Salt tolerance and salinity effects on plants: a review

Ecotoxicology and Environmental Safety 60, 324-349 DOI: 10.1016/j.ecoenv.2004.06.010

Citation Report

#	Article	IF	CITATIONS
1	Development of Crown and Root Rot Disease of Tomato Under Irrigation with Saline Water. Phytopathology, 2005, 95, 1438-1444.	1.1	70
2	A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005, 26, 4521-4539.	1.3	195
3	Role Of Calcium In Alleviating Salinity Effects In Coastal Halophytes. Tasks for Vegetation Science, 2008, , 107-114.	0.6	6
4	Salt tolerance and osmotic adjustment of <i>Spartina alterniflora</i> (Poaceae) and the invasive M haplotype of <i>Phragmites australis</i> (Poaceae) along a salinity gradient. American Journal of Botany, 2006, 93, 1784-1790.	0.8	151
6	Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiologia Plantarum, 2006, 126, 446-457.	2.6	139
7	Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 2006, 128, 116-124.	2.6	139
8	Effects of NaCl, Na2SO4, and mannitol on storage lipid mobilization in the cotyledons and roots of purple alfalfa seedlings. Russian Journal of Plant Physiology, 2006, 53, 779-784.	0.5	10
9	The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba) Tj ETQq1 1 (0.784314 rg 1.3	gBT_/Overloo
10	Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Marine Biology, 2006, 150, 1-15.	0.7	88
11	The Arabidopsis Mutant stg1 Identifies a Function for TBP-Associated Factor 10 in Plant Osmotic Stress Adaptation. Plant and Cell Physiology, 2006, 47, 1285-1294.	1.5	43
12	Comparative Salt Tolerance Of Perennial Grasses. Tasks for Vegetation Science, 2008, , 239-253.	0.6	10
13	Influence d'une hydromorphie modérée ou sévère sur la production de biomasse et les échanges gazeux de plants de peuplier euraméricain. Canadian Journal of Forest Research, 2006, 36, 2654-2665.	0.8	8
14	Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany, 2006, 57, 2435-2444.	2.4	279
15	Effects of NaCl stress on red raspberry (Rubus idaeus L. â€~Autumn Bliss'). Scientia Horticulturae, 2007, 112, 282-289.	1.7	69
16	Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain). Chemosphere, 2007, 69, 1341-1350.	4.2	37
17	Potential of halophytes as source of edible oil. Journal of Arid Environments, 2007, 68, 315-321.	1.2	136
18	Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. Journal of Arid Environments, 2007, 71, 312-320.	1.2	70
19	Nitrogen, Phosphorus, and Sulfur Nutrition in Broccoli Plants Grown Under Salinity. Journal of Plant Nutrition, 2007, 30, 1855-1870.	0.9	16

#	Article	IF	CITATIONS
20	Evaluation of Genetic and Epigenetic Modification in Rapeseed (<i>Brassica napus</i>) Induced by Salt Stress. Journal of Integrative Plant Biology, 2007, 49, 1599-1607.	4.1	46
21	Growth and Photosynthetic Responses to Salinity of the Salt-marsh Shrub Atriplex portulacoides. Annals of Botany, 2007, 100, 555-563.	1.4	216
22	Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of <i>Hordeum maritimum</i> . Journal of Plant Nutrition and Soil Science, 2007, 170, 469-473.	1.1	68
23	Towards the Development of Salt-Tolerant Potato. , 2007, , 415-437.		6
24	Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiology and Biochemistry, 2007, 45, 551-559.	2.8	51
25	Functional screening of salt stress-related genes from Thellungiella halophila using fission yeast system. Physiologia Plantarum, 2007, 129, 671-678.	2.6	13
26	Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula�×alba). Plant, Cell and Environment, 2007, 30, 796-811.	2.8	99
27	Nitrogen uptake and metabolism inPopulusÂ×Âcanescensas affected by salinity. New Phytologist, 2007, 173, 279-293.	3.5	100
28	The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 2007, 60, 344-351.	2.0	391
29	Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): Effects of dye, salinity and metals. Science of the Total Environment, 2007, 384, 67-76.	3.9	88
30	Effect of NaCl, Na2SO4, and mannitol on utilization of storage starch and formation of plastids in the cotyledons and roots of alfalfa seedlings. Russian Journal of Plant Physiology, 2007, 54, 50-57.	0.5	12
31	Effect of calcium and light on the germination of Urochondra setulosa under different salts. Journal of Zhejiang University: Science B, 2007, 8, 20-26.	1.3	16
32	Salt-stress signaling. Journal of Plant Biology, 2007, 50, 148-155.	0.9	45
33	Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294, 263-276.	1.8	302
34	Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. Journal of Plant Research, 2007, 120, 529-537.	1.2	71
35	Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China, 2007, 1, 308-314.	0.2	94
36	Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiologiae Plantarum, 2007, 29, 95-102.	1.0	82
37	Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiologiae Plantarum, 2007, 29, 485-493.	1.0	134

#	Article	IF	CITATIONS
38	Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologiae Plantarum, 2007, 30, 11-18.	1.0	133
39	Germination strategies of two halophytes in Salt Desert of northwestern China. Science in China Series D: Earth Sciences, 2007, 50, 115-121.	0.9	10
40	Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces B: Biointerfaces, 2008, 65, 220-225.	2.5	84
41	Role of nitric oxide under saline stress: implications on proline metabolism. Biologia Plantarum, 2008, 52, 587-591.	1.9	110
42	Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity. Biologia Plantarum, 2008, 52, 796-799.	1.9	35
43	Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica, 2008, 46, 107-114.	0.9	166
44	Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica, 2008, 46, 410-419.	0.9	59
45	Growth, nitrogen fixation and ion distribution in Medicago truncatula subjected to salt stress. Plant and Soil, 2008, 312, 59-67.	1.8	33
46	Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56, 179-190.	1.8	229
47	Scion and Rootstock Effects on ABA-mediated Plant Growth Regulation and Salt Tolerance of Acclimated and Unacclimated Potato Genotypes. Journal of Plant Growth Regulation, 2008, 27, 125-140.	2.8	31
48	Growth, photosynthesis, and ion distribution in hydroponically cultured Populus alba L. cuttings grown under various salinity concentrations. Landscape and Ecological Engineering, 2008, 4, 75-82.	0.7	16
49	Growth, physiological characteristics and ion distribution of NaCl stressed Alhagi sparsifolia seedlings. Science Bulletin, 2008, 53, 169-176.	4.3	18
50	Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 2008, 30, 553-560.	1.0	36
51	Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta, 2008, 228, 167-177.	1.6	135
52	A crossâ€species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using ¹⁵ N metabolic labelling. Proteomics, 2008, 8, 2266-2284.	1.3	35
53	Interspecific Variations in Responses of Mangrove Seedlings to Two Contrasting Salinities. International Review of Hydrobiology, 2008, 93, 700-710.	0.5	37
54	Phytotoxicity and fertilising potential of olive mill wastewaters for maize cultivation. Agronomy for Sustainable Development, 2008, 28, 313-319.	2.2	29
55	Improving Glycyrrhiza uralensis salt tolerance with N+ ion irradiation. Russian Journal of Plant Physiology, 2008, 55, 344-349.	0.5	5

#	Article	IF	CITATIONS
56	SALTâ€INDUCED ALTERATIONS IN LIPID COMPOSITION OF DIATOM <i>NITZSCHIA LAEVIS</i> (BACILLARIOPHYCEAE) UNDER HETEROTROPHIC CULTURE CONDITION ¹ . Journal of Phycology, 2008, 44, 1309-1314.	1.0	100
57	VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Plant Biology, 2008, 10, 86-96.	1.8	52
58	Effects of Salt Stress on Some Physiological and Photosynthetic Parameters at Three Different Temperatures in Six Soya Bean (<i>Glycine max</i> L. Merr.) Cultivars. Journal of Agronomy and Crop Science, 2008, 194, 34-46.	1.7	36
59	Physiological Responses of Krishum (<i>Iris lactea</i> Pall. var. <i>chinensis</i> Koidz) to Neutral and Alkaline Salts. Journal of Agronomy and Crop Science, 2008, 194, 429-437.	1.7	12
60	Physiological responses to salt stress in young umbu plants. Environmental and Experimental Botany, 2008, 63, 147-157.	2.0	110
61	Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environmental and Experimental Botany, 2008, 64, 83-89.	2.0	64
62	Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pesticide Biochemistry and Physiology, 2008, 90, 135-139.	1.6	46
63	Water Salinity and Initial Development of Pitaya <i>(Hylocereus undatus)</i> . International Journal of Fruit Science, 2008, 7, 81-92.	1.2	7
64	Effect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown Under Salt Stress. Journal of Plant Nutrition, 2008, 31, 593-612.	0.9	178
65	Crassulacean Acid Metabolism: a Cause or Consequence of Oxidative Stress in Planta?. Progress in Botany Fortschritte Der Botanik, 2008, , 247-266.	0.1	34
66	Salt in Irrigation Water Affects the Nutritional and Visual Properties of Romaine Lettuce (Lactuca) Tj ETQq0 0 0 r	gBT /Over 2.4	lock 10 Tf 50
67	Use of Bioinoculants in Ameliorative Effects on Radish Plants Under Salinity Stress. Journal of Plant Nutrition, 2008, 31, 2059-2074.	0.9	50
68	Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 2008, 165, 1620-1635.	1.6	322
69	Na+ regulation by combined nitrogen in Azolla pinnata–Anabaena azollae symbiotic association during salt toxicity. Ecotoxicology and Environmental Safety, 2008, 69, 32-38.	2.9	11
70	Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts. Photochemical and Photobiological Sciences, 2008, 7, 352-360.	1.6	42
71	Studies on Halophytes and Salinity Problems in Mediterranean Agriculture. , 2008, , 25-30.		0
72	Physiological interactions in <i>Azolla-Anabaena</i> system adapting to the salt stress. Journal of Plant Interactions, 2008, 3, 145-155.	1.0	13
73	Responses and tolerance to salt stress in bryophytes. Plant Signaling and Behavior, 2008, 3, 516-518.	1.2	21

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
74	Change in Uptake, Transport and Accumulation of Ions in Nerium oleander (Rosebay) as Affected by Different Nitrogen Sources and Salinity. Annals of Botany, 2008, 102, 735-746.	1.4	26
75	Intracellular Organic Osmolytes: Function and Regulation. Journal of Biological Chemistry, 2008, 283, 7309-7313.	1.6	535
76	Selection of salt tolerant plants ofNicotiana TabacumL. throughin vitroand its biochemical characterization. Acta Biologica Hungarica, 2008, 59, 77-92.	0.7	12
77	In vitro selection of NaHCO ₃ tolerant cultivars of Morus alba (Local and) Tj ETQq1 1 0.784	1314 rgBT 0.3	/Overlock 20
78	Salt stress and phyto-biochemical responses of plants - a review. Plant, Soil and Environment, 2008, 54, 89-99.	1.0	424
79	Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant, Soil and Environment, 2008, 54, 374-381.	1.0	127
80	The effects of treatment with polyamines on dry matter and some metabolites in salinity - stressed chamomile and sweet majoram seedlings. Plant, Soil and Environment, 2009, 55, 477-483.	1.0	14
81	Wheat Response to a Soil Previously Irrigated with Saline Water. Italian Journal of Agronomy, 2009, 4, 121.	0.4	0
82	Changes in growth and photosynthetic capacity of cucumber seedlings in response to nitrate stress. Brazilian Journal of Plant Physiology, 2009, 21, 309-317.	0.5	16
83	Mechanism of growth amelioration of NaCl-stressed rice (Oryza sativa L.) by .DELTAaminolevulinic acid. Journal of Pesticide Sciences, 2009, 34, 89-95.	0.8	19
84	Vesicle formation in the membrane of onion cells (Allium cepa) during rapid osmotic dehydration. Annals of Botany, 2009, 104, 1389-1395.	1.4	8
85	Dynamic Aspects of Ion Accumulation by Vesicle Traffic Under Salt Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2023-2033.	1.5	130
86	Comparative Profiles of Gene Expression in Leaves and Roots of Maize Seedlings under Conditions of Salt Stress and the Removal of Salt Stress. Plant and Cell Physiology, 2009, 50, 889-903.	1.5	50
87	Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi Journal of Biological Sciences, 2009, 16, 101-107.	1.8	20
88	Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 2009, 65, 245-252.	2.0	328
89	Comparison of two chickpea varieties regarding their responses to direct and induced Fe deficiency. Environmental and Experimental Botany, 2009, 66, 349-356.	2.0	16
90	Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 2009, 67, 2-9.	2.0	465
91	Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 2009, 67, 345-352.	2.0	174

#	Article	IF	CITATIONS
92	Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiology and Biochemistry, 2009, 47, 37-41.	2.8	121
93	Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). Photosynthetica, 2009, 47, 55-60.	0.9	45
94	Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47, 79-86.	0.9	192
95	Effects of salt stress on growth, photosynthesis and solute accumulation in three poplar cultivars. Photosynthetica, 2009, 47, .	0.9	15
96	Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: a Michaelis–Menten modelling approach. Plant and Soil, 2009, 318, 101-115.	1.8	43
97	Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings. Plant Growth Regulation, 2009, 59, 125-135.	1.8	36
98	Tocopherol content and enzymatic antioxidant activities in chloroplasts from NaCl-stressed tomato plants. Acta Physiologiae Plantarum, 2009, 31, 393-400.	1.0	35
99	Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiologiae Plantarum, 2009, 31, 477-486.	1.0	55
100	Changes of soluble proteins in leaf and thylakoid exposed in high saline condition of a mangrove taxa Bruguiera gymnorrhiza. Physiology and Molecular Biology of Plants, 2009, 15, 53-59.	1.4	5
101	Physiological and biochemical traits involved in the genotypic variability to salt tolerance of Tunisian <i>Cakile maritima</i> . African Journal of Ecology, 2009, 47, 774-783.	0.4	8
102	The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO ₂ . Physiologia Plantarum, 2009, 135, 29-42.	2.6	227
103	<i>NITZSCHIA OVALIS</i> (BACILLARIOPHYCEAE) MONO LAKE STRAIN ACCUMULATES 1,4/2,5 CYCLOHEXANETETROL IN RESPONSE TO INCREASED SALINITY ¹ . Journal of Phycology, 2009, 45, 395-403.	1.0	14
104	Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination, 2009, 249, 163-166.	4.0	43
105	Increased content of very-long-chain fatty acids in the lipids of halophyte vegetative organs. Russian Journal of Plant Physiology, 2009, 56, 787-794.	0.5	20
106	Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology, 2009, 55, 1302-1309.	0.8	178
107	Salt tolerance strategies of Lygeum spartum L.: A new fodder crop for Algerian saline steppes. Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 747-754.	0.6	25
108	Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 2009, 149, 101-109.	2.3	197
109	Cadmium, copper, lead, and zinc in secondary sulfate minerals in soils of mined areas in Southeast Spain. Geoderma, 2009, 150, 150-157.	2.3	34

