466.	1.2	27
638	Changes in human gut flora with age: an Indian familial study. BMC Microbiology, 2012, 12, 222.	1.3	36
639	Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiology, 2012, 12, 283.	1.3	88
640	Gut-central nervous system axis is a target for nutritional therapies. Nutrition Journal, 2012, 11, 22.	1.5	31
641	Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell and Bioscience, 2012, 2, 39.	2.1	9
642	The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 590-598.	8.2	216
643	Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38-47.	0.7	76
644	The contribution of dietary broccoli sprouts towards the microbial metabolite profile in the hind gut of mice. International Journal of Food Science and Technology, 2012, 47, 1328-1332.	1.3	7
646	Edible dry bean consumption (<i>Phaseolus vulgaris</i> L.) modulates cardiovascular risk factors and diet-induced obesity in rats and mice. British Journal of Nutrition, 2012, 108, S66-S73.	1.2	54
647	Fecal Microbiota Transplantation. Gastroenterology Clinics of North America, 2012, 41, 781-803.	1.0	116

#	Article	IF	Citations
648	Fructose impacts on gut microbiota and obesity $\hat{a} \in \text{``response}$ to H. C. Stevens. Obesity Reviews, 2012, 13, 1184-1185.	3.1	1
649	Molecular pathways linking metabolic inflammation and thermogenesis. Obesity Reviews, 2012, 13, 69-82.	3.1	18
650	The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623.	1.3	48
651	Efficacy of Hepatitis B Vaccination and Revaccination and Factors Impacting on Response in Patients With Inflammatory Bowel Disease. American Journal of Gastroenterology, 2012, 107, 1460-1466.	0.2	121
652	Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.	13.7	3,582
653	Insights into antibiotic resistance through metagenomic approaches. Future Microbiology, 2012, 7, 73-89.	1.0	251
654	Maternal Factors Pre- and During Delivery Contribute to Gut Microbiota Shaping in Newborns. Frontiers in Cellular and Infection Microbiology, 2012, 2, 93.	1.8	16
655	Impact of the Gut Microbiota on the Development of Obesity: Current Concepts. American Journal of Gastroenterology Supplements (Print), 2012, 1, 22-27.	0.7	112
656	Obesity and the gut microbiome: Striving for causality. Molecular Metabolism, 2012, 1, 21-31.	3.0	82
657	Human Gut Microbiota: Repertoire and Variations. Frontiers in Cellular and Infection Microbiology, 2012, 2, 136.	1.8	252
658	Low diversity of the gut microbiota in infants with atopic eczema. Journal of Allergy and Clinical Immunology, 2012, 129, 434-440.e2.	1.5	659
659	Antibiotic Exposure Promotes Fat Gain. Cell Metabolism, 2012, 16, 408-410.	7.2	10
661	Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutrition Research, 2012, 32, 637-647.	1.3	196
662	Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutrition Research, 2012, 32, 787-794.	1.3	45
663	Nanomedicine for treatment of diabetes in an aging population: State-of-the-art and future developments. Maturitas, 2012, 73, 61-67.	1.0	17
664	Probiotics, Prebiotics, Energy Balance, and Obesity. Gastroenterology Clinics of North America, 2012, 41, 843-854.	1.0	34
665	Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes, 2012, 3, 463-467.	4.3	160
666	Early Development of Intestinal Microbiota. Gastroenterology Clinics of North America, 2012, 41, 717-731.	1.0	51

#	ARTICLE	IF	Citations
667	Oligosaccharides Might Contribute to the Antidiabetic Effect of Honey: A Review of the Literature. Molecules, 2012, 17, 248-266.	1.7	47
668	The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biology, 2012, 10, e1001377.	2.6	369
669	Engineering ecosystems and synthetic ecologies. Molecular BioSystems, 2012, 8, 2470.	2.9	112
670	The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: an open label, randomized pilot study. European Journal of Clinical Nutrition, 2012, 66, 1110-1115.	1.3	98
671	Colonic flora, Probiotics, Obesity and Diabetes. Frontiers in Endocrinology, 2012, 3, 87.	1.5	18
673	Probiotics: a potential role in the prevention of gestational diabetes?. Acta Diabetologica, 2012, 49, 1-13.	1.2	33
674	Nanomedicine for treatment of diabetes in an aging population: state-of-the-art and future developments. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, S69-S76.	1.7	20
675	Molecular analysis of gut microbiota in obesity among Indian individuals. Journal of Biosciences, 2012, 37, 647-657.	0.5	142
676	Exercise, Intestinal Barrier Dysfunction and Probiotic Supplementation. Medicine and Sport Science, 2012, 59, 47-56.	1.4	66
677	Does Our Food (Environment) Change Our Gut Microbiome (â€~In-Vironment'): A Potential Role for Inflammatory Bowel Disease?. Digestive Diseases, 2012, 30, 33-39.	0.8	25
678	The Microbiome and Inflammatory Bowel Disease: Is There a Therapeutic Role for Fecal Microbiota Transplantation?. American Journal of Gastroenterology, 2012, 107, 1452-1459.	0.2	181
679	Metagenomic profiles of free-living archaea, bacteria and small eukaryotes in coastal areas of Sichang island, Thailand. BMC Genomics, 2012, 13, S29.	1.2	47
680	Long-term interdisciplinary therapy reduces endotoxin level and insulin resistance in obese adolescents. Nutrition Journal, 2012, 11, 74.	1.5	24
681	Probiotics in the Treatment of the Liver Diseases. Journal of the American College of Nutrition, 2012, 31, 14-23.	1.1	49
682	Genes and †In-Vironment': How Will Our Concepts on the Pathophysiology of Inflammatory Bowel Disease Develop in the Future?. Digestive Diseases, 2012, 30, 2-11.	0.8	39
683	Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice. PLoS ONE, 2012, 7, e34522.	1.1	32
684	Surfactant Protein D Deficiency in Mice Is Associated with Hyperphagia, Altered Fat Deposition, Insulin Resistance, and Increased Basal Endotoxemia. PLoS ONE, 2012, 7, e35066.	1.1	14
685	Murine Gut Microbiota Is Defined by Host Genetics and Modulates Variation of Metabolic Traits. PLoS ONE, 2012, 7, e39191.	1.1	198

#	Article	IF	CITATIONS
686	Expression of Human Paraoxonase 1 Decreases Superoxide Levels and Alters Bacterial Colonization in the Gut of Drosophila melanogaster. PLoS ONE, 2012, 7, e43777.	1.1	12
687	Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome. PLoS ONE, 2012, 7, e43052.	1.1	183
688	Routine Habitat Change: A Source of Unrecognized Transient Alteration of Intestinal Microbiota in Laboratory Mice. PLoS ONE, 2012, 7, e47416.	1.1	65
689	High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PLoS ONE, 2012, 7, e47713.	1.1	883
690	Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?. Journal of Obesity, 2012, 2012, 1-14.	1.1	177
691	The Nutrigenome and Gut Microbiome: Chronic Disease Prevention with Crop Phytochemical Diversity.		1
692	Human Gut Microbiota: Dysbiosis and Manipulation. Frontiers in Cellular and Infection Microbiology, 2012, 2, 123.	1.8	9
693	Gut microbiota and nonalcoholic fatty liver disease. Annals of Hepatology, 2012, 11, 440-449.	0.6	136
695	Computational methods for the analysis of tag sequences in metagenomics studies. Frontiers in Bioscience - Scholar, 2012, S4, 1333-1343.	0.8	2
696	The Inhibitory Receptor PD-1 Regulates IgA Selection and Bacterial Composition in the Gut. Science, 2012, 336, 485-489.	6.0	377
697	Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME Journal, 2012, 6, 2091-2106.	4.4	291
698	Intestinal Microbiota and Obesity. Handbook of Experimental Pharmacology, 2012, , 251-273.	0.9	69
699	The human microbiome: at the interface of health and disease. Nature Reviews Genetics, 2012, 13, 260-270.	7.7	2,798
700	Gaseous CO ₂ signal initiates growth of butyric-acid-producing <i>Clostridium butyricum</i> in both pure culture and mixed cultures with <i>Lactobacillus brevis</i> Canadian Journal of Microbiology, 2012, 58, 928-931.	0.8	14
701	Therapeutic Modulation of Microbiota-Host Metabolic Interactions. Science Translational Medicine, 2012, 4, 137rv6.	5.8	211
702	How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 2012, 10, 323-335.	13.6	1,073
703	Techniques used to characterize the gut microbiota: a guide for the clinician. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 312-322.	8.2	290
704	Coffee, colon function and colorectal cancer. Food and Function, 2012, 3, 916.	2.1	74

#	Article	IF	CITATIONS
705	Developmental origins of obesity: Early feeding environments, infant growth, and the intestinal microbiome. American Journal of Human Biology, 2012, 24, 350-360.	0.8	105
706	Toll-Like Receptor–Gut Microbiota Interactions: Perturb at Your Own Risk!. Annual Review of Physiology, 2012, 74, 177-198.	5.6	132
707	Gut Microbiota and Obesity. Current Obesity Reports, 2012, 1, 1-8.	3.5	25
708	Immunomodulation at epithelial sites by obesity and metabolic disease. Immunologic Research, 2012, 52, 182-199.	1.3	35
709	Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology, 2012, 221, 155-169.	1.5	231
710	Comparison of the Gut Microbe Profiles and Numbers Between Patients with Liver Cirrhosis and Healthy Individuals. Current Microbiology, 2012, 65, 7-13.	1.0	59
711	The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2012, 14, 112-120.	2.2	283
712	Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 2012, 13, 47-58.	7.7	601
713	Responses of Gut Microbiota to Diet Composition and Weight Loss in Lean and Obese Mice. Obesity, 2012, 20, 738-747.	1.5	352
714	Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response. FEMS Microbiology Ecology, 2012, 79, 192-202.	1.3	86
715	The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiology Ecology, 2012, 79, 697-708.	1.3	112
716	Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiology Letters, 2012, 326, 62-68.	0.7	143
717	The streptomycin mouse model for <i>Salmonella</i> diarrhea: functional analysis of the microbiota, the pathogen's virulence factors, and the host's mucosal immune response. Immunological Reviews, 2012, 245, 56-83.	2.8	153
718	Control of antiviral immunity by pattern recognition and the microbiome. Immunological Reviews, 2012, 245, 209-226.	2.8	87
719	Microbes and microbial effector molecules in treatment of inflammatory disorders. Immunological Reviews, 2012, 245, 27-44.	2.8	17
720	Microbial influences on immune function and more. Immunological Reviews, 2012, 245, 7-12.	2.8	7
721	Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe, 2012, 18, 310-320.	1.0	74
722	Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Anaerobe, 2012, 18, 331-337.	1.0	83

#	Article	IF	CITATIONS
723	Orally administered heat-killed Lactobacillus gasseri TMC0356 alters respiratory immune responses and intestinal microbiota of diet-induced obese mice. Journal of Applied Microbiology, 2012, 113, 155-162.	1.4	26
724	Daily follow-up of bacterial communities in the human gut reveals stable composition and host-specific patterns of interaction. FEMS Microbiology Ecology, 2012, 81, 427-437.	1.3	24
725	Lineage-dependent ecological coherence in bacteria. FEMS Microbiology Ecology, 2012, 81, 574-582.	1.3	28
726	Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiology Letters, 2012, 334, 1-15.	0.7	357
727	Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. Journal of Nutritional Biochemistry, 2012, 23, 133-139.	1.9	114
728	Metabolomics characterization of energy metabolism reveals glycogen accumulation in gut-microbiota-lacking mice. Journal of Nutritional Biochemistry, 2012, 23, 752-758.	1.9	24
729	Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology, 2012, 30, 17-25.	4.9	274
730	â€~Omics'â€driven discoveries in prevention and treatment of type 2 diabetes. European Journal of Clinical Investigation, 2012, 42, 579-588.	1.7	15
731	Intestinal aganglionosis is associated with early and sustained disruption of the colonic microbiome. Neurogastroenterology and Motility, 2012, 24, 874.	1.6	74
732	Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host–microbe interactions contributing to obesity. Obesity Reviews, 2012, 13, 799-809.	3.1	178
733	<i>Staphylococcus</i> prevails in the skin microbiota of longâ€ŧerm immunodeficient mice. Environmental Microbiology, 2012, 14, 2087-2098.	1.8	13
734	Characterization of the Gastrointestinal Microbiota in Health and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2012, 18, 372-390.	0.9	91
735	Gut Microbiota as a Modulator of Cardiometabolic Risk: Mechanisms and Therapeutic Implications. Current Cardiovascular Risk Reports, 2012, 6, 71-79.	0.8	2
736	Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 2012, 93, 903-916.	1.7	99
737	Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Applied Microbiology and Biotechnology, 2012, 93, 993-1003.	1.7	168
738	Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet. Lipids in Health and Disease, 2013, 12, 67.	1.2	51
739	Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biology, 2013, 14, R4.	13.9	381
740	Effects of probiotics in patients with diabetes mellitus type 2: study protocol for a randomized, double-blind, placebo-controlled trial. Trials, 2013, 14, 195.	0.7	32

#	Article	IF	CITATIONS
741	Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens, 2013, 5, 10.	1.6	351
742	Metagenomic profile of gut microbiota in children during cholera and recovery. Gut Pathogens, 2013, 5, 1.	1.6	118
743	Beyond the Paleolithic prescription: incorporating diversity and flexibility in the study of human diet evolution. Nutrition Reviews, 2013, 71, 501-510.	2.6	53
744	Functional food ingredients for the management of obesity and associated co-morbidities $\hat{a} \in A$ review. Journal of Functional Foods, 2013, 5, 997-1012.	1.6	135
745	The gut microbiota and obesity: from correlation to causality. Nature Reviews Microbiology, 2013, 11, 639-647.	13.6	665
746	Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME Journal, 2013, 7, 2116-2125.	4.4	194
747	Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends in Endocrinology and Metabolism, 2013, 24, 537-545.	3.1	143
748	An Integrated Method for Functional Analysis of Microbial Communities by Gene Ontology Based on 16S miRNA Gene. Communications in Computer and Information Science, 2013, , 219-224.	0.4	0
749	Replenishing our defensive microbes. BioEssays, 2013, 35, 810-817.	1.2	39
750	FANTOM: Functional and taxonomic analysis of metagenomes. BMC Bioinformatics, 2013, 14, 38.	1.2	35
751	Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs. BMC Microbiology, 2013, 13, 30.	1.3	56
752	Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients: a randomized double-blind, placebo-controlled study. BMC Gastroenterology, 2013, 13, 81.	0.8	54
753	Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microbial Cell Factories, 2013, 12, 71.	1.9	188
7 54	Diabetes, obesity and gut microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 73-83.	1.0	472
755	Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International, 2013, 53, 659-669.	2.9	189
756	Omics approaches to study host–microbiota interactions. Current Opinion in Microbiology, 2013, 16, 270-277.	2.3	22
757	Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Applied Microbiology and Biotechnology, 2013, 97, 6477-6488.	1.7	95
758	Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature Communications, 2013, 4, 2163.	5.8	404

#	Article	IF	Citations
759	From meta-omics to causality: experimental models for human microbiome research. Microbiome, 2013, 1, 14.	4.9	173
760	Applications of Engineered Synthetic Ecosystems. , 2013, , 317-325.		5
761	Nutrition, the gut microbiome and the metabolic syndrome. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 59-72.	1.0	95
762	The gut microbiota profile is associated with insulin action in humans. Acta Diabetologica, 2013, 50, 753-761.	1.2	50
763	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
764	Tyrosine kinase inhibitors as novel drugs for the treatment of diabetes. Expert Opinion on Investigational Drugs, 2013, 22, 751-763.	1.9	28
765	Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Current Opinion in Biotechnology, 2013, 24, 810-820.	3.3	58
766	The Human Gut Microbiome. JAMA Surgery, 2013, 148, 563.	2.2	211
767	The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Development Research, 2013, 74, 376-384.	1.4	1
768	Nutritional Targets for Modulation of the Microbiota in Obesity. Drug Development Research, 2013, 74, 393-402.	1.4	2
769	Bridging immunity and lipid metabolism by gut microbiota. Journal of Allergy and Clinical Immunology, 2013, 132, 253-262.	1.5	61
770	Is butyrate the link between diet, intestinal microbiota and obesityâ€related metabolic diseases?. Obesity Reviews, 2013, 14, 950-959.	3.1	206
771	Dysbiosisâ€"A consequence of Paneth cell dysfunction. Seminars in Immunology, 2013, 25, 334-341.	2.7	87
772	The gut microbiota and the liver. Pathophysiological and clinical implications. Journal of Hepatology, 2013, 58, 1020-1027.	1.8	119
774	Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue. Journal of Parenteral and Enteral Nutrition, 2013, 37, 746-754.	1.3	119
775	Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion. Journal of Biological Chemistry, 2013, 288, 25088-25097.	1.6	523
776	Le microbiote intestinal est l'avenir de la multirésistance bactérienne. Journal Des Anti-infectieux, 2013, 15, 166-177.	0.1	2
777	ExÂvivo systems to study host–microbiota interactions in the gastrointestinal tract. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 101-113.	1.0	35

#	Article	IF	CITATIONS
778	The microbiome and cancer. Nature Reviews Cancer, 2013, 13, 800-812.	12.8	1,338
779	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	2.2	112
780	Nonalcoholic Fatty Liver Disease. Journal of Parenteral and Enteral Nutrition, 2013, 37, 787-793.	1.3	24
781	Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013, 5, 234-252.	1.7	174
782	Sequencing the human microbiome in health and disease. Human Molecular Genetics, 2013, 22, R88-R94.	1.4	123
783	Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition, 2013, 1, 105-114.	0.8	106
784	Role of the intestinal microbiome in liver disease. Journal of Autoimmunity, 2013, 46, 66-73.	3.0	172
785	Murine Models of Candida Gastrointestinal Colonization and Dissemination. Eukaryotic Cell, 2013, 12, 1416-1422.	3.4	108
786	Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 2013, 5, 1417-1435.	1.7	1,514
787	Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Translational Psychiatry, 2013, 3, e309-e309.	2.4	201
788	A metagenomic insight into our gut's microbiome. Gut, 2013, 62, 146-158.	6.1	302
789	Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387.	1.3	104
790	Meta-analyses of studies of the human microbiota. Genome Research, 2013, 23, 1704-1714.	2.4	352
791	Role of the gut microbiota in human nutrition and metabolism. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 9-17.	1.4	365
792	Microbial ecosystems therapeutics: a new paradigm in medicine?. Beneficial Microbes, 2013, 4, 53-65.	1.0	106
793	Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC Genomics, 2013, 14, S16.	1.2	40
794	Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 2013, 14, 641.	1.2	33
795	Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathogens, 2013, 5, 23.	1.6	631

#	ARTICLE	IF	CITATIONS
796	Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome, 2013, 1, 30.	4.9	50
797	Metabolic Syndrome and Obesity in Children. World Review of Nutrition and Dietetics, 2013, , 95-102.	0.1	1
798	Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, , 103-121.	0.1	1
799	Therapeutic Potential of Fecal Microbiota Transplantation. Gastroenterology, 2013, 145, 946-953.	0.6	543
800	Microbiota impact on the epigenetic regulation of colorectal cancer. Trends in Molecular Medicine, 2013, 19, 714-725.	3.5	86
801	Methane and Hydrogen Positivity on Breath Test Is Associated With Greater Body Mass Index and Body Fat. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E698-E702.	1.8	97
802	The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. FASEB Journal, 2013, 27, 692-702.	0.2	78
803	Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infectious Diseases, The, 2013, 13, 889-899.	4.6	154
804	Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (<i>Acipenser) Tj ETQq0 0 0 rgBT / Microbiology Ecology, 2013, 86, 357-371.</i>	Overlock :	10 Tf 50 427 80
805	Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology, 2013, 13, 935-940.	1.7	300
806	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-3349.	0.3	384
807	Inflammation in Obesity and Diabetes: Islet Dysfunction and Therapeutic Opportunity. Cell Metabolism, 2013, 17, 860-872.	7.2	290
808	Advancing Our Understanding of the Human Microbiome Using QIIME. Methods in Enzymology, 2013, 531, 371-444.	0.4	553
809	The gut microbiota and the liver: implications for clinical practice. Expert Review of Gastroenterology and Hepatology, 2013, 7, 723-732.	1.4	17
810	The interplay between pathogenâ€associated and dangerâ€associated molecular patterns: an inflammatory code in cancer?. Immunology and Cell Biology, 2013, 91, 601-610.	1.0	59
811	Examination with Next-Generation Sequencing Technology of the Bacterial Microbiota in Bronchoalveolar Lavage Samples after Traumatic Injury. Surgical Infections, 2013, 14, 275-282.	0.7	17
812	Ketone body metabolism and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1060-H1076.	1.5	340
813	A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie, 2013, 44, 52-63.	0.9	61

#	Article	IF	CITATIONS
814	Toll-Like Receptors in Liver Disease. Advances in Clinical Chemistry, 2013, 59, 155-201.	1.8	75
815	Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition, 2013, 29, 591-596.	1.1	145
816	16 <scp>S rRNA</scp> survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids. Environmental Microbiology, 2013, 15, 535-547.	1.8	39
817	The gut microbiota, obesity and insulin resistance. Molecular Aspects of Medicine, 2013, 34, 39-58.	2.7	506
818	Method Development for Fecal Lipidomics Profiling. Analytical Chemistry, 2013, 85, 1114-1123.	3.2	62
819	Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely To Affect the Gut Microbiota Composition in Hamsters. Applied and Environmental Microbiology, 2013, 79, 516-524.	1.4	180
820	Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. Journal of Functional Foods, 2013, 5, 116-123.	1.6	93
821	The role of gut microbiota in human obesity: Recent findings and future perspectives. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 160-168.	1.1	97
822	Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut, 2013, 62, 220-226.	6.1	235
823	Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME Journal, 2013, 7, 269-280.	4.4	462
824	Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends. Antonie Van Leeuwenhoek, 2013, 103, 409-420.	0.7	19
825	The Origins and Drivers of Insulin Resistance. Cell, 2013, 152, 673-684.	13.5	522
826	The Human Gut Microbiome and Body Metabolism: Implications for Obesity and Diabetes. Clinical Chemistry, 2013, 59, 617-628.	1.5	271
827	Disruption of inducible 6-phosphofructo-2-kinase impairs the suppressive effect of PPARγ activation on diet-induced intestine inflammatory response. Journal of Nutritional Biochemistry, 2013, 24, 770-775.	1.9	25
828	A monoclonal antibody-based sandwich enzyme-linked immunosorbent assay for detection of secreted \hat{l}_{\pm} -defensin. Analytical Biochemistry, 2013, 443, 124-131.	1.1	23
829	Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. European Journal of Clinical Nutrition, 2013, 67, 1316-1321.	1.3	37
830	Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1510-1519.	1.1	37
831	Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndromeâ€"A pilot study. Journal of Dairy Science, 2013, 96, 89-95.	1.4	63

#	Article	IF	CITATIONS
832	Role of Microorganisms in Adaptation, Development, and Evolution of Animals and Plants: The Hologenome Concept., 2013,, 347-358.		11
833	Hippurate: The Natural History of a Mammalian–Microbial Cometabolite. Journal of Proteome Research, 2013, 12, 1527-1546.	1.8	263
835	Gut microbiota, host health, and polysaccharides. Biotechnology Advances, 2013, 31, 318-337.	6.0	181
836	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	7.2	464
837	The dynamics of gutâ€associated microbial communities during inflammation. EMBO Reports, 2013, 14, 319-327.	2.0	263
838	Gut bacterial microbiota and obesity. Clinical Microbiology and Infection, 2013, 19, 305-313.	2.8	232
839	'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nature Reviews Microbiology, $2013, 11, 277-284$.	13.6	314
840	The gut microbiota â€" masters of host development and physiology. Nature Reviews Microbiology, 2013, 11, 227-238.	13.6	2,711
841	Implications of the human microbiome in inflammatory bowel diseases. FEMS Microbiology Letters, 2013, 342, 10-17.	0.7	50
842	Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 425-447.	6.6	32
843	Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes, 2013, 4, 60-65.	4.3	108
844	The gut microbial metabolome: modulation of cancer risk in obese individuals. Proceedings of the Nutrition Society, 2013, 72, 178-188.	0.4	27
845	Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiology Reviews, 2013, 37, 830-848.	3.9	22
846	Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 2013, 19, 576-585.	15. 2	3,355
847	Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics Journal, 2013, 13, 514-522.	0.9	380
848	Diabetic Foot Ulcer Microbiome: One Small Step for Molecular Microbiology One Giant Leap for Understanding Diabetic Foot Ulcers?. Diabetes, 2013, 62, 679-681.	0.3	45
849	The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome â€~at-risk' population. International Journal of Obesity, 2013, 37, 216-223.	1.6	367
850	<i>In vitro</i> fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. British Journal of Nutrition, 2013, 109, 1980-1989.	1.2	44

#	ARTICLE	IF	CITATIONS
851	Compression-based distance (CBD): a simple, rapid, and accurate method for microbiota composition comparison. BMC Bioinformatics, 2013, 14, 136.	1.2	5
852	Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology (United Kingdom), 2013, 159, 649-664.	0.7	187
853	Patterns and Processes in Parasite Co-Infection. Advances in Parasitology, 2013, 82, 321-369.	1.4	59
854	Metabolic inflammation: Connecting obesity and insulin resistance. Annals of Medicine, 2013, 45, 242-253.	1.5	144
855	Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied Microbiology and Biotechnology, 2013, 97, 1689-1697.	1.7	168
856	Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity, 2013, 21, E607-15.	1.5	469
857	Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poultry Science, 2013, 92, 272-276.	1.5	102
858	Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in Diet-Induced Obese Mice Is Associated with Gut Microbial Changes and Reduction in Obesity. PLoS ONE, 2013, 8, e59470.	1.1	249
859	The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11, 497-504.	13.6	1,240
860	Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection?. Journal of Equine Veterinary Science, 2013, 33, 120-126.	0.4	43
861	Diverse effects of oats on cholesterol metabolism in C57BL/6 mice correlate with expression of hepatic bile acid-producing enzymes. European Journal of Nutrition, 2013, 52, 1755-1769.	1.8	36
862	Pathways in Microbe-Induced Obesity. Cell Metabolism, 2013, 17, 883-894.	7.2	240
863	Bioavailability of Anthocyanins. , 2013, , 2465-2487.		8
864	Testing evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences. FEMS Microbiology Letters, 2013, 346, 97-104.	0.7	4
865	Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, 2013, 358, v-vii.	0.7	8
866	Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver International, 2013, 33, 1457-1469.	1.9	101
867	Quantitatively Different, yet Qualitatively Alike: A Meta-Analysis of the Mouse Core Gut Microbiome with a View towards the Human Gut Microbiome. PLoS ONE, 2013, 8, e62578.	1.1	182
868	A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME Journal, 2013, 7, 1933-1943.	4.4	290

#	Article	IF	Citations
869	Effects of pig colonic digesta and dietary fibres on in vitro microbial fermentation profiles. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 120-130.	1.5	9
870	Trends in microbiome research. Nature Biotechnology, 2013, 31, 277-277.	9.4	17
871	Quantitative Genetic Background of the Host Influences Gut Microbiomes in Chickens. Scientific Reports, 2013, 3, 1163.	1.6	286
872	From molecules to dynamic biological communities. Biology and Philosophy, 2013, 28, 241-259.	0.7	12
873	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	6.1	632
874	The intricate association between gut microbiota and development of Type 1, Type 2 and Type 3 diabetes. Expert Review of Clinical Immunology, 2013, 9, 1031-1041.	1.3	66
875	The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013, 54, 2325-2340.	2.0	3,292
876	Host-Derived Nitrate Boosts Growth of <i>E. coli</i> in the Inflamed Gut. Science, 2013, 339, 708-711.	6.0	798
877	Opportunities and challenges for gut microbiome studies in the Indian population. Microbiome, 2013, 1 , 24 .	4.9	51
878	Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries. Poultry Science, 2013, 92, 2358-2366.	1.5	36
879	Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated <i>Bacteroidetes</i> for Microbial Source Tracking across Sixteen Countries on Six Continents. Environmental Science & Environmental Science	4.6	111
880	Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation. Chemical Research in Toxicology, 2013, 26, 1893-1903.	1.7	73
881	Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Research, 2013, 23, 111-120.	2.4	409
883	Impact of probiotic feeding during weaning on the serum lipid profile and plasma metabolome in infants. British Journal of Nutrition, 2013, 110, 116-126.	1.2	26
884	Role of the gastroenterologist in managing obesity. Expert Review of Gastroenterology and Hepatology, 2013, 7, 439-451.	1.4	34
887	Gut microbiota in health and disease. Revista De GastroenterologÃa De México (English Edition), 2013, 78, 240-248.	0.1	25
888	Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet. Journal of Nutrition, 2013, 143, 627-631.	1.3	77
889	Microbiota conservation and BMI signatures in adult monozygotic twins. ISME Journal, 2013, 7, 707-717.	4.4	311

#	Article	IF	Citations
890	Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin <i>O</i> -glycan patterns reveal a regiospecific distribution. American Journal of Physiology - Renal Physiology, 2013, 305, G357-G363.	1.6	153
891	Loss of NHE3 alters gut microbiota composition and influences <i>Bacteroides thetaiotaomicron</i> growth. American Journal of Physiology - Renal Physiology, 2013, 305, G697-G711.	1.6	87
892	The association of gut microbiota with body weight and body mass index in preschool children of Estonia. Microbial Ecology in Health and Disease, 2013, 24, .	3.8	18
893	Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE, 2013, 8, e59260.	1.1	305
894	Running Interference? Exercise and PCB-Induced Changes in the Gut Microbiome. Environmental Health Perspectives, 2013, 121, A199.	2.8	6
895	Reconstructing the Genomic Content of Microbiome Taxa through Shotgun Metagenomic Deconvolution. PLoS Computational Biology, 2013, 9, e1003292.	1.5	41
896	Exercise Attenuates PCB-Induced Changes in the Mouse Gut Microbiome. Environmental Health Perspectives, 2013, 121, 725-730.	2.8	238
897	Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. British Journal of Nutrition, 2013, 110, 711-720.	1.2	168
898	Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance. Mediators of Inflammation, 2013, 2013, 1-13.	1.4	111
899	Gut microbiota and metabolic disorders: how prebiotic can work?. British Journal of Nutrition, 2013, 109, S81-S85.	1.2	148
900	Antimicrobials. Gut Microbes, 2013, 4, 48-53.	4.3	24
902	Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host. Gut Microbes, 2013, 4, 292-305.	4.3	45
903	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41.	5.8	824
904	Genomic Diversity and Fitness of <i>E. coli</i> Strains Recovered from the Intestinal and Urinary Tracts of Women with Recurrent Urinary Tract Infection. Science Translational Medicine, 2013, 5, 184ra60.	5.8	148
905	A Mixture of trans-Galactooligosaccharides Reduces Markers of Metabolic Syndrome and Modulates the Fecal Microbiota and Immune Function of Overweight Adults. Journal of Nutrition, 2013, 143, 324-331.	1.3	271
906	A Comparison of Methods for Clustering 16S rRNA Sequences into OTUs. PLoS ONE, 2013, 8, e70837.	1.1	171
907	Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genetics and Molecular Research, 2013, 12, 1766-1776.	0.3	74
908	Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences. PLoS ONE, 2013, 8, e60811.	1.1	93

#	Article	IF	CITATIONS
909	Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE, 2013, 8, e71108.	1.1	652
910	Effect of <i>Lactobacillus gasseri </i> BNR17 on Overweight and Obese Adults: A Randomized, Double-Blind Clinical Trial. Korean Journal of Family Medicine, 2013, 34, 80.	0.4	114
911	ILSI Brazil International Workshop on Functional Foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health. Food and Nutrition Research, 2013, 57, 19214.	1.2	16
913	Molecular Studies Neglect Apparently Gram-Negative Populations in the Human Gut Microbiota. Journal of Clinical Microbiology, 2013, 51, 3286-3293.	1.8	48
914	A Risk Model by Fitting Function for the Wastewater of the Traditional Chinese Medicine Industry. Advanced Materials Research, 0, 726-731, 1085-1088.	0.3	0
915	Perfil emocional matem $ ilde{A}_i$ tico y competencias profesionales. Revista Electronica Interuniversitaria De Formacion Del Profesorado, 2013, 16, .	0.2	1
916	Intestinal Microbes and Obesity: A Reality Check. Neonatology, 2013, 103, 190-192.	0.9	2
917	Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 2013, 7, 1429-1439.	1.3	55
918	Exploring host–microbiota interactions in animal models and humans. Genes and Development, 2013, 27, 701-718.	2.7	413
919	Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent. Journal of Diabetes Research, 2013, 2013, 1-13.	1.0	24
920	Distribution-Based Clustering: Using Ecology To Refine the Operational Taxonomic Unit. Applied and Environmental Microbiology, 2013, 79, 6593-6603.	1.4	140
921	Faecal microbiota in lean and obese dogs. FEMS Microbiology Ecology, 2013, 84, 332-343.	1.3	103
922	Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen, 2013, 2, 195-204.	1.2	95
923	The association between caesarean section and childhood obesity revisited: a cohort study. Archives of Disease in Childhood, 2013, 98, 526-532.	1.0	45
924	Intestinal <i>Methanobrevibacter smithii</i> but not total bacteria is related to dietâ€induced weight gain in rats. Obesity, 2013, 21, 748-754.	1.5	53
925	Evolution of the gut microbiota and the influence of diet. Beneficial Microbes, 2013, 4, 31-37.	1.0	31
926	Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.	1.4	642
927	Reshaping the Gut Microbiota at an Early Age: Functional Impact on Obesity Risk?. Annals of Nutrition and Metabolism, 2013, 63, 17-26.	1.0	34

#	Article	IF	CITATIONS
928	The Human Gut Microbiome and Its Dysfunctions. Digestive Diseases, 2013, 31, 278-285.	0.8	65
929	The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype. Gut Microbes, 2013, 4, 371-381.	4.3	22
930	The Cystic Fibrosis Airway Microbiome. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a009738-a009738.	2.9	90
931	Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. International Journal of Obesity, 2013, 37, 1460-1466.	1.6	315
932	Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutrition Research Reviews, 2013, 26, 191-209.	2.1	275
933	New insights into probiotic mechanisms. Gut Microbes, 2013, 4, 94-100.	4.3	42
934	The Brain-Gut Axis: A Target for Treating Stress-Related Disorders. Modern Problems of Pharmacopsychiatry, 2013, 28, 90-99.	2.5	35
935	Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentrarchus) Tj ETQq1 1 0.7	⁷ 84314 rg	BT ₁ /Overlock
938	Aetiological factors behind adipose tissue inflammation: an unexplored research area. Public Health Nutrition, 2013, 16, 27-35.	1.1	14
939	Effects of heat-inactivatedLactobacillus gasseriTMC0356 on metabolic characteristics and immunity of rats with the metabolic syndrome. British Journal of Nutrition, 2013, 109, 263-272.	1.2	21
940	The alligator gut microbiome and implications for archosaur symbioses. Scientific Reports, 2013, 3, 2877.	1.6	142
941	Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Antibiotics, 2013, 2, 367-399.	1.5	100
942	The Role of Gut Microbiota on Insulin Resistance. Nutrients, 2013, 5, 829-851.	1.7	184
943	Lactobacillus plantarum OLL2712 Regulates Glucose Metabolism in C57BL/6 Mice Fed a High-Fat Diet. Journal of Nutritional Science and Vitaminology, 2013, 59, 144-147.	0.2	51
944	Human Microbiome and Diseases., 2013,, 235-249.		4
946	Cyclic parenteral nutrition does not change the intestinal microbiota in patients with short bowel syndrome. Acta Cirurgica Brasileira, 2013, 28, 26-32.	0.3	9
947	Effects of Diet on Gut Microbiota Profile and the Implications for Health and Disease. Bioscience of Microbiota, Food and Health, 2013, 32, 1-12.	0.8	41
948	Feeding spinach thylakoids to rats modulates the gut microbiota, decreases food intake and affects the insulin response. Journal of Nutritional Science, 2013, 2, e20.	0.7	22

#	Article	IF	Citations
949	Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge. PLoS ONE, 2013, 8, e65790.	1.1	132
950	Comparison of the Distal Gut Microbiota from People and Animals in Africa. PLoS ONE, 2013, 8, e54783.	1.1	63
951	Development of the Preterm Gut Microbiome in Twins at Risk of Necrotising Enterocolitis and Sepsis. PLoS ONE, 2013, 8, e73465.	1.1	114
952	The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome. PLoS ONE, 2013, 8, e75714.	1.1	37
953	Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth. PLoS ONE, 2013, 8, e63157.	1.1	240
954	Gut Microbiota and Clinical Disease: Obesity and Nonalcoholic Fatty Liver Disease. Pediatric Gastroenterology, Hepatology and Nutrition, 2013, 16, 22.	0.4	44
955	Obesity in the United States – Dysbiosis from Exposure to Low-Dose Antibiotics?. Frontiers in Public Health, 2013, 1, 69.	1.3	84
956	The human microbiome as a reservoir of antimicrobial resistance. Frontiers in Microbiology, 2013, 4, 87.	1.5	237
957	Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Frontiers in Microbiology, 2013, 4, 129.	1.5	33
958	Genetic and Functional Profiling of Crohn's Disease: Autophagy Mechanism and Susceptibility to Infectious Diseases. BioMed Research International, 2013, 2013, 1-11.	0.9	10
959	Lactic Acid Bacteria in Philippine Traditional Fermented Foods. , 0, , .		10
960	Impact of the gut microbiota on rodent models of human disease. World Journal of Gastroenterology, 2014, 20, 17727-17736.	1.4	69
962	Recruiting Human Microbiome Shotgun Data to Site-Specific Reference Genomes. PLoS ONE, 2014, 9, e84963.	1.1	6
963	Seasonal Variation in Human Gut Microbiome Composition. PLoS ONE, 2014, 9, e90731.	1.1	246
964	A Rosemary Extract Rich in Carnosic Acid Selectively Modulates Caecum Microbiota and Inhibits Î ² -Glucosidase Activity, Altering Fiber and Short Chain Fatty Acids Fecal Excretion in Lean and Obese Female Rats. PLoS ONE, 2014, 9, e94687.	1.1	55
965	Should We Build "Obese―or "Lean―Anaerobic Digesters?. PLoS ONE, 2014, 9, e97252.	1.1	23
966	Loss of Sirt1 Function Improves Intestinal Anti-Bacterial Defense and Protects from Colitis-Induced Colorectal Cancer. PLoS ONE, 2014, 9, e102495.	1.1	41
967	Faecal Microbiota of Cats with Insulin-Treated Diabetes Mellitus. PLoS ONE, 2014, 9, e108729.	1.1	26

#	Article	IF	CITATIONS
968	Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers. PLoS ONE, 2014, 9, e113026.	1.1	149
969	Early Methanogenic Colonisation in the Faeces of Meishan and Yorkshire Piglets as Determined by Pyrosequencing Analysis. Archaea, 2014, 2014, 1-10.	2.3	48
970	A Microbiological Explanation for the Obesity Pandemic?. Canadian Journal of Infectious Diseases and Medical Microbiology, 2014, 25, 294-295.	0.7	1
971	Perturbation of the Human Microbiome as a Contributor to Inflammatory Bowel Disease. Pathogens, 2014, 3, 510-527.	1.2	32
972	Linking obesity with type 2 diabetes: the role of T-bet. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 331.	1.1	18
973	Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire Sows. Asian-Australasian Journal of Animal Sciences, 2014, 27, 898-906.	2.4	64
974	Microbiota in Obesity. Interdisciplinary Journal of Microinflammation, 2014, 01, .	0.1	0
975	Nonalcoholic Fatty Liver Disease and the Gut Microbiota: Exploring the Connection. , 2014, 04, .		2
976	Nonalcoholic Fatty Liver Disease (NAFLD), a Manifestation of the Metabolic Syndrome: New Perspectives on the Nutritional Therapy. Endocrinology & Metabolic Syndrome: Current Research, 2014, 03, .	0.3	4
977	Obesity, fatty liver disease and intestinal microbiota. World Journal of Gastroenterology, 2014, 20, 16452.	1.4	148
978	Higher blood glucose level associated with body mass index and gut microbiota in elderly people. Microbial Ecology in Health and Disease, 2014, 25, .	3.8	31
980	The role of gut microbiota in weight management by non-invasive interventions and bariatric surgery. Nutrition Obesity & Metabolic Surgery, 2014, 1, 20-29.	0.1	3
981	<i>Saccharomyces boulardii</i> Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low - Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic <i>db</i> /i> Mice. MBio, 2014, 5, e01011-14.	1.8	217
982	Probiotics in human milk and probiotic supplementation in infant nutrition: a workshop report. British Journal of Nutrition, 2014, 112, 1119-1128.	1.2	51
983	Mixed Epidemiological Evidence Linking Gut Microbiota with Obesity. Bariatric Surgical Patient Care, 2014, 9, 173-174.	0.1	0
984	Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. Journal of Neuroinflammation, 2014, 11, 156.	3.1	130
985	The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 2014, 14, 311.	1.3	178
986	Dietary Arginine Supplementation of Mice Alters the Microbial Population and Activates Intestinal Innate Immunity. Journal of Nutrition, 2014, 144, 988-995.	1.3	179

#	ARTICLE	IF	Citations
987	Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Medicine, 2014, 6, 107.	3.6	322
988	Pasture <i>>v.</i> standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. British Journal of Nutrition, 2014, 112, 520-535.	1,2	24
989	Effect of (i) Lactobacillus rhamnosus (i) CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. British Journal of Nutrition, 2014, 111, 1507-1519.	1.2	272
990	Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition and Diabetes, 2014, 4, e121-e121.	1.5	503
991	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	1.5	64
993	Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes, 2014, 5, 129-140.	4.3	22
994	Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis. Environmental Health Perspectives, 2014, 122, 284-291.	2.8	435
995	Obesity as a Consequence of Gut Bacteria and Diet Interactions. ISRN Obesity, 2014, 2014, 1-8.	2.2	41
996	Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	57
997	Neuropsychiatric Comorbidity in Obesity: Role of Inflammatory Processes. Frontiers in Endocrinology, 2014, 5, 74.	1.5	124
998	Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice. Journal of Nutrition and Metabolism, 2014, 2014, 1-12.	0.7	68
999	Applications of Next-Generation Sequencing Technologies to the Study of the Human Microbiome. Comprehensive Analytical Chemistry, 2014, , 75-106.	0.7	O
1000	Next-Generation Sequencing., 2014, , 125-145.		4
1001	Helminth Colonization Is Associated with Increased Diversity of the Gut Microbiota. PLoS Neglected Tropical Diseases, 2014, 8, e2880.	1.3	353
1002	The probiotic <i>Lactobacillus coryniformis</i> CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clinical Science, 2014, 127, 33-45.	1.8	109
1003	Hidden state prediction: a modification of classic ancestral state reconstruction algorithms helps unravel complex symbioses. Frontiers in Microbiology, 2014, 5, 431.	1.5	22
1004	Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges. International Journal of Molecular Sciences, 2014, 15, 4158-4188.	1.8	95
1005	Gut Microbes and Host Physiology: What Happens When You Host Billions of Guests?. Frontiers in Endocrinology, 2014, 5, 91.	1.5	25

#	ARTICLE	IF	CITATIONS
1006	Blowing on Embers: Commensal Microbiota and Our Immune System. Frontiers in Immunology, 2014, 5, 318.	2.2	62
1007	Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiology, 2014, 14, 189.	1.3	292
1008	Metabonomic Phenotyping for the Gut Microbiota and Mammal Interactions. Advanced Topics in Science and Technology in China, 2014, , 189-201.	0.0	0
1010	Clostridium ramosum Promotes High-Fat Diet-Induced Obesity in Gnotobiotic Mouse Models. MBio, 2014, 5, e01530-14.	1.8	176
1011	Old Dog, New Trick: A Direct Role for Leptin in Regulating Microbiota Composition. Endocrinology, 2014, 155, 653-655.	1.4	4
1012	Fibre digestibility, abundance of faecal bacteria and plasma acetate concentrations in overweight adult mares. Journal of Nutritional Science, 2014, 3, e10.	0.7	17
1013	Microbiota, Inflammation and Obesity. Advances in Experimental Medicine and Biology, 2014, 817, 291-317.	0.8	104
1014	Gut Microbiota as an Epigenetic Regulator: Pilot Study Based on Whole-Genome Methylation Analysis. MBio, 2014, 5, .	1.8	172
1015	Microbial Sequencing Analyses Suggest the Presence of a Fecal Veneer on Indoor Climbing Wall Holds. Current Microbiology, 2014, 69, 681-689.	1.0	10
1016	The gastrointestinal microbiome – Functional interference between stomach and intestine. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 995-1002.	1.0	39
1017	Variable selection in regression with compositional covariates. Biometrika, 2014, 101, 785-797.	1.3	158
1018	Microbiome, holobiont and the net of life. Critical Reviews in Microbiology, 2016, 42, 1-10.	2.7	46
1019	Effect of <scp>d</scp> â€fagomine on excreted enterobacteria and weight gain in rats fed a highâ€fat highâ€sucrose diet. Obesity, 2014, 22, 976-979.	1.5	23
1021	Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiological Reports, 2014, 2, e12029.	0.7	46
1022	Transgenerational inheritance of prenatal obesogen exposure. Molecular and Cellular Endocrinology, 2014, 398, 31-35.	1.6	67
1023	Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 2014, 20, 1006-1017.	7.2	655
1024	<i>Lactobacillus plantarum</i> LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. Journal of Applied Microbiology, 2014, 116, 145-156.	1.4	54
1025	Diversity and genomic insights into the uncultured <scp><i>C</i></scp> <i>hloroflexi</i> from the human microbiota. Environmental Microbiology, 2014, 16, 2635-2643.	1.8	55

#	Article	IF	CITATIONS
1026	Obesity and cancer pathogenesis. Annals of the New York Academy of Sciences, 2014, 1311, 57-76.	1.8	187
1027	<i>Doenjang</i> , a Fermented Korean Soybean Paste, Inhibits Lipopolysaccharide Production of Gut Microbiota in Mice. Journal of Medicinal Food, 2014, 17, 67-75.	0.8	30
1028	Gastrointestinal morbidity in obesity. Annals of the New York Academy of Sciences, 2014, 1311, 42-56.	1.8	31
1029	Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. American Journal of Clinical Nutrition, 2014, 100, 369S-377S.	2.2	61
1030	Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. Journal of Applied Microbiology, 2014, 117, 1750-1760.	1.4	155
1031	Dietary α-mangostin, a xanthone from mangosteen fruit, exacerbates experimental colitis and promotes dysbiosis in mice. Molecular Nutrition and Food Research, 2014, 58, 1226-1238.	1.5	37
1032	Marek's disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication. FEMS Microbiology Ecology, 2014, 90, 300-312.	1.3	38
1033	Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e92193.	1.1	451
1034	Association of Antibiotics in Infancy With Early Childhood Obesity. JAMA Pediatrics, 2014, 168, 1063.	3.3	416
1035	Flos Lonicera Ameliorates Obesity and Associated Endotoxemia in Rats through Modulation of Gut Permeability and Intestinal Microbiota. PLoS ONE, 2014, 9, e86117.	1.1	84
1036	Probiotics to Treat Visceral Obesity and Related Liver Disease. , 2014, , 363-380.		1
1037	Coffee Intake and Obesity. , 2014, , 245-259.		2
1038	Is There a Paradox in Obesity?. Cardiology in Review, 2014, 22, 163-170.	0.6	85
1039	Potential of novel dextran oligosaccharides as prebiotics for obesity management through <i>in vitro </i> i) experimentation. British Journal of Nutrition, 2014, 112, 1303-1314.	1.2	35
1040	High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats. British Journal of Nutrition, 2014, 112, 416-427.	1.2	95
1041	Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Current Opinion in Lipidology, 2014, 25, 48-53.	1.2	68
1042	Lymphocyte Depletion After Alemtuzumab Induction Disrupts Intestinal Fungal Microbiota in Cynomolgus Monkeys. Transplantation, 2014, 98, 951-959.	0.5	13
1043	Effect of diet on the intestinal microbiota and its activity. Current Opinion in Gastroenterology, 2014, 30, 189-195.	1.0	74

#	Article	IF	CITATIONS
1044	Intestinal Microbiota. Journal of Clinical Gastroenterology, 2014, 48, 657-666.	1.1	19
1045	Smoking Cessation Alters Intestinal Microbiota. Inflammatory Bowel Diseases, 2014, 20, 1496-1501.	0.9	142
1046	The Microbiome and Obesityâ€"An Established Risk for Certain Types of Cancer. Cancer Journal (Sudbury, Mass), 2014, 20, 176-180.	1.0	54
1047	The microbiota and helminths: sharing the same niche in the human host. Parasitology, 2014, 141, 1255-1271.	0.7	88
1048	Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 2014, 5, 190.	1.5	250
1049	Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys. PLoS ONE, 2014, 9, e94249.	1.1	287
1050	Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut, 2014, 63, 687-695.	6.1	82
1051	Free Radicals and Gastrointestinal Disorders. , 2014, , 1691-1727.		5
1053	The Effect of Malnutrition on Norovirus Infection. MBio, 2014, 5, e01032-13.	1.8	50
1054	The Role and Influence of Gut Microbiota in Pathogenesis and Management of Obesity and Metabolic Syndrome. Frontiers in Endocrinology, 2014, 5, 47.	1.5	78
1055	Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients, 2014, 6, 5786-5805.	1.7	169
1056	The Gut Microbiota and Effects on Metabolism. , 2014, , 508-526.		4
1057	Gut microbiota and metabolic syndrome. World Journal of Gastroenterology, 2014, 20, 16079.	1.4	405
1058	Gut Microbiota in Metabolic Syndrome. , 2014, , 171-181.		1
1059	Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World Journal of Gastroenterology, 2014, 20, 17737-17745.	1.4	143
1060	Body Weight Selection Affects Quantitative Genetic Correlated Responses in Gut Microbiota. PLoS ONE, 2014, 9, e89862.	1.1	59
1061	The Microbiome and Development: A Mother's Perspective. Seminars in Reproductive Medicine, 2014, 32, 014-022.	0.5	64
1062	Effects of Fish Oil with a High Content of n-3 Polyunsaturated Fatty Acids on Mouse Gut Microbiota. Archives of Medical Research, 2014, 45, 195-202.	1.5	138

#	Article	IF	CITATIONS
1063	The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women. Journal of Ethnopharmacology, 2014, 152, 532-539.	2.0	76
1064	Bariatric surgery decreased the serum level of an endotoxin-associated marker: lipopolysaccharide-binding protein. Surgery for Obesity and Related Diseases, 2014, 10, 1182-1187.	1.0	46
1065	A Clinician's Primer on the Role of the Microbiome in Human Health and Disease. Mayo Clinic Proceedings, 2014, 89, 107-114.	1.4	187
1066	Obesity and NAFLD. Clinics in Liver Disease, 2014, 18, 59-71.	1.0	87
1067	Microbiota and nonalcoholic steatohepatitis. Seminars in Immunopathology, 2014, 36, 115-132.	2.8	35
1068	Role of the Microbiome in Energy Regulation and Metabolism. Gastroenterology, 2014, 146, 1525-1533.	0.6	354
1069	Excess body weight during pregnancy and offspring obesity: Potential mechanisms. Nutrition, 2014, 30, 245-251.	1.1	29
1070	Resistant Starch and Energy Balance: Impact on Weight Loss and Maintenance. Critical Reviews in Food Science and Nutrition, 2014, 54, 1158-1166.	5.4	81
1071	Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. Journal of Nutritional Biochemistry, 2014, 25, 489-495.	1.9	120
1072	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	1.3	204
1073	Mechanisms of Liver Injury in Non-Alcoholic Steatohepatitis. Current Hepatology Reports, 2014, 13, 119-129.	0.4	37
1074	Combined effects of oligofructose and <i>Bifidobacterium animalis</i> on gut microbiota and glycemia in obese rats. Obesity, 2014, 22, 763-771.	1.5	124
1075	Diet Effects in Gut Microbiome and Obesity. Journal of Food Science, 2014, 79, R442-51.	1.5	88
1076	Molecular analysis of point-of-use municipal drinking water microbiology. Water Research, 2014, 49, 225-235.	5. 3	107
1077	Overfeeding increases postprandial endotoxemia in men: Inflammatory outcome may depend on LPS transporters LBP and sCD14. Molecular Nutrition and Food Research, 2014, 58, 1513-1518.	1.5	95
1078	FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509, 183-188.	13.7	810
1079	Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes and Metabolism, 2014, 40, 246-257.	1.4	104
1080	Microbiome: A complicated relationship status. Nature, 2014, 508, S61-S63.	13.7	16

#	ARTICLE	IF	CITATIONS
1081	Interactions Between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 2014, 146, 1513-1524.	0.6	806
1082	Lactic Acid Bacteria. , 2014, , .		29
1083	Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutrition and Diabetes, 2014, 4, e109-e109.	1.5	95
1084	Symbiosis as the way of eukaryotic life: The dependent co-origination of the body. Journal of Biosciences, 2014, 39, 201-209.	0.5	51
1085	Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. Journal of Nutritional Biochemistry, 2014, 25, 893-902.	1.9	83
1086	Exploring & amp; exploiting our †other self††Does the microbiota hold the key to the future therapy in Crohn's?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 399-409.	1.0	12
1087	Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in dietâ€induced obese mice. Obesity, 2014, 22, 1653-1661.	1.5	9
1088	Managing the manager: Gut microbes, stem cells and metabolism. Diabetes and Metabolism, 2014, 40, 186-190.	1.4	14
1089	Association between Upper Digestive Tract Microbiota and Cancer-Predisposing States in the Esophagus and Stomach. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 735-741.	1.1	120
1090	The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 2014, 38, 996-1047.	3.9	923
1091	Targeting inflammation in the treatment of type 2 diabetes: time to start. Nature Reviews Drug Discovery, 2014, 13, 465-476.	21.5	571
1092	The pathophysiology of hypertension in patients with obesity. Nature Reviews Endocrinology, 2014, 10, 364-376.	4.3	376
1093	Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology, 2014, 10, 416-424.	3.9	539
1094	The microbiome: stress, health and disease. Mammalian Genome, 2014, 25, 49-74.	1.0	361
1095	Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology, 2014, 60, 824-831.	1.8	475
1096	Gut microbiome and metabolic diseases. Seminars in Immunopathology, 2014, 36, 103-114.	2.8	121
1097	The gut microbiome as novel cardio-metabolic target: the time has come!. European Heart Journal, 2014, 35, 883-887.	1.0	67
1098	Advances in Nutrition and Cancer. Cancer Treatment and Research, 2014, , .	0.2	11

#	ARTICLE	IF	CITATIONS
1099	Probiotic actions on diseases: implications for therapeutic treatments. Food and Function, 2014, 5, 625.	2.1	18
1100	Mechanisms of Obesity-Induced Gastrointestinal Neoplasia. Gastroenterology, 2014, 146, 357-373.	0.6	157
1101	Gastrointestinal changes after bariatric surgery. Diabetes and Metabolism, 2014, 40, 87-94.	1.4	93
1102	Intestinal microbiota, diet and health. British Journal of Nutrition, 2014, 111, 387-402.	1.2	371
1103	Impact of Diet on Human Intestinal Microbiota and Health. Annual Review of Food Science and Technology, 2014, 5, 239-262.	5.1	173
1104	A Systems Biology Approach to Study Metabolic Syndrome. , 2014, , .		5
1105	Human Genetics Shape the Gut Microbiome. Cell, 2014, 159, 789-799.	13.5	2,523
1106	Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews, 2014, 66, 948-983.	7.1	680
1107	\hat{I}^3 -Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L-Carnitine to TMAO. Cell Metabolism, 2014, 20, 799-812.	7.2	416
1108	High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 2014, 5, 3889.	5.8	361
1110	Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. International Journal of Obesity, 2014, 38, 1525-1531.	1.6	211
1111	Temporal analysis of the effect of extruded flaxseed on the swine gut microbiota. Canadian Journal of Microbiology, 2014, 60, 649-659.	0.8	11
1112	Isolated faecal bacterial communities found for Weddell seals, Leptonychotes weddellii, at White Island, McMurdo Sound, Antarctica. Polar Biology, 2014, 37, 1857-1864.	0.5	14
1113	Alterations in cecal microbiota of Jinhua piglets fostered by a Yorkshire sow. Science Bulletin, 2014, 59, 4304-4311.	1.7	9
1114	Editorial Overview: Insights into Molecular Mechanisms of Microbiota. Journal of Molecular Biology, 2014, 426, 3827-3829.	2.0	1
1115	Far from the Eyes, Close to the Heart: Dysbiosis of Gut Microbiota and Cardiovascular Consequences. Current Cardiology Reports, 2014, 16, 540.	1.3	81
1116	Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiology Ecology, 2014, 87, 704-714.	1.3	166
1117	Methodological and metabolic considerations in the study of caffeine-containing energy drinks. Nutrition Reviews, 2014, 72, 137-145.	2.6	12

#	Article	IF	Citations
1118	Microbiome, Innate Immunity, and Esophageal Adenocarcinoma. Clinics in Laboratory Medicine, 2014, 34, 721-732.	0.7	24
1119	Technology and Techniques for Microbial Ecology via DNA Sequencing. Annals of the American Thoracic Society, 2014, 11, S16-S20.	1.5	8
1120	Prebiotic effects of cassava bagasse in TNO's in vitro model of the colon in lean versus obese microbiota. Journal of Functional Foods, 2014, 11, 210-220.	1.6	48
1121	Exposure to non-nutritive sweeteners during pregnancy and lactation: Impact in programming of metabolic diseases in the progeny later in life. Reproductive Toxicology, 2014, 49, 196-201.	1.3	45
1122	Diet Alters Both the Structure and Taxonomy of the Ovine Gut Microbial Ecosystem. DNA Research, 2014, 21, 115-125.	1.5	37
1123	In vitro fermentation of spent turmeric powder with a mixed culture of pig faecal bacteria. Food and Function, 2014, 5, 2446-2452.	2.1	15
1124	Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine <i>N</i> -Oxide, a Proatherogenic Metabolite of Choline and <scp>l</scp> -Carnitine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1307-1313.	1.1	119
1125	Dynamics of Gut Microbiota in Autoimmune Lupus. Applied and Environmental Microbiology, 2014, 80, 7551-7560.	1.4	250
1126	The Metabolite Profiles of the Obese Population Are Gender-Dependent. Journal of Proteome Research, 2014, 13, 4062-4073.	1.8	53
1127	Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mammalian Genome, 2014, 25, 583-599.	1.0	66
1128	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 0, , .	1.5	5
1129	The Gut Microbiome, Kidney Disease, and Targeted Interventions. Journal of the American Society of Nephrology: JASN, 2014, 25, 657-670.	3.0	553
1130	The weighty costs of non-caloric sweeteners. Nature, 2014, 514, 176-177.	13.7	17
1131	Effect of Metformin on Metabolic Improvement and Gut Microbiota. Applied and Environmental Microbiology, 2014, 80, 5935-5943.	1.4	322
1132	Temporal Dynamics of the Cecal Gut Microbiota of Juvenile Arctic Ground Squirrels: a Strong Litter Effect across the First Active Season. Applied and Environmental Microbiology, 2014, 80, 4260-4268.	1.4	15
1133	Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats. Nutrition Research, 2014, 34, 714-722.	1.3	36
1134	African fermented foods and probiotics. International Journal of Food Microbiology, 2014, 190, 84-96.	2.1	180
1135	Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Experimental Biology and Medicine, 2014, 239, 1489-1504.	1.1	82

#	ARTICLE	IF	CITATIONS
1136	Clostridium difficile infection in diabetes. Diabetes Research and Clinical Practice, 2014, 105, 285-294.	1.1	24
1137	Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, 2014, , .	0.8	16
1138	Conducting a Microbiome Study. Cell, 2014, 158, 250-262.	13.5	625
1139	Microbial Modulation of Insulin Sensitivity. Cell Metabolism, 2014, 20, 753-760.	7.2	215
1140	Systematic review: the role of the gut microbiota in chemotherapy―or radiationâ€ɨnduced gastrointestinal mucositis – current evidence and potential clinical applications. Alimentary Pharmacology and Therapeutics, 2014, 40, 409-421.	1.9	331
1141	Geographical variation of human gut microbial composition. Biology Letters, 2014, 10, 20131037.	1.0	158
1142	Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences. Cell, 2014, 158, 705-721.	13.5	1,493
1143	Effects of Antibiotics on Human Microbiota and Subsequent Disease. Annual Review of Microbiology, 2014, 68, 217-235.	2.9	223
1144	Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513, 59-64.	13.7	1,782
1145	Systematic review: faecal microbiota transplantation therapy for digestive and nondigestive disorders in adults and children. Alimentary Pharmacology and Therapeutics, 2014, 39, 1003-1032.	1.9	130
1146	Minireview: Gut Microbiota: The Neglected Endocrine Organ. Molecular Endocrinology, 2014, 28, 1221-1238.	3.7	835
1147	Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food and Function, 2014, 5, 1241.	2.1	283
1148	Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat–Fed Male C57BL/6J Mice. Journal of Nutrition, 2014, 144, 1181-1187.	1.3	56
1149	Leptin Acts Independently of Food Intake to Modulate Gut Microbial Composition in Male Mice. Endocrinology, 2014, 155, 748-757.	1.4	60
1150	Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 2014, 20, 779-786.	7.2	614
1151	The Gut-Adipose-Liver Axis in the Metabolic Syndrome. Physiology, 2014, 29, 304-313.	1.6	65
1153	Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using highâ€throughput parallel pyrosequencing. Molecular Ecology, 2014, 23, 5048-5060.	2.0	66
1154	Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics, 2014, 15, 511.	1.2	244

#	Article	IF	CITATIONS
1155	Short-term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of non-alcoholic fatty liver disease and adiposity in adult rats with glutamate-induced obesity. BMC Complementary and Alternative Medicine, 2014, 14, 247.	3.7	49
1156	Human oral viruses are personal, persistent and gender-consistent. ISME Journal, 2014, 8, 1753-1767.	4.4	159
1158	The development of probiotic treatment in obesity: a review. Beneficial Microbes, 2014, 5, 19-28.	1.0	62
1159	Impact of Probiotics on Risk Factors for Cardiovascular Diseases. A Review. Critical Reviews in Food Science and Nutrition, 2014, 54, 175-189.	5.4	75
1160	Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3708-17.	3.3	137
1161	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	0.4	126
1162	Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230.	13.5	64
1163	Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Applied Microbiology and Biotechnology, 2014, 98, 1-10.	1.7	96
1164	Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Applied Microbiology and Biotechnology, 2014, 98, 6817-6829.	1.7	112
1165	Comparative Diversity Analysis of Gut Microbiota in Two Different Human Flora-Associated Mouse Strains. Current Microbiology, 2014, 69, 365-373.	1.0	18
1166	The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. Journal of Gastroenterology, 2014, 49, 785-798.	2.3	180
1167	The effects of the microbiota on the host immune system. Autoimmunity, 2014, 47, 494-504.	1.2	43
1168	Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunological Reviews, 2014, 260, 35-49.	2.8	60
1169	Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere, 2014, 112, 1-8.	4.2	101
1170	Gastrointestinal hormones and the dialogue between gut and brain. Journal of Physiology, 2014, 592, 2927-2941.	1.3	143
1171	Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health. Nutrition and Diabetes, 2014, 4, e122-e122.	1.5	84
1172	Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, 2014, , .	0.8	59
1173	An increase in the <i> Akkermansia < /i > spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63, 727-735.</i>	6.1	1,288

#	Article	IF	CITATIONS
1174	The Effect of PPI Use on Human Gut Microbiota and Weight Loss in Patients Undergoing Laparoscopic Roux-en-Y Gastric Bypass. Obesity Surgery, 2014, 24, 1567-1571.	1.1	41
1175	Maternal high-protein or high-prebiotic-fiber diets affect maternal milk composition and gut microbiota in rat dams and their offspring. Obesity, 2014, 22, 2344-2351.	1.5	41
1176	Endotoxemia of Metabolic Syndrome: A Pivotal Mediator of Meta-Inflammation. Metabolic Syndrome and Related Disorders, 2014, 12, 454-456.	0.5	34
1177	Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids, 2014, 46, 2403-2413.	1.2	98
1178	The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (<scp><i>A</i></scp> <i>louatta pigra</i>). American Journal of Physical Anthropology, 2014, 155, 652-664.	2.1	103
1179	Mapping the Inner Workings of the Microbiome: Genomic- and Metagenomic-Based Study of Metabolism and Metabolic Interactions in the Human Microbiome. Cell Metabolism, 2014, 20, 742-752.	7.2	76
1180	Human Gut Microbes Use Multiple Transporters to Distinguish Vitamin B12 Analogs and Compete in the Gut. Cell Host and Microbe, 2014, 15, 47-57.	5.1	225
1181	The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatric Research, 2014, 76, 2-10.	1.1	194
1182	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	6.1	631
1183	Artemisia supplementation differentially affects the mucosal and luminal ileal microbiota of diet-induced obese mice. Nutrition, 2014, 30, S26-S30.	1.1	9
1184	A randomized triple-masked controlled trial on the effects of synbiotics on inflammation markers in overweight children. Jornal De Pediatria (Versão Em Português), 2014, 90, 161-168.	0.2	0
1185	The gastrointestinal microbiota and multi-strain probiotic therapy: In children and adolescent obesity. Advances in Integrative Medicine, 2014, 1, 2-8.	0.4	4
1186	Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine and Growth Factor Reviews, 2014, 25, 227-233.	3.2	14
1187	A randomized triple-masked controlled trial on the effects of synbiotics on inflammation markers in overweight children. Jornal De Pediatria, 2014, 90, 161-168.	0.9	30
1188	Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study,,,. American Journal of Clinical Nutrition, 2014, 100, 778-786.	2.2	195
1189	Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1981-1992.	1.8	141
1190	Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME Journal, 2014, 8, 2380-2396.	4.4	106
1191	Bioavailability of anthocyanins and derivatives. Journal of Functional Foods, 2014, 7, 54-66.	1.6	292

#	Article	IF	Citations
1192	Fecal Microbiota Transplantation: An Interview with Alexander Khoruts. Global Advances in Health and Medicine, 2014, 3, 73-80.	0.7	3
1193	Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. Journal of Clinical Investigation, 2014, 124, 3391-3406.	3.9	227
1194	Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology, 2014, 20, 16498.	1.4	89
1195	The Role of the gut Microbiome in the Pathogenesis and Treatment of Obesity. Global Advances in Health and Medicine, 2014, 3, 44-57.	0.7	43
1196	The common prophylactic therapy for bowel surgery is ineffective for clearing Bacteroidetes, the primary inducers of systemic inflammation, and causes faster death in response to intestinal barrier damage in mice. BMJ Open Gastroenterology, 2014, 1, e000009.	1.1	5
1197	Genetically identical co-housed pigs as models for dietary studies of gut microbiomes. Microbiome Science and Medicine, 2014, 1 , .	0.3	3
1199	Antimicrobial Peptides and Gut Microbiota in Homeostasis and Pathology., 2014, , 171-218.		0
1202	Polysaccharides from Mushrooms: A Natural Source of Bioactive Carbohydrates. , 2014, , 168-189.		0
1203	Infl uence of the Intestinal Microbiota on the Critically. , 2014, , 301-314.		1
1204	Gut Microbiota: In Sickness and in Health. , 2014, , 43-48.		0
1205	Fecal Microbiota Transplantation. Journal of Clinical Gastroenterology, 2014, 48, S80-S84.	1.1	33
1206	Supervised method for periodontitis phenotypes prediction based on microbial composition using 16S rRNA sequences. International Journal of Computational Biology and Drug Design, 2014, 7, 214.	0.3	4
1207	Dietary fibre and health in children and adolescents. Proceedings of the Nutrition Society, 2015, 74, 292-302.	0.4	41
1208	Lean rats gained more body weight than obese ones from a high-fibre diet. British Journal of Nutrition, 2015, 114, 1188-1194.	1.2	31
1209	Obesity and Cancer: Concepts and Challenges. Indian Journal of Surgical Oncology, 2015, 6, 390-398.	0.3	16
1210	Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol. BMC Gastroenterology, 2015, 15, 169.	0.8	59
1211	Metabolic Disease: Obesity, Malnutrition, and Intestinal Microbiota. Journal of Pediatric Biochemistry, 2015, 05, 065-070.	0.2	12
1212	Effect of the Gut Microbiota on Obesity and Its Underlying Mechanisms: an Update. Biomedical and Environmental Sciences, 2015, 28, 839-847.	0.2	8

#	Article	IF	CITATIONS
1213	Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of <i>Carassius auratus</i> Induced by Pentachlorophenol Exposure. Environmental Science & Emp; Technology, 2015, 49, 11894-11902.	4.6	107
1214	Approaches and developments in studying the human microbiome network. Israel Journal of Ecology and Evolution, 2015, 61, 90-94.	0.2	1
1215	Systems biology of host–microbe metabolomics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 195-219.	6.6	80
1216	Immunogenetic control of the intestinal microbiota. Immunology, 2015, 145, 313-322.	2.0	54
1217	Alleviation of high fat dietâ€induced obesity by oligofructose in gnotobiotic mice is independent of presence of <i>Bifidobacterium longum</i> . Molecular Nutrition and Food Research, 2015, 59, 2267-2278.	1.5	31
1218	Betaâ€diversity metrics of the upper digestive tract microbiome are associated with body mass index. Obesity, 2015, 23, 862-869.	1.5	29
1219	Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota. Microbiology and Immunology, 2015, 59, 643-652.	0.7	7
1220	Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 2015, 42, 1051-1063.	1.9	167
1222	Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Scientific Reports, 2015, 5, 10512.	1.6	46
1223	Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 2015, 26, 26191.	3.8	949
1224	Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Scientific Reports, 2015, 5, 15878.	1.6	140
1226	Studying the Mammalian Intestinal Microbiome Using Animal Models. , 0, , 4.4.2-1-4.4.2-10.		1
1227	Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii. Scientific Reports, 2015, 5, 17498.	1.6	34
1228	Diversity of key players in the microbial ecosystems of the human body. Scientific Reports, 2015, 5, 15920.	1.6	30
1229	Use of T-RFLP and seven restriction enzymes to compare the faecal microbiota of obese and lean Japanese healthy men. Beneficial Microbes, 2015, 6, 735-745.	1.0	10
1230	Short Course in the Microbiome. Journal of Circulating Biomarkers, 2015, 4, 8.	0.8	9
1231	The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Research, 2015, 43, gkv973.	6.5	98
1232	Modulation of gut microbiota in rats fed highâ€fat diets by processing wholeâ€grain barley to barley malt. Molecular Nutrition and Food Research, 2015, 59, 2066-2076.	1.5	181

#	Article	IF	CITATIONS
1233	Gut microbiota and allogeneic transplantation. Journal of Translational Medicine, 2015, 13, 275.	1.8	71
1234	Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clinical Epigenetics, 2015, 7, 112.	1.8	229
1235	The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome. Microbiome, 2015, 3, 41.	4.9	81
1236	Methods for Comparing Nutrients in Beebread Made by Africanized and European Honey Bees and the Effects on Hemolymph Protein Titers. Journal of Visualized Experiments, 2015, , .	0.2	5
1237	Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology, 2015, 27, 840-845.	0.8	120
1238	A new era of secreted phospholipase A ₂ . Journal of Lipid Research, 2015, 56, 1248-1261.	2.0	99
1239	Gut feelings of safety: tolerance to the microbiota mediated by innate immune receptors. Microbiology and Immunology, 2015, 59, 573-585.	0.7	36
1240	Role of metabolic phenotyping in understanding obesity and related conditions in <scp>G</scp> ulf <scp>C</scp> oâ€operation <scp>C</scp> ouncil countries. Clinical Obesity, 2015, 5, 302-311.	1.1	2
1241	The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.	2.3	34
1242	Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics, 2015, 15, 3544-3552.	1.3	70
1243	Potential Use of Bacterial Community Succession in Decaying Human Bone for Estimating Postmortem Interval [,] [,] . Journal of Forensic Sciences, 2015, 60, 844-850.	0.9	104
1244	Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.	3.1	113
1245	Using Corticosteroids to Reshape the Gut Microbiome. Inflammatory Bowel Diseases, 2015, 21, 963-972.	0.9	153
1246	The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment. Psychosomatic Medicine, 2015, 77, 969-981.	1.3	237
1248	Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microbial Ecology in Health and Disease, 2015, 26, 26555.	3.8	16
1249	New-found link between microbiota and obesity. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 110.	0.5	313
1250	Translational research into gut microbiota: new horizons on obesity treatment: updated 2014. Archives of Endocrinology and Metabolism, 2015, 59, 154-160.	0.3	27
1251	Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. International Journal of Environmental Research and Public Health, 2015, 12, 11396-11409.	1.2	14

#	Article	IF	CITATIONS
1252	Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling. Microorganisms, 2015, 3, 213-235.	1.6	38
1253	Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules, 2015, 20, 17339-17361.	1.7	299
1254	The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015, 7, 17-44.	1.7	1,108
1255	Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine. Nutrients, 2015, 7, 45-73.	1.7	62
1256	Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain. Nutrients, 2015, 7, 764-784.	1.7	19
1257	The Infant Gut Microbiome: Evidence for Obesity Risk and Dietary Intervention. Nutrients, 2015, 7, 2237-2260.	1.7	128
1258	Pyrosequencing Analysis Reveals Changes in Intestinal Microbiota of Healthy Adults Who Received a Daily Dose of Immunomodulatory Probiotic Strains. Nutrients, 2015, 7, 3999-4015.	1.7	49
1259	Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition. Nutrients, 2015, 7, 9285-9298.	1.7	52
1260	Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and Function. Nutrients, 2015, 7, 9768-9784.	1.7	163
1261	Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Frontiers in Microbiology, 2015, 6, 1050.	1.5	258
1262	The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet. Frontiers in Microbiology, 2015, 6, 1092.	1.5	20
1263	Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Frontiers in Microbiology, 2015, 6, 1151.	1.5	108
1264	The Human Neonatal Gut Microbiome: A Brief Review. Frontiers in Pediatrics, 2015, 3, 17.	0.9	207
1265	Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. Journal of Clinical Biochemistry and Nutrition, 2015, 57, 212-216.	0.6	74
1266	Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PLoS ONE, 2015, 10, e0126931.	1.1	353
1267	Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data. PLoS ONE, 2015, 10, e0129606.	1.1	134
1268	Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055.	1.1	107
1269	Rumen Microbiome from Steers Differing in Feed Efficiency. PLoS ONE, 2015, 10, e0129174.	1.1	307

#	Article	IF	CITATIONS
1270	Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium) Tj ETQq0 (0 orgBT /C	verlock 10 Tf
1271	Obesity Alters the Microbial Community Profile in Korean Adolescents. PLoS ONE, 2015, 10, e0134333.	1.1	129
1272	Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity. PLoS ONE, 2015, 10, e0136150.	1.1	64
1273	A Metagenomic Investigation of the Duodenal Microbiota Reveals Links with Obesity. PLoS ONE, 2015, 10, e0137784.	1.1	101
1274	Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study. PLoS ONE, 2015, 10, e0141399.	1.1	45
1275	The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline. PLoS ONE, 2015, 10, e0142334.	1.1	155
1276	Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS ONE, 2015, 10, e0142825.	1.1	84
1277	Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model. PLoS ONE, 2015, 10, e0144127.	1.1	34
1278	Identification and Phylogeny of the First T Cell Epitope Identified from a Human Gut Bacteroides Species. PLoS ONE, 2015, 10, e0144382.	1.1	6
1279	Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Frontiers in Physiology, 2015, 6, 341.	1.3	31
1280	Gut Microbiota and Metabolic Disorders. Diabetes and Metabolism Journal, 2015, 39, 198.	1.8	182
1281	Psychobiotics and the gut–brain axis: in the pursuit of happiness. Neuropsychiatric Disease and Treatment, 2015, 11, 715.	1.0	113
1282	The unfolded protein response, inflammation, oscillators, and disease: a systems biology approach. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	3
1283	Gut Microbiota: Association with NAFLD and Metabolic Disturbances. BioMed Research International, 2015, 2015, 1-9.	0.9	55
1284	The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14.	0.9	33
1285	Variations of Tongue Coating Microbiota in Patients with Gastric Cancer. BioMed Research International, 2015, 2015, 1-7.	0.9	52
1286	A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Research International, 2015, 2015, 1-15.	0.9	288
1287	New insights into the impact of <i>Lactobacillus</i> population on host-bacteria metabolic interplay. Oncotarget, 2015, 6, 30545-30556.	0.8	45

#	Article	IF	CITATIONS
1288	Intestinal Microbiota Metabolism and Atherosclerosis. Chinese Medical Journal, 2015, 128, 2805-2811.	0.9	36
1289	Beyond gut microbiota: understanding obesity and type 2 diabetes. Hormones, 2015, 14, 358-69.	0.9	25
1290	Fermented Green Tea Extract Alleviates Obesity and Related Complications and Alters Gut Microbiota Composition in Diet-Induced Obese Mice. Journal of Medicinal Food, 2015, 18, 549-556.	0.8	113
1291	Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Scientific Reports, 2015, 5, 10189.	1.6	78
1292	Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS ONE, 2015, 10, e0124599.	1.1	330
1293	Molecular analysis of single room humidifier bacteriology. Water Research, 2015, 69, 318-327.	5.3	9
1294	Application of Metagenomic Technologies for Antimicrobial Resistance and Food Safety Research and Beyonda ††a †CYC and XY contributed equally to this review. The opinions expressed in this review are entirely those of the authors and do not represent those of the USDA, 2015, , 401-422.		0
1295	The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 2015, 26, 26050.	3.8	766
1296	Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clinical Therapeutics, 2015, 37, 984-995.	1.1	437
1297	Manipulating the gut microbiota to maintain health and treat disease. Microbial Ecology in Health and Disease, 2015, 26, 25877.	3.8	162
1299	The Howler Monkey as a Model for Exploring Host-Gut Microbiota Interactions in Primates. , 2015, , 229-258.		8
1300	Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. Journal of Nutritional Biochemistry, 2015, 26, 929-937.	1.9	158
1301	Activation of HIF- $1\hat{l}\pm$ and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nature Medicine, 2015, 21, 808-814.	15.2	333
1302	Unraveling the environmental and genetic interactions inÂatherosclerosis: Central role of the gut microbiota. Atherosclerosis, 2015, 241, 387-399.	0.4	67
1303	Recent advances in bariatric/metabolic surgery: appraisal of clinical evidence. Journal of Biomedical Research, 2015, 29, 98.	0.7	26
1304	The Mucosal Microbiome. , 2015, , 63-77.		2
1305	Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience, 2015, 300, 128-140.	1.1	209
1306	Dietary <i>trans</i> -10, <i>cis</i> -12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. British Journal of Nutrition, 2015, 113, 728-738.	1.2	89

#	Article	IF	Citations
1307	Oral supplementation with l-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition, 2015, 31, 884-889.	1.1	67
1308	Bacterial cell wall components regulate adipokine secretion from visceral adipocytes. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 149-154.	0.6	35
1309	The effect of past antibiotic exposure on diabetes risk. European Journal of Endocrinology, 2015, 172, 639-648.	1.9	131
1310	New insight into the gut microbiome through metagenomics. Advances in Genomics and Genetics, 0, , 77.	0.8	10
1311	Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Medicine, 2015, 7, 120.	3.6	68
1312	The Microbiome, Intestinal Function, and Arginine Metabolism of Healthy Indian Women Are Different from Those of American and Jamaican Women. Journal of Nutrition, 2016, 146, 706-713.	1.3	40
1313	Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environmental Microbiology, 2015, 17, 4954-4964.	1.8	279
1314	Continuously Ingesting Fructooligosaccharide Can't Maintain Rats' Gut <i>Bifidobacterium</i> at a High Level. Journal of Food Science, 2015, 80, M2530-4.	1.5	14
1316	Baby, It's Cold Outside: Host-Microbiota Relationships Drive Temperature Adaptations. Cell Host and Microbe, 2015, 18, 635-636.	5.1	11
1317	Le microbiote intestinal : un nouvel acteur de la nutrition ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 6S22-6S29.	0.2	0
1318	Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary and Pancreatic Diseases International, 2015, 14, 572-581.	0.6	61
1319	Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics. MBio, 2015, 6, e01888-15.	1.8	270
1320	Understanding Microbiome Data: A Primer for Clinicians. Digestive Diseases, 2015, 33, 11-16.	0.8	20
1321	An integrated strategy for functional analysis of microbial communities based on gene ontology and 16S rRNA gene. International Journal of Data Mining and Bioinformatics, 2015, 13, 63.	0.1	4
1322	The Role of Integrated Omics in Elucidating the Gut Microbiota Health Potentials. Microbiology Monographs, 2015, , 73-100.	0.3	2
1324	Bacteria-induced egg hatching differs for Trichuris muris and Trichuris suis. Parasites and Vectors, 2015, 8, 371.	1.0	25
1325	Application of a singleâ€colony coculture technique to the isolation of hitherto unculturable gut bacteria. Microbiology and Immunology, 2015, 59, 63-70.	0.7	27
1326	Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015, 148, 1244-1260.e16.	0.6	466

#	Article	IF	CITATIONS
1327	New Molecular Techniques to Study the Skin Microbiota of Diabetic Foot Ulcers. Advances in Wound Care, 2015, 4, 38-49.	2.6	63
1328	Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science, 2015, 347, 170-175.	6.0	333
1329	The Impact of the Milk Glycobiome on the Neonate Gut Microbiota. Annual Review of Animal Biosciences, 2015, 3, 419-445.	3.6	143
1330	Microbiota and the human nature: know thyself. Environmental Microbiology, 2015, 17, 10-15.	1.8	12
1331	Symbiosis, dysbiosis, and rebiosisâ€"The value of metaproteomics in human microbiome monitoring. Proteomics, 2015, 15, 1142-1151.	1.3	28
1332	New Aspects on the Metabolic role of Intestinal Microbiota in the Development of Atherosclerosis. Metabolism: Clinical and Experimental, 2015, 64, 476-481.	1.5	53
1333	Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation. Applied Microbiology and Biotechnology, 2015, 99, 5647-5656.	1.7	30
1334	Using metabolomics to analyse the role of gut microbiota in nutrition and disease. , 2015, , 115-136.		1
1335	Metagenomic analysis of the gut microbiota of the Timber Rattlesnake, Crotalus horridus. Molecular Biology Reports, 2015, 42, 1187-1195.	1.0	28
1336	Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Beneficial Microbes, 2015, 6, 97-111.	1.0	28
1337	"Omics―in pharmaceutical research: overview, applications, challenges, and future perspectives. Chinese Journal of Natural Medicines, 2015, 13, 3-21.	0.7	75
1338	Tollâ€ike receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity, 2015, 23, 581-590.	1.5	50
1339	Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell, 2015, 160, 447-460.	13.5	1,036
1340	Metabolic profiling as a tool in nutritional research. , 2015, , 17-35.		0
1341	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	1.2	990
1342	Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats. Food and Function, 2015, 6, 492-500.	2.1	97
1343	The intestinal microbiota composition and weight development in children: the KOALA Birth Cohort Study. International Journal of Obesity, 2015, 39, 16-25.	1.6	117
1344	Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology, 2015, , .	0.5	5

#	Article	IF	CITATIONS
1346	The intestinal microbiota: its role in health and disease. European Journal of Pediatrics, 2015, 174, 151-167.	1.3	144
1347	Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut, 2015, 64, 1553-1561.	6.1	226
1348	Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link?. Molecular and Cellular Endocrinology, 2015, 418, 55-65.	1.6	244
1349	Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance <i>via</i> glucagonâ€ike peptide 1 in dietâ€induced obesity. FASEB Journal, 2015, 29, 2397-2411.	0.2	177
1350	Dietâ€induced obesity causes metabolic impairment independent of alterations in gut barrier integrity. Molecular Nutrition and Food Research, 2015, 59, 968-978.	1.5	31
1351	Hitchhiking of host biology by beneficial symbionts enhances transmission. Scientific Reports, 2014, 4, 5825.	1.6	10
1352	Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia, 2015, 58, 211-220.	2.9	54
1353	New Insights Into Gestational Glucose Metabolism: Lessons Learned From 21st Century Approaches. Diabetes, 2015, 64, 327-334.	0.3	114
1354	Grazing livestock are exposed to terrestrial cyanobacteria. Veterinary Research, 2015, 46, 16.	1.1	25
1355	Study on the Diversity of Bacteroides and Clostridium in Patients with Primary Gout. Cell Biochemistry and Biophysics, 2015, 71, 707-715.	0.9	15
1356	Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiology Ecology, 2015, 91, 1-9.	1.3	232
1357	Gut microbiota: a key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry, 2015, 71, 509-525.	1.3	167
1358	Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 287-298.	1.0	53
1359	The multifactorial interplay of diet, the microbiome and appetite control: current knowledge and future challenges. Proceedings of the Nutrition Society, 2015, 74, 235-244.	0.4	14
1360	Obesity and the microbiome. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1087-1099.	1.4	127
1361	Are dietary emulsifiers making us fat?. Journal of Hepatology, 2015, 63, 1045-1048.	1.8	4
1362	Lean rats gained more body weight from a high-fructooligosaccharide diet. Food and Function, 2015, 6, 2315-2321.	2.1	19
1363	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015, 22, 228-238.	7.2	638

#	Article	IF	Citations
1364	Metagenomic Surveys of Gut Microbiota. Genomics, Proteomics and Bioinformatics, 2015, 13, 148-158.	3.0	76
1365	High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Annals of Epidemiology, 2015, 25, 736-742.e4.	0.9	87
1366	Reticulate Evolution. Interdisciplinary Evolution Research, 2015, , .	0.2	19
1367	Metabolome progression during early gut microbial colonization of gnotobiotic mice. Scientific Reports, 2015, 5, 11589.	1.6	29
1368	Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology, 2015, 6, 58.	1.5	257
1369	A Nutritional Anthropology of the Human Gut Microbiota. , 2015, , 17-26.		0
1370	Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Applied Microbiology and Biotechnology, 2015, 99, 5801-5815.	1.7	24
1371	The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. International Journal of Obesity, 2015, 39, 1565-1574.	1.6	120
1372	Microbial diversity associated with copepods in the North Atlantic subtropical gyre. FEMS Microbiology Ecology, 2015, 91, .	1.3	55
1373	Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. American Journal of Physiology - Renal Physiology, 2015, 308, G840-G851.	1.6	249
1374	Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine, 2015, 2, 968-984.	2.7	306
1375	Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33, 496-503.	4.9	2,453
1376	Developmental Regulation of Drug-Processing Genes in Livers of Germ-Free Mice. Toxicological Sciences, 2015, 147, 84-103.	1.4	76
1377	Immunological characteristics and management considerations in obese patients with asthma. Expert Review of Clinical Immunology, 2015, 11, 793-803.	1.3	10
1378	Evolution of the Human Microbiome and Impacts on Human Health, Infectious Disease, and Hominid Evolution. Interdisciplinary Evolution Research, 2015, , 231-253.	0.2	6
1379	Gnotobiotics. , 2015, , 1263-1296.		3
1380	Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. Journal of Functional Foods, 2015, 17, 892-902.	1.6	53
1381	Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7569-7574.	3.3	135

#	Article	IF	CITATIONS
1382	Investigation of the Association Between the Fecal Microbiota and Breast Cancer in Postmenopausal Women: a Population-Based Case-Control Pilot Study. Journal of the National Cancer Institute, 2015, 107, .	3.0	257
1383	Role of Microbiota in Regulating Host Lipid Metabolism and Disease Risk. Molecular and Integrative Toxicology, 2015, , 235-260.	0.5	1
1384	Engineered bacteria as therapeutic agents. Current Opinion in Biotechnology, 2015, 35, 94-102.	3.3	83
1385	Lower esophageal microbiota species are affected by the eradication of Helicobacter pylori infection using antibiotics. Experimental and Therapeutic Medicine, 2015, 9, 685-692.	0.8	10
1386	Gut microbiome, gut function, and probiotics: Implications for health. Indian Journal of Gastroenterology, 2015, 34, 93-107.	0.7	30
1387	The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients, 2015, 7, 2930-2946.	1.7	656
1388	The Good, the Bad, and the Unknown: Microbial Symbioses of the American Alligator. Integrative and Comparative Biology, 2015, 55, 972-985.	0.9	19
1389	Effect of Prebiotic Fiber Intake on Adiposity and Inflammation in Overweight and Obese Children: Assessing the Role of the Gut Microbiota. Canadian Journal of Diabetes, 2015, 39, S43.	0.4	7
1390	Role of probiotics in reducing the risk of gestational diabetes. Diabetes, Obesity and Metabolism, 2015, 17, 713-719.	2.2	42
1391	Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. Molecular BioSystems, 2015, 11, 1742-1774.	2.9	103
1392	Urinary metabolic signatures of human adiposity. Science Translational Medicine, 2015, 7, 285ra62.	5.8	178
1393	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.2	167
1395	Changes in human gut microbiota influenced by probiotic fermented milk ingestion. Journal of Dairy Science, 2015, 98, 3568-3576.	1.4	60
1396	Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system. Medicina (Lithuania), 2015, 51, 69-75.	0.8	40
1397	Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scandinavian Journal of Gastroenterology, 2015, 50, 1076-1087.	0.6	85
1398	Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in dietâ€induced obese rats. Obesity, 2015, 23, 769-778.	1.5	57
1400	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	3.6	92
1401	The role of probiotics on each component of the metabolic syndrome and other cardiovascular risks. Expert Opinion on Therapeutic Targets, 2015, 19, 1127-1138.	1.5	34

#	ARTICLE	IF	CITATIONS
1402	The Human Microbiota: The Rise of an "Empire". Rambam Maimonides Medical Journal, 2015, 6, e0018.	0.4	11
1403	TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocrine Reviews, 2015, 36, 245-271.	8.9	212
1406	Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition and Metabolism, 2015, 40, 749-752.	0.9	162
1407	Phylogenetic and Functional Alterations in Bacterial Community Compositions in Broiler Ceca as a Result of Mannan Oligosaccharide Supplementation. Applied and Environmental Microbiology, 2015, 81, 3460-3470.	1.4	82
1408	Nutri(meta)genetics and Cardiovascular Disease: Novel Concepts in the Interaction of Diet and Genomic Variation. Current Atherosclerosis Reports, 2015, 17, 505.	2.0	13
1409	Amino acidâ€derived betaines dominate as urinary markers for rye bran intake in mice fed highâ€fat dietâ€"A nontargeted metabolomics study. Molecular Nutrition and Food Research, 2015, 59, 1550-1562.	1.5	28
1410	The Microbiome: A Contributor to Health and Disease. Journal of Health Care for the Poor and Underserved, 2015, 26, 62-72.	0.4	2
1411	Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. Molecular and Integrative Toxicology, 2015, , 199-234.	0.5	7
1412	Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction. Toxicology and Applied Pharmacology, 2015, 284, 304-314.	1.3	28
1413	The Perinatal Microbiome and Pregnancy: Moving Beyond the Vaginal Microbiome. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023051-a023051.	2.9	101
1414	Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 139-153.	0.9	112
1415	Measures of Obesity and Risk of Crohn's Disease and Ulcerative Colitis. Inflammatory Bowel Diseases, 2015, 21, 361-368.	0.9	123
1416	Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle <i>Thorectes lusitanicus</i> . Insect Science, 2015, 22, 178-190.	1.5	17
1418	Progress and Challenges in Developing Metabolic Footprints from Diet in Human Gut Microbial Cometabolism ,. Journal of Nutrition, 2015, 145, 1123S-1130S.	1.3	40
1419	Microbiota Regulation of the Mammalian Gut–Brain Axis. Advances in Applied Microbiology, 2015, 91, 1-62.	1.3	207
1420	Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660.	1.9	372
1421	Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proceedings of the Nutrition Society, 2015, 74, 258-267.	0.4	19
1422	Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues. European Journal of Pharmacology, 2015, 759, 253-264.	1.7	84

#	Article	IF	CITATIONS
1423	DIETARY FIBER. ACSM's Health and Fitness Journal, 2015, 19, 9-16.	0.3	4
1424	New mechanisms of metformin action: Focusing on mitochondria and the gut. Journal of Diabetes Investigation, 2015, 6, 600-609.	1.1	133
1425	Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current Obesity Reports, 2015, 4, 250-261.	3.5	154
1426	The human gut microbiome, a taxonomic conundrum. Systematic and Applied Microbiology, 2015, 38, 276-286.	1.2	113
1427	Translational value of animal models of obesityâ€"Focus on dogs and cats. European Journal of Pharmacology, 2015, 759, 240-252.	1.7	36
1428	Oral Infections, Metabolic Inflammation, Genetics, and Cardiometabolic Diseases. Journal of Dental Research, 2015, 94, 119S-127S.	2.5	41
1429	The Role of Microbiota on the Gut Immunology. Clinical Therapeutics, 2015, 37, 968-975.	1.1	85
1430	Epithelial Cell Contributions to Intestinal Immunity. Advances in Immunology, 2015, 126, 129-172.	1.1	100
1432	Subchronic Exposure of Mice to Cadmium Perturbs Their Hepatic Energy Metabolism and Gut Microbiome. Chemical Research in Toxicology, 2015, 28, 2000-2009.	1.7	174
1433	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	9.4	422
1434	Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host and Microbe, 2015, 18, 582-592.	5.1	368
1435	Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis and Cartilage, 2015, 23, 1989-1998.	0.6	179
1437	Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicology and Applied Pharmacology, 2015, 289, 397-408.	1.3	89
1438	Novel Approaches to Targeting Visceral and Hepatic Adiposities in HIV-Associated Lipodystrophy. Current Atherosclerosis Reports, 2015, 17, 73.	2.0	1
1439	Nutrikinetic studies of food bioactive compounds: from <i>in vitro</i> to <i>in vivo</i> approaches. International Journal of Food Sciences and Nutrition, 2015, 66, S41-S52.	1.3	30
1440	Responses in gut microbiota and fat metabolism to a halogenated methane analogue in S prague D awley rats. Microbial Biotechnology, 2015, 8, 519-526.	2.0	13
1441	A new era of secreted phospholipase A2. Journal of Lipid Research, 2015, 56, 1248-1261.	2.0	186
1442	Diet and Obesity (Macronutrients, Micronutrients, Nutritional Biochemistry)., 2015, , 1-15.		1

#	Article	IF	CITATIONS
1443	Obesity, Diet and the Gut Microbiota. Current Nutrition Reports, 2015, 4, 340-347.	2.1	4
1445	The Gut Microbiota and Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2015, 35, 262-269.	1.8	38
1446	Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Translational Psychiatry, 2015, 5, e652-e652.	2.4	154
1448	Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutrition in Clinical Practice, 2015, 30, 787-797.	1.1	187
1449	The Intestinal Microbiota Influences Campylobacter jejuni Colonization and Extraintestinal Dissemination in Mice. Applied and Environmental Microbiology, 2015, 81, 4642-4650.	1.4	45
1450	The Influence of Bariatric Surgery on Serum Bile Acids in Humans and Potential Metabolic and Hormonal Implications: a Systematic Review. Current Obesity Reports, 2015, 4, 441-450.	3.5	28
1451	Study on the effects of microencapsulated <i>Lactobacillus del brueckii </i> on the mouse intestinal flora. Journal of Microencapsulation, 2015, 32, 669-676.	1.2	12
1452	MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. International Journal of Biological Macromolecules, 2015, 81, 576-583.	3.6	75
1453	Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes. FEMS Microbiology Ecology, 2015, 91, fiv107.	1.3	51
1454	Microbiota Organ and Bariatric Surgery. , 2015, , 43-55.		0
1455	Hesperetin Modifies the Composition of Fecal Microbiota and Increases Cecal Levels of Short-Chain Fatty Acids in Rats. Journal of Agricultural and Food Chemistry, 2015, 63, 7952-7957.	2.4	58
1456	A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR Journal, 2015, 56, 250-264.	1.8	28
1457	Manipulating the Gut Microbiota: Methods and Challenges: FigureÂ1. ILAR Journal, 2015, 56, 205-217.	1.8	114
1458	Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis. Toxicological Sciences, 2015, 147, 116-126.	1.4	127
1459	Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother's periconceptional diet. Gut Microbes, 2015, 6, 310-320.	4.3	161
1460	Xenobiotics: Interaction with the Intestinal Microflora. ILAR Journal, 2015, 56, 218-227.	1.8	92
1461	Structure and Function of a Nonruminant Gut: A Porcine Model. , 2015, , 47-75.		8
1462	Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs. Applied Microbiology and Biotechnology, 2015, 99, 10627-10638.	1.7	25

#	Article	IF	CITATIONS
1463	Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota. Environmental Engineering Science, 2015, 32, 602-612.	0.8	72
1464	Gene-Environment Interactions Controlling Energy and Glucose Homeostasis and the Developmental Origins of Obesity. Physiological Reviews, 2015, 95, 47-82.	13.1	124
1465	Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care, 2015, 38, 159-165.	4.3	519
1467	Obesity and Atherosclerosis: Mechanistic Insights. Canadian Journal of Cardiology, 2015, 31, 177-183.	0.8	149
1468	Intra- and Interindividual Variations Mask Interspecies Variation in the Microbiota of Sympatric Peromyscus Populations. Applied and Environmental Microbiology, 2015, 81, 396-404.	1.4	54
1469	Influence of Intestinal Microbiota on Body Weight Gain: a Narrative Review of the Literature. Obesity Surgery, 2015, 25, 346-353.	1.1	48
1470	Howler Monkeys., 2015,,.		5
1471	Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host and Microbe, 2015, 17, 72-84.	5.1	941
1472	Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Scientific Reports, 2014, 4, 4828.	1.6	384
1473	Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. American Journal of Clinical Nutrition, 2015, 101, 55-64.	2.2	130
1474	Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Digestive and Liver Disease, 2015, 47, 181-190.	0.4	551
1475	Antibiotics in early life and obesity. Nature Reviews Endocrinology, 2015, 11, 182-190.	4.3	427
1476	Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiology and Behavior, 2015, 139, 188-194.	1.0	99
1477	Neuroendocrine control of photoperiodic changes in immune function. Frontiers in Neuroendocrinology, 2015, 37, 108-118.	2.5	43
1478	Microbiome and cancer. Seminars in Immunopathology, 2015, 37, 65-72.	2.8	56
1479	Multidisciplinary Approach to Obesity. , 2015, , .		8
1480	Association of Obesity with Serum Leptin, Adiponectin, and Serotonin and Gut Microflora in Beagle Dogs. Journal of Veterinary Internal Medicine, 2015, 29, 43-50.	0.6	87
1481	Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surgery for Obesity and Related Diseases, 2015, 11, 45-53.	1.0	45

#	Article	IF	CITATIONS
1482	Gut microbiome and nonalcoholic fatty liver diseases. Pediatric Research, 2015, 77, 245-251.	1.1	123
1483	Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. Journal of Hepatology, 2015, 62, 905-912.	1.8	89
1484	Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Seminars in Immunopathology, 2015, 37, 5-16.	2.8	46
1485	Streptozotocin-induced type-1-diabetes disease onset in Sprague–Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Microbiology (United Kingdom), 2015, 161, 182-193.	0.7	70
1486	Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic lowâ€grade inflammation and the development of obesity and diabetes. Diabetes/Metabolism Research and Reviews, 2015, 31, 545-561.	1.7	150
1487	Sorghum resistant starch reduces adiposity in high-fat diet-induced overweight and obese rats via mechanisms involving adipokines and intestinal flora. Food and Agricultural Immunology, 2015, 26, 120-130.	0.7	45
1488	The ASMBS Textbook of Bariatric Surgery. , 2015, , .		15
1489	A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased <i>Akkermansia</i> spp. population in the gut microbiota of mice. Gut, 2015, 64, 872-883.	6.1	910
1490	Host adaptive immunity alters gut microbiota. ISME Journal, 2015, 9, 770-781.	4.4	198
1491	Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Scientific Reports, 2014, 4, 5922.	1.6	129
1492	Probiotic fermented foods and health promotion. , 2015, , 3-22.		11
1493	Commensal Gram-positive bacteria initiates colitis by inducing monocyte/macrophage mobilization. Mucosal Immunology, 2015, 8, 152-160.	2.7	93
1494	Obesity-Associated Gut Microbiota. , 2015, , 149-171.		3
1495	A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutritional Neuroscience, 2015, 18, 49-65.	1.5	113
1496	Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatric Research, 2015, 77, 196-204.	1.1	118
1497	Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial Microbes, 2015, 6, 61-81.	1.0	28
1498	Probiotics during weaning: a follow-up study on effects on body composition and metabolic markers at school age. European Journal of Nutrition, 2015, 54, 355-363.	1.8	37
1499	Sociomicrobiology and Pathogenic Bacteria. , 2016, , 87-101.		0

#	Article	IF	CITATIONS
1500	6. Die physiologische Standortflora. , 2016, , 61-82.		0
1501	19. Präund Probiotika. , 2016, , .		1
1502	Interactive diversity promotes the evolution of cooperation in structured populations. New Journal of Physics, 2016, 18, 103007.	1.2	63
1503	Dietary Fats and Inflammation. , 2016, , 635-665.		1
1504	Bacteriocin production: a relatively unharnessed probiotic trait?. F1000Research, 2016, 5, 2587.	0.8	109
1505	Microbiome, Prebiotics, and Human Health. , 2016, , 335-343.		1
1506	Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology, 2016, 22, 501.	1.4	578
1507	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.		5
1508	The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536-541.	1.1	46
1509	The Role of the Microbiota and Potential for Dietary Intervention in Chronic Fatigue Syndrome. , 2016, , 439-463.		4
1510	The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome. PLoS ONE, 2016, 11, e0146509.	1.1	145
1511	Novel insights, challenges and practical implications of DOHaDâ€omics research. Medical Journal of Australia, 2016, 204, 108-110.	0.8	3
1512	Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget, 2016, 7, 48941-48952.	0.8	19
1513	The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterology Research and Practice, 2016, 2016, 1-13.	0.7	142
1514	The Microbial Hypothesis: Contributions of Adenovirus Infection and Metabolic Endotoxaemia to the Pathogenesis of Obesity. International Journal of Chronic Diseases, 2016, 2016, 1-11.	1.9	6
1515	Potential Nociceptive Regulatory Effect of ProbioticLactobacillus rhamnosusPB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model. Pain Research and Management, 2016, 2016, 1-7.	0.7	10
1516	Microflora Disturbance during Progression of Glucose Intolerance and Effect of Sitagliptin: An Animal Study. Journal of Diabetes Research, 2016, 2016, 1-10.	1.0	85
1517	Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of Obesity, 2016, 2016, 1-27.	1.1	202

#	ARTICLE	IF	Citations
1518	Quantitative Analysis of Intestinal Flora of Uygur and Han Ethnic Chinese Patients with Ulcerative Colitis. Gastroenterology Research and Practice, 2016, 2016, 1-8.	0.7	24
1519	The Microbiome of Animals: Implications for Conservation Biology. International Journal of Genomics, 2016, 2016, 1-7.	0.8	204
1520	Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural Plasticity, 2016, 2016, 1-13.	1.0	122
1521	A Metagenomic Insight Into the Human Microbiome. , 2016, , 107-119.		15
1522	Mechanisms Whereby Whole Grain Cereals Modulate the Prevention of Type 2 Diabetes., 2016,, 87-103.		4
1523	The Pathology of Methanogenic Archaea in Human Gastrointestinal Tract Disease. , 0, , .		9
1524	Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World Journal of Gastroenterology, 2016, 22, 8698.	1.4	84
1525	Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals. Nutrients, 2016, 8, 281.	1.7	95
1526	The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation. Frontiers in Cellular and Infection Microbiology, 2016, 6, 15.	1.8	60
1527	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
1528	Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass. Frontiers in Microbiology, 2016, 7, 200.	1.5	94
1529	Gut Microbiome and Kidney Disease in Pediatrics: Does Connection Exist?. Frontiers in Microbiology, 2016, 7, 235.	1.5	7
1530	Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Frontiers in Microbiology, 2016, 7, 634.	1.5	27
1531	Identification, Recovery, and Refinement of Hitherto Undescribed Population-Level Genomes from the Human Gastrointestinal Tract. Frontiers in Microbiology, 2016, 7, 884.	1.5	8
1532	Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT). Frontiers in Microbiology, 2016, 7, 1612.	1.5	64
1533	Independent and Combined Effects of Lactitol, Polydextrose, and Bacteroides thetaiotaomicron on Postprandial Metabolism and Body Weight in Rats Fed a High-Fat Diet. Frontiers in Nutrition, 2016, 3, 15.	1.6	12
1534	Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility. Diseases (Basel,) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf 5
1535	Nutrition in the First 1000 Days: The Origin of Childhood Obesity. International Journal of Environmental Research and Public Health, 2016, 13, 838.	1.2	166

#	Article	IF	Citations
1536	Gut Microbiota and Lifestyle Interventions in NAFLD. International Journal of Molecular Sciences, 2016, 17, 447.	1.8	75
1537	Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. International Journal of Molecular Sciences, 2016, 17, 481.	1.8	100
1538	Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota. International Journal of Molecular Sciences, 2016, 17, 509.	1.8	167
1539	Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. International Journal of Molecular Sciences, 2016, 17, 928.	1.8	215
1540	The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. International Journal of Molecular Sciences, 2016, 17, 1225.	1.8	50
1541	Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules, 2016, 21, 844.	1.7	285
1542	Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients, 2016, 8, 126.	1.7	158
1543	Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients, 2016, 8, 173.	1.7	216
1544	The Intestinal Microbiota in Metabolic Disease. Nutrients, 2016, 8, 202.	1.7	211
1545	The Potential of Class II Bacteriocins to Modify Gut Microbiota to Improve Host Health. PLoS ONE, 2016, 11, e0164036.	1.1	102
1546	A comparative study of bifidobacteria in human babies and adults. Bioscience of Microbiota, Food and Health, 2016, 35, 97-103.	0.8	17
1547	Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights. PLoS Computational Biology, 2016, 12, e1004977.	1.5	434
1548	Safety Assessment of Bacteroides uniformis CECT 7771 Isolated from Stools of Healthy Breast-Fed Infants. PLoS ONE, 2016, 11, e0145503.	1.1	39
1549	Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE, 2016, 11, e0149564.	1.1	229
1550	Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS ONE, 2016, 11, e0151893.	1.1	109
1551	Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform. PLoS ONE, 2016, 11, e0151944.	1.1	61
1552	Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PLoS ONE, 2016, 11, e0153134.	1.1	63
1553	Xenobiotic Metabolism and Gut Microbiomes. PLoS ONE, 2016, 11, e0163099.	1.1	53

#	Article	IF	CITATIONS
1554	Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in Physiology, 2016, 7, 51.	1.3	156
1555	Raised Cecal Veillonella (Firmicutes)/S 24-7 (Bacteriodetes) May Not Cause Salt-Sensitive Hypertension. Frontiers in Physiology, 2016, 7, 118.	1.3	0
1556	Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 2016, 7, 498.	1.3	142
1557	Emergent Sources of Prebiotics: Seaweeds and Microalgae. Marine Drugs, 2016, 14, 27.	2.2	204
1559	Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere, 2016, 160, 349-358.	4.2	100
1560	IFN- \hat{I}^3 secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 377-382.	1.0	3
1561	Probiotic <i>Lactobacillus gasseri</i> SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure. British Journal of Nutrition, 2016, 116, 451-458.	1.2	44
1562	Effects of dispersal limitation in the face of intense selection via dietary intervention on the faecal microbiota of rats. Environmental Microbiology Reports, 2016, 8, 187-195.	1.0	10
1563	Effects of transport, fasting and anaesthesia on the faecal microbiota of healthy adult horses. Equine Veterinary Journal, 2016, 48, 595-602.	0.9	63
1565	Effects of bitter melon (<i>Momordica charantia</i> L.) on the gut microbiota in high fat diet and low dose streptozocin-induced rats. International Journal of Food Sciences and Nutrition, 2016, 67, 686-695.	1.3	31
1566	Artificial sweeteners and metabolic dysregulation: Lessons learned from agriculture and the laboratory. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 179-186.	2.6	33
1567	Microbiota at the crossroads of autoimmunity. Autoimmunity Reviews, 2016, 15, 859-869.	2.5	117
1568	Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 2016, 22, 1137-1150.	0.9	555
1569	Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies. Molecular and Cellular Endocrinology, 2016, 435, 7-19.	1.6	39
1570	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
1571	Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535, 94-103.	13.7	595
1572	Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environmental Microbiology, 2016, 18, 1352-1363.	1.8	149
1573	Overweight and the feline gut microbiome – a pilot study. Journal of Animal Physiology and Animal Nutrition, 2016, 100, 478-484.	1.0	25

#	Article	IF	CITATIONS
1574	Gut microbiota and type 2 diabetes mellitus. Endocrinolog \tilde{A} a Y Nutrici \tilde{A}^3 n (English Edition), 2016, 63, 560-568.	0.5	64
1575	Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance. Obesity Facts, 2016, 9, 379-391.	1.6	48
1576	Role of Gut Microbiome in the Modulation of Environmental Toxicants and Therapeutic Agents. , 2016, , 491-518.		2
1577	Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells. Scientific Reports, 2016, 6, 28963.	1.6	16
1578	Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genetics Selection Evolution, 2016, 48, 93.	1.2	41
1579	Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food and Nutrition Research, 2016, 60, 29993.	1.2	64
1580	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	3.6	260
1581	Sociomicrobiology and Pathogenic Bacteria. Microbiology Spectrum, 2016, 4, .	1.2	20
1582	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
1583	The Gut Microbiome. , 2016, , 799-808.		2
1583 1584	The Gut Microbiome., 2016,, 799-808. Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Scientific Reports, 2016, 6, 38900.	1.6	33
	Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective	1.6	
1584	Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Scientific Reports, 2016, 6, 38900. A novel approach based on KATZ measure to predict associations of human microbiota with		33
1584 1585	Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Scientific Reports, 2016, 6, 38900. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 33, 733-739.	1.8	33 222
1584 1585 1587	Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Scientific Reports, 2016, 6, 38900. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 33, 733-739. The Microbiome and the Liver: The Basics. Seminars in Liver Disease, 2016, 36, 299-305. The Metabolic Role of the Microbiome: Implications for NAFLD and the Metabolic Syndrome. Seminars	1.8	33 222 13
1584 1585 1587	Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Scientific Reports, 2016, 6, 38900. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 33, 733-739. The Microbiome and the Liver: The Basics. Seminars in Liver Disease, 2016, 36, 299-305. The Metabolic Role of the Microbiome: Implications for NAFLD and the Metabolic Syndrome. Seminars in Liver Disease, 2016, 36, 312-316.	1.8 1.8	33 222 13 21
1584 1585 1587 1588	Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Scientific Reports, 2016, 6, 38900. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 33, 733-739. The Microbiome and the Liver: The Basics. Seminars in Liver Disease, 2016, 36, 299-305. The Metabolic Role of the Microbiome: Implications for NAFLD and the Metabolic Syndrome. Seminars in Liver Disease, 2016, 36, 312-316. The Microbiome and Primary Sclerosing Cholangitis. Seminars in Liver Disease, 2016, 36, 340-348.	1.8 1.8 1.8	33 222 13 21 15

#	Article	IF	Citations
1593	Contribution of Maladaptive Adipose Tissue Expansion to Development of Cardiovascular Disease., 2016, 7, 253-262.		23
1594	Dissecting the interplay between intestinal microbiota and host immunity in health and disease: Lessons learned from germfree and gnotobiotic animal models. European Journal of Microbiology and Immunology, 2016, 6, 253-271.	1.5	142
1595	Gut flora connects obesity with pathological angiogenesis in the eye. EMBO Molecular Medicine, 2016, 8, 1361-1363.	3.3	6
1596	The Gut Microbiome and Its Role in Obesity. Nutrition Today, 2016, 51, 167-174.	0.6	261
1597	Exercise and Prebiotics Produce Stress Resistance. International Review of Neurobiology, 2016, 131, 165-191.	0.9	9
1599	Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65, 1906-1915.	6.1	463
1600	High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoEâ^'/â^' mice. BMC Microbiology, 2016, 16, 264.	1.3	102
1601	The Gut Bacteria-Driven Obesity Development. Digestive Diseases, 2016, 34, 221-229.	0.8	53
1602	Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere, 2016, 153, 287-293.	4.2	96
1603	Animal models of inflammatory bowel disease. Current Opinion in Gastroenterology, 2016, 32, 251-257.	1.0	22
1604	Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology, 2016, 86, 406-421.	0.9	53
1605	Critical review evaluating the pig as a model for human nutritional physiology. Nutrition Research Reviews, 2016, 29, 60-90.	2.1	204
1606	Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 2016, 5, e82.	1.7	196
1607	Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine. Applied and Environmental Microbiology, 2016, 82, 4264-4278.	1.4	10
1608	Metabolic Syndrome after Hematopoietic Cell Transplantation: At the Intersection of Treatment Toxicity and Immune Dysfunction. Biology of Blood and Marrow Transplantation, 2016, 22, 1159-1166.	2.0	24
1609	Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies. Journal of Hazardous Materials, 2016, 315, 126-134.	6.5	57
1610	Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents. Hormone and Metabolic Research, 2016, 48, 349-358.	0.7	104
1611	Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?. Physiology and Behavior, 2016, 164, 488-493.	1.0	102

#	Article	IF	CITATIONS
1613	Oatsâ€"From Farm to Fork. Advances in Food and Nutrition Research, 2016, 77, 1-55.	1.5	56
1614	Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine, 2016, 8, 42.	3.6	1,000
1615	Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Medicine, 2016, 8, 41.	3.6	86
1616	The Role of the Gut Microbiota in Childhood Obesity. Childhood Obesity, 2016, 12, 292-299.	0.8	35
1617	Germ-Free Mice Model for Studying Host–Microbial Interactions. Methods in Molecular Biology, 2016, 1438, 123-135.	0.4	51
1618	Foodomics as part of the host-microbiota-exposome interplay. Journal of Proteomics, 2016, 147, 3-20.	1.2	46
1619	The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutrition and Metabolism, 2016, 13, 31.	1.3	96
1620	Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutrition Reviews, 2016, 74, 374-386.	2.6	73
1621	Heat-treated high-fat diet modifies gut microbiota and metabolic markers in apoeâ^'/â^' mice. Nutrition and Metabolism, 2016, 13, 22.	1.3	19
1622	Microbiome therapeutics â€" Advances and challenges. Advanced Drug Delivery Reviews, 2016, 105, 44-54.	6.6	198
1623	Microbial-Derived Metabolites Reflect an Altered Intestinal Microbiota during Catch-Up Growth in Undernourished Neonatal Mice. Journal of Nutrition, 2016, 146, 940-948.	1.3	19
1624	The Gut Microbiota in Type 2 Diabetes. , 2016, , 275-293.		0
1625	Effect of long-term antibiotic use on weight in adolescents with acne. Journal of Antimicrobial Chemotherapy, 2016, 71, 1098-1105.	1.3	5
1626	A humanized microbiota mouse model of ovalbumin-induced lung inflammation. Gut Microbes, 2016, 7, 342-352.	4.3	35
1627	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630
1628	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	5.1	190
1629	Evolution of Oxygenic Photosynthesis. Annual Review of Earth and Planetary Sciences, 2016, 44, 647-683.	4.6	334
1630	The Human Gut Microbiota. Advances in Experimental Medicine and Biology, 2016, 902, 95-108.	0.8	72

#	Article	IF	CITATIONS
1631	Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food and Function, 2016, 7, 2374-2388.	2.1	71
1632	Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 176-187.	1.4	31
1634	Liver steatosis induced by small bowel resection is prevented by oral vancomycin. Surgery, 2016, 160, 1485-1495.	1.0	13
1635	InÂvitro analysis of partially hydrolyzed guar gum fermentation on identified gut microbiota. Anaerobe, 2016, 42, 60-66.	1.0	19
1636	Microbiota y diabetes mellitus tipo 2. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 560-568.	0.8	111
1637	Consensus canadien sur la nutrition féminine : adolescence, reproduction, ménopause et au-delÃ. Journal of Obstetrics and Gynaecology Canada, 2016, 38, 555-609.e19.	0.3	1
1638	Large Animal Models: The Key to Translational Discovery inÂDigestive Disease Research. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 716-724.	2.3	136
1639	Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. American Journal of Physiology - Renal Physiology, 2016, 311, G286-G304.	1.6	59
1640	Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 2016, 17, 189.	3.8	183
1641	Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food and Function, 2016, 7, 4481-4491.	2.1	86
1642	Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, 2016, , .	0.2	2
1643	Epigenetics, Obesity, and Colon Cancer. Energy Balance and Cancer, 2016, , 211-233.	0.2	0
1644	Neonatal Androgen Exposure Causes Persistent Gut Microbiota Dysbiosis Related to Metabolic Disease in Adult Female Rats. Endocrinology, 2016, 157, 4888-4898.	1.4	76
1645	The Roles of the Secreted Phospholipase A2 Gene Family in Immunology. Advances in Immunology, 2016, 132, 91-134.	1.1	64
1646	Genetic and Transcriptional Analysis of Human Host Response to Healthy Gut Microbiota. MSystems, 2016, 1 , .	1.7	28
1647	Adipocyte biology and obesity-mediated adipose tissue remodeling. Obesity Medicine, 2016, 4, 15-20.	0.5	10
1649	Modulation of type 1 and type 2 diabetes risk by the intestinal microbiome. Pediatric Diabetes, 2016, 17, 469-477.	1.2	58
1653	Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular Metabolism, 2016, 5, 759-770.	3.0	142

#	Article	IF	CITATIONS
1654	Colonic Pro-inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner. Cell Metabolism, 2016, 24, 295-310.	7.2	142
1655	Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice. Journal of Nutritional Biochemistry, 2016, 36, 42-50.	1.9	54
1656	From the Cover: Exposure to Oral Antibiotics Induces Gut Microbiota Dysbiosis Associated with Lipid Metabolism Dysfunction and Low-Grade Inflammation in Mice. Toxicological Sciences, 2016, 154, 140-152.	1.4	70
1657	Whey protein stories – An experiment in writing a multidisciplinary biography. Appetite, 2016, 107, 285-294.	1.8	8
1658	Comparative analysis of the fecal bacterial community ofÂfive harbor seals (Phoca vitulina). MicrobiologyOpen, 2016, 5, 782-792.	1.2	28
1659	The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 2016, 280, 339-349.	2.7	212
1660	Incorporating the gut microbiota into models of human and nonâ€human primate ecology and evolution. American Journal of Physical Anthropology, 2016, 159, 196-215.	2.1	99
1661	High risk of postâ€infectious irritable bowel syndrome in patients with <i>Clostridium difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2016, 44, 576-582.	1.9	89
1662	Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in highâ€fat dietâ€induced obesity. Molecular Nutrition and Food Research, 2016, 60, 2611-2621.	1.5	121
1663	Extrahepatic Diseases and NAFLD: The Triangular Relationship between NAFLD, Type 2-Diabetes and Dysbiosis. Digestive Diseases, 2016, 34, 11-18.	0.8	33
1665	The Biology of Weight Regulation and Genetic ResettingTM., 2016,, 41-66.		0
1666	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	7.8	26
1667	Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends in Food Science and Technology, 2016, 57, 233-243.	7.8	22
1668	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
1669	Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition. Anatomical Record, 2016, 299, 1389-1396.	0.8	9
1670	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	1.7	28
1673	Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. MBio, 2016, 7, .	1.8	430
1674	Mineral micronutrient and prebiotic carbohydrate profiles of USA-grown kale (Brassica oleracea L.) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT_/Overlock

#	Article	IF	CITATIONS
1675	Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Scientific Reports, 2016, 6, 37589.	1.6	437
1676	Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 2016, 64, 982-992.	4.5	405
1677	Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Scientific Reports, 2016, 6, 37376.	1.6	83
1678	The impact of early life gut colonization on metabolic and obesogenic outcomes: what have animal models shown us?. Journal of Developmental Origins of Health and Disease, 2016, 7, 15-24.	0.7	36
1679	The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food and Function, 2016, 7, 4956-4966.	2.1	45
1680	Regression analysis for microbiome compositional data. Annals of Applied Statistics, 2016, 10, .	0.5	87
1681	Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment. Advances in Nutrition, 2016, 7, 1090-1104.	2.9	52
1682	Beneficial effects of voglibose administration on body weight and lipid metabolism <i>via</i> gastrointestinal bile acid modification. Endocrine Journal, 2016, 63, 691-702.	0.7	23
1683	Advances in Gut Microbiome Research and Relevance to Pediatric Diseases. Journal of Pediatrics, 2016, 178, 16-23.	0.9	20
1684	Shifting the balance of fermentation products between hydrogen and volatile fatty acids: microbial community structure and function. FEMS Microbiology Ecology, 2016, 92, fiw195.	1.3	14
1685	- Nutrigenetics and Crohn's Disease. , 2016, , 172-187.		0
1686	Gut Microbiota and HCC. , 2016, , 149-155.		O
1687	Gut microbiota are linked to increased susceptibility to hepatic steatosis in low-aerobic-capacity rats fed an acute high-fat diet. American Journal of Physiology - Renal Physiology, 2016, 311, G166-G179.	1.6	32
1688	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	2.5	81
1689	Microbial diversity in individuals and their household contacts following typical antibiotic courses. Microbiome, 2016, 4, 39.	4.9	135
1690	Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes. Systematic and Applied Microbiology, 2016, 39, 464-475.	1.2	10
1691	High-fat diet modifies the PPAR-Î ³ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5934-E5943.	3.3	180
1692	The Microbiome: a Revolution in Treatment for Rheumatic Diseases?. Current Rheumatology Reports, 2016, 18, 62.	2.1	44

#	Article	IF	CITATIONS
1693	Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecular Metabolism, 2016, 5, 795-803.	3.0	132
1694	Insulin Resistance, Microbiota, and Fat Distribution Changes by a New Model of Vertical Sleeve Gastrectomy in Obese Rats. Diabetes, 2016, 65, 2990-3001.	0.3	43
1695	Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications. Diabetes Care, 2016, 39, S244-S252.	4.3	189
1696	Metabolic Damage Presents Differently in Young and Early-Aged C57BL/6 Mice Fed a High-Fat Diet. International Journal of Gerontology, 2016, 10, 105-111.	0.7	18
1697	Hypoglycemic activity of the Baker's yeast \hat{l}^2 -glucan in obese/type 2 diabetic mice and the underlying mechanism. Molecular Nutrition and Food Research, 2016, 60, 2678-2690.	1.5	61
1698	Early Life Antibiotic Exposure and Weight Development in Children. Journal of Pediatrics, 2016, 176, 105-113.e2.	0.9	66
1699	Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews, 2016, 40, 648-663.	3.9	71
1700	Intestinal microbiota could transfer host Gut characteristics from pigs to mice. BMC Microbiology, 2016, 16, 238.	1.3	54
1702	Gut Microbiota in Obesity and Undernutrition. Advances in Nutrition, 2016, 7, 1080-1089.	2.9	103
1703	Bugs, guts and brains, and the regulation of food intake and body weight. International Journal of Obesity Supplements, 2016, 6, S8-S14.	12.5	22
1704	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	1.0	34
1705	Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles and gastrointestinal complaints. Scientific Reports, 2016, 6, 26752.	1.6	233
1706	Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Scientific Reports, 2016, 6, 21631.	1.6	81
1707	Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular Metabolism, 2016, 5, 1175-1186.	3.0	216
1708	Microbiota Modulates Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling. Scientific Reports, 2016, 6, 29998.	1.6	51
1709	Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Scientific Reports, 2016, 6, 32953.	1.6	104
1710	Associations of Bowel Movement Frequency with Risk of Cardiovascular Disease and Mortality among US Women. Scientific Reports, 2016, 6, 33005.	1.6	19
1711	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8, 343ra81.	5.8	763

#	Article	IF	CITATIONS
1712	Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Scientific Reports, 2016, 6, 31027.	1.6	99
1713	Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Scientific Reports, 2016, 6, 31208.	1.6	179
1714	Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Scientific Reports, 2016, 6, 23133.	1.6	120
1715	The Gut Microbiota and Atherosclerosis: The State of the Art and Novel Perspectives. Cardiovascular Innovations and Applications, 2016, 1 , .	0.1	3
1716	Culture of previously uncultured members of the human gut microbiota by culturomics. Nature Microbiology, 2016, 1, 16203.	5.9	735
1717	Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Scientific Reports, 2016, 6, 34360.	1.6	39
1718	High fat diet drives obesity regardless the composition of gut microbiota in mice. Scientific Reports, 2016, 6, 32484.	1.6	97
1719	In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food and Function, 2016, 7, 4637-4643.	2.1	78
1720	Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Scientific Reports, 2016, 6, 31786.	1.6	86
1721	Oral Administration of Apple Procyanidins Ameliorates Insulin Resistance via Suppression of Pro-Inflammatory Cytokine Expression in Liver of Diabetic ob/ob Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 8857-8865.	2.4	42
1722	Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State. Scientific Reports, 2016, 6, 21618.	1.6	131
1723	Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Scientific Reports, 2016, 6, 33251.	1.6	117
1724	Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 2016, 64, 8695-8709.	2.4	92
1725	Gut microbiota in health and disease: an overview focused on metabolic inflammation. Beneficial Microbes, 2016, 7, 181-194.	1.0	77
1726	The differences of bacteria and bacteria metabolites in the colon between fatty and lean pigs1. Journal of Animal Science, 2016, 94, 349-353.	0.2	14
1727	Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterology, 2016, 3, e000087.	1.1	53
1728	The Microbiome of the Built Environment and Human Behavior. International Review of Neurobiology, 2016, 131, 289-323.	0.9	47
1729	Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Reviews in Medical Microbiology, 2016, 27, 141-152.	0.4	15

#	Article	IF	Citations
1730	Human Microbiome and its Association With Health and Diseases. Journal of Cellular Physiology, 2016, 231, 1688-1694.	2.0	98
1731	The Gut Microbiome and Obesity. Current Oncology Reports, 2016, 18, 45.	1.8	230
1732	The intestinal microbiome and surgical disease. Current Problems in Surgery, 2016, 53, 257-293.	0.6	24
1733	Mode of Delivery Determines Neonatal Pharyngeal Bacterial Composition and Early Intestinal Colonization. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, 320-328.	0.9	43
1734	The role of Gut Microbiota in the development of obesity and Diabetes. Lipids in Health and Disease, 2016, 15, 108.	1.2	364
1735	The Bacterial Microbiome and Virome Milestones of Infant Development. Trends in Microbiology, 2016, 24, 801-810.	3.5	119
1736	The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 2016, 56, S44-S55.	0.8	42
1737	What Have Metabolomics Approaches Taught Us About Type 2 Diabetes?. Current Diabetes Reports, 2016, 16, 74.	1.7	54
1738	Importance of the fat content within the cheese-matrix for blood lipid profile, faecal fat excretion, and gut microbiome in growing pigs. International Dairy Journal, 2016, 61, 67-75.	1.5	15
1739	Canadian Consensus on Female Nutrition: Adolescence, Reproduction, Menopause, and Beyond. Journal of Obstetrics and Gynaecology Canada, 2016, 38, 508-554.e18.	0.3	67
1740	Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E886-E899.	1.8	55
1741	Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology, 2016, 31, 283-293.	1.6	463
1742	Microbiota Modulation With Synbiotic Decreases Liver Fibrosis in a High Fat Choline Deficient Diet Mice Model of Non-Alcoholic Steatohepatitis (NASH). GE Portuguese Journal of Gastroenterology, 2016, 23, 132-141.	0.3	24
1743	The Gastrointestinal Tract: an Initial Organ of Metabolic Hypertension?. Cellular Physiology and Biochemistry, 2016, 38, 1681-1694.	1.1	33
1744	Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome, 2016, 4, 2.	4.9	118
1745	Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 2016, 23, 1216-1223.	7.2	274
1746	Consumption of lily bulb modulates fecal ratios of firmicutes and bacteroidetes phyla in rats fed a high-fat diet. Food Science and Biotechnology, 2016, 25, 153-156.	1.2	18
1747	Bacillus clausii and gut homeostasis: state of the art and future perspectives. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1-6.	1.4	23

#	Article	IF	CITATIONS
1748	Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis. Cell Metabolism, 2016, 23, 971-979.	7.2	14
1749	Gut microbiota and immune crosstalk in metabolic disease. Molecular Metabolism, 2016, 5, 771-781.	3.0	141
1750	High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E982-E993.	1.8	194
1751	Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 2016, 38, 455-464.	1.2	63
1752	Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut, 2016, 65, 1564-1571.	6.1	96
1753	Dysbiosis of the fecal microbiota in the TNBS-induced Crohn's disease mouse model. Applied Microbiology and Biotechnology, 2016, 100, 4485-4494.	1.7	33
1754	Assembly of the <i>Caenorhabditis elegans</i> gut microbiota from diverse soil microbial environments. ISME Journal, 2016, 10, 1998-2009.	4.4	296
1755	The intersection of nonalcoholic fatty liver disease and obesity. Science Translational Medicine, 2016, 8, 323rv1.	5.8	60
1756	Diet and Obesity (Macronutrients, Micronutrients, Nutritional Biochemistry)., 2016,, 261-274.		0
1757	Current understanding of metformin effect on the control of hyperglycemia in diabetes. Journal of Endocrinology, 2016, 228, R97-R106.	1.2	162
1758	Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis. Infection and Immunity, 2016, 84, 798-810.	1.0	114
1759	Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food and Function, 2016, 7, 1788-1796.	2.1	106
1760	Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs. Food and Function, 2016, 7, 1024-1032.	2.1	31
1761	Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. International Journal of Biological Macromolecules, 2016, 86, 112-118.	3.6	62
1762	Effects of whey peptide extract on the growth of probiotics and gut microbiota. Journal of Functional Foods, 2016, 21, 507-516.	1.6	52
1763	Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?. Advances in Nutrition, 2016, 7, 90-101.	2.9	112
1764	Endocannabinoids $\hat{a}\in$ " at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology, 2016, 12, 133-143.	4.3	275
1765	Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition, 2016, 32, 716-719.	1.1	142