#	Article	IF	CITATIONS
110	Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Scientia Horticulturae, 2009, 120, 443-451.	1.7	52
111	Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. Journal of Plant Physiology, 2009, 166, 1786-1800.	1.6	48
112	The effect of salinity on photosynthetic activity in potassium-deficient barley species. Journal of Plant Physiology, 2009, 166, 1968-1981.	1.6	102
113	Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany, 2009, 91, 181-186.	0.8	123
114	Role of naturally occurring osmolytes in protein folding and stability. Archives of Biochemistry and Biophysics, 2009, 491, 1-6.	1.4	131
115	The Use of Microorganisms to Facilitate the Growth of Plants in Saline Soils. , 2009, , 1-22.		35
116	Improvement of Salt Tolerance Mechanisms of Barley Cultivated Under Salt Stress Using Azospirillum brasilense. Tasks for Vegetation Science, 2009, , 133-147.	0.6	62
117	A systems biology approach to investigate the response of Synechocystis sp. PCC6803 to a high salt environment. Saline Systems, 2009, 5, 8.	2.0	19
119	Saline Water Irrigation Effects on Antioxidant Defense System and Proline Accumulation in Leaves and Roots of Field-Grown Olive. Journal of Agricultural and Food Chemistry, 2009, 57, 11484-11490.	2.4	42
120	Growth, Chlorophyll, and Cation Concentration of Tetraploid Wheat on a Solution High in Sodium Chloride Salt: Hulled Versus Free-Threshing Genotypes. Journal of Plant Nutrition, 2009, 32, 58-70.	0.9	27
121	Effects of Calcium Chloride on Growth, Membrane Permeability and Root Hydraulic Conductivity in Two <i>Atriplex</i> Species Grown at High (Sodium Chloride) Salinity. Journal of Plant Nutrition, 2009, 32, 1818-1830.	0.9	35
122	Effects of Various Salt–Alkaline Mixed Stresses on the State of Mineral Elements in Nutrient Solutions and the Growth of Alkali Resistant Halophyte <i>Chloris Virgata</i> . Journal of Plant Nutrition, 2009, 32, 1137-1147.	0.9	44
123	Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 2009, 104, 1263-1280.	1.4	828
124	Proteomic Analysis of Specific Proteins in the Root of Salt-Tolerant Barley. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2762-2765.	0.6	44
125	Changes of Proline Content, Activity, and Active Isoforms of Antioxidative Enzymes in Two Alfalfa Cultivars Under Salt Stress. Agricultural Sciences in China, 2009, 8, 431-440.	0.6	63
126	Proline Accumulation, Photosynthetic Abilities and Growth Characters of Sugarcane (Saccharum) Tj ETQq1 1 0.7 Sciences in China, 2009, 8, 51-58.	84314 rgB 0.6	T /Overlock 60
127	Methylation-Sensitive Amplification Polymorphism of Epigenetic Changes in Cotton Under Salt Stress. Acta Agronomica Sinica, 2009, 35, 588-596.	0.3	26
128	Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 2009, 66, 180-187.	0.6	110

#	Article	IF	CITATIONS
129	Vermicompost suppresses Rhizoctonia solani Kühn in cucumber seedlings. Journal of Plant Diseases and Protection, 2009, 116, 182-188.	1.6	44
130	EVALUATION OF THE GROWTH OF DATE PALM SEEDLINGS IRRIGATED WITH SALINE WATER IN THE SULTANATE OF OMAN. Acta Horticulturae, 2010, , 233-246.	0.1	26
131	Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions. Journal of Microbiology and Biotechnology, 2010, 20, 1288-1294.	0.9	123
132	Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 2010, 39, 933-947.	1.2	305
133	Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiologiae Plantarum, 2010, 32, 91-101.	1.0	86
134	Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiologiae Plantarum, 2010, 32, 341-353.	1.0	47
135	Acetylsalicylic acid ameliorates negative effects of NaCl or osmotic stress in Solanum stoloniferum in vitro. Biologia Plantarum, 2010, 54, 781-784.	1.9	10
136	Identification of a glucose-6-phosphate isomerase involved in adaptation to salt stress of Dunaliella salina. Journal of Applied Phycology, 2010, 22, 563-568.	1.5	17
137	Identification and characterization of spermidine synthase gene from Panax ginseng. Molecular Biology Reports, 2010, 37, 923-932.	1.0	18
138	Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus camaldulensis Dehnh.). New Forests, 2010, 40, 349-360.	0.7	23
139	Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010, 48, 127-134.	0.9	90
140	Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. Photosynthetica, 2010, 48, 278-286.	0.9	81
141	Effects of NaCl on growth, water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings. Plant and Soil, 2010, 327, 23-34.	1.8	14
142	Effects of NO 3 â^' -N on the growth and salinity tolerance of Tamarix laxa Willd. Plant and Soil, 2010, 331, 57-67.	1.8	38
143	The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil, 2010, 326, 213-224.	1.8	89
144	5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant and Soil, 2010, 332, 405-415.	1.8	122
145	Molecular Cloning and Characterization of a Chitinase-Homologous Gene from Mikania micrantha Infected by Cuscuta campestris. Plant Molecular Biology Reporter, 2010, 28, 90-101.	1.0	16
146	Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 2010, 68, 66-74.	2.0	87

#	Article	IF	CITATIONS
147	Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany, 2010, 69, 105-112.	2.0	195
148	Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biology and Medicine, 2010, 49, 1161-1171.	1.3	110
149	Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry, 2010, 71, 1450-1459.	1.4	123
150	Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 2010, 56, 263-271.	0.8	41
151	Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (<i>Medicago sativa</i> L.). Soil Science and Plant Nutrition, 2010, 56, 725-733.	0.8	141
152	Salinityâ€induced changes in essential oil, pigments and salts accumulation in sweet basil (<i>Ocimum) Tj ETQq1 2010, 156, 167-177.</i>	1 0.78431 1.3	.4 rgBT /Ove 62
153	Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biology, 2010, 12, 79-87.	1.8	166
154	Nitrogen nutrition of poplar trees. Plant Biology, 2010, 12, 275-291.	1.8	200
155	Lipoic acid and redox status in barley plants subjected to salinity and elevated CO ₂ . Physiologia Plantarum, 2010, 139, 256-68.	2.6	50
156	Eco-physiological responses and symbiotic nitrogen fixation capacity of salt-exposed Hedysarum carnosum plants. African Journal of Biotechnology, 2010, 9, 7462-7469.	0.3	14
157	Effects of Saline and Alkaline Stress on Germination, Seedling Growth, and Ion Balance in Wheat. Agronomy Journal, 2010, 102, 1252-1260.	0.9	63
158	Mitigating effect of salicylic acid and nitrate on water relations and osmotic adjustment in maize, cv. Lluteño exposed to salinity. Ciencia E Investigacion Agraria, 2010, 37, 71-81.	0.2	2
159	Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. African Journal of Biotechnology, 2010, 9, 7837-7846.	0.3	31
160	Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. Annals of Botany, 2010, 105, 925-937.	1.4	41
161	Salinity and Drought Management in Legume Crops. , 2010, , 171-191.		9
162	RESPONSES OF GRAFTED WATERMELON ONTO DIFFERENT GOURD SPECIES TO SALINITY STRESS. Journal of Plant Nutrition, 2010, 33, 315-327.	0.9	56
163	The effects of salinity and alkalinity of soil on growth of Haloxylon sp. in Segzi plain (Iran). , 2010, , .		1
164	RESPONSES OF SOME ENZYMES AND KEY GROWTH PARAMETERS OF SALT-STRESSED MAIZE PLANTS TO FOLIAR AND SEED APPLICATIONS OF KINETIN AND INDOLE ACETIC ACID. Journal of Plant Nutrition, 2010, 33, 405-422.	0.9	15

#	Article	IF	CITATIONS
165	Water Management in Coastal Areas with Low Quality Irrigation Water for Pepper Growth. Journal of Coastal Research, 2010, 265, 869-878.	0.1	3
166	Notice of Retraction: Comparative study on the responses to NaCl stress in the wild and hydroponic Nostoc flagelliforme. , 2010, , .		2
167	Notice of Retraction: Effects of Ca(NO ₃) ₂ stress on the root volume, root-shoot ratio and chlorophyll contents of cucumber seedlings. , 2010, , .		0
168	Responses of Halophytes to Environmental Stresses with Special Emphasis to Salinity. Advances in Botanical Research, 2010, 53, 117-145.	0.5	77
169	Controls on mangrove forestâ€atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research, 2010, 115, .	3.3	121
170	Differential Response of Salt-Tolerant and Susceptible Barley Genotypes to Salinity Stress. Journal of Crop Improvement, 2010, 24, 244-260.	0.9	9
171	Physiological and biochemical responses of peanut genotypes to water deficit. Journal of Plant Interactions, 2010, 5, 1-10.	1.0	34
172	Evaluating a â€`biotic ligand model' applied to chlorideâ€enhanced Cd uptake by <i>Brassica juncea</i> from nutrient solution at constant Cd ²⁺ activity. Environmental Technology (United Kingdom), 2010, 31, 307-318.	1.2	24
173	Salts as Potential Environmental Pollutants, Their Types, Effects on Plants and Approaches for Their Phytoremediation. , 2010, , 357-381.		9
174	Phytoremediation of Saline Soils for Sustainable Agricultural Productivity. , 2010, , 335-355.		32
175	Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L. genotypes. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 622-626.	0.6	24
176	Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Scientia Horticulturae, 2010, 125, 171-178.	1.7	40
177	Yield, essential oil and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae, 2010, 126, 297-305.	1.7	77
178	Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 2010, 97, 1994-2000.	2.4	82
179	Application of Salicylic Acid Increases Contents of Nutrients and Antioxidative Metabolism in Mungbean and Alleviates Adverse Effects of Salinity Stress. International Journal of Plant Biology, 2010, 1, e1.	1.1	160
180	Biochemical Alterations in Foliar Tissues of Citrus Genotypes Screened In vitro for Salinity Tolerance. Journal of Plant Biochemistry and Biotechnology, 2010, 19, 203-208.	0.9	7
181	Exogenous Proline Effects on Photosynthetic Performance and Antioxidant Defense System of Young Olive Tree. Journal of Agricultural and Food Chemistry, 2010, 58, 4216-4222.	2.4	182
182	Insights into the significance of antioxidative defense under salt stress. Plant Signaling and Behavior, 2010, 5, 369-374.	1.2	400

#	Article	IF	CITATIONS
183	Alkaloid Accumulation in Catharanthus roseus Increases with Addition of Seawater Salts to the Nutrient Solution. Pedosphere, 2010, 20, 718-724.	2.1	21
184	Microbial ACC-Deaminase: Prospects and Applications for Inducing Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 2010, 29, 360-393.	2.7	113
185	Climate Change and Management of Cool Season Grain Legume Crops. , 2010, , .		25
186	SOME DELETERIOUS EFFECTS OF LONG-TERM SALT STRESS ON GROWTH, NUTRITION, AND PHYSIOLOGY OF GERBERA (<i>GERBERA JAMESONII</i> L.) AND POTENTIAL INDICATORS OF ITS SALT TOLERANCE. Journal of Plant Nutrition, 2010, 33, 2010-2027.	0.9	14
187	Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration. Tree Physiology, 2010, 30, 1161-1173.	1.4	17
188	Influence d'une contrainte saline sur la croissance d'Aegilops geniculataRoth et du blé dur (Triticum) Tj ETQq1 1	8.78431	4 ₁ gBT /Ove
189	Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 2011, 6, 1720-1731.	1.2	1,684
190	Dynamic Metabonomic Responses of Tobacco <i>(Nicotiana tabacum)</i> Plants to Salt Stress. Journal of Proteome Research, 2011, 10, 1904-1914.	1.8	195
191	Plants in Extreme Environments. Advances in Botanical Research, 2011, 57, 105-150.	0.5	48
192	The effects of short term salinity exposure on the sublethal stress response of Vallisneria americana Michx. (Hydrocharitaceae). Aquatic Botany, 2011, 95, 207-213.	0.8	10
193	Effects of different salt concentrations and Rhizobium inoculation (native and Rhizobium tropici) Tj ETQqO O O rgE 387-391.	3T /Overlo 1.4	ck 10 Tf 50 8
194	An Omics Approach to Understand the Plant Abiotic Stress. OMICS A Journal of Integrative Biology, 2011, 15, 739-762.	1.0	74
195	Hyperspectral remote sensing of the impact of environmental stresses on nitrogen fixing soybean plants (Glycine max L.). , 2011, , .		6
196	Chlorophyll fluorescence of nitrogen fixing soybean plants (Glycine max L.) under stress conditions. , 2011, , .		0
197	Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 2011, 168, 807-815.	1.6	416
198	Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011, 181, 195-202.	1.7	65
199	Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 2011, 128, 189-196.	1.7	169
200	Enhancement of stress tolerance in mulberry. Scientia Horticulturae, 2011, 129, 511-519.	1.7	14