#	Article	IF	CITATIONS
1766	Bile Acids, the Microbiome and Metabolic Disease-Implications for Surgery., 2016, , 81-90.		0
1767	Obesity and Cancerâ€"Opportunities to Break the Link. Current Breast Cancer Reports, 2016, 8, 22-31.	0.5	5
1768	Low calorie sweeteners and gut microbiota. Physiology and Behavior, 2016, 164, 494-500.	1.0	30
1769	Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. International Journal of Medical Microbiology, 2016, 306, 343-355.	1.5	196
1770	Disturbance opens recruitment sites for bacterial colonization in activated sludge. Environmental Microbiology, 2016, 18, 87-99.	1.8	38
1771	Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal crossâ€fostering model. Environmental Microbiology, 2016, 18, 1566-1577.	1.8	191
1772	Gut microbiotaâ€derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obesity Reviews, 2016, 17, 297-312.	3.1	216
1773	Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa?. Expert Review of Gastroenterology and Hepatology, 2016, 10, 565-569.	1.4	33
1774	The Effects of Bowel Preparation on Microbiota-Related Metrics Differ in Health and in Inflammatory Bowel Disease and for the Mucosal and Luminal Microbiota Compartments. Clinical and Translational Gastroenterology, 2016, 7, e143.	1.3	76
1775	Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. Journal of Hepatology, 2016, 64, 641-650.	1.8	102
1776	Obesity, Asthma, and the Microbiome. Physiology, 2016, 31, 108-116.	1.6	26
1777	Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures. Journal of Nutritional Biochemistry, 2016, 31, 127-136.	1.9	32
1778	Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. MSphere, 2016, 1 , .	1.3	175
1779	Dysbiosis in gastrointestinal disorders. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 3-15.	1.0	86
1780	Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Medicine, 2016, 8, 17.	3.6	219
1781	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	4.4	593
1782	Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices. Toxicologic Pathology, 2016, 44, 299-314.	0.9	73
1783	Stimulation of incretin secreting cells. Therapeutic Advances in Endocrinology and Metabolism, 2016, 7, 24-42.	1.4	76

#	Article	IF	CITATIONS
1784	In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food and Function, 2016, 7, 1833-1838.	2.1	17
1785	Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro. Food and Function, 2016, 7, 1501-1507.	2.1	77
1786	Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 161-172.	1.0	26
1787	Metabolomics in diabetes, a review. Annals of Medicine, 2016, 48, 89-102.	1.5	93
1788	Antibiotic administration and the development of obesity in children. International Journal of Antimicrobial Agents, 2016, 47, 171-177.	1.1	46
1789	Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chemical Biology, 2016, 23, 18-30.	2.5	115
1790	The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metabolism, 2016, 23, 413-426.	7.2	355
1791	Bovine lactoferrin suppresses high-fat diet induced obesity and modulates gut microbiota in C57BL/6J mice. Journal of Functional Foods, 2016, 22, 189-200.	1.6	45
1792	The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos. Cell Reports, 2016, 14, 1655-1661.	2.9	290
1793	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2016, , 447-459.		4
1794	The Host Shapes the Gut Microbiota via Fecal MicroRNA. Cell Host and Microbe, 2016, 19, 32-43.	5.1	570
1795	Probiotics in prevention and treatment of obesity: a critical view. Nutrition and Metabolism, 2016, 13, 14.	1.3	235
1796	Faecal microbiota transplantationâ€"A clinical view. International Journal of Medical Microbiology, 2016, 306, 310-315.	1.5	13
1797	Obesity and Asthma: Microbiome–Metabolome Interactions. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 609-617.	1.4	73
1798	Gut microbiota impact on stroke outcome: Fad or fact?. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 891-898.	2.4	58
1799	Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects?. Gastroenterology, 2016, 150, 1745-1755.e3.	0.6	104
1800	The mouse gut microbiome revisited: From complex diversity to model ecosystems. International Journal of Medical Microbiology, 2016, 306, 316-327.	1.5	70
1801	Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice. Toxicological Sciences, 2016, 151, 324-333.	1.4	113

#	Article	IF	CITATIONS
1803	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28
1804	Identification of Specialists and Abundance-Occupancy Relationships among Intestinal Bacteria of <i>Aves</i>), Mammalia, and Actinopterygii. Applied and Environmental Microbiology, 2016, 82, 1496-1503.	1.4	3
1805	New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 90-95.	1.3	120
1806	The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clinics in Liver Disease, 2016, 20, 225-243.	1.0	85
1807	Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota. Journal of Proteome Research, 2016, 15, 563-571.	1.8	20
1808	Changes in gastric microbiota induced by Helicobacter pylori infection and preventive effects of Lactobacillus plantarum ZDY 2013 against such infection. Journal of Dairy Science, 2016, 99, 970-981.	1.4	50
1809	Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cellular and Molecular Life Sciences, 2016, 73, 737-755.	2.4	156
1810	Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity., 2016, 157, 65-83.		24
1811	Postnatal prebiotic fibre intake mitigates some detrimental metabolic outcomes of early overnutrition in rats. European Journal of Nutrition, 2016, 55, 2399-2409.	4.6	32
1812	The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food and Function, 2016, 7, 1769-1774.	2.1	91
1814	Nutrition Support for the Critically Ill. , 2016, , .		5
1815	Probiotics and Prebiotics for Promoting Health. , 2016, , 75-85.		8
1816	The Cholesterol-Lowering Effects of Probiotic Bacteria on Lipid Metabolism., 2016,, 699-722.		3
1817	Genetics of Human Obesity. , 2016, , 87-106.		0
1818	Effects of Maternal Obesity on Fetal Programming: Molecular Approaches. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026591.	2.9	71
1819	Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiology Reviews, 2016, 40, 117-132.	3.9	303
1820	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	6.1	1,719
1822	Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME Journal, 2016, 10, 1217-1227.	4.4	85

#	Article	IF	CITATIONS
1823	Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, 73, 147-162.	2.4	383
1824	Energetic stress: The reciprocal relationship between energy availability and the stress response. Physiology and Behavior, 2016, 166, 43-55.	1.0	38
1825	Nutritional modulation of gut microbiota â€" the impact on metabolic disease pathophysiology. Journal of Nutritional Biochemistry, 2016, 28, 191-200.	1.9	77
1826	The influence of site and season on the gut and pallial fluid microbial communities of the eastern oyster, Crassostrea virginica (Bivalvia, Ostreidae): community-level physiological profiling and genetic structure. Hydrobiologia, 2016, 765, 97-113.	1.0	82
1827	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	6.1	1,379
1828	A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Critical Reviews in Food Science and Nutrition, 2017, 57, 1593-1602.	5.4	21
1829	Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437.	6.1	355
1830	Metabolic role of lactobacilli in weight modification in humans and animals. Microbial Pathogenesis, 2017, 106, 182-194.	1.3	85
1831	An analysis of human microbe–disease associations. Briefings in Bioinformatics, 2017, 18, 85-97.	3.2	173
1832	Periodontitis induced by <i>Porphyromonas gingivalis </i> drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut, 2017, 66, 872-885.	6.1	210
1833	TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut, 2017, 66, 226-234.	6.1	182
1834	Gut microbiota-bone axis. Critical Reviews in Food Science and Nutrition, 2017, 57, 1664-1672.	5.4	72
1835	Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunology, 2017, 10, 104-116.	2.7	310
1836	Gut microbiome in chronic kidney disease: challenges and opportunities. Translational Research, 2017, 179, 24-37.	2.2	186
1837	Combining ultrasound and lactobacilli treatment for highâ€fatâ€dietâ€induced obesity in mice. Journal of Animal Physiology and Animal Nutrition, 2017, 101, 703-712.	1.0	4
1838	Role of Adiposity-Driven Inflammation in Depressive Morbidity. Neuropsychopharmacology, 2017, 42, 115-128.	2.8	124
1839	Young microbes for adult obesity. Pediatric Obesity, 2017, 12, e28-e32.	1.4	15
1840	Genomics pipelines and data integration: challenges and opportunities in the research setting. Expert Review of Molecular Diagnostics, 2017, 17, 225-237.	1.5	54

#	Article	IF	CITATIONS
1841	Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. Journal of Immunology, 2017, 198, 2172-2181.	0.4	172
1842	Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 2017, 117, 93-107.	1.2	343
1843	Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 2017, 8, 130-142.	4.3	177
1844	Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food and Function, 2017, 8, 437-443.	2.1	35
1845	Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. Journal of Dairy Science, 2017, 100, 2471-2481.	1.4	64
1846	Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure. British Journal of Nutrition, 2017, 117, 177-186.	1.2	37
1847	Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clinical and Translational Immunology, 2017, 6, e125.	1.7	90
1848	Intestinal Proportion of <i>Blautia </i> sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutrition and Cancer, 2017, 69, 267-275.	0.9	124
1849	<i>Roseburia</i> spp.: a marker of health?. Future Microbiology, 2017, 12, 157-170.	1.0	483
1850	Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunology, 2017, 10, 567-579.	2.7	24
1851	Gut Microbiota and Complications of Liver Disease. Gastroenterology Clinics of North America, 2017, 46, 155-169.	1.0	73
1852	Intestinal Microbiota: Facts and Fiction. Digestive Diseases, 2017, 35, 139-147.	0.8	28
1853	Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surgery for Obesity and Related Diseases, 2017, 13, 916-924.	1.0	43
1854	Genome Sequence of Christensenella minuta DSM 22607 ^T . Genome Announcements, 2017, 5,	0.8	19
1855	Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions. MBio, 2017, 8, .	1.8	122
1856	Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis. Clinical Therapeutics, 2017, 39, 322-336.	1.1	182
1857	Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice. Diabetologia, 2017, 60, 690-700.	2.9	52
1858	Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide. Free Radical Biology and Medicine, 2017, 106, 196-207.	1.3	33

#	Article	IF	CITATIONS
1859	Developmental trajectories of amphibian microbiota: response to bacterial therapy depends on initial community structure. Environmental Microbiology, 2017, 19, 1502-1517.	1.8	36
1860	Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express, 2017, 7, 39.	1.4	40
1861	Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 2017, 17, 16.	1.7	136
1862	Microbes and Diet-Induced Obesity: Fast, Cheap, and Out of Control. Cell Host and Microbe, 2017, 21, 278-281.	5.1	61
1863	The Role of the Immune System in Metabolic Health and Disease. Cell Metabolism, 2017, 25, 506-521.	7.2	223
1864	We are not alone: a case for the human microbiome in extra intestinal diseases. Gut Pathogens, 2017, 9, 13.	1.6	54
1865	The <i>Bacteroides fragilis </i> pathogenicity island links virulence and strain competition. Gut Microbes, 2017, 8, 374-383.	4.3	44
1866	Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes, 2017, 8, 253-267.	4.3	234
1867	AMPlified Defense: Antimicrobial Peptides During Candida albicans Infection., 2017, , 185-203.		0
1868	Charting the Maternal and Infant Microbiome: What Is the Role of Diabetes and Obesity in Pregnancy?. Current Diabetes Reports, 2017, 17, 11.	1.7	26
1869	Human and rat gut microbiome composition is maintained following sleep restriction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1564-E1571.	3.3	106
1870	Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure. Environmental Microbiology, 2017, 19, 1518-1535.	1.8	17
1871	The Immune System in IBD: Antimicrobial Peptides. , 2017, , 75-86.		1
1872	Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 2017, 5, 27.	4.9	1,434
1873	Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis. Obesity Surgery, 2017, 27, 1345-1357.	1.1	126
1874	Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environmental Engineering Science, 2017, 34, 537-550.	0.8	41
1875	Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of \hat{l}^3 -oryzanol on fuel dyshomeostasis in genetically obese-diabetic <i>ob/ob</i> mice. Drug Delivery, 2017, 24, 558-568.	2.5	31
1876	Diets link metabolic syndrome and colorectal cancer development. Oncology Reports, 2017, 37, 1312-1320.	1.2	20

#	Article	IF	CITATIONS
1877	Antibiotic-Induced Depletion of Anti-inflammatory Clostridia Is Associated with the Development of Graft-versus-Host Disease in Pediatric Stem Cell Transplantation Patients. Biology of Blood and Marrow Transplantation, 2017, 23, 820-829.	2.0	130
1878	Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Reports, 2017, 18, 1739-1750.	2.9	143
1879	Melatonin prevents obesity through modulation of gut microbiota in mice. Journal of Pineal Research, 2017, 62, e12399.	3.4	219
1880	Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. Journal of Biological Chemistry, 2017, 292, 8560-8568.	1.6	88
1881	Short Term High Fat Diet Induces Obesityâ€Enhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet. Lipids, 2017, 52, 499-511.	0.7	66
1882	Liver microbiome of Peromyscus leucopus , a key reservoir host species for emerging infectious diseases in North America. Infection, Genetics and Evolution, 2017, 52, 10-18.	1.0	14
1883	Flaxseed- and Buckwheat-Supplemented Diets Altered (i>Enterobacteriaceae (i>Diversity and Prevalence in the Cecum and Feces of Obese Mice. Journal of Dietary Supplements, 2017, 14, 667-678.	1.4	16
1884	The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Review of Endocrinology and Metabolism, 2017, 12, 215-226.	1.2	30
1885	Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster. Genetics, 2017, 206, 889-904.	1.2	30
1886	Effect of highâ€fat diet and growth stage on the diversity and composition of intestinal microbiota in healthy bovine livestock. Journal of the Science of Food and Agriculture, 2017, 97, 5004-5013.	1.7	16
1887	Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction. Scientific Reports, 2017, 7, 548.	1.6	48
1888	Contribution of anthocyaninâ€rich foods in obesity control through gut microbiota interactions. BioFactors, 2017, 43, 507-516.	2.6	114
1889	Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB Journal, 2017, 31, 3695-3709.	0.2	43
1890	Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Advances in Nutrition, 2017, 8, 412-422.	2.9	112
1891	Structural modulation of gut microbiota in Bama minipigs in response to treatment with a "growth-promoting agentâ€; salbutamol. Applied Microbiology and Biotechnology, 2017, 101, 5809-5818.	1.7	7
1892	Obesity and Weight Control: Is There Light at the End of the Tunnel?. Current Nutrition Reports, 2017, 6, 51-62.	2.1	0
1893	Seasonal variation in the copepod gut microbiome in the subtropical North Atlantic Ocean. Environmental Microbiology, 2017, 19, 3087-3097.	1.8	53
1894	Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs. Genetics, 2017, 206, 1637-1644.	1.2	129

#	Article	IF	CITATIONS
1895	The Shifting Microbiome in Surgical Stress. Current Surgery Reports, 2017, 5, 1.	0.4	4
1896	Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, 2017, 15, 397-408.	13.6	277
1897	A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metabolism, 2017, 25, 1075-1090.e5.	7.2	179
1898	Bifidobacterium adolescentis IM38 ameliorates high-fat diet–induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota. Nutrition Research, 2017, 41, 86-96.	1.3	83
1899	Microbiome: Its Impact Is Being Revealed!. Current Clinical Microbiology Reports, 2017, 4, 78-87.	1.8	1
1900	Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. Journal of Applied Phycology, 2017, 29, 2407-2416.	1.5	45
1901	Current Perspectives on Antihypertensive Probiotics. Probiotics and Antimicrobial Proteins, 2017, 9, 91-101.	1.9	59
1902	Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 2017, 95, 1-8.	1.7	267
1903	Early-Life Sugar Consumption Affects the Rat Microbiome Independently of Obesity. Journal of Nutrition, 2017, 147, 20-28.	1.3	93
1904	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
1905	TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome. FEMS Microbiology Ecology, 2017, 93, .	1.3	32
1906	Changes in faecal bacteria during fattening in finishing swine. Anaerobe, 2017, 47, 188-193.	1.0	12
1907	Visceral Adiposity, Genetic Susceptibility, and Risk of Complications Among Individuals with Crohn $\hat{E}^{1}/4$ s Disease. Inflammatory Bowel Diseases, 2017, 23, 82-88.	0.9	51
1908	Human Microbiome: Implications on Health and Disease. , 2017, , 153-168.		1
1909	The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 2017, 15, 630-638.	13.6	696
1910	Gender Differences in Bile Acids and Microbiota in Relationship with Gender Dissimilarity in Steatosis Induced by Diet and FXR Inactivation. Scientific Reports, 2017, 7, 1748.	1.6	103
1911	Weightâ€loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obesity Reviews, 2017, 18, 832-851.	3.1	161
1912	The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Reports, 2017, 19, 2451-2461.	2.9	194

#	Article	IF	CITATIONS
1913	Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition. Endocrinology, 2017, 158, 2441-2452.	1.4	19
1914	In vitro modulation of gut microbiota by whey protein to preserve intestinal health. Food and Function, 2017, 8, 3053-3063.	2.1	55
1915	Anti-adipogenic effects of <i>Tropaeolum majus</i> (nasturtium) ethanol extract on 3T3-L1 cells. Food and Nutrition Research, 2017, 61, 1339555.	1.2	25
1916	Dipeptidyl Peptidase-4 and Adolescent Idiopathic Scoliosis: Expression in Osteoblasts. Scientific Reports, 2017, 7, 3173.	1.6	8
1917	Daily Changes in Composition and Diversity of the Intestinal Microbiota in Patients with Anorexia Nervosa: A Series of Three Cases. European Eating Disorders Review, 2017, 25, 423-427.	2.3	43
1919	An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease. Annals of the American Thoracic Society, 2017, 14, 1050-1059.	1.5	45
1920	Metformin exerts anti-obesity effect via gut microbiome modulation in prediabetics: A hypothesis. Medical Hypotheses, 2017, 104, 117-120.	0.8	16
1921	Polymannuronic acid ameliorated obesity and inflammation associated with a high-fat and high-sucrose diet by modulating the gut microbiome in a murine model. British Journal of Nutrition, 2017, 117, 1332-1342.	1.2	38
1922	Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME Journal, 2017, 11, 2047-2058.	4.4	121
1923	Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie, 2017, 141, 97-106.	1.3	196
1924	Gut Microbiota and the Gut-Brain Axis: New Insights in the Pathophysiology of Metabolic Syndrome. Psychosomatic Medicine, 2017, 79, 874-879.	1.3	44
1925	Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. British Journal of Nutrition, 2017, 117, 1312-1322.	1.2	81
1926	Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. Physiological Genomics, 2017, 49, 385-399.	1.0	31
1927	Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88. Cell Reports, 2017, 19, 2272-2288.	2.9	36
1928	The effects of dietary supplementation with α-ketoglutarate on the intestinal microbiota, metabolic profiles, and ammonia levels in growing pigs. Animal Feed Science and Technology, 2017, 234, 321-328.	1.1	13
1929	Non-alcoholic fatty liver disease: An update with special focus on the role of gut microbiota. Metabolism: Clinical and Experimental, 2017, 71, 182-197.	1.5	96
1930	Exercise is a Novel Promoter of Intestinal Health and Microbial Diversity. Exercise and Sport Sciences Reviews, 2017, 45, 41-47.	1.6	48
1931	The Gut Microbiota and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1-15.	1.2	624

#	Article	IF	CITATIONS
1932	Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome, 2017, 5, 36.	4.9	156
1935	Modulation of Gut Microbiota in Pathological States. Engineering, 2017, 3, 83-89.	3.2	26
1936	Adaptive Upregulation of Clumping Factor A (ClfA) by Staphylococcus aureus in the Obese, Type 2 Diabetic Host Mediates Increased Virulence. Infection and Immunity, 2017, 85, .	1.0	33
1937	Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H842-H853.	1.5	70
1938	Microbiota and Obesity. Nestle Nutrition Institute Workshop Series, 2017, 88, 95-106.	1.5	33
1939	Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. Diabetologia, 2017, 60, 1138-1151.	2.9	79
1940	Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. Journal of Nutrition, 2017, 147, 727-745.	1.3	280
1941	Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 2017, 74, 2959-2977.	2.4	401
1942	Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Current Hypertension Reports, 2017, 19, 31.	1.5	7
1943	How Cyanobacteria went green. Science, 2017, 355, 1372-1373.	6.0	20
1944	Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 2017, 120, 1183-1196.	2.0	1,079
1945	The effects of probiotic and synbiotic supplementation on metabolic syndrome indices in adults at risk of type 2 diabetes: study protocol for a randomized controlled trial. Trials, 2017, 18, 148.	0.7	25
1946	Ethnic and diet-related differences in the healthy infant microbiome. Genome Medicine, 2017, 9, 32.	3.6	93
1947	T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP. Cell Reports, 2017, 18, 2566-2575.	2.9	87
1948	Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet. Scientific Reports, 2017, 7, 44613.	1.6	24
1949	The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Current Hypertension Reports, 2017, 19, 27.	1.5	42
1950	Attenuated mTOR Signaling and Enhanced Glucose Homeostasis by Dietary Supplementation with Lotus Seedpod Oligomeric Procyanidins in Streptozotocin (STZ)-Induced Diabetic Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 3801-3810.	2.4	37
1951	Organism and Microbiome Analysis. Otolaryngologic Clinics of North America, 2017, 50, 521-532.	0.5	3

#	Article	IF	CITATIONS
1952	Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota. International Journal of Food Sciences and Nutrition, 2017, 68, 829-839.	1.3	4
1953	High-cholesterol diet does not alter gut microbiota composition in mice. Nutrition and Metabolism, 2017, 14, 15.	1.3	36
1954	Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity. Food and Function, 2017, 8, 1708-1717.	2.1	11
1956	Sensing danger: toll-like receptors and outcome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2017, 52, 499-505.	1.3	17
1957	Medical comorbidity in bipolar disorder: The link with metabolic-inflammatory systems. Journal of Affective Disorders, 2017, 211, 99-106.	2.0	87
1958	Bacterial community collapse: a metaâ€analysis of the sinonasal microbiota in chronic rhinosinusitis. Environmental Microbiology, 2017, 19, 381-392.	1.8	174
1959	Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radical Biology and Medicine, 2017, 105, 48-67.	1.3	123
1960	The acute effects of inulin and resistant starch on postprandial serum short-chain fatty acids and second-meal glycemic response in lean and overweight humans. European Journal of Clinical Nutrition, 2017, 71, 227-233.	1.3	50
1961	Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. European Journal of Clinical Nutrition, 2017, 71, 953-958.	1.3	65
1962	Brown fat thermogenesis: Stability of developmental programming and transient effects of temperature and gut microbiota in adults. Biochimie, 2017, 134, 93-98.	1.3	12
1963	Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poultry Science, 2017, 96, 3981-3993.	1.5	77
1964	Distinct Microbial Communities Trigger Colitis Development upon Intestinal Barrier Damage via Innate or Adaptive Immune Cells. Cell Reports, 2017, 21, 994-1008.	2.9	105
1965	The Microbiome That Shapes Us: Can It Cause Obesity?. Current Gastroenterology Reports, 2017, 19, 59.	1.1	16
1966	Human microflora, probiotics and wound healing. Wound Medicine, 2017, 19, 33-38.	2.7	46
1967	Effects of obesity, energy restriction and neutering on the faecal microbiota of cats. British Journal of Nutrition, 2017, 118, 513-524.	1,2	27
1968	Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 2017, 26, 611-619.e6.	7.2	689
1969	Microbial management of diabetic foot osteomyelitis. Future Microbiology, 2017, 12, 1243-1246.	1.0	8
1970	Beneficial effects of a probiotic blend on gastrointestinal side effects induced by leflunomide and amlodipine in a rat model. Beneficial Microbes, 2017, 8, 801-808.	1.0	9

#	Article	IF	CITATIONS
1971	Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in ApcMin/+ mice. Scientific Reports, 2017, 7, 12552.	1.6	75
1972	Antibiotics and specialized metabolites from the human microbiota. Natural Product Reports, 2017, 34, 1302-1331.	5.2	58
1973	Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes, 2017, 8, 31-53.	1.0	19
1974	Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora. Scientific Reports, 2017, 7, 12041.	1.6	59
1975	Clinical Predictors and Natural History of Disease Extension in Patients with Ulcerative Proctitis. Inflammatory Bowel Diseases, 2017, 23, 2035-2041.	0.9	11
1976	Human Microbiome in Brazil. , 2017, , 65-86.		0
1977	A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. Cell Host and Microbe, 2017, 22, 494-506.e8.	5.1	82
1978	High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut. MSphere, 2017, 2, .	1.3	94
1979	Effects of therapeutic hypothermia on the gut microbiota and metabolome of infants suffering hypoxic-ischemic encephalopathy at birth. International Journal of Biochemistry and Cell Biology, 2017, 93, 110-118.	1.2	13
1980	Intrinsic aerobic capacity governs the associations between gut microbiota composition and fat metabolism age-dependently in rat siblings. Physiological Genomics, 2017, 49, 733-746.	1.0	13
1981	Microbial diversity and iron oxidation at Okuokuâ€hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations. Geobiology, 2017, 15, 817-835.	1.1	33
1982	Gut microbiome alterations in Alzheimer's disease. Scientific Reports, 2017, 7, 13537.	1.6	1,256
1983	Effect of Propionibacterium acidipropionici P169 on the rumen and faecal microbiota of beef cattle fed a maize-based finishing diet. Beneficial Microbes, 2017, 8, 785-799.	1.0	7
1984	Group Living and Male Dispersal Predict the Core Gut Microbiome in Wild Baboons. Integrative and Comparative Biology, 2017, 57, 770-785.	0.9	69
1986	Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. MicrobiologyOpen, 2017, 6, e00509.	1.2	83
1987	Functional amplification and preservation of human gut microbiota. Microbial Ecology in Health and Disease, 2017, 28, 1308070.	3.8	10
1988	Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 2017, 6, 121-130.	2.2	116
1989	Gut health benefits of brown seaweed Ecklonia radiata and its polysaccharides demonstrated in vivo in a rat model. Journal of Functional Foods, 2017, 37, 676-684.	1.6	23

#	Article	IF	CITATIONS
1990	Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. Journal of Nutritional Biochemistry, 2017, 50, 16-25.	1.9	193
1991	Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. Journal of Biological Rhythms, 2017, 32, 505-515.	1.4	95
1992	Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis. Life Sciences, 2017, 189, 29-38.	2.0	92
1993	The hundred most-cited publications in microbiota of diabetes research. Medicine (United States), 2017, 96, e7338.	0.4	27
1994	The Intestinal Microbiome and Childhood Obesity. Current Pediatrics Reports, 2017, 5, 150-155.	1.7	2
1995	Neuroendocrine mechanisms underlying bariatric surgery: Insights from human studies and animal models. Journal of Neuroendocrinology, 2017, 29, e12534.	1.2	25
1996	The effects of the Lactobacillus casei strain on obesity in children: a pilot study. Beneficial Microbes, 2017, 8, 535-543.	1.0	49
1997	Consumption of Two Healthy Dietary Patterns Restored Microbiota Dysbiosis in Obese Patients with Metabolic Dysfunction. Molecular Nutrition and Food Research, 2017, 61, 1700300.	1.5	107
1999	Correlations of age and growth rate with microbiota composition in Atlantic cod (Gadus morhua) larvae. Scientific Reports, 2017, 7, 8611.	1.6	10
2000	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017, 2, 747-756.	3.7	408
2001	The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Seminars in Immunology, 2017, 32, 35-42.	2.7	19
2002	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	2.2	34
2003	Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice. Food and Function, 2017, 8, 3510-3522.	2.1	33
2004	The Role of the Indigenous Gut Microbiota in Human Health and Disease. Advances in Environmental Microbiology, 2017, , 75-104.	0.1	1
2005	Canine and Feline Microbiomes. , 2017, , 279-325.		3
2006	Dietary broccoli impacts microbial community structure and attenuates chemically induced colitis in mice in an Ah receptor dependent manner. Journal of Functional Foods, 2017, 37, 685-698.	1.6	62
2007	Mice gut microbiota programming by using the infant food profile. The effect on growth, gut microbiota and the immune system. Food and Function, 2017, 8, 3758-3768.	2.1	4
2008	The Hibernator Microbiome: Host-Bacterial Interactions in an Extreme Nutritional Symbiosis. Annual Review of Nutrition, 2017, 37, 477-500.	4.3	58

#	Article	IF	CITATIONS
2009	Inulinâ€ŧype fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Molecular Nutrition and Food Research, 2017, 61, 1700484.	1.5	91
2010	Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Research and Clinical Practice, 2017, 131, 208-216.	1.1	62
2011	High-fat diet induced leptin and Wnt expression: RNA-sequencing and pathway analysis of mouse colonic tissue and tumors. Carcinogenesis, 2017, 38, 302-311.	1.3	34
2012	Exercise and gut microbiota: clinical implications for the feasibility of Tai Chi. Journal of Integrative Medicine, 2017, 15, 270-281.	1.4	25
2013	Eco-Aging: stem cells and microbes are controlled by aging antagonist FoxO. Current Opinion in Microbiology, 2017, 38, 181-187.	2.3	26
2014	IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Science Bulletin, 2017, 62, 1052-1063.	4.3	16
2016	Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications, 2017, 8, 131.	5.8	59
2017	Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Scientific Reports, 2017, 7, 6109.	1.6	158
2018	Molecules, Systems and Signaling in Liver Injury. , 2017, , .		0
2019	The Impact of Gut Microbiota on Liver Injury. , 2017, , 251-283.		0
2019	The Impact of Gut Microbiota on Liver Injury. , 2017, , 251-283. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24.	1,2	0 61
	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017,	1.2 3.9	
2020	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS		61
2020	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through	3.9	61 74
2020 2021 2022	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Scientific Reports, 2017, 7, 6955. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microbial Ecology in Health and Disease, 2017, 28,	3.9	61 74 141
2020 2021 2022 2023	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Scientific Reports, 2017, 7, 6955. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microbial Ecology in Health and Disease, 2017, 28, 1322447. Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1,	3.9 1.6 3.8	61 74 141 41
2020 2021 2022 2023 2024	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Scientific Reports, 2017, 7, 6955. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microbial Ecology in Health and Disease, 2017, 28, 1322447. Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	3.9 1.6 3.8 0.7	61 74 141 41 36

#	Article	IF	Citations
2028	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Archives of Medical Research, 2017, 48, 766-773.	1.5	37
2029	Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria. Scientific Reports, 2017, 7, 15721.	1.6	33
2030	Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Food and Function, 2017, 8, 4630-4643.	2.1	30
2031	The Association Between Artificial Sweeteners and Obesity. Current Gastroenterology Reports, 2017, 19, 64.	1.1	121
2032	Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Scientific Reports, 2017, 7, 15876.	1.6	86
2033	Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechanisms and Promising Targets for Future Research. Current Colorectal Cancer Reports, 2017, 13, 429-439.	1.0	32
2034	A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Molecular Metabolism, 2017, 6, 1563-1573.	3.0	132
2035	A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food and Function, 2017, 8, 4644-4656.	2.1	419
2036	Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice. Cell Reports, 2017, 21, 1521-1533.	2.9	177
2037	Obesity and microbiota: an example of an intricate relationship. Genes and Nutrition, 2017, 12, 18.	1.2	86
2038	Identification of Flavin-Containing Monooxygenase 5 (FMO5) as a Regulator of Glucose Homeostasis and a Potential Sensor of Gut Bacteria. Drug Metabolism and Disposition, 2017, 45, 982-989.	1.7	25
2039	Western Diet–Induced Dysbiosis in Farnesoid X Receptor Knockout Mice Causes Persistent Hepatic Inflammation after Antibiotic Treatment. American Journal of Pathology, 2017, 187, 1800-1813.	1.9	90
2040	Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 6599-6607.	2.4	66
2041	Hypothesis testing and statistical analysis of microbiome. Genes and Diseases, 2017, 4, 138-148.	1.5	142
2042	Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral Influence. Current Psychiatry Reports, 2017, 19, 51.	2.1	51
2043	Dietary and lifestyle disease indices and caecal microbiota in high fat diet, dietary fibre free diet, or DSS induced IBD models in ICR mice. Journal of Functional Foods, 2017, 35, 605-614.	1.6	45
2044	Orthogonal Comparison of GC–MS and ¹ H NMR Spectroscopy for Short Chain Fatty Acid Quantitation. Analytical Chemistry, 2017, 89, 7900-7906.	3.2	58
2045	Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 2017, 17, 120.	1.3	720

#	Article	IF	Citations
2046	Unconventional or Preset $\hat{l}\pm\hat{l}^2$ T Cells: Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annual Review of Cell and Developmental Biology, 2017, 33, 511-535.	4.0	47
2047	Nonalcoholic Steatohepatitis. Annual Review of Medicine, 2017, 68, 85-98.	5.0	119
2048	Childhood body mass is positively associated with cesarean birth in Y ucatec M aya subsistence farmers. American Journal of Human Biology, 2017, 29, e22920.	0.8	12
2049	A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. Journal of Applied Microbiology, 2017, 122, 306-320.	1.4	17
2050	Survey of (Meta)genomic Approaches for Understanding Microbial Community Dynamics. Indian Journal of Microbiology, 2017, 57, 23-38.	1.5	21
2051	Role of Gastrointestinal Microbiota on Kidney Injury and the Obese Condition. American Journal of the Medical Sciences, 2017, 353, 59-69.	0.4	13
2052	Metagenomic Evaluation of Bacteria from Voles. Vector-Borne and Zoonotic Diseases, 2017, 17, 123-133.	0.6	9
2053	Associations between changes in the maternal gut microbiome and differentially methylated regions of diabetesâ€associated genes in fetuses: A pilot study from a birth cohort study. Journal of Diabetes Investigation, 2017, 8, 550-553.	1.1	14
2054	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	2.2	351
2055	Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansionÂtoÂincrease satiety. Molecular Metabolism, 2017, 6, 48-60.	3.0	179
2056	Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Translational Research, 2017, 179, 155-167.	2.2	36
2057	The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Medicine Reviews, 2017, 34, 3-9.	3.8	107
2058	Gut microbiota after Rouxâ€en‥ gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2857.	1.7	52
2059	l-Arginine and Inflammatory Bowel Diseases (IBD). , 2017, , 331-342.		1
2060	Devil in the detail: a closer look at childhood obesity and the gut microbiota. Environmental Microbiology, 2017, 19, 11-12.	1.8	7
2061	Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution?. Annals of the New York Academy of Sciences, 2017, 1391, 5-19.	1.8	17
2062	\hat{l}^2 -Glucan, but notLactobacillus plantarumP-8, inhibits lipid accumulation through selected lipid metabolic enzymes in obese rats. Journal of Food Biochemistry, 2017, 41, e12336.	1.2	1
2063	Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obesity Surgery, 2017, 27, 917-925.	1.1	230

#	Article	IF	CITATIONS
2064	Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology, 2017, 15, 19-29.	1.1	153
2065	Trimethylamineâ€∢i>Nàê•oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Molecular Nutrition and Food Research, 2017, 61, 1600324.	1.5	272
2066	The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Translational Research, 2017, 179, 60-70.	2.2	109
2067	Potential mediators linking gut bacteria to metabolic health: a critical view. Journal of Physiology, 2017, 595, 477-487.	1.3	60
2068	Pterostilbeneâ€induced changes in gut microbiota composition in relation to obesity. Molecular Nutrition and Food Research, 2017, 61, 1500906.	1.5	88
2069	Probiotics modulate gut microbiota and health status in Japanese cedar pollinosis patients during the pollen season. European Journal of Nutrition, 2017, 56, 2245-2253.	1.8	43
2070	Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats. Obesity Surgery, 2017, 27, 295-302.	1.1	85
2071	Food combination based on a preâ€hispanic Mexican diet decreases metabolic and cognitive abnormalities and gut microbiota dysbiosis caused by a sucroseâ€enriched highâ€fat diet in rats. Molecular Nutrition and Food Research, 2017, 61, 1501023.	1.5	41
2072	Life history and ecoâ€evolutionary dynamics in light of the gut microbiota. Oikos, 2017, 126, 508-531.	1.2	139
2073	Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology, 2017, 101, 47-64.	1.7	387
2074	Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychotherapy and Psychosomatics, 2017, 86, 31-46.	4.0	176
2075	Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metabolism, 2017, 25, 140-151.	7.2	148
2076	Changes in the bacterial microbiome of patients with chronic rhinosinusitis after endoscopic sinus surgery. International Forum of Allergy and Rhinology, 2017, 7, 7-15.	1.5	39
2077	Inhibitory effects of dietary soyasaponin on 2,4â€dinitrofluorobenzeneâ€induced contact hypersensitivity in mice. Experimental Dermatology, 2017, 26, 249-254.	1.4	13
2078	Phylogeny-Based Kernels with Application to Microbiome Association Studies. ICSA Book Series in Statistics, 2017, , 217-237.	0.0	3
2079	Effect of Synbiotic-Assisted Modulation of Gastrointestinal Microbiota on Human Health., 2017,, 223-236.		1
2080	Systematically investigating the impact of medication on the gut microbiome. Current Opinion in Microbiology, 2017, 39, 128-135.	2.3	65
2081	Food-grade cationic antimicrobial $\hat{l}\mu$ -polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. Npj Science of Food, 2017, 1, 8.	2.5	31

#	Article	IF	CITATIONS
2082	Does increased serum d-lactate mean subclinical hyperpermeability of intestinal barrier in middle-aged nonobese males with OSA?. Medicine (United States), 2017, 96, e9144.	0.4	18
2083	The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health1,2. Journal of Animal Science, 2017, 95, 3225-3246.	0.2	84
2084	Probiotics, prematurity and neurodevelopment: follow-up of a randomised trial. BMJ Paediatrics Open, 2017, 1, e000176.	0.6	31
2085	Human Gut Microbiota and Obesity During Development. , 0, , .		3
2086	Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. Journal of Obesity and Metabolic Syndrome, 2017, 26, 161-171.	1.5	12
2087	18. MicrObesity in pregnancy: the inside story. , 2017, , .		0
2088	5. Mikrobiom. , 2017, , .		0
2090	Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Frontiers in Physiology, 2017, 8, 822.	1.3	121
2091	Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Frontiers in Physiology, 2017, 8, 1047.	1.3	83
2092	Modulation of Intestinal Microbiome Prevents Intestinal Ischemic Injury. Frontiers in Physiology, 2017, 8, 1064.	1.3	21
2093	Alterations in Gut Microbiota and Immunity by Dietary Fat. Yonsei Medical Journal, 2017, 58, 1083.	0.9	44
2094	Polyphenols and Intestinal Health. , 2017, , 191-210.		34
2095	Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor. Journal of Biomolecular Techniques, 2017, 28, 19-30.	0.8	130
2096	Identification of the Microbiota in the Aging Process. , 2017, , 37-56.		3
2097	Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinology, 2017, 42, 92-108.	0.6	135
2098	Dietary Fiber, Soluble and Insoluble, Carbohydrates, Fructose, and Lipids. , 2017, , 187-200.		2
2099	In vitro models of the human microbiota and microbiome. Emerging Topics in Life Sciences, 2017, 1, 373-384.	1.1	8
2100	Pharmabiotics as an Emerging Medication for Metabolic Syndrome and Its Related Diseases. Molecules, 2017, 22, 1795.	1.7	21

#	Article	IF	Citations
2101	Beta Palmitate Improves Bone Length and Quality during Catch-Up Growth in Young Rats. Nutrients, 2017, 9, 764.	1.7	5
2102	The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients, 2017, 9, 792.	1.7	53
2103	Modulation of Gut Microbiota of Overweight Mice by Agavins and Their Association with Body Weight Loss. Nutrients, 2017, 9, 821.	1.7	53
2104	Effect of Curcumin on the Diversity of Gut Microbiota in Ovariectomized Rats. Nutrients, 2017, 9, 1146.	1.7	80
2105	Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis. Nutrients, 2017, 9, 1220.	1.7	120
2106	Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2017, 9, 1261.	1.7	50
2107	Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients, 2017, 9, 1289.	1.7	28
2108	Lactobacillus rhamnosus GG. , 2017, , 79-88.		10
2109	Taxonomic and Metagenomic Alterations of Microbiota in Bariatric Surgery., 2017,, 259-265.		0
2110	Characterizing and Functionally Defining the Gut Microbiota: Methodology and Implications. , 2017, , 15-25.		3
2111	Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2017, 8, 23.	2.2	95
2112	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	1.0	104
2113	Enterotype May Drive the Dietary-Associated Cardiometabolic Risk Factors. Frontiers in Cellular and Infection Microbiology, 2017, 7, 47.	1.8	68
2114	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	1.5	20
2115	Preconception Prebiotic and Sitagliptin Treatment in Obese Rats Affects Pregnancy Outcomes and Offspring Microbiota, Adiposity, and Glycemia. Frontiers in Endocrinology, 2017, 8, 301.	1.5	17
2116	Early Microbes Modify Immune System Development and Metabolic Homeostasisâ€"The "Restaurant― Hypothesis Revisited. Frontiers in Endocrinology, 2017, 8, 349.	1.5	86
2117	The Human Microbiome and the Missing Heritability Problem. Frontiers in Genetics, 2017, 8, 80.	1.1	67
2118	The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Frontiers in Immunology, 2017, 8, 417.	2.2	103

#	Article	IF	CITATIONS
2119	Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Frontiers in Immunology, 2017, 8, 1159.	2.2	132
2120	The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Frontiers in Immunology, 2017, 8, 1353.	2.2	134
2121	Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice. Frontiers in Immunology, 2017, 8, 1385.	2.2	252
2122	Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation. Frontiers in Immunology, 2017, 8, 1478.	2.2	44
2123	Visceral Inflammation and Immune Activation Stress the Brain. Frontiers in Immunology, 2017, 8, 1613.	2.2	50
2124	Intestinal Microbiota and Weight-Gain in Preterm Neonates. Frontiers in Microbiology, 2017, 8, 183.	1.5	35
2125	Global Fecal and Plasma Metabolic Dynamics Related to Helicobacter pylori Eradication. Frontiers in Microbiology, 2017, 8, 536.	1.5	7
2126	Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Frontiers in Microbiology, 2017, 8, 563.	1.5	262
2127	The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Frontiers in Microbiology, 2017, 8, 802.	1.5	68
2128	Vaginal and Uterine Bacterial Communities in Postpartum Lactating Cows. Frontiers in Microbiology, 2017, 8, 1047.	1.5	52
2129	Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in Microbiology, 2017, 8, 1162.	1.5	695
2130	Human Gut Microbiota: Toward an Ecology of Disease. Frontiers in Microbiology, 2017, 8, 1265.	1.5	110
2131	Unraveling the Fecal Microbiota and Metagenomic Functional Capacity Associated with Feed Efficiency in Pigs. Frontiers in Microbiology, 2017, 8, 1555.	1.5	171
2132	Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota. Frontiers in Microbiology, 2017, 8, 1562.	1.5	48
2133	Microbial Mechanistic Insight into the Role of Inulin in Improving Maternal Health in a Pregnant Sow Model. Frontiers in Microbiology, 2017, 8, 2242.	1.5	46
2134	16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Frontiers in Aging Neuroscience, 2017, 9, 195.	1.7	234
2135	The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Frontiers in Nutrition, 2017, 4, 34.	1.6	31
2136	Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	1.9	326

#	Article	IF	CITATIONS
2137	High Fat Diet Alters Gut Microbiota and the Expression of Paneth Cell-Antimicrobial Peptides Preceding Changes of Circulating Inflammatory Cytokines. Mediators of Inflammation, 2017, 2017, 1-9.	1.4	116
2138	RNA-Based Stable Isotope Probing Suggests <i> Allobaculum </i> > spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro. BioMed Research International, 2017, 2017, 1-13.	0.9	56
2139	New Insights into the Mechanisms of Chinese Herbal Products on Diabetes: A Focus on the "Bacteria-Mucosal Immunity-Inflammation-Diabetes―Axis. Journal of Immunology Research, 2017, 2017, 1-13.	0.9	37
2140	Relationships between Composition of Major Fatty Acids and Fat Distribution and Insulin Resistance in Japanese. Journal of Diabetes Research, 2017, 2017, 1-9.	1.0	8
2141	Intestinal hormones, gut microbiota and non-alcoholic fatty liver disease. Minerva Endocrinology, 2017, 42, 184-194.	0.6	21
2142	Therapeutic Strategies of Plant-derived Compounds for Diabetes Via Regulation of Monocyte Chemoattractant Protein-1. Current Medicinal Chemistry, 2017, 24, 1453-1468.	1.2	16
2143	Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology. Nutrients, 2017, 9, 125.	1.7	116
2144	Early Life Nutrition and its Effect on the Development of Type-2 Diabetes. , 2017, , 301-331.		0
2145	Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Current Pharmaceutical Design, 2017, 23, 3699-3712.	0.9	87
2146	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	1.7	36
2147	The salivary microbiome is altered in the presence of a high salivary glucose concentration. PLoS ONE, 2017, 12, e0170437.	1.1	77
2148	Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE, 2017, 12, e0171352.	1.1	336
2149	The desert gerbil Psammomys obesus as a model for metformin-sensitive nutritional type 2 diabetes to protect hepatocellular metabolic damage: Impact of mitochondrial redox state. PLoS ONE, 2017, 12, e0172053.	1.1	14
2150	Effects of coconut oil on glycemia, inflammation, and urogenital microbial parameters in female Ossabaw mini-pigs. PLoS ONE, 2017, 12, e0179542.	1.1	14
2151	Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE, 2017, 12, e0184735.	1.1	80
2152	Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine. PLoS ONE, 2017, 12, e0188282.	1.1	25
2154	Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS ONE, 2017, 12, e0179739.	1.1	187
2155	Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS ONE, 2017, 12, e0179017.	1.1	26

#	Article	IF	CITATIONS
2156	Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist $T-\hat{l}^2$ -MCA. PLoS ONE, 2017, 12, e0183564.	1.1	28
2157	Characterizations of oral microbiota in elderly nursing home residents with diabetes. Journal of Oral Science, 2017, 59, 549-555.	0.7	35
2158	Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. Genes and Nutrition, 2017, 12, 25.	1.2	26
2159	Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition. Diabetology and Metabolic Syndrome, 2017, 9, 62.	1.2	78
2160	Antibiotic exposure and risk of weight gain and obesity: protocol for a systematic review. Systematic Reviews, 2017, 6, 169.	2.5	6
2161	Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome, 2017, 5, 87.	4.9	138
2162	Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome, 2017, 5, 95.	4.9	124
2163	Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome, 2017, 5, 163.	4.9	148
2164	The Omics of Obesity., 0,,.		1
2165	Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome. Annals of Translational Medicine, 2017, 5, 30-30.	0.7	45
2166	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 16, 223-234.	0.9	47
2167	Gut Microbiome and Obesity. How to Prove Causality?. Annals of the American Thoracic Society, 2017, 14, S354-S356.	1.5	19
2168	The Influence of Microbiota on Mechanisms of Bariatric Surgery. , 2017, , 267-281.		3
2169	Bile Acids in Nonalcoholic Fatty Liver Disease: New Concepts and Therapeutic Advances. Annals of Hepatology, 2017, 16, S58-S67.	0.6	21
2170	The Role of the Gut Microbiota in Bile Acid Metabolism. Annals of Hepatology, 2017, 16, S21-S26.	0.6	210
2171	Polysaccharides from <i>Chrysanthemum morifolium</i> Ramat ameliorate colitis rats by modulating the intestinal microbiota community. Oncotarget, 2017, 8, 80790-80803.	0.8	90
2172	Gut Microbiome, a Potent Modulator of Epigenetics in Human Diseases. Journal of Bacteriology and Virology, 2017, 47, 75.	0.0	12
2173	Gut Microbiome Analysis of Snails: A Biotechnological Approach. , 0, , .		10

#	Article	IF	CITATIONS
2175	FMT in Clostridium difficile and Other Potential Uses. , 2017, , 315-326.		0
2176	The Roles of the Gut Microbiota and Toll-like Receptors in Obesity and Nonalcoholic Fatty Liver Disease. Journal of Obesity and Metabolic Syndrome, 2017, 26, 86-96.	1.5	23
2177	Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochemical and Biophysical Research Communications, 2018, 498, 146-151.	1.0	56
2178	The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 2018, 32, 9-25.	0.6	433
2179	CD Obesityâ€Prone Rats, but not Obesityâ€Resistant Rats, Robustly Ferment Resistant Starch Without Increased Weight or Fat Accretion. Obesity, 2018, 26, 570-577.	1.5	26
2180	Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemotherapy and Pharmacology, 2018, 81, 773-782.	1.1	76
2181	Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food and Function, 2018, 9, 1672-1682.	2.1	87
2182	Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Experimental Biology and Medicine, 2018, 243, 34-44.	1.1	56
2183	Dietary nutrition and gut microflora: A promising target for treating diseases. Trends in Food Science and Technology, 2018, 75, 72-80.	7.8	75
2184	Influence of diet and dietary nanoparticles on gut dysbiosis. Microbial Pathogenesis, 2018, 118, 61-65.	1.3	13
2185	Prebiotic prevents impaired kidney and renal Oat3 functions in obese rats. Journal of Endocrinology, 2018, 237, 29-42.	1.2	29
2186	Gut microbiota characterisation in obese patients before and after bariatric surgery. Beneficial Microbes, 2018, 9, 367-373.	1.0	39
2187	Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet–Fed Rats. Journal of Nutrition, 2018, 148, 209-219.	1.3	161
2188	The gut microbiota and immune checkpoint inhibitors. Human Vaccines and Immunotherapeutics, 2018, 14, 2178-2182.	1.4	28
2189	PCBs–high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice. Environmental Pollution, 2018, 239, 332-341.	3.7	39
2190	Glucocorticoids modulate gastrointestinal microbiome in a wild bird. Royal Society Open Science, 2018, 5, 171743.	1.1	83
2191	Metabolic Surgery and Diabesity: a Systematic Review. Obesity Surgery, 2018, 28, 2069-2077.	1.1	19
2192	Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 283-293.	2.7	31

#	Article	IF	CITATIONS
2193	The Role of Human Gut Microbiota in Obesity. , 2018, , 71-76.		0
2194	Disruption of Epithelial HDAC3 in Intestine Prevents Diet-Induced Obesity in Mice. Gastroenterology, 2018, 155, 501-513.	0.6	64
2195	Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease., 2018, 190, 81-90.		36
2196	The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones, 2018, 17, 141-151.	0.9	23
2197	The use of antimicrobials as adjuvant therapy for the treatment of obesity and insulin resistance: Effects and associated mechanisms. Diabetes/Metabolism Research and Reviews, 2018, 34, e3014.	1.7	4
2198	The Genetic and Microbial Influences in Obesity. , 2018, , 275-284.		0
2199	Gut microbiota and obesity. Clinical Nutrition Experimental, 2018, 20, 60-64.	2.0	71
2200	Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions. Journal of Gastrointestinal Surgery, 2018, 22, 1112-1123.	0.9	8
2201	Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Scientific Reports, 2018, 8, 5416.	1.6	30
2202	Proanthocyanidinâ€Rich Grape Seed Extract Modulates Intestinal Microbiota in Ovariectomized Mice. Journal of Food Science, 2018, 83, 1149-1152.	1.5	28
2203	Smoking and the intestinal microbiome. Archives of Microbiology, 2018, 200, 677-684.	1.0	167
2204	Weight Loss Associated With Consumption of Apples: A Review. Journal of the American College of Nutrition, 2018, 37, 627-639.	1.1	14
2205	Altered fecal microbiota composition in all male aggressorâ€exposed rodent model simulating features of postâ€traumatic stress disorder. Journal of Neuroscience Research, 2018, 96, 1311-1323.	1.3	54
2206	Sex differences in risk factors of uncomplicated colonic diverticulosis in a metropolitan area from Northern China. Scientific Reports, 2018, 8, 138.	1.6	8
2207	Interaction of genotype and diet on small intestine microbiota of Japanese quail fed a cholesterol enriched diet. Scientific Reports, 2018, 8, 2381.	1.6	14
2208	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	0.6	194
2209	Roles of Birth Mode and Infant Gut Microbiota in Intergenerational Transmission of Overweight and Obesity From Mother to Offspring. JAMA Pediatrics, 2018, 172, 368.	3.3	235
2210	Diabetic cognitive dysfunction is associated with increased bile acids in liver and activation of bile acid signaling in intestine. Toxicology Letters, 2018, 287, 10-22.	0.4	20

#	Article	IF	CITATIONS
2211	Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. Journal of Molecular Biology, 2018, 430, 581-590.	2.0	22
2212	Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. Journal of Nutritional Biochemistry, 2018, 56, 55-64.	1.9	64
2213	Tiny but mighty: The role of the rumen microbes in livestock production. Journal of Animal Science, 2018, 96, 752-770.	0.2	23
2214	Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses. Biological Research for Nursing, 2018, 20, 84-102.	1.0	9
2215	How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota. Expert Review of Proteomics, 2018, 15, 217-229.	1.3	11
2216	Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouseâ€. Biology of Reproduction, 2018, 98, 795-809.	1.2	48
2217	Impact of <i>Trans</i> êFats on Heatâ€Shock Protein Expression and the Gut Microbiota Profile of Mice. Journal of Food Science, 2018, 83, 489-498.	1.5	7
2218	Beneficial actions of microbiotaâ€derived tryptophan metabolites. Neurogastroenterology and Motility, 2018, 30, e13283.	1.6	68
2219	Kudingcha and Fuzhuan Brick Tea Prevent Obesity and Modulate Gut Microbiota in Highâ€Fat Diet Fed Mice. Molecular Nutrition and Food Research, 2018, 62, e1700485.	1.5	161
2220	Linking the Gut Microbiota to Bone Health in Anorexia Nervosa. Current Osteoporosis Reports, 2018, 16, 65-75.	1.5	27
2221	Effects of bentonite Bgp35bâ€p on the gut microbiota of mice fed a highâ€fat diet. Journal of the Science of Food and Agriculture, 2018, 98, 4369-4373.	1.7	11
2222	Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. International Immunopharmacology, 2018, 56, 119-127.	1.7	41
2223	Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney International, 2018, 93, 1098-1107.	2.6	38
2224	Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in Highâ€Fat Diet Treated HFA Mice. Journal of Food Science, 2018, 83, 864-873.	1.5	95
2225	Future therapy for nonâ€alcoholic fatty liver disease. Liver International, 2018, 38, 56-63.	1.9	42
2226	Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME Journal, 2018, 12, 1642-1657.	4.4	260
2227	Morbid obesity and type 2 diabetes alter intestinal fatty acid uptake and blood flow. Diabetes, Obesity and Metabolism, 2018, 20, 1384-1390.	2.2	13
2228	Effects of weight loss with a moderate-protein, high-fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats. American Journal of Veterinary Research, 2018, 79, 181-190.	0.3	25

#	Article	IF	CITATIONS
2229	Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews, 2018, 19, 435-451.	3.1	77
2230	Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity, 2018, 26, 351-361.	1.5	155
2231	An Integrated View of Immunometabolism. Cell, 2018, 172, 22-40.	13.5	326
2232	Individual- and Species-Specific Skin Microbiomes in Three Different Estrildid Finch Species Revealed by 16S Amplicon Sequencing. Microbial Ecology, 2018, 76, 518-529.	1.4	29
2233	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	1.9	122
2234	Molecular mechanistic pathway of colorectal carcinogenesis associated with intestinal microbiota. Anaerobe, 2018, 49, 63-70.	1.0	23
2235	Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in miceâ€. Biology of Reproduction, 2018, 98, 579-592.	1.2	26
2236	Alterations in the amounts of microbial metabolites in different regions of the mouse large intestine using variably fermentable fibres. Bioactive Carbohydrates and Dietary Fibre, 2018, 13, 7-13.	1.5	11
2237	Effect of the consumption of a synbiotic diet mousse containing Lactobacillus acidophilus La-5 by individuals with metabolic syndrome: A randomized controlled trial. Journal of Functional Foods, 2018, 41, 55-61.	1.6	25
2238	New methodologies for old problems: tridimensional gastrointestinal organoids and guts-on-a-chip. Journal of Coloproctology, 2018, 38, 090-093.	0.1	4
2239	Human microbiota, blood group antigens, and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1413.	6.6	27
2241	Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews, 2018, 42, 146-164.	3.9	188
2242	Comparison of the intestinal mucosal microbiota in dogs diagnosed with idiopathic inflammatory bowel disease and dogs with food-responsive diarrhea before and after treatment. FEMS Microbiology Ecology, 2018, 94, .	1.3	39
2243	Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environmental Pollution, 2018, 235, 322-329.	3.7	529
2244	Crosstalk between the microbiome and epigenome: messages from bugs. Journal of Biochemistry, 2018, 163, 105-112.	0.9	163
2245	Microbiota and metabolic diseases. Endocrine, 2018, 61, 357-371.	1.1	280
2246	Interleukinâ€23 promotes intestinal T helper type17 immunity and ameliorates obesityâ€associated metabolic syndrome in a murine highâ€fat diet model. Immunology, 2018, 154, 624-636.	2.0	22
2247	Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition, 2018, 13, 5.	1.2	31

#	Article	IF	CITATIONS
2248	Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiology, 2018, 18, 28.	1.3	19
2249	Taxa-function robustness in microbial communities. Microbiome, 2018, 6, 45.	4.9	61
2250	Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. Journal of Microbiology, 2018, 56, 346-355.	1.3	50
2251	Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. Journal of Nutrition, 2018, 148, 861-867.	1.3	118
2252	Comment on: effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements. Surgery for Obesity and Related Diseases, 2018, 14, 739-740.	1.0	1
2253	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in $\langle i \rangle db/db \langle j \rangle$ Mice. Diabetes, 2018, 67, 1867-1879.	0.3	243
2254	Anti-obesity properties of the strain Bifidobacterium animalis subsp. lactis CECT 8145 in ZÃ $\frac{1}{4}$ cker fatty rats. Beneficial Microbes, 2018, 9, 629-641.	1.0	20
2255	Relationship between diet, the gut microbiota, and brain function. Nutrition Reviews, 2018, 76, 603-617.	2.6	47
2256	Dysbiosis in Functional Bowel Disorders. Annals of Nutrition and Metabolism, 2018, 72, 296-306.	1.0	46
2257	Lactobacillus paracasei HIIO1, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition, 2018, 54, 40-47.	1.1	76
2258	Unraveling Interactions between the Microbiome and the Host Immune System To Decipher Mechanisms of Disease. MSystems, 2018, 3, .	1.7	19
2259	Non-obese type 2 diabetes patients present intestinal B cell dysregulations associated with hyperactive intestinal Tfh cells. Molecular Immunology, 2018, 97, 27-32.	1.0	14
2260	Dietary supplementation of A-type procyanidins from litchi pericarp improves glucose homeostasis by modulating mTOR signaling and oxidative stress in diabetic ICR mice. Journal of Functional Foods, 2018, 44, 155-165.	1.6	17
2261	The gut microbiota and its potential role in obesity. Future Microbiology, 2018, 13, 589-603.	1.0	32
2262	Chemical regulation of body feather microbiota in a wild bird. Molecular Ecology, 2018, 27, 1727-1738.	2.0	25
2263	The role of the gut microbiota in the pathology and prevention of liver disease. Journal of Nutritional Biochemistry, 2018, 60, 1-8.	1.9	31
2264	Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of the Total Environment, 2018, 631-632, 449-458.	3.9	566
2265	In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: impaired lipid metabolism and intestinal dysbiosis. Archives of Toxicology, 2018, 92, 1847-1860.	1.9	78

#	Article	IF	CITATIONS
2266	Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes, 2018, 9, 1-8.	4.3	39
2267	Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. European Journal of Nutrition, 2018, 57, 2081-2090.	1.8	36
2268	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
2269	Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. International Journal of Food Sciences and Nutrition, 2018, 69, 125-143.	1.3	171
2270	Gut Microbiota in Health, Diverticular Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker of Gastrointestinal Disorders. Digestive Diseases, 2018, 36, 56-65.	0.8	146
2271	Maternal Gut Microbiome Biodiversity in Pregnancy. American Journal of Perinatology, 2018, 35, 024-030.	0.6	51
2272	Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?. Irish Journal of Medical Science, 2018, 187, 393-402.	0.8	27
2273	Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and metaâ€analysis of randomized controlled trials. Obesity Reviews, 2018, 19, 219-232.	3.1	174
2274	Ophiopogonin D alleviates highâ€fat dietâ€induced metabolic syndrome and changes the structure of gut microbiota in mice. FASEB Journal, 2018, 32, 1139-1153.	0.2	35
2275	Interactions of the Hindgut Mucosa-Associated Microbiome with Its Host Regulate Shedding of Escherichia coli O157:H7 by Cattle. Applied and Environmental Microbiology, 2018, 84, .	1.4	24
2276	Curcumin and other dietary polyphenols: potential mechanisms of metabolic actions and therapy for diabetes and obesity. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E201-E205.	1.8	87
2277	Microbiota Replacement Therapies: Innovation in Gastrointestinal Care. Clinical Pharmacology and Therapeutics, 2018, 103, 102-111.	2.3	49
2278	Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Research Reviews, 2018, 41, 1-17.	5.0	182
2279	Impacts of the Human Gut Microbiome on Therapeutics. Annual Review of Pharmacology and Toxicology, 2018, 58, 253-270.	4.2	74
2280	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. Microbiology Spectrum, 2017, 5, .	1.2	25
2281	Steroids, stress and the gut microbiomeâ€brain axis. Journal of Neuroendocrinology, 2018, 30, e12548.	1.2	119
2282	Our gut microbiota: a long walk to homeostasis. Beneficial Microbes, 2018, 9, 3-20.	1.0	39
2283	Characterization of the Stool Microbiome in Hispanic Preschool Children by Weight Status and Time. Childhood Obesity, 2018, 14, 122-130.	0.8	21

#	Article	IF	CITATIONS
2284	Dietary copper-fructose interactions alter gut microbial activity in male rats. American Journal of Physiology - Renal Physiology, 2018, 314, G119-G130.	1.6	37
2285	Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews, 2018, 31, 35-51.	2.1	212
2286	Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain, Behavior, and Immunity, 2018, 69, 1-8.	2.0	148
2287	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 83, 214-223.	0.7	129
2288	Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 2018, 15, 20-32.	6.1	287
2289	Key factors involved in obesity development. Eating and Weight Disorders, 2018, 23, 267-274.	1.2	14
2290	Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. European Journal of Nutrition, 2018, 57, 2513-2528.	1.8	28
2291	<i>Lactobacillus plantarum</i> and <i>Lactobacillus fermentum</i> alone or in combination regulate intestinal flora composition and systemic immunity to alleviate obesity syndrome in highâ€fat diet rat. International Journal of Food Science and Technology, 2018, 53, 137-146.	1.3	20
2292	Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats. Journal of Nutritional Biochemistry, 2018, 51, 27-39.	1.9	13
2293	A review of metabolic potential of human gut microbiome in human nutrition. Archives of Microbiology, 2018, 200, 203-217.	1.0	206
2294	Rapid profiling method for mammalian feces short chain fatty acids by GC-MS. Analytical Biochemistry, 2018, 543, 51-54.	1.1	65
2295	The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Bioscience Reports, 2018, 38, .	1.1	78
2296	The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. European Journal of Immunology, 2018, 48, 564-575.	1.6	114
2297	Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study. FASEB Journal, 2018, 32, 2060-2072.	0.2	126
2298	Modeling metabolism of the human gut microbiome. Current Opinion in Biotechnology, 2018, 51, 90-96.	3.3	122
2299	From Epidemiology to Epigenetics: Evidence for the Importance of Nutrition to Optimal Health Development Across the Life Course., 2018,, 431-462.		4
2300	Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA concentrations. International Journal of Food Sciences and Nutrition, 2018, 69, 729-740.	1.3	27
2301	Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans. Diabetes Care, 2018, 41, 398-405.	4.3	69

#	Article	IF	CITATIONS
2302	Adverse effect of early-life high-fat/high-carbohydrate ("Westernâ€) diet on bacterial community in the distal bowel of mice. Nutrition Research, 2018, 50, 25-36.	1.3	20
2303	Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.	2.2	238
2304	Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. Journal of Nutritional Biochemistry, 2018, 54, 28-34.	1.9	60
2305	Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus). Current Microbiology, 2018, 75, 359-367.	1.0	9
2306	Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with nonâ€alcoholic fatty liver disease. British Journal of Pharmacology, 2018, 175, 469-484.	2.7	116
2307	Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. International Journal of Obesity, 2018, 42, 424-432.	1.6	48
2308	Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences, 2018, 75, 149-160.	2.4	380
2309	Effects of brewer's yeast hydrolysate on the growth performance and the intestinal bacterial diversity of largemouth bass (Micropterus salmoides). Aquaculture, 2018, 484, 139-144.	1.7	77
2310	Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes, 2018, 9, 143-154.	4.3	38
2311	Heritable components of the human fecal microbiome are associated with visceral fat. Gut Microbes, 2018, 9, 61-67.	4.3	41
2312	Dietary Factors in Prevention of Pediatric Escherichia coli Infection: A Model Using Domestic Piglets. ILAR Journal, 2018, 59, 338-351.	1.8	2
2313	Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ, 2018, 6, e4435.	0.9	35
2314	Potential response of the rumen microbiome to mode of delivery from birth through weaning 1,2. Translational Animal Science, 2018, 2, S35-S38.	0.4	6
2317	Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study. PeerJ, 2018, 6, e4693.	0.9	84
2318	Intestinal Microbiome and the Liver. , 2018, , 37-65.e6.		0
2319	Choline. Nutrition Today, 2018, 53, 240-253.	0.6	89
2320	Association between metabolic profile and microbiomic changes in rats with functional dyspepsia. RSC Advances, 2018, 8, 20166-20181.	1.7	28
2321	Composition of Intestinal Microbiota in Two Lines of Rainbow Trout (Oncorhynchus Mykiss) Divergently Selected for Muscle Fat Content. Open Microbiology Journal, 2018, 12, 308-320.	0.2	15