#	Article	IF	CITATIONS
201	Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulturae, 2011, 130, 133-140.	1.7	76
202	Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Scientia Horticulturae, 2011, 130, 248-255.	1.7	74
203	Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition. Pedosphere, 2011, 21, 214-222.	2.1	336
204	Protection of cadmium chloride induced DNA damage by Lamiaceae plants. Asian Pacific Journal of Tropical Biomedicine, 2011, 1, 391-394.	0.5	21
205	Solute accumulation and osmotic adjustment characteristics of the mangrove Avicennia marina under NaCl-induced salinity stress. Botanica Marina, 2011, 54, .	0.6	13
206	Salinity Tolerance of Foxtail Barley (<i>Hordeum jubatum</i>) and Desirable Pasture Grasses. Weed Science, 2011, 59, 500-505.	0.8	14
207	The effects of mannitol and salinity stresses on growth and biochemical accumulations in lemon balm. Acta Ecologica Sinica, 2011, 31, 112-120.	0.9	40
208	Salt stress induced changes in germination, lipid peroxidation and antioxidant activities in lettuce (Lactuca sativa L.) seedlings. African Journal of Biotechnology, 2011, 10, 14498-14506.	0.3	7
209	The Effects of Soil-Applied Humic Substances to the Dry Weight and Mineral Nutrient Uptake of Maize Plants under Soil-Salinity Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 171.	0.5	18
210	Desempenho de cultivares de alface submetidas a diferentes nÃveis de salinidade da Ã;gua de irrigação. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 771-777.	0.4	25
211	Efeito da nutrição de nitrato na tolerância de plantas de sorgo sudão à salinidade. Revista Ciencia Agronomica, 2011, 42, 675-683.	0.1	23
212	Compostos nitrogenados e carboidratos em sorgo submetido à salinidade e combinações de nitrato e amà nio. Revista Ciencia Agronomica, 2011, 42, 390-397.	0.1	6
213	Soil salinization and maize and cowpea yield in the crop rotation system using saline waters. Engenharia Agricola, 2011, 31, 663-675.	0.2	30
214	Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 09.	0.5	58
215	Expressão diferencial dos genes VuUCP1a e VuUCP1b em caupi sob estresse salino. Revista Ciencia Agronomica, 2011, 42, 404-408.	0.1	1
216	Foliar Application of Potassium Nitrate Affects the Growth and Nitrate Reductase Activity in Sunflower and Safflower Leaves under Salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 172.	0.5	35
217	Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 2011, 3, .	1.0	14
218	Effect of salt stress on nutrient concentration, photosynthetic pigments, proline and foliar morphology of Salvinia auriculata Aubl Acta Limnologica Brasiliensia, 2011, 23, 164-176.	0.4	46

#	Article	IF	CITATIONS
219	The continuous accumulation of Na+ in detached leaf sections is associated with over-expression of NTHK1 and salt tolerance in poplar plants. Functional Plant Biology, 2011, 38, 236.	1.1	4
220	Salinity Stress and Salt Tolerance. , 0, , .		96
221	Soil Bacteria Support and Protect Plants Against Abiotic Stresses. , 2011, , .		34
222	Evaluation of sugarcane (Saccharum officinarum L.) somaclonal variants tolerance to salinity in vitro and in vivo cultures. African Journal of Biotechnology, 2011, 10, 9337-9343.	0.3	7
223	Durum wheat salt tolerance in relation to physiological, yield and quality characters. Cereal Research Communications, 2011, 39, 525-534.	0.8	24
224	EFFECTS OF SALINE WATER ON TOMATO UNDER SUBSURFACE DRIP IRRIGATION: NUTRITIONAL AND FOLIAR ASPECTS. Journal of Soil Science and Plant Nutrition, 2011, 11, 69-86.	1.7	27
225	Evaluation of Sugarcane (Saccharum officinarum L.) Somaclonals Tolerance to Salinity Via In Vitro and In Vivo. HAYATI Journal of Biosciences, 2011, 18, 91-96.	0.1	10
226	Comparative study on the effects of NaCl on selected moss and fern representatives. Australian Journal of Botany, 2011, 59, 734.	0.3	19
227	POLYAMINE ACCLIMATION ALLEVIATES HYPERSALINITY-INDUCED OXIDATIVE STRESS IN A MARINE GREEN MACROALGA, ULVA FASCIATA, BY MODULATION OF ANTIOXIDATIVE ENZYME GENE EXPRESSION1. Journal of Phycology, 2011, 47, 538-547.	1.0	20
228	Differences in Ion Accumulation and Salt Tolerance among Glycine Accessions. Journal of Agronomy and Crop Science, 2011, 197, 302-310.	1.7	42
229	Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 707, 61-66.	0.4	72
230	Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. Journal of Experimental Marine Biology and Ecology, 2011, 409, 223-228.	0.7	97
231	Vegetation influences on groundwater salinity and chemical heterogeneity in a freshwater, recharge floodplain wetland, South Africa. Journal of Hydrology, 2011, 411, 130-139.	2.3	37
232	Is salinity tolerance related to osmolytes accumulation in Lygeum spartum L. seedlings?. Journal of the Saudi Society of Agricultural Sciences, 2011, 10, 81-87.	1.0	18
233	Effects of short-term hypersalinity exposure on the susceptibility to wasting disease in the subtropical seagrass Thalassia testudinum. Plant Physiology and Biochemistry, 2011, 49, 1051-1058.	2.8	28
234	Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry, 2011, 49, 1313-1322.	2.8	31
235	Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environmental and Experimental Botany, 2011, 70, 192-203.	2.0	64
236	Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environmental and Experimental Botany, 2011, 71, 89-98.	2.0	291

#	Article	IF	CITATIONS
237	Gas exchange and JIP-test parameters of two Mediterranean maquis species are affected by sea spray and ozone interaction. Environmental and Experimental Botany, 2011, 73, 80-88.	2.0	24
238	Physiological and Proteomic Analysis of Salinity Tolerance in <i>Puccinellia tenuiflora</i> . Journal of Proteome Research, 2011, 10, 3852-3870.	1.8	187
239	Effect of salinity on osmotic adjustment characteristics of Kandelia candel. Russian Journal of Plant Physiology, 2011, 58, 226-232.	0.5	8
240	Effects of NaCl, Na2SO4 and mannitol on utilization of storage protein and transformation of vacuoles in the cotyledons and seedling roots of alfalfa (Medicago sativa L.). Russian Agricultural Sciences, 2011, 37, 11-19.	0.1	7
241	Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment, 2011, 140, 339-353.	2.5	598
242	Adaptability of Typha domingensis to high pH and salinity. Ecotoxicology, 2011, 20, 457-465.	1.1	26
243	Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation, 2011, 65, 55-63.	1.8	60
244	Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids, 2011, 40, 565-573.	1.2	53
245	Implications of the Up-regulation of Genes Encoding Protein Degradation Enzymes and Heat Shock Protein 90 for Intertidal Green Macroalga Ulva fasciata Against Hypersalinity-Induced Protein Oxidation. Marine Biotechnology, 2011, 13, 684-694.	1.1	8
246	Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, 2011, 90, 1389-1397.	1.7	54
247	Inhibition of Nitrogen and Photosynthetic Carbon Assimilation of Maize Seedlings by Exposure to a Combination of Salt Stress and Potassium-Deficient Stress. Biological Trace Element Research, 2011, 144, 1159-1174.	1.9	35
248	Antioxidant activity of the halophyte Limonium tetragonum and its major active components. Biotechnology and Bioprocess Engineering, 2011, 16, 992-999.	1.4	31
249	Paraquat pre-treatment increases activities of antioxidant enzymes and reduces lipid peroxidation in salt-stressed cucumber leaves. Acta Physiologiae Plantarum, 2011, 33, 295-304.	1.0	10
250	Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta Physiologiae Plantarum, 2011, 33, 705-709.	1.0	14
251	Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 2011, 33, 877-886.	1.0	107
252	Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiologiae Plantarum, 2011, 33, 963-971.	1.0	44
253	Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum, 2011, 33, 1113-1122.	1.0	72
254	Osmotic adjustment, water relations and growth attributes of the xero-halophyte Reaumuria vermiculata L. (Tamaricaceae) in response to salt stress. Acta Physiologiae Plantarum, 2011, 33, 1425-1433.	1.0	11

#	Article	IF	CITATIONS
255	Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L Acta Physiologiae Plantarum, 2011, 33, 1769-1784.	1.0	16
256	In vitro screening of rice genotypes for drought tolerance using polyethylene glycol. Acta Physiologiae Plantarum, 2011, 33, 2209-2217.	1.0	52
257	Seawater spray injury to <i>Quercus acutissima</i> leaves: Crystal deposition, stomatal clogging, and chloroplast degeneration. Microscopy Research and Technique, 2011, 74, 449-456.	1.2	5
258	Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. Journal of Proteomics, 2011, 74, 1045-1067.	1.2	57
259	Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops?. Journal of Proteomics, 2011, 74, 1323-1337.	1.2	140
260	Physiological responses to salinity in the yellow-horned poppy, Glaucium flavum. Plant Physiology and Biochemistry, 2011, 49, 186-194.	2.8	25
261	Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Science and Technology, 2011, 39, 389-401.	0.6	44
262	Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp Journal of Experimental Botany, 2011, 62, 1903-1910.	2.4	137
263	AN INTEGRATIVE VIEW OF SODIUM CHLORIDE STRESS ANDPHAEOMONIELLA SP.INOCULATION ON GROWTH AND NUTRIENT ACCUMULATION AND PATTERNING ININ VITROGRAPEVINE PLANTS. Journal of Plant Nutrition, 2011, 34, 557-572.	0.9	2
264	Spectral indicators for salinity effects in crops: a comparison of a new green indigo ratio with existing indices. Remote Sensing Letters, 2011, 2, 289-298.	0.6	15
265	A calcium sensor-interacting protein kinase negatively regulates salt stress tolerance in rice (Oryza) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
266	Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. Journal of Plant Ecology, 2011, 4, 292-301.	1.2	75
267	Symbiotic association between soybean plants andBradyrhizobium japonicumdevelops oxidative stress and heme oxygenase-1 induction at early stages. Redox Report, 2011, 16, 49-55.	1.4	3
268	Salt-induced stress responses of Brassica (Brassica junceaL.) genotypes. Archives of Agronomy and Soil Science, 2011, 57, 127-136.	1.3	7
269	Genetic diversity analysis of rice cultivars (Oryza sativa L.) differing in salinity tolerance based on RAPD and SSR markers. Electronic Journal of Biotechnology, 2011, 14, .	1.2	18
270	Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress. Tree Physiology, 2011, 31, 92-101.	1.4	11
271	The oxidative stress caused by NaCl in <i>Azolla caroliniana</i> is mitigated by nitrate. Journal of Plant Interactions, 2012, 7, 356-366.	1.0	7
272	Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Latin American Journal of Aquatic Research, 2012, 40, 435-440.	0.2	56

IF ARTICLE CITATIONS # Effect of salt stress on genes encoding translation-associated proteins in <i>Arabidopsis thaliana </i>. 273 1.2 49 Plant Signaling and Behavior, 2012, 7, 1095-1102. The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 2012, 63, 274 2.4 147 2127-2139. Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio 275 0.2 22 cultivars. Journal of Medicinal Plants Research, 2012, 6, . Difference in Sodium Spatial Distribution in the Shoot of Two Canola Cultivars Under Saline Stress. Plant and Cell Physiology, 2012, 53, 1083-1092. Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (<i>Capsicum annuum</i>L.) genotypes grown under salt stress. Journal of Horticultural Science and Biotechnology, 2012, 87, 360-366. 277 0.9 4 Ultrastructural characteristics of callus cells of Nicotiana tabacum L. var. BELW3 grown in presence of NaCl. Caryologia, 2012, 65, 72-81. 0.2 Influence of NaCl treatments on growth and biochemical parameters of castor bean (Ricinus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 502 279

280	Abiotic Stress Responses in Plants: An Overview. , 2012, , 1-28.		71
281	The American Halophyte Prosopis strombulifera, a New Potential Source to Confer Salt Tolerance to Crops. , 2012, , 115-143.		5
282	Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities. European Journal of Phycology, 2012, 47, 393-407.	0.9	25
283	Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections. Planta, 2012, 236, 1909-1925.	1.6	76
284	Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica, 2012, 50, 411-421.	0.9	12
285	Differential responses to salinity of two Atriplex halimus populations in relation to organic solutes and antioxidant systems involving thiol reductases. Journal of Plant Physiology, 2012, 169, 1445-1453.	1.6	25
286	Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza. Journal of Plant Physiology, 2012, 169, 1903-1908.	1.6	33
287	The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of Microbiology, 2012, 62, 1321-1330.	1.1	109
288	EFFECTS OF CALCIUM ON LIGNIFICATION RELATED PARAMETERS IN SODIUM CHLORIDE-STRESSED SOYBEAN ROOTS. Journal of Plant Nutrition, 2012, 35, 1657-1670.	0.9	1
289	Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L) Lam. Tree Physiology, 2012, 32, 1378-1388.	1.4	63
290	EFFECTS OF PHYTOHORMONES ON PROLINE CONTENT AND ANTIOXIDANT ENZYMES OF VARIOUS WHEAT CULTIVARS UNDER SALINITY STRESS. Journal of Plant Nutrition, 2012, 35, 1098-1111.	0.9	27