#	Article	IF	CITATIONS
2322	Comparison of Gut Microbial Diversity in Beijing Oil and Arbor Acres Chickens. Brazilian Journal of Poultry Science, 2018, 20, 37-44.	0.3	5
2323	Using the natural variation of mouse populations to understand host-gut microbiome interactions. Drug Discovery Today: Disease Models, 2018, 28, 61-71.	1.2	6
2324	The Role of Diet, Micronutrients and the Gut Microbiota in Age-Related Macular Degeneration: New Perspectives from the Gut–Retina Axis. Nutrients, 2018, 10, 1677.	1.7	110
2325	Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nature Communications, 2018, 9, 4681.	5.8	54
2326	I-FABP Is Higher in People With Chronic HIV Than Elite Controllers, Related to Sugar and Fatty Acid Intake and Inversely Related to Body Fat in People With HIV. Open Forum Infectious Diseases, 2018, 5, ofy288.	0.4	25
2327	Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sciences, 2018, 215, 145-151.	2.0	26
2328	Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 2018, 16, e2005396.	2.6	128
2329	Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Frontiers in Microbiology, 2018, 9, 2899.	1.5	112
2330	Investigation of maternal breed and rearing type on the calf rumen microbiome from day 28 through weaning 1,2. Translational Animal Science, 2018, 2, S125-S129.	0.4	4
2331	NTSHMDA: Prediction of Human Microbe-Disease Association based on Random Walk by Integrating Network Topological Similarity. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 17, 1-1.	1.9	72
2332	Rutin and Its Combination With Inulin Attenuate Gut Dysbiosis, the Inflammatory Status and Endoplasmic Reticulum Stress in Paneth Cells of Obese Mice Induced by High-Fat Diet. Frontiers in Microbiology, 2018, 9, 2651.	1.5	60
2333	Divergent Innate and Epithelial Functions of the RNA-Binding Protein HuR in Intestinal Inflammation. Frontiers in Immunology, 2018, 9, 2732.	2.2	17
2334	Decreased microbial co-occurrence network stability and SCFA receptor level correlates with obesity in African-origin women. Scientific Reports, 2018, 8, 17135.	1.6	42
2335	A Cross-Scale Neutral Theory Approach to the Influence of Obesity on Community Assembly of Human Gut Microbiome. Frontiers in Microbiology, 2018, 9, 2320.	1.5	7
2336	Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 2018, 10, .	5.8	121
2337	An Insight Into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Frontiers in Immunology, 2018, 9, 2617.	2.2	70
2338	Microbial Ecology of the Bivalvia, with an Emphasis on the Family Ostreidae. Journal of Shellfish Research, 2018, 37, 793-806.	0.3	69
2339	Is It Time to Use Probiotics to Prevent or Treat Obesity?. Nutrients, 2018, 10, 1613.	1.7	72

#	Article	IF	CITATIONS
2340	Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651.	1.7	181
2341	Investigating of Moringa Oleifera Role on Gut Microbiota Composition and Inflammation Associated with Obesity Following High Fat Diet Feeding. Open Access Macedonian Journal of Medical Sciences, 2018, 6, 1359-1364.	0.1	16
2342	Gut microbiome changes in overweight male adults following bowel preparation. BMC Genomics, 2018, 19, 904.	1.2	6
2343	Obesity: A New Adverse Effect of Antibiotics?. Frontiers in Pharmacology, 2018, 9, 1408.	1.6	28
2344	Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Frontiers in Physiology, 2018, 9, 1813.	1.3	68
2345	Regulatory Efficacy of Spirulina platensis Protease Hydrolyzate on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Rats. International Journal of Molecular Sciences, 2018, 19, 4023.	1.8	31
2346	Effects of Rich-Polyphenols Extract of Dendrobium loddigesii on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice. Molecules, 2018, 23, 3245.	1.7	70
2348	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	1.8	70
2349	A Wake-Up Call: We Need Phage Therapy Now. Viruses, 2018, 10, 688.	1.5	104
2350	Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease, 2018, 17, 276.	1.2	46
2351	Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander?. Nutrients, 2018, 10, 1912.	1.7	26
2352	The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 2656.	2.2	94
2354	Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Scientific Reports, 2018, 8, 14881.	1.6	39
2355	Impact of Agaricus bisporus Mushroom Consumption on Gut Health Markers in Healthy Adults. Nutrients, 2018, 10, 1402.	1.7	43
2356	Gut Microbiota and Body Weight in Schoolâ€Aged Children: The KOALA Birth Cohort Study. Obesity, 2018, 26, 1767-1776.	1.5	34
2357	Green forage and fattening duration differentially modulate cecal microbiome of Wanxi white geese. PLoS ONE, 2018, 13, e0204210.	1.1	8
2358	Divergence of Fecal Microbiota and Their Associations With Host Phylogeny in Cervinae. Frontiers in Microbiology, 2018, 9, 1823.	1.5	9
2359	G Protein-Coupled Receptor 109A and Host Microbiota Modulate Intestinal Epithelial Integrity During Sepsis. Frontiers in Immunology, 2018, 9, 2079.	2.2	34

#	Article	IF	CITATIONS
2360	Sulfated Polysaccharide from Sea Cucumber and its Depolymerized Derivative Prevent Obesity in Association with Modification of Gut Microbiota in Highâ€Fat Dietâ€Fed Mice. Molecular Nutrition and Food Research, 2018, 62, e1800446.	1.5	128
2361	Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Experimental Dermatology, 2018, 27, 1336-1343.	1.4	79
2362	Molecular Alteration Analysis of Human Gut Microbial Composition in Graves' disease Patients. International Journal of Biological Sciences, 2018, 14, 1558-1570.	2.6	74
2363	How Can We Define "Optimal Microbiota?― A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Frontiers in Nutrition, 2018, 5, 90.	1.6	61
2364	Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota. Scientific Reports, 2018, 8, 14778.	1.6	57
2365	Interactions between Bitter Taste, Diet and Dysbiosis: Consequences for Appetite and Obesity. Nutrients, 2018, 10, 1336.	1.7	27
2366	Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutrition and Diabetes, 2018, 8, 53.	1.5	54
2367	Grow With the Challenge – Microbial Effects on Epithelial Proliferation, Carcinogenesis, and Cancer Therapy. Frontiers in Microbiology, 2018, 9, 2020.	1.5	26
2368	Introductory Overview of Statistical Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, , 43-75.	0.0	7
2369	Molecular Microbiology. , 2018, , 87-124.		0
2370	Effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and products of fermentation in artificially reared dairy calves at weaning. Scientific Reports, 2018, 8, 14901.	1.6	37
2371	Free Fatty Acids: Circulating Contributors of Metabolic Syndrome. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2018, 16, 20-34.	0.4	24
2372	Compositional Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, , 331-393.	0.0	10
2373	Towards an Individualized Nutrition Treatment: Role of the Gastrointestinal Microbiome in the Interplay Between Diet and Obesity. Current Obesity Reports, 2018, 7, 289-293.	3.5	14
2374	Eubiotic effect of buckwheat d-fagomine in healthy rats. Journal of Functional Foods, 2018, 50, 120-126.	1.6	10
2375	Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Scientific Reports, 2018, 8, 15625.	1.6	122
2376	Trimethylamine N-Oxide and Risk of Cardiovascular Disease and Mortality. Current Nutrition Reports, 2018, 7, 207-213.	2.1	65
2377	Influence of the microbiota and probiotics in obesity. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 271-279.	0.1	15

#	Article	IF	CITATIONS
2378	Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Scientific Reports, 2018, 8, 15648.	1.6	51
2379	Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Scientific Reports, 2018, 8, 16173.	1.6	57
2380	The Microbiotic Highway to Healthâ€"New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients, 2018, 10, 1590.	1.7	45
2381	Bioavailability of a Novel Form of Microencapsulated Bovine Lactoferrin and Its Effect on Inflammatory Markers and the Gut Microbiome: A Pilot Study. Nutrients, 2018, 10, 1115.	1.7	25
2382	The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cellular Microbiology, 2018, 20, e12966.	1.1	287
2383	Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes. Current Diabetes Reports, 2018, 18, 129.	1.7	106
2384	The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiological Reports, 2018, 6, e13881.	0.7	24
2385	Defining Dysbiosis in Disorders of Movement and Motivation. Journal of Neuroscience, 2018, 38, 9414-9422.	1.7	17
2386	Fortification of tempeh with encapsulated iron improves iron status and gut microbiota composition in iron deficiency anemia condition. Nutrition and Food Science, 2018, 48, 962-972.	0.4	8
2387	Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE, 2018, 13, e0205695.	1.1	62
2388	Dietary Effects on Microbiota—New Trends with Gluten-Free or Paleo Diet. Medical Sciences (Basel,) Tj ETQq0 0 (0 _{1.9} BT /O	verlock 10 Tf
2389	Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology, 2018, 3, 1255-1265.	5.9	483
2390	Chronic dexamethasone exposure retards growth without altering the digestive tract microbiota composition in goats. BMC Microbiology, 2018, 18, 112.	1.3	4
2391	Conservation Implications of Shifting Gut Microbiomes in Captive-Reared Endangered Voles Intended for Reintroduction into the Wild. Microorganisms, 2018, 6, 94.	1.6	25
2392	Broad Bean (Vicia faba L.) Induces Intestinal Inflammation in Grass Carp (Ctenopharyngodon idellus C.) Tj ETQq0 C in Microbiology, 2018, 9, 1913.	0 0 rgBT /0 1.5	Overlock 10 ⁻ 17
2393	Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. Journal of Translational Medicine, 2018, 16, 244.	1.8	78
2394	Genomic and phenotypic description of the newly isolated human species <i>Collinsella bouchesdurhonensis</i> sp. nov MicrobiologyOpen, 2018, 7, e00580.	1,2	2
2395	Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Applied Microbiology and Biotechnology, 2018, 102, 9317-9329.	1.7	12

#	Article	IF	CITATIONS
2396	Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response. Expert Opinion on Biological Therapy, 2018, 18, 1061-1071.	1.4	27
2397	Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Reports, 2018, 24, 3087-3098.	2.9	115
2398	Child Weight Gain Trajectories Linked To Oral Microbiota Composition. Scientific Reports, 2018, 8, 14030.	1.6	39
2399	The Inhibitory Innate Immune Sensor NLRP12 Maintains a Threshold against Obesity by Regulating Gut Microbiota Homeostasis. Cell Host and Microbe, 2018, 24, 364-378.e6.	5.1	158
2400	Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. Journal of Functional Foods, 2018, 49, 362-368.	1.6	52
2401	Roles of intestinal microbiota in response to cancer immunotherapy. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 2235-2240.	1.3	13
2402	Rifaximin in nonalcoholic fatty liver disease: hit multiple targets with a single shot. European Journal of Gastroenterology and Hepatology, 2018, 30, 1237-1246.	0.8	58
2403	BMCMDA: a novel model for predicting human microbe-disease associations via binary matrix completion. BMC Bioinformatics, 2018, 19, 281.	1.2	26
2404	Fatty Acids, Gut Microbiota, and the Genesis of Obesity. , 0, , .		5
2405	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?., 2018,, 131-148.		0
2406	Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI. Twin Research and Human Genetics, 2018, 21, 203-213.	0.3	15
2407	Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Research and Clinical Practice, 2018, 141, 190-199.	1.1	49
2408	The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 2018, 51, 80-101.	2.5	218
2409	Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environmental Pollution, 2018, 240, 817-830.	3.7	181
2410	Effect of dietary <i>α</i> à€ketoglutarate and allicin supplementation on the composition and diversity of the cecal microbial community in growing pigs. Journal of the Science of Food and Agriculture, 2018, 98, 5816-5821.	1.7	18
2412	Best practices for analysing microbiomes. Nature Reviews Microbiology, 2018, 16, 410-422.	13.6	1,138
2413	Lipolysis of domestic wastewater in anaerobic reactors operating at low temperatures. Environmental Science: Water Research and Technology, 2018, 4, 1002-1013.	1.2	24
2414	Effect of bamboo vinegar powder as an antibiotic alternative on the digesta bacteria communities of finishing pigs. Canadian Journal of Microbiology, 2018, 64, 732-743.	0.8	4

#	Article	IF	CITATIONS
2415	Mulberry leaf tea alleviates diabetic nephropathy by inhibiting PKC signaling and modulating intestinal flora. Journal of Functional Foods, 2018, 46, 118-127.	1.6	32
2416	Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. Journal of Functional Foods, 2018, 47, 56-65.	1.6	51
2417	Changes in metabolism and microbiota after 24-week risperidone treatment in drug na \tilde{A} -ve, normal weight patients with first episode schizophrenia. Schizophrenia Research, 2018, 201, 299-306.	1.1	112
2418	Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective. BioMed Research International, 2018, 2018, 1-13.	0.9	100
2419	Gut microflora may facilitate adaptation to anthropic habitat: A comparative study in <i>Rattus</i> Ecology and Evolution, 2018, 8, 6463-6472.	0.8	4
2420	Gut morphology and gene expression in obesity: Short review and perspectives. Clinical Nutrition Experimental, 2018, 20, 49-54.	2.0	1
2421	Fermented Soybean Suppresses Visceral Fat Accumulation in Mice. Molecular Nutrition and Food Research, 2018, 62, e1701054.	1.5	26
2422	<i>Eggerthella timonensis</i> sp. nov, a new species isolated from the stool sample of a pygmy female. MicrobiologyOpen, 2018, 7, e00575.	1.2	5
2423	An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes., 2018,, 65-91.		4
2424	Gastrointestinal Microbial Ecology With Perspectives on Health and Disease., 2018,, 737-753.		3
2425	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology., 2018,, 755-766.		1
2426	Gut Microbiome and Metabolism. , 2018, , 775-793.		3
2427	Fermented Milk in Protection Against Inflammatory Mechanisms in Obesity., 2018,, 389-401.		4
2428	Evidence-Based Approach in Translational Dental Research. , 2018, , 81-101.		5
2429	The Influence of Gut Microbial Metabolism on the Development and Progression of Non-alcoholic Fatty Liver Disease. Advances in Experimental Medicine and Biology, 2018, 1061, 95-110.	0.8	15
2430	Succinate aggravates NAFLD progression to liver cancer on the onset of obesity: An <i>in silico</i> model. Journal of Bioinformatics and Computational Biology, 2018, 16, 1850008.	0.3	3
2431	Obesity, Fatty Liver and Liver Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	17
2432	Nanotechnological approaches to colon-specific drug delivery for modulating the quorum sensing of gut-associated pathogens., 2018,, 325-377.		1

#	Article	IF	CITATIONS
2433	A taxonomic signature of obesity in a large study of American adults. Scientific Reports, 2018, 8, 9749.	1.6	192
2434	Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere, 2018, 9, e02286.	1.0	21
2435	The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Current Diabetes Reports, 2018, 18, 55.	1.7	85
2436	The Gut Microbiome Profile in Obesity: A Systematic Review. International Journal of Endocrinology, 2018, 2018, 1-9.	0.6	362
2437	Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 2018, 14, e8157.	3.2	361
2438	The delayed effects of antibiotics in type 2 diabetes, friend or foe?. Journal of Endocrinology, 2018, 238, 137-149.	1.2	15
2439	Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E468-E477.	1.8	61
2440	Microbiome and Diseases: Hepatic Disorders. , 2018, , 279-293.		1
2442	Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-inflammatory, and Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 9309-9317.	2.4	21
2443	Cargo transport shapes the spatial organization of a microbial community. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8633-8638.	3.3	43
2444	ILâ€10 suppresses TNFâ€Î±â€induced expression of human aromatase gene in mammary adipose tissue. FASEB Journal, 2018, 32, 3361-3370.	0.2	22
2445	Gut Microbes: The Miniscule Laborers in the Human Body. , 2018, , 1-31.		1
2446	Association between Alzheimer's Disease and Oral and Gut Microbiota: Are Pore Forming Proteins the Missing Link?. Journal of Alzheimer's Disease, 2018, 65, 29-46.	1.2	38
2447	Complementary intestinal mucosa and microbiota responses to caloric restriction. Scientific Reports, 2018, 8, 11338.	1.6	37
2448	Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis Type 2 Diabetes Mellitus Rat model. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E961-E972.	1.8	18
2449	The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	1.5	681
2450	Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs1. Journal of Animal Science, 2018, 96, 3684-3698.	0.2	35
2451	Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiological Genomics, 2018, 50, 355-368.	1.0	33

#	Article	IF	CITATIONS
2452	Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE, 2018, 13, e0197256.	1.1	44
2453	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
2454	<i>Papio</i> spp. Colon microbiome and its link to obesity in pregnancy. Journal of Medical Primatology, 2018, 47, 393-401.	0.3	3
2455	Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100.	1.9	26
2456	Dietary Alteration of the Gut Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-Analysis. Genes, 2018, 9, 167.	1.0	105
2457	Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metabolism, 2018, 28, 737-749.e4.	7.2	356
2458	Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiological Genomics, 2018, 50, 244-254.	1.0	198
2459	Flux, Impact, and Fate of Halogenated Xenobiotic Compounds in the Gut. Frontiers in Physiology, 2018, 9, 888.	1.3	44
2460	Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How?. Microorganisms, 2018, 6, 75.	1.6	286
2461	Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice. Journal of Functional Foods, 2018, 48, 220-227.	1.6	55
2462	Diverticular Disease: An Update on Pathogenesis and Management. Gut and Liver, 2018, 12, 125-132.	1.4	112
2463	Case for a role of the microbiome in gynecologic cancers: Clinician's perspective. Journal of Obstetrics and Gynaecology Research, 2018, 44, 1693-1704.	0.6	24
2464	A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Frontiers in Endocrinology, 2018, 9, 233.	1.5	90
2465	Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Frontiers in Immunology, 2018, 9, 439.	2.2	52
2466	Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top. Frontiers in Immunology, 2018, 9, 1068.	2.2	179
2467	Role of Natural Killer T Cells in the Development of Obesity and Insulin Resistance: Insights From Recent Progress. Frontiers in Immunology, 2018, 9, 1314.	2.2	26
2468	A Critical Review of the Bacterial Baptism Hypothesis and the Impact of Cesarean Delivery on the Infant Microbiome. Frontiers in Medicine, 2018, 5, 135.	1.2	112
2469	The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Frontiers in Microbiology, 2017, 8, 2664.	1.5	126

#	Article	IF	CITATIONS
2470	Direct and Indirect Effects of Penguin Feces on Microbiomes in Antarctic Ornithogenic Soils. Frontiers in Microbiology, 2018, 9, 552.	1.5	20
2471	Stem Cell Transcription Factor FoxO Controls Microbiome Resilience in Hydra. Frontiers in Microbiology, 2018, 9, 629.	1.5	24
2472	Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model. Frontiers in Microbiology, 2018, 9, 710.	1.5	45
2473	The Microbiological Memory, an Epigenetic Regulator Governing the Balance Between Good Health and Metabolic Disorders. Frontiers in Microbiology, 2018, 9, 1379.	1.5	34
2474	Impaired Autophagy in Intestinal Epithelial Cells Alters Gut Microbiota and Host Immune Responses. Applied and Environmental Microbiology, 2018, 84, .	1.4	72
2475	Microbial diversity and community composition of caecal microbiota in commercial and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. Microbiome, 2018, 6, 115.	4.9	138
2476	Gut Microbiota Alterations in People WithÂObesity and Effect of Probiotics Treatment., 2018, , 111-129.		1
2477	Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes, 2018, 9, 10.	1.0	38
2478	Exposure to Formaldehyde Perturbs the Mouse Gut Microbiome. Genes, 2018, 9, 192.	1.0	11
2479	Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS ONE, 2018, 13, e0199080.	1.1	84
2480	Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice. Marine Drugs, 2018, 16, 23.	2.2	24
2481	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old― Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	1.3	103
2482	The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients, 2018, 10, 235.	1.7	26
2483	Effects of Dietary Intake of Japanese Mushrooms on Visceral Fat Accumulation and Gut Microbiota in Mice. Nutrients, 2018, 10, 610.	1.7	38
2484	The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome, 2018, 6, 94.	4.9	139
2485	Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome, 2018, 6, 89.	4.9	286
2486	Defining the gut microbiota in individuals with periodontal diseases: an exploratory study. Journal of Oral Microbiology, 2018, 10, 1487741.	1.2	96
2487	Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic <i>db</i> /i>/db mice. Food and Function, 2018, 9, 3732-3742.	2.1	116

#	Article	IF	CITATIONS
2488	Gut microbiota correlates with fiber and apparent nutrients digestion in goose. Poultry Science, 2018, 97, 3899-3909.	1.5	23
2489	Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism?. Brain, Behavior, and Immunity, 2018, 73, 115-124.	2.0	90
2490	Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome, 2018, 6, 55.	4.9	324
2491	Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 2018, 10, 3.	1.6	153
2492	Effects of predation stress and food ration on perch gut microbiota. Microbiome, 2018, 6, 28.	4.9	67
2493	Dietary αâ€cyclodextrin modifies gut microbiota and reduces fat accumulation in highâ€fatâ€dietâ€fed obese mice. BioFactors, 2018, 44, 336-347.	2.6	44
2494	Exposure to toxic metals triggers unique responses from the rat gut microbiota. Scientific Reports, 2018, 8, 6578.	1.6	95
2495	Effects of <i>Clostridium butyricum</i> on breast muscle lipid metabolism of broilers. Italian Journal of Animal Science, 2018, 17, 1010-1020.	0.8	11
2496	16S rRNA Sequencing Reveals Relationship Between Potent Cellulolytic Genera and Feed Efficiency in the Rumen of Bulls. Frontiers in Microbiology, 2018, 9, 1842.	1.5	42
2497	Association analysis of dietary habits with gut microbiota of a native Chinese community. Experimental and Therapeutic Medicine, 2018, 16, 856-866.	0.8	19
2498	Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. Journal of Nutritional Biochemistry, 2018, 62, 143-154.	1.9	109
2499	<i>Lactobacillus plantarum</i> 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circulation Research, 2018, 123, 1091-1102.	2.0	127
2500	The journey of gut microbiome – An introduction and its influence on metabolic disorders. Frontiers in Biology, 2018, 13, 327-341.	0.7	4
2501	Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microbial Pathogenesis, 2018, 124, 266-271.	1.3	22
2502	A Galacto-Oligosaccharides Preparation Derived From Lactulose Protects Against Colorectal Cancer Development in an Animal Model. Frontiers in Microbiology, 2018, 9, 2004.	1.5	66
2503	Role of gut microbiota in chronic lowâ∈grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	3.1	169
2504	Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Frontiers in Genetics, 2018, 9, 342.	1.1	96
2505	Thanatomicrobiome composition profiling as a tool for forensic investigation. Forensic Sciences Research, 2018, 3, 105-110.	0.9	34

#	Article	IF	CITATIONS
2506	Application of Systems Biology in the Research of TCM Formulae., 2018,, 31-67.		5
2507	Dietary <i>Sparassis crispa</i> Reduces Body Fat Mass and Hepatic Lipid Levels by Enhancing Energy Expenditure and Suppressing Lipogenesis in Rats. Journal of Oleo Science, 2018, 67, 1137-1147.	0.6	7
2508	Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. Journal of Functional Foods, 2018, 49, 20-31.	1.6	52
2509	The gut microbiome of nonhuman primates: Lessons in ecology and evolution. American Journal of Primatology, 2018, 80, e22867.	0.8	100
2510	Molecular Basis of Liver Disease. , 2018, , 417-456.		0
2511	Water soluble fraction from ethanolic extract of Clausena lansium seeds alleviates obesity and insulin resistance, and changes the composition of gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 2018, 47, 192-199.	1.6	17
2512	Microbiome in normal and pathological pregnancies: A literature overview. American Journal of Reproductive Immunology, 2018, 80, e12993.	1.2	48
2513	Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell, 2018, 173, 1742-1754.e17.	13.5	171
2514	Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research. MBio, 2018, 9, .	1.8	164
2515	Influencia de la microbiota y de los probióticos en la obesidad. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 271-279.	0.4	31
2516	Translational Oral Health Research., 2018,,.		2
2517	<i>Helicobacter pylori</i> eradication with bismuth quadruple therapy leads to dysbiosis of gut microbiota with an increased relative abundance of Proteobacteria and decreased relative abundances of Bacteroidetes and Actinobacteria. Helicobacter, 2018, 23, e12498.	1.6	66
2518	Intestinal Dysbiosis in Obesity, Metabolic Syndrome and Related Metabolic Diseases: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics, and Fecal Microbial Transplant (FMT) Therapy., 2018,, 463-515.		0
2519	The gut microbiome in obesity. Journal of the Formosan Medical Association, 2019, 118, S3-S9.	0.8	173
2520	Clinical applications of gut microbiota in cancer biology. Seminars in Cancer Biology, 2019, 55, 28-36.	4.3	75
2521	<i>N</i> â€Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in highâ€fat dietâ€fed mice. Journal of Diabetes, 2019, 11, 32-45.	0.8	39
2522	Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. Journal of Gastroenterology, 2019, 54, 53-63.	2.3	190
2523	Effects of Japanese diet in combination with exercise on visceral fat accumulation. Nutrition, 2019, 57, 173-182.	1.1	16

#	Article	IF	CITATIONS
2524	Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends in Cardiovascular Medicine, 2019, 29, 141-147.	2.3	36
2525	Making Sense of … the Microbiome in Psychiatry. International Journal of Neuropsychopharmacology, 2019, 22, 37-52.	1.0	142
2526	Loss of HDAC6 alters gut microbiota and worsens obesity. FASEB Journal, 2019, 33, 1098-1109.	0.2	36
2527	Altering the Gut Microbiome of Cattle: Considerations of Host-Microbiome Interactions for Persistent Microbiome Manipulation. Microbial Ecology, 2019, 77, 523-536.	1.4	63
2528	The Role of Microbiota in Cardiovascular Risk: Focus on Trimethylamine Oxide. Current Problems in Cardiology, 2019, 44, 182-196.	1.1	22
2529	Microbiota: Novel Gateway Towards Personalised Medicine. Europeanization and Globalization, 2019, , 107-120.	0.1	0
2530	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995.	1.2	46
2531	A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Frontiers in Microbiology, 2019, 10, 676.	1.5	23
2532	Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota. Biogerontology, 2019, 20, 837-848.	2.0	27
2533	A Commentary on Diversity Measures UniFrac in Very Small Sample Size. Evolutionary Bioinformatics, 2019, 15, 117693431984351.	0.6	2
2534	Gut Microbiota, Dietary Phytochemicals, and Benefits to Human Health. Current Pharmacology Reports, 2019, 5, 332-344.	1.5	54
2535	A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Experimental and Molecular Medicine, 2019, 51, 1-14.	3.2	50
2536	Psoriasis: Obesity and Fatty Acids. Frontiers in Immunology, 2019, 10, 1807.	2.2	52
2537	Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food and Function, 2019, 10, 5644-5655.	2.1	54
2538	Correlation between Jejunal Microbial Diversity and Muscle Fatty Acids Deposition in Broilers Reared at Different Ambient Temperatures. Scientific Reports, 2019, 9, 11022.	1.6	15
2539	Connection between gut microbiome and the development of obesity. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1987-1998.	1.3	48
2540	Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomedicine and Pharmacotherapy, 2019, 118, 109262.	2.5	48
2541	Gut dysbiosis and its epigenomic impact on disease. , 2019, , 409-422.		1

#	Article	IF	CITATIONS
2542	Protective Effects of Anthocyanins in Obesityâ€Associated Inflammation and Changes in Gut Microbiome. Molecular Nutrition and Food Research, 2019, 63, e1900149.	1.5	53
2543	Gut Microbiota Interventions With Clostridium butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice. Frontiers in Immunology, 2019, 10, 1662.	2.2	58
2544	Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiology, 2019, 19, 193.	1.3	78
2545	Dietary plants, gut microbiota, and obesity: Effects and mechanisms. Trends in Food Science and Technology, 2019, 92, 194-204.	7.8	119
2546	Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food and Function, 2019, 10, 4771-4781.	2.1	55
2547	Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host and Microbe, 2019, 26, 265-272.e4.	5.1	194
2548	Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Advances in Nutrition, 2019, 10, S17-S30.	2.9	255
2549	Basal Diet Determined Long-Term Composition of the Gut Microbiome and Mouse Phenotype to a Greater Extent than Fecal Microbiome Transfer from Lean or Obese Human Donors. Nutrients, 2019, 11, 1630.	1.7	23
2550	Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food and Function, 2019, 10, 4693-4704.	2.1	28
2551	The Plant Microbiome: Diversity, Dynamics, and Role in Food Safety., 2019, , 229-257.		5
2552	Impacts of Penconazole and Its Enantiomers Exposure on Gut Microbiota and Metabolic Profiles in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 8303-8311.	2.4	38
2553	In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Carbohydrate Polymers, 2019, 223, 115069.	5.1	72
2554	Probiotics Beverages: An Alternative Treatment for Metabolic Syndrome., 2019,, 459-482.		2
2555	Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Veterinary Research, 2019, 15, 239.	0.7	43
2556	Risk Factors for Unhealthy Weight Gain and Obesity among Children with Autism Spectrum Disorder. International Journal of Molecular Sciences, 2019, 20, 3285.	1.8	69
2557	Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (<i>Gallus gallus</i>) of wheat bran prebiotic extracts. Food and Function, 2019, 10, 4834-4843.	2.1	22
2558	Propionate alleviates high-fat diet-induced lipid dysmetabolism by modulating gut microbiota in mice. Journal of Applied Microbiology, 2019, 127, 1546-1555.	1.4	31
2559	Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure. Environment International, 2019, 130, 104848.	4.8	76

#	Article	IF	CITATIONS
2560	Gallocatechin Gallate-Containing Fermented Green Tea Extract Ameliorates Obesity and Hypertriglyceridemia Through the Modulation of Lipid Metabolism in Adipocytes and Myocytes. Journal of Medicinal Food, 2019, 22, 779-788.	0.8	17
2561	Gut Microbiomes and Their Impact on Human Health. , 2019, , 355-385.		0
2562	Feline gut microbiota composition in association with feline coronavirus infection: A pilot study. Research in Veterinary Science, 2019, 125, 272-278.	0.9	9
2563	Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2144-2152.	0.6	87
2564	The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies. Clinical and Translational Medicine, 2019, 8, 9.	1.7	80
2565	Dose Effects of Orally Administered Spirulina Suspension on Colonic Microbiota in Healthy Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 243.	1.8	30
2566	Gut Microbiota Composition Is Associated With the Global DNA Methylation Pattern in Obesity. Frontiers in Genetics, 2019, 10, 613.	1.1	38
2567	Marine Metagenomics., 2019,,.		1
2568	<i>Eurotium cristatum</i> , a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota. Food and Function, 2019, 10, 5032-5045.	2.1	61
2570	Bioaccessibility, antioxidant activity and modulation effect on gut microbiota of bioactive compounds from <i>Moringa oleifera</i> Lam. leaves during digestion and fermentation <i>in vitro</i> Food and Function, 2019, 10, 5070-5079.	2.1	54
2571	Immune control of the microbiota prevents obesity. Science, 2019, 365, 316-317.	6.0	18
2572	High-fat-diet–induced modulations of leptin signaling and gastric microbiota drive precancerous lesions in the stomach. Nutrition, 2019, 67-68, 110556.	1.1	15
2573	<p>Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population</p> . Infection and Drug Resistance, 2019, Volume 12, 1749-1761.	1.1	18
2574	New Aquaculture Technology Based on Host-Symbiotic Co-metabolism. , 2019, , 189-228.		0
2575	Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Computational Biology, 2019, 15, e1006960.	1.5	42
2576	Feeding Pasteurized Waste Milk to Preweaned Dairy Calves Changes Fecal and Upper Respiratory Tract Microbiota. Frontiers in Veterinary Science, 2019, 6, 159.	0.9	23
2577	Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surgery for Obesity and Related Diseases, 2019, 15, 1861-1871.	1.0	27
2578	Microbiota-Related Changes in Unconjugated Fecal Bile Acids Are Associated With Naturally Occurring, Insulin-Dependent Diabetes Mellitus in Dogs. Frontiers in Veterinary Science, 2019, 6, 199.	0.9	35

#	Article	IF	CITATIONS
2579	Impact of Maternal Malnutrition on Gut Barrier Defense: Implications for Pregnancy Health and Fetal Development. Nutrients, 2019, 11, 1375.	1.7	30
2580	Gut microbiome analysis by post: Evaluation of the optimal method to collect stool samples from infants within a national cohort study. PLoS ONE, 2019, 14, e0216557.	1.1	11
2581	Innate Lymphoid Cells in the Induction of Obesity. Cell Reports, 2019, 28, 202-217.e7.	2.9	64
2582	Enrichment of intestinal Lactobacillus by enhanced secretory IgA coating alters glucose homeostasis in P2rx7â^'/â^' mice. Scientific Reports, 2019, 9, 9315.	1.6	18
2583	Shortâ€ŧerm highâ€fat diet feeding protects from the development of experimental allergic asthma in mice. Clinical and Experimental Allergy, 2019, 49, 1245-1257.	1.4	10
2584	Probiotic Ingestion, Obesity, and Metabolic-Related Disorders: Results from NHANES, 1999–2014. Nutrients, 2019, 11, 1482.	1.7	35
2585	Multitable Methods for Microbiome Data Integration. Frontiers in Genetics, 2019, 10, 627.	1.1	21
2586	Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms, 2019, 7, 456.	1.6	56
2587	Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata. PLoS ONE, 2019, 14, e0224213.	1.1	26
2588	Milk Polar Lipids in a Highâ€Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Molecular Nutrition and Food Research, 2019, 63, e1801078.	1.5	35
2589	Mannan Oligosaccharide Suppresses Lipid Accumulation and Appetite in Westernâ€Dietâ€Induced Obese Mice Via Reshaping Gut Microbiome and Enhancing Shortâ€Chain Fatty Acids Production. Molecular Nutrition and Food Research, 2019, 63, e1900521.	1.5	48
2590	Polymorphic Immune Mechanisms Regulate Commensal Repertoire. Cell Reports, 2019, 29, 541-550.e4.	2.9	55
2591	Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. Journal of Veterinary Medical Science, 2019, 81, 1783-1790.	0.3	12
2592	SCFAs-Induced GLP-1 Secretion Links the Regulation of Gut Microbiome on Hepatic Lipogenesis in Chickens. Frontiers in Microbiology, 2019, 10, 2176.	1.5	46
2593	Effect of Diet Supplemented With Rapeseed Meal or Hydrolysable Tannins on the Growth, Nutrition, and Intestinal Microbiota in Grass Carp (Ctenopharyngodon idellus). Frontiers in Nutrition, 2019, 6, 154.	1.6	20
2594	Traditional Processed Meat Products Re-designed Towards Inulin-rich Functional Foods Reduce Polyps in Two Colorectal Cancer Animal Models. Scientific Reports, 2019, 9, 14783.	1.6	37
2595	Global analysis of protein synthesis in Flavobacterium johnsoniae reveals the use of Kozak-like sequences in diverse bacteria. Nucleic Acids Research, 2019, 47, 10477-10488.	6.5	23
2596	Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 2019, 11, 2393.	1.7	374

#	Article	IF	CITATIONS
2597	Preliminary Study on the Effect of <i>Bacillus amyloliquefaciens </i> TL on Cecal Bacterial Community Structure of Broiler Chickens. BioMed Research International, 2019, 2019, 1-11.	0.9	26
2598	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33
2599	Delayed onset of obesity and glucose tolerance in interleukin 18 deficient mice by single housed condition. Applied Biological Chemistry, 2019, 62, .	0.7	1
2600	Glucorticoidâ€induced obesity individuals have distinct signatures of the gut microbiome. BioFactors, 2019, 45, 892-901.	2.6	30
2601	Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharmaceutical Journal, 2019, 27, 1146-1156.	1.2	39
2602	Keep calm: the intestinal barrier at the interface of peace and war. Cell Death and Disease, 2019, 10, 849.	2.7	98
2603	Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Scientific Reports, 2019, 9, 15582.	1.6	64
2604	Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (Oncorhynchus mykiss). BMC Genomics, 2019, 20, 788.	1.2	44
2605	Vasoactive Intestinal Peptide Deficiency Is Associated With Altered Gut Microbiota Communities in Male and Female C57BL/6 Mice. Frontiers in Microbiology, 2019, 10, 2689.	1.5	14
2606	Gut Microbiota and Obesity: A Role for Probiotics. Nutrients, 2019, 11, 2690.	1.7	335
2607	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	2.1	49
2608	Effect of Metformin on Short-Term High-Fat Diet-Induced Weight Gain and Anxiety-Like Behavior and the Gut Microbiota. Frontiers in Endocrinology, 2019, 10, 704.	1.5	30
2609	The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies. Nutrients, 2019, 11, 2642.	1.7	81
2610	Potato-Resistant Starch Supplementation Improves Microbiota Dysbiosis, Inflammation, and Gut–Brain Signaling in High Fat-Fed Rats. Nutrients, 2019, 11, 2710.	1.7	36
2611	Retinal artery occlusion is associated with compositional and functional shifts in the gut microbiome and altered trimethylamine-N-oxide levels. Scientific Reports, 2019, 9, 15303.	1.6	19
2612	The Need for Alternative Insect Protein in Africa. Annals of the Entomological Society of America, 2019, 112, 566-575.	1.3	2
2613	Decrypting the communication between microbes and the intestinal mucosa—A brief review on Pathogénie Microbienne Moléculaire's latest research. Cellular Microbiology, 2019, 21, e13118.	1.1	5
2614	Effect of Fermented Corn-Soybean Meal on Serum Immunity, the Expression of Genes Related to Gut Immunity, Gut Microbiota, and Bacterial Metabolites in Grower-Finisher Pigs. Frontiers in Microbiology, 2019, 10, 2620.	1.5	36

#	Article	IF	CITATIONS
2615	New Insights on Obesity and Diabetes from Gut Microbiome Alterations in Egyptian Adults. OMICS A Journal of Integrative Biology, 2019, 23, 477-485.	1.0	31
2616	City life alters the gut microbiome and stable isotope profiling of the eastern water dragon (<i>Intellagama lesueurii</i> Intellagama lesueurii	2.0	27
2617	Gut microbes, ageing & organ function: a chameleon in modern biology?. EMBO Molecular Medicine, 2019, 11, e9872.	3.3	14
2618	From the Table to the Tumor: The Role of Mediterranean and Western Dietary Patterns in Shifting Microbial-Mediated Signaling to Impact Breast Cancer Risk. Nutrients, 2019, 11, 2565.	1.7	35
2619	Extensive variability in the gut microbiome of a highlyâ€specialized and critically endangered lemur species across sites. American Journal of Primatology, 2019, 81, e23046.	0.8	9
2620	The gut microbiota to the brain axis in the metabolic control. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 427-438.	2.6	33
2621	Effect of the Nursing Mother on the Gut Microbiome of the Offspring During Early Mouse Development. Microbial Ecology, 2019, 78, 517-527.	1.4	17
2622	Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota. Nutrients, 2019, 11, 117.	1.7	45
2623	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35
2624	Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. International Journal of Biological Macromolecules, 2019, 140, 858-870.	3.6	58
2625	Effects of polysaccharides on glycometabolism based on gut microbiota alteration. Trends in Food Science and Technology, 2019, 92, 65-70.	7.8	105
2627	Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE, 2019, 14, e0220843.	1.1	103
2628	Dietary Supplementation With Leucine or in Combination With Arginine Decreases Body Fat Weight and Alters Gut Microbiota Composition in Finishing Pigs. Frontiers in Microbiology, 2019, 10, 1767.	1.5	25
2629	Community Composition and Diversity of Intestinal Microbiota in Captive and Reintroduced Przewalski's Horse (Equus ferus przewalskii). Frontiers in Microbiology, 2019, 10, 1821.	1.5	24
2630	Exploring bacterial diversity. , 2019, , 263-306.		9
2631	The Microbiota and Malnutrition: Impact of Nutritional Status During Early Life. Annual Review of Nutrition, 2019, 39, 267-290.	4.3	16
2632	Bacterial immunogenic \hat{l} ±-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. Journal of Lipid Research, 2019, 60, 1892-1904.	2.0	32
2633	Fish oil supplementation to a high-fat diet improves both intestinal health and the systemic obese phenotype. Journal of Nutritional Biochemistry, 2019, 72, 108216.	1.9	26

#	Article	IF	CITATIONS
2634	Effects of Regular Kefir Consumption on Gut Microbiota in Patients with Metabolic Syndrome: A Parallel-Group, Randomized, Controlled Study. Nutrients, 2019, 11, 2089.	1.7	77
2635	The gut microbiome and cardiovascular disease: current knowledge and clinical potential. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H923-H938.	1.5	82
2636	Targeting innate immune mediators in type 1 and type 2 diabetes. Nature Reviews Immunology, 2019, 19, 734-746.	10.6	237
2637	The association of gut microbiota characteristics in Malawian infants with growth and inflammation. Scientific Reports, 2019, 9, 12893.	1.6	25
2638	Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Scientific Reports, 2019, 9, 12674.	1.6	56
2639	Dietary Fat-Accelerating Leptin Signaling Promotes Protumorigenic Gastric Environment in Mice. Nutrients, 2019, 11, 2127.	1.7	8
2640	Propionic acid counteracts the inflammation of human subcutaneous adipose tissue: a new avenue for drug development. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 645-652.	0.9	23
2641	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514
2642	Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Animal Feed Science and Technology, 2019, 256, 114268.	1.1	41
2643	The Impact of Gut Microbiota on Host Obesity. , 2019, 09, .		3
2644	Adenovirus infection is associated with altered gut microbial communities in a non-human primate. Scientific Reports, 2019, 9, 13410.	1.6	32
2645	Dynamic Variations in Fecal Bacterial Community and Fermentation Profile of Holstein Steers in Response to Three Stepwise Density Diets. Animals, 2019, 9, 560.	1.0	21
2646	Alcohol or Gut Microbiota: Who Is the Guilty?. International Journal of Molecular Sciences, 2019, 20, 4568.	1.8	106
2647	Effects of dietary tuna dark muscle enzymatic hydrolysis and cooking drip supplementations on growth performance, antioxidant activity and gut microbiota modulation of Bama mini-piglets. RSC Advances, 2019, 9, 25084-25093.	1.7	1
2648	Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food and Function, 2019, 10, 7063-7080.	2.1	75
2649	Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1210-H1220.	1.5	29
2650	Impact of Fecal Microbiota Transplantation on Obesity and Metabolic Syndromeâ€"A Systematic Review. Nutrients, 2019, 11, 2291.	1.7	132
2651	Synthetic ecology of the human gut microbiota. Nature Reviews Microbiology, 2019, 17, 754-763.	13.6	117

#	Article	IF	CITATIONS
2652	Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 690-704.	8.2	686
2653	Maternal Dietary Protein Intake Influences Milk and Offspring Gut Microbial Diversity in a Rat (Rattus) Tj ETQq1 1	0,784314 1.7	rgBT /Overlo
2654	Beyond the gut: Skin microbiome compositional changes are associated with BMI. Human Microbiome Journal, 2019, 13, 100063.	3.8	38
2655	MALDI-TOF MS protein fingerprinting of mixed samples. Biology Methods and Protocols, 2019, 4, bpz013.	1.0	8
2656	Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 2019, 20, 4871.	1.8	71
2657	The Gut-Microbiome in Gulf War Veterans: A Preliminary Report. International Journal of Environmental Research and Public Health, 2019, 16, 3751.	1.2	38
2658	Gut microbiota: A new protagonist in the risk of cardiovascular disease?. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2019, 31, 178-185.	0.1	1
2659	Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1.	0.5	27
2660	Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (<i>Peromyscus maniculatus</i>). ISME Journal, 2019, 13, 1293-1305.	4.4	84
2661	Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Veterinary Research, 2019, 15, 37.	0.7	29
2662	Pathways linking caesarean delivery to early health in a dual burden context: Immune development and the gut microbiome in infants and children from Galápagos, Ecuador. American Journal of Human Biology, 2019, 31, e23219.	0.8	13
2663	Pilose antler polypeptides ameliorate inflammation and oxidative stress and improves gut microbiota in hypoxic-ischemic injured rats. Nutrition Research, 2019, 64, 93-108.	1.3	28
2664	Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Scientific Reports, 2019, 9, 867.	1.6	30
2665	Comparative study of vulva and abdominal skin microbiota of healthy females with high and average BMI. BMC Microbiology, 2019, 19, 16.	1.3	20
2666	Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter. Frontiers in Microbiology, 2018, 9, 3289.	1.5	77
2667	Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatric Research, 2019, 85, 518-526.	1.1	32
2668	A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon, 2019, 5, e01134.	1.4	68
2669	Interactions between the cecal microbiota and non-alcoholic steatohepatitis using laying hens as the model. Poultry Science, 2019, 98, 2509-2521.	1.5	37

#	Article	IF	Citations
2670	The Impact of Starvation on the Microbiome and Gut-Brain Interaction in Anorexia Nervosa. Frontiers in Endocrinology, 2019, 10, 41.	1.5	46
2671	Diet-Gut Microbiota Interactions and Gestational Diabetes Mellitus (GDM). Nutrients, 2019, 11, 330.	1.7	93
2672	Gonadal steroid hormone secretion during the juvenile period depends on hostâ€specific microbiota and contributes to the development of odor preference. Developmental Psychobiology, 2019, 61, 670-678.	0.9	26
2673	Physical Inaccessibility of a Resistant Starch Shifts Mouse Gut Microbiota to Butyrogenic Firmicutes. Molecular Nutrition and Food Research, 2019, 63, e1801012.	1.5	49
2674	Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacological Research, 2019, 141, 521-529.	3.1	78
2675	Transcriptome Analysis of Dual FXR and GPBAR1 Agonism in Rodent Model of NASH Reveals Modulation of Lipid Droplets Formation. Nutrients, $2019, 11, 1132$.	1.7	21
2676	Impact of Endocrine Disorders on Gastrointestinal Diseases. Endocrinology, 2019, , 1-47.	0.1	0
2677	A Twoâ€Week Treatment with Plant Extracts Changes Gut Microbiota, Caecum Metabolome, and Markers of Lipid Metabolism in ob/ob Mice. Molecular Nutrition and Food Research, 2019, 63, e1900403.	1.5	16
2678	Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet. European Journal of Pharmacology, 2019, 857, 172457.	1.7	50
2679	Gut microbiota determines the prevention effects of <i>Luffa cylindrica</i> (L.) Roem supplementation against obesity and associated metabolic disorders induced by highâ€fat diet. FASEB Journal, 2019, 33, 10339-10352.	0.2	47
2680	Dietary Fiber in Bilberry Ameliorates Pre-Obesity Events in Rats by Regulating Lipid Depot, Cecal Short-Chain Fatty Acid Formation and Microbiota Composition. Nutrients, 2019, 11, 1350.	1.7	17
2681	The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats. British Journal of Nutrition, 2019, 122, 841-855.	1.2	24
2682	Irritable bowel syndrome: a new therapeutic target when treating obesity?. Hormones, 2019, 18, 395-399.	0.9	19
2683	Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing 1. Journal of Animal Science, 2019, 97, 3523-3534.	0.2	45
2684	Assembly of large mobilizable genetic cargo by double recombinase operated insertion of DNA (DROID). Plasmid, 2019, 104, 102419.	0.4	5
2685	The PPAR–microbiota–metabolic organ trilogy to fineâ€ŧune physiology. FASEB Journal, 2019, 33, 9706-9730.	0.2	46
2686	The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 2019, 38, 251-264.	0.6	34
2687	Maternal Exposure to Non-nutritive Sweeteners Impacts Progeny's Metabolism and Microbiome. Frontiers in Microbiology, 2019, 10, 1360.	1.5	65

#	Article	IF	Citations
2688	Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine and Pharmacotherapy, 2019, 117, 109138.	2.5	205
2689	Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Molecular Carcinogenesis, 2019, 58, 1531-1550.	1.3	41
2690	Polyunsaturated fatty acids from microalgae Spirulina platensis modulates lipid metabolism disorders and gut microbiota in high-fat diet rats. Food and Chemical Toxicology, 2019, 131, 110558.	1.8	71
2691	FEAST: fast expectation-maximization for microbial source tracking. Nature Methods, 2019, 16, 627-632.	9.0	275
2692	Gut microbiota mediates the protective effects of dietary βâ€hydroxyâ€Î²â€methylbutyrate (HMB) against obesity induced by highâ€fat diets. FASEB Journal, 2019, 33, 10019-10033.	0.2	55
2693	Modulation of the Caecal Gut Microbiota of Mice by Dietary Supplement Containing Resistant Starch: Impact Is Donor-Dependent. Frontiers in Microbiology, 2019, 10, 1234.	1.5	18
2694	Bariatric/Metabolic Surgery Induces Noticeable Changes of Microbiota and Their Secreting Extracellular Vesicle Composition in the Gut. Obesity Surgery, 2019, 29, 2470-2484.	1.1	10
2695	Gut microbiota and obesity-associated osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, 1257-1265.	0.6	59
2696	Host genetic determinants of the gut microbiota of wild mice. Molecular Ecology, 2019, 28, 3197-3207.	2.0	76
2697	High fat diet alters gut microbiota but not spatial working memory in early middle-aged Sprague Dawley rats. PLoS ONE, 2019, 14, e0217553.	1.1	26
2698	Microbiota Contribute to Obesity-related Increases in the Pulmonary Response to Ozone. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 702-712.	1.4	34
2699	Growth performance, carcass quality characteristics and colonic microbiota profiles in finishing pigs fed diets with different inclusion levels of rice distillers' byâ€product. Animal Science Journal, 2019, 90, 948-960.	0.6	10
2700	Acupuncture Regulating Gut Microbiota in Abdominal Obese Rats Induced by High-Fat Diet. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-12.	0.5	29
2701	Red yeast rice ameliorates high-fat diet-induced atherosclerosis in <i>Apoe</i> ^{â^'/â^'} mice in association with improved inflammation and altered gut microbiota composition. Food and Function, 2019, 10, 3880-3889.	2.1	40
2702	Body mass index and risk of inflammatory bowel disease: A systematic review and doseâ€response metaâ€analysis of cohort studies of over a million participants. Obesity Reviews, 2019, 20, 1312-1320.	3.1	43
2703	Targeting Islets: Metabolic Surgery Is More than a Bariatric Surgery. Obesity Surgery, 2019, 29, 3001-3009.	1.1	8
2704	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	3.5	85
2705	Dynamic and Asymmetric Changes of the Microbial Communities after Cohousing in Laboratory Mice. Cell Reports, 2019, 27, 3401-3412.e3.	2.9	72

#	Article	IF	Citations
2706	Effects of Different Diets on Microbiota in The Small Intestine Mucus and Weight Regulation in Rats. Scientific Reports, 2019, 9, 8500.	1.6	19
2707	Dietary interventions, intestinal microenvironment, and obesity: a systematic review. Nutrition Reviews, 2019, 77, 601-613.	2.6	6
2708	Egg Production in Poultry Farming Is Improved by Probiotic Bacteria. Frontiers in Microbiology, 2019, 10, 1042.	1.5	32
2709	Gut microbiota adaptation to high altitude in indigenous animals. Biochemical and Biophysical Research Communications, 2019, 516, 120-126.	1.0	48
2710	Gut microbiota in ALS: possible role in pathogenesis?. Expert Review of Neurotherapeutics, 2019, 19, 785-805.	1.4	30
2711	Health promoting activities of probiotics. Journal of Food Biochemistry, 2019, 43, e12944.	1.2	33
2712	Bacillus amyloliquefaciens SC06 Protects Mice Against High-Fat Diet-Induced Obesity and Liver Injury via Regulating Host Metabolism and Gut Microbiota. Frontiers in Microbiology, 2019, 10, 1161.	1.5	43
2713	Stepwise Development of an in vitro Continuous Fermentation Model for the Murine Caecal Microbiota. Frontiers in Microbiology, 2019, 10, 1166.	1.5	19
2714	Prebiotics: tools to manipulate the gut microbiome and metabolome. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1445-1459.	1.4	54
2715	Relationship between the microbiome and ocular health. Ocular Surface, 2019, 17, 384-392.	2.2	60
2716	Nutrient Sensing in CD11c Cells Alters the Gut Microbiota to Regulate Food Intake and Body Mass. Cell Metabolism, 2019, 30, 364-373.e7.	7.2	31
2717	Ripened Pu-erh Tea Extract Protects Mice from Obesity by Modulating Gut Microbiota Composition. Journal of Agricultural and Food Chemistry, 2019, 67, 6978-6994.	2.4	76
2718	Blood Microbial Communities During Pregnancy Are Associated With Preterm Birth. Frontiers in Microbiology, 2019, 10, 1122.	1.5	22
2719	Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients, 2019, 11, 1076.	1.7	35
2721	Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. Journal of Nutritional Biochemistry, 2019, 70, 91-104.	1.9	41
2722	A Natural mtDNA Polymorphism in Complex III Is a Modifier of Healthspan in Mice. International Journal of Molecular Sciences, 2019, 20, 2359.	1.8	12
2723	Bovine Genome-Microbiome Interactions: Metagenomic Frontier for the Selection of Efficient Productivity in Cattle Systems. MSystems, 2019, 4, .	1.7	23
2724	Do your gut microbes affect your brain dopamine?. Psychopharmacology, 2019, 236, 1611-1622.	1.5	91

#	Article	IF	CITATIONS
2725	Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients, 2019, 11, 1073.	1.7	90
2726	Current applications of fecal microbiota transplantation in intestinal disorders. Kaohsiung Journal of Medical Sciences, 2019, 35, 327-331.	0.8	6
2727	The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Current Opinion in Pharmacology, 2019, 49, 1-5.	1.7	188
2728	Inulin Can Alleviate Metabolism Disorders in ob/ob Mice by Partially Restoring Leptin-related Pathways Mediated by Gut Microbiota. Genomics, Proteomics and Bioinformatics, 2019, 17, 64-75.	3.0	134
2729	Effects of synbiotics containing <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> GCL2505 and inulin on intestinal bifidobacteria: A randomized, placeboâ€controlled, crossover study. Food Science and Nutrition, 2019, 7, 1828-1837.	1.5	23
2730	Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice. Journal of Nutrition, 2019, 149, 747-754.	1.3	99
2731	Berberine Influences Blood Glucose via Modulating the Gut Microbiome in Grass Carp. Frontiers in Microbiology, 2019, 10, 1066.	1.5	49
2732	Celiac diseaseâ€onâ€chip: Modeling a multifactorial disease in vitro. United European Gastroenterology Journal, 2019, 7, 467-476.	1.6	17
2733	Chemical profile and in vitro gut microbiota modulatory, anti-inflammatory and free radical scavenging properties of chrysanthemum morifolium cv. Fubaiju. Journal of Functional Foods, 2019, 58, 114-122.	1.6	20
2734	Improved feeding tolerance and growth are linked to increased gut microbial community diversity in very-low-birth-weight infants fed mother's own milk compared with donor breast milk. American Journal of Clinical Nutrition, 2019, 109, 1088-1097.	2.2	77
2735	Gut microbiome interventions in human health and diseases. Medicinal Research Reviews, 2019, 39, 2286-2313.	5.0	52
2736	Human activity can influence the gut microbiota of Darwin's finches in the Galapagos Islands. Molecular Ecology, 2019, 28, 2441-2450.	2.0	42
2737	Microbiota-Produced $\langle i \rangle N \langle i \rangle$ -Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance. Diabetes, 2019, 68, 1415-1426.	0.3	23
2738	Different gut microbiome composition in obese Guizhou minipigs between female and castrated male. Folia Microbiologica, 2019, 64, 889-898.	1.1	4
2739	Pathways linking obesity to neuropsychiatric disorders. Nutrition, 2019, 66, 16-21.	1.1	61
2740	From NASH to HCC: current concepts and future challenges. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 411-428.	8.2	872
2741	Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients, 2019, 11, 962.	1.7	129
2742	Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology Letters, 2019, 312, 72-97.	0.4	106

#	Article	IF	Citations
2743	Role of Gut Microbiota in the Pharmacological Effects of Natural Products. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-7.	0.5	23
2744	Gut Microbiota in Alzheimer's Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	78
2745	The role of the gut microbiome in sex differences in arterial pressure. Biology of Sex Differences, 2019, 10, 22.	1.8	44
2746	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
2747	Applications of "Omics―Technologies to Study Gut Health in Poultry. , 2019, , 211-234.		2
2748	The Microbiota and Ovarian Cancer. Current Cancer Research, 2019, , 205-245.	0.2	0
2749	Impact of Laparoscopic Sleeve Gastrectomy on Gut Permeability in Morbidly Obese Subjects. Obesity Surgery, 2019, 29, 2132-2143.	1.1	17
2750	Letrozole treatment of adult female mice results in a similar reproductive phenotype but distinct changes in metabolism and the gut microbiome compared to pubertal mice. BMC Microbiology, 2019, 19, 57.	1.3	31
2751	Modeling gut-brain interactions in zebrafish. Brain Research Bulletin, 2019, 148, 55-62.	1.4	22
2752	Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 390.	1.5	60
2753	Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Reports, 2019, 26, 2720-2737.e5.	2.9	173
2754	Developmental features and associated symbiont bacterial diversity in essential life cycle stages of Heterostelium colligatum. European Journal of Protistology, 2019, 68, 99-107.	0.5	3
2755	Alterations of Bile Acids and Gut Microbiota in Obesity Induced by High Fat Diet in Rat Model. Journal of Agricultural and Food Chemistry, 2019, 67, 3624-3632.	2.4	159
2756	A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer's disease. Ecotoxicology and Environmental Safety, 2019, 174, 344-352.	2.9	188
2757	Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food and Nutrition Research, 2019, 63, .	1.2	60
2758	Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine, 2019, 44, 665-674.	2.7	66
2759	High dietary fat intake induces a microbiota signature that promotes food allergy. Journal of Allergy and Clinical Immunology, 2019, 144, 157-170.e8.	1.5	84
2760	Microbiome, Parkinson's Disease and Molecular Mimicry. Cells, 2019, 8, 222.	1.8	56

#	Article	IF	CITATIONS
2761	The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	56
2762	Inhibition of enterohemorrhagic Escherichia coli O157:H7 infection in a gnotobiotic mouse model with pre‑colonization by Bacteroides strains. Biomedical Reports, 2019, 10, 175-182.	0.9	14
2763	Gut Microbiota Composition and Structure of the Ob/Ob and Db/Db Mice. International Journal of Endocrinology, 2019, 2019, 1-9.	0.6	15
2765	Characteristics of Intestinal Microecology during Mesenchymal Stem Cell-Based Therapy for Mouse Acute Liver Injury. Stem Cells International, 2019, 2019, 1-14.	1.2	24
2766	Nonalcoholic fatty liver disease and the gut microbiome: Are bacteria responsible for fatty liver?. Experimental Biology and Medicine, 2019, 244, 408-418.	1.1	19
2767	Effect of different challenge models to induce necrotic enteritis on the growth performance and intestinal microbiota of broiler chickens. Poultry Science, 2019, 98, 2800-2812.	1.5	22
2768	Obesity, Motility, Diet, and Intestinal Microbiotaâ€"Connecting the Dots. Current Gastroenterology Reports, 2019, 21, 15.	1.1	22
2769	Oxidative stress, DNA damage, and mutagenicity induced by the extractable organic matter of airborne particulates on bacterial models. Regulatory Toxicology and Pharmacology, 2019, 104, 59-73.	1.3	20
2770	Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLoS ONE, 2019, 14, e0212586.	1.1	14
2771	The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Frontiers in Cellular and Infection Microbiology, 2019, 9, 85.	1.8	99
2772	Overfeeding a High-Fat Diet Promotes Sex-Specific Alterations on the Gut Microbiota of the Zebrafish (<i>Danio rerio</i>). Zebrafish, 2019, 16, 268-279.	0.5	32
2773	Gut microbiota: a new path to treat obesity. International Journal of Obesity Supplements, 2019, 9, 10-19.	12.5	239
2774	Differential influence of molybdenum disulfide at the nanometer and micron scales in the intestinal metabolome and microbiome of mice. Environmental Science: Nano, 2019, 6, 1594-1606.	2.2	21
2775	The Importance of the Microbiome in Bariatric Surgery: a Systematic Review. Obesity Surgery, 2019, 29, 2338-2349.	1.1	47
2776	The power of small changes: Comprehensive analyses of microbial dysbiosis in breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 392-405.	3.3	87
2777	Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere, 2019, 227, 425-434.	4.2	131
2778	The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition, 2019, 6, 47.	1.6	389
2779	The chemical composition of a cold-pressed milk thistle seed flour extract, and its potential health beneficial properties. Food and Function, 2019, 10, 2461-2470.	2.1	15

#	Article	IF	CITATIONS
2780	Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radical Biology and Medicine, 2019, 140, 200-205.	1.3	48
2781	Gut microbiota characterization and lipid metabolism disorder found in PCB77-treated female mice. Toxicology, 2019, 420, 11-20.	2.0	16
2783	The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology, 2019, 156, 2097-2115.e2.	0.6	73
2784	Effects of different dietary copper sources on the growth and intestinal microbial communities of Pacific white shrimp (<i>Litopenaeus vannamei</i>). Aquaculture Nutrition, 2019, 25, 828-840.	1.1	11
2785	A Conceptual Framework for Studying and Investing in Precision Nutrition. Frontiers in Genetics, 2019, 10, 200.	1.1	23
2786	Musa basjoo regulates the gut microbiota in mice by rebalancing the abundance of probiotic and pathogen. Microbial Pathogenesis, 2019, 131, 205-211.	1.3	4
2787	Using Bacterial Transcriptomics to Investigate Targets of Host-Bacterial Interactions in Caenorhabditis elegans. Scientific Reports, 2019, 9, 5545.	1.6	25
2788	The role of diet and intestinal microbiota in the development of metabolic syndrome. Journal of Nutritional Biochemistry, 2019, 70, 1-27.	1.9	116
2789	Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. Journal of Endocrinological Investigation, 2019, 42, 1011-1018.	1.8	31
2790	Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Scientific Reports, 2019, 9, 2479.	1.6	22
2791	Regulation of microbiota–GLP1 axis by sennoside A in diet-induced obese mice. Acta Pharmaceutica Sinica B, 2019, 9, 758-768.	5.7	41
2792	Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Scientific Reports, 2019, 9, 1177.	1.6	85
2793	Spent Coffee Grounds Extract, Rich in Mannooligosaccharides, Promotes a Healthier Gut Microbial Community in a Dose-Dependent Manner. Journal of Agricultural and Food Chemistry, 2019, 67, 2500-2509.	2.4	49
2794	Microbiota intestinal: ¿un nuevo protagonista en el riesgo de enfermedad cardiovascular?. ClÃnica E Investigación En Arteriosclerosis, 2019, 31, 178-185.	0.4	2
2795	Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Frontiers in Nutrition, 2019, 6, 21.	1.6	139
2796	Metabolic improvement in obese patients after duodenal–jejunal exclusion is associated with intestinal microbiota composition changes. International Journal of Obesity, 2019, 43, 2509-2517.	1.6	19
2797	Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophi:lymphocyte ratio, leading to inflamed milieu in acute heart failure. FASEB Journal, 2019, 33, 6456-6469.	0.2	47
2798	The Microbiome and Metabolome in Metabolic Syndrome. , 2019, , 215-225.		0

#	Article	IF	CITATIONS
2799	The Gut Microbiota as a Therapeutic Approach for Obesity. , 2019, , 227-234.		2
2800	The Gut Microbiome in Vegetarians. , 2019, , 393-400.		1
2801	Diversity of the Gut Microbiota in Dihydrotestosterone-Induced PCOS Rats and the Pharmacologic Effects of Diane-35, Probiotics, and Berberine. Frontiers in Microbiology, 2019, 10, 175.	1.5	56
2802	The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota. Frontiers in Microbiology, 2019, 10, 458.	1.5	15
2803	Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environmental Pollution, 2019, 248, 989-999.	3.7	160
2804	Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 2019, 51, 600-605.	9.4	854
2805	Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase. International Journal of Molecular Sciences, 2019, 20, 812.	1.8	8
2806	Childhood Obesity and Diabetes: Role of Probiotics and Prebiotics. , 2019, , 363-376.		4
2807	Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews Endocrinology, 2019, 15, 226-237.	4.3	350
2808	Dietary Black Raspberries Impact the Colonic Microbiome and Phytochemical Metabolites in Mice. Molecular Nutrition and Food Research, 2019, 63, e1800636.	1.5	56
2809	Jamun (<i>Eugenia jambolana</i> Lam.) Fruit Extract Prevents Obesity by Modulating the Gut Microbiome in Highâ€Fatâ€Dietâ€Fed Mice. Molecular Nutrition and Food Research, 2019, 63, e1801307.	1.5	46
2810	Relationship between remote cholecystectomy and incident Clostridioides difficile infection. Clinical Microbiology and Infection, 2019, 25, 994-999.	2.8	7
2811	Gut Microbiota and Its Mysteries. Indian Journal of Medical Microbiology, 2019, 37, 268-277.	0.3	75
2812	Particularités de l'asthme tardif non allergique des patients obèses. Revue Des Maladies Respiratoires Actualites, 2019, 11, 69-74.	0.0	0
2813	Impaired glucose metabolism and altered gut microbiome despite calorie restriction of ob/ob mice. Animal Microbiome, 2019, 1, 11.	1.5	15
2814	Introductory Chapter: Human and Microbes in Health and Diseases. , 2019, , .		6
2815	Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its Complications: Novel Insights and Potential Intervention Strategies. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2019, 74, 314.	0.2	40
2816	Rectal Microbiome Composition Correlates with Humoral Immunity to HIV-1 in Vaccinated Rhesus Macaques. MSphere, 2019, 4, .	1.3	18

#	Article	IF	CITATIONS
2817	Missing Links: the Role of Primates in Understanding the Human Microbiome. MSystems, 2019, 4, .	1.7	4
2819	Community analysis and co-occurrence patterns in airway microbial communities during health and disease. ERJ Open Research, 2019, 5, 00128-2017.	1,1	31
2820	The gut microbiome in psoriasis and psoriatic arthritis. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101494.	1.4	75
2821	Foxo in T Cells Regulates Thermogenic Program through Ccr4/Ccl22 Axis. IScience, 2019, 22, 81-96.	1.9	4
2822	Age, gut location and diet impact the gut microbiome of a tropical herbivorous surgeonfish. FEMS Microbiology Ecology, 2020, 96, .	1.3	18
2823	Long-Term Potable Effects of Alkalescent Mineral Water on Intestinal Microbiota Shift and Physical Conditioning. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-10.	0.5	7
2825	Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Research Reviews, 2019, 56, 100980.	5.0	107
2826	Non-nutritive Sweeteners and Glycaemic Control. Current Atherosclerosis Reports, 2019, 21, 49.	2.0	14
2827	Effects of different probiotics on the gut microbiome and metabolites in the serum and caecum of weaning piglets. South African Journal of Animal Sciences, 2019, 49, 494.	0.2	3
2828	Honokiol Ameliorates High-Fat-Diet-Induced Obesity of Different Sexes of Mice by Modulating the Composition of the Gut Microbiota. Frontiers in Immunology, 2019, 10, 2800.	2.2	42
2829	Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Scientific Reports, 2019, 9, 20192.	1.6	45
2831	Comparative study on the effects of different feeding habits and diets on intestinal microbiota in Acipenser baeri Brandt and Huso huso. BMC Microbiology, 2019, 19, 297.	1.3	17
2832	Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2019, 29, 43-56.	1.0	11
2833	Whole barley prevents obesity and dyslipidemia without the involvement of the gut microbiota in germ free C57BL/6J obese mice. Food and Function, 2019, 10, 7498-7508.	2.1	14
2834	Attenuation of metabolic syndrome in the ob/ob mouse model by resistant starch intervention is dose dependent. Food and Function, 2019, 10, 7940-7951.	2.1	19
2835	Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Archives of Physiology and Biochemistry, 2022, 128, 411-425.	1.0	21
2836	The Play of Genes and Non-genetic Factors on Type 2 Diabetes. Frontiers in Public Health, 2019, 7, 349.	1.3	52
2837	Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Frontiers in Immunology, 2019, 10, 2910.	2.2	71

#	Article	IF	Citations
2838	The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 387-397.	2.6	68
2839	Effect of recycling the culture medium on biodiversity and population dynamics of bio-contaminants in Spirulina platensis mass culture systems. Algal Research, 2019, 44, 101718.	2.4	19
2840	Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review. Journal of Neuroinflammation, 2019, 16, 231.	3.1	72
2841	Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Molecular Cancer, 2019, 18, 173.	7.9	67
2842	Diet, Health, and the Gut Microbiota., 2019,, 815-829.		1
2843	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	1.8	50
2844	The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. Journal of Clinical Medicine, 2019, 8, 2227.	1.0	82
2845	Colonic bacterial composition is sex-specific in aged CD-1 mice fed diets varying in fat quality. PLoS ONE, 2019, 14, e0226635.	1.1	9
2846	Effects of compound probiotics on the weight, immunity performance and fecal microbiota of forest musk deer. Scientific Reports, 2019, 9, 19146.	1.6	14
2847	Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota. Nutrients, 2019, 11, 2909.	1.7	54
2848	High Oleic Acid Peanut Oil and Extra Virgin Olive Oil Supplementation Attenuate Metabolic Syndrome in Rats by Modulating the Gut Microbiota. Nutrients, 2019, 11, 3005.	1.7	36
2849	Gut Dysbiosis with Minimal Enteritis Induced by High Temperature and Humidity. Scientific Reports, 2019, 9, 18686.	1.6	15
2850	Impact of oral probiotic Lactobacillus acidophilus vaccine strains on the immune response and gut microbiome of mice. PLoS ONE, 2019, 14, e0225842.	1.1	15
2851	Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Current Opinion in Supportive and Palliative Care, 2019, 13, 119-133.	0.5	16
2852	The bidirectional interaction of the gut microbiome and the innate immune system: Implications for chemotherapyâ€induced gastrointestinal toxicity. International Journal of Cancer, 2019, 144, 2365-2376.	2.3	48
2853	Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of the Total Environment, 2019, 649, 308-317.	3.9	568
2854	Comparison of the gut microbiota of captive common bottlenose dolphins <i>Tursiops truncatus</i> in three aquaria. Journal of Applied Microbiology, 2019, 126, 31-39.	1.4	23
2855	Fecal microbiota transplantation: Review and update. Journal of the Formosan Medical Association, 2019, 118, S23-S31.	0.8	263

#	Article	IF	CITATIONS
2856	Alterations to the microbiota–colon–brain axis in high-fat-diet-induced obese mice compared to diet-resistant mice. Journal of Nutritional Biochemistry, 2019, 65, 54-65.	1.9	51
2857	Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring. Molecular Nutrition and Food Research, 2019, 63, e1800399.	1.5	18
2858	Current Findings in a Birth Cohort Study with Omics Analysis: Chiba Study of Mother and Child Health (C-MACH). Current Topics in Environmental Health and Preventive Medicine, 2019, , 165-174.	0.1	0
2859	The Microbiome and Eating Disorders. Psychiatric Clinics of North America, 2019, 42, 93-103.	0.7	64
2860	Gut microbiota and health: connecting actors across the metabolic system. Proceedings of the Nutrition Society, 2019, 78, 177-188.	0.4	49
2861	Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine, 2019, 39, 591-602.	2.7	82
2862	Juvenile Rats Show Altered Gut Microbiota After Exposure to Isoflurane as Neonates. Neurochemical Research, 2019, 44, 776-786.	1.6	17
2863	The Role of the Gut Microbiota in Sustained Weight Loss Following Roux-en-Y Gastric Bypass Surgery. Obesity Surgery, 2019, 29, 1259-1267.	1.1	36
2864	Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity Control. Studies in Natural Products Chemistry, 2019, 61, 369-394.	0.8	3
2865	Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis. Environmental Pollution, 2019, 246, 630-638.	3.7	83
2866	Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E383-E396.	1.8	30
2867	Dietary fat, the gut microbiota, and metabolic health $\hat{a}\in$ A systematic review conducted within the MyNewGut project. Clinical Nutrition, 2019, 38, 2504-2520.	2.3	175
2868	Response of Colonic Mucosa-Associated Microbiota Composition, Mucosal Immune Homeostasis, and Barrier Function to Early Life Galactooligosaccharides Intervention in Suckling Piglets. Journal of Agricultural and Food Chemistry, 2019, 67, 578-588.	2.4	60
2869	Antidiabetic Potential of Green Seaweed <i>Enteromorpha prolifera</i> Flavonoids Regulating Insulin Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice. Journal of Food Science, 2019, 84, 165-173.	1.5	105
2870	â€~Inside Out'– a dialogue between mitochondria and bacteria. FEBS Journal, 2019, 286, 630-641.	2.2	25
2871	Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 2019, 72, 26-37.	1.3	88
2872	Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. Journal of Nutritional Biochemistry, 2019, 64, 206-217.	1.9	46
2873	Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 2019, 217, 646-658.	4.2	277

#	Article	IF	CITATIONS
2874	Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism: Clinical and Experimental, 2019, 92, 121-135.	1.5	821
2875	In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula. LWT - Food Science and Technology, 2019, 101, 61-68.	2.5	20
2876	Metabolic characteristics and nutrient utilization in high-feed-efficiency pigs selected using different feed conversion ratio models. Science China Life Sciences, 2019, 62, 959-970.	2.3	20
2877	Microbiome and its relation to gestational diabetes. Endocrine, 2019, 64, 254-264.	1.1	102
2878	A Paleolithic diet lowers resistant starch intake but does not affect serum trimethylamine- <i>N</i> -oxide concentrations in healthy women. British Journal of Nutrition, 2019, 121, 322-329.	1.2	13
2879	Second-generation antipsychotics and metabolism alterations: a systematic review of the role of the gut microbiome. Psychopharmacology, 2019, 236, 1491-1512.	1.5	72
2880	Influence of Early Life, Diet, and the Environment on the Microbiome. Clinical Gastroenterology and Hepatology, 2019, 17, 231-242.	2.4	130
2881	Impact of Gut Microbiota on Host Glycemic Control. Frontiers in Endocrinology, 2019, 10, 29.	1.5	133
2882	Resveratrol and Its Human Metabolitesâ€"Effects on Metabolic Health and Obesity. Nutrients, 2019, 11, 143.	1.7	178
2883	Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacological Research, 2019, 141, 418-428.	3.1	14
2884	Healthâ€promoting effects of dietary polysaccharide extracted from Dendrobium aphyllum on mice colon, including microbiota and immune modulation. International Journal of Food Science and Technology, 2019, 54, 1684-1696.	1.3	10
2885	A mini-review on the microbial continuum: consideration of a link between judicious consumption of a varied diet of macroalgae and human health and nutrition. Journal of Oceanology and Limnology, 2019, 37, 790-805.	0.6	10
2886	High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neuroscience Letters, 2019, 698, 51-57.	1.0	78
2887	Coffee Intake and obesity. , 2019, , 329-351.		4
2888	Impact of plant sterols enrichment dose on gut microbiota from lean and obese subjects using TIM-2 in vitro fermentation model. Journal of Functional Foods, 2019, 54, 164-174.	1.6	37
2889	General and abdominal obesity in relation to the prevalence of irritable bowel syndrome. Neurogastroenterology and Motility, 2019, 31, e13549.	1.6	25
2890	The pathogenesis of obesity. Metabolism: Clinical and Experimental, 2019, 92, 26-36.	1.5	108
2891	Serum Metabolomics Reveals That Gut Microbiome Perturbation Mediates Metabolic Disruption Induced by Arsenic Exposure in Mice. Journal of Proteome Research, 2019, 18, 1006-1018.	1.8	19

#	Article	IF	Citations
2892	Microbiome as a therapeutic target in alcohol-related liver disease. Journal of Hepatology, 2019, 70, 260-272.	1.8	170
2893	Long Term Diversity and Distribution of Non-photosynthetic Cyanobacteria in Peri-Alpine Lakes. Frontiers in Microbiology, 2018, 9, 3344.	1.5	55
2894	What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019, 7, 14.	1.6	1,796
2895	Hydrogen- and Methane-Based Breath Testing and Outcomes in Patients With Heart Failure. Journal of Cardiac Failure, 2019, 25, 319-327.	0.7	14
2896	Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition, 2019, 60, 175-184.	1.1	326
2897	Does cesarean delivery impact infant weight gain and adiposity over the first year of life?. International Journal of Obesity, 2019, 43, 1549-1555.	1.6	37
2898	Effects of different areca nut chewing habits on the gut microbiota of mice: Highâ€throughput sequencing analysis. Journal of Food Safety, 2019, 39, e12574.	1.1	2
2899	The role of obesity in inflammatory bowel disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 63-72.	1.8	34
2900	Gut Microbiota; Its Importance in Obesity. , 2019, , 353-362.		1
2901	Obesity, diabetes, and the gut microbiome: an updated review. Expert Review of Gastroenterology and Hepatology, 2019, 13, 3-15.	1.4	139
2902	Nod1-mediated lipolysis promotes diacylglycerol accumulation and successive inflammation via PKCÎ'-IRAK axis in adipocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 136-146.	1.8	21
2903	Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria. American Journal of Physiology - Renal Physiology, 2019, 316, G1-G14.	1.6	16
2904	Influence of the Human Gut Microbiome on the Metabolic Phenotype. , 2019, , 535-560.		13
2905	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
2906	Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiology Ecology, 2019, 95, .	1.3	36
2907	Polysaccharides from Laminaria japonica alleviated metabolic syndrome in BALB/c mice by normalizing the gut microbiota. International Journal of Biological Macromolecules, 2019, 121, 996-1004.	3.6	59
2908	Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes, Obesity and Metabolism, 2019, 21, 479-490.	2.2	101
2909	The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metabolism, 2019, 29, 362-382.e8.	7.2	178

#	Article	IF	CITATIONS
2910	Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health., 2019, , 1-19.		1
2911	A randomized, doubleâ€blind, placeboâ€controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer, 2019, 125, 1081-1090.	2.0	99
2912	Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. American Journal of Physiology - Renal Physiology, 2019, 316, F316-F327.	1.3	21
2913	Pre-emptive Medicine: Public Health Aspects of Developmental Origins of Health and Disease. Current Topics in Environmental Health and Preventive Medicine, 2019, , .	0.1	3
2914	Microbes: possible link between modern lifestyle transition and the rise of metabolic syndrome. Obesity Reviews, 2019, 20, 407-419.	3.1	35
2915	The Human Microbiome in Health and Disease. , 2019, , 607-618.		8
2916	Thinking Outside the Cereal Box: Noncarbohydrate Routes for Dietary Manipulation of the Gut Microbiota. Applied and Environmental Microbiology, $2019, 85, \ldots$	1.4	14
2917	Sex, Microbes, and Polycystic Ovary Syndrome. Trends in Endocrinology and Metabolism, 2019, 30, 54-65.	3.1	121
2918	Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microbial Pathogenesis, 2019, 127, 48-55.	1.3	79
2919	Gastrointestinal Tract: Fat Metabolism in the Colon. , 2019, , 1-9.		0
2920	Obesity and severe asthma. Allergology International, 2019, 68, 135-142.	1.4	82
2921	Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 198-208.	1.4	49
2922	Evolution of intestinal microbiota and body compartments during spontaneous hyperphagia in the Greylag goose. Poultry Science, 2019, 98, 1390-1402.	1.5	6
2923	Influence of obesity on the response to influenza infection and vaccination. , 2019, , 227-259.		13
2924	The mammalian mycobiome: A complex system in a dynamic relationship with the host. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1438.	6.6	58
2925	Highâ€production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than lowâ€production cattle. MicrobiologyOpen, 2019, 8, e00673.	1.2	38
2926	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38
2927	Role of bioactive lipofishins in prevention of inflammation and colon cancer. Seminars in Cancer Biology, 2019, 56, 175-184.	4.3	8

#	Article	IF	CITATIONS
2928	Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone, 2019, 118, 20-31.	1.4	69
2929	The Effect of Leanâ€Seafood and Nonâ€Seafood Diets on Fecal Metabolites and Gut Microbiome: Results from a Randomized Crossover Intervention Study. Molecular Nutrition and Food Research, 2019, 63, e1700976.	1.5	30
2930	An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats. Nutritional Neuroscience, 2020, 23, 613-627.	1.5	34
2931	Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2020, 135, 104268.	2.1	118
2932	Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clinical Nutrition, 2020, 39, 994-1018.	2.3	61
2933	Proopiomelanocortin Processing in the Hypothalamus Is Directly Regulated by Saturated Fat: Implications for the Development of Obesity. Neuroendocrinology, 2020, 110, 92-104.	1.2	16
2934	Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health. Journal of Sport and Health Science, 2020, 9, 110-118.	3.3	20
2935	Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 2020, 1461, 37-52.	1.8	186
2936	Leuconostoc mesenteroides subsp. mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet–Induced Obesity in Male Mice. Probiotics and Antimicrobial Proteins, 2020, 12, 505-516.	1.9	12
2937	The association between gut microbiome and anthropometric measurements in Bangladesh. Gut Microbes, 2020, 11, 63-76.	4.3	31
2938	Copper Changes Intestinal Microbiota of the Cecum and Rectum in Female Mice by 16S rRNA Gene Sequencing. Biological Trace Element Research, 2020, 193, 445-455.	1.9	10
2939	Food processing, gut microbiota and the globesity problem. Critical Reviews in Food Science and Nutrition, 2020, 60, 1769-1782.	5.4	51
2940	Weight loss probiotic supplementation effect in overweight and obesity subjects: A review. Clinical Nutrition, 2020, 39, 694-704.	2.3	17
2941	Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet–induced obese condition. Nutrition, 2020, 69, 110576.	1.1	56
2942	Changes in Weight Status and the Intestinal Microbiota Among College Freshman, Aged 18ÂYears. Journal of Adolescent Health, 2020, 66, 166-171.	1.2	8
2943	Variation in the gut microbial community is associated with the progression of liver regeneration. Hepatology Research, 2020, 50, 121-136.	1.8	11
2944	No changes in gut microbiota after two-week sleep extension in chronically sleep-deprived individuals. Sleep Medicine, 2020, 68, 27-30.	0.8	12
2945	Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. Journal of Ethnopharmacology, 2020, 247, 112264.	2.0	34

#	Article	IF	CITATIONS
2946	Establishment of the early-life microbiome: a DOHaD perspective. Journal of Developmental Origins of Health and Disease, 2020, 11, 201-210.	0.7	46
2947	Influence of Maternal Prepregnancy Obesity and Excessive Gestational Weight Gain on Maternal and Child Gastrointestinal Microbiome Composition: A Systematic Review. Biological Research for Nursing, 2020, 22, 114-125.	1.0	26
2948	Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients. Clinical Gastroenterology and Hepatology, 2020, 18, 855-863.e2.	2.4	171
2949	Choline: The Neurocognitive Essential Nutrient of Interest to Obstetricians and Gynecologists. Journal of Dietary Supplements, 2020, 17, 733-752.	1.4	24
2950	L. plantarum, L. fermentum, and B. breve Beads Modified the Intestinal Microbiota and Alleviated the Inflammatory Response in High-Fat Diet–Fed Mice. Probiotics and Antimicrobial Proteins, 2020, 12, 535-544.	1.9	7
2951	Pelargonidin-3- <i>O</i> -glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 13025-13037.	2.4	63
2952	Modified apple polysaccharide regulates microbial dysbiosis to suppress high-fat diet-induced obesity in C57BL/6J mice. European Journal of Nutrition, 2020, 59, 2025-2037.	1.8	7
2953	Interplay of Human Gut Microbiome in Health and Wellness. Indian Journal of Microbiology, 2020, 60, 26-36.	1.5	40
2954	Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Critical Reviews in Food Science and Nutrition, 2020, 60, 2691-2709.	5.4	63
2955	Resveratrol treatment improves the altered metabolism and related dysbiosis of gut programed by prenatal high-fat diet and postnatal high-fat diet exposure. Journal of Nutritional Biochemistry, 2020, 75, 108260.	1.9	25
2956	Intersection of the Gut Microbiome and Circadian Rhythms in Metabolism. Trends in Endocrinology and Metabolism, 2020, 31, 25-36.	3.1	89
2957	Evaluation of the effects of probiotic yoghurt on inflammation and cardiometabolic risk factors in subjects with metabolic syndrome: AArandomised controlled trial. International Dairy Journal, 2020, 101, 104577.	1.5	10
2958	The Role of Ames Dwarfism and Calorie Restriction on Gut Microbiota. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, e1-e8.	1.7	16
2959	Impact of probiotics and prebiotics targeting metabolic syndrome. Journal of Functional Foods, 2020, 64, 103666.	1.6	50
2960	The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. British Journal of Pharmacology, 2020, 177, 1278-1293.	2.7	34
2961	Hydroxycinnamic acids and human health: recent advances. Journal of the Science of Food and Agriculture, 2020, 100, 483-499.	1.7	96
2962	What's in a name? The case of cyanobacteria. Journal of Phycology, 2020, 56, 1-5.	1.0	39
2963	Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients, 2020, 12, 130.	1.7	60

#	ARTICLE	IF	CITATIONS
2964	Goat milk fermented by lactic acid bacteria modulates small intestinal microbiota and immune responses. Journal of Functional Foods, 2020, 65, 103744.	1.6	18
2965	DNA sequencing reveals bacterial communities in midgut and other parts of the larvae of <i>Spodoptera exigua</i> Hubner (Lepidoptera: Noctuidae). FEMS Microbiology Letters, 2020, 367, .	0.7	6
2966	Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients. PLoS ONE, 2020, 15, e0227373.	1.1	18
2967	Beneficial Effect of a Multistrain Synbiotic Prodefen \hat{A}^{\odot} Plus on the Systemic and Vascular Alterations Associated with Metabolic Syndrome in Rats: The Role of the Neuronal Nitric Oxide Synthase and Protein Kinase A. Nutrients, 2020, 12, 117.	1.7	14
2968	Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients, 2020, 12, 119.	1.7	20
2969	Absence of the Caspases 1/11 Modulates Liver Global Lipid Profile and Gut Microbiota in High-Fat-Diet-Induced Obese Mice. Frontiers in Immunology, 2019, 10, 2926.	2.2	16
2970	Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Science Advances, 2020, 6, eaax6208.	4.7	230
2972	Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food and Function, 2020, 11, 689-699.	2.1	46
2973	Gut microbiota of provisioned and wild rhesus macaques (<i>Macaca mulatta</i>) living in a limestone forest in southwest Guangxi, China. MicrobiologyOpen, 2020, 9, e981.	1.2	18
2974	The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. European Journal of Nutrition, 2020, 59, 3213-3230.	1.8	77
2975	Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. European Journal of Nutrition, 2020, 59, 3231-3244.	1.8	57
2976	Dietary adzuki bean paste dose-dependently reduces visceral fat accumulation in rats fed a normal diet. Food Research International, 2020, 130, 108890.	2.9	17
2977	New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. Chemosphere, 2020, 244, 125123.	4.2	29
2978	The effect of fly maggot in pig feeding diets on growth performance and gut microbial balance in Ningxiang pigs. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 1867-1874.	1.0	3
2979	Gut Microbiota: From the Forgotten Organ to a Potential Key Player in the Pathology of Alzheimer's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1232-1241.	1.7	61
2980	Anti-obesity effects of \hat{l} ±-amylase inhibitor enriched-extract from white common beans (<i>Phaseolus) Tj ETQq1 1 obese rats. Food and Function, 2020, 11, 1624-1634.</i>	0.784314 2.1	ł rgBT /Over 41
2981	Targeting the 16S rRNA Gene for Bacterial Identification in Complex Mixed Samples: Comparative Evaluation of Second (Illumina) and Third (Oxford Nanopore Technologies) Generation Sequencing Technologies. International Journal of Molecular Sciences, 2020, 21, 298.	1.8	117
2982	Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut, 2020, 69, 1483-1491.	6.1	113

#	Article	IF	CITATIONS
2983	Sex Differences in Gut Microbiota. World Journal of Men?s Health, 2020, 38, 48.	1.7	340
2984	Composition of the bacterial community in the gastrointestinal tract of Kunming mice. Electronic Journal of Biotechnology, 2020, 43, 16-22.	1.2	5
2985	The gut microbiome-joint connection: implications in osteoarthritis. Current Opinion in Rheumatology, 2020, 32, 92-101.	2.0	64
2986	Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Medicine and Science in Sports and Exercise, 2020, 52, 94-104.	0.2	159
2987	Intestinal Dysbiosis and Markers of Systemic Inflammation in Viscerally and Generally Obese Persons Living With HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 83, 81-89.	0.9	9
2988	The "Culture―of Pain Control: A Review of Opioid-Induced Dysbiosis (OID) in Antinociceptive Tolerance. Journal of Pain, 2020, 21, 751-762.	0.7	5
2989	Whole metagenome sequencing of cecum microbiomes in Ethiopian indigenous chickens from two different altitudes reveals antibiotic resistance genes. Genomics, 2020, 112, 1988-1999.	1.3	23
2990	Understanding immune–microbiota interactions in the intestine. Immunology, 2020, 159, 4-14.	2.0	62
2991	Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes, 2020, 11, 310-334.	4.3	81
2992	The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 608-623.	0.4	24
2993	Combined effects of HIV and obesity on the gastrointestinal microbiome of young men who have sex with men. HIV Medicine, 2020, 21, 365-377.	1.0	3
2994	Lactobacillus acidophilus JCM 1132 Strain and Its Mutant with Different Bacteriocin-Producing Behaviour Have Various In Situ Effects on the Gut Microbiota of Healthy Mice. Microorganisms, 2020, 8, 49.	1.6	27
2995	Characterizing the Composition of the Pediatric Gut Microbiome: A Systematic Review. Nutrients, 2020, 12, 16.	1.7	27
2996	Delivery mode-associated gut microbiota in the first 3 months of life in a country with high obesity rates. Medicine (United States), 2020, 99, e22442.	0.4	8
2997	Effects of Non-insulin Anti-hyperglycemic Agents on Gut Microbiota: A Systematic Review on Human and Animal Studies. Frontiers in Endocrinology, 2020, 11, 573891.	1.5	21
2998	Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. Nutrients, 2020, 12, 3032.	1.7	10
2999	Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Veterinary Research, 2020, 16, 392.	0.7	14
3000	Beneficial Effects of Proanthocyanidins on Intestinal Permeability and Its Relationship with Inflammation. , 0 , , .		0

#	Article	IF	CITATIONS
3001	The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host and Microbe, 2020, 28, 724-740.e8.	5.1	352
3002	A metagenome-wide association study of gut microbiome and visceral fat accumulation. Computational and Structural Biotechnology Journal, 2020, 18, 2596-2609.	1.9	36
3003	Oral delivery of bacteria: Basic principles and biomedical applications. Journal of Controlled Release, 2020, 327, 801-833.	4.8	55
3004	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	1.2	61
3005	Magnetic fields modulate metabolism and gut microbiome in correlation with ⟨i⟩Pgcâ€1α⟨/i⟩ expression: Followâ€up to an in vitro magnetic mitohormetic study. FASEB Journal, 2020, 34, 11143-11167.	0.2	20
3006	Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Molecular Metabolism, 2020, 42, 101076.	3.0	50
3007	Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota. Journal of Pharmaceutical Analysis, 2021, 11, 628-637.	2.4	25
3008	Non-neuronal crosstalk promotes an inflammatory response in nodose ganglia cultures after exposure to byproducts from gram positive, high-fat-diet-associated gut bacteria. Physiology and Behavior, 2020, 226, 113124.	1.0	5
3009	Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	2.0	26
3010	Gut microbiota composition is associated with narcolepsy type 1. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	20
3011	Effects of a Low-Fat Vegan Diet on Gut Microbiota in Overweight Individuals and Relationships with Body Weight, Body Composition, and Insulin Sensitivity. A Randomized Clinical Trial. Nutrients, 2020, 12, 2917.	1.7	51
3012	Interactions among microbes, the immune system, and the circadian clock. Seminars in Immunopathology, 2020, 42, 697-708.	2.8	19
3013	Both Gut Microbiota and Differentially Expressed Proteins Are Relevant to the Development of Obesity. BioMed Research International, 2020, 2020, 1-11.	0.9	5
3015	Relationship Between the Fatty Acid Profiles and Gut Bacterial Communities of the Chinese Mitten Crab (Eriocheir sinensis) From Ecologically Different Habitats. Frontiers in Microbiology, 2020, 11, 565267.	1.5	13
3016	The fungicide thiram perturbs gut microbiota community and causes lipid metabolism disorder in chickens. Ecotoxicology and Environmental Safety, 2020, 206, 111400.	2.9	35
3017	The intestine of artificially bred larval turbot (Scophthalmus maximus) contains a stable core group of microbiota. Archives of Microbiology, 2020, 202, 2619-2628.	1.0	5
3018	Impact of PepT1 deletion on microbiota composition and colitis requires multiple generations. Npj Biofilms and Microbiomes, 2020, 6, 27.	2.9	6
3019	The impact of feed efficiency selection on the ruminal, cecal, and fecal microbiomes of Angus steers from a commercial feedlot. Journal of Animal Science, 2020, 98, .	0.2	23

#	ARTICLE	IF	CITATIONS
3020	Anti-Obesity Effect of <i>Lactobacillus plantarum</i> LB818 Is Associated with Regulation of Gut Microbiota in High-Fat Diet-Fed Obese Mice. Journal of Medicinal Food, 2020, 23, 750-759.	0.8	15
3021	Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Physiology and Behavior, 2020, 225, 113082.	1.0	25
3022	Gut microbiome: Current development, challenges, and perspectives. , 2020, , 227-241.		1
3023	Engineering the Gut Microbiome for Treatment of Obesity: A Review of Current Understanding and Progress. Biotechnology Journal, 2020, 15, e2000013.	1.8	15
3024	Duodenal Metatranscriptomics to Define Human and Microbial Functional Alterations Associated with Severe Obesity: A Pilot Study. Microorganisms, 2020, 8, 1811.	1.6	13
3025	Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poultry Science, 2020, 99, 5827-5837.	1.5	23
3026	Inbreeding Alters the Gut Microbiota of the Banna Minipig. Animals, 2020, 10, 2125.	1.0	8
3027	Inflammatory Response, a Key Pathophysiological Mechanism of Obesity-Induced Depression. Mediators of Inflammation, 2020, 2020, 1-6.	1.4	4
3028	High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated with Dyslipidemia in Syrian Hamsters. Nutrients, 2020, 12, 3557.	1.7	32
3029	Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Science Translational Medicine, 2020, 12, .	5.8	29
3030	State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals, 2020, 10, 2199.	1.0	18
3031	Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415.	1.3	45
3032	Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science Translational Medicine, 2020, 12, .	5.8	122
3033	A Multi-Omics Protocol for Swine Feces to Elucidate Longitudinal Dynamics in Microbiome Structure and Function. Microorganisms, 2020, 8, 1887.	1.6	15
3034	Understanding the Heterogeneity of Obesity and the Relationship to the Brain-Gut Axis. Nutrients, 2020, 12, 3701.	1.7	7
3035	Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats. Experimental and Molecular Medicine, 2020, 52, 1959-1975.	3.2	70
3036	Lactobacillus sakei ADM14 Induces Anti-Obesity Effects and Changes in Gut Microbiome in High-Fat Diet-Induced Obese Mice. Nutrients, 2020, 12, 3703.	1.7	24
3037	Capsaicin and Gut Microbiota in Health and Disease. Molecules, 2020, 25, 5681.	1.7	41

#	Article	IF	CITATIONS
3038	<p>Randomized Clinical Trial Examining the Impact of Lactobacillus rhamnosus GG Probiotic Supplementation on Cognitive Functioning in Middle-aged and Older Adults</p> . Neuropsychiatric Disease and Treatment, 2020, Volume 16, 2765-2777.	1.0	33
3039	Plant extracts as natural modulators of gut microbiota community structure and functionality. Heliyon, 2020, 6, e05474.	1.4	20
3040	Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome, 2020, 8, 158.	4.9	29
3041	Effects of trace mineral supply from rumen boluses on performance, carcass characteristics, and fecal bacterial profile in beef cattle. Animal Feed Science and Technology, 2020, 269, 114626.	1.1	3
3042	Chronic G $<$ sub $>$ q $<$ /sub $>$ signaling in AgRP neurons does not cause obesity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20874-20880.	3.3	20
3043	Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS ONE, 2020, 15, e0237262.	1.1	13
3044	Cannabis Extracts Affected Metabolic Syndrome Parameters in Mice Fed High-Fat/Cholesterol Diet. Cannabis and Cannabinoid Research, 2020, 5, 202-214.	1.5	13
3045	Ageâ€related differences in gut microbial community composition of captive spotted seals (<scp><i>Phoca largha</i></scp>). Marine Mammal Science, 2020, 36, 1231-1240.	0.9	13
3046	Polysaccharides catabolism by the human gut bacterium - <i>Bacteroides thetaiotaomicron</i> advances and perspectives. Critical Reviews in Food Science and Nutrition, 2021, 61, 3569-3588.	5.4	30
3047	Microbially competent 3D skin: a test system that reveals insight into host–microbe interactions and their potential toxicological impact. Archives of Toxicology, 2020, 94, 3487-3502.	1.9	12
3048	How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annual Review of Microbiology, 2020, 74, 787-813.	2.9	27
3049	Positive metabolic effects of selected probiotic bacteria on dietâ€induced obesity in mice are associated with improvement of dysbiotic gut microbiota. FASEB Journal, 2020, 34, 12289-12307.	0.2	24
3050	Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients, 2020, 12, 2200.	1.7	48
3051	Microbiota-Sourced Purines Support Wound Healing and Mucous Barrier Function. IScience, 2020, 23, 101226.	1.9	45
3052	Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Frontiers in Medicine, 2020, 7, 361.	1.2	47
3053	Allicinâ€induced hostâ€gut microbe interactions improves energy homeostasis. FASEB Journal, 2020, 34, 10682-10698.	0.2	27
3054	FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteinsÂin mice with castor oil-induced diarrhea. PLoS ONE, 2020, 15, e0236511.	1.1	5
3055	Diet with a High Proportion of Rice Alters Profiles and Potential Function of Digesta-Associated Microbiota in the Ileum of Goats. Animals, 2020, 10, 1261.	1.0	8

#	Article	IF	CITATIONS
3056	Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutritional Neuroscience, 2022, 25, 356-378.	1.5	20
3057	Modification of fecal microbiota as a mediator of effective weight loss and metabolic benefits following bariatric surgery. Expert Review of Endocrinology and Metabolism, 2020, 15, 363-373.	1.2	19
3058	Neohesperidin attenuates obesity by altering the composition of the gut microbiota in highâ€fat dietâ€fed mice. FASEB Journal, 2020, 34, 12053-12071.	0.2	46
3059	Gut Microbiota and Cardiovascular Disease. Circulation Research, 2020, 127, 553-570.	2.0	424
3060	Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men. Nutrients, 2020, 12, 2220.	1.7	38
3061	A non-pharmacological therapeutic approach in the gut triggers distal metabolic rewiring capable of ameliorating diet-induced dysfunctions encompassed by metabolic syndrome. Scientific Reports, 2020, 10, 12915.	1.6	7
3062	Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. MSystems, 2020, 5, .	1.7	23
3063	Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity. Carbohydrate Polymers, 2020, 248, 116780.	5.1	39
3064	Bilberry Anthocyanins Ameliorate NAFLD by Improving Dyslipidemia and Gut Microbiome Dysbiosis. Nutrients, 2020, 12, 3252.	1.7	42
3065	Gut Feelings: How Microbiota Might Impact the Development and Course of Anorexia Nervosa. Nutrients, 2020, 12, 3295.	1.7	22
3066	Dietary Short-Term Fiber Interventions in Arthritis Patients Increase Systemic SCFA Levels and Regulate Inflammation. Nutrients, 2020, 12, 3207.	1.7	40
3067	Functional diversity of microbial ecologies estimated from ancient human coprolites and dental calculus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190586.	1.8	14
3068	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2020, 11, 571731.	2.2	281
3069	Differential Responses to Dietary Protein and Carbohydrate Ratio on Gut Microbiome in Obese vs. Lean Cats. Frontiers in Microbiology, 2020, 11, 591462.	1.5	7
3070	Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nature Reviews Endocrinology, 2020, 16, 731-739.	4.3	149
3071	The effect of fermented Huyou juice on intestinal microbiota in a highâ€fat dietâ€induced obesity mouse model. Journal of Food Biochemistry, 2020, 44, e13480.	1.2	11
3072	Effects of High-Fat Diet at Two Energetic Levels on Fecal Microbiota, Colonic Barrier, and Metabolic Parameters in Dogs. Frontiers in Veterinary Science, 2020, 7, 566282.	0.9	16
3073	A High Protein Calorie Restriction Diet Alters the Gut Microbiome in Obesity. Nutrients, 2020, 12, 3221.	1.7	38

#	Article	IF	Citations
3074	Host Genetic Background and Gut Microbiota Contribute to Differential Metabolic Responses to Fructose Consumption in Mice. Journal of Nutrition, 2020, 150, 2716-2728.	1.3	15
3075	Can the FUT 2 Gene Variant Have an Effect on the Body Weight of Patients Undergoing Bariatric Surgery?—Preliminary, Exploratory Study. Nutrients, 2020, 12, 2621.	1.7	2
3076	The Gut Microbiome, Inflammation, and Salt-Sensitive Hypertension. Current Hypertension Reports, 2020, 22, 79.	1.5	52
3077	Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiology, 2020, 15, 1173-1183.	1.0	18
3078	16S rRNA Sequencing and Metagenomics Study of Gut Microbiota: Implications of BDB on Type 2 Diabetes Mellitus. Marine Drugs, 2020, 18, 469.	2.2	7
3079	Berry chemoprevention: Do berries decrease the window of opportunity for tumorigenesis. Food Frontiers, 2020, 1, 260-275.	3.7	17
3080	In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice. Cells, 2020, 9, 2104.	1.8	43
3081	Modulation of Gut Microbiota in Korean Navy Trainees following a Healthy Lifestyle Change. Microorganisms, 2020, 8, 1265.	1.6	11
3082	Gut microbiota: a perspective of precision medicine in endocrine disorders. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1827-1834.	0.8	11
3083	Modulation of gut microbiota in healthy rats after exposure to nutritional supplements. Gut Microbes, 2020, 12, 1779002.	4. 3	20
3084	Adipose Tissue Inflammation Is Directly Linked to Obesity-Induced Insulin Resistance, while Gut Dysbiosis and Mitochondrial Dysfunction Are Not Required. Function, 2020, 1, 2qaa013.	1.1	12
3085	Association of Body Mass Index with Fecal Microbial Diversity and Metabolites in the Northern Finland Birth Cohort. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2289-2299.	1.1	20
3087	Modulation of Gut Flora and Its Application in Food Animal Products., 2020,, 251-273.		0
3088	Understanding the effects of dietary components on the gut microbiome and human health. Food Science and Biotechnology, 2020, 29, 1463-1474.	1.2	10
3089	Contrasting environmental preferences of photosynthetic and nonâ€photosynthetic soil cyanobacteria across the globe. Global Ecology and Biogeography, 2020, 29, 2025-2038.	2.7	24
3090	Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity. Experimental and Molecular Medicine, 2020, 52, 1574-1586.	3.2	11
3091	Prophylactic effects of oral administration of <i>Lactobacillus casei </i> on house dust mite-induced asthma in mice. Food and Function, 2020, 11, 9272-9284.	2.1	15
3092	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	3.2	87

#	Article	IF	Citations
3093	Non-surgical Periodontal Treatment Restored the Gut Microbiota and Intestinal Barrier in Apolipoprotein Eâ^'/â^' Mice With Periodontitis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 498.	1.8	15
3094	The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Frontiers in Psychiatry, 2020, 11, 799.	1.3	19
3095	Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure?. Journal of Agricultural and Food Chemistry, 2020, 68, 10517-10531.	2.4	42
3096	Structural changes in gut microbiome after Ramadan fasting: a pilot study. Beneficial Microbes, 2020, 11, 227-233.	1.0	53
3097	The Effect of Voluntary Exercise on Gut Microbiota in Partially Hydrolyzed Guar Gum Intake Mice under High-Fat Diet Feeding. Nutrients, 2020, 12, 2508.	1.7	13
3098	Fungal Dysbiosis Correlates with the Development of Tumor-Induced Cachexia in Mice. Journal of Fungi (Basel, Switzerland), 2020, 6, 364.	1.5	10
3099	An association between chronic widespread pain and the gut microbiome. Rheumatology, 2021, 60, 3727-3737.	0.9	40
3100	Six-Week Exercise Training With Dietary Restriction Improves Central Hemodynamics Associated With Altered Gut Microbiota in Adolescents With Obesity. Frontiers in Endocrinology, 2020, 11, 569085.	1.5	21
3101	Modulation of the Gut Microbiota by Shen-Yan-Fang-Shuai Formula Improves Obesity Induced by High-Fat Diets. Frontiers in Microbiology, 2020, 11, 564376.	1.5	3
3102	Phytosterols: Nutritional Health Players in the Management of Obesity and Its Related Disorders. Antioxidants, 2020, 9, 1266.	2.2	51
3103	High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs. Frontiers in Microbiology, 2020, 11, 564160.	1.5	9
3104	Bacillus coagulans BC198 and Lactobacillus paracasei S38 in combination reduce body fat accumulation and modulate gut microbiota. CYTA - Journal of Food, 2020, 18, 764-775.	0.9	4
3105	Anti-Obesity Effect of Dictyophora indusiata Mushroom Polysaccharide (DIP) in High Fat Diet-Induced Obesity via Regulating Inflammatory Cascades and Intestinal Microbiome. Frontiers in Endocrinology, 2020, 11, 558874.	1.5	32
3106	The sad weekend: A perilous North American tradition. Neurobiology of Pain (Cambridge, Mass), 2020, 8, 100053.	1.0	2
3107	Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 575559.	1.8	63
3108	The Gut Microbiota: A Potential Gateway to Improved Health Outcomes in Breast Cancer Treatment and Survivorship. International Journal of Molecular Sciences, 2020, 21, 9239.	1.8	29
3109	Obesity and immune status in children. Current Opinion in Pediatrics, 2020, 32, 805-815.	1.0	33
3110	Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice. Food and Function, 2020, 11, 9585-9598.	2.1	37

#	Article	IF	CITATIONS
3111	Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy, 2020, 1, 202-232.	0.7	121
3112	A Human Microbiota-Associated Murine Model for Assessing the Impact of the Vaginal Microbiota on Pregnancy Outcomes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 570025.	1.8	9
3113	Characterization of the Intestinal Microbiota of Broiler Breeders With Different Egg Laying Rate. Frontiers in Veterinary Science, 2020, 7, 599337.	0.9	6
3114	The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells, 2020, 9, 2401.	1.8	18
3115	Monitoring the Diversity and Metabolic Shift of Gut Microbes during Green Tea Feeding in an In Vitro Human Colonic Model. Molecules, 2020, 25, 5101.	1.7	14
3116	Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiology, 2020, 20, 330.	1.3	24
3117	The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020, 8, 1715.	1.6	713
3118	Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients, 2020, 12, 3319.	1.7	20
3119	Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice. Journal of Experimental Biology, 2020, 223, .	0.8	14
3120	Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells, 2020, 9, 1091.	1.8	38
3121	Absence of neurotensin attenuates intestinal dysbiosis and inflammation by maintaining Mmp7/αâ€defensin axis in dietâ€induced obese mice. FASEB Journal, 2020, 34, 8596-8610.	0.2	10
3122	Bioavailability Based on the Gut Microbiota: a New Perspective. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	32
3123	The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Frontiers in Microbiology, 2020, 11, 1065.	1.5	146
3124	Effects of Dietary Energy Levels on Rumen Fermentation, Microbial Diversity, and Feed Efficiency of Yaks (Bos grunniens). Frontiers in Microbiology, 2020, 11, 625.	1.5	70
3125	NLRP6 inflammasome. Molecular Aspects of Medicine, 2020, 76, 100859.	2.7	48
3126	The gut microbiota and Bergmann's rule in wild house mice. Molecular Ecology, 2020, 29, 2300-2311.	2.0	28
3127	Acute highâ€dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice. Journal of Applied Toxicology, 2020, 40, 1384-1395.	1.4	11
3128	Early Signs of Gut Microbiome Aging: Biomarkers of Inflammation, Metabolism, and Macromolecular Damage in Young Adulthood. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1258-1266.	1.7	19

#	Article	IF	CITATIONS
3129	Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. British Journal of Surgery, 2020, 107, 1673-1685.	0.1	22
3130	Gut Bacterial Families Are Associated with Body Composition and Metabolic Risk Markers in School-Aged Children in Rural Mexico. Childhood Obesity, 2020, 16, 358-366.	0.8	16
3131	The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 2020, 12, 1474.	1.7	997
3132	Lactobacillus-Derived Bioactive Metabolites for the Regulation of Periodontal Health: Evidences to Clinical Setting. Molecules, 2020, 25, 2088.	1.7	7
3133	Exercise Oncology., 2020,,.		8
3134	Oral administration of <i>Lactobacillus fermentum</i> CRL1446 improves biomarkers of metabolic syndrome in mice fed a high-fat diet supplemented with wheat bran. Food and Function, 2020, 11, 3879-3894.	2.1	23
3135	Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proceedings of the Nutrition Society, 2020, 79, 514-530.	0.4	22
3136	Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice. Food and Function, 2020, 11, 4773-4784.	2.1	55
3137	The Impact of Environmental Chemicals on the Gut Microbiome. Toxicological Sciences, 2020, 176, 253-284.	1.4	90
3138	Gut microbiota in early pregnancy among women with Hyperglycaemia vs. Normal blood glucose. BMC Pregnancy and Childbirth, 2020, 20, 284.	0.9	19
3139	Fecal Viral Community Responses to High-Fat Diet in Mice. MSphere, 2020, 5, .	1.3	33
3140	The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 2020, 17, 24.	1.7	157
3141	The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules, 2020, 25, 2477.	1.7	22
3142	Oral Supplements of Combined <i>Bacillus licheniformis</i> Zhengchangsheng® and Xylooligosaccharides Improve High-Fat Diet-Induced Obesity and Modulate the Gut Microbiota in Rats. BioMed Research International, 2020, 2020, 1-17.	0.9	18
3143	<i>Trans</i> -fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. British Journal of Nutrition, 2020, 124, 1251-1263.	1.2	19
3144	Shortâ€term highâ€intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Experimental Physiology, 2020, 105, 1268-1279.	0.9	30
3145	Opioid system influences gut-brain axis: Dysbiosis and related alterations. Pharmacological Research, 2020, 159, 104928.	3.1	30
3146	Lactobacillus plantarum FRT10 alleviated high-fat diet–induced obesity in mice through regulating the PPARα signal pathway and gut microbiota. Applied Microbiology and Biotechnology, 2020, 104, 5959-5972.	1.7	40

#	Article	IF	CITATIONS
3147	Individual and cohort-specific gut microbiota patterns associated with tissue-specific insulin sensitivity in overweight and obese males. Scientific Reports, 2020, 10, 7523.	1.6	21
3148	Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients, 2020, 12, 1287.	1.7	53
3149	Intake of sucrose affects gut dysbiosis in patients with typeÂ2 diabetes. Journal of Diabetes Investigation, 2020, 11, 1623-1634.	1.1	35
3150	<i>Lactobacillus reuteri</i> attenuates cardiac injury without lowering cholesterol in low-density lipoprotein receptor-deficient mice fed standard chow. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H32-H41.	1.5	15
3151	Gut Microbiota Metabolism and Interaction with Food Components. International Journal of Molecular Sciences, 2020, 21, 3688.	1.8	88
3152	Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio). Science of the Total Environment, 2020, 739, 140081.	3.9	54
3153	Tangshen formula modulates gut Microbiota and reduces gut-derived toxins in diabetic nephropathy rats. Biomedicine and Pharmacotherapy, 2020, 129, 110325.	2.5	34
3154	Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fìtoterapìâ, 2020, 146, 104665.	1.1	24
3155	Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Research International, 2020, 137, 109410.	2.9	71
3156	Autologous fecal transplantation from a lean state potentiates caloric restriction effects on body weight and adiposity in obese mice. Scientific Reports, 2020, 10, 9388.	1.6	25
3157	Effects of a high fat diet on gut microbiome dysbiosis in a mouse model of Gulf War Illness. Scientific Reports, 2020, 10, 9529.	1.6	20
3158	<i>Lactobacillus casei</i> improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota. Food and Function, 2020, 11, 6148-6157.	2.1	60
3159	Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. International Journal of Molecular Sciences, 2020, 21, 4093.	1.8	117
3160	Health beneficial effects of resistant starch on diabetes and obesity <i>via</i> regulation of gut microbiota: a review. Food and Function, 2020, 11, 5749-5767.	2.1	45
3161	Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice. Nutrients, 2020, 12, 1848.	1.7	27
3162	Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease. Inflammation Research, 2020, 69, 851-867.	1.6	7
3163	Towards a disease-associated common trait of gut microbiota dysbiosis: The pivotal role of Akkermansia muciniphila. Digestive and Liver Disease, 2020, 52, 1002-1010.	0.4	23
3164	Abundance of the species Clostridium butyricum in the gut microbiota contributes to differences in obesity phenotype in outbred Sprague-Dawley CD rats. Nutrition, 2020, 78, 110893.	1.1	15

#	Article	IF	Citations
3165	Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know?. Physiology, 2020, 35, 261-274.	1.6	28
3166	Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Particle and Fibre Toxicology, 2020, 17, 19.	2.8	93
3167	Whole brain radiotherapy induces cognitive dysfunction in mice: key role of gut microbiota. Psychopharmacology, 2020, 237, 2089-2101.	1.5	12
3168	Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiology Reviews, 2020, 44, 507-521.	3.9	65
3169	Host genotype and exercise exhibit species-level selection for members of the gut bacterial communities in the mouse digestive system. Scientific Reports, 2020, 10, 8984.	1.6	13
3170	Enhanced thermal stability of green banana starch by heat-moisture treatment and its ability to reduce body fat accumulation and modulate gut microbiota. International Journal of Biological Macromolecules, 2020, 160, 915-924.	3.6	22
3171	Flavonoids from Mulberry Leaves Alleviate Lipid Dysmetabolism in High Fat Diet-Fed Mice: Involvement of Gut Microbiota. Microorganisms, 2020, 8, 860.	1.6	33
3172	Gut microbes effects on host metabolic alterations in health and disease. Gut Microbes, 2020, 11, 249-252.	4.3	5
3173	Restoring glucose uptake rescues neutrophil dysfunction and protects against systemic fungal infection in mouse models of kidney disease. Science Translational Medicine, 2020, 12, .	5.8	22
3174	The effect of ultra-processed very low-energy diets on gut microbiota and metabolic outcomes in individuals with obesity: A systematic literature review. Obesity Research and Clinical Practice, 2020, 14, 197-204.	0.8	26
3175	The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiology Reviews, 2020, 44, 454-489.	3.9	139
3176	The Therapeutic Effects of Magnolia Officinalis Extraction on an Antibiotics-Induced Intestinal Dysbacteriosis in Mice. Current Microbiology, 2020, 77, 2413-2421.	1.0	4
3177	Gut Microbiome Dysbiosis and Depression: a Comprehensive Review. Current Pain and Headache Reports, 2020, 24, 36.	1.3	31
3178	Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review. Surgery for Obesity and Related Diseases, 2020, 16, 1361-1369.	1.0	19
3179	Fish oil extracted from Coregonus peled improves obese phenotype and changes gut microbiota in a high-fat diet-induced mouse model of recurrent obesity. Food and Function, 2020, 11, 6158-6169.	2.1	11
3180	Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Frontiers in Immunology, 2020, 11, 1164.	2.2	20
3181	Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnology Advances, 2020, 43, 107576.	6.0	40
3182	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	1.3	102

#	Article	IF	CITATIONS
3183	Evaluation of Microbiota and Weight Alterations After the Administration of Tetracycline and Lactobacillus gasseri in Rats. Current Microbiology, 2020, 77, 2449-2455.	1.0	4
3184	Effect of Gut Microbiota and <i>PNPLA3</i> rs738409 Variant on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Youth. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3575-e3585.	1.8	51
3185	Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients, 2020, 12, 1827.	1.7	20
3186	α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 2020, 12, 732.	1.7	21
3187	Calcipotriol and iBRD9 reduce obesity in Nur77 knockout mice by regulating the gut microbiota, improving intestinal mucosal barrier function. International Journal of Obesity, 2020, 44, 1052-1061.	1.6	3
3188	Physiological and gut microbiome changes associated with low dietary protein level in genetically improved farmed tilapia (GIFT, $\langle i \rangle$ Oreochromis niloticus $\langle i \rangle$) determined by 16S rRNA sequence analysis. MicrobiologyOpen, 2020, 9, e1000.	1.2	22
3189	Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Scientific Reports, 2020, 10, 4194.	1.6	101
3190	The effect of diet change and insulin dysregulation on the fecal microbiome of ponies. Journal of Experimental Biology, 2020, 223, .	0.8	4
3191	Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .	3.3	34
3192	Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. MicrobiologyOpen, 2020, 9, 1085-1101.	1.2	23
3193	Meat Protein in High-Fat Diet Induces Adipogensis and Dyslipidemia by Altering Gut Microbiota and Endocannabinoid Dysregulation in the Adipose Tissue of Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 3933-3946.	2.4	22
3194	Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 2020, 68, 103858.	1.6	34
3195	Factors that shape the host microbiome. , 2020, , 55-77.		5
3196	The microbiome and host behaviour. , 2020, , 98-121.		1
3197	Islamic fasting leads to an increased abundance of Akkermansia muciniphila and Bacteroides fragilis group: A preliminary study on intermittent fasting. Turkish Journal of Gastroenterology, 2020, 30, 1030-1035.	0.4	58
3198	Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study. Digestive Diseases and Sciences, 2020, 65, 2595-2604.	1.1	65
3199	Isolation and hypoglycemic effects of water extracts from mulberry leaves in Northeast China. Food and Function, 2020, 11, 3112-3125.	2.1	36
3200	The gut microbiome and thromboembolism. Thrombosis Research, 2020, 189, 77-87.	0.8	41

#	Article	IF	CITATIONS
3201	Changes in the faecal microbiota of horses and ponies during a two-year body weight gain programme. PLoS ONE, 2020, 15, e0230015.	1.1	13
3202	The Changes in the Frog Gut Microbiome and Its Putative Oxygen-Related Phenotypes Accompanying the Development of Gastrointestinal Complexity and Dietary Shift. Frontiers in Microbiology, 2020, $11, 162$.	1.5	24
3203	Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Advances in Experimental Medicine and Biology, 2020, 1307, 499-519.	0.8	12
3204	Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165767.	1.8	111
3205	A comparative study of the modulation of the gut microbiota in rats by dietary intervention with different sources of eggâ€white proteins. Journal of the Science of Food and Agriculture, 2020, 100, 3622-3629.	1.7	19
3206	Maternal exposure to a human relevant mixture of persistent organic pollutants reduces colorectal carcinogenesis in A/J Min/+ mice. Chemosphere, 2020, 252, 126484.	4.2	8
3207	Housing temperature influences exercise training adaptations in mice. Nature Communications, 2020, 11, 1560.	5.8	52
3208	Traditional Chinese Medicine Formula Kang Shuai Lao Pian Improves Obesity, Gut Dysbiosis, and Fecal Metabolic Disorders in High-Fat Diet-Fed Mice. Frontiers in Pharmacology, 2020, 11, 297.	1.6	46
3209	Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Scientific Reports, 2020, 10, 5450.	1.6	113
3210	Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients, 2020, 12, 892.	1.7	40
3211	Profile of the gut microbiota of adults with obesity: a systematic review. European Journal of Clinical Nutrition, 2020, 74, 1251-1262.	1.3	341
3212	Contribution of macronutrients to obesity: implications for precision nutrition. Nature Reviews Endocrinology, 2020, 16, 305-320.	4.3	113
3213	Effect of time restricted feeding on the gut microbiome in adults with obesity: A pilot study. Nutrition and Health, 2020, 26, 79-85.	0.6	54
3214	Microbe Art Can Educate & Correct Misconceptions about Microorganisms. American Biology Teacher, 2020, 82, 162-169.	0.1	4
3215	Effects of high-fat diet on liver injury after small bowel resection. Journal of Pediatric Surgery, 2020, 55, 1099-1106.	0.8	12
3216	Membrane mucins of the intestine at a glance. Journal of Cell Science, 2020, 133, .	1.2	74
3217	The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis. Frontiers in Genetics, 2020, 11, 297.	1.1	52
3218	Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated With Systemic Inflammation. Frontiers in Immunology, 2020, 11, 557.	2.2	105

#	Article	IF	CITATIONS
3219	An Integrated Multi-Omics Analysis Defines Key Pathway Alterations in a Diet-Induced Obesity Mouse Model. Metabolites, 2020, 10, 80.	1.3	17
3220	Current Perspectives on Gut Microbiome Dysbiosis and Depression. Advances in Therapy, 2020, 37, 1328-1346.	1.3	93
3221	Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance Without Recovering Gut Microbiome Diversity in Mice. Frontiers in Microbiology, 2020, 11, 1349.	1.5	23
3222	The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiology International, 2020, 37, 1067-1081.	0.9	32
3223	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	4.9	903
3224	Sex-Specific Associations between Gut Prevotellaceae and Host Genetics on Adiposity. Microorganisms, 2020, 8, 938.	1.6	28
3225	Green Tea Encourages Growth of <i>Akkermansia muciniphila</i> . Journal of Medicinal Food, 2020, 23, 841-851.	0.8	16
3226	Dynamic Alterations of Gut Microbiota in Porcine Circovirus Type 3-Infected Piglets. Frontiers in Microbiology, 2020, 11, 1360.	1.5	14
3227	Inclusion of limited amounts of extruded legumes plus cereal mixes in normocaloric or obesogenic diets for rats: effects on intestinal microbiota composition. Journal of the Science of Food and Agriculture, 2020, 100, 5546-5557.	1.7	3
3228	Chronic kidney disease in cats alters response of the plasma metabolome and fecal microbiome to dietary fiber. PLoS ONE, 2020, 15, e0235480.	1.1	24
3229	NOD2 Deficiency Promotes Intestinal CD4+ T Lymphocyte Imbalance, Metainflammation, and Aggravates Type 2 Diabetes in Murine Model. Frontiers in Immunology, 2020, 11, 1265.	2.2	17
3230	Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes and Nutrition, 2020, 15, 12.	1.2	43
3231	Microbial Diversity, Interventions and Scope. , 2020, , .		4
3232	Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutrition Research, 2020, 83, 1-14.	1.3	57
3233	Fine-scale succession patterns and assembly mechanisms of bacterial community of Litopenaeus vannamei larvae across the developmental cycle. Microbiome, 2020, 8, 106.	4.9	52
3234	Improvement in host metabolic homeostasis and alteration in gut microbiota in mice on the high-fat diet: A comparison of calcium supplements. Food Research International, 2020, 136, 109495.	2.9	7
3235	Oral administration of trehangelin-A alleviates metabolic disorders caused by a high-fat diet through improvement of lipid metabolism and restored beneficial microbiota. Obesity Research and Clinical Practice, 2020, 14, 360-367.	0.8	5
3236	Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut. Nature Ecology and Evolution, 2020, 4, 1268-1278.	3.4	18

#	Article	IF	CITATIONS
3237	Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 2020, 123, 1127-1137.	1.2	193
3238	Metabolically Healthy Obesity—Heterogeneity in Definitions and Unconventional Factors. Metabolites, 2020, 10, 48.	1.3	59
3239	Gut Microbiota of Wild and Captive Alpine Musk Deer (Moschus chrysogaster). Frontiers in Microbiology, 2019, 10, 3156.	1.5	42
3240	Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Frontiers in Microbiology, 2020, 11, 219.	1.5	272
3241	Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism. Cell Host and Microbe, 2020, 27, 358-375.e7.	5.1	97
3242	Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacological Research, 2020, 155, 104722.	3.1	179
3243	Modulation of Glucose Metabolism by Leaf Tea Constituents: A Systematic Review of Recent Clinical and Pre-clinical Findings. Journal of Agricultural and Food Chemistry, 2020, 68, 2973-3005.	2.4	7
3245	Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. European Journal of Nutrition, 2020, 59, 3617-3634.	1.8	28
3246	Gut microbiota: a promising target against cardiometabolic diseases. Expert Review of Endocrinology and Metabolism, 2020, 15, 13-27.	1.2	35
3247	Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. PLoS ONE, 2020, 15, e0229001.	1.1	56
3248	Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behavioural Brain Research, 2020, 384, 112560.	1.2	53
3249	Overweight and underweight status are linked to specific gut microbiota and intestinal tricarboxylic acid cycle intermediates. Clinical Nutrition, 2020, 39, 3189-3198.	2.3	31
3250	Food matrix and the microbiome: considerations for preclinical chronic disease studies. Nutrition Research, 2020, 78, 1-10.	1.3	13
3251	Lessons from bambooâ€eating pandas and their gut microbiome: Gut microbiome flow and applications. Evolutionary Applications, 2020, 13, 615-619.	1.5	8
3252	Gut Microbes Controlling Blood Sugar: No Fire Required!. Cell Metabolism, 2020, 31, 443-444.	7.2	9
3253	Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cecum. Poultry Science, 2020, 99, 1297-1305.	1.5	34
3254	Modulation of gut microbiota by spent coffee grounds attenuates dietâ€induced metabolic syndrome in rats. FASEB Journal, 2020, 34, 4783-4797.	0.2	24
3255	It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome, 2020, 8, 15.	4.9	83

#	Article	IF	CITATIONS
3256	Systematic review: gastric microbiota in health and disease. Alimentary Pharmacology and Therapeutics, 2020, 51, 582-602.	1.9	113
3257	The composition of the microbial community associated with <i>Macrobrachium rosenbergii</i> zoeae varies throughout larval development. Journal of Fish Diseases, 2020, 43, 413-421.	0.9	9
3258	Overweight and Obesity in Children Are Associated with an Abundance of Firmicutes and Reduction of Bifidobacterium in Their Gastrointestinal Microbiota. Childhood Obesity, 2020, 16, 204-210.	0.8	50
3259	A Renal Clinician's Guide to the Gut Microbiota. , 2020, 30, 384-395.		18
3260	The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. Journal of Internal Medicine, 2020, 287, 271-282.	2.7	44
3261	Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Failure, 2020, 7, 456-466.	1.4	56
3262	Comparative Analysis of Gut Microbiota Following Changes in Training Volume Among Swimmers. International Journal of Sports Medicine, 2020, 41, 292-299.	0.8	23
3263	Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS ONE, 2020, 15, e0227774.	1.1	30
3264	The landscape of microbiota research in Iran; a bibliometric and network analysis. Journal of Diabetes and Metabolic Disorders, 2020, 19, 163-177.	0.8	10
3265	Effects of dietary fibers and prebiotics in adiposity regulation via modulation of gut microbiota. Applied Biological Chemistry, 2020, 63, .	0.7	17
3266	Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet. International Journal of Molecular Sciences, 2020, 21, 365.	1.8	64
3267	Dietary polyphenols turn fat "brownâ€! A narrative review of the possible mechanisms. Trends in Food Science and Technology, 2020, 97, 221-232.	7.8	27
3268	Reduction of serum cholesterol and its mechanism by <i>Lactobacillus plantarum</i> H6 screened from local fermented food products. Food and Function, 2020, 11, 1397-1409.	2.1	28
3269	Cow's milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. Journal of Nutritional Biochemistry, 2020, 79, 108351.	1.9	30
3270	Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105602.	1.2	62
3271	The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 2020, 11, 635-654.	4.3	22
3272	Mechanisms of checkpoint inhibition-induced adverse events. Clinical and Experimental Immunology, 2020, 200, 141-154.	1,1	33
3273	A more pronounced effect of type III resistant starch <i>vs.</i> type II resistant starch on ameliorating hyperlipidemia in high fat diet-fed mice is associated with its supramolecular structural characteristics. Food and Function, 2020, 11, 1982-1995.	2.1	45

#	Article	IF	CITATIONS
3274	A brief overview on the use of probiotics to treat overweight and obese patients. Expert Review of Endocrinology and Metabolism, 2020, 15, 1-4.	1.2	23
3275	Characteristics of the fecal microbiota of high- and low-yield hens and effects of fecal microbiota transplantation on egg production performance. Research in Veterinary Science, 2020, 129, 164-173.	0.9	27
3276	The Molecular and Physiological Effects of Protein-Derived Polyamines in the Intestine. Nutrients, 2020, 12, 197.	1.7	49
3277	Obesity: More Than an Inflammatory, an Infectious Disease?. Frontiers in Immunology, 2020, 10, 3092.	2.2	21
3278	Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients, 2020, 12, 235.	1.7	74
3279	Xylooligosaccharide Modulates Gut Microbiota and Alleviates Colonic Inflammation Caused by High Fat Diet Induced Obesity. Frontiers in Physiology, 2019, 10, 1601.	1.3	53
3280	GRK2 levels in myeloid cells modulate adipose-liver crosstalk in high fat diet-induced obesity. Cellular and Molecular Life Sciences, 2020, 77, 4957-4976.	2.4	5
3281	Long-Term Blackcurrant Supplementation Modified Gut Microbiome Profiles in Mice in an Age-Dependent Manner: An Exploratory Study. Nutrients, 2020, 12, 290.	1.7	15
3282	Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients, 2020, 12, 381.	1.7	265
3283	Gut-host Crosstalk: Methodological and Computational Challenges. Digestive Diseases and Sciences, 2020, 65, 686-694.	1.1	2
3284	Variation in gut bacterial composition is associated with Haemonchus contortus parasite infection of sheep. Animal Microbiome, 2020, 2, 3.	1.5	11
3285	In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. International Journal of Molecular Sciences, 2020, 21, 906.	1.8	29
3286	Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. Toxicology, 2020, 433-434, 152395.	2.0	26
3287	Improved physicochemical and functional properties of okara, a soybean residue, by nanocellulose technologies for food development – A review. Food Hydrocolloids, 2020, 109, 105964.	5.6	28
3288	Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes. Gut Microbes, 2020, 11, 1188-1202.	4.3	66
3289	D-mannose attenuates bone loss in mice <i>via</i> Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232091266.	1.1	26
3290	Effects of octylphenol exposure on the lipid metabolism and microbiome of the intestinal tract of Rana chensinensis tadpole by RNAseq and 16s amplicon sequencing. Ecotoxicology and Environmental Safety, 2020, 197, 110650.	2.9	11
3291	Modulation of gut microbiota in rats fed whole egg diets by processing duck egg to preserved egg. Journal of Bioscience and Bioengineering, 2020, 130, 54-62.	1.1	9