#	Article	IF	CITATIONS
291	Comparison of the Effects of Salt Stress and Salt–Alkaline Mixed Stress on the Mineral Nutrition of Sunflower. Communications in Soil Science and Plant Analysis, 2012, 43, 1963-1975.	0.6	6
292	Effect of salinity on seed germination, seedling growth, and physiological characteristics of <i>Perilla frutescens</i> . Plant Biosystems, 2012, 146, 245-251.	0.8	24
293	Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae, 2012, 135, 23-31.	1.7	74
294	An Insight into the Role of Salicylic Acid and Jasmonic Acid in Salt Stress Tolerance. , 2012, , 277-300.		54
295	Uptake of Mineral Elements During Abiotic Stress. , 2012, , 267-281.		9
296	Leaf-level physiological responses of Tamarix ramosissima to increasing salinity. Journal of Arid Environments, 2012, 77, 17-24.	1.2	10
297	Habitat requirements and population structure of the rare endangered Limonium girardianum in Mediterranean salt marshes. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 283-293.	0.6	7
298	Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf. 184
299	Hexagonal two dimensional electrokinetic systems for restoration of saline agricultural lands: A pilot study. Chemical Engineering Journal, 2012, 198-199, 110-121.	6.6	52
300	Mechanisms of Plant Salt Response: Insights from Proteomics. Journal of Proteome Research, 2012, 11, 49-67.	1.8	340
301	Cloning, overexpression, purification, and characterization of a new iron superoxide dismutase from <i>Jatropha curcas</i> . Biotechnology and Applied Biochemistry, 2012, 59, 338-345.	1.4	3
302	Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza) Tj ETQq1 1 ().784314 1.6	rgBT/Overio
303	EFFECTS OF SALINE WATER ON WATER STATUS, YIELD AND FRUIT QUALITY OF WILD (<i>SOLANUM) Tj ETQq0 0 TOMATOES. Experimental Agriculture, 2012, 48, 573-586.</i>	0 rgBT /C 0.4	verlock 10 T 20
304	Foci of Future Studies on Abiotic Stress Tolerance of Maize in the Era of Post-Genomics. Journal of Integrative Agriculture, 2012, 11, 1236-1244.	1.7	1
305	Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 2012, 61, 264-272.	2.1	362
306	The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa. Estuarine, Coastal and Shelf Science, 2012, 115, 260-271.	0.9	56
308	Salt tolerance of Hibiscus hamabo seedlings: a candidate halophyte for reclamation areas. Acta Physiologiae Plantarum, 2012, 34, 1747-1755.	1.0	15
309	Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiologiae Plantarum, 2012, 34, 1779-1788.	1.0	74

#	Article	IF	CITATIONS
310	Luteolin, a bioactive flavone compound extracted from Cichorium endivia L. subsp. divaricatum alleviates the harmful effect of salinity on maize. Acta Physiologiae Plantarum, 2012, 34, 2165-2177.	1.0	28
311	River inflow, estuarine salinity, and Carolina wolfberry fruit abundance: linking abiotic drivers to Whooping Crane food. Journal of Coastal Conservation, 2012, 16, 345-354.	0.7	12
313	Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. Journal of Environmental Management, 2012, 113, 538-544.	3.8	69
314	Effect of salinity on canopy water vapor conductance of young and 3-year old Jatropha curcas L Journal of Arid Environments, 2012, 87, 35-41.	1.2	13
316	Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant and Soil, 2012, 359, 85-105.	1.8	44
317	Evaluation of salt tolerance at the seedling stage in rice genotypes by growth performance, ion accumulation, proline and chlorophyll content. Plant and Soil, 2012, 358, 235-249.	1.8	77
318	Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Science, 2012, 10, 42.	0.7	41
319	The Effect of NaCl and CMA on the Growth and Morphology of <i>Arctostaphylos uva-ursi</i> (Kinnikinnick). Journal of Botany, 2012, 2012, 1-8.	1.2	2
320	Impact of Salinity Stress on Date Palm (Phoenix dactylifera L) $\hat{a} \in$ " A Review. , 2012, , .		5
321	Effects of Water Stress on Germination and Growth of Linseed Seedlings (Linum usitatissimum L), Photosynthetic Efficiency and Accumulation of Metabolites. Journal of Agricultural Science, 2012, 4, .	0.1	9
322	Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach. Notulae Scientia Biologicae, 2012, 4, 23-29.	0.1	47
323	Alkali stress induced the accumulation and secretion of organic acids in wheat. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	5
324	Salinity-alkalinity tolerance in wheat: Seed germination, early seedling growth, ion relations and solute accumulation. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	10
325	Salinity Tolerance of the Hygrophilous Plant Species in the Wetlands of the South of the Iberian Peninsula. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 18.	0.5	24
326	Effects of salt stress on ion balance and nitrogen metabolism in rice. Plant, Soil and Environment, 2012, 58, 62-67.	1.0	20
327	Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of salt-sensitive and salt-tolerant wheat cultivars. Chilean Journal of Agricultural Research, 2012, 72, 476-482.	0.4	20
328	Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?. Archives of Biological Sciences, 2012, 64, 539-547.	0.2	8
329	Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, 2012, 24, 117-130.	0.5	78

#	Article	IF	CITATIONS
330	Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	23
331	Response of sorghum (Sorghum bicolor (L.) Moench) genotypes to NaCl levels at early growth stages. African Journal of Agricultural Research Vol Pp, 2012, 7, 5711-5718.	0.2	4
332	In vitro Tissue Culture, a Tool for the Study and Breeding of Plants Subjected to Abiotic Stress Conditions. , 0, , .		24
333	Using Folding Promoting Agents in Recombinant Protein Production: A Review. Methods in Molecular Biology, 2012, 824, 3-36.	0.4	10
334	Decalactone Derivatives from <i>Corynespora cassiicola</i> , an Endophytic Fungus of the Mangrove Plant <i>Laguncularia racemosa</i> . European Journal of Organic Chemistry, 2012, 2012, 3476-3484.	1.2	47
335	Morphology and Ultrastructure of the Salt Glands on the Leaf Surface of Rhodes Grass (<i>Chloris) Tj ETQq1 1 0.</i>	784314 rg 0.6	gBT_/Overloci
336	Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Annals of Microbiology, 2012, 62, 811-823.	1.1	24
337	Responses of two invasive macrophyte species to salt. Hydrobiologia, 2012, 686, 213-223.	1.0	26
338	Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica, 2012, 50, 263-272.	0.9	132
339	Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Plant and Soil, 2012, 355, 375-383.	1.8	72
340	Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynthesis Research, 2012, 111, 269-283.	1.6	95
341	Identification and characterization of differentially expressed genes in the halophyte Halostachys caspica under salt stress. Plant Cell, Tissue and Organ Culture, 2012, 110, 1-12.	1.2	10
342	Membrane permeability and micro- and macroelement accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiologiae Plantarum, 2012, 34, 985-995.	1.0	91
343	Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology and Molecular Biology of Plants, 2012, 18, 45-50.	1.4	76
344	Tolerance of Mediterranean seagrasses (Posidonia oceanica and Cymodocea nodosa) to hypersaline stress: water relations and osmolyte concentrations. Marine Biology, 2012, 159, 1129-1141.	0.7	49
345	Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environmental and Experimental Botany, 2012, 75, 134-141.	2.0	105
346	Severe salt stress in Vaccinium myrtillus (L.) in response to Na+ ion toxicity. Environmental and Experimental Botany, 2012, 76, 49-53.	2.0	8
347	Salinity-induced changes in caffeic acid derivatives, alkamides and ketones in three Echinacea species. Environmental and Experimental Botany, 2012, 77, 234-241.	2.0	22

#	Article	IF	CITATIONS
348	Significant improvement of salt tolerance with 2-day acclimatization treatment in Elaeagnus oxycarpa seedlings. Environmental and Experimental Botany, 2012, 77, 170-174.	2.0	12
349	The mitigation effects of exogenous melatonin on salinityâ€induced stress in <i>Malus hupehensis</i> . Journal of Pineal Research, 2012, 53, 298-306.	3.4	444
350	Seasonal variation in productivity, water relations and ion contents of Atriplex halimus spp. schweinfurthii grown in Chott Zehrez wetland, Algeria. Journal of the Saudi Society of Agricultural Sciences, 2012, 11, 43-49.	1.0	12
351	Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiology and Biochemistry, 2012, 54, 43-48.	2.8	45
352	The tolerance of Jatropha curcas seedlings to NaCl: An ecophysiological analysis. Plant Physiology and Biochemistry, 2012, 54, 34-42.	2.8	50
353	Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environmental Toxicology and Chemistry, 2012, 31, 194-201.	2.2	67
354	Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt to inprove salt to inprove salt to learnce. Plant Biotechnology Reports, 2012, 6, 59-67.	0.9	73
355	Salinity Effects on Germination and Plant Growth of Prairie Cordgrass and Switchgrass. Bioenergy Research, 2012, 5, 225-235.	2.2	69
356	Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiologiae Plantarum, 2012, 34, 129-137.	1.0	28
357	Contribution of inorganic cations and organic compounds to osmotic adjustment in root cultures of two Centaurium species differing in tolerance to salt stress. Plant Cell, Tissue and Organ Culture, 2012, 108, 389-400.	1.2	17
358	Molecular characterization of a cucumber nitrate reductase (CsNR) gene under NO3 â^ stress. Molecular Biology Reports, 2012, 39, 4283-4290.	1.0	17
359	Osmotic stress adaptations in rhizobacteria. Journal of Basic Microbiology, 2013, 53, 101-110.	1.8	86
360	Effect of inland salt-alkaline stress on C ₄ enzymes, pigments, antioxidant enzymes, and photosynthesis in leaf, bark, and branch chlorenchyma of poplars. Photosynthetica, 2013, 51, 115-126.	0.9	14
361	Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum) Tj ETQq1 1	0.784314 1.8	rgBT /Overic
362	Variation in Rubisco content and activity under variable climatic factors. Photosynthesis Research, 2013, 117, 73-90.	1.6	123
363	Assessment of the Phytotoxicity of Seaport Sediments in the Framework of a Quarry-Deposit Scenario: Germination Tests of Sediments Aged Artificially by Column Leaching. Archives of Environmental Contamination and Toxicology, 2013, 65, 1-13.	2.1	4
364	Effects of two sodium salts on fatty acid and essential oil composition of basil (Ocimum basilicum L.) leaves. Acta Physiologiae Plantarum, 2013, 35, 2365-2372.	1.0	14
365	Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice. Plant Molecular Biology, 2013, 81, 417-429.	2.0	21

#	Article	IF	CITATIONS
366	Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma, 2013, 250, 1157-1167.	1.0	105
367	Overcoming Salinity Barriers to Crop Production Using Traditional Methods. Critical Reviews in Plant Sciences, 2013, 32, 250-291.	2.7	83
368	Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 2013, 15, 713-722.	1.8	278
369	Sphaerophysa kotschyana, an endemic species from Central Anatolia: antioxidant system responses under salt stress. Journal of Plant Research, 2013, 126, 729-742.	1.2	15
370	Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics, 2013, 14, 29.	1.2	147
371	Comparative Metabolomics in <i>Clycine max</i> and <i>Clycine soja</i> under Salt Stress To Reveal the Phenotypes of Their Offspring. Journal of Agricultural and Food Chemistry, 2013, 61, 8711-8721.	2.4	88
372	Triacontanol modulates photosynthesis and osmoprotectants in canola (Brassica napusL.) under saline stress. Journal of Plant Interactions, 2013, 8, 350-359.	1.0	43
373	Morphological, physiological and biochemical responses of biofuel plantEuphorbia lathyristo salt stress. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 330-340.	0.3	3
374	Co-treatment effect of triadimefon and salt stress on antioxidant responses, NHX1 and LEA expression in two alfalfa cultivars (Medicago sativa L.) under in vitro culture. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 409-417.	0.9	0
375	Barley Growth and Its Underlying Components are Affected by Elevated CO2 and Salt Concentration. Journal of Plant Growth Regulation, 2013, 32, 732-744.	2.8	19
376	Variation in pigment content of <i>Thalassia testudinum</i> seedlings in response to changes in salinity and light. Botanica Marina, 2013, 56, 261-273.	0.6	12
377	Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Functional Plant Biology, 2013, 40, 819.	1.1	63
378	Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 262 47
379	Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiologiae Plantarum, 2013, 35, 2601-2610.	1.0	48
380	Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 2013, 20, 183-193.	1.8	74
381	Anthemis maritima L. in different coastal habitats: A tool to explore plant plasticity. Estuarine, Coastal and Shelf Science, 2013, 129, 105-111.	0.9	19
382	Antioxidant enzymes activity in leaves of salt stressed Excoecaria agallocha L Asian Pacific Journal of Reproduction, 2013, 2, 304-308.	0.2	1

383	Effect of nitrate enrichment and salinity reduction on the seagrass Thalassia hemprichii previously grown in low light. Journal of Experimental Marine Biology and Ecology, 2013, 443, 114-122.	0.7	27
-----	---	-----	----

#	Article	IF	CITATIONS
384	Effects of Salt Stress on Photosynthesis Under Ambient and Elevated Atmospheric CO2 Concentration. , 2013, , 377-413.		4
385	Dynamics of Chloroplast Proteome in Salt-Stressed Mangrove <i>Kandelia candel</i> (L.) Druce. Journal of Proteome Research, 2013, 12, 5124-5136.	1.8	82
386	Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African Journal of Botany, 2013, 85, 1-9.	1.2	95
387	Antioxidant and photosystem II responses contribute to explain the drought–heat contrasting tolerance of two forage legumes. Plant Physiology and Biochemistry, 2013, 70, 195-203.	2.8	41
388	Biotechnology of Neglected and Underutilized Crops. , 2013, , .		18
389	Characterization of the response of inÂvitro cultured Myrtus communis L. plants to high concentrations of NaCl. Plant Physiology and Biochemistry, 2013, 73, 420-426.	2.8	20
390	Salt tolerance of Centaurea ragusina L. is associated with efficient osmotic adjustment and increased antioxidative capacity. Environmental and Experimental Botany, 2013, 87, 39-48.	2.0	39
391	A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biology, 2013, 13, 193.	1.6	31
392	Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis. Photosynthetica, 2013, 51, 621-629.	0.9	12
393	Early Transcriptomic Adaptation to Na ₂ <scp>CO</scp> ₃ Stress Altered the Expression of a Quarter of the Total Genes in the Maize Genome and Exhibited Shared and Distinctive Profiles with Na <scp>C</scp> and High p <scp>H</scp> Stresses. Journal of Integrative Plant Biology, 2013 55 1147-1165	4.1	22
394	Polyamine effects on protein disulfide isomerase expression and implications for hypersalinity stress in the marine alga <i><scp>U</scp>lva lactuca</i> Linnaeus ¹ . Journal of Phycology, 2013, 49, 1181-1191.	1.0	8
395	Identification and biochemical characterization of 20S proteasome in wheat roots under salt stress. Journal of Plant Biochemistry and Biotechnology, 2013, 22, 62-70.	0.9	1
396	The GmCLC1 protein from soybean functions as a chloride ion transporter. Journal of Plant Physiology, 2013, 170, 101-104.	1.6	32
397	Expression pattern of genes encoding nitrate and ammonium assimilating enzymes in Arabidopsis thaliana exposed to short term NaCl stress. Journal of Plant Physiology, 2013, 170, 155-160.	1.6	29
398	Physiological and Biochemical Responses Reveal the Drought Tolerance Efficacy of the Halophyte Salicornia brachiata. Journal of Plant Growth Regulation, 2013, 32, 342-352.	2.8	45
399	Effects of Salinity on Ion Transport, Water Relations and Oxidative Damage. , 2013, , 89-114.		19
400	Potentiality of Sulphur-Containing Compounds in Salt Stress Tolerance. , 2013, , 443-472.		26
401	Adaptive Plasticity of Salt-Stressed Root Systems. , 2013, , 169-201.		37