#	Article	IF	CITATIONS
3292	Astaxanthin n-Octanoic Acid Diester Ameliorates Insulin Resistance and Modulates Gut Microbiota in High-Fat and High-Sucrose Diet-Fed Mice. International Journal of Molecular Sciences, 2020, 21, 2149.	1.8	33
3293	Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk. Applied Microbiology and Biotechnology, 2020, 104, 4345-4357.	1.7	14
3294	Consumption of non-nutritive sweeteners during pregnancy. American Journal of Obstetrics and Gynecology, 2020, 223, 211-218.	0.7	27
3295	The role of prebiotics in cognition, anxiety, and depression. European Neuropsychopharmacology, 2020, 34, 1-18.	0.3	57
3296	Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. Npj Biofilms and Microbiomes, 2020, 6, 16.	2.9	53
3297	Elevated levels of proinflammatory volatile metabolites in feces of high fat diet fed KK-Ay mice. Scientific Reports, 2020, 10, 5681.	1.6	10
3298	A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity. Scientific Reports, 2020, 10 , 6118 .	1.6	9
3299	Dietary Hemp Seeds More Effectively Attenuate Disorders in Genetically Obese Rats than Their Lipid Fraction. Journal of Nutrition, 2020, 150, 1425-1433.	1.3	15
3300	Nutrients and Immunometabolism: Role of Macrophage NLRP3. Journal of Nutrition, 2020, 150, 1693-1704.	1.3	10
3301	A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Applied and Environmental Microbiology, 2020, 86, .	1.4	30
3302	The Gut Microbial Diversity of Newly Diagnosed Diabetics but Not of Prediabetics Is Significantly Different from That of Healthy Nondiabetics. MSystems, 2020, 5, .	1.7	64
3303	Traditional Chinese Medicine and Gut Microbiome: Their Respective and Concert Effects on Healthcare. Frontiers in Pharmacology, 2020, 11, 538.	1.6	32
3304	Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 2890.	1.8	133
3305	Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients, 2020, 12, 1158.	1.7	74
3306	Microbial Adaptation Due to Gastric Bypass Surgery: The Nutritional Impact. Nutrients, 2020, 12, 1199.	1.7	12
3307	Pesticides-induced energy metabolic disorders. Science of the Total Environment, 2020, 729, 139033.	3.9	55
3308	The Regulatory Effects of a Formulation of Cinnamomum osmophloeum Kaneh and Taiwanofungus camphoratus on Metabolic Syndrome and the Gut Microbiome. Plants, 2020, 9, 383.	1.6	5
3309	Bacterial fecal microbiota is only minimally affected by a standardized weight loss plan in obese cats. BMC Veterinary Research, 2020, 16, 112.	0.7	11

#	Article	IF	Citations
3310	Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radical Biology and Medicine, 2020, 156, 83-98.	1.3	134
3311	Prenatal and postnatal determinants in shaping offspring's microbiome in the first 1000 days: study protocol and preliminary results at one month of life. Italian Journal of Pediatrics, 2020, 46, 45.	1.0	22
3312	Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
3313	Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 5107-5117.	2.4	52
3314	Sex differences in response to a high fat, high sucrose diet in both the gut microbiome and hypothalamic astrocytes and microglia. Nutritional Neuroscience, 2022, 25, 321-335.	1.5	35
3315	Gut microbiota and obesity: causally linked?. Expert Review of Gastroenterology and Hepatology, 2020, 14, 401-403.	1.4	19
3316	Isotopic and genetic methods reveal the role of the gut microbiome in mammalian host essential amino acid metabolism. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192995.	1.2	32
3317	Mucins and the Microbiome. Annual Review of Biochemistry, 2020, 89, 769-793.	5.0	184
3318	Polysaccharide extracted from WuGuChong reduces high-fat diet-induced obesity in mice by regulating the composition of intestinal microbiota. Nutrition and Metabolism, 2020, 17, 27.	1.3	11
3319	Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS ONE, 2020, 15, e0230932.	1.1	14
3320	<p>Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 943-962.	1.1	38
3321	<p>Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 835-850.	1.1	35
3322	Retinoic Acid Exerts Disease Stage-Dependent Effects on Pristane-Induced Lupus. Frontiers in Immunology, 2020, 11, 408.	2.2	16
3323	Relationships between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content. Microorganisms, 2020, 8, 513.	1.6	22
3324	Germ-Free Swiss Webster Mice on a High-Fat Diet Develop Obesity, Hyperglycemia, and Dyslipidemia. Microorganisms, 2020, 8, 520.	1.6	17
3325	Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms, 2020, 8, 527.	1.6	101
3326	2′-Fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients, 2020, 12, 1003.	1.7	22
3327	Gut microbiota abnormalities, small intestinal bacterial overgrowth, and non-alcoholic fatty liver disease: An emerging paradigm. Indian Journal of Gastroenterology, 2020, 39, 9-21.	0.7	29

#	Article	IF	Citations
3328	The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microbial Pathogenesis, 2020, 144, 104200.	1.3	26
3329	Gender-associated differences in oral microbiota and salivary biochemical parameters in response to feeding. Journal of Physiology and Biochemistry, 2021, 77, 155-166.	1.3	18
3331	Characterization of local gut microbiome and intestinal transcriptome responses to rosiglitazone treatment in diabetic db/db mice. Biomedicine and Pharmacotherapy, 2021, 133, 110966.	2.5	12
3332	Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper, Nilaparvata lugens. Journal of Pest Science, 2021, 94, 757-767.	1.9	32
3333	Comparative analysis of the gut microbiota composition in the Cln1R151X and Cln2R207X mouse models of Batten disease and in three wild-type mouse strains. Archives of Microbiology, 2021, 203, 85-96.	1.0	6
3334	A new Illumina MiSeq highâ€throughput sequencingâ€based method for evaluating the composition of the Bacteroides community in the intestine using the rpsD gene sequence. Microbial Biotechnology, 2021, 14, 577-586.	2.0	9
3335	Oral Probiotic Bifidobacterium Longum Supplementation Improves Metabolic Parameters and Alters the Expression of the Renin-Angiotensin System in Obese Mice Liver. Biological Research for Nursing, 2021, 23, 100-108.	1.0	23
3336	Human gut-derived commensal suppresses generation of T-cell response to gliadin in humanized mice by modulating gut microbiota. Anaerobe, 2021, 68, 102237.	1.0	11
3337	Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice. Nutrition, 2021, 81, 110959.	1.1	29
3338	Trichinella spiralis infection ameliorated diet-induced obesity model in mice. International Journal for Parasitology, 2021, 51, 63-71.	1.3	16
3339	Colistin and amoxicillin combinatorial exposure alters the human intestinal microbiota and antibiotic resistome in the simulated human intestinal microbiota. Science of the Total Environment, 2021, 750, 141415.	3.9	14
3340	Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 64-79.	1.8	85
3341	Flavonoids as antiobesity agents: A review. Medicinal Research Reviews, 2021, 41, 556-585.	5.0	81
3342	Characterization of gut microbiota in polycystic ovary syndrome: Findings from a lean population. European Journal of Clinical Investigation, 2021, 51, e13417.	1.7	30
3343	Long-term exposure to titanium dioxide nanoparticles promotes diet-induced obesity through exacerbating intestinal mucus layer damage and microbiota dysbiosis. Nano Research, 2021, 14, 1512-1522.	5.8	28
3344	Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice. Pharmacological Research, 2021, 163, 105337.	3.1	16
3345	Citrus flavonoids and the intestinal barrier: Interactions and effects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 225-251.	5.9	36
3346	Ecotoxicological assessment of commercial boron nitride nanotubes toward <i>Xenopus laevis</i> tadpoles and host-associated gut microbiota. Nanotoxicology, 2021, 15, 35-51.	1.6	16

#	Article	IF	CITATIONS
3347	Identification of gut microbiota and microbial metabolites regulated by an antimicrobial peptide lipocalin 2 in high fat diet-induced obesity. International Journal of Obesity, 2021, 45, 143-154.	1.6	53
3348	Human gut microbiota and its possible relationship with obesity and diabetes. International Journal of Diabetes in Developing Countries, 2021, 41, 235-243.	0.3	3
3349	An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomedicine and Pharmacotherapy, 2021, 133, 110991.	2.5	41
3350	The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomedicine and Pharmacotherapy, 2021, 133, 110992.	2.5	26
3351	Sulfated polysaccharides from Undaria pinnatifida improved high fat diet-induced metabolic syndrome, gut microbiota dysbiosis and inflammation in BALB/c mice. International Journal of Biological Macromolecules, 2021, 167, 1587-1597.	3.6	50
3352	Vascular reactivity stimulated by TMA and TMAO: Are perivascular adipose tissue and endothelium involved?. Pharmacological Research, 2021, 163, 105273.	3.1	16
3353	Different effects of nano- and microplastics on oxidative status and gut microbiota in the marine medaka Oryzias melastigma. Journal of Hazardous Materials, 2021, 405, 124207.	6.5	111
3354	Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microbial Pathogenesis, 2021, 152, 104589.	1.3	7
3355	Alterations in Gut Microbiota Do Not Play a Causal Role in Diet-independent Weight Gain Caused by Ovariectomy. Journal of the Endocrine Society, 2021, 5, bvaa173.	0.1	6
3356	Physiological parameters and gut microbiome associated with different dietary lipid levels in hybrid yellow catfish (Tachysurus fulvidraco♀× Pseudobagrus vachelliiâ™,). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 37, 100777.	0.4	10
3357	Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine, 2021, 63, 103176.	2.7	64
3358	Association of birth mode of delivery with infant faecal microbiota, potential pathobionts, and short chain fatty acids: a longitudinal study over the first year of life. BJOG: an International Journal of Obstetrics and Gynaecology, 2021, 128, 1293-1303.	1.1	21
3359	Propionate inhibits fat deposition via affecting feed intake and modulating gut microbiota in broilers. Poultry Science, 2021, 100, 235-245.	1.5	18
3360	Sleep and the Gut Microbiome in Psoriasis: Clinical Implications for Disease Progression and the Development of Cardiometabolic Comorbidities. Journal of Psoriasis and Psoriatic Arthritis, 2021, 6, 27-37.	0.3	4
3361	Caesarean delivery increases the risk of overweight or obesity in 2-year-old children. Journal of Obstetrics and Gynaecology, 2021, 41, 374-379.	0.4	7
3362	Intrauterine Growth Restriction Is Associated with Unique Features of the Reproductive Microbiome. Reproductive Sciences, 2021, 28, 828-837.	1.1	16
3363	Smooth cordgrass (Spartina alterniflora), a potential food source for Apostichopus japonicus. Aquaculture, 2021, 530, 735863.	1.7	3
3364	Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). Obesity Surgery, 2021, 31, 317-326.	1.1	18

#	Article	IF	CITATIONS
3365	The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 283-291.	1.4	14
3366	Captive environment influences the composition and diversity of fecal microbiota in <scp>Indoâ€Pacific</scp> bottlenose dolphins, <scp><i>Tursiops aduncus</i></scp> . Marine Mammal Science, 2021, 37, 207-219.	0.9	11
3367	MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 611-620.	1.9	21
3368	Gut Microbiota in Obesity and Bariatric Surgery: Where Do We Stand?. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 183-227.	0.2	0
3369	Role of Vitamins in Maintaining Structure and Function of Intestinal Microbiome., 2021,,.		1
3370	Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis. International Journal of Molecular Sciences, 2021, 22, 1397.	1.8	59
3371	Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 367-388.	2.6	32
3372	Gastroenterocardiology: Or what do the gut and the heart have in common?. Timocki Medicinski Glasnik, 2021, 46, 11-22.	0.0	0
3374	IBS in overweight and obese individuals: a new disease phenotype?. Russian Journal of Evidence-Based Gastroenterology, 2021, 10, 52.	0.3	3
3375	Gut microbiota and obesity and the body weight regulation. , 2021, , 355-373.		0
3376	Physiological Responses of Post-Dietary Effects: Lessons from Pre-Clinical and Clinical Studies. Metabolites, 2021, 11, 62.	1.3	1
3377	Standardized hot water extract from the leaves of <i>Hydrangea serrata</i> (Thunb.) Ser. alleviates obesity <i>via</i> the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food and Function, 2021, 12, 2672-2685.	2.1	12
3378	Common nutrition and health issues of food in the Balkans. , 2021, , 279-297.		0
3379	Modulation of gelatinized wheat starch digestion and fermentation profiles by young apple polyphenols <i>in vitro</i> . Food and Function, 2021, 12, 1983-1995.	2.1	23
3380	Microbial Diversity and Classification. , 2021, , .		0
3381	Research in Exercise Science and Gut Microbiota: A Two-way Relationship. , 2022, , 308-318.		0
3382	Gut Microbiota in Health and Diseases. , 2022, , 182-198.		3
3383	Disease Implications of the Circadian Clocks and Microbiota Interface. , 2021, , 329-349.		1

#	Article	IF	CITATIONS
3384	The protective mechanism of a debranched corn starch/konjac glucomannan composite against dyslipidemia and gut microbiota in high-fat-diet induced type 2 diabetes. Food and Function, 2021, 12, 9273-9285.	2.1	12
3385	Targeting Enteroendocrine Cells to Treat Metabolic Disease. , 2021, , .		1
3386	Epidemiology and (Patho)Physiology of Folic Acid Supplement Use in Obese Women before and during Pregnancy. Nutrients, 2021, 13, 331.	1.7	21
3387	Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food and Function, 2021, 12, 7897-7908.	2.1	41
3388	The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes, 2021, 13, 1966262.	4.3	4
3389	Behavior of Nonâ€Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Antiâ€Obesity Effect. EFood, 2021, 2, 59-72.	1.7	35
3390	Inorganic nanoparticles as food additives and their influence on the human gut microbiota. Environmental Science: Nano, 2021, 8, 1500-1518.	2.2	15
3391	Impact of mitigation measures against the COVID 19 pandemic on the perinatal results of the reference maternity hospital in Uruguay. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 5060-5062.	0.7	10
3392	Fecal Metabolomes in Response to Feed Supplemented with Fermented & amp; lt; i& amp; gt; Parkia biglobosa & amp; lt; li& amp; gt; and & amp; lt; i& amp; gt; Sphenostylis stenocarpa & amp; lt; li& amp; gt; in Obese Rats. Advances in Microbiology, 2021, 11, 63-74.	0.3	0
3393	Holistic Fitness: Microbiomes are Part of the Holobiont's Fitness. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 101-160.	0.2	1
3394	Ethnic variability associating gut and oral microbiome with obesity in children. Gut Microbes, 2021, 13, 1-15.	4.3	19
3395	Obesity and gut microbiome: review of potential role of probiotics. Porto Biomedical Journal, 2021, 6, e111.	0.4	18
3396	Exploring the impact of intestinal ion transport on the gut microbiota. Computational and Structural Biotechnology Journal, 2021, 19, 134-144.	1.9	19
3397	Impact of Interplay between Obese Gut Microbiota and Diet in Developing Obesity in Synthetic Community Mice. Journal of Oleo Science, 2021, 70, 1285-1293.	0.6	5
3398	Composition and Potential Function of Fecal Bacterial Microbiota from Six Bird Species. Birds, 2021, 2, 42-59.	0.6	3
3399	Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6ÂJ mice fed with a high-fat diet. European Journal of Nutrition, 2021, 60, 2735-2746.	1.8	45
3400	16S rDNA analysis of the intestinal microbes in osteoporotic rats. Bioscience of Microbiota, Food and Health, 2021, 40, 156-167.	0.8	6
3401	Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics, 2021, 13, 145.	2.0	29

#	ARTICLE	IF	CITATIONS
3402	Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. International Journal of Biological Sciences, 2021, 17, 2666-2682.	2.6	10
3403	Changes in Gut Microbiota Due to Gastrointestinal Surgery. , 2021, , 139-139.		O
3404	Microbiota control of maternal behavior regulates early postnatal growth of offspring. Science Advances, 2021, 7, .	4.7	13
3405	Gut–kidney axis in oxalate homeostasis. Current Opinion in Nephrology and Hypertension, 2021, 30, 264-274.	1.0	5
3406	Beneficial impacts of fermented celery (<i>Apium graveolens</i> L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food and Function, 2021, 12, 9151-9164.	2.1	28
3407	Microbiome changes in aging., 2021,, 367-389.		1
3408	Polysaccharides on the gut microbiome and epigenome. , 2021, , 129-137.		1
3409	Engineered probiotics modulate the endocannabinoid system. Biotechnology Notes, 2021, 2, 33-38.	0.7	7
3410	Resveratrol as Anti-Obesity and Anticancer Agent. , 2021, , 185-208.		2
3411	Microbiotaâ€gutâ€brain axis as a regulator of reward processes. Journal of Neurochemistry, 2021, 157, 1495-1524.	2.1	60
3412	Sex differences in growth performance are related to cecal microbiota in chicken. Microbial Pathogenesis, 2021, 150, 104710.	1.3	28
3413	Gut Microbiome and Liver Cancer. Physiology in Health and Disease, 2021, , 199-255.	0.2	0
3414	Gut microbiota and their effects on atherosclerosis, platelet function, and hypertension. , 2021, , 295-309.		0
3415	Gut microbiome and <i>Clostridioides difficile</i> infection: a closer look at the microscopic interface. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482199473.	1.4	31
3416	Gut Microbiota Profile and Changes in Body Weight in Elderly Subjects with Overweight/Obesity and Metabolic Syndrome. Microorganisms, 2021, 9, 346.	1.6	14
3417	Impact of Food Additive Titanium Dioxide on Gut Microbiota Composition, Microbiota-Associated Functions, and Gut Barrier: A Systematic Review of In Vivo Animal Studies. International Journal of Environmental Research and Public Health, 2021, 18, 2008.	1.2	17
3418	Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: Effects of physical activity. EBioMedicine, 2021, 64, 103208.	2.7	35
3419	Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Medicine, 2021, 13, 22.	3.6	83

#	Article	IF	Citations
3420	Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers, 2021, 13, 730.	1.7	35
3421	New Insights into Stroke Prevention and Treatment: Gut Microbiome. Cellular and Molecular Neurobiology, 2022, 42, 455-472.	1.7	15
3422	Sexually dimorphic response of mice to the Westernâ€style diet caused by deficiency of fatty acid binding protein 6 (Fabp6). Physiological Reports, 2021, 9, e14733.	0.7	7
3423	Kidney–Gut Crosstalk in AKI. Kidney360, 2021, 2, 886-889.	0.9	7
3424	Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. International Journal of Molecular Sciences, 2021, 22, 1942.	1.8	38
3425	Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Translational Psychiatry, 2021, 11, 131.	2.4	73
3426	Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients, 2021, 13, 706.	1.7	19
3427	Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. International Journal of Molecular Sciences, 2021, 22, 2121.	1.8	16
3428	Gut Microbiome of Children and Adolescents With Primary Sclerosing Cholangitis in Association With Ulcerative Colitis. Frontiers in Immunology, 2020, 11, 598152.	2.2	18
3429	Lesser Investigated Natural Ingredients for the Management of Obesity. Nutrients, 2021, 13, 510.	1.7	7
3430	Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes. Journal of Personalized Medicine, 2021, 11, 109.	1.1	15
3431	Evaluation of the gut microbiota after metformin intervention in children with obesity: A metagenomic study of a randomized controlled trial. Biomedicine and Pharmacotherapy, 2021, 134, 111117.	2.5	7
3432	Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs)., 2021, 11, 1575-1589.		23
3433	Ginsenosides Improve Nonalcoholic Fatty Liver Disease via Integrated Regulation of Gut Microbiota, Inflammation and Energy Homeostasis. Frontiers in Pharmacology, 2021, 12, 622841.	1.6	26
3434	Allium-Based Phytobiotic Enhances Egg Production in Laying Hens through Microbial Composition Changes in Ileum and Cecum. Animals, 2021, 11, 448.	1.0	21
3435	Effects of Microbiota Imbalance in Anxiety and Eating Disorders: Probiotics as Novel Therapeutic Approaches. International Journal of Molecular Sciences, 2021, 22, 2351.	1.8	36
3436	Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients, 2021, 13, 757.	1.7	10
3437	Single Donor FMT Reverses Microbial/Immune Dysbiosis and Induces Clinical Remission in a Rat Model of Acute Colitis. Pathogens, 2021, 10, 152.	1.2	2

#	Article	IF	CITATIONS
3438	Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microbial Pathogenesis, 2021, 151, 104747.	1.3	25
3439	Obesity, Early Life Gut Microbiota, and Antibiotics. Microorganisms, 2021, 9, 413.	1.6	30
3440	Association between Gut Microbial Diversity and Carotid Intima-Media Thickness. Medicina (Lithuania), 2021, 57, 195.	0.8	16
3441	Mitigation of Obesity-Related Systemic Low-Grade Inflammation and Gut Microbial Dysbiosis in Mice with Nanosilver Supplement. ACS Applied Bio Materials, 2021, 4, 2570-2582.	2.3	6
3443	Effect of a Humanized Diet Profile on Colonization Efficiency and Gut Microbial Diversity in Human Flora-Associated Mice. Frontiers in Nutrition, 2021, 8, 633738.	1.6	4
3444	Association between the Frequency of Daily Toothbrushing and Development of Nonalcoholic Fatty Liver Disease. Digestive Diseases, 2021, 39, 646-652.	0.8	3
3445	Ginsenoside Rb1, salvianolic acid B and their combination modulate gut microbiota and improve glucolipid metabolism in high-fat diet induced obese mice. Peerl, 2021, 9, e10598.	0.9	17
3446	Healthy Gut, Healthy Bones: Targeting the Gut Microbiome to Promote Bone Health. Frontiers in Endocrinology, 2020, 11, 620466.	1.5	25
3447	Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Current Hypertension Reports, 2021, 23, 8.	1.5	52
3448	Ginsenoside Rk3 Ameliorates Obesity-Induced Colitis by Regulating of Intestinal Flora and the TLR4/NF-κB Signaling Pathway in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 3082-3093.	2.4	35
3449	Fecal Microbiota Transplantation: The Evolving Risk Landscape. American Journal of Gastroenterology, 2021, 116, 647-656.	0.2	37
3450	Identification of New Potential Biotherapeutics from Human Gut Microbiota-Derived Bacteria. Microorganisms, 2021, 9, 565.	1.6	16
3451	Processing Matters in Nutrient-Matched Laboratory Diets for Miceâ€"Microbiome. Animals, 2021, 11, 862.	1.0	5
3452	Gut microbiota markers associated with obesity and overweight in Italian adults. Scientific Reports, 2021, 11, 5532.	1.6	169
3453	Diabetes and the Gut Microbiome. Seminars in Nephrology, 2021, 41, 104-113.	0.6	17
3454	Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Advanced Drug Delivery Reviews, 2021, 170, 44-70.	6.6	10
3455	PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. International Journal of Molecular Sciences, 2021, 22, 3077.	1.8	14
3456	Nutrition-based interventions for mood disorders. Expert Review of Neurotherapeutics, 2021, 21, 303-315.	1.4	25

#	Article	IF	Citations
3457	Specific Microbial Taxa and Functional Capacity Contribute to Chicken Abdominal Fat Deposition. Frontiers in Microbiology, 2021, 12, 643025.	1.5	28
3458	Ultrafine particles altered gut microbial population and metabolic profiles in a sex-specific manner in an obese mouse model. Scientific Reports, 2021, 11, 6906.	1.6	6
3459	Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity. Microorganisms, 2021, 9, 664.	1.6	4
3460	Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota. International Journal of Molecular Sciences, 2021, 22, 3343.	1.8	5
3461	Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients, 2021, 13, 1016.	1.7	10
3462	Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point. Frontiers in Cellular and Infection Microbiology, 2021, 11, 590202.	1.8	12
3463	Stool metabolome-microbiota evaluation among children and adolescents with obesity, overweight, and normal-weight using 1H NMR and 16S rRNA gene profiling. PLoS ONE, 2021, 16, e0247378.	1.1	13
3464	Calorie restriction prevents age-related changes in the intestinal microbiota. Aging, 2021, 13, 6298-6329.	1.4	11
3465	Strength Exercise Confers Protection in Central Nervous System Autoimmunity by Altering the Gut Microbiota. Frontiers in Immunology, 2021, 12, 628629.	2.2	19
3467	Bioâ€therapeutics from human milk: prospects and perspectives. Journal of Applied Microbiology, 2021, 131, 2669-2687.	1.4	9
3468	Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process. Scientific Reports, 2021, 11, 6522.	1.6	9
3469	Mendelian Randomization Analysis Reveals Causal Effects of the Human Gut Microbiota on Abdominal Obesity. Journal of Nutrition, 2021, 151, 1401-1406.	1.3	11
3470	Fecal Microbiota Transplantation beyond Clostridioides Difficile Infection. Clinical Endoscopy, 2021, 54, 149-151.	0.6	0
3471	Fecal microbiota transplantation before hematopoietic stem cell transplantation in a pediatric case of chronic diarrhea with a FOXP3 mutation. Pediatrics and Neonatology, 2021, 62, 172-180.	0.3	8
3472	Dysbiosis of the shrimp (<i>Penaeus monodon</i>) gut microbiome with AHPND outbreaks revealed by 16S rRNA metagenomics analysis. Aquaculture Research, 2021, 52, 3336-3349.	0.9	19
3473	Cecal Microbiota Modulates Fat Deposition in Muscovy Ducks. Frontiers in Veterinary Science, 2021, 8, 609348.	0.9	18
3474	Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms, 2021, 9, 618.	1.6	80
3475	Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut, 2022, 71, 716-723.	6.1	83

#	Article	IF	CITATIONS
3476	Mulberry leaf phenolics and fiber exert antiâ€obesity through the gut microbiotaâ€host metabolism pathway. Journal of Food Science, 2021, 86, 1432-1447.	1.5	22
3478	Wastewater treatment works change the intestinal microbiomes of insectivorous bats. PLoS ONE, 2021, 16, e0247475.	1.1	6
3479	The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet. Communications Biology, 2021, 4, 281.	2.0	60
3480	The Life-Long Role of Nutrition on the Gut Microbiome and Gastrointestinal Disease. Gastroenterology Clinics of North America, 2021, 50, 77-100.	1.0	5
3481	The Impact of a Dried Fruit and Vegetable Supplement and Fiber Rich Shake on Gut and Health Parameters in Female Healthcare Workers: A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Microorganisms, 2021, 9, 843.	1.6	6
3482	The microbiome's relationship with congenital heart disease: more than a gut feeling. Journal of Congenital Cardiology, 2021, 5, .	0.5	7
3483	Characteristics of the intestinal microbiome in ankylosing spondylitis. Experimental and Therapeutic Medicine, 2021, 22, 676.	0.8	21
3484	Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 632335.	1.5	63
3485	Physiologic Mechanisms of Weight Loss Following Metabolic/Bariatric Surgery. Surgical Clinics of North America, 2021, 101, 223-237.	0.5	3
3486	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	2.0	86
3487	Alterations of the Skin and Gut Microbiome in Psoriasis and Psoriatic Arthritis. International Journal of Molecular Sciences, 2021, 22, 3998.	1.8	77
3488	Microbiota and age-related macular degeneration: where are we today?. AboutOpen, 2021, 8, 23-28.	0.2	1
3489	Gut Microbiome and Bariatric Surgery. Indian Journal of Surgery, 2021, 83, 395-397.	0.2	2
3490	The Role of Gut Microbiota in Duodenal-Jejunal Bypass Surgery-Induced Improvement of Hepatic Steatosis in HFD-Fed Rats. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640448.	1.8	3
3491	Anti-Inflammatory Effect on Colitis and Modulation of Microbiota by Fermented Plant Extract Supplementation. Fermentation, 2021, 7, 55.	1.4	3
3492	Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients, 2021, 13, 1516.	1.7	66
3493	Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism: Clinical and Experimental, 2021, 117, 154712.	1.5	152
3494	The importance of prebiotics in the regulation of metabolic syndrome disorders. Ukrainian Therapeutical Journal, 2021, , .	0.0	0

#	Article	IF	CITATIONS
3495	Safety assessment of desaminotyrosine: Acute, subchronic oral toxicity, and its effects on intestinal microbiota in rats. Toxicology and Applied Pharmacology, 2021, 417, 115464.	1.3	5
3497	Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 2021, 13, 1389.	1.7	46
3498	Nutritional Considerations When Dealing with an Obese Adult Equine. Veterinary Clinics of North America Equine Practice, 2021, 37, 111-137.	0.3	9
3499	Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annual Review of Public Health, 2021, 42, 277-292.	7.6	54
3500	Altering the Microbiome Inhibits Tumorigenesis in a Mouse Model of Oviductal High-Grade Serous Carcinoma. Cancer Research, 2021, 81, 3309-3318.	0.4	19
3501	Deep Transcranial Magnetic Stimulation Affects Gut Microbiota Composition in Obesity: Results of Randomized Clinical Trial. International Journal of Molecular Sciences, 2021, 22, 4692.	1.8	14
3502	Fecal Bacterial Microbiota of Healthy Free-Ranging, Healthy Corralled, and Chronic Diarrheic Corralled Rhesus Macaques (<i>Macaca mulatta</i>). Comparative Medicine, 2021, 71, 152-165.	0.4	3
3503	The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides, 2021, 138, 170492.	1.2	31
3504	Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial Î3Î T cells in rats. Journal of Functional Foods, 2021, 79, 104407.	1.6	18
3505	Genome-Based Targeted Sequencing as a Reproducible Microbial Community Profiling Assay. MSphere, 2021, 6, .	1.3	4
3506	Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. Journal of Neuroimmunology, 2021, 353, 577498.	1.1	17
3507	Faecalibacterium prausnitzii Abundance in Mouse and Human Gut Can Predict Metabolism of Oat Avenanthramides. Journal of Nutrition, 2021, 151, 1369-1370.	1.3	3
3508	Microbiome and osteoarthritis: New insights from animal and human studies. International Journal of Rheumatic Diseases, 2021, 24, 984-1003.	0.9	6
3510	Modulation of the Gut Microbiota Structure with Probiotics and Isoflavone Alleviates Metabolic Disorder in Ovariectomized Mice. Nutrients, 2021, 13, 1793.	1.7	22
3511	Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101504.	2.2	16
3512	Chain lengthâ€dependent inulin alleviates dietâ€induced obesity and metabolic disorders in mice. Food Science and Nutrition, 2021, 9, 3470-3482.	1.5	9
3513	Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiology Letters, 2021, 368, .	0.7	23
3514	Influence of genetic background and dietary oleic acid on gut microbiota composition in Duroc and Iberian pigs. PLoS ONE, 2021, 16, e0251804.	1.1	4

#	Article	IF	CITATIONS
3515	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	1.7	225
3516	Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Research International, 2021, 143, 110270.	2.9	77
3517	Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomedicine and Pharmacotherapy, 2021, 137, 111065.	2.5	35
3519	Intestinal microbial diversity and functional analysis of Urechis unicinctus from two different habitats: pond polycultured with Penaeus japonicus and coastal zone. Aquaculture Environment Interactions, 2021, 13, 211-224.	0.7	1
3520	The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetologica, 2021, 58, 1131-1138.	1.2	53
3521	Characteristics of the colonic microbiome in patients with different obesity phenotypes (the original) Tj ETQq1 1	0.784314	rgBT /Overl
3522	Contribution of Gut Microbiota to Immunological Changes in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 683068.	2.2	25
3523	Metagenomic insights into the effects of Urtica dioica vegetable on the gut microbiota of C57BL/6J obese mice, particularly the composition of Clostridia. Journal of Nutritional Biochemistry, 2021, 91, 108594.	1.9	14
3524	Prevalence of Metabolic Syndrome in Children and Adolescents with Type 1 Diabetes Mellitus and Possibilities of Prevention and Treatment: A Systematic Review. Nutrients, 2021, 13, 1782.	1.7	16
3525	Comparative Population Genetics in the Human Gut Microbiome. Genome Biology and Evolution, 2022, 14, .	1.1	15
3526	L. johnsonii, L. plantarum, and L. rhamnosus alleviated Enterohaemorrhagic Escherichia coli-induced diarrhoea in mice by regulating gut microbiota. Microbial Pathogenesis, 2021, 154, 104856.	1.3	7
3527	Intestinal microbial diversity is higher in Pacific abalone (Haliotis discus hannai) with slower growth rates. Aquaculture, 2021, 537, 736500.	1.7	19
3528	Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101507.	2.2	63
3529	Bayesian variable selection for highâ€dimensional rank data. Environmetrics, 2021, 32, e2682.	0.6	2
3530	Reversal of Functional Brain Activity Related to Gut Microbiome and Hormones After VSG Surgery in Patients With Obesity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3619-e3633.	1.8	7
3531	Recent advances and health implications of dietary fasting regimens on the gut microbiome. American Journal of Physiology - Renal Physiology, 2021, 320, G847-G863.	1.6	16
3532	Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome, 2021, 9, 100.	4.9	56
3533	Establishment of an In Vitro System of the Human Intestinal Microbiota: Effect of Cultivation Conditions and Influence of Three Donor Stool Samples. Microorganisms, 2021, 9, 1049.	1.6	5

#	Article	IF	CITATIONS
3534	Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacological Research, 2021, 167, 105471.	3.1	43
3535	Cigarette smoking status alters dysbiotic gut microbes in hypertensive patients. Journal of Clinical Hypertension, 2021, 23, 1431-1446.	1.0	12
3536	The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients, 2021, 13, 1654.	1.7	74
3537	Application of Microbiome Management in Therapy for Clostridioides difficile Infections: From Fecal Microbiota Transplantation to Probiotics to Microbiota-Preserving Antimicrobial Agents. Pathogens, 2021, 10, 649.	1.2	10
3538	Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetology and Metabolic Syndrome, 2021, 13, 56.	1.2	14
3539	Short-chain fatty acids: role in metabolic disorders. Modern Gastroenterology, 2021, , .	0.1	0
3540	Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life, 2021, 11, 467.	1.1	10
3541	Cage and maternal effects on the bacterial communities of the murine gut. Scientific Reports, 2021, 11, 9841.	1.6	21
3542	Correlations Between Intestinal Microbial Community and Hematological Profile in Native Tibetans and Han Immigrants. Frontiers in Microbiology, 2021, 12, 615416.	1.5	8
3543	Effect of Freezing on Gut Microbiota Composition and Functionality for In Vitro Fermentation Experiments. Nutrients, 2021, 13, 2207.	1.7	4
3544	Effects of dietary lipid levels on growth performance, hepatic health, lipid metabolism and intestinal microbiota on <i>Trachinotus ovatus</i> Aquaculture Nutrition, 2021, 27, 1554-1568.	1.1	16
3545	Modern Sensing Approaches for Predicting Toxicological Responses of Food- and Drug-Based Bioactives on Microbiomes of Gut Origin. Journal of Agricultural and Food Chemistry, 2021, 69, 6396-6413.	2.4	4
3546	Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. EPMA Journal, 2021, 12, 177-197.	3.3	15
3547	Microbial colonization of the gastrointestinal tract of dairy calves $\hat{a} \in \hat{a}$ a review of its importance and relationship to health and performance. Animal Health Research Reviews, 2021, 22, 97-108.	1.4	10
3548	Host genetic control of gut microbiome composition. Mammalian Genome, 2021, 32, 263-281.	1.0	35
3549	A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Science of the Total Environment, 2021, 774, 145758.	3.9	173
3550	Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host and Microbe, 2021, 29, 988-1001.e6.	5.1	69
3551	Cajanolactone A, a stilbenoid from Cajanus cajan, inhibits energy intake and lipid synthesis/storage, and promotes energy expenditure in ovariectomized mice. Biomedicine and Pharmacotherapy, 2021, 138, 111491.	2.5	1

#	Article	IF	CITATIONS
3552	Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice. Clinical Nutrition, 2021, 40, 4234-4245.	2.3	60
3553	Impact of the Gut Microbiota Balance on the Health–Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods, 2021, 10, 1261.	1.9	27
3554	Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition, 2021, 8, 700058.	1.6	33
3555	Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: antibiotic versus bacteriocin. Beneficial Microbes, 2021, 12, 295-305.	1.0	7
3556	Protective effects of different Bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. Journal of Advanced Research, 2022, 36, 27-37.	4.4	53
3558	Obesity Causes Abrupt Changes in the Testicular Microbiota and Sperm Motility of Zebrafish. Frontiers in Immunology, 2021, 12, 639239.	2.2	10
3559	The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Frontiers in Pharmacology, 2021, 12, 696603.	1.6	15
3560	The gut microbiota as a therapeutic target for obesity: a scoping review. Nutrition Research Reviews, 2022, 35, 207-220.	2.1	14
3561	Green banana flour supplementation improves obesity-associated systemic inflammation and regulates gut microbiota profile in mice fed high-fat diets. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1469-1475.	0.9	11
3562	An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nature Protocols, 2021, 16, 3186-3209.	5.5	83
3563	Green Tea and Its Relation to Human Gut Microbiome. Molecules, 2021, 26, 3907.	1.7	42
3564	Effects of Bacterial CLPB Protein Fragments on Food Intake and PYY Secretion. Nutrients, 2021, 13, 2223.	1.7	13
3565	Maternal Metabolic Programming of the Developing Central Nervous System: Unified Pathways to Metabolic and Psychiatric Disorders. Biological Psychiatry, 2022, 91, 898-906.	0.7	21
3566	Preventing Colorectal Cancer through Prebiotics. Microorganisms, 2021, 9, 1325.	1.6	24
3567	Diet Alters Entero-Mammary Signaling to Regulate the Breast Microbiome and Tumorigenesis. Cancer Research, 2021, 81, 3890-3904.	0.4	39
3568	Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. International Journal of Molecular Sciences, 2021, 22, 6729.	1.8	71
3569	mbImpute: an accurate and robust imputation method for microbiome data. Genome Biology, 2021, 22, 192.	3.8	23
3570	Faecal microbial metabolites of proteolytic and saccharolytic fermentation in relation to degree of insulin resistance in adult individuals. Beneficial Microbes, 2021, 12, 259-266.	1.0	4

#	Article	IF	CITATIONS
3571	Characterization of the gut microbiota in Chinese children with overweight and obesity using 16S rRNA gene sequencing. PeerJ, 2021, 9, e11439.	0.9	16
3572	Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Frontiers in Endocrinology, 2021, 12, 667066.	1.5	82
3573	Potential of an Enzyme Mixture of Glucose Oxidase, Glucosyl Transferase, and Fructosyl Transferase as an Antidiabetic Medicine. Biomedicines, 2021, 9, 745.	1.4	0
3574	Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Frontiers in Cellular and Infection Microbiology, 2021, 11, 598093.	1.8	30
3575	Source of gut microbiota determines oat \hat{l}^2 -glucan degradation and short chain fatty acid-producing pathway. Food Bioscience, 2021, 41, 101010.	2.0	18
3576	Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharmaceutica Sinica B, 2022, 12, 511-531.	5.7	26
3577	Gut microbiota in obesity. World Journal of Gastroenterology, 2021, 27, 3837-3850.	1.4	152
3578	Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants, 2021, 10, 1229.	2.2	41
3579	Bile Acids, Their Receptors, and the Gut Microbiota. Physiology, 2021, 36, 235-245.	1.6	31
3580	Microbiota and epigenetics: promising therapeutic approaches?. Environmental Science and Pollution Research, 2021, 28, 49343-49361.	2.7	15
3581	Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Frontiers in Pharmacology, 2021, 12, 709629.	1.6	15
3582	Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. Frontiers in Allergy, 2021, 2, 668781.	1.2	5
3584	The Impact of Gut Microbiota on Radiation-Induced Enteritis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 586392.	1.8	61
3585	Dietary Selection Pressures and Their Impact on the Gut Microbiome. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 7-18.	2.3	32
3586	Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites, 2021, 11, 493.	1.3	22
3587	Tree-aggregated predictive modeling of microbiome data. Scientific Reports, 2021, 11, 14505.	1.6	13
3588	Obesity is Associated With Increased Risk of Crohn's disease, but not Ulcerative Colitis: A Pooled Analysis of Five Prospective Cohort Studies. Clinical Gastroenterology and Hepatology, 2022, 20, 1048-1058.	2.4	35
3589	Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends in Food Science and Technology, 2021, 113, 255-276.	7.8	38

#	Article	IF	CITATIONS
3590	Gut Microbiome and Metabolome Profiles Associated with High-Fat Diet in Mice. Metabolites, 2021, 11, 482.	1.3	50
3592	Public opinions and knowledge about microorganisms. Research in Science and Technological Education, 2023, 41, 800-818.	1.4	2
3593	Effect of different types of sugar on gut physiology and microbiota in overfed goose. Poultry Science, 2021, 100, 101208.	1.5	6
3594	Oleanolic Acid Targets the Gut–Liver Axis to Alleviate Metabolic Disorders and Hepatic Steatosis. Journal of Agricultural and Food Chemistry, 2021, 69, 7884-7897.	2.4	63
3595	Multifaceted Impacts of Periodontal Pathogens in Disorders of the Intestinal Barrier. Frontiers in Immunology, 2021, 12, 693479.	2.2	8
3596	Antibiotic-Induced Dysbiosis of Microbiota Promotes Chicken Lipogenesis by Altering Metabolomics in the Cecum. Metabolites, 2021, 11, 487.	1.3	18
3597	Effects of Different Treatment Methods of Dried Citrus Peel (Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Frontiers in Nutrition, 2021, 8, 702559.	1.6	11
3598	Prioritizing Disease-Related Microbes Based on the Topological Properties of a Comprehensive Network. Frontiers in Microbiology, 2021, 12, 685549.	1.5	2
3599	Effect of gut microbiome on minor complications after a colonoscopy. Intestinal Research, 2021, 19, 341-348.	1.0	5
3600	Recent advancements in the exploitation of the gut microbiome in the diagnosis and treatment of colorectal cancer. Bioscience Reports, 2021, 41, .	1.1	5
3601	Fructose, glucose and fat interrelationships with metabolic pathway regulation and effects on the gut microbiota. Acta Veterinaria Hungarica, 2021, 69, 134-156.	0.2	2
3602	Trehalose-Induced Remodelling of the Human Microbiota Affects Clostridioides difficile Infection Outcome in an In Vitro Colonic Model: A Pilot Study. Frontiers in Cellular and Infection Microbiology, 2021, 11, 670935.	1.8	18
3603	Potential gut–brain mechanisms behind adverse mental health outcomes of bariatric surgery. Nature Reviews Endocrinology, 2021, 17, 549-559.	4.3	23
3604	High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. Journal of Nutritional Biochemistry, 2021, 93, 108621.	1.9	33
3605	Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research, 2021, 168, 3-19.	1.0	15
3606	The Effect of Probiotics on Various Diseases and their Therapeutic Role: An Update Review. Journal of Pure and Applied Microbiology, 2021, 15, 1042-1058.	0.3	5
3607	Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 9139.	1.8	18
3608	The Other Side of Malnutrition in Inflammatory Bowel Disease (IBD): Non-Alcoholic Fatty Liver Disease. Nutrients, 2021, 13, 2772.	1.7	11

#	Article	IF	CITATIONS
3609	Combination of Limosilactobacillus fermentum MG4231 and MG4244 attenuates lipid accumulation in high-fat diet-fed obese mice. Beneficial Microbes, 2021, 12, 479-491.	1.0	5
3610	Bifidobacterium reduction is associated with high blood pressure in children with type 1 diabetes mellitus. Biomedicine and Pharmacotherapy, 2021, 140, 111736.	2.5	15
3611	Comparison of Gut Microbiota of 96 Healthy Dogs by Individual Traits: Breed, Age, and Body Condition Score. Animals, 2021, 11, 2432.	1.0	37
3612	Effects of Herring Milt Hydrolysates and Fractions in a Diet-Induced Obesity Model. Foods, 2021, 10, 2046.	1.9	3
3613	Microplastics intake and excretion: Resilience of the intestinal microbiota but residual growth inhibition in common carp. Chemosphere, 2021, 276, 130144.	4.2	22
3614	The interplay of obesity, gut microbiome and diet in the immune check point inhibitors therapy era. Seminars in Cancer Biology, 2021, 73, 356-376.	4.3	32
3615	The promise of the gut microbiome as part of individualized treatment strategies. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 7-25.	8.2	60
3616	Seasonal Dietary Shifts Alter the Gut Microbiota of Avivorous Bats: Implication for Adaptation to Energy Harvest and Nutritional Utilization. MSphere, 2021, 6, e0046721.	1.3	16
3617	Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing, 2022, 2, 217-231.	1.5	4
3618	Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends in Food Science and Technology, 2021, 114, 570-584.	7.8	23
3619	Progress in treatment of type 2 diabetes by bariatric surgery. World Journal of Diabetes, 2021, 12, 1187-1199.	1.3	11
3620	Waistline to the gumline: Relationship between obesity and periodontal diseaseâ€biological and management considerations. Periodontology 2000, 2021, 87, 299-314.	6.3	20
3621	Effects of Dietary Supplementation of Lactobacillus delbrueckii on Gut Microbiome and Intestinal Morphology in Weaned Piglets. Frontiers in Veterinary Science, 2021, 8, 692389.	0.9	10
3622	Oral angiotensin-($1\hat{a}\in$ "7) peptide modulates intestinal microbiota improving metabolic profile in obese mice. Protein and Peptide Letters, 2021, 28, .	0.4	3
3623	Supplementation With Lycium barbarum Polysaccharides Reduce Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota. Frontiers in Microbiology, 2021, 12, 719967.	1.5	18
3624	Gut Microbiota: Novel Therapeutic Target of Ginsenosides for the Treatment of Obesity and Its Complications. Frontiers in Pharmacology, 2021, 12, 731288.	1.6	11
3625	Antidiabetic activity of galactomannan from Chinese Sesbania cannabina and its correlation of regulating intestinal microbiota. Journal of Functional Foods, 2021, 83, 104530.	1.6	7
3626	Influence of Cultivation pH on Composition, Diversity, and Metabolic Production in an In Vitro Human Intestinal Microbiota. Fermentation, 2021, 7, 156.	1.4	5

#	Article	IF	CITATIONS
3627	Matrix Effects on the Delivery Efficacy of Bifidobacterium animalis subsp. <i>lactis</i> BB-12 on Fecal Microbiota, Gut Transit Time, and Short-Chain Fatty Acids in Healthy Young Adults. MSphere, 2021, 6, e0008421.	1.3	11
3628	Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates. Frontiers in Medicine, 2021, 8, 646710.	1.2	6
3629	Sprayâ€process optimization for the encapsulation of probiotic Lactobacillus acidophilus ATCC 11975 in a ternary wall matrix. Journal of Food Processing and Preservation, 2021, 45, e15860.	0.9	0
3630	Distinctive Gut Microbiota in Patients with Overweight and Obesity with Dyslipidemia and its Responses to Long-term Orlistat and Ezetimibe Intervention: A Randomized Controlled Open-label Trial. Frontiers in Pharmacology, 2021, 12, 732541.	1.6	23
3631	Towards Engineering an Ecosystem: A Review of Computational Approaches to Explore and Exploit the Human Microbiome for Healthcare. , 0 , , 1 .		0
3632	Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Frontiers in Physiology, 2021, 12, 716520.	1.3	15
3633	Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. Electronic Journal of Biotechnology, 2021, 53, 33-43.	1.2	6
3635	Gut Microbiota and Alzheimer's Disease: Pathophysiology and Therapeutic Perspectives. Journal of Alzheimer's Disease, 2021, 83, 963-976.	1.2	4
3636	Effects of gut microbiota and fatty acid metabolism on dyslipidemia following weight-loss diets in women: Results from a randomized controlled trial. Clinical Nutrition, 2021, 40, 5511-5520.	2.3	8
3637	Nature-Based Biomaterials and Their Application in Biomedicine. Polymers, 2021, 13, 3321.	2.0	53
3639	Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. American Journal of Transplantation, 2022, 22, 1014-1030.	2.6	29
3640	Low-molecular alginate improved diet-induced obesity and metabolic syndrome through modulating the gut microbiota in BALB/c mice. International Journal of Biological Macromolecules, 2021, 187, 811-820.	3.6	24
3641	Xanthohumol Requires the Intestinal Microbiota to Improve Glucose Metabolism in Dietâ€Induced Obese Mice. Molecular Nutrition and Food Research, 2021, 65, e2100389.	1.5	13
3642	Plant Extracts in Obesity: A Role of Gut Microbiota. Frontiers in Nutrition, 2021, 8, 727951.	1.6	12
3643	Mannose Treatment: A Promising Novel Strategy to Suppress Inflammation. Frontiers in Immunology, 2021, 12, 756920.	2.2	10
3644	The ADP-glucose pyrophosphorylase from Melainabacteria: a comparative study between photosynthetic and non-photosynthetic bacterial sources. Biochimie, 2022, 192, 30-37.	1.3	3
3645	Microbiota-Immune Interactions Regulate Metabolic Disease. Journal of Immunology, 2021, 207, 1719-1724.	0.4	9
3646	Conceptual Relationship Between Traditional Persian Medicine and Modern Nutrition in Obesity in Middle Age. Jundishapur Journal of Natural Pharmaceutical Products, 2021, In Press, .	0.3	0

#	ARTICLE	IF	CITATIONS
3647	Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Frontiers in Microbiology, 2021, 12, 735562.	1.5	2
3648	Colonic Lactulose Fermentation Has No Impact on Glucagon-like Peptide-1 and Peptide-YY Secretion in Healthy Young Men. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 77-87.	1.8	6
3649	Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio). Ecotoxicology and Environmental Safety, 2021, 221, 112464.	2.9	47
3651	Differential responses of weaned piglets to supplemental porcine or chicken plasma in diets without inclusion of antibiotics and zinc oxide. Animal Nutrition, 2021, 7, 1173-1181.	2.1	8
3652	The gut microbiome in konzo. Nature Communications, 2021, 12, 5371.	5.8	8
3653	Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neuroscience and Biobehavioral Reviews, 2021, 128, 233-243.	2.9	25
3654	Surgical Menopause and Estrogen Therapy Modulate the Gut Microbiota, Obesity Markers, and Spatial Memory in Rats. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702628.	1.8	18
3655	The characteristics of intestinal flora in overweight pregnant women and the correlation with gestational diabetes mellitus. Endocrine Connections, 2021, 10, 1366-1376.	0.8	4
3656	Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell, 2021, 28, 1922-1935.e5.	5.2	67
3658	ITS2 Sequencing and Targeted Meta-Proteomics of Infant Gut Mycobiome Reveal the Functional Role of Rhodotorula sp. during Atopic Dermatitis Manifestation. Journal of Fungi (Basel, Switzerland), 2021, 7, 748.	1.5	14
3659	Probiotic engineering strategies for the heterologous production of antimicrobial peptides. Advanced Drug Delivery Reviews, 2021, 176, 113863.	6.6	19
3660	The Association of Gut Microbiota and Complications in Gastrointestinal-Cancer Therapies. Biomedicines, 2021, 9, 1305.	1.4	4
3661	The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 2021, 99, 103823.	2.1	47
3662	Dietary broccoli improves markers associated with glucose and lipid metabolism through modulation of gut microbiota in mice. Nutrition, 2021, 90, 111240.	1.1	11
3663	New insights in obesity development and possible value of microbiota transplantation. European Journal of Internal Medicine, 2021, 92, 1-2.	1.0	0
3664	Isoquinoline alkaloids induce partial protection of laying hens from the impact of Campylobacter hepaticus (spotty liver disease) challenge. Poultry Science, 2021, 100, 101423.	1.5	11
3665	Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 2021, 4, 100043.	2.4	12
3666	Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet–induced obese mice. Nutrition, 2022, 93, 111439.	1.1	11

#	ARTICLE	IF	CITATIONS
3667	Regulation of neuroinflammation, resolution, and neuroprotection by diet and gut microbiota. , 2022, , $187-219$.		0
3668	Gut Microbiota Interactions With Obesity. , 2022, , 201-219.		3
3669	Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Current Opinion in Biotechnology, 2022, 73, 108-120.	3.3	15
3670	Effects of spatially heterogeneous warming on gut microbiota, nutrition and gene flow of a heat-sensitive ungulate population. Science of the Total Environment, 2022, 806, 150537.	3.9	3
3671	Stereoselective effects of fungicide difenoconazole and its four stereoisomers on gut barrier, microbiota, and glucolipid metabolism in male mice. Science of the Total Environment, 2022, 805, 150454.	3.9	14
3672	Antiobesity and antidiabetic effects of the dairy bacterium Propionibacterium freudenreichii MJ2 in high-fat diet-induced obese mice by modulating lipid metabolism. Scientific Reports, 2021, 11, 2481.	1.6	17
3673	The early microbiome and subsequent obesity. , 2021, , 137-143.		1
3674	Gut Bacterial Dysbiosis and Its Clinical Implications. , 2021, , 1-27.		0
3675	Human milk oligosaccharide $2\hat{a} \in \mathbb{R}^2$ -fucosyllactose supplementation improves gut barrier function and signaling in the vagal afferent pathway in mice. Food and Function, 2021, 12, 8507-8521.	2.1	11
3676	Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Current Topics in Microbiology and Immunology, 2021, 431, 233-263.	0.7	15
3677	"Fishing―nano–bio interactions at the key biological barriers. Nanoscale, 2021, 13, 5954-5964.	2.8	6
3678	Effects of three different mannans on obesity and gut microbiota in high-fat diet-fed C57BL/6J mice. Food and Function, 2021, 12, 4606-4620.	2.1	37
3679	Nobiletin activates thermogenesis of brown and white adipose tissue in highâ€fat dietâ€fed C57BL/6 mice by shaping the gut microbiota. FASEB Journal, 2021, 35, e21267.	0.2	19
3680	Microbiology and Microbiome. Laboratory Animal Science and Medicine, 2021, , 77-104.	0.1	0
3681	MGATMDA: Predicting microbe-disease associations via multi-component graph attention network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	15
3683	Development of the gut microbiota and dysbiosis in children. Bioscience of Microbiota, Food and Health, 2021, 40, 12-18.	0.8	10
3684	Effect of probiotic <i>Lactobacillus plantarum</i> Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World Journal of Gastroenterology, 2021, 27, 107-128.	1.4	47
3685	Maternal and Early-Life Factors Influence on Human Milk Composition and Infants' Gut Health. , 2021, , 185-185.		0

#	Article	IF	CITATIONS
3686	Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Computational and Structural Biotechnology Journal, 2021, 19, 1092-1107.	1.9	111
3687	Plant and Animal-Type Feedstuff Shape the Gut Microbiota and Metabolic Processes of the Chinese Mitten Crab Eriocheir sinensis. Frontiers in Veterinary Science, 2021, 8, 589624.	0.9	10
3688	Impact of delivery mode in early life microbiome and risk of disease., 2021,, 109-133.		0
3689	Weight Gain, Glucose Tolerance, and the Gut Microbiome of Male C57BL/6J Mice Housed on Corncob or Paper Bedding and Fed Normal or High-Fat Diet. Journal of the American Association for Laboratory Animal Science, 2021, 60, 407-421.	0.6	2
3690	Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes, 2021, 13, 1-30.	4.3	75
3691	The roles of different <i>Bacteroides fragilis</i> strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food and Function, 2021, 12, 8300-8313.	2.1	21
3693	Chemical composition of coldâ€pressed blackberry seed flour extract and its potential healthâ€beneficial properties. Food Science and Nutrition, 2020, 8, 1215-1225.	1.5	12
3694	Overview of the Gastrointestinal Microbiota. Advances in Experimental Medicine and Biology, 2008, 635, 29-40.	0.8	35
3695	Molecular Tools for Investigating the Gut Microbiota., 2009,, 33-78.		1
3696	Metagenomics of the Human Body. , 2011, , .		18
3697	MetaHIT: The European Union Project on Metagenomics of the Human Intestinal Tract., 2011,, 307-316.		65
3698	Host Genotype and the Effect on Microbial Communities. , 2011, , 15-41.		11
3699	Human Gut Microbial Gene by Metagenomic Sequencing. , 2013, , 1-8.		1
3700	Recent Progress in Engineering Human-Associated Microbiomes. Methods in Molecular Biology, 2014, 1151, 3-25.	0.4	15
3701	Spatial Structure of Microbes in Nature and the Biophysics of Cell–Cell Communication. Biological and Medical Physics Series, 2015, , 53-81.	0.3	3
3702	Early Gut Microbiome: A Good Start in Nutrition and Growth May Have Lifelong Lasting Consequences., 2019,, 239-258.		2
3703	Dynamic Interplay Between Metabolic Syndrome and Immunity. Advances in Experimental Medicine and Biology, 2014, 824, 171-190.	0.8	31
3704	Efficient and Accurate Multiple-Phenotypes Regression Method for High Dimensional Data Considering Population Structure. Lecture Notes in Computer Science, 2015, , 136-153.	1.0	1

#	Article	IF	Citations
3705	Microbiota and Lipotoxicity. Advances in Experimental Medicine and Biology, 2017, 960, 247-260.	0.8	1
3706	The Hypersaline Lakes of Inner Mongolia: The MGAtech Project. , 2011, , 65-107.		2
3707	Gut Microbes, Diet, and Cancer. Cancer Treatment and Research, 2014, 159, 377-399.	0.2	108
3708	The Hypersaline Lakes of Inner Mongolia: The MGAtech Project. , 2011, , 65-107.		3
3709	Lactic Acid Bacteria in Health and Disease. , 2014, , 303-374.		8
3710	Role of Gut Microbiota in Combating Oxidative Stress. , 2019, , 43-82.		19
3711	Gut Microbiota and Endocrine Disorder. Advances in Experimental Medicine and Biology, 2020, 1238, 143-164.	0.8	14
3712	Comparison Between the Gut Microbiota in Different Gastrointestinal Segments of Large-Tailed Han and Small-Tailed Han Sheep Breeds with High-Throughput Sequencing. Indian Journal of Microbiology, 2020, 60, 436-450.	1.5	4
3713	Short-Chain Fatty Acid Production and Functional Aspects on Host Metabolism. , 2018, , 37-106.		15
3714	Pathogenesis of Nonalcoholic Fatty Liver Disease. , 2018, , 369-390.e14.		2
3715	Multidisciplinary approach to determine the effect of polybrominated diphenyl ethers on gut microbiota. Environmental Pollution, 2020, 260, 113920.	3.7	10
3716	Antidiabetic Effects of Gegen Qinlian Decoction via the Gut Microbiota Are Attributable to Its Key Ingredient Berberine. Genomics, Proteomics and Bioinformatics, 2020, 18, 721-736.	3.0	70
3717	Two novel polysaccharides from Solanum nigrum L. exert potential prebiotic effects in an in vitro fermentation model. International Journal of Biological Macromolecules, 2020, 159, 648-658.	3.6	18
3718	Consumption of avenanthramides extracted from oats reduces weight gain, oxidative stress, inflammation and regulates intestinal microflora in high fat diet-induced mice. Journal of Functional Foods, 2020, 65, 103774.	1.6	20
3719	A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. Journal of Functional Foods, 2020, 74, 104197.	1.6	18
3720	The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial. Nutrition, 2020, 79-80, 110854.	1.1	27
3721	Effects of laying breeder hens dietary \hat{l}^2 -carotene, curcumin, allicin, and sodium butyrate supplementation on the jejunal microbiota and immune response of their offspring chicks. Poultry Science, 2020, 99, 3807-3816.	1.5	13
3722	Small intestinal physiology relevant to bariatric and metabolic endoscopic therapies: Incretins, bile acid signaling, and gut microbiome. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 109-119.	0.4	8

#	Article	IF	Citations
3723	Disturbances in Microbial and Metabolic Communication across the Gut–Liver Axis Induced by a Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. Environmental Science & Environmental & Environme	4.6	40
3724	Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. International Journal of Obesity, 2020, 44, 213-225.	1.6	201
3725	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.1	2
3726	A Review of the Role of Gut microbiome in Obesity. E3S Web of Conferences, 2020, 218, 03010.	0.2	1
3727	Gut microbial composition difference between pediatric ALL survivors and siblings. Pediatric Hematology and Oncology, 2020, 37, 475-488.	0.3	19
3728	The aryl hydrocarbon receptor as a mediator of host-microbiota interplay. Gut Microbes, 2020, 12, 1859812.	4.3	59
3729	The Effects of Sleep on the Commensal Microbiota. Journal of Clinical Gastroenterology, 2018, 52, 204-209.	1.1	15
3730	Role of Postnatal Acquisition of the Intestinal Microbiome in the Early Development of Immune Function. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, 262-273.	0.9	78
3731	Metabolic networks of the human gut microbiota. Microbiology (United Kingdom), 2020, 166, 96-119.	0.7	22
3750	Prebiotics and Lipid Metabolism. , 0, , 183-192.		7
3751	The microbiome-adipose tissue axis in systemic metabolism. American Journal of Physiology - Renal Physiology, 2020, 318, G717-G724.	1.6	36
3752	Pigs, Unlike Mice, Have Two Distinct Colonic Stem Cell Populations Similar to Humans That Respond to High-Calorie Diet prior to Insulin Resistance. Cancer Prevention Research, 2017, 10, 442-450.	0.7	10
3753	High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight, 2019, 4, .	2.3	105
3754	Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight, 2020, 5, .	2.3	28
3755	\hat{l}^2 -Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight, 2017, 2, .	2.3	41
3756	Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight, 2018, 3, .	2.3	34
3757	Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. Journal of Clinical Investigation, 2007, 117, 258-269.	3.9	227
3760	Selection and Evaluation of Probiotics. , 2012, , 607-638.		2

#	Article	IF	CITATIONS
3761	Effect of the Synbiotic (<i>B. animalis </i> spp. <i>lactis </i> Bb12 + Oligofructose) in Obese Subjects. A Randomized, Double-Blind, Controlled Clinical Trial. Journal of Food and Nutrition Research (Newark, Del), 2014, 2, 491-498.	0.1	11
3762	Goat Milk Whey Improves Nutritional Status, Fecal Microbial Composition and Intestinal Morphology in Female Rats Fed a Westernized Diet and Their Offspring. Journal of Food and Nutrition Research (Newark, Del), 2019, 7, 291-302.	0.1	2
3763	Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatria Polska, 2018, 52, 1023-1039.	0.2	18
3764	The Effects of Psychological Stressors on the Intestinal Microbiota. Bioscience and Microflora, 2009, 28, 125-134.	0.5	2
3765	The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Bioscience of Microbiota, Food and Health, 2019, 38, 3-9.	0.8	67
3766	Anti-inflammatory properties of antidiabetic agents. World Journal of Meta-analysis, 2019, 7, 129-141.	0.1	4
3767	Phylotyping and Functional Analysis of Two Ancient Human Microbiomes. PLoS ONE, 2008, 3, e3703.	1.1	87
3768	Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota. PLoS ONE, 2009, 4, e5842.	1.1	117
3769	Lactobacillus casei Abundance Is Associated with Profound Shifts in the Infant Gut Microbiome. PLoS ONE, 2010, 5, e8745.	1.1	107
3770	Intestinal Activation of Notch Signaling Induces Rapid Onset Hepatic Steatosis and Insulin Resistance. PLoS ONE, 2011, 6, e20767.	1.1	11
3771	Effects and Action Mechanisms of Berberine and Rhizoma coptidis on Gut Microbes and Obesity in High-Fat Diet-Fed C57BL/6J Mice. PLoS ONE, 2011, 6, e24520.	1.1	157
3772	Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity. PLoS ONE, 2011, 6, e25042.	1.1	91
3773	Associations among Organochlorine Pesticides, Methanobacteriales, and Obesity in Korean Women. PLoS ONE, 2011, 6, e27773.	1.1	37
3774	Standard Colonic Lavage Alters the Natural State of Mucosal-Associated Microbiota in the Human Colon. PLoS ONE, 2012, 7, e32545.	1.1	127
3775	High Nutrient Transport and Cycling Potential Revealed in the Microbial Metagenome of Australian Sea Lion (Neophoca cinerea) Faeces. PLoS ONE, 2012, 7, e36478.	1.1	41
3776	Differential Effects of Two Fermentable Carbohydrates on Central Appetite Regulation and Body Composition. PLoS ONE, 2012, 7, e43263.	1.1	66
3777	Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE, 2012, 7, e46231.	1.1	254
3778	Metagenomic Analyses of Alcohol Induced Pathogenic Alterations in the Intestinal Microbiome and the Effect of Lactobacillus rhamnosus GG Treatment. PLoS ONE, 2013, 8, e53028.	1.1	439