#	Article	IF	CITATIONS
402	Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. , 2013, , 25-87.		250
403	Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model. Euphytica, 2013, 189, 147-160.	0.6	29
404	Aureococcus anophagefferens growth potential affected by coastal water toxicants. Journal of Applied Phycology, 2013, 25, 145-152.	1.5	5
405	Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Scientia Horticulturae, 2013, 162, 63-70.	1.7	124
406	Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf !	50,582 Td (ly 214
	Nitrogen Assimilation and Growth of Cotton Seedlings under <scp>N</scp> a <scp>C</scp> l Salinity		

407	and in Response to Urea Application with NBPT and DCD. Journal of Agronomy and Crop Science, 2013, 199, 106-117.	1.7	19
408	Growing floricultural crops with brackish water. Environmental and Experimental Botany, 2013, 92, 165-175.	2.0	73
409	Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system. Advances in Space Research, 2013, 51, 476-482.	1.2	21
410	Spatial–spectral processing strategies for detection of salinity effects in cauliflower, aubergine and kohlrabi. Biosystems Engineering, 2013, 114, 384-396.	1.9	11
411	Carbon dioxide enrichment moderates salinity-induced effects on nitrogen acquisition and assimilation and their impact on growth in barley plants. Environmental and Experimental Botany, 2013, 87, 148-158.	2.0	22
412	Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Science, 2013, 201-202, 137-146.	1.7	118
413	Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. South African Journal of Botany, 2013, 85, 63-69.	1.2	38
414	Capacity to control oxidative stress-induced caspase-like activity determines the level of tolerance to salt stress in two contrasting maize genotypes. Acta Physiologiae Plantarum, 2013, 35, 31-40.	1.0	10
415	Abiotic and Biotic Stress Tolerance in Plants. , 2013, , 1-20.		15
416	Potential Eco-friendly Soil Microorganisms: Road Towards Green and Sustainable Agriculture. , 2013, , 249-287.		0
417	Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regulation, 2013, 69, 275-284.	1.8	89
418	Responses of the Mediterranean seagrass Posidonia oceanica to hypersaline stress duration and recovery. Marine Environmental Research, 2013, 84, 60-75.	1.1	58
419	Effect of zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiologiae Plantarum, 2013, 35, 881-889.	1.0	20

		EPORT	
#	Article	IF	CITATIONS
420	Enhancing Plant Productivity Under Salt Stress: Relevance of Poly-omics. , 2013, , 113-156.		61
421	Salinity-Induced Genes and Molecular Basis of Salt-Tolerant Strategies in Mangroves. , 2013, , 53-86.		11
422	Salt Tolerance in Cereals: Molecular Mechanisms and Applications. , 2013, , 133-154.		10
423	Changes in Photosystem II in Response to Salt Stress. , 2013, , 149-168.		15
424	Alleviation of Salinity Stress With Sodium Nitroprusside in Tomato. International Journal of Vegetable Science, 2013, 19, 164-176.	0.6	13
425	Bioprospecting and Genetic Engineering of Mangrove Genes to Enhance Salinity Tolerance in Crop Plants. , 2013, , 385-456.		5
426	Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields. Plant Physiology and Biochemistry, 2013, 63, 170-176.	2.8	172
427	Soil salinity: A neglected factor in plant ecology and biogeography. Journal of Arid Environments, 2013, 92, 14-25.	1.2	190
428	Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica, 2013, 190, 215-228.	0.6	49
429	Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 2013, 35, 2345-2353.	1.0	71
430	Salt Stress: Causes, Types and Responses of Plants. , 2013, , 1-24.		74
431	Arbuscular Mycorrhiza: Approaches for Abiotic Stress Tolerance in Crop Plants for Sustainable Agriculture. , 2013, , 359-401.		58
432	Effect of NaCl salinity on the growth, metabolites, and antioxidant system of <i>Microcystis aeruginosa</i> . Journal of Freshwater Ecology, 2013, 28, 477-487.	0.5	26
433	Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of Proteomics, 2013, 82, 230-253.	1.2	150
434	Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes?. Functional Plant Biology, 2013, 40, 805.	1.1	92
435	24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment, 2013, 185, 7845-7856.	1.3	128
436	The expression of wheatTaSTGgene can enhance salt tolerance in plants. Plant Biosystems, 2013, 147, 451-458.	0.8	6
437	Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4, 1352.	5.8	220

#	Article	IF	CITATIONS
438	Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Functional Plant Biology, 2013, 40, 1048.	1.1	21
439	NUTRIENT REQUIREMENTS OF <i>CHAMAEROPS HUMILIS </i> L. AND <i>WASHINGTONIA ROBUSTA </i> H. WENDL PALM TREES AND THEIR LONG-TERM NUTRITIONAL RESPONSES TO SALINITY. Journal of Plant Nutrition, 2013, 36, 1466-1478.	0.9	2
440	Seed germination, plant growth and physiological responses of <i>Salsola ikonnikovii</i> to short-term NaCl stress. Plant Biosystems, 2013, 147, 285-297.	0.8	28
441	lodine Effects on Phenolic Metabolism in Lettuce Plants under Salt Stress. Journal of Agricultural and Food Chemistry, 2013, 61, 2591-2596.	2.4	47
442	Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environmental and Experimental Botany, 2013, 86, 52-59.	2.0	95
443	The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environmental and Experimental Botany, 2013, 86, 17-28.	2.0	93
444	Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?. Plant Physiology and Biochemistry, 2013, 62, 88-94.	2.8	9
445	Differentially Delayed Root Proteome Responses to Salt Stress in Sugar Cane Varieties. Journal of Proteome Research, 2013, 12, 5681-5695.	1.8	37
446	Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. Journal of Experimental Botany, 2013, 64, 1953-1966.	2.4	304
447	Alleviation of deleterious effects of salt stress by applications of supplementary potassium–calcium on spinach. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 184-192.	0.3	5
448	GROWTH, NUTRIENT ACQUISITION, AND PHYSIOLOGICAL RESPONSES OF HYDROPONIC GROWN TOMATO TO SODIUM CHLORIDE SALT INDUCED STRESS. Journal of Plant Nutrition, 2013, 36, 665-676.	0.9	21
449	Comparative effect of human urine and ammonium nitrate application on maize (Zea maysL.) grown under various salt (NaCl) concentrations. Journal of Plant Nutrition and Soil Science, 2013, 176, n/a-n/a.	1.1	9
450	Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiology and Biochemistry, 2013, 70, 325-335.	2.8	91
451	AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. Under salt stress. Russian Agricultural Sciences, 2013, 39, 321-329.	0.1	12
452	Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus) Tj ETQq0 0 0 r	rgBT/Over 1.0	lock 10 Tf 50
453	Response of hydroponically-grown strawberry (<i>Fragaria</i> × <i>ananassa</i> Duch.) plants to different ratios of K:Ca:Mg in the nutrient solution. Journal of Horticultural Science and Biotechnology, 2013, 88, 293-300.	0.9	11
454	Effects of salinity stress on starch morphology, composition and thermal properties during grain development in triticale. Canadian Journal of Plant Science, 2013, 93, 765-771.	0.3	16

455	The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences, 2013, 14, 7370-7390.	1.8	1,096
-----	--	-----	-------

IF ARTICLE CITATIONS # Comparative Proteomic Analysis of Puccinellia tenuiflora Leaves under Na2CO3 Stress. International 456 1.8 53 Journal of Molecular Sciences, 2013, 14, 1740-1762. Breeding Salinity Tolerance in Citrus Using Rootstocks., 2013, , 355-376. Role of Arbuscular Mycorrhiza in Amelioration of Salinity., 2013, , 301-354. 458 48 Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree Physiology, 2013, 33, 81-95. Investigation of Salt Diffusion in Soil by Using Radiotracing Technique. Defect and Diffusion Forum, 0, 460 0.4 2 334-335, 274-278. Isoprene function in two contrasting poplars under salt and sunflecks. Tree Physiology, 2013, 33, 562-578.

CITATION REPORT

Agronomic and physiological responses of pearl millet ecotype (Pennisetum
glaucum (L.) R.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

463	Algal lipids, fatty acids and sterols. , 2013, , 87-134.		68
464	The greater effectiveness of <i>Glomus mosseae</i> and <i>Glomus intraradices</i> in improving productivity, oil content and tolerance of saltâ€stressed menthol mint (<i>Mentha arvensis</i>). Journal of the Science of Food and Agriculture, 2013, 93, 2154-2161.	1.7	25
465	The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Functional Plant Biology, 2013, 40, 860.	1.1	40
466	SALT AND ALKALI STRESSES EFFECTS ON CONTENTS OF ORGANIC ACIDS COMPONENTS IN WHEAT SEEDLINGS. Journal of Plant Nutrition, 2013, 36, 1056-1064.	0.9	4
467	INVESTIGATION OF SALINITY STRESS AND POTASSIUM LEVELS ON MORPHOPHYSIOLOGICAL CHARACTERISTICS OF SAFFRON. Journal of Plant Nutrition, 2013, 36, 299-310.	0.9	6
468	Changes in Secondary Metabolite Production inJatropha curcasCalluses Treated with NaCl. Analytical Chemistry Letters, 2013, 3, 359-369.	0.4	1
469	Effects of Soil Salinity on Growth, Ion Relations, and Compatible Solute Accumulation of Two Sumac Species:Rhus glabraandRhus trilobata. Communications in Soil Science and Plant Analysis, 2013, 44, 3187-3204.	0.6	2
470	Protective role of pulsed magnetic field against salt stress effects in soybean organ culture. Plant Biosystems, 2013, 147, 135-140.	0.8	21
471	Salt-induced perturbation in growth, physiological attributes, activities of antioxidant enzymes and organic solutes in mungbean (<i>Vigna radiata</i> L.) cultivars differing in salinity tolerance. Archives of Agronomy and Soil Science, 2013, 59, 1695-1712.	1.3	9
472	Structure of RNA-interacting Cyclophilin A-like protein from Piriformospora indica that provides salinity-stress tolerance in plants. Scientific Reports, 2013, 3, 3001.	1.6	33
473	Consequences of salinity and freezing stress for two populations of Quercus virginiana Mill. (Fagaceae) grown in a common garden ¹ . Journal of the Torrey Botanical Society, 2013, 140, 145-156.	0.1	6

#	Article	IF	CITATIONS
474	Physiological Responses of Linseed Seedlings to Iso Osmotic Polyethylene Glycol, Salt, and Alkali Stresses. Agronomy Journal, 2013, 105, 764-772.	0.9	9
475	High K ⁺ supply avoids Na ⁺ toxicity and improves photosynthesis by allowing favorable K ⁺ : Na ⁺ ratios through the inhibition of Na ⁺ uptake and transport to the shoots of <i>Jatropha curcas</i> plants. Journal of Plant Nutrition and Soil Science. 2013. 176. 157-164.	1.1	55
476	Interactive effects of ascorbic acid and salinity stress on the growth and photosynthetic capacity of pistachio (<i>Pistacia vera</i> L.) seedlings. Journal of Horticultural Science and Biotechnology, 2013, 88, 610-616.	0.9	8
477	Differences in salinity tolerance of genetically distinct Phragmites australis clones. AoB PLANTS, 2013, 5, .	1.2	38
478	Differences in Growth and Physiology of Rice in Response to Different Salineâ€Alkaline Stress Factors. Agronomy Journal, 2013, 105, 1119-1128.	0.9	55
479	Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Brazilian Journal of Microbiology, 2013, 44, 1341-1348.	0.8	84
480	Salicylic acid: physiological and biochemical changes in seeds and maize seedlings subjected to salt stress. Journal of Seed Science, 2013, 35, 457-465.	0.7	5
482	Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. , 2013, , .		9
483	Structure and diversity of restingas along a flood gradient in southeastern Brazil. Acta Botanica Brasilica, 2013, 27, 801-809.	0.8	18
484	Photosynthetic behaviour of Arabidopsis thaliana (Pa-1 accession) under salt stress. African Journal of Biotechnology, 2013, 12, 4594-4602.	0.3	5
485	Nitrato modula os teores de cloreto e compostos nitrogenados em plantas de milho submetidas Ã salinidade. Bragantia, 2013, 72, 10-19.	1.3	10
486	Salt stress: antioxidant activity as a physiological adaptation of onion cultivars. Acta Botanica Brasilica, 2013, 27, 394-399.	0.8	9
487	A Proteomics Approach to Study Soybean and Its Symbiont Bradyrhizobium japonicum â \in "A Review. , 0, , .		9
488	Oxidative stress biomarkers and metabolic changes associated with cadmium stress in hyacinth bean (Lablab Purpureus). African Journal of Biotechnology, 2013, 12, 4670-4682.	0.3	13
489	Comparaison de la nutrition minérale du mil (<i>Pennisetum glaucum</i> L.R. Br.) en présence de stress hydrique et de stress salin. Journal of Applied Bioscience, 2013, 66, 5114.	0.7	3
490	Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H2O2 Tolerances in Arabidopsis. PLoS ONE, 2013, 8, e73989.	1.1	75
491	Use of MSAP Markers to Analyse the Effects of Salt Stress on DNA Methylation in Rapeseed (Brassica) Tj ETQq0 (0 0 rgBT /C)verlock 10 T

492	Insertion of a Specific Fungal 3′-phosphoadenosine-5′-phosphatase Motif into a Plant Homologue Improves Halotolerance and Drought Tolerance of Plants. PLoS ONE, 2013, 8, e81872.	1.1	14	
-----	--	-----	----	--