#	Article	IF	CITATIONS
3779	Pyrosequencing the Canine Faecal Microbiota: Breadth and Depth of Biodiversity. PLoS ONE, 2013, 8, e53115.	1.1	77
3780	PhoB Regulates the Survival of Bacteroides fragilis in Peritoneal Abscesses. PLoS ONE, 2013, 8, e53829.	1.1	12
3781	Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Obesity and Metabolic Syndrome. PLoS ONE, 2013, 8, e56612.	1.1	107
3782	Dietary Fat Content and Fiber Type Modulate Hind Gut Microbial Community and Metabolic Markers in the Pig. PLoS ONE, 2013, 8, e59581.	1.1	94
3783	A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection. PLoS ONE, 2013, 8, e67155.	1.1	81
3784	In Vitro Fermentation of NUTRIOSE® FB06, a Wheat Dextrin Soluble Fibre, in a Continuous Culture Human Colonic Model System. PLoS ONE, 2013, 8, e77128.	1.1	37
3785	Development and Validation of a Microarray for the Investigation of the CAZymes Encoded by the Human Gut Microbiome. PLoS ONE, 2013, 8, e84033.	1.1	36
3786	A Taxonomic Signature of Obesity in the Microbiome? Getting to the Guts of the Matter. PLoS ONE, 2014, 9, e84689.	1.1	277
3787	Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on Hepatic Steatosis in Zucker Rats. PLoS ONE, 2014, 9, e98401.	1.1	58
3788	Influence of Fasting during Moult on the Faecal Microbiota of Penguins. PLoS ONE, 2014, 9, e99996.	1.1	41
3789	Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome. PLoS ONE, 2014, 9, e100916.	1.1	40
3790	Carbohydrate-Free Peach (Prunus persica) and Plum (Prunus domestica) Juice Affects Fecal Microbial Ecology in an Obese Animal Model. PLoS ONE, 2014, 9, e101723.	1.1	40
3791	Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells. PLoS ONE, 2014, 9, e107460.	1.1	16
3792	Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat. PLoS ONE, 2014, 9, e109841.	1.1	240
3793	In Vitro Characterization of the Impact of Different Substrates on Metabolite Production, Energy Extraction and Composition of Gut Microbiota from Lean and Obese Subjects. PLoS ONE, 2014, 9, e113864.	1.1	82
3794	Stool Phospholipid Signature is Altered by Diet and Tumors. PLoS ONE, 2014, 9, e114352.	1.1	14
3795	Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity. PLoS ONE, 2014, 9, e114799.	1.1	31
3796	Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice. PLoS ONE, 2015, 10, e0125091.	1.1	60

#	Article	IF	CITATIONS
3797	Commensal Streptococcus salivarius Modulates PPAR \hat{l}^3 Transcriptional Activity in Human Intestinal Epithelial Cells. PLoS ONE, 2015, 10, e0125371.	1.1	60
3798	Tumor Grafting Induces Changes of Gut Microbiota in Athymic Nude Mice in the Presence and Absence of Medicinal Gynostemma Saponins. PLoS ONE, 2015, 10, e0126807.	1.1	24
3799	The Gut Microbiota of Wild Mice. PLoS ONE, 2015, 10, e0134643.	1.1	103
3800	Oral Administration of Faecalibacterium prausnitzii Decreased the Incidence of Severe Diarrhea and Related Mortality Rate and Increased Weight Gain in Preweaned Dairy Heifers. PLoS ONE, 2015, 10, e0145485.	1.1	75
3801	Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice. PLoS ONE, 2016, 11, e0146177.	1.1	25
3802	Functional Profiling of Unfamiliar Microbial Communities Using a Validated De Novo Assembly Metatranscriptome Pipeline. PLoS ONE, 2016, 11, e0146423.	1.1	23
3803	The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PLoS ONE, 2016, 11, e0150502.	1.1	196
3804	Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype. PLoS ONE, 2016, 11, e0150943.	1.1	20
3805	Weight and Glucose Reduction Observed with a Combination of Nutritional Agents in Rodent Models Does Not Translate to Humans in a Randomized Clinical Trial with Healthy Volunteers and Subjects with Type 2 Diabetes. PLoS ONE, 2016, 11, e0153151.	1.1	8
3806	Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet. PLoS ONE, 2016, 11, e0154329.	1.1	154
3807	Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS ONE, 2016, 11, e0161174.	1.1	294
3808	Neuropeptide Y Overexpressing Female and Male Mice Show Divergent Metabolic but Not Gut Microbial Responses to Prenatal Metformin Exposure. PLoS ONE, 2016, 11, e0163805.	1.1	35
3809	Daesiho-Tang Is an Effective Herbal Formulation in Attenuation of Obesity in Mice through Alteration of Gene Expression and Modulation of Intestinal Microbiota. PLoS ONE, 2016, 11, e0165483.	1.1	56
3810	Colonic Absorption of Low-Molecular-Weight Metabolites Influenced by the Intestinal Microbiome: A Pilot Study. PLoS ONE, 2017, 12, e0169207.	1.1	55
3811	Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 2017, 12, e0171642.	1.1	128
3812	Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189.	1.1	20
3813	Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS ONE, 2017, 12, e0181451.	1.1	29
3814	Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet. PLoS ONE, 2017, 12, e0182431.	1.1	32

#	Article	IF	CITATIONS
3815	Microbiota of little penguins and short-tailed shearwaters during development. PLoS ONE, 2017, 12, e0183117.	1.1	23
3816	A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network. PLoS ONE, 2017, 12, e0184394.	1.1	53
3817	Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE, 2017, 12, e0186216.	1.1	55
3818	Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS ONE, 2018, 13, e0190368.	1.1	63
3819	Bone biodeteriorationâ€"The effect of marine and terrestrial depositional environments on early diagenesis and bone bacterial community. PLoS ONE, 2020, 15, e0240512.	1.1	22
3820	The Extraintestinal Pathogenic Escherichia coli Factor Rqll Constrains the Genotoxic Effects of the RecQ-Like Helicase RqlH. PLoS Pathogens, $2015, 11, e1005317$.	2.1	20
3821	Efecto de los probióticos en el control de la obesidad en humanos: hipótesis no demostradas. Revista Espanola De Nutricion Humana Y Dietetica, 2014, 16, 100.	0.1	2
3822	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 13, 223-234.	0.9	27
3823	The changes of gut microbiota associated with age and lifestyle. Obesity and Metabolism, 2015, 12, 3-9.	0.4	2
3824	Edible Lily Bulb Modulates Colonic Barrier Functions, Microflora and Fermentation in Rats Fed a High-Fat Diet. Journal of Nutritional Health & Food Science, 2014, 2, .	0.3	5
3825	Diet, Gut Microbiota and Obesity. Journal of Nutritional Health & Food Science, 2015, 3, 01-06.	0.3	4
3826	MANAGEMENT OF ENDOCRINE DISEASE: Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. European Journal of Endocrinology, 2020, 183, R57-R73.	1.9	24
3827	Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 2020, 11, 153-161.	0.5	13
3828	Intestinal Microflora in Children: from Formation Disturbances Prophylaxis to Preventing Non-Infectious Diseases. PediatriÄeskaâ Farmakologiâ, 2016, 13, 377-381.	0.1	8
3829	Obesity-induced chronic low grade inflammation: Gastrointestinal and adipose tissue crosstalk. Integrative Obesity and Diabetes, 2015, 1 , .	0.2	7
3830	[RETRACTION]Translational research into gut microbiota: new horizons in obesity treatment. Arquivos Brasileiros De Endocrinologia E Metabologia, 2009, 53, 139-144.	1.3	32
3831	The potential role of the intestinal gut microbiota in obesity and the metabolic syndrome. Food Science and Technology Bulletin, 2009, 5, 71-92.	0.5	3
3832	The temporal variations of gut microbiota composition in overwintering Hooded Crane (<i>Grus) Tj ETQq1 1 0.78</i>	4314 rgBT	l Dverlock

#	Article	IF	CITATIONS
3833	Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass. Aging, 2020, 12, 10736-10753.	1.4	32
3834	Protection from chemotherapy- and antibiotic-mediated dysbiosis of the gut microbiota by a probiotic with digestive enzymes supplement. Oncotarget, 2018, 9, 30919-30935.	0.8	33
3835	Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota. Oncotarget, 2015, 6, 33689-33704.	0.8	57
3836	Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration. Oncotarget, 2016, 7, 1096-1106.	0.8	39
3837	Correlation between Body Mass Index and Gut Microbiota in Adults. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 778-787.	0.0	3
3838	High relative abundance of firmicutes and increased TNF- $\hat{l}\pm$ levels correlate with obesity in children. Salud Publica De Mexico, 2017, 60, 5.	0.1	29
3839	The gut microbiota in neuropsychiatric disorders. Acta Neurobiologiae Experimentalis, 2018, 78, 69-81.	0.4	55
3840	GUT MICROBIOTA IN CHRONIC KIDNEY DISEASE. Postepy Mikrobiologii, 2019, 58, 237-245.	0.1	2
3841	Diet Induces Reproducible Alterations in the Mouse and Human Gut Microbiome. SSRN Electronic Journal, 0, , .	0.4	2
3842	Anti-fibrotic Drugs for Crohn's Disease: Ready for Prime Time?. Current Pharmaceutical Design, 2019, 25, 47-56.	0.9	4
3843	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	0.9	19
3844	IL-17 Axis Driven Inflammation in Non-Alcoholic Fatty Liver Disease Progression. Current Drug Targets, 2015, 16, 1315-1323.	1.0	71
3845	Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar?. Current Drug Targets, 2015, 16, 1332-1346.	1.0	14
3846	Potential Impacts of Prebiotics and Probiotics on Cancer Prevention. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 605-628.	0.9	21
3847	Role of Gut Microbiota in Obesity, Type 2 Diabetes and Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 305-311.	0.8	94
3848	A Possible Link of Gut Microbiota Alteration in Type 2 Diabetes and Alzheimer's Disease Pathogenicity: An Update. CNS and Neurological Disorders - Drug Targets, 2014, 13, 383-390.	0.8	41
3849	Integrating Microbiome Network: Establishing Linkages Between Plants, Microbes and Human Health. Open Microbiology Journal, 2019, 13, 330-342.	0.2	8
3850	Microbiota signatures in type-2 diabetic patients with chronic kidney disease - A Pilot Study. Journal of Mind and Medical Sciences, 0, , 130-136.	0.1	15

#	Article	IF	Citations
3851	Metabolic activity of gut microbiota and xenobiotics. Zbornik Matice Srpske Za Prirodne Nauke, 2015, , 47-55.	0.0	2
3852	Interaction between gut microbiota and host immune cells. Inflammation and Regeneration, 2015, 35, 140-147.	1.5	1
3854	High oleic peanuts improve parameters leading to fatty liver development and change the microbiota in mice intestine. Food and Nutrition Research, 2020, 64, .	1.2	8
3855	Commentary: Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis. Journal of Neurology and Neuromedicine, 2017, 2, 13-15.	0.9	6
3856	The First Report of Differences in Gut Microbiota Composition between Obese and Normal Weight Iranian Subjects. Iranian Biomedical Journal, 2020, 24, 148-154.	0.4	14
3858	GUT MICROBIOTA ALTERATIONS BY NUTRITIONAL SUPPLEMENT IMUREGEN. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2020, 89, 114-125.	0.2	2
3859	The Dose Makes the Poison: Sugar and Obesity in the United States – a Review. Polish Journal of Food and Nutrition Sciences, 2019, 69, 219-233.	0.6	47
3860	The mind-body-microbial continuum. Dialogues in Clinical Neuroscience, 2011, 13, 55-62.	1.8	109
3861	Gut microbiota and the development of obesity. Nutricion Hospitalaria, 2012, 27, 1408-14.	0.2	32
3862	Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutricion Hospitalaria, 2013, 28, 1039-48.	0.2	47
3864	Developmental Changes in Gut Microbiota and Enzyme Activity Predict Obesity Risk in Rats Arising From Reduced Nests. Physiological Research, 2011, 60, 337-346.	0.4	24
3865	Effect of Pre- and Post-Weaning High-Fat Dietary Manipulation on Intestinal Microflora and Alkaline Phosphatase Activity in Male Rats. Physiological Research, 2017, 66, 677-685.	0.4	5
3866	Links Between the Circadian Rhythm, Obesity and the Microbiome. Physiological Research, 2018, 67, S409-S420.	0.4	47
3867	Differences in Gut Microbial and Serum Biochemical Indices Between Sows With Different Productive Capacities During Perinatal Period. Frontiers in Microbiology, 2019, 10, 3047.	1.5	22
3868	Chronic Dietary Zinc Deficiency Alters Gut Microbiota Composition and Function., 0,,.		9
3869	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	1.1	121
3870	Does Gut-Microbiome Interaction Protect against Obesity and Obesity-Associated Metabolic Disorders?. Microorganisms, 2021, 9, 18.	1.6	15
3871	Combined Soluble Fiber-Mediated Intestinal Microbiota Improve Insulin Sensitivity of Obese Mice. Nutrients, 2020, 12, 351.	1.7	28

#	Article	IF	CITATIONS
3872	Less Animal-Based Food, Better Weight Status: Associations of the Restriction of Animal-Based Product Intake with Body-Mass-Index, Depressive Symptoms and Personality in the General Population. Nutrients, 2020, 12, 1492.	1.7	8
3873	Aging, Gut Microbiota and Metabolic Diseases: Management through Physical Exercise and Nutritional Interventions. Nutrients, 2021, 13, 16.	1.7	24
3874	Bacteria, food, and cancer. F1000 Biology Reports, 2011, 3, 12.	4.0	15
3875	A General Perspective of Microbiota in Human Health and Disease. , 2020, 11, .		3
3876	Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study. Preventive Nutrition and Food Science, 2016, 21, 57-61.	0.7	39
3877	Oral Administration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi Ramulus Extract Reduces Diet-Induced Obesity and Modulates Gut Microbiota. Preventive Nutrition and Food Science, 2019, 24, 136-143.	0.7	13
3878	Effects of four <i>Bifidobacteria</i> on obesity in high-fat diet induced rats. World Journal of Gastroenterology, 2010, 16, 3394.	1.4	207
3879	Gut bacteria alteration in obese people and its relationship with gene polymorphism. World Journal of Gastroenterology, 2011, 17, 1076.	1.4	75
3880	Impairment of gastrointestinal quality of life in severely obese patients. World Journal of Gastroenterology, 2014, 20, 7027.	1.4	12
3881	Effects ofLigustrum robustumon gut microbes and obesity in rats. World Journal of Gastroenterology, 2015, 21, 13042.	1.4	22
3882	Procyanidin B2 protects against diet-induced obesity and non-alcoholic fatty liver disease <i>via</i> the modulation of the gut microbiota in rabbits. World Journal of Gastroenterology, 2019, 25, 955-966.	1.4	47
3883	Therapies to modulate gut microbiota: Past, present and future. World Journal of Gastroenterology, 2020, 26, 777-788.	1.4	52
3884	The potential role of phenolic compounds on modulating gut microbiota in obesity. Journal of Food and Drug Analysis, 2020, 28, 195-205.	0.9	10
3885	Comparison of Fecal Microbial Communities between White and Black Pigs. Journal of Applied Biological Chemistry, 2015, 58, 369-375.	0.2	8
3886	Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin American Journal of Aquatic Research, 2017, 41, 395-403.	0.2	21
3887	Chapter 2: The composition and role of the microbiota in chickens. , 2015, , 21-50.		3
3888	Impact of Tempeh Supplementation on Gut Microbiota Composition in Sprague-Dawley Rats. Research Journal of Microbiology, 2014, 9, 189-198.	0.2	18
3889	Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application. Journal of Microbiology and Biotechnology, 2013, 23, 1645-1653.	0.9	39

#	Article	IF	CITATIONS
3890	Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice. Journal of Microbiology and Biotechnology, 2020, 30, 1640-1650.	0.9	8
3891	Revisiting the Bacterial Phylum Composition in Metabolic Diseases Focused on Host Energy Metabolism. Diabetes and Metabolism Journal, 2020, 44, 658-667.	1.8	19
3892	Gut Microbiota in Type 2 Diabetes Individuals and Correlation with Monocyte Chemoattractant Protein1 and Interferon Gamma from Patients Attending a Tertiary Care Centre in Chennai, India. Indian Journal of Endocrinology and Metabolism, 2016, 20, 523.	0.2	29
3893	Comparative analysis of subgingival red complex bacteria in obese and normal weight subjects with and without chronic periodontitis. Journal of Indian Society of Periodontology, 2017, 21, 186.	0.3	6
3894	Effect of donepezil and memantine on improvement of cognitive function in patients with temporal lobe epilepsy. Journal of Research in Medical Sciences, 2020, 25, 29.	0.4	4
3895	The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. Journal of Research in Medical Sciences, 2018, 23, 47.	0.4	17
3896	Evaluation of fecal microbiomes associated with obesity in captive cynomolgus monkeys (Macaca) Tj ETQq0 0 0	rgBT/Ove	lock 10 Tf 5
3897	Abundance and Diversity of Microbiota in Type 2 Diabetes and Obesity. Journal of Diabetes & Metabolism, 2013, 04, .	0.2	17
3898	Analysis of Microbial Populations and Metabolism of Anthocyanins by Mice Gut Microflora Fed with Blackberry Powder. Journal of Nutrition & Food Sciences, 2013, 03, .	1.0	5
3899	Assessment of Toll-like Receptors in the Ileum of Weanling Pigs- Responses to Feed Antibiotic Chlortetracycline and Gnotobiotic Conditions. Journal of Clinical & Cellular Immunology, 2012, 03, .	1.5	2
3900	Comparison of the Microbiota of Snails (Helix aspersa) of Different Weights and Its Evolution over Time. Journal of Veterinary Science & Technology, 2014, 06, .	0.3	1
3901	Dose Escalation, Safety and Impact of a Strain-Specific Probiotic (Renadylâ,¢) on Stages III and IV Chronic Kidney Disease Patients. Journal of Nephrology & Therapeutics, 2013, 03, .	0.1	3
3902	Bacteria and Obesity: The Proportion Makes the Difference. Surgery Current Research, 2013, 03, .	0.1	4
3903	Diabetes-related alterations in the enteric nervous system and its microenvironment. World Journal of Diabetes, 2012, 3, 80.	1.3	47
3904	Ménage-Ã-trois of bariatric surgery, bile acids and the gut microbiome. World Journal of Diabetes, 2015, 6, 367.	1.3	20
3905	Assessing the evidence for weight loss strategies in people with and without type 2 diabetes. World Journal of Diabetes, 2017, 8, 440-454.	1.3	10
3906	A primer on the immune system in the pathogenesis and treatment of atherosclerosis. EuroIntervention, 2008, 4, 378-390.	1.4	9
3907	Sustained Anthropogenic Impact in Carter Saltpeter Cave, Carter County, Tennessee and the Potential Effects on Manganese Cycling. Journal of Cave and Karst Studies, 2013, 75, 189-204.	0.3	9

#	ARTICLE	IF	Citations
3908	Impact of Long-Term Proton Pump Inhibitor Therapy on Gut Microbiota in F344 Rats: Pilot Study. Gut and Liver, 2016, 10, 896-901.	1.4	14
3909	Difference of gut microbiota composition based on the body condition scores in dogs. Journal of Animal Science and Technology, 2020, 62, 239-246.	0.8	25
3910	Is stool frequency associated with the richness and community composition of gut microbiota?. Intestinal Research, 2019, 17, 419-426.	1.0	26
3911	5-Aminosalicylic acid intolerance is associated with a risk of adverse clinical outcomes and dysbiosis in patients with ulcerative colitis. Intestinal Research, 2020, 18, 69-78.	1.0	19
3912	Human gut microbiota plays a role in the metabolism of drugs. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 317-326.	0.2	58
3914	The Effect of Synbiotic Supplementation on Body Composition and Lipid Profile in Patients with NAFLD: A Randomized, Double Blind, Placebo-Controlled Clinical Trial Study. Iranian Red Crescent Medical Journal, 2017, 19, .	0.5	14
3915	Correlation of Gut Microbiota Profile with Body Mass Index Among School Age Children. Iranian Red Crescent Medical Journal, 2018, 20, .	0.5	4
3916	Effect of Overgrowth or Decrease in Gut Microbiota on Health and Disease. Archives of Pediatric Infectious Diseases, 2016, 4, .	0.1	12
3917	Linking gut microbiota with human diseases. Bioinformation, 2020, 16, 196-208.	0.2	21
3918	Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emerging evidence and challenges. Clinics, 2020, 75, e1277.	0.6	25
3919	The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. ELife, 2013, 2, e01102.	2.8	355
3920	Bidirectional interactions between indomethacin and the murine intestinal microbiota. ELife, 2015, 4, e08973.	2.8	80
3921	Non-nutritive Sweeteners and Their Associations with Obesity and Type 2 Diabetes. Journal of Obesity and Metabolic Syndrome, 2020, 29, 114-123.	1.5	18
3922	Regulation of Iron and Its Significance in Obesity and Complications. The Korean Journal of Obesity, 2014, 23, 222.	0.2	2
3923	Obesity and Dysbiosis. The Korean Journal of Obesity, 2015, 24, 121-125.	0.2	2
3924	Altered gut microbiota by voluntary exercise induces high physical activity in high-fat diet mice. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 81-85.	0.2	8
3925	Different analysis strategies of 16S rRNA gene data from rodent studies generate contrasting views of gut bacterial communities associated with diet, health and obesity. PeerJ, 2020, 8, e10372.	0.9	8
3926	Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice. Peerl, 2016, 4, e1702.	0.9	34

#	ARTICLE	IF	CITATIONS
3927	Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ, 2017, 5, e3443.	0.9	85
3928	Inulin-type fructan improves diabetic phenotype and gut microbiota profiles inÂrats. PeerJ, 2018, 6, e4446.	0.9	127
3929	Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ, 2018, 6, e4694.	0.9	103
3930	Bibliometric analysis of research on the role of intestinal microbiota in obesity. PeerJ, 2018, 6, e5091.	0.9	40
3931	Dose-dependent and strain-dependent anti-obesity effects of <i>Lactobacillus sakei </i> in a diet induced obese murine model. Peerl, 2019, 7, e6651.	0.9	10
3932	Comparison of the fecal microbiota of two free-ranging Chinese subspecies of the leopard (<i>Panthera pardus</i>) using high-throughput sequencing. PeerJ, 2019, 7, e6684.	0.9	18
3933	Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.	0.9	360
3934	Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. Peerl, 2020, 8, e8317.	0.9	74
3935	Synthetic dietary inulin, Fuji FF, delays development of diet-induced obesity by improving gut microbiota profiles and increasing short-chain fatty acid production. PeerJ, 2020, 8, e8893.	0.9	14
3936	Fecal microbiota in client-owned obese dogs changes after weight loss with a high-fiber-high-protein diet. PeerJ, 2020, 8, e9706.	0.9	19
3937	Differences in swine gut microbiota in southern region of Republic of Korea. Korean Journal of Microbiology, 2015, 51, 81-85.	0.2	2
3939	Alpha-Cyclodextrin Functions as a Dietary Fiber. , 2021, , 255-276.		0
3940	Mechanism research on the interaction regulation of Escherichia and IFN- \hat{l}^3 for the occurrence of T2DM. Annals of Palliative Medicine, 2021, 10, 10391-10400.	0.5	3
3941	Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women. BMC Microbiology, 2021, 21, 265.	1.3	24
3942	The contrasting human gut microbiota in early and late life and implications for host health and disease. Nutrition and Healthy Aging, 2021, 6, 157-178.	0.5	5
3943	Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers, 2021, 13, 5067.	1.7	25
3944	Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poultry Science, 2022, 101, 101563.	1.5	37
3945	Fucoidan Protects Against High-Fat Diet-Induced Obesity and Modulates Gut Microbiota in Institute of Cancer Research Mice. Journal of Medicinal Food, 2021, 24, 1058-1067.	0.8	14

#	Article	IF	CITATIONS
3946	Role of Maternal Microbiota and Nutrition in Early-Life Neurodevelopmental Disorders. Nutrients, 2021, 13, 3533.	1.7	9
3947	Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids. Nutrients, 2021, 13, 3666.	1.7	23
3949	Dietary grape pomace – effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519.	1.5	22
3950	Obesity Modulates the Gut Microbiome in Triple-Negative Breast Cancer. Nutrients, 2021, 13, 3656.	1.7	15
3951	Associations of imbalance of intestinal flora with severity of disease, inflammatory factors, adiponectin, and vascular endothelial function of hypertension patients. Kaohsiung Journal of Medical Sciences, 2022, 38, 165-173.	0.8	4
3952	Complementary Food Ingredients Alter Infant Gut Microbiome Composition and Metabolism In Vitro. Microorganisms, 2021, 9, 2089.	1.6	6
3953	Gut microbiota dysbiosis of type 2 diabetic mice impairs the intestinal daily rhythms of GLP-1 sensitivity. Acta Diabetologica, 2022, 59, 243-258.	1.2	8
3954	Effects of Probiotics and Synbiotics on Weight Loss in Subjects with Overweight or Obesity: A Systematic Review. Nutrients, 2021, 13, 3627.	1.7	41
3955	Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 3236-3253.	5.4	18
3956	The Interplay between Insulin Resistance, Inflammation, Oxidative Stress, Base Excision Repair and Metabolic Syndrome in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2021, 22, 11128.	1.8	58
3957	Role of the gut microbiota in airway immunity and host defense against respiratory infections. Biological Chemistry, 2021, 402, 1481-1491.	1.2	7
3958	Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes mellitus. Foods, 2021, 10, 2528.	1.9	9
3959	Faecal microbiota transplantationâ€mediated jejunal microbiota changes halt highâ€fat dietâ€induced obesity in mice via retarding intestinal fat absorption. Microbial Biotechnology, 2022, 15, 337-352.	2.0	24
3960	Supplementation with Lactiplantibacillus plantarum IMC 510 Modifies Microbiota Composition and Prevents Body Weight Gain Induced by Cafeteria Diet in Rats. International Journal of Molecular Sciences, 2021, 22, 11171.	1.8	11
3961	Mixture of Five Fermented Herbs (Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets. Frontiers in Microbiology, 2021, 12, 725196.	1.5	10
3962	Obesity, Metabolic Syndrome and Inflammation. , 2022, , 133-149.		O
3963	Mechanisms by Which Obesity Promotes Acute Graft-Versus-Host Disease in Mice. Frontiers in Immunology, 2021, 12, 752484.	2.2	9
3964	The Modulation of Gut Microbiota Composition in the Pathophysiology of Gestational Diabetes Mellitus: A Systematic Review. Biology, 2021, 10, 1027.	1.3	12

#	Article	IF	CITATIONS
3965	16S rRNA of Mucosal Colon Microbiome and CCL2 Circulating Levels Are Potential Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 10747.	1.8	16
3966	The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist – from fundamentals to future challenges. Free Radical Biology and Medicine, 2021, 176, 265-285.	1.3	27
3969	Inï¬,ammatory bowel disease. , 2006, , 593-610.		21
3970	Molecular Approaches to Detection of Bacteria in Critical Care Patients. Yearbook of Intensive Care and Emergency Medicine, 2007, , 44-52.	0.1	0
3971	Interactions between Epithelial Cells and Dendritic Cells in Bacterial Handling. Bioscience and Microflora, 2008, 27, 113-122.	0.5	0
3972	Post-Genomics Approaches towards Monitoring Changes within the Microbial Ecology of the Gut. , 2009, , 79-110.		0
3973	Influence of the Gut Microbiota with Ageing. , 2009, , 153-173.		1
3974	Indigenous Microbiota and Association with the Host. , 2009, , 15-37.		0
3975	Gutmicrobiota as a factor in obesitydevelopment. Acta Agriculturae Slovenica, 2010, 96, .	0.2	0
3976	Immunomodulation by Foods and Microbes in Crohn Disease and Ulcerative Colitis., 2010,, 657-672.		1
3977	Obesity, Bacteria and Fat. , 2010, , 3141-3146.		0
3978	Obesity and Colorectal Cancer Risk: Impact of the Gut Microbiota and Weight-Loss Diets. The Open Obesity Journal, 2010, 2, 50-62.	0.1	3
3982	Metagenomic Applications and the Potential for Understanding Chronic Liver Disease., 2011,, 277-295.		0
3984	ãf—ãfãfã,ã,ªãf†ã,£ã,⁻ã,¹ã*QOL. JuntendoÌ" Igaku, 2011, 57, 115-124.	0.1	0
3985	Toward the Identifi cation of Gut Microbial Markers Associated to Irritable Bowel Syndrome. , 2011, , 75-80.		0
3987	Host Genetics and Gut Microbiota. , 2012, , 281-295.		1
3988	A Role for Bacteria in the Development of Autoimmunity for Type 1 Diabetes., 2012,, 231-242.		0
3989	Gut Microbiota - "Lost in Immune Tolerance― , 0, , .		0

#	Article	IF	CITATIONS
3990	Future Challenges of Administration of Direct-Fed Microbial Supplementation to Swine. , 2012, , 153-162.		0
3991	Antimicrobial Peptides in Inflammatory Bowel Disease. , 2012, , 119-132.		1
3992	Gut Microbiota, Obesity and Metabolic Dysfunction. Indonesian Biomedical Journal, 2011, 3, 150.	0.2	0
3993	Sensing Fat in the Diet: Implications for Obesity Outcomes. Journal of Nutrition & Food Sciences, 2012, 02, .	1.0	0
3994	Obesity, Intestinal Inflammation, and Antioxidant Bioavailability. Journal of Nutrition & Food Sciences, 2012, 02, .	1.0	0
3995	Effects of levofloxacin hydrochloride on the intestinal microbiota of BALB/c mice by PCR-DGGE. African Journal of Microbiology Research, 2012, 6, .	0.4	1
3996	Intestinal Methanobrevibacter smithii but Not Total Bacteria Is Related to Diet-Induced Weight Gain in Rats. Obesity, 0, , .	1.5	2
3997	The Effect of Fermented Extracts of Portulaca oleracea against Campylobacter jejuni. The Korean Journal of Food and Nutrition, 2012, 25, 291-298.	0.3	6
3998	Effect of Subtotal Colectomy on Body Weight and Food Intake in an Experimental Model of Obesity in Male Wistar Rats. The Open Obesity Journal, 2012, 4, 51-54.	0.1	0
4000	Pharmacogenomics and Gut Microbiota Biomarkers in Obesity. , 2013, , 575-601.		O
4001	Development of Micro-ecological System in Small and Large Intestine of Piglets., 2013,, 75-87.		0
4002	Gut Microbiota: Physiology and Relationship with Inflammatory Bowel Disease. Open Journal of Endocrine and Metabolic Diseases, 2013, 03, 283-292.	0.2	O
4003	Terrestrial Vertebrate Animal Metagenomics, Wild Ruminants. , 2013, , 1-10.		0
4007	The Scientific Analysis on Exercise and Endotoxin Exercise Science, 2013, 22, 273-279.	0.1	O
4008	Induction of Metabolic Syndrome by Excess Fructose Consumption. , 2014, , 41-63.		1
4009	Probiotics and Prebiotics in Obesity and Energy Metabolism. , 2013, , 232-257.		O
4010	Probiotics and Prebiotics and the Gut Microbiota. , 2013, , 258-268.		2
4011	Manipulation and Assessment of Gut Microbiome for Metabolic Studies. Methods in Molecular Biology, 2014, 1194, 449-469.	0.4	2

#	Article	IF	CITATIONS
4012	The Role of Microbes in Obesity. , 2014, , 59-73.		0
4013	AÂLactobacillusÂCocktail Changes Gut Flora and Reduces Cholesterolemia and Weight Gain in Hyperlipidemia Mice. SOJ Microbiology & Infectious Diseases, 2014, 2, .	0.7	0
4014	Human Microbiota and Its Function. Advanced Topics in Science and Technology in China, 2014, , 23-31.	0.0	0
4015	Intestinal Microbiota: An Emerging Target for Modifying Cardiovascular Health. Journal of Diabetes & Metabolism, 2014, 5, .	0.2	0
4016	Obesity and Gallbladder Disease. , 2014, , 613-624.		0
4017	The Gut Microbiota: Ecology and Function. , 0, , 39-65.		1
4018	Metamicrobiology: Analyzing Microbial Behavior at the Community Level., 0,, 417-424.		0
4019	Review of Nutritional Gastrointestinal Physiology Imposed by Bariatric Surgical Procedures. , 2014, , 1-22.		0
4021	Mechanisms of Action of the Bariatric Procedures. , 2015, , 61-72.		2
4024	THE ROLE OF INTESTINAL MICROBIOTA IN ENERGETIC METABOLISM: NEW PERSPECTIVES IN COMBATING OBESITY. Clinical and Biomedical Research, 2015, 35, 196-199.	0.1	1
4025	Gut Flora in the Development and Progression of Nonalcoholic Fatty Liver Disease. Journal of Liver: Disease & Transplantation, 2015, 04, .	0.0	0
4026	Inflammation and Colorectal Cancer. , 2015, , 211-256.		0
4028	The Dynamic Microbial Landscape of the Intestine and the Impact on Probiotic Therapy. Journal of Probiotics & Health, 2015, 04, .	0.6	0
4029	Chapter 5: Intestinal health in carnivores. , 2015, , 117-138.		0
4030	Insights into the role of the gut microbiome in metabolic syndrome. International Journal of Biology and Chemistry, 2015, 8, 36-39.	0.3	0
4031	Gut Microbiome, Obesity and Metabolic Syndrome. , 2015, , 1-14.		2
4032	The Pivotal Role of Microbiota in Obesity. Journal of Obesity and Weight-loss Medication, 2015, 1 , .	0.1	0
4034	Fecal microbiota analysis of obese dogs with underlying diseases: a pilot study. Korean Journal of Veterinary Research, 2015, 55, 205-208.	0.2	2

#	ARTICLE	IF	CITATIONS
4036	Modulation of Gut Microbiota: Potential Mechanism of Diabetes Remission after Bariatric/Metabolic Surgery. Journal of Metabolic and Bariatric Surgery, 2015, 4, 29-34.	0.1	0
4037	MicroRNAs: Decoders of Dysbiosis into Metabolic Diseases?. Journal of Diabetes & Metabolism, 2016, 7, .	0.2	1
4038	Obesity, Cardiometabolic Risk, and Chronic Kidney Disease., 2016,, 181-198.		1
4039	The Human Microbiome and Clinical Immunology. , 0, , 19-25.		0
4040	Fecal Microbial Communities of Overweight and Obese Client-Owned Dogs Fed Cooked Bean Powders as Assessed by 454-Pyrosequencing. Journal of Veterinary Science & Technology, 2016, 7, .	0.3	2
4041	Interaction between the Microbiome and Diet: The Hologenome Concept. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	3
4045	Potential Role of the Microbiome in the Development of Childhood Obesity. , 2016, , 235-241.		0
4046	Chapter 8 Nondigestible Carbohydrates Nutritional Aspects. , 2016, , 333-376.		0
4047	The role of microbiota in pathogenesis of dyslipidemia and associated metabolic disorders. Russian Journal of Evidence-Based Gastroenterology, 2017, 6, 29.	0.3	6
4048	Introduction to Diabetes and Obesity. , 2017, , 3-19.		0
4049	The Impact of Functional Food on the Intestinal Microbiota in Relation to Chronic Noncommunicable Diseases., 2017, 1, 004-006.		0
4050	Metabolik Sendrom Tedavisinde Bağırsak Mikrobiyotasının Probiyotikler ve Özelinde Saccharomyces Boulardii ile Modülasyonu. Anadolu Kliniği Tıp Bilimleri Dergisi, 0, , .	0.1	0
4052	Chapter 3 Impact of maternal prenatal psychosocial stress and maternal obesity on infant microbiota., 2017,, 57-78.		1
4053	Obesity and the Microbiome - A Surgeon's Perspective. Advances in Obesity Weight Management & Control, 2017, 7, .	0.4	0
4057	Growth and Life Course Health Development. , 2018, , 405-429.		4
4058	Gut Microbiome and Its Potential Role in Obesity. Journal of Restorative Medicine, 2017, 6, 46-52.	0.7	0
4059	The state of gut microbiota and clinical-metabolic features in children with overweight and obesity. Russian Journal of Evidence-Based Gastroenterology, 2018, 7, 4.	0.3	2
4060	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. , 0, , 389-408.		2

#	Article	IF	CITATIONS
4061	Multi-Omic Predictors of Steatohepatitis and Advanced Fibrosis in Children. SSRN Electronic Journal, $0, , .$	0.4	0
4062	Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity and Improves Host Metabolism. SSRN Electronic Journal, 0, , .	0.4	O
4063	Emerging Role of Gut Microbiota beyond Infection. Journal of Gastrointestinal Infections, 2018, 8, 1-2.	0.1	0
4064	G Protein-Coupled Receptor 109A and Host Microbiota Modulate Intestinal Epithelial Integrity During Sepsis. SSRN Electronic Journal, 0, , .	0.4	O
4068	COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASE. MESSAGE ONE. Nephrology (Saint-Petersburg), 2018, 22, 57-73.	0.1	8
4069	"LICONINE [®] â€; an Extract of Glycyrrhiza Uralensis, Normalizes the Fecal Microbiota Disturbance in Diet-induced Obese Mice. Journal of Food and Nutrition Research (Newark, Del), 2018, 6, 509-512.	0.1	O
4074	Effekte der Adipositaschirurgie auf Hunger und SÃŧtigung. , 2019, , 137-149.		0
4076	Human Microbiome and Malignancy: Principles, Mechanisms, and Challenges., 2019, , 317-335.		O
4077	The Disappearing Microbiota: Diseases of the Western Civilization. , 2019, , 325-347.		1
4078	Gut Microbiota and Health: Understanding the Role of Diet. Food and Nutrition Sciences (Print), 2019, 10, 1344-1373.	0.2	4
4079	Microbiome in Liver Cirrhosis., 2019,, 79-91.		0
4080	The profiles of dysbiotic microbial communities. AIMS Microbiology, 2019, 5, 87-101.	1.0	1
4089	The Effect of Antibiotic Use Within the First Year of Life On 3-Year Childhood Obesity. Ankara Medical Journal, 0, , .	0.1	0
4092	Physiological Mechanisms of Bariatric Procedures. , 2020, , 61-76.		O
4093	The Role of the Gut Microbiota in Obesity. Korean Journal of Medicine, 2019, 94, 410-413.	0.1	1
4094	Frequency of Selenomonas Noxia in Oral Microbiota of Obese and Normal Weight People in Duhok-Iraq. Science Journal of University of Zakho, 2019, 7, 120-124.	0.1	O
4095	MICROBIOMA INTESTINAL: SEU POTENCIAL COMO UM NOVO ALVO TERAPÊUTICO. Ensaios USF, 2019, 2, 14-3	1.0.1	0
4096	Comparison of mice gut microbiota before and after fasting for a day. Journal of Applied Biological Chemistry, 2019, 62, 333-337.	0.2	O

#	Article	IF	CITATIONS
4097	Microbiome and Cellular Players in Type 1 Diabetes: From Pathogenesis to Protection., 2020, , 161-227.		0
4098	Contribution of Human and Animal to the Microbial World and Ecological Balance. , 2020, , 1-18.		0
4100	Governance of the gut. Journal of Critical Dietetics, 2020, 5, 34-44.	0.2	1
4101	Vaccine therapy for dysbiosis-related diseases. World Journal of Gastroenterology, 2020, 26, 2758-2767.	1.4	4
4105	Intestinal microbiota in children with obesity. Role of probiotics. Meditsinskiy Sovet, 2020, , 134-142.	0.1	1
4107	Effect of probiotics (Vitacogen) supplementation on the performance, apparent digestibility and microbiota in the gastrointestinal tract in pigs. Nihon Chikusan Gakkaiho, 2020, 91, 217-225.	0.0	0
4108	A hierarchical Bayesian approach for detecting global microbiome associations. Statistical Applications in Genetics and Molecular Biology, 2021, 20, 85-100.	0.2	0
4109	The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Critical Reviews in Food Science and Nutrition, 2023, 63, 3867-3894.	5 . 4	10
4110	A White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis?. Current Rheumatology Reports, 2021, 23, 78.	2.1	19
4111	Energetics. , 2020, , 303-320.		0
4112	Allergic sensitization to peanuts is enhanced in mice fed a high-fat diet. AIMS Allergy and Immunology, 2020, 4, 88-99.	0.3	1
4113	Living Medicines for Health and Disease Management. , 2020, , 321-333.		0
4114	Using intestinal flora to distinguish non-alcoholic steatohepatitis from non-alcoholic fatty liver. Journal of International Medical Research, 2020, 48, 030006052097812.	0.4	12
4115	Traditional Human Populations and Nonhuman Primates Show Parallel Gut Microbiome Adaptations to Analogous Ecological Conditions. MSystems, 2020, 5, .	1.7	13
4116	Obesity Determinants and the Policy Implications for the Prevention and Management of Obesity in Indonesia. Current Research in Nutrition and Food Science, 2020, 8, 942-955.	0.3	3
4118	Intestinal microflora in metabolic diseases. World Chinese Journal of Digestology, 2020, 28, 1192-1199.	0.0	1
4119	The Anti-obesity Effects of Bangpungtongseong-san and Daesiho-tang: A Study Protocol of Randomized, Double-blinded Clinical Trial. Journal of Korean Medicine for Obesity Research, 2020, 20, 138-148.	0.7	0
4121	Impact of Gut Microbiota on Host byÂExploring Proteomics. , 2020, , 229-250.		1

#	Article	IF	CITATIONS
4122	Gut Microbiota and Risk for Atherosclerosis: Current Understanding of the Mechanisms. , 2020, , 167-186.		0
4123	Gut Microbiota and Health., 2020,, 31-79.		0
4124	Gastrointestinal Tract: Fat Metabolism in the Colon. , 2020, , 359-367.		0
4125	Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health. , 2020, , 369-387.		0
4127	Genetically engineered microbes for sustainable therapies. , 2020, , 125-145.		0
4128	Metabolic Pathways Underlying Neuropsychiatric Disorders and Obesity. , 2020, , 415-426.		0
4129	Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota., 2020, , 109-143.		1
4130	An analysis of gut dysbiosis in obesity, diabetes, and chronic gut conditions. Ibnosina Journal of Medicine and Biomedical Sciences, 2020, 12, 264-271.	0.2	0
4131	Dysbiosis of gut microbiota and human diseases. Journal of Mahatma Gandhi Institute of Medical Sciences, 2020, 25, 66.	0.1	2
4132	Antibiotic Therapy and Its Effect on Gut Microbiome in Obesity and Weight Loss. , 2020, , 209-228.		0
4134	Utilization of Faecal Microbiota in Humans and Animals. Journal of Agriculture & Life Science, 2020, 54, 1-18.	0.1	0
4136	The THE ROLE OF PLATELET RICH PLASMA AND QUERCETIN IN ALLEVIATING DIMETHYLNITROSAMINE-INDUCED ACUTE SPLEEN INJURY THROUGH REGULATING OXIDATIVE STRESS, INFLAMMATION AND APOPTOSIS. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 17-25.	0.3	1
4138	Pivotal Dominant Bacteria Ratio and Metabolites Related to Healthy Body Index Revealed by Intestinal Microbiome and Metabolomics. Indian Journal of Microbiology, 2022, 62, 130-141.	1.5	0
4139	The effect of cereal Î'â€glucan on body weight and adiposity: A review of efficacy and mechanism of action. Critical Reviews in Food Science and Nutrition, 2023, 63, 3838-3850.	5.4	6
4140	Daily ingestion of Akkermansia mucciniphila for oneÂmonth promotes healthy aging and increases lifespan in old female mice. Biogerontology, 2022, 23, 35-52.	2.0	19
4141	Impact of Gut Microbiota on the Risk of Cardiometabolic Diseases Development. Rational Pharmacotherapy in Cardiology, 2021, 17, 743-751.	0.3	2
4142	Over-feeding the gut microbiome: A scoping review on health implications and therapeutic perspectives. World Journal of Gastroenterology, 2021, 27, 7041-7064.	1.4	10
4143	New perspective on fecal microbiota transplantation in liver diseases. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 24-33.	1.4	14

#	Article	IF	CITATIONS
4144	Composition of Fecal Microbiota in Grazing and Feedlot Angus Beef Cattle. Animals, 2021, 11, 3167.	1.0	14
4145	Effect of mulberry galacto-oligosaccharide isolated from mulberry on glucose metabolism and gut microbiota in a type 2 diabetic mice. Journal of Functional Foods, 2021, 87, 104836.	1.6	8
4146	Molecular Approaches to Detection of Bacteria in Critical Care Patients., 2007,, 44-52.		0
4147	Inflamm-Aging., 2009,, 893-918.		0
4148	The invasive red-eared slider turtle is more successful than the native Chinese three-keeled pond turtle: evidence from the gut microbiota. PeerJ, 2020, 8, e10271.	0.9	14
4150	Effects of voluntary exercise on plasma and urinary metabolites and gut microbiota in mice fed with high-fat-diet. The Journal of Physical Fitness and Sports Medicine, 2020, 9, 205-215.	0.2	0
4152	Impact of Endocrine Disorders on Gastrointestinal Diseases. Endocrinology, 2021, , 179-225.	0.1	1
4153	Gut microbiota and metabolic syndrome. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, 183, 11-19.	0.1	4
4154	Dietary dandelion extract improved growth performance, immunity, intestinal morphology and microbiota composition of golden pompano Trachinotus ovatus. Aquaculture Reports, 2020, 18, 100491.	0.7	15
4155	The Biochemical Linkage between Gut Microbiota and Obesity: a Mini Review. Human Physiology, 2020, 46, 703-708.	0.1	0
4156	The Hologenome Concept: Human, Animal and Plant Microbiota. , 2013, , .		15
4159	Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comparative Medicine, 2010, 60, 336-47.	0.4	152
4160	Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterology and Hepatology, 2012, 8, 22-8.	0.2	33
4161	The microbiome in non-alcoholic fatty liver disease: associations and implications. Annals of Gastroenterology, 2014, 27, 181-183.	0.4	4
4162	Gut bacteria in health and disease. Gastroenterology and Hepatology, 2013, 9, 560-9.	0.2	120
4163	Obesity and irritable bowel syndrome: a comprehensive review. Gastroenterology and Hepatology, 2014, 10, 411-6.	0.2	25
4164	Part 1: The Human Gut Microbiome in Health and Disease. Integrative Medicine, 2014, 13, 17-22.	0.1	104
4167	Effect of Antibiotic Administration during Infancy on Growth Curves through Young Adulthood in Rhesus Macaques (). Comparative Medicine, 2017, 67, 270-276.	0.4	2

#	Article	IF	CITATIONS
4169	Host Microbiota Contributes to Health and Response to Disease. Missouri Medicine, 2015, 112, 317-22.	0.3	0
4170	The effect of saturated and unsaturated fatty acids on the production of outer membrane vesicles from and. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, 155-162.	0.6	8
4171	Chronic Superantigen Toxic Shock Syndrome Toxin-1 Exposure Accelerates the Progression of Atherosclerosis in Rabbits. Acta Cardiologica Sinica, 2020, 36, 24-32.	0.1	1
4172	The association between gut microbiota, cholesterol gallstones, and colorectal cancer. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, S8-S13.	0.6	5
4173	Microbiome Understanding in Maternity Study (MUMS), an Australian prospective longitudinal cohort study of maternal and infant microbiota: study protocol. BMJ Open, 2020, 10, e040189.	0.8	3
4174	Impact of Bariatric surgery on EmbrYONic, fetal and placental Development (BEYOND): protocol for a prospective cohort study embedded in the Rotterdam periconceptional cohort. BMJ Open, 2021, 11, e051110.	0.8	0
4175	Senescence in obesity. , 2022, , 289-308.		3
4176	Ligature induced periodontitis in rats causes gut dysbiosis leading to hepatic injury through SCD1/AMPK signalling pathway. Life Sciences, 2022, 288, 120162.	2.0	11
4177	Microbial metabolites beneficial in regulation of obesity. , 2022, , 355-375.		1
4178	Anti-obesity natural products and gut microbiota. Food Research International, 2022, 151, 110819.	2.9	23
4179	Effect of bacteriocin-producing Pediococcus acidilactici strains on the immune system and intestinal flora of normal mice. Food Science and Human Wellness, 2022, 11, 238-246.	2.2	9
4180	The association between body mass index and the oral Firmicutes and Bacteroidetes profiles of healthy individuals. Malaysian Family Physician, 2021, 16, 36-43.	0.2	7
4181	The global scientific publications on gut microbiota in type 2 diabetes; a bibliometric, Scientometric, and descriptive analysis. Journal of Diabetes and Metabolic Disorders, 2022, 21, 13-32.	0.8	8
4182	Implications of Gut Microbiota in Complex Human Diseases. International Journal of Molecular Sciences, 2021, 22, 12661.	1.8	20
4183	Building up a clinical microbiota profiling: a quality framework proposal. Critical Reviews in Microbiology, 2022, 48, 356-375.	2.7	6
4184	Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome, 2021, 9, 225.	4.9	33
4185	Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers, 2021, 13, 5844.	1.7	27
4186	Seasonal diets supersede host species in shaping the distal gut microbiota of Yaks and Tibetan sheep. Scientific Reports, 2021, 11, 22626.	1.6	5

#	Article	IF	CITATIONS
4187	Which Microbes Like My Diet and What Does It Mean for My Heart?. Nutrients, 2021, 13, 4146.	1.7	3
4188	The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition, 2022, 9, 159-174.	2.1	59
4189	Effect of cranberry supplementation on toxins produced by the gut microbiota in chronic kidney disease patients: A pilot randomized placebo-controlled trial. Clinical Nutrition ESPEN, 2022, 47, 63-69.	0.5	8
4190	Pigs (Sus Scrofa) in Biomedical Research. Advances in Experimental Medicine and Biology, 2022, 1354, 335-343.	0.8	14
4191	Ginsenoside Rb1 ameliorates Glycemic Disorder in Mice With High Fat Diet-Induced Obesity via Regulating Gut Microbiota and Amino Acid Metabolism. Frontiers in Pharmacology, 2021, 12, 756491.	1.6	21
4192	Analysis of Serum Metabolomics in Obese Mice Induced by High-Fat Diet. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 4671-4678.	1.1	5
4193	Gut Microbiota Parameters Potentially Useful in Clinical Perspective. Microorganisms, 2021, 9, 2402.	1.6	25
4194	<i>Lactobacillus plantarum</i> DP189 prevents cognitive dysfunction in D-galactose/AlCl ₃ induced mouse model of Alzheimer's disease via modulating gut microbiota and Pl3K/Akt/GSK-3β signaling pathway. Nutritional Neuroscience, 2022, 25, 2588-2600.	1.5	26
4195	Is the Gut Microbiota a Neglected Aspect of Gut and Brain Disorders?. Cureus, 2021, 13, e19740.	0.2	5
4196	Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Molecular Metabolism, 2022, 55, 101404.	3.0	4
4197	A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity. IScience, 2021, 24, 103421.	1.9	2
4198	Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox. Frontiers in Microbiology, 2021, 12, 748323.	1.5	3
4199	Average gut flora in healthy Japanese subjects stratified by age and body mass index. Bioscience of Microbiota, Food and Health, 2022, 41, 45-53.	0.8	13
4200	Structural modification and dynamic <i>in vitro</i> fermentation profiles of precooked pea starch as affected by different drying methods. Food and Function, 2021, 12, 12706-12723.	2.1	5
4201	The differential modulatory effects of <i>Eurotium cristatum</i> on the gut microbiota of obese dogs and mice are associated with improvements in metabolic disturbances. Food and Function, 2021, 12, 12812-12825.	2.1	7
4202	Gut microbiome profiling in nonalcoholic fatty liver disease and healthy individuals in Indonesian population. Journal of Medical Sciences (Taiwan), 2022, 42, 166.	0.1	1
4204	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165
4206	Reduced calorie diet combined with NNMT inhibition establishes a distinct microbiome in DIO mice. Scientific Reports, 2022, 12, 484.	1.6	O

#	Article	IF	Citations
4207	Tangeretin prevents obesity by modulating systemic inflammation, fat browning, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. Journal of Nutritional Biochemistry, 2022, 101, 108943.	1.9	12
4208	Synergistic effect of ZnO NPs and imidacloprid on liver injury in male ICR mice: Increase the bioavailability of IMI by targeting the gut microbiota. Environmental Pollution, 2022, 294, 118676.	3.7	10
4209	Food-grade olive oil Pickering emulsions stabilized by starch/ \hat{l}^2 -cyclodextrin complex nanoparticles: Improved storage stability and regulatory effects on gut microbiota. LWT - Food Science and Technology, 2022, 155, 112950.	2.5	10
4210	Ileal FXR-FGF15/19 signaling activation improves skeletal muscle loss in aged mice. Mechanisms of Ageing and Development, 2022, 202, 111630.	2.2	8
4211	THE ROLE OF GUT MICROBIOTA IN THE DEVELOPMENT OF OBESITY. Juvenis Scientia, 2019, , 4-10.	0.1	1
4212	Gut Microbiota Regulates the Interplay between Diet and Genetics to Influence Glucose Tolerance $\hat{a} \in \mathbb{R}$, 2020, 61, .		0
4213	Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. Frontiers in Aging, 2021, 2, .	1.2	21
4214	Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs. Animals, 2021, 11, 3553.	1.0	1
4215	Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study. European Journal of Clinical Nutrition, 2022, 76, 1017-1023.	1.3	11
4216	Organic dry pea (Pisum sativum L.) biofortification for better human health. PLoS ONE, 2022, 17, e0261109.	1.1	10
4217	Structural and functional neuroimaging of the effects of the gut microbiome. European Radiology, 2022, 32, 3683-3692.	2.3	3
4218	Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Frontiers in Endocrinology, 2021, 12, 833544.	1.5	28
4219	Gut Microbiome in Stress-related Disorders: The New Approaches to Neuroinflamation syndrome. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 74-82.	0.1	0
4220	Characterization of the Pathology, Biochemistry, and Immune Response in Kunming (KM) Mice Following Fasciola gigantica Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 793571.	1.8	4
4221	Sub-Chronic Difenoconazole Exposure Induced Gut Microbiota Dysbiosis in Mice. Toxics, 2022, 10, 34.	1.6	10
4222	Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME Journal, 2022, 16, 1327-1336.	4.4	62
4223	The intestine and the microbiota in maternal glucose homeostasis during pregnancy. Journal of Endocrinology, 2022, 253, R1-R19.	1.2	11
4224	The antioxidant tempol transforms gut microbiome to resist obesity in female C3H mice fed a high fat diet. Free Radical Biology and Medicine, 2022, 178, 380-390.	1.3	7

#	Article	IF	CITATIONS
4225	The impact of a competitive event and the efficacy of a lactic acid bacteria-fermented soymilk extract on the gut microbiota and urinary metabolites of endurance athletes: An open-label pilot study. PLoS ONE, 2022, 17, e0262906.	1.1	3
4227	Moderate Treadmill Exercise Modulates Gut Microbiota and Improves Intestinal Barrier in High-Fat-Diet-Induced Obese Mice via the AMPK/CDX2 Signaling Pathway. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 209-223.	1.1	6
4229	Impact of microplastics on the intestinal microbiota: A systematic review of preclinical evidence. Life Sciences, 2022, 294, 120366.	2.0	16
4230	The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut?. International Journal of Molecular Sciences, 2022, 23, 1494.	1.8	16
4231	Nicotinamide Riboside-Conditioned Microbiota Deflects High-Fat Diet-Induced Weight Gain in Mice. MSystems, 2022, 7, e0023021.	1.7	12
4232	Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Animal Microbiome, 2022, 4, 6.	1.5	7
4233	Effect of a freeze-dried coffee solution in a high-fat diet-induced obesity model in rats: Impact on inflammatory response, lipid profile, and gut microbiota. PLoS ONE, 2022, 17, e0262270.	1.1	7
4234	Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms. ELife, 2022, 11 , .	2.8	27
4235	Nocturnal Light Pollution Induces Weight Gain in Mice and Reshapes the Structure, Functions, and Interactions of Their Colonic Microbiota. International Journal of Molecular Sciences, 2022, 23, 1673.	1.8	3
4236	Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacological Research, 2022, 175, 106025.	3.1	19
4237	Sex Differences in Fish Oil and Olanzapine Effects on Gut Microbiota in Diet-Induced Obese Mice. Nutrients, 2022, 14, 349.	1.7	2
4238	Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 2022, 23, 1105.	1.8	215
4239	The Microbiome of the Joint. , 2022, , 101-107.		1
4240	Prospects of microbes in mitigations of environmental degradation inÂtheÂriver ecosystem. , 2022, , 429-454.		2
4242	Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats. Food and Function, 2022, 13, 1921-1940.	2.1	19
4243	The P300 acetyltransferase inhibitor C646 promotes membrane translocation of insulin receptor protein substrate and interaction with the insulin receptor. Journal of Biological Chemistry, 2022, 298, 101621.	1.6	6
4244	Dietary Beta-Hydroxy-Beta-Methyl Butyrate Supplementation Inhibits Hepatic Fat Deposition via Regulating Gut Microbiota in Broiler Chickens. Microorganisms, 2022, 10, 169.	1.6	8
4245	Gut Microbiota Alteration Is Associated With Cognitive Deficits in Genetically Diabetic (Db/db) Mice During Aging. Frontiers in Aging Neuroscience, 2021, 13, 815562.	1.7	7

#	Article	IF	CITATIONS
4247	Changes in adipokine levels and metabolic profiles following bariatric surgery. BMC Endocrine Disorders, 2022, 22, 33.	0.9	12
4248	Obesity influences the microbiotic biotransformation of chlorogenic acid. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211, 114550.	1.4	1
4249	The impact of dawn to sunset fasting on immune system and its clinical significance in COVID-19 pandemic. Metabolism Open, 2022, 13, 100162.	1.4	7
4250	Oolong tea extract alleviates weight gain in high-fat diet-induced obese rats by regulating lipid metabolism and modulating gut microbiota. Food and Function, 2022, 13, 2846-2856.	2.1	8
4251	Evaluating supervised and unsupervised background noise correction in human gut microbiome data. PLoS Computational Biology, 2022, 18, e1009838.	1.5	6
4252	Refining a Protocol for Faecal Microbiota Engraftment in Animal Models After Successful Antibiotic-Induced Gut Decontamination. Frontiers in Medicine, 2022, 9, 770017.	1.2	7
4253	Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomizedÂdietary intervention pilot trial. BMC Medicine, 2022, 20, 56.	2.3	44
4254	Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgraduate Medical Journal, 2023, 99, 384-402.	0.9	11
4255	Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut, 2022, 71, 1214-1226.	6.1	50
4256	Are fructophilic lactic acid bacteria (FLAB) beneficial to humans?. Beneficial Microbes, 2022, 13, 3-11.	1.0	6
4257	Pine (Pinus massoniana Lamb.) Needle Extract Supplementation Improves Performance, Egg Quality, Serum Parameters, and the Gut Microbiome in Laying Hens. Frontiers in Nutrition, 2022, 9, 810462.	1.6	7
4258	Orchestration of Obesolytic Activity of Microbiome: Metabiotics at Centre Stage. Current Drug Metabolism, 2022, 23, 90-98.	0.7	3
4259	A unique gut microbiota signature in pulmonary arterial hypertension: A pilot study. Pulmonary Circulation, 2022, 12, e12051.	0.8	7
4260	The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants, 2022, 11, 333.	2.2	12
4261	An acidic polysaccharide from Patinopecten yessoensis skirt prevents obesity and improves gut microbiota and metabolism of mice induced by high-fat diet. Food Research International, 2022, 154, 110980.	2.9	30
4262	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	3.0	25
4263	Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. Food Science and Human Wellness, 2022, 11, 455-466.	2.2	23
4264	Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Microbiology Spectrum, 2021, 9, e0187721.	1.2	8

#	Article	IF	CITATIONS
4267	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	1.4	71
4269	Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, .	0.5	7
4270	The Gut Microbiome. , 2022, , .		0
4271	The Gut Microbiota and Host Metabolism. , 2022, , 141-175.		2
4272	Resonance-Based Design of Wireless Magnetic Capsule for Effective Sampling of Microbiome in Gastrointestinal Tract. SSRN Electronic Journal, 0, , .	0.4	0
4273	Beneficial effects of eugenol supplementation on gut microbiota and hepatic steatosis in high-fat-fed mice. Food and Function, 2022, 13, 3381-3390.	2.1	6
4274	Environmental factors affecting the diversity of psychrophilic microbial community in the high altitude snow-fed lake Hemkund, India. Current Research in Microbial Sciences, 2022, 3, 100126.	1.4	1
4275	<i>Bacillus amyloliquefaciens SC06</i> alleviates the obesity of ob/ob mice and improves their intestinal microbiota and bile acid metabolism. Food and Function, 2022, 13, 5381-5395.	2.1	9
4276	Oryzanol alleviates high fat and cholesterol diet-induced hypercholesterolemia associated with the modulation of the gut microbiota in hamsters. Food and Function, 2022, 13, 4486-4501.	2.1	21
4277	Microbiome, Mycobiome and Related Metabolites Alterations in Patients with Metabolic Syndromeâ€"A Pilot Study. Metabolites, 2022, 12, 218.	1.3	12
4278	Effects of Whole Brown Bean and Its Isolated Fiber Fraction on Plasma Lipid Profile, Atherosclerosis, Gut Microbiota, and Microbiota-Dependent Metabolites in Apoeâ [^] /â [^] Mice. Nutrients, 2022, 14, 937.	1.7	8
4279	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023.	0.8	1
4280	Obesity Reshapes the Microbial Population Structure along the Gut-Liver-Lung Axis in Mice. Biomedicines, 2022, 10, 494.	1.4	3
4281	Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Scientific Reports, 2022, 12, 3140.	1.6	65
4282	Bovine Animal Model for Studying the Maternal Microbiome, in utero Microbial Colonization and Their Role in Offspring Development and Fetal Programming. Frontiers in Microbiology, 2022, 13, 854453.	1.5	13
4283	Environmental exposure to low-dose perfluorohexanesulfonate promotes obesity and non-alcoholic fatty liver disease in mice fed a high-fat diet. Environmental Science and Pollution Research, 2022, 29, 49279-49290.	2.7	2
4284	Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms, 2022, 10, 452.	1.6	45
4285	Metabolic Syndrome and Its Components in Psoriatic Arthritis. Open Access Rheumatology: Research and Reviews, 2022, Volume 14, 7-16.	0.8	6

#	ARTICLE	IF	Citations
4286	Transcript and blood-microbiome analysis towards a blood diagnostic tool for goats affected by Haemonchus contortus. Scientific Reports, 2022, 12, 5362.	1.6	5
4287	Gut microbiota and allergic diseases in children. Allergology International, 2022, 71, 301-309.	1.4	20
4288	Gut Microbiome-Derived Glycine Lipids Are Diet-Dependent Modulators of Hepatic Injury and Atherosclerosis. Journal of Lipid Research, 2022, , 100192.	2.0	7
4289	Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. IScience, 2022, 25, 104158.	1.9	41
4290	Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms, 2022, 10, 705.	1.6	10
4291	Impact of obesity on medically assisted reproductive treatments. Zygote, 2022, 30, 431-439.	0.5	5
4292	Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. European Journal of Nutrition, 2022, 61, 2853-2871.	1.8	11
4293	The interplay between anticancer challenges and the microbial communities from the gut. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 691-711.	1.3	1
4294	Gut Microbiome Dysbiosis in Alcoholism: Consequences for Health and Recovery. Frontiers in Cellular and Infection Microbiology, 2022, 12, 840164.	1.8	19
4295	Effects of Short-Chain Fatty Acid Modulation on Potentially Diarrhea-Causing Pathogens in Yaks Through Metagenomic Sequencing. Frontiers in Cellular and Infection Microbiology, 2022, 12, 805481.	1.8	9
4296	The Epidemiology and Mechanisms of Lifetime Cardiopulmonary Morbidities Associated With Pre-Pregnancy Obesity and Excessive Gestational Weight Gain. Frontiers in Cardiovascular Medicine, 2022, 9, 844905.	1.1	3
4298	The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa, International Journal of Molecular Sciences, 2022, 23, 2964.	1.8	7
4299	Comparison of Cecal Microbiota and Performance Indices Between Lean-Type and Fatty-Type Pekin Ducks. Frontiers in Microbiology, 2022, 13, 820569.	1.5	6
4300	Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 3339.	1.8	21
4301	Jejunoileal mucosal growth in mice with a limited microbiome. PLoS ONE, 2022, 17, e0266251.	1.1	1
4302	The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Frontiers in Endocrinology, 2022, 13, 841703.	1.5	26
4303	Effects of Konjaku Flour on the Gut Microbiota of Obese Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 771748.	1.8	12
4304	The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases. Journal of Food and Drug Analysis, 2022, 30, 1-10.	0.9	6