	CHATION	REPORT	
#	Article	IF	CITATIONS
493	Roles of exogenous nitric oxide in regulating ionic equilibrium and moderating oxidative stress in cotton seedlings during salt stress. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	11
494	Simulated Drought and Salinity Modulates the Production of Phytochemicals in Acalypha wilkesiana. Journal of Plant Studies, 2013, 2, .	0.3	11
495	Proteomic Analysis of Salt-Responsive Proteins in the Leaves of Mangrove Kandelia candel during Short-Term Stress. PLoS ONE, 2014, 9, e83141.	1.1	72
496	Synergistic and Antagonistic Effects of Salinity and pH on Germination in Switchgrass (Panicum) Tj ETQq1 1 0.7	784314 rgE 1.1	BT /Overlock
497	Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress. PLoS ONE, 2014, 9, e94870.	1.1	28
498	Salicylic Acid Alleviates the Adverse Effects of Salt Stress in Torreya grandis cv. Merrillii Seedlings by Activating Photosynthesis and Enhancing Antioxidant Systems. PLoS ONE, 2014, 9, e109492.	1.1	160
499	Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass. PLoS ONE, 2014, 9, e116283.	1.1	37
500	Rhizomes Help the Forage GrassLeymus chinensisto Adapt to the Salt and Alkali Stresses. Scientific World Journal, The, 2014, 2014, 1-15.	0.8	4
501	Comparative Ecophysiological Study of Salt Stress for Wild and Cultivated Soybean Species from the Yellow River Delta, China. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	15
502	Comparison of Different Treatment Methods of Salicylic acid on Some Physiological Traits of White Bean Under Salinity Stress. Cercetari Agronomice in Moldova, 2014, 47, 97-105.	0.3	3
503	Gibberellic Acid and Salinity Affected Growth and Antioxidant Enzyme Activities in Castor Bean Plants at Early Growth Stage. Agronomy Journal, 2014, 106, 1340-1348.	0.9	13
504	β-galactosidases from cowpea stems: properties and gene expression under conditions of salt stress. Revista Ciencia Agronomica, 2014, 45, 794-804.	0.1	3
505	Arbuscular Mycorrhizal Colonization Enhances Biochemical Status and Mitigates Adverse Salt Effect on Two Legumes. Notulae Scientia Biologicae, 2014, 6, 381-393.	0.1	11
506	Interação entre salinidade da água de irrigação e adubação nitrogenada na cultura da berinjela. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 480-486.	0.4	18
507	Crescimento de leguminosas utilizadas na adubação verde em diferentes nÃveis de sais na Ã;gua de irrigação. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 1255-1261.	0.4	5
508	Effect of Plant Age and Saline Water on Antioxidant and Peroxidase Activity in Sweet Pepper Fruit. Journal of Agricultural Science, 2014, 6, .	0.1	2
509	Effect of Salinity on Plants and the Role of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria in Alleviation of Salt Stress. , 2014, , 115-144.		30
510	Salicylic acid and nitric oxide alleviate osmotic stress in wheat (<i>Triticum aestivum</i> L.) seedlings. Journal of Plant Interactions, 2014, 9, 683-688.	1.0	70

#	Article	IF	CITATIONS
511	Effects of Reclaimed Waters on Spectral Properties and Leaf Traits of Citrus Orchards. Water Environment Research, 2014, 86, 2242-2250.	1.3	5
512	A comparison of induced and developmental cell death morphologies in lace plant (Aponogeton) Tj ETQq1 1 0.78	4314 rgB1 1.6	∏ Overlock
513	Net NH4 + and NO3 â^' fluxes, and expression of NH4 + and NO3 â^' transporter genes in roots of Populus simonii after acclimation to moderate salinity. Trees - Structure and Function, 2014, 28, 1813-1821.	0.9	35
514	Mitigation of salt-induced oxidative damage in Chinese kale (<i>Brassica alboglabra</i> L.) using ascorbic acid. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2014, 64, 13-23.	0.3	1
515	Evaluation of Rubidium and Potassium Diffusion in Soil by Radiotracer Technique. Defect and Diffusion Forum, 2014, 353, 199-204.	0.4	2
516	Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions. PLoS ONE, 2014, 9, e92598.	1.1	107
517	Salt stress tolerance in cowpea is poorly related to the ability to cope with oxidative stress. Acta Botanica Croatica, 2014, 73, 78-89.	0.3	6
518	Treatment with 24-epibrassinolide mitigates NaCl-induced toxicity by enhancing carbohydrate metabolism, osmolyte accumulation, and antioxidant activity in Pisum sativum. Turkish Journal of Botany, 2014, 38, 511-525.	0.5	29
519	Leaf, stem and root content of proline inAtriplex canescensandSuaeda nigra. International Journal of Bio-resource and Stress Management, 2014, 5, 82.	0.1	1
520	Improvement in tolerance to salt stress during tomato cultivation. Turkish Journal of Biology, 2014, 38, 193-199.	2.1	10
521	Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turkish Journal of Botany, 2014, 38, 914-926.	0.5	54
522	Effect of Salt Stress on Different Growth and Biochemical Attributes in Two Canola (<i>Brassica) Tj ETQq1 1 0.78</i>	4314 rgBT 0.6	- /Overlock 19
524	Manipulating Osmolytes for Breeding Salinity-Tolerant Plants. , 2014, , 385-404.		6
525	Assessing the Salinity Effects on Mineral Composition and Nutritional Quality of Green and Red "Baby―Lettuce. Journal of Food Quality, 2014, 37, 1-8.	1.4	51
526	Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breeding, 2014, 133, 163-178.	1.0	73
527	Comparative Efficacy of Different Triazole Compounds as NaCl Stress Protectants in Kinnow Budded on Salt Susceptible Rootstock Jatti Khatti. International Journal of Fruit Science, 2014, 14, 284-296.	1.2	2
528	Salinity Stress and Arbuscular Mycorrhizal Symbiosis in Plants. , 2014, , 139-159.		60
529	EFFECT OF ALKALINE POTASSIUM AND SODIUM SALTS ON GROWTH, PHOTOSYNTHESIS, IONS ABSORPTION AND SOLUTES SYNTHESIS OF WHEAT SEEDLINGS. Experimental Agriculture, 2014, 50, 144-157.	0.4	14

#	Article	IF	CITATIONS
530	Effects of salinity on removal of nitrogen and phosphorus from eutrophic saline water in planted <i>Lythrum salicaria</i> L. microcosm systems. Desalination and Water Treatment, 2014, 52, 6655-6663.	1.0	10
531	Improvement of Crop Production Under Saline Stress by a Biohydraulic Approach. , 2014, , 231-245.		1
532	Role of Na+, K+, Cl-, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato. AoB PLANTS, 2014, 6, plu039-plu039.	1.2	28
533	Differential tolerance of two wheat cultivars to NaCl is related to antioxidant potentialities. Revista Brasileira De Botanica, 2014, 37, 207-215.	0.5	4
534	Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the Performance of Plants Growing in Stressed Soils: An Overview. , 2014, , 257-285.		19
535	Potential Use of Halophytes to Remediate Saline Soils. BioMed Research International, 2014, 2014, 1-12.	0.9	257
536	Germination of <i><scp>P</scp>rosopis juliflora</i> (<scp>S</scp> w.) <scp>D</scp> . <scp>C.</scp> seeds at different osmotic potentials and temperatures. Plant Species Biology, 2014, 29, E9.	0.6	16
537	Increased invasive potential of nonâ€native <i>Phragmites australis</i> : elevated <scp><scp>CO₂</scp> and temperature alleviate salinity effects on photosynthesis and growth. Clobal Change Biology, 2014, 20, 531-543.</scp>	4.2	51
538	Kinetin and spermine mediated induction of salt tolerance in wheat plants: Leaf area, photosynthesis and chloroplast ultrastructure of flag leaf at ear emergence. Egyptian Journal of Basic and Applied Sciences, 2014, 1, 77-87.	0.2	36
539	Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environmental and Experimental Botany, 2014, 105, 70-76.	2.0	83
540	Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresource Technology, 2014, 152, 177-184.	4.8	74
541	Effect of potassium chloride and calcium chloride induced stress on in vitro cultures of Bacopa monnieri (L.) Pennell and accumulation of medicinally important bacoside A. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 366-378.	0.9	22
542	Salinity mediated biochemical changes towards differential adaptability of three mangroves from Indian Sundarbans. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 31-41.	0.9	5
543	Effects of 24â€epibrassinolide on plant growth, osmotic regulation and ion homeostasis of saltâ€stressed canola. Plant Biology, 2014, 16, 440-450.	1.8	56
544	Biochemical characterization of maize (<i>Zea mays</i> L.) for salt tolerance. Plant Biosystems, 2014, 148, 1016-1026.	0.8	20
545	Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum, 2014, 36, 45-60.	1.0	105
546	Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 2014, 36, 1-19.	1.0	263
547	Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell, Tissue and Organ Culture, 2014, 117, 1-16.	1.2	100

#	Article	IF	CITATIONS
548	Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 2014, 34, 455-472.	2.2	429
549	CPPU elevates photosynthetic abilities, growth performances and yield traits in salt stressed rice (Oryza sativa L. spp. indica) via free proline and sugar accumulation. Pesticide Biochemistry and Physiology, 2014, 108, 27-33.	1.6	9
550	Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Molecular Biology Reports, 2014, 41, 3761-3771.	1.0	37
551	Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiologiae Plantarum, 2014, 36, 745-754.	1.0	29
552	Morphogenetic responses of Populus alba L. under salt stress. Journal of Forestry Research, 2014, 25, 155-161.	1.7	11
553	Does Inoculation with Glomus mosseae Improve Salt Tolerance in Pepper Plants?. Journal of Plant Growth Regulation, 2014, 33, 644-653.	2.8	155
554	Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat. Plant Growth Regulation, 2014, 74, 107-117.	1.8	14
555	Effect of Gibberellic Acid on Germination Behaviour of Sugar Beet Cultivars under Salt Stress Conditions of Egypt. Sugar Tech, 2014, 16, 211-221.	0.9	23
556	Overproduction of an Arabidopsis aldo–keto reductase increases barley tolerance to oxidative and cadmium stress by an in vivo reactive aldehyde detoxification. Plant Growth Regulation, 2014, 74, 55-63.	1.8	20
557	Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress. Protoplasma, 2014, 251, 625-638.	1.0	30
558	The oxidative stress and antioxidant systems in cucumber cells during acclimation to salinity. Biologia Plantarum, 2014, 58, 47-54.	1.9	25
559	Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 2014, 78, 15-26.	2.8	159
560	Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. European Journal of Soil Biology, 2014, 60, 81-87.	1.4	60
561	Effective microorganisms enhance the scavenging capacity of the ascorbate–glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiology and Biochemistry, 2014, 80, 136-143.	2.8	36
562	Ecophysiological and speciesâ€specific responses to seasonal variations in halophytic species of the chenopodiaceae in a Mediterranean salt marsh. African Journal of Ecology, 2014, 52, 163-172.	0.4	12
563	The effectiveness of synthetic zinc(Zn)-amino chelates in supplying Zn and alleviating salt-induced damages on hydroponically grown lettuce. Scientia Horticulturae, 2014, 172, 117-123.	1.7	46
564	Genetic Engineering of Crop Plants for Abiotic Stress Tolerance. , 2014, , 99-123.		7
565	Genomic Approaches and Abiotic Stress Tolerance in Plants. , 2014, , 1-37.		6

#	Article	IF	Citations
566	Transgenic barley expressing the Arabidopsis AKR4C9 aldo-keto reductase enzyme exhibits enhanced freezing tolerance and regenerative capacity. South African Journal of Botany, 2014, 93, 179-184.	1.2	19
567	Enzymes of the glutathione–ascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants (Vicia faba L.) under salinity stress. European Journal of Soil Biology, 2014, 60, 98-103.	1.4	17
568	Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regulation, 2014, 72, 257-268.	1.8	65
569	Effects of salinity on growth, photosynthesis, inorganic and organic osmolyte accumulation in Elaeagnus oxycarpa seedlings. Acta Physiologiae Plantarum, 2014, 36, 881-892.	1.0	15
570	Environmental and ecological impacts of water supplement schemes in a heavily polluted estuary. Science of the Total Environment, 2014, 472, 704-711.	3.9	19
571	Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environmental and Experimental Botany, 2014, 99, 86-99.	2.0	33
572	Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Marine Environmental Research, 2014, 95, 39-61.	1.1	67
573	Exogenous Application of Proline Alleviates Salt Induced Oxidative Stress More Efficiently than Glycine Betaine in Sugarcane Cultured Cells. Sugar Tech, 2014, 16, 22-29.	0.9	15
574	The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na+ distribution in the plant. Acta Physiologiae Plantarum, 2014, 36, 61-70.	1.0	34
576	Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Toxicology and Industrial Health, 2014, 30, 693-700.	0.6	37
577	Physiological and Biochemical Responses of <i>Miscanthus sacchariflorus</i> to Salt Stress. Advanced Materials Research, 0, 1051, 333-340.	0.3	4
578	Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential. Russian Journal of Plant Physiology, 2014, 61, 639-645.	0.5	4
579	Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. Journal of Plant Research, 2014, 127, 763-773.	1.2	52
580	Physiological, phytochemical and structural changes of multiâ€leaf lettuce caused by salt stress. Journal of the Science of Food and Agriculture, 2014, 94, 1592-1599.	1.7	53
581	EFFECTS OF SALINITY STRESS ON PHYSIOLOGICAL PERFORMANCE OF VARIOUS WHEAT AND BARLEY CULTIVARS. Journal of Plant Nutrition, 2014, 37, 520-531.	0.9	36
582	Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Archives of Agronomy and Soil Science, 2014, 60, 639-653.	1.3	55
583	EFFECTS OF SALINITY AND CALCIUM ON THE GROWTH AND CHEMICAL COMPOSITION OF PISTACHIO SEEDLINGS. Journal of Plant Nutrition, 2014, 37, 928-941.	0.9	7
584	Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (phaseolus vulgaris l.). Agriculture, 2014, 60, 10-21.	0.2	15

#	Article	IF	CITATIONS
585	Arbuscular Mycorrhiza in Crop Improvement under Environmental Stress. , 2014, , 69-95.		52
586	EFFECTS OF SALINITY AND THE INTERACTION BETWEEN <i>THYMUS VULGARIS</i>AND<i>LAVANDULA ANGUSTIFOLIA</i>ON GROWTH, ETHYLENE PRODUCTION AND ESSENTIAL OIL CONTENTS . Journal of Plant Nutrition, 2014, 37, 875-888.	0.9	30
587	A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance. Plant Physiology and Biochemistry, 2014, 83, 10-19.	2.8	8
588	Higher soil salinity causes more physiological stress in female of Populus cathayana cuttings. Acta Ecologica Sinica, 2014, 34, 225-231.	0.9	8
589	Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Molecular Biology, 2014, 86, 303-317.	2.0	126
590	Metal Phytoremediation by the Halophyte <i>Limoniastrum monopetalum</i> (L.) Boiss: Two Contrasting Ecotypes. International Journal of Phytoremediation, 2014, 16, 755-769.	1.7	34
591	Role of Glutathione in Abiotic Stress Tolerance. , 2014, , 149-181.		9
592	Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Communications in Soil Science and Plant Analysis, 2014, 45, 2660-2672.	0.6	35
593	Nonenzymatic Antioxidants in Plants. , 2014, , 201-234.		19
594	Abiotic Stress Tolerance in Plants. , 2014, , 23-68.		14
595	24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica, 2014, 52, 464-474.	0.9	52
596	Effects of Exogenous Putrescine on Chlorophyll Fluorescence Imaging and Heat Dissipation Capacity in Cucumber (Cucumis sativus L.) Under Salt Stress. Journal of Plant Growth Regulation, 2014, 33, 798-808.	2.8	46
597	Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees - Structure and Function, 2014, 28, 1065-1078.	0.9	54
598	Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regulation, 2014, 74, 219-228.	1.8	20
599	Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regulation, 2014, 74, 299-310.	1.8	34
600	Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta?. Hydrobiologia, 2014, 737, 5-23.	1.0	24
601	Salt Marsh Halophyte Services to Metal–Metalloid Remediation: Assessment of the Processes and Underlying Mechanisms. Critical Reviews in Environmental Science and Technology, 2014, 44, 2038-2106.	6.6	58
602	Plant Growth-Promoting Bacteria Facilitate the Growth of Barley and Oats in Salt-Impacted Soil: Implications for Phytoremediation of Saline Soils. International Journal of Phytoremediation, 2014, 16, 1133-1147.	1.7	154

#	Article	IF	CITATIONS
603	Effect of NaCl stress on dihaploid tobacco lines tolerant to Potato virus Y. Acta Physiologiae Plantarum, 2014, 36, 1739-1747.	1.0	7
604	Supplementary CaCl2 ameliorates wheat tolerance to NaCl. Acta Physiologiae Plantarum, 2014, 36, 2103-2112.	1.0	5
605	Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiologiae Plantarum, 2014, 36, 2167-2181.	1.0	44
606	PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, 2014, 20, 201-207.	1.4	180
607	Growth, physiological, and biochemical responses in relation to salinity tolerance for In Vitro selection in oil seed crop Guizotia abyssinica Cass Journal of Crop Science and Biotechnology, 2014, 17, 11-20.	0.7	15
608	Organ-Specific Proteomic Analysis of NaCl-Stressed Germinating Soybeans. Journal of Agricultural and Food Chemistry, 2014, 62, 7233-7244.	2.4	13
609	Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in <i>Fragaria chiloensis</i> under salt stress. Journal of Integrative Plant Biology, 2014, 56, 505-515.	4.1	97
610	Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions. Annals of Botany, 2014, 114, 357-366.	1.4	28
611	Changes in the Vascular Cylinder of Wild Soybean Roots Under Alkaline Stress. Journal of Integrative Agriculture, 2014, 13, 2164-2169.	1.7	0
612	Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment. South African Journal of Botany, 2014, 95, 70-77.	1.2	57
613	Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 2014, 537, 70-78.	1.0	88
614	Effects of salinity on anatomical features and physiology of a semi-mangrove plant Myoporum bontioides. Marine Pollution Bulletin, 2014, 85, 738-746.	2.3	11
615	Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine) Tj ETQq0 0 () rgBT /Ov 2.0	erlock 10 Tf ! 99
616	Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agronomy for Sustainable Development, 2014, 34, 737-752.	2.2	344
617	Effects of Zinc Application on Growth, Absorption and Distribution of Mineral Nutrients Under Salinity Stress in Soybean (<i>Glycine Max</i> L.). Journal of Plant Nutrition, 2014, 37, 2255-2269.	0.9	60
618	Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora. Estuarine, Coastal and Shelf Science, 2014, 146, 68-75.	0.9	20
619	Will carbon isotope discrimination be useful as a tool for analysing the functional response of barley plants to salinity under the future atmospheric CO2 conditions?. Plant Science, 2014, 226, 71-81.	1.7	7
620	Physiological responses of <i>Phragmites australis</i> to the combined effects of water and salinity stress. Ecohydrology, 2014, 7, 420-426.	1.1	24

#	Article	IF	CITATIONS
621	Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects. Protoplasma, 2014, 251, 1471-1479.	1.0	58
622	Effects of varying pH on the growth and physiology of five marine microphytobenthic diatoms isolated from the Solthörn tidal flat (southern North Sea, Germany). Phycologia, 2014, 53, 252-264.	0.6	7
623	Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia. Phytochemistry, 2014, 105, 37-42.	1.4	33
624	Changes in Sugar Content and Antioxidant Activity of Allium Vegetables by Salinity-stress. Food Science and Technology Research, 2014, 20, 705-710.	0.3	4
625	EFFECT OF TEMPERATURE, SALT AND OSMOTIC STRESSES ON SEED GERMINATION AND CHLOROPHYLL CONTENTS IN LENTIL (LENS CULINARIS MEDIK). Acta Horticulturae, 2014, , 47-54.	0.1	15
626	THE IMPACT OF ORGANIC AMENDMENTS ON FOREST SOIL PROPERTIES UNDER MEDITERRANEAN CLIMATIC CONDITIONS. Land Degradation and Development, 2014, 25, 604-612.	1.8	78
627	Expression of major photosynthetic and saltâ€resistance genes in invasive reed lineages grown under elevated <scp>CO</scp> ₂ and temperature. Ecology and Evolution, 2014, 4, 4161-4172.	0.8	10
628	Bithynia siamensis goniomphalos, the first intermediate host of Opisthorchis viverrini in Thailand. Asian Pacific Journal of Tropical Medicine, 2015, 8, 779-783.	0.4	10
630	Tropical rainforest response to marine sky brightening climate engineering. Geophysical Research Letters, 2015, 42, 2951-2960.	1.5	21
633	Mechanisms of Salt Stress Tolerance in Halophytes : Biophysical and Biochemical Adaptations. , 2015, , 34-49.		5
634	Physicochemical influences on Ruppia tuberosa abundance and distribution mediated through life cycle stages. Inland Waters, 2015, 5, 451-460.	1.1	7
635	The Effect of Temperature, Light and Calcium Carbonate on Seed Germination and Radicle Growth of the Polycarpic Perennial Galium cracoviense (Rubiaceae), a Narrow Endemic Species From Southern Poland. Acta Biologica Cracoviensia Series Botanica, 2015, 57, 70-81.	0.5	5
636	Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). BMC Genomics, 2015, 16, 738.	1.2	19
637	Salinity Tolerance in Wheat Cultivars Is Related to Enhanced Activities of Enzymatic Antioxidants and Reduced Lipid Peroxidation. Clean - Soil, Air, Water, 2015, 43, 1248-1258.	0.7	44
638	Comprehensive phenotypic analysis of rice (<i>Oryza sativa</i>) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54.	2.6	77
639	Evaluation of <i>Jatropha curcas</i> Genotypes for Rehabilitation of Degraded Sodic Lands. Land Degradation and Development, 2015, 26, 510-520.	1.8	33
640	Large herbivores change the direction of interactions within plant communities along a salt marsh stress gradient. Journal of Vegetation Science, 2015, 26, 1159-1170.	1.1	23
641	Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB PLANTS, 2015, 7, plv056.	1.2	65
#	Article	IF	CITATIONS
-----	---	-----	-----------
642	Protective effects of Ca2+ against NaCl induced salt stress in two lentil (Lens culinaris) cultivars. African Journal of Agricultural Research Vol Pp, 2015, 10, 2389-2398.	0.2	10
643	Recent advances in potato genomics, transcriptomics, and transgenicsunder drought and heat stresses: a review. Turkish Journal of Botany, 2015, 39, 920-940.	0.5	28
644	Response of Durum Wheat Seedlings to Salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 108-112.	0.5	6
645	Diversity of Rhizobia Nodulating Faba Bean (Vicia faba) Growing in Egypt. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	5
646	Contribution of Plant Growth Regulators in Mitigation of Herbicidal Stress. Journal of Plant Biochemistry & Physiology, 2015, 03, .	0.5	12
647	Adaptation Strategies of Plants against Heavy Metal Toxicity: A Short Review. Biochemistry & Pharmacology: Open Access, 2015, 04, .	0.2	12
648	Antihypertensive Effects of Artemisia scoparia Waldst in Spontaneously Hypertensive Rats and Identification of Angiotensin I Converting Enzyme Inhibitors. Molecules, 2015, 20, 19789-19804.	1.7	24
649	Analysis of Genetic Diversity of Two Mangrove Species with Morphological Alterations in a Natural Environment. Diversity, 2015, 7, 105-117.	0.7	12
650	Growth, Photosynthesis, Solute Accumulation, and Ion Balance of Tomato Plant under Sodium―or Potassium alt Stress and Alkali Stress. Agronomy Journal, 2015, 107, 651-661.	0.9	28
651	Physiological and Biochemical Responses of Jerusalem Artichoke Seedlings to Mixed Salt-Alkali Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 473-478.	0.5	4
652	Ascorbic Acid and/or 24-Epibrassinolide Trigger Physiological and Biochemical Responses for the Salt Stress Mitigation in Potato (Solanum tuberosum L.). International Journal of Applied Sciences and Biotechnology, 2015, 3, 655-667.	0.4	8
653	Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides. Plant, Soil and Environment, 2015, 61, 364-370.	1.0	7
654	Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 1-11.	0.5	95
655	Phytomelatonin: Assisting Plants to Survive and Thrive. Molecules, 2015, 20, 7396-7437.	1.7	294
656	Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science, 2015, 3, .	1.5	153
657	Variations in DREB1A and VP1.1 Genes Show Association with Salt Tolerance Traits in Wild Tomato (Solanum pimpinellifolium). PLoS ONE, 2015, 10, e0132535.	1.1	30
658	Comparison of proteome response to saline and zinc stress in lettuce. Frontiers in Plant Science, 2015, 6, 240.	1.7	51
659	Time course of biochemical, physiological, and molecular responses to field-mimicked conditions of drought, salinity, and recovery in two maize lines. Frontiers in Plant Science, 2015, 6, 314.	1.7	24

#	ARTICLE	IF	CITATIONS
660	Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 2015, 6, 537.	1.7	226
661	Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (<i>Portulaca oleracea</i> L.) Accessions. BioMed Research International, 2015, 2015, 1-15.	0.9	38
663	AJUSTAMENTO OSMÓTICO EM MUDAS DE JATOBÕSUBMETIDAS À SALINIDADE EM MEIO HIDROPÔNICO. Revista Arvore, 2015, 39, 641-653.	0.5	10
664	Brackish Eutrophic Water Treatment by <i>Iris pseudacorus</i> LPlanted Microcosms: Physiological Responses of <i>Iris pseudacorus</i> L. to Salinity. International Journal of Phytoremediation, 2015, 17, 814-821.	1.7	4
665	Ecological recovery in an Arctic delta following widespread saline incursion. , 2015, 25, 172-185.		21
666	Salt Stress in Higher Plants: Mechanisms of Toxicity and Defensive Responses. , 2015, , 1-33.		9
667	Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Reports, 2015, 34, 1629-1646.	2.8	128
668	Response of Wheat Seedlings to Combined Effect of Drought and Salinity. , 2015, , 159-198.		3
669	Melatonin regulates antioxidative mechanisms in microalgaeChlamydomonas reinhardtii(Volvocales,) Tj ETQq0 0 (OrgBT ∕Ov	erlock 10 Tf
670	Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta, 2015, 242, 829-846.	1.6	120
671	Effects of salinity stress on water desalination, olive tree (Olea europaea L. cvs â€~Picholine', â€~Meski' an	d) Tj ETQc 4.0	0 0 0 rgBT /
672	Effect of poultry manure on the yield and nutriments uptake of potato under saline conditions of arid regions. Emirates Journal of Food and Agriculture, 2015, 27, 106.	1.0	32
673	Effects of Salt Stress after Late Booting Stage on Yield and Antioxidant Capacity in Pigmented Rice Grains and Alleviation of the Salt-Induced Yield Reduction by Exogenous Spermidine. Plant Production Science, 2015, 18, 32-42.	0.9	30
674	Characterization of lycopene Î ² -cyclase gene from Lycium chinense conferring salt tolerance by increasing carotenoids synthesis and oxidative stress resistance in tobacco. Molecular Breeding, 2015, 35, 1.	1.0	14
675	Soy 14-3-3 protein SGF14c, a new regulator of tolerance to salt–alkali stress. Plant Biotechnology Reports, 2015, 9, 369-377.	0.9	2
676	Growth, Ion Uptake, and Yield Responses of Three Indigenous Small-Sized Greek Tomato (Lycopersicon) Tj ETQq1 Communications in Soil Science and Plant Analysis, 2015, 46, 2357-2377.	1 0.7843 0.6	14 rgBT /Ove 8
677	Micropattern of halophytic vegetation on technogenic soils affected by the soda industry. Soil Science and Plant Nutrition, 2015, 61, 98-112.	0.8	32

	678	Effects of salinity on growth of plant species from terrestrializing fens. Aquatic Botany, 2015, 121, 83-90.		0
--	-----	--	--	---