#	Article	IF	CITATIONS
4305	Short-Term Metformin Treatment Enriches Bacteroides dorei in an Obese Liver Steatosis Zucker Rat Model. Frontiers in Microbiology, 2022, 13, 834776.	1.5	2
4306	Putative Mechanisms Underlying the Beneficial Effects of Polyphenols in Murine Models of Metabolic Disorders in Relation to Gut Microbiota. Current Issues in Molecular Biology, 2022, 44, 1353-1375.	1.0	6
4307	Effects of Ramadan and Non-ramadan Intermittent Fasting on Gut Microbiome. Frontiers in Nutrition, 2022, 9, 860575.	1.6	7
4308	Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 3842.	1.8	23
4309	Effects of Exogenous Hydrogen Sulfide on Diabetic Metabolic Disorders in db/db Mice Are Associated With Gut Bacterial and Fungal Microbiota. Frontiers in Cellular and Infection Microbiology, 2022, 12, 801331.	1.8	1
4310	Non-Photosynthetic Melainabacteria (Cyanobacteria) in Human Gut: Characteristics and Association with Health. Life, 2022, 12, 476.	1.1	22
4311	The Maternal–Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life, 2022, 12, 424.	1.1	27
4312	Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Medicine, 2022, 14, 30.	3.6	21
4313	Heat Stress-Induced Dysbiosis of Porcine Colon Microbiota Plays a Role in Intestinal Damage: A Fecal Microbiota Profile. Frontiers in Veterinary Science, 2022, 9, 686902.	0.9	11
4314	Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals, 2022, 12, 948.	1.0	17
4315	Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy?. Frontiers in Oncology, 2022, 12, 852194.	1.3	5
4316	Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. Nanomaterials, 2022, 12, 1196.	1.9	19
4317	The Microbiome Structure of a Rice-Crayfish Integrated Breeding Model and Its Association with Crayfish Growth and Water Quality. Microbiology Spectrum, 2022, 10, e0220421.	1.2	10
4318	Dietary Fats and the Gut Microbiota: Their impacts on lipid-induced metabolic syndrome. Journal of Functional Foods, 2022, 91, 105026.	1.6	12
4319	Pharmacologically induced weight loss is associated with distinct gut microbiome changes in obese rats. BMC Microbiology, 2022, 22, 91.	1.3	4
4320	Sex differences in the fecal microbiome and hippocampal glial morphology following diet and antibiotic treatment. PLoS ONE, 2022, 17, e0265850.	1.1	4
4321	The gut bacterial microbiome of Nile tilapia (Oreochromis niloticus) from lakes across an altitudinal gradient. BMC Microbiology, 2022, 22, 87.	1.3	16
4322	16S rRNA Gene Sequencing Revealed Changes in Gut Microbiota Composition during Pregnancy and Lactation in Mice Model. Veterinary Sciences, 2022, 9, 169.	0.6	3

#	Article	IF	CITATIONS
4323	Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome, 2022, 10, 57.	4.9	38
4324	Effect of dendrobium mixture in alleviating diabetic cognitive impairment associated with regulating gut microbiota. Biomedicine and Pharmacotherapy, 2022, 149, 112891.	2.5	21
4325	Metformin to treat Huntington disease: A pleiotropic drug against a multi-system disorder. Mechanisms of Ageing and Development, 2022, 204, 111670.	2.2	8
4326	Impact of Bariatric surgery on EmbrYONic, fetal and placental Development (BEYOND): protocol for a prospective cohort study embedded in the Rotterdam periconceptional cohort. BMJ Open, 2021, 11, e051110.	0.8	1
4327	A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes. Nature Communications, 2021, 12, 6686.	5.8	23
4328	Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. , 2021, 12, 2835-2875.		3
4330	Imbalance of the Gut Microbiota May Be Associated with Missed Abortions: A Perspective Study from a General Hospital of Hunan Province. Journal of Immunology Research, 2021, 2021, 1-13.	0.9	3
4331	Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs. Journal of Animal Science, 2022, 100, .	0.2	13
4332	Gut Dysbiosis and Intestinal Barrier Dysfunction: Potential Explanation for Early-Onset Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 2021, 11, 744606.	1.8	28
4333	The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism. Journal of Microbiology, 2022, 60, 118-127.	1.3	13
4334	Targeted Development of Infant Microbiota on Formula Feeding: Modern Options. Voprosy Sovremennoi Pediatrii - Current Pediatrics, 2022, 20, 484-491.	0.1	2
4335	Grifola Frondosa Polysaccharides affects gut microbiota and lipid profiles depended on the molecular weight in mice. , 2021, , .		0
4336	Gender assessment of the gut microbiome in obese patients. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2021, , 91-99.	0.1	1
4337	Gut Homeostasis; Microbial Cross Talks in Health and Disease Management. Current Research in Nutrition and Food Science, 2021, 9, 1017-1045.	0.3	0
4338	Dissociation between Corneal and Cardiometabolic Changes in Response to a Time-Restricted Feeding of a High Fat Diet. Nutrients, 2022, 14, 139.	1.7	4
4339	Extracellular vesicles and pasteurized cells derived from Akkermansia muciniphila protect against high-fat induced obesity in mice. Microbial Cell Factories, 2021, 20, 219.	1.9	41
4340	Dietary Acrylamide Intake Alters Gut Microbiota in Mice and Increases Its Susceptibility to Salmonella Typhimurium Infection. Foods, 2021, 10, 2990.	1.9	6
4341	Dietary Supplementation throughout Life with Non-Digestible Oligosaccharides and/or n-3 Poly-Unsaturated Fatty Acids in Healthy Mice Modulates the Gut–Immune System–Brain Axis. Nutrients, 2022, 14, 173.	1.7	4

#	ARTICLE	IF	Citations
4342	Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. Animal Nutrition, 2022, 9, 84-99.	2.1	14
4343	Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. International Journal of Molecular Sciences, 2022, 23, 426.	1.8	37
4344	Gut Microbiota and Acute Central Nervous System Injury: A New Target for Therapeutic Intervention. Frontiers in Immunology, 2021, 12, 800796.	2,2	30
4345	Modulation of Gut Microbiota by Lactobacillus casei Fermented Raspberry Juice In Vitro and In Vivo. Foods, 2021, 10, 3055.	1.9	14
4346	Gut Microbiota Composition and Predicted Microbial Metabolic Pathways of Obesity Prone and Obesity Resistant Outbred Sprague-Dawley CD Rats May Account for Differences in Their Phenotype. Frontiers in Nutrition, 2021, 8, 746515.	1.6	14
4347	Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Frontiers in Physiology, 2021, 12, 748854.	1.3	15
4348	Top 100 Most Cited Studies in Obesity Research: A Bibliometric Analysis. , 0, , .		1
4349	Asthma and obesity: endotoxin another insult to add to injury?. Clinical Science, 2021, 135, 2729-2748.	1.8	9
4350	Effect of Ag Nanoparticles on Denitrification and Microbial Community in a Paddy Soil. Frontiers in Microbiology, 2021, 12, 785439.	1.5	9
4352	Impact of intensive lifestyle intervention on gut microbiota composition in type 2 diabetes: a <i>post-hoc</i> analysis of a randomized clinical trial. Gut Microbes, 2022, 14, 2005407.	4.3	10
4353	Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fischer-344 Rats. Journal of Cancer Prevention, 2021, 26, 277-288.	0.8	1
4354	Diammonium Glycyrrhizinate Ameliorates Obesity Through Modulation of Gut Microbiota-Conjugated BAs-FXR Signaling. Frontiers in Pharmacology, 2021, 12, 796590.	1.6	12
4355	Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods, 2021, 10, 3075.	1.9	17
4356	Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients, 2022, 14, 12.	1.7	121
4357	Dynamic distribution of nasal microbial community in yaks (Bos grunniens) at different ages. Tropical Animal Health and Production, 2021, 53, 555.	0.5	0
4358	Effect of feed restriction on the intestinal microbial community structure of growing ducks. Archives of Microbiology, 2022, 204, 85.	1.0	2
4359	A High-Fat Western Diet Attenuates Intestinal Changes in Mice with DSS-Induced Low-Grade Inflammation. Journal of Nutrition, 2022, 152, 758-769.	1.3	5
4360	Clinical health issues, reproductive hormones, and metabolic hormones associated with gut microbiome structure in African and Asian elephants. Animal Microbiome, 2021, 3, 85.	1.5	19

#	Article	IF	CITATIONS
4361	Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota. Food and Function, 2022, 13, 6056-6071.	2.1	12
4362	Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome. Circulation Research, 2022, 130, 1112-1144.	2.0	40
4363	Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: implications for fetal development and offspring wellbeing. American Journal of Obstetrics and Gynecology, 2022, 227, 392-400.	0.7	17
4364	A designed self-microemulsion delivery system for dihydromyricetin and its dietary intervention effect on high-fat-diet fed mice. Food Chemistry, 2022, 390, 132954.	4.2	34
4365	The Protective Effects of Inulin-Type Fructans Against High-Fat/Sucrose Diet-Induced Gestational Diabetes Mice in Association With Gut Microbiota Regulation. Frontiers in Microbiology, 2022, 13, 832151.	1.5	14
4366	Effect of RG (Coptis root and ginseng) formula in patients with type 2 diabetes mellitus: a study protocol for a randomized controlled and double-blinding trial. Trials, 2022, 23, 305.	0.7	1
4367	Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. Journal of Medicinal Food, 2022, 25, 341-354.	0.8	3
4368	Immunonutrition and SARS-CoV-2 Infection in Children with Obesity. Nutrients, 2022, 14, 1701.	1.7	6
4551	Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiology Spectrum, 2022, 10, e0083722.	1.2	15
4553	The role of diet and physical activity in influencing the microbiota/microbiome. , 2022, , 693-745.		0
4554	Effects of reducing postprandial hyperglycemia and metabolism of acetate wheat starch on healthy mice. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	0
4557	Altered glucose metabolism and its association with carbonic anhydrase 8 in Machado-Joseph Disease. Metabolic Brain Disease, 2022, , 1.	1.4	O
4558	Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients, 2022, 14, 1774.	1.7	24
4559	A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics?. Frontiers in Neuroscience, 2022, 16, 852506.	1.4	8
4560	Association Between Trajectory Patterns of Body Mass Index Change Up to 10 Months and Early Gut Microbiota in Preterm Infants. Frontiers in Microbiology, 2022, 13, 828275.	1.5	4
4561	Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Experimental and Molecular Medicine, 2022, 54, 393-402.	3.2	10
4562	Role of the gut–brain axis in energy and glucose metabolism. Experimental and Molecular Medicine, 2022, 54, 377-392.	3.2	72
4563	The association between dairy products and the risk of COVID-19. European Journal of Clinical Nutrition, 2022, 76, 1583-1589.	1.3	7

#	Article	IF	CITATIONS
4564	Thermogenic T cells: a cell therapy for obesity?. American Journal of Physiology - Cell Physiology, 2022, 322, C1085-C1094.	2.1	3
4565	Effects of cage versus floor rearing system on goose intestinal histomorphology and cecal microbial composition. Poultry Science, 2022, 101, 101931.	1.5	7
4566	Gut microbiota in bariatric surgery. Critical Reviews in Food Science and Nutrition, 2023, 63, 9299-9314.	5 . 4	5
4567	Integrative multiomics analysis reveals host-microbe-metabolite interplays associated with the aging process in Singaporeans. Gut Microbes, 2022, 14, 2070392.	4.3	6
4569	Hostâ€"microbial interactions in metabolic diseases: from diet to immunity. Journal of Microbiology, 2022, , 1.	1.3	3
4570	Bacteroides ovatus-mediated CD27â^' MAIT cell activation is associated with obesity-related T2D progression. , 2022, 19, 791-804.		10
4571	Integrated analysis of multi-tissues lipidome and gut microbiome reveals microbiota-induced shifts on lipid metabolism in pigs. Animal Nutrition, 2022, 10, 280-293.	2.1	10
4572	Implications of microbe-mediated crosstalk in the gut: Impact on metabolic diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, , 159180.	1.2	2
4573	Effects of dietary inclusion of alfalfa meal on laying performance, egg quality, intestinal morphology, caecal microbiota and metabolites in Zhuanghe Dagu chickens. Italian Journal of Animal Science, 2022, 21, 831-846.	0.8	3
4574	The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	13
4575	Effects of Low-Carbohydrate Diet and Exercise Training on Gut Microbiota. Frontiers in Nutrition, 2022, 9, 884550.	1.6	12
4576	â€~Obesities': Position statement on a complex disease entity with multifaceted drivers. European Journal of Clinical Investigation, 2022, 52, e13811.	1.7	20
4577	Gut microbiota: Role and Association with Tumorigenesis in Different Malignancies. Molecular Biology Reports, 2022, 49, 8087-8107.	1.0	4
4578	Effects of chronic exposure to the fungicide vinclozolin on gut microbiota community in an aquatic turtle. Ecotoxicology and Environmental Safety, 2022, 239, 113621.	2.9	11
4579	Increased Relative Abundance of Ruminoccocus Is Associated With Reduced Cardiovascular Risk in an Obese Population. Frontiers in Nutrition, 2022, 9, 849005.	1.6	13
4580	Flavonoid–amyloid fibril hybrid hydrogels for obesity control <i>via</i> the construction of gut microbiota. Biomaterials Science, 2022, 10, 3597-3611.	2.6	8
4581	Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Veterinary Sciences, 2022, 9, 238.	0.6	2
4582	Gut microbiome: Linking together obesity, bariatric surgery and associated clinical outcomes under a single focus. World Journal of Gastrointestinal Pathophysiology, 2022, 13, 59-72.	0.5	4

#	Article	IF	CITATIONS
4583	Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies. EBioMedicine, 2022, 80, 104055.	2.7	40
4584	Oryzanol Attenuates High Fat and Cholesterol Diet-Induced Hyperlipidemia by Regulating the Gut Microbiome and Amino Acid Metabolism. Journal of Agricultural and Food Chemistry, 2022, 70, 6429-6443.	2.4	15
4585	Temporal relationship among adiposity, gut microbiota, and insulin resistance in a longitudinal human cohort. BMC Medicine, 2022, 20, 171.	2.3	10
4586	Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome. Folia Microbiologica, 2022, 67, 811-824.	1.1	16
4588	Pueraria lobata starch regulates gut microbiota and alleviates high-fat high-cholesterol diet induced non-alcoholic fatty liver disease in mice. Food Research International, 2022, 157, 111401.	2.9	17
4589	Waterborne Cr3+ and Cr 6+ exposure disturbed the intestinal microbiota homeostasis in juvenile leopard coral grouper Plectropomus leopardus. Ecotoxicology and Environmental Safety, 2022, 239, 113653.	2.9	4
4590	Effects of Full-Cycle Exposure to Difenoconazole in Parental Zebrafish on the Liver-Gut Axis of F0 and F1 Generations. SSRN Electronic Journal, $0,$	0.4	0
4591	Molecular Networking-Based Lipid Profiling and Multi-Omics Approaches Reveal New Contributions of Functional Vanilloids to Gut Microbiota and Lipometabolism Changes. SSRN Electronic Journal, 0, , .	0.4	0
4592	Effect of Polysaccharide Extracted From Gynostemma Pentaphyllum on the Body Weight and Gut Microbiota of Mice. Frontiers in Nutrition, 2022, 9, .	1.6	3
4593	Efficacy and Safety of a Polysaccharide-Based Natural Substance Complex in the Treatment of Obesity and Other Metabolic Syndrome Components: A Systematic Review. Frontiers in Drug Safety and Regulation, 2022, 2, .	0.5	5
4594	Comparative Analysis of Original and Replaced Gut Microbiomes within Same Individuals Identified the Intestinal Microbes Associated with Weight Gaining. Microorganisms, 2022, 10, 1062.	1.6	4
4596	Different DNA Sequencing Using DNA Graphs: A Study. Applied Sciences (Switzerland), 2022, 12, 5414.	1.3	3
4597	Resonance-based design of wireless magnetic capsule for effective sampling of microbiome in gastrointestinal tract. Sensors and Actuators A: Physical, 2022, 342, 113654.	2.0	9
4598	The Immune Response in Adipocytes and Their Susceptibility to Infection: A Possible Relationship with Infectobesity. International Journal of Molecular Sciences, 2022, 23, 6154.	1.8	9
4599	Intestinal Flora Mediates Antiobesity Effect of Rutin in Highâ€Fatâ€Diet Mice. Molecular Nutrition and Food Research, 2022, 66, .	1.5	14
4600	Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs. Scientific Reports, 2022, 12, .	1.6	4
4605	Astragalus mongholicus polysaccharides ameliorate hepatic lipid accumulation and inflammation as well as modulate gut microbiota in NAFLD rats. Food and Function, 2022, 13, 7287-7301.	2.1	35
4606	Probiotics for obesity and metabolic syndrome prevention and treatment., 2022,, 463-484.		0

#	ARTICLE	IF	CITATIONS
4607	Effects of agavins in high fat-high sucrose diet-fed mice: an exploratory study. CYTA - Journal of Food, 2022, 20, 66-77.	0.9	2
4608	Evaluation of a human gut-associated phage and gut dominant microbial phyla in the metabolic syndrome. Clinical Nutrition ESPEN, 2022, 50, 133-137.	0.5	6
4609	Wild and Captive Environments Drive the Convergence of Gut Microbiota and Impact Health in Threatened Equids. Frontiers in Microbiology, $0,13,.$	1.5	4
4610	Clinical-social and psychological-pedagogical approaches in the prevention and treatment of obesity and metabolic syndrome in children. Kazan Medical Journal, 2022, 103, 492-503.	0.1	1
4611	Timeâ€limited diets and the gut microbiota in cardiometabolic disease. Journal of Diabetes, 0, , .	0.8	12
4612	Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2022, 20, 429-439.	0.5	16
4613	Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Frontiers in Nutrition, 0, 9, .	1.6	6
4614	High-fat-diet-induced gut microbiome changes in mice. Stress and Brain, 2022, 2, 17-30.	0.3	7
4615	Gut microbiota in obesity and related comorbidities in children and adolescents: the role of biotics in treatment. Minerva Pediatrics, 0 , , .	0.2	3
4616	Asymmetry Evaluation of Sea Cucumber (Apostichopus japonicus) Gut and Its Surrounding Environment in the Bacterial Community. Symmetry, 2022, 14, 1199.	1.1	0
4617	Diet Is a Stronger Covariate than Exercise in Determining Gut Microbial Richness and Diversity. Nutrients, 2022, 14, 2507.	1.7	12
4618	Alteration of Gut Microbiota in Alzheimerâ∈™s Disease and Their Relation to the Cognitive Impairment. Journal of Alzheimer's Disease, 2022, 88, 1103-1114.	1.2	18
4619	Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells, 2022, 11, 1883.	1.8	29
4620	Estrogen receptor \hat{l}_{\pm} activation modulates the gut microbiome and type 2 diabetes risk factors. Physiological Reports, 2022, 10, .	0.7	1
4622	The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules, 2022, 12, 852.	1.8	20
4623	Discovery of Drug Candidates for Specific Human Disease Based on Natural Products of Gut Microbes. Frontiers in Microbiology, $0,13,.$	1.5	0
4624	Obesity-Related Chronic Kidney Disease: Principal Mechanisms and New Approaches in Nutritional Management. Frontiers in Nutrition, 0, 9, .	1.6	23
4625	The Gut Microbiome and Metabolic Surgery. Food Chemistry, Function and Analysis, 2022, , 173-195.	0.1	O

#	Article	IF	CITATIONS
4627	Gut Microbiota Potential in Type 2 Diabetes. , 0, , .		0
4628	Curcuminoids for Metabolic Syndrome: Meta-Analysis Evidences Toward Personalized Prevention and Treatment Management. Frontiers in Nutrition, 0, 9, .	1.6	11
4629	Association between the Blautia/Bacteroides Ratio and Altered Body Mass Index after Bariatric Surgery. Endocrinology and Metabolism, 2022, 37, 475-486.	1.3	7
4630	Functional Fiber Reduces Mice Obesity by Regulating Intestinal Microbiota. Nutrients, 2022, 14, 2676.	1.7	5
4631	Obesity and Gut Microbiota. , 0, , .		1
4632	Microbiome in Immune-Mediated Uveitis. International Journal of Molecular Sciences, 2022, 23, 7020.	1.8	8
4633	Potential Role of Gastrointestinal Microbiota in Growth Regulation of Yellowtail Kingfish Seriola lalandi in Different Stocking Densities. Fishes, 2022, 7, 154.	0.7	3
4634	Cannabis Extract Effects on Metabolic Parameters and Gut Microbiota Composition in a Mice Model of NAFLD and Obesity. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	0.5	1
4635	Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer. Microbiology Spectrum, 2022, 10 , .	1.2	30
4636	Identification of Nordic Berries with Beneficial Effects on Cognitive Outcomes and Gut Microbiota in High-Fat-Fed Middle-Aged C57BL/6J Mice. Nutrients, 2022, 14, 2734.	1.7	8
4637	The comparison of changes in fecal and mucosal microbiome in metabolic endotoxemia induced by a high-fat diet. Anaerobe, 2022, 77, 102615.	1.0	1
4638	GOS Ameliorates Nonalcoholic Fatty Liver Disease Induced by High Fat and High Sugar Diet through Lipid Metabolism and Intestinal Microbes. Nutrients, 2022, 14, 2749.	1.7	10
4639	Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Frontiers in Endocrinology, $0,13,1$	1.5	20
4640	Probiotic Potential of Clostridium spp.—Advantages and Doubts. Current Issues in Molecular Biology, 2022, 44, 3118-3130.	1.0	11
4641	Bile acid metabolism and signaling, the microbiota, and metabolic disease., 2022, 237, 108238.		62
4642	Early-life dietary exposures mediate persistent shifts in the gut microbiome and visceral fat metabolism. American Journal of Physiology - Cell Physiology, 2023, 324, C644-C657.	2.1	1
4643	Probiotics: Protecting Our Health from the Gut. Microorganisms, 2022, 10, 1428.	1.6	20
4644	Fecal bacterial microbiota in constipated patients before and after eight weeks of daily Bifidobacterium infantis 35624 administration. Revista De GastroenterologÃa De México (English) Tj ETQq1 1 (D. 784 314 (rgBT /Overlo

#	Article	IF	CITATIONS
4645	Changes in Gut Microbiome upon Orchiectomy and Testosterone Administration in AOM/DSS-Induced Colon Cancer Mouse Model. Cancer Research and Treatment, 2023, 55, 196-218.	1.3	3
4646	Prebiotic effects of plant-derived (poly)phenols on host metabolism: Is there a role for short-chain fatty acids?. Critical Reviews in Food Science and Nutrition, 2023, 63, 12285-12293.	5.4	2
4647	Is Intestinal Dysbiosis-Associated With Immunosuppressive Therapy a Key Factor in the Pathophysiology of Post-Transplant Diabetes Mellitus?. Frontiers in Endocrinology, 0, 13, .	1.5	3
4648	Effects of Hydroxy-Alpha-Sanshool on Intestinal Metabolism in Insulin-Resistant Mice. Foods, 2022, 11, 2040.	1.9	9
4649	Molecular networking-based lipid profiling and multi-omics approaches reveal new contributions of functional vanilloids to gut microbiota and lipometabolism changes. Food Chemistry Molecular Sciences, 2022, 5, 100123.	0.9	1
4650	Role of insulin resistance and the gut microbiome on urine oxalate excretion in ob/ob mice. Physiological Reports, 2022, 10, .	0.7	1
4651	Does the Gut Microbiome Play a Role in Obesity in Type 1 Diabetes? Unanswered Questions and Review of the Literature. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	5
4652	Effects of High-Fat Diet During Childhood on Precocious Puberty and Gut Microbiota in Mice. Frontiers in Microbiology, $0,13,.$	1.5	13
4653	Effect of fresh and spray-dried microalgal diets on the growth, digestive enzymatic activity, and gut microbiota of juvenile winged pearl oyster Pteria penguin. Aquaculture Reports, 2022, 25, 101251.	0.7	2
4654	Effects of Lactobacillus supplementation on glycemic and lipid indices in overweight or obese adults: A systematic review and meta-analysis. Clinical Nutrition, 2022, 41, 1787-1797.	2.3	9
4655	Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Advanced Drug Delivery Reviews, 2022, 188, 114418.	6.6	16
4656	The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. International Journal of Molecular Sciences, 2022, 23, 8124.	1.8	39
4657	Liver fat metabolism of broilers regulated by Bacillus amylolique faciens TL via stimulating IGF-1 secretion and regulating the IGF signaling pathway. Frontiers in Microbiology, 0, 13 , .	1.5	1
4658	The molecular signaling of exercise and obesity in the microbiota-gut-brain axis. Frontiers in Endocrinology, $0,13,.$	1.5	5
4659	Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota. International Journal of Biological Macromolecules, 2022, 216, 728-740.	3.6	10
4662	The beneficial role of healthy microbiome in metabolic syndrome and cardiovascular health. , 2022, , 109-124.		1
4663	The microbiome, immunity, anaerobism, and inflammatory conditions: a multifaceted systems biology intervention., 2022,, 205-216.		0
4664	Metagenomic analysis reveals associations between salivary microbiota and body composition in early childhood. Scientific Reports, 2022, 12, .	1.6	7

#	ARTICLE	IF	CITATIONS
4665	Metabolic control by the microbiome. Genome Medicine, 2022, 14, .	3.6	30
4666	The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State. Frontiers in Nutrition, 0, 9, .	1.6	16
4667	Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. Journal of Clinical Medicine, 2022, 11, 4464.	1.0	13
4668	Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimulation and Signaling Involving AMPK and SIRT1. Nutrients, 2022, 14, 3338.	1.7	14
4669	Repetitive transcranial direct current stimulation modulates theÂbrain–gut–microbiome axis in obese rodents. Pharmacological Reports, 2022, 74, 871-889.	1.5	6
4670	Regulation of a High-Iron Diet on Lipid Metabolism and Gut Microbiota in Mice. Animals, 2022, 12, 2063.	1.0	7
4671	Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ, 0, 10, e13848.	0.9	3
4672	Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota. Frontiers in Microbiology, $0,13,.$	1.5	12
4674	Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life, 2022, 12, 1187.	1.1	5
4675	Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Critical Reviews in Food Science and Nutrition, 2024, 64, 220-240.	5.4	4
4677	Calf rumen microbiome from birth to weaning and shared microbial properties to the maternal rumen microbiome. Journal of Animal Science, $0, \dots$	0.2	7
4678	Archaea from the gut microbiota of humans: Could be linked to chronic diseases?. Anaerobe, 2022, 77, 102629.	1.0	10
4679	Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Animal Nutrition, 2022, 11, 201-214.	2.1	16
4680	The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. Journal of Applied Microbiology, 2022, 133, 2915-2930.	1.4	4
4681	Morphine and high-fat diet differentially alter the gut microbiota composition and metabolic function in lean versus obese mice. ISME Communications, 2022, 2, .	1.7	4
4682	Interplay between Intestinal Bacterial Communities and Unicellular Parasites in a Morbidly Obese Population: A Neglected Trinomial. Nutrients, 2022, 14, 3211.	1.7	11
4683	The Biotics Family: Current Knowledge and Future Perspectives in Metabolic Diseases. Life, 2022, 12, 1263.	1.1	4
4684	Bacteroides muris sp. nov. isolated from the cecum of wild-derived house mice. Archives of Microbiology, 2022, 204, .	1.0	5

#	Article	IF	CITATIONS
4685	Intestinal effect of faba bean fractions in WD-fed mice treated with low dose of DSS. PLoS ONE, 2022, 17, e0272288.	1.1	2
4686	On the effect of flavonoids and dietary fibre in lingonberries on atherosclerotic plaques, lipid profiles and gut microbiota composition in <i>Apoe</i> ^{â<"/â<"} mice. International Journal of Food Sciences and Nutrition, 0, , 1-11.	1.3	2
4687	Joint toxic effects of phoxim and lambda-cyhalothrin on the small yellow croaker (Larimichthys) Tj ETQq0 0 0 rgBT	/Overlock 4.2	10 Tf 50 66
4688	Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoEâ°'/â°' mice. Journal of Nutritional Biochemistry, 2022, 110, 109132.	1.9	15
4689	Gut Microbiota and Coronary Plaque Characteristics. Journal of the American Heart Association, 2022, 11 , .	1.6	16
4690	The diagnostic potential and barriers of microbiome based therapeutics. Diagnosis, 2022, .	1.2	4
4691	Bile acids, gut microbiota and metabolic surgery. Frontiers in Endocrinology, 0, 13, .	1.5	11
4692	Sargassum thunbergii Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Modulating AMPK Activation and the Gut Microbiota. Foods, 2022, 11, 2529.	1.9	5
4694	Effects of Cichorium glandulosum on hyperglycemia, dyslipidemia and intestinal flora in db/db mice. Journal of Functional Foods, 2022, 97, 105240.	1.6	1
4695	Modulatory role of gut microbiota in cholesterol and glucose metabolism: Potential implications for atherosclerotic cardiovascular disease. Atherosclerosis, 2022, 359, 1-12.	0.4	8
4696	Beneficial role of gut microbiome in metabolic syndrome, obesity, and cardiovascular diseases. , 2022, , 149-166.		0
4697	Dysbiosis of human microbiome and infectious diseases. Progress in Molecular Biology and Translational Science, 2022, , 33-51.	0.9	8
4698	Harnessing gut friendly microbiomes to combat metabolic syndrome. , 2022, , 185-191.		0
4699	Recent insights into the role of microbiome in the pathogenesis of obesity. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482211153.	1.4	6
4700	Effekte der Adipositaschirurgie auf Hunger und SÄttigung. , 2022, , 139-151.		0
4701	The effect of resveratrol-mediated gut microbiota remodeling on metabolic disorders. , 2022, , 193-202.		O
4702	Das Darm-Mikrobiom bei Anorexia nervosa. , 2022, , 261-266.		0
4703	Early life nutrition and its effect on the development of obesity and type-2 diabetes., 2022,, 281-307.		O

#	Article	IF	CITATIONS
4704	Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE) ^{â^'/â^'} mice. Bioscience of Microbiota, Food and Health, 2023, 42, 56-64.	0.8	5
4705	Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Seminars in Immunology, 2022, 60, 101651.	2.7	7
4706	Management of obesity and related inflammatory disorders. , 2023, , 233-262.		1
4707	A modified standard American diet induces physiological parameters associated with metabolic syndrome in C57BL/6J mice. Frontiers in Nutrition, 0, 9, .	1.6	0
4708	Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota. Nutrients, 2022, 14, 3510.	1.7	8
4709	Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis. Frontiers in Immunology, 0, 13, .	2.2	16
4710	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	1.3	1
4711	Octenyl Succinic Anhydride-Modified Starch Attenuates Body Weight Gain and Changes Intestinal Environment of High-Fat Diet-Fed Mice. Foods, 2022, 11, 2980.	1.9	2
4713	Current in Vitro and Animal Models for Understanding Foods: Human Gut–Microbiota Interactions. Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745.	2.4	5
4714	Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota. AMB Express, 2022, 12, .	1.4	9
4715	Global research trends on the links between the gut microbiota and diabetes between 2001 and 2021: A bibliometrics and visualized study. Frontiers in Microbiology, 0, 13, .	1.5	5
4716	Correlation and Influence of Seasonal Variation of Diet with Gut Microbiota Diversity and Metabolism Profile of Chipmunk. Animals, 2022, 12, 2586.	1.0	1
4717	A narrative review of the functional components of human breast milk and their potential to modulate the gut microbiome, the consideration of maternal and child characteristics, and confounders of breastfeeding, and their impact on risk of obesity later in life. Nutrition Reviews, 2023, 81, 597-609.	2.6	2
4718	Body Mass Index (BMI) Impacts Soil Chemical and Microbial Response to Human Decomposition. MSphere, 2022, 7, .	1.3	9
4719	\hat{l}^2 -Caryophyllene: A Therapeutic Alternative for Intestinal Barrier Dysfunction Caused by Obesity. Molecules, 2022, 27, 6156.	1.7	1
4720	Not just a gut feeling: a deep exploration of functional bacterial metabolites that can modulate host health. Gut Microbes, 2022, 14 , .	4.3	7
4721	Commensal Fungus Candida albicans Maintains a Long-Term Mutualistic Relationship with the Host To Modulate Gut Microbiota and Metabolism. Microbiology Spectrum, 2022, 10, .	1.2	11
4722	Weight gain in midlife women: Understanding drivers and underlying mechanisms. Current Opinion in Endocrine and Metabolic Research, 2022, 27, 100406.	0.6	1

#	Article	IF	Citations
4723	Long-term D-Allose Administration Favorably Alters the Intestinal Environment in Aged Male Mice. Journal of Applied Glycoscience (1999), 2022, , .	0.3	0
4724	Reduced gut microbiota diversity in patients with congenital generalized lipodystrophy. Diabetology and Metabolic Syndrome, 2022, 14, .	1.2	2
4725	Intestinal microbial diversity in female rhesus (Macaca mulatta) at different physiological periods. Frontiers in Microbiology, $0,13,13$	1.5	0
4726	Correlating gut microbial membership to brown bear health metrics. Scientific Reports, 2022, 12, .	1.6	1
4727	The Use of Gut Microbial Modulation Strategies as Interventional Strategies for Ageing. Microorganisms, 2022, 10, 1869.	1.6	5
4728	Ionizing Radiation from Radiopharmaceuticals and the Human Gut Microbiota: An Ex Vivo Approach. International Journal of Molecular Sciences, 2022, 23, 10809.	1.8	4
4729	Effects of alfalfa levels on carcass traits, meat quality, fatty acid composition, amino acid profile, and gut microflora composition of Heigai pigs. Frontiers in Nutrition, 0, 9, .	1.6	1
4730	Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax) Tj ETQq1 1 0.784314 r 2022, 245, 114114.	gBT /Overl 2.9	ock 10 Tf 50 7
4732	Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. Communications Medicine, 2022, 2, .	1.9	2
4733	Rat offspring's microbiota composition is predominantly shaped by the postnatal maternal diet rather than prenatal diet. Physiology and Behavior, 2023, 258, 113987.	1.0	0
4734	Microbiome epidemiology and association studies in human health. Nature Reviews Genetics, 2023, 24, 109-124.	7.7	17
4735	Obesity, inflammation, and cancer in dogs: Review and perspectives. Frontiers in Veterinary Science, 0, 9, .	0.9	6
4736	The Human Gut Microbiome in Health, Disease, and Therapeutics. , 2022, , 249-260.		0
4737	Fat Fighting Microbes. , 2022, , 293-308.		0
4738	The microbiota-gut-brain axis in Huntington's disease. International Review of Neurobiology, 2022, , 141-184.	0.9	4
4739	Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus. Journal of Animal Science and Technology, 2022, 64, 937-949.	0.8	6
4740	Gut Microbial Metabolite Trimethylamine-N-Oxide and its Role in Cardiovascular Diseases. , 0, , .		0
4741	Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BioMed Research International, 2022, 2022, 1-16.	0.9	5

#	Article	IF	CITATIONS
4742	Gut Microbiome Changes in Gestational Diabetes. International Journal of Molecular Sciences, 2022, 23, 12839.	1.8	10
4743	Synergic interactions between berry polyphenols and gut microbiota in cardiovascular diseases. Mediterranean Journal of Nutrition and Metabolism, 2022, , 1-19.	0.2	6
4744	Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology, 2022, 164 , .	1.4	5
4745	Wholegrain fermentation affects gut microbiota composition, phenolic acid metabolism and pancreatic beta cell function in a rodent model of type 2 diabetes. Frontiers in Microbiology, 0, 13, .	1.5	6
4747	The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews Cardiology, 2023, 20, 217-235.	6.1	31
4748	11. Food microbiology. , 2022, , 215-245.		0
4749	Dysbiosis and Gastrointestinal Surgery: Current Insights and Future Research. Biomedicines, 2022, 10, 2532.	1.4	2
4750	FABP4 in Paneth cells regulates antimicrobial protein expression to reprogram gut microbiota. Gut Microbes, 2022, 14, .	4.3	3
4751	Assessing the relationship between physical activity and the gut microbiome in a large, population-based sample of Wisconsin adults. PLoS ONE, 2022, 17, e0276684.	1.1	3
4752	Effects of Lactiplantibacillus plantarum FBT215 and prebiotics on the gut microbiota structure of mice. Food Science and Biotechnology, 2023, 32, 481-488.	1.2	3
4753	Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 81-100.	8.2	24
4754	The metabolic syndrome and its components as prognostic factors in colorectal cancer: A metaâ€analysis and systematic review. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 187-196.	1.4	9
4756	Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Frontiers in Microbiology, 0, 13, .	1.5	0
4757	The critical role of gut microbiota in obesity. Frontiers in Endocrinology, 0, 13, .	1.5	38
4758	Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms. Nutrients, 2022, 14, 4385.	1.7	4
4761	Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacological Research, 2022, 185, 106507.	3.1	25
4762	A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid, 2023, 33, 32-44.	2.4	15
4763	Intestinal flora variation reflects the short-term damage of microplastic to the intestinal tract in mice. Ecotoxicology and Environmental Safety, 2022, 246, 114194.	2.9	13

#	Article	IF	CITATIONS
4764	Cordyceps guangdongensis lipid-lowering formula alleviates fat and lipid accumulation by modulating gut microbiota and short-chain fatty acids in high-fat diet mice. Frontiers in Nutrition, 0, 9, .	1.6	6
4765	Deficiency of exchange protein directly activated by cAMP (EPAC)-1 in mice augments glucose intolerance, inflammation, and gut dysbiosis associated with Western diet. Microbiome, 2022, 10, .	4.9	1
4766	Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. Journal of Human Hypertension, 2023, 37, 609-618.	1.0	16
4767	Effects of maternal T-2 toxin exposure on microorganisms and intestinal barrier function in young mice. Ecotoxicology and Environmental Safety, 2022, 247, 114252.	2.9	4
4768	Multi-omics provide mechanistic insight into the Pb-induced changes in tadpole fitness-related traits and environmental water quality. Ecotoxicology and Environmental Safety, 2022, 247, 114207.	2.9	10
4769	The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. Food Science and Human Wellness, 2023, 12, 702-710.	2.2	10
4772	Precise Nutrition and Metabolic Syndrome, Remodeling the Microbiome with Polyphenols, Probiotics, and Postbiotics., 2022,, 145-178.		0
4773	Porcine spinal cord injury model for translational research across multiple functional systems. Experimental Neurology, 2023, 359, 114267.	2.0	6
4774	Asthma Phenotypes and the Microbiome. European Medical Journal Allergy & Immunology, 0, , 82-90.	0.0	2
4775	Amoxicillin impact on pathophysiology induced by short term high salt diet in mice. Scientific Reports, 2022, 12, .	1.6	4
4776	Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury. Frontiers in Neuroscience, $0,16,.$	1.4	5
4777	Gut–Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. Biology, 2022, 11, 1622.	1.3	16
4778	Gut microbial response to host metabolic phenotypes. Frontiers in Nutrition, 0, 9, .	1.6	3
4779	Influence of the Microbiome Metagenomics and Epigenomics on Gastric Cancer. International Journal of Molecular Sciences, 2022, 23, 13750.	1.8	1
4780	Animal Models of Osteoarthritis Part $1\hat{a}\in$ Preclinical Small Animal Models: Challenges and Opportunities for Drug Development. Current Protocols, 2022, 2, .	1.3	4
4781	Promotion of dietâ€induced obesity and metabolic syndromes by BID is associated with gut microbiota. Hepatology Communications, 2022, 6, 3349-3362.	2.0	2
4782	Bacteroides fragilis derived metabolites, identified by molecular networking, decrease Salmonella virulence in mice model. Frontiers in Microbiology, 0, 13, .	1.5	2
4783	Potential mechanism of pyrotinib-induced diarrhea was explored by gut microbiome and ileum metabolomics. Anti-Cancer Drugs, 2023, 34, 747-762.	0.7	1

#	Article	IF	CITATIONS
4784	Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers, 2022, 14, 5577.	1.7	3
4785	Association of gut microbiota with obesity in children and adolescents. Clinical and Experimental Pediatrics, 2023, 66, 148-154.	0.9	5
4786	Is increased BMI a risk factor for developing severe Clostridioides Difficile Infection? A retrospective study. Journal of Community Hospital Internal Medicine Perspectives, 2022, 12, 43-50.	0.4	0
4787	<i>Salvia miltiorrhiza</i> extract may exert an anti-obesity effect in rats with high-fat diet-induced obesity by modulating gut microbiome and lipid metabolism. World Journal of Gastroenterology, 0, 28, 6131-6156.	1.4	2
4788	Effect of Intermittent Fasting, Probiotic-Fermented Camel Milk, and Probiotic-Fermented Camel Milk Incorporating Sukkari Date on Diet-Induced Obesity in Rats. Fermentation, 2022, 8, 619.	1.4	5
4789	Postbiotics Prepared Using Lactobacillus paracasei CCFM1224 Prevent Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota and Liver Metabolism. International Journal of Molecular Sciences, 2022, 23, 13522.	1.8	15
4790	Genetically determined gut microbial abundance and 2-year changes in central adiposity and body composition: The POUNDS lost trial. Clinical Nutrition, 2022, 41, 2817-2824.	2.3	1
4791	The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. International Journal of Molecular Sciences, 2022, 23, 14156.	1.8	3
4794	Dietary lead modulates the mouse intestinal microbiome: Subacute exposure to lead acetate and lead contaminated soil. Ecotoxicology and Environmental Safety, 2023, 249, 114430.	2.9	4
4795	Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia. Pharmacological Research, 2023, 187, 106570.	3.1	6
4797	Dysbiosis of gut microbiome contributes to glaucoma pathogenesis., 2022, 1, .		5
4798	Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life, 2022, 12, 1986.	1.1	8
4799	Cell death induced by NLRP3â€palmitate axis impairs pulmonary damage tolerance and aggravates immunopathology during obesityâ€tuberculosis comorbidity. Journal of Pathology, 0, , .	2.1	0
4801	Analysis of the gut microbiome in obese native Tibetan children living at different altitudes: A case–control study. Frontiers in Public Health, 0, 10, .	1.3	4
4802	Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective. Science of the Total Environment, 2023, 861, 160571.	3.9	14
4803	Clostridium autoethanogenum protein inclusion in the diet for broiler: Enhancement of growth performance, lipid metabolism, and gut microbiota. Frontiers in Veterinary Science, 0, 9, .	0.9	1
4804	Contribution of gut microbiomes and their metabolomes to the performance of Dorper and Tan sheep. Frontiers in Microbiology, $0,13,.$	1.5	2
4805	Hymenolepis diminuta Reduce Lactic Acid Bacterial Load and Induce Dysbiosis in the Early Infection of the Probiotic Colonization of Swiss Albino Rat. Microorganisms, 2022, 10, 2328.	1.6	4

#	Article	IF	CITATIONS
4806	Effects of Dietary Quinoa Seeds on Cecal Microorganisms and Muscle Fatty Acids of Female Luhua Chickens. Animals, 2022, 12, 3334.	1.0	1
4807	Catechin Bioavailability Following Consumption of a Green Tea Extract Confection Is Reduced in Obese Persons without Affecting Gut Microbial-Derived Valerolactones. Antioxidants, 2022, 11, 2490.	2.2	4
4808	Comparative analysis of intestinal flora between rare wild red-crowned crane and white-naped crane. Frontiers in Microbiology, $0,13,\ldots$	1.5	1
4809	Spinal Cord–Gut–Immune Axis and Its Implications Regarding Therapeutic Development for Spinal Cord Injury. Journal of Neurotrauma, 2023, 40, 793-806.	1.7	2
4811	Effect of fasting on shortâ€term visual plasticity in adult humans. European Journal of Neuroscience, 2023, 57, 148-162.	1.2	2
4812	SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation. Molecules and Cells, 2022, 45, 963-975.	1.0	4
4813	The interaction between obesity and visceral hypersensitivity. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 370-377.	1.4	3
4814	Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Current Gastroenterology Reports, 2023, 25, 31-44.	1.1	13
4815	Calorie restriction remodels gut microbiota and suppresses tumorigenesis of colorectal cancer in mice. Experimental and Therapeutic Medicine, 2022, 25, .	0.8	2
4816	Research Progress in Intestinal Microecology in Pancreatic Cancer Diagnosis and Treatment. Journal of Oncology, 2022, 2022, 1-10.	0.6	2
4817	Integrated multi-omics analyses reveal effects of empagliflozin on intestinal homeostasis in high-fat-diet mice. IScience, 2023, 26, 105816.	1.9	1
4818	Gut microbiota analyses of Saudi populations for type 2 diabetes-related phenotypes reveals significant association. BMC Microbiology, 2022, 22, .	1.3	5
4819	Differences in meat quality between Angus cattle and Xinjiang brown cattle in association with gut microbiota and its lipid metabolism. Frontiers in Microbiology, 0, 13, .	1.5	5
4820	Metabolic Fate of Orally Ingested Proanthocyanidins through the Digestive Tract. Antioxidants, 2023, 12, 17.	2.2	10
4821	Influence of sex and rearing method on performance and flock uniformity in broilersâ€"implications for research settings. Animal Nutrition, 2023, 12, 276-283.	2.1	3
4823	Distinct factors associated with short-term and long-term weight loss induced by low-fat or low-carbohydrate diet intervention. Cell Reports Medicine, 2022, 3, 100870.	3.3	6
4824	†Pera' Orange and †Moro' Blood Orange Juice Improves Oxidative Stress and Inflammatory Response Biomarkers and Modulates the Gut Microbiota of Individuals with Insulin Resistance and Different Obesity Classes. Obesities, 2022, 2, 389-412.	0.3	2
4825	Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients, 2023, 15, 28.	1.7	5

#	Article	IF	CITATIONS
4826	Fecal Microbiota Transplantation and Other Gut Microbiota Manipulation Strategies. Microorganisms, 2022, 10, 2424.	1.6	13
4827	The Role of the Gut Microbiome in Pediatric Obesity and Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 15421.	1.8	2
4828	Yinchen Linggui Zhugan decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease by modulation of SIRT1/Nrf2 signaling pathway and gut microbiota. Frontiers in Microbiology, 0, 13, .	1.5	7
4829	Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. Bioengineering, 2022, 9, 798.	1.6	1
4830	Interpreting tree ensemble machine learning models with endoR. PLoS Computational Biology, 2022, 18, e1010714.	1.5	1
4831	Impact of cafeteria diet and n3 supplementation on the intestinal microbiota, fatty acids levels, neuroinflammatory markers and social memory in male rats. Physiology and Behavior, 2023, 260, 114068.	1.0	3
4832	Diverse effects of obesity on antitumor immunity and immunotherapy. Trends in Molecular Medicine, 2022, , .	3.5	2
4833	Bile acids and microbes in metabolic disease. World Journal of Gastroenterology, 0, 28, 6846-6866.	1.4	3
4834	Stool energy density is positively correlated to intestinal transit time and related to microbial enterotypes. Microbiome, 2022, 10 , .	4.9	20
4835	Plant-Derived Bioactive Compounds and Potential Health Benefits: Involvement of the Gut Microbiota and Its Metabolic Activity. Biomolecules, 2022, 12, 1871.	1.8	8
4836	Gut microbiota of homing pigeons shows summer–winter variation under constant diet indicating a substantial effect of temperature. Animal Microbiome, 2022, 4, .	1.5	3
4837	Characteristics of the gut microbiota in bipolar depressive disorder patients with distinct weight. CNS Neuroscience and Therapeutics, 2023, 29, 74-83.	1.9	3
4838	Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Frontiers in Medicine, $0, 9, .$	1.2	6
4839	Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. International Journal of Molecular Sciences, 2023, 24, 1166.	1.8	9
4840	Immunological consequences of microbiome-based therapeutics. Frontiers in Immunology, $0,13,.$	2.2	7
4841	New insights into the mechanisms of highâ€fat diet mediated gut microbiota in chronic diseases. , 2023, 2, .		16
4842	Analysis of Fecal Short-Chain Fatty Acids (SCFAs) in Healthy Children during the First Two Years of Life: An Observational Prospective Cohort Study. Nutrients, 2023, 15, 367.	1.7	8
4843	Effects of functional oligosaccharide on regulating gut microbiota in obese mice: a short review. Food Science and Technology, 0, 43, .	0.8	0

#	Article	IF	Citations
4844	Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Scientific Reports, 2023 , 13 , .	1.6	1
4845	Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metabolism, 2023, 35, 361-375.e9.	7.2	28
4846	A Low-Fat/Sucrose Diet Rich in Complex Carbohydrates Reverses High-Fat/Sucrose Diet-Induced Corneal Dysregulation. International Journal of Molecular Sciences, 2023, 24, 931.	1.8	1
4849	Partial Substitution of Fish Meal with Soy Protein Concentrate on Growth, Liver Health, Intestinal Morphology, and Microbiota in Juvenile Large Yellow Croaker (Larimichthys crocea). Aquaculture Nutrition, 2023, 2023, 1-15.	1.1	3
4850	Alterations and correlations of gut microbiota, fecal, and serum metabolome characteristics in a rat model of alcohol use disorder. Frontiers in Microbiology, $0,13,13$	1.5	4
4851	Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients, 2023, 15, 272.	1.7	9
4852	Association of body mass index trajectory and hypertension risk: A systematic review of cohort studies and network meta-analysis of 89,094 participants. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
4853	Gut Microbiota and Eating Disorders on the Extremes of Aging. Healthy Ageing and Longevity, 2023, , 99-127.	0.2	O
4854	Machine learning and network analysis of the gut microbiome from patients with schizophrenia and non-psychiatric subject controls reveal behavioral risk factors and bacterial interactions. Schizophrenia Research, 2023, 251, 49-58.	1.1	1
4855	Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 0, 13 , .	1.5	2
4857	Role of oral and gut microbiota in childhood obesity. Folia Microbiologica, 2023, 68, 197-206.	1.1	2
4858	The gut microbiota in obesity and weight management: microbes as friends or foe?. Nature Reviews Endocrinology, 2023, 19, 258-271.	4.3	38
4859	Metabolism of eriocitrin in the gut and its regulation on gut microbiota in mice. Frontiers in Microbiology, 0, 13 , .	1.5	4
4860	Microbial ecology of vertebrate decomposition in terrestrial ecosystems. FEMS Microbiology Ecology, 2023, 99, .	1.3	4
4861	Bacterial Translocation to the Mesentery. , 2023, , 93-109.		0
4862	Microbiota: ¿Sabemos de qué estamos hablando?. Archivos De ColoproctologÃa, 2021, 4, .	0.0	0
4863	Association between microbial composition, diversity, and function of the maternal gastrointestinal microbiome with impaired glucose tolerance on the glucose challenge test. PLoS ONE, 2022, 17, e0271261.	1.1	4
4864	Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients, 2023, 15, 151.	1.7	19

#	Article	IF	CITATIONS
4865	How is gut microbiome of patients with familial adenomatous polyposis different from healthy people?. Medicine (United States), 2022, 101, e32194.	0.4	2
4866	Intestinal dysbiosis, obesity and metabolic syndrome: how to quit this tricky triangle?. Modern Gastroenterology, 2019, , 45-56.	0.1	0
4867	Liver-Gut-Interaction: Role of Microbiome Transplantation in the Future Treatment of Metabolic Disease. Journal of Personalized Medicine, 2023, 13, 220.	1.1	3
4868	A Machine Learning Approach Reveals a Microbiota Signature for Infection with Mycobacterium avium subsp. <i>paratuberculosis</i> in Cattle. Microbiology Spectrum, 2023, 11, .	1.2	2
4869	Design, Biological Evaluation, and Computer-Aided Analysis of Dihydrothiazepines as Selective Antichlamydial Agents. Journal of Medicinal Chemistry, 2023, 66, 2116-2142.	2.9	3
4870	Fecal transplant., 2023,, 391-398.		0
4871	Effects of neutral polysaccharide from Platycodon grandiflorum on high-fat diet-induced obesity via the regulation of gut microbiota and metabolites. Frontiers in Endocrinology, 0, 14, .	1.5	3
4872	Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Frontiers in Pharmacology, 0, 14 , .	1.6	55
4873	Biosynthetic gene clusters of symbiotic gut microbiome in succession of human health., 2023,, 847-859.		0
4874	Diversity of the fecal microbiota in Chinese ponies. Frontiers in Veterinary Science, 0, 10, .	0.9	0
4875	Laparoscopic Roux-en-Y Gastric Bypass: Mechanism of Action. , 2023, , 291-307.		0
4877	Uncultured Members of the Oral Microbiome. Journal of the California Dental Association, 2016, 44, 447-456.	0.0	17
4878	Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. Obesity and Metabolism, 2023, 19, 292-299.	0.4	0
4879	Preclinical and Clinical Fructan Studies. , 2023, , 235-256.		0
4880	Gut microbiota and marine phenolics. , 2023, , 343-370.		0
4881	Natural products in conditions associated with inflammatory bowel diseases: Colorectal cancer, diversion colitis, and obesity. , 2023, , 415-442.		0
4882	Best practice for wildlife gut microbiome research: A comprehensive review of methodology for 16S rRNA gene investigations. Frontiers in Microbiology, 0, 14, .	1.5	5
4883	Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes, 2023, 15, .	4.3	8

#	Article	IF	Citations
4884	Nlrp12 deficiency alters gut microbiota and ameliorates Faslpr-mediated systemic autoimmunity in male mice. Frontiers in Immunology, $0,14,.$	2.2	1
4885	Metagenomic and Untargeted Metabolomic Analysis of the Effect of Sporisorium reilianum Polysaccharide on Improving Obesity. Foods, 2023, 12, 1578.	1.9	4
4886	Fecal microbiota transplantation from Suncus murinus, an obesity-resistant animal, to C57BL/6NCrSIc mice, and the antibiotic effects in the approach. Frontiers in Microbiology, 0, 14, .	1.5	2
4887	Maternal polychlorinated biphenyl 126 (PCB 126) exposure modulates offspring gut microbiota irrespective of diet and exercise. Reproductive Toxicology, 2023, 118, 108384.	1.3	1
4888	Effect of a Multispecies Synbiotic Supplementation on Body Composition, Antioxidant Status, and Gut Microbiomes in Overweight and Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients, 2023, 15, 1863.	1.7	3
4889	Short Photoperiod-Dependent Enrichment of AkkermansiaÂspec. as the Major Change in the Intestinal Microbiome of Djungarian Hamsters (Phodopus sungorus). International Journal of Molecular Sciences, 2023, 24, 6605.	1.8	2
4890	Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomedicine and Pharmacotherapy, 2023, 162, 114620.	2.5	7
4891	Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways. Journal of Hazardous Materials, 2023, 452, 131310.	6.5	3
4892	Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and, in vitro studies. Science of the Total Environment, 2023, 878, 162769.	3.9	8
4893	The maternal gut microbiome during pregnancy and its role in maternal and infant health. Current Opinion in Microbiology, 2023, 74, 102309.	2.3	9
4894	Characterization of the Microbiome and Host's Metabolites of the Lower Respiratory Tract During Acute Community-Acquired Pneumonia Identifies Potential Novel Markers. Infection and Drug Resistance, O, Volume 16, 581-594.	1.1	2
4895	The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Molecular Neurodegeneration, 2023, 18, .	4.4	48
4896	Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 133-196.	0.6	3
4897	Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies. International Journal of Molecular Sciences, 2023, 24, 3084.	1.8	7
4898	Probiotics and Prebiotics: Any Role in Menopause-Related Diseases?. Current Nutrition Reports, 0, , .	2.1	6
4899	Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biology of Sex Differences, 2023, 14, .	1.8	15
4900	What Is the Microbiome? A Description of a Social Network. Clinics in Colon and Rectal Surgery, 2023, 36, 091-097.	0.5	2
4901	The effect of polystyrene foam in different doses on the blood parameters and relative mass of internal organs of white mice. Biosystems Diversity, 2022, 30, 436-441.	0.2	3

#	ARTICLE	IF	CITATIONS
4902	Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. International Journal of Molecular Sciences, 2023, 24, 3735.	1.8	16
4903	Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life, 2023, 13, 515.	1.1	2
4904	Soluble, Diferuloylated Corn Bran Glucuronoarabinoxylans Modulate the Human Gut Microbiota <i>In Vitro</i> . Journal of Agricultural and Food Chemistry, 2023, 71, 3885-3897.	2.4	5
4905	Shifts in intestinal microbiota and improvement of sheep immune response to resist Salmonella infection using Toll-like receptor 4 (TLR4) overexpression. Frontiers in Microbiology, 0, 14, .	1.5	2
4906	Chimonanthus nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-20.	1.9	4
4907	Digestibility of insect meals for dogs and their effects on blood parameters, faecal characteristics, volatile fatty acids, and gut microbiota. Journal of Insects As Food and Feed, 2023, 9, 907-918.	2.1	1
4908	The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes that reflect dietary intakes and fecal water content. Gut Microbes, 2023, 15, .	4.3	1
4909	The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Applied and Environmental Microbiology, 2023, 89, .	1.4	6
4910	Dietary Nitrate and Corresponding Gut Microbiota Prevent Cardiac Dysfunction in Obese Mice. Diabetes, 2023, 72, 844-856.	0.3	1
4911	Orally administered Lactiplantibacillus plantarum OLL2712 decreased intestinal permeability, especially in the ileum: Ingested lactic acid bacteria alleviated obesity-induced inflammation by collaborating with gut microbiota. Frontiers in Immunology, 0, 14, .	2.2	5
4912	Grand challenges: Actualizing the potential of the gut microbiome to address global nutrition challenges. , $0, 2, .$		0
4913	Alteration of the Gut Microbiota in Missed Abortion. Indian Journal of Microbiology, 0, , .	1.5	1
4914	A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Seminars in Immunology, 2023, 66, 101737.	2.7	15
4915	Diets, Gut Microbiota and Metabolites. Phenomics, 2023, 3, 268-284.	0.9	4
4916	Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiology, 2023, 23, .	1.3	1
4917	Microbiome Structure and Mucosal Morphology of Jejunum Appendix and Colon of Rats in Health and Dysbiosis. Current Microbiology, 2023, 80, .	1.0	0
4918	Effects of Diet with High Polyphenol and Protein Content and Diet with High Boron Content on Microbiota in Obesity. Current Nutrition and Food Science, 2023, 19, .	0.3	0
4919	Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism. Diabetology and Metabolic Syndrome, 2023, 15, .	1.2	3

#	Article	IF	Citations
4920	Foodborne Carbon Dot Exposure Induces Insulin Resistance through Gut Microbiota Dysbiosis and Damaged Intestinal Mucus Layer. ACS Nano, 2023, 17, 6081-6094.	7.3	10
4921	Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses, 2023, 15, 719.	1.5	4
4922	Revisiting dietary effects on the gut microbiota and their implications in health and disease., 2022, 1, $102-112$.		0
4923	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10
4924	Prevalence of Small Intestinal Bacterial Overgrowth Syndrome in Patients with Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: A Cross-Sectional Study. Microorganisms, 2023, 11, 723.	1.6	1
4925	Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (Lithuania), 2023, 59, 561.	0.8	8
4926	Big data in genomic research for big questions with examples from covid-19 and other zoonoses. Journal of Applied Microbiology, 2023, 134, .	1.4	0
4927	Early Administration of Vancomycin Inhibits Pulmonary Embolism by Remodeling Gut Microbiota. Journal of Personalized Medicine, 2023, 13, 537.	1.1	1
4928	Effect of different doses of Lacticaseibacillus paracasei K56 on body fat and metabolic parameters in adult individuals with obesity: a pilot study. Nutrition and Metabolism, 2023, 20, .	1.3	1
4929	The Microbiota–Gut–Brain Axis: Psychoneuroimmunological Insights. Nutrients, 2023, 15, 1496.	1.7	8
4930	Personalized and Targeted Gut Microbiome Modulation in the Prevention and Treatment of Chronic Diseases. , 0, , .		0
4932	Intestinal Microbiomics in Physiological and Pathological Conditions. , 0, , .		1
4933	Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Scientific Reports, 2023, 13, .	1.6	5
4934	Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Applied Biochemistry and Biotechnology, 2023, 195, 6809-6823.	1.4	1
4936	Effect of Limosilactobacillus reuteri ZJF036 on Growth Performance and Gut Microbiota in Juvenile Beagle Dogs. Current Microbiology, 2023, 80, .	1.0	1
4937	Discrete patterns of microbiome variability across timescales in a wild rodent population. BMC Microbiology, 2023, 23, .	1.3	1
4938	Análise da relação entre obesidade e microbiota intestinal:. , 2023, 8, .		0
4939	Human Genes Involved in the Interaction between Host and Gut Microbiome: Regulation and Pathogenic Mechanisms. Genes, 2023, 14, 857.	1.0	3

#	ARTICLE	IF	CITATIONS
4940	Metagenomic Shotgun Sequencing Reveals Specific Human Gut Microbiota Associated with Insulin Resistance and Body Fat Distribution in Saudi Women. Biomolecules, 2023, 13, 640.	1.8	0
4941	Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Internal and Emergency Medicine, 2023, 18, 1287-1302.	1.0	4
4942	Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis?. , 2023, 2, .		2
4943	Effects of antibiotics on childhood gut microbiota. The Journal of Kansai Medical University, 2022, 73, 7-12.	0.3	0
4944	Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction. Fermentation, 2023, 9, 366.	1.4	1
4945	A network perspective on the ecology of gut microbiota and progression of type 2 diabetes: Linkages to keystone taxa in a Mexican cohort. Frontiers in Endocrinology, 0, 14 , .	1.5	9
4946	Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ, 0, 11 , $e15193$.	0.9	2
4948	Graphene oxide exposure alters gut microbial community composition and metabolism in an in vitro human model. NanoImpact, 2023, 30, 100463.	2.4	4
4949	Efficacy of fermented grain using Bacillus coagulans in reducing visceral fat among people with obesity: a randomized controlled trial. Frontiers in Nutrition, $0,10,10$	1.6	1
4951	Gut microbiome and cancer implications: Potential opportunities for fermented foods. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, , 188897.	3.3	0
4963	The Effects and Treatment of Inflammation on Diabetes Mellitus and Cardiovascular Disease. Contemporary Cardiology, 2023, , 307-329.	0.0	0
4982	Microbiome therapeutics as an alternative to the antibiotics. , 2023, , 421-441.		0
4994	Human Microbiome and Lifestyle Disorders. , 2023, , 165-193.		0
5001	Intermittent Hypoxia and Diet-Induced Obesity on the Intestinal Wall Morphology in a Murine Model of Sleep Apnea. Advances in Experimental Medicine and Biology, 2023, , 89-97.	0.8	O
5005	The "normal―gut microbiome and human health. , 2023, , 3-18.		0
5029	Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension. GeroScience, 0, , .	2.1	2
5037	The Gut Microbiota: a Novel Player in the Pathogenesis of Uterine Fibroids. Reproductive Sciences, 0, , .	1.1	1
5038	Microbial Technology for Neurological Disorders. , 2023, , 299-339.		O

#	Article	IF	CITATIONS
5051	Gut Microbiota and Obesity. Endocrinology, 2023, , 1-29.	0.1	0
5054	Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges. Drug Delivery and Translational Research, 0, , .	3.0	1
5072	The gut microbiota and its biogeography. Nature Reviews Microbiology, 2024, 22, 105-118.	13.6	9
5106	Environmental and Lifestyle Factors Influencing Inflammation and Type 2 Diabetes. Contemporary Endocrinology, 2023, , 165-183.	0.3	0
5117	Direct-Fed Microbial Supplementation and the Swine Gastrointestinal Tract Microbial Population: Current Challenges and Future Prospects., 2023,, 229-247.		0
5120	Diet and Obesity. , 2023, , 1-17.		0
5122	The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. Nanoscale Advances, 2023, 5, 6349-6364.	2.2	0
5133	The Microbiome, Metabolism, and Networks in Precision Nutrition. , 2024, , 91-142.		0
5154	Role of Gut Microbiome Composition in Shaping Host Immune System Development and Health. , 2023, , 39-65.		0
5157	Precision Nutrition and Obesity. , 2024, , 317-332.		0
5160	Role of Microbiomes in Defining the Metabolic and Regulatory Networks that Distinguishes Between Good Health and a Continuum of Disease States. , 2023, , 219-240.		0
5165	Cyanobacterial DNA from Lake Sediments. Developments in Paleoenvironmental Research, 2023, , 153-174.	7.5	0
5172	Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. International Journal of Obesity, 0, , .	1.6	0
5183	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2023, , 1-31.	0.1	0
5186	Prevalence of Microbiome Reservoirs in Plants and Pathogen Outbreaks., 2023,, 259-286.		0
5195	Correlating the Gut Microbiome to Health and Disease. , 2024, , 1-36.		0
5197	Diet and Obesity. , 2023, , 199-215.		0
5198	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2024, , 199-229.	0.1	0

#	Article	IF	CITATIONS
5201	Gut Microbiota and Obesity. Endocrinology, 2024, , 129-156.	0.1	О
5206	Preclinical and Clinical Research on Oleogels. , 2024, , 587-603.		0
5209	The Human Gut Microbiota: A Dynamic Biologic Factory. Advances in Biochemical Engineering/Biotechnology, 2023, , .	0.6	0
5210	Gut microbiota in insulin resistance: a bibliometric analysis. Journal of Diabetes and Metabolic Disorders, 0, , .	0.8	0
5212	Changes in the Gut Microbiome as Seen in Diabetes and Obesity. , 2023, , 61-81.		0
5220	Host-pathogen interactions with special reference to microbiota analysis and integration of systems biology approaches. , 2024, , 191-211.		0