#	Article	IF	CITATIONS
679	Dopamine alleviates saltâ€induced stress in <i>Malus hupehensis</i> . Physiologia Plantarum, 2015, 153, 584-602.	2.6	76
680	Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. Microbial Ecology, 2015, 70, 196-208.	1.4	37
681	Pseudomonas-Mediated Mitigation of Salt Stress and Growth Promotion in Glycine max. Agricultural Research, 2015, 4, 31-41.	0.9	68
682	Molybdenum application enhances adaptation of crested wheatgrass to salinity stress. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	16
683	Involvement of nitrate reductase in the ameliorating effect of 5-aminolevulinic acid on NaCl-stressed barley seedlings. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	14
684	Influence of Exogenous Application of Silicon and Potassium on Physiological Responses, Yield, and Yield Components of Salt-Stressed Wheat. Communications in Soil Science and Plant Analysis, 2015, 46, 109-122.	0.6	22
685	The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. Journal of Experimental Botany, 2015, 66, 1865-1875.	2.4	105
686	Response of broomcorn millet (Panicum miliaceum L.) genotypes from semiarid regions of China to salt stress. Crop Journal, 2015, 3, 57-66.	2.3	23
687	Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish (<i>Raphanus sativus</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 382-390.	2.4	90
688	Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 2015, 76, 25-40.	1.8	186
689	Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	146
690	Physiological response and ion accumulation in two grasses, one legume, and one saltbush under soil water and salinity stress. Ecohydrology, 2015, 8, 1547-1559.	1.1	16
691	Adaptations of Chloroplastic Metabolism in Halophytic Plants. Progress in Botany Fortschritte Der Botanik, 2015, , 177-193.	0.1	12
692	Alleviation of Salt Stress Adverse Effect and Enhancing Phenolic Anti-oxidant Content of Eggplant by Seaweed Extract. Gesunde Pflanzen, 2015, 67, 21-31.	1.7	27
693	Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO3)2 stress. Plant Physiology and Biochemistry, 2015, 87, 124-132.	2.8	36
694	Impact of environmental factors on rice starch structure: A review. Starch/Staerke, 2015, 67, 42-54.	1.1	96
695	Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. Plant Cell, Tissue and Organ Culture, 2015, 122, 239-248.	1.2	24
696	Impact patterns of soil salinity variations on the survival rate, growth performances, and physiology of Pterocarpus officinalis seedlings. Trees - Structure and Function, 2015, 29, 119-128.	0.9	8

#	Article	IF	Citations
697	Osmolyte accumulation in leaves of Tamarix ramosissima growing under various soil conditions in the Colorado River basin. Landscape and Ecological Engineering, 2015, 11, 199-207.	0.7	2
698	The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. Journal of Plant Physiology, 2015, 184, 57-67.	1.6	197
699	Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Scientia Horticulturae, 2015, 193, 105-113.	1.7	100
700	Effects of Saline Shallow Groundwater Stress on Coriander sativum L. Water Requirement and Other Plant Parameters. Journal of Irrigation and Drainage Engineering - ASCE, 2015, 141, 04014078.	0.6	2
701	Silicon-Mediated Tolerance to Salt Stress. , 2015, , 123-142.		20
702	Effects of salt stress on biomass and ash composition of switchgrass (<i>Panicum virgatum</i>). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 300-309.	0.3	8
703	Genotypic differences in the antioxidant and carbon–nitrogen metabolism of acid-tolerant and acid-sensitive rice (Oryzasativa L.) cultivars under acid stress. Soil Science and Plant Nutrition, 2015, 61, 808-820.	0.8	0
704	NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology, 2015, 183, 41-51.	1.6	101
705	Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	75
706	Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery. Renewable and Sustainable Energy Reviews, 2015, 50, 1287-1303.	8.2	28
707	Hydrogeological Features and Environmental Impacts of Geothermal Waters in the Yıldız River Basin (Sivas, Turkey). Water Environment Research, 2015, 87, 152-168.	1.3	2
708	Physiological Responses of Two Moss Species to the Combined Stress of Water Deficit and Elevated Nitrogen Deposition. I. Secondary Metabolism. International Journal of Plant Sciences, 2015, 176, 446-457.	0.6	8
709	Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (<i>Lactuca) Tj ETQq0 0 0 rgBT /</i>	Overlock 1 1.3	10 Tf 50 262 ⁻
710	Effective microorganisms modify protein and polyamine pools in common bean (Phaseolus vulgaris L.) plants grown under saline conditions. Scientia Horticulturae, 2015, 190, 1-10.	1.7	23
711	Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. Journal of Plant Physiology, 2015, 175, 113-121.	1.6	28
712	Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 2015, 189, 341-348.	4.8	264
713	Plant water relations and ion homoeostasis of Mediterranean seagrasses (Posidonia oceanica and) Tj ETQq0 0 0 0	gBT /Over 0.7	loဌk 10 Tf 50
714	Molecular phylogenetic and biogeographical analysis of Nitraria based on nuclear and chloroplast DNA sequences. Plant Systematics and Evolution, 2015, 301, 1897-1906.	0.3	23

~	_	
CITATI	ON K	FPORT
011/11	<u> </u>	

#	Article	IF	CITATIONS
715	Effects of saltwater intrusion on pinewood vegetation using satellite ASTER data: the case study of Ravenna (Italy). Environmental Monitoring and Assessment, 2015, 187, 166.	1.3	7
716	Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regulation, 2015, 76, 111-125.	1.8	73
717	Medicinal Plants and PGPR: A New Frontier for Phytochemicals. Soil Biology, 2015, , 287-303.	0.6	34
718	Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Molecular Biology, 2015, 88, 219-231.	2.0	79
719	Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing β-carotene production. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	13
720	Comparative proteomic analysis of gamma-aminobutyric acid responses in hypoxia-treated and untreated melon roots. Phytochemistry, 2015, 116, 28-37.	1.4	15
721	SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. Molecular Plant, 2015, 8, 1038-1052.	3.9	140
722	Investigation of the response to salinity and to oxidative stress of interspecific potato somatic hybrids grown in a greenhouse. Plant Cell, Tissue and Organ Culture, 2015, 120, 933-947.	1.2	61
723	The Effect Of Sodium Chloride On Growth And Quality Of <i>Plectranthus Forsteri</i> Benth. â€~Nico'. Journal of Horticultural Research, 2015, 23, 17-20.	0.4	6
724	Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae, 2015, 197, 304-317.	1.7	37
725	Enhanced chloroplastic generation of <scp>H₂O₂</scp> in stressâ€resistant <i>Thellungiella salsuginea</i> in comparison to <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2015, 153, 467-476.	2.6	39
726	Effect of Salinity Stress and Surfactant Treatment on Physiological Traits and Nutrient Absorption of Fenugreek Plant. Communications in Soil Science and Plant Analysis, 2015, 46, 2807-2820.	0.6	5
727	Immobilized microalgae and bacteria improve salt tolerance of tomato seedlings grown hydroponically. Journal of Applied Phycology, 2015, 27, 1923-1933.	1.5	8
728	Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F.) Tj ETQq1 1 0.7	784314 rg 1.7	BT /Overlock
729	NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 221-232.	1.7	30
730	Salt stress response in the halophyte Limoniastrum guyonianum Boiss. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 217, 1-9.	0.6	19
731	Biocontrol and plant growthâ€promoting activity of rhizobacteria from <scp>C</scp> hinese fields with contaminated soils. Microbial Biotechnology, 2015, 8, 404-418.	2.0	83
732	Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 2015, 75, 391-404.	1.8	566

#	Article	IF	CITATIONS
733	Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Applied Soil Ecology, 2015, 87, 108-117.	2.1	67
734	Effective Microorganisms Improve Growth Performance and Modulate the ROS-Scavenging System in Common Bean (Phaseolus vulgaris L.) Plants Exposed to Salinity Stress. Journal of Plant Growth Regulation, 2015, 34, 35-46.	2.8	23
735	Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry, 2015, 86, 155-165.	2.8	117
736	The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 2015, 182, 124-133.	1.7	310
737	Lipoic acid mitigates oxidative stress and recovers metabolic distortions in saltâ€stressed wheat seedlings by modulating ion homeostasis, the osmoâ€regulator level and antioxidant system. Journal of the Science of Food and Agriculture, 2015, 95, 2811-2817.	1.7	27
738	Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry, 2015, 81, 108-123.	4.2	383
739	In vitro rice shoot apices as simple model to study the effect of NaCl and the potential of exogenous proline and glutathione in mitigating salinity stress. Plant Growth Regulation, 2015, 75, 771-781.	1.8	36
740	A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock <i><scp>A</scp>rundo donax</i> . GCB Bioenergy, 2015, 7, 752-762.	2.5	42
741	Clobal plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 2015, 35, 425-437.	5.1	265
742	Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 2015, 22, 4056-4075.	2.7	845
743	Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 2015, 64, 175-181.	2.5	143
744	Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant and Soil, 2015, 388, 99-117.	1.8	84
745	Salt stress induced sex-related spatial heterogeneity of gas exchange rates over the leaf surface in Populus cathayana Rehd Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	325
746	Effects of Grafting on Alkali Stress in Tomato Plants: Datura Rootstock Improve Alkalinity Tolerance of Tomato Plants. Journal of Plant Nutrition, 2015, 38, 51-72.	0.9	14
747	Genome of the halotolerant green alga <scp><i>P</i></scp> <i>icochlorum</i> sp. reveals strategies for thriving under fluctuating environmental conditions. Environmental Microbiology, 2015, 17, 412-426.	1.8	85
748	Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma, 2015, 252, 461-475.	1.0	134
749	Effect of saltâ€ŧolerant plant growthâ€promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 2015, 17, 288-293.	1.8	203
750	Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regulation, 2015, 75, 281-295.	1.8	74

#	Article	IF	CITATIONS
751	Plant life on gypsum: a review of its multiple facets. Biological Reviews, 2015, 90, 1-18.	4.7	151
752	Spermine reduces salinity-induced oxidative damage by enhancing antioxidative system and decreasing lipid peroxidation in rice seedlings. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 316-323.	0.9	6
753	Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. Journal of Proteomics, 2015, 113, 110-126.	1.2	51
754	Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 2015, 201, 29-41.	0.6	39
755	Developmental acquisition of salt tolerance in the halophyte Atriplex halimus L. is related to differential regulation of salt inducible genes. Plant Growth Regulation, 2015, 75, 165-178.	1.8	11
756	Evaluation of Water Stress on Yield, Its Components and Some Physiological Traits at Different Growth Stages in Grain Sorghum Genotypes. Notulae Scientia Biologicae, 2016, 8, 204-210.	0.1	3
757	Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides. Plant, Soil and Environment, 2015, 61, 364-370.	1.0	3
758	Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant, Soil and Environment, 2016, 62, 515-521.	1.0	66
759	Ecophysiological and biochemical responses of saltbush subjected to salinity. Pesquisa Agropecuaria Tropical, 2016, 46, 116-122.	1.0	1
760	Response of Caper Plant to Drought and Different Ratios of Calcium and Sodium Chloride1. Planta Daninha, 2016, 34, 259-266.	0.5	5
761	Exploration and Utilization of Salt-Tolerant Barley Germplasm. , 2016, , 75-113.		0
762	Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain). Solid Earth, 2016, 7, 1479-1489.	1.2	23
763	Hyperspectral Imaging to Evaluate the Effect of IrrigationWater Salinity in Lettuce. Applied Sciences (Switzerland), 2016, 6, 412.	1.3	17
764	Genetic transformation and expression of transgenic lines of Populus x euramericana with insect-resistance and salt-tolerance genes. Genetics and Molecular Research, 2016, 15, .	0.3	19
765	Effects of salinity and drought on the phytochemical production in <i>Jatrophacurcas</i> L. Bayero Journal of Pure and Applied Sciences, 2016, 8, 81.	0.1	2
766	Coal-Bed Methane Water Effects on Dill and Its Essential Oils. Journal of Environmental Quality, 2016, 45, 728-733.	1.0	8
767	Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Archives of Biological Sciences, 2016, 68, 723-735.	0.2	105
768	Efecto de las PGPB sobre el crecimiento Pennisetum clandestinum bajo condiciones de estrés salino. Revista Colombiana De BiotecnologÃa, 2016, 18, .	0.5	3

#	Article	IF	CITATIONS
769	Exploring ion homeostasis and mechanism of salinity tolerance in primary tritipyrum lines (Wheat×) Tj ETQq0 C 911-919.	0 rgBT /0 0.1	Overlock 10 Th 5
770	Effect of Zinc and Bio Fertilizers on Antioxidant Enzymes Activity, Chlorophyll Content, Soluble Sugars and Proline in Triticale Under Salinity Condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 116-124.	0.5	31
771	Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris var. cicla Farmed in Freshwater and Saltwater Aquaponic Systems. Water (Switzerland), 2016, 8, 423.	1.2	17
772	Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective. Frontiers in Plant Science, 2016, 7, 957.	1.7	120
773	Salinity Differentially Affects Growth and Ecophysiology of Two Mastic Tree (Pistacia lentiscus L.) Accessions. Forests, 2016, 7, 156.	0.9	12
774	A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO3 Tolerance by Decreasing H2O2 Accumulation. International Journal of Molecular Sciences, 2016, 17, 804.	1.8	18
775	Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits. International Journal of Molecular Sciences, 2016, 17, 821.	1.8	11
776	Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L.) and Their Antioxidative Activity. Molecules, 2016, 21, 1097.	1.7	44
777	Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress. Plants, 2016, 5, 2.	1.6	45
778	Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli. PLoS ONE, 2016, 11, e0153640.	1.1	24
779	Melatonin: Current Status and Future Perspectives in Plant Science. Frontiers in Plant Science, 2015, 6, 1230.	1.7	262
780	Coordinated Changes in Antioxidative Enzymes Protect the Photosynthetic Machinery from Salinity Induced Oxidative Damage and Confer Salt Tolerance in an Extreme Halophyte Salvadora persica L Frontiers in Plant Science, 2016, 7, 50.	1.7	105
781	Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition. Frontiers in Plant Science, 2016, 7, 351.	1.7	84
782	Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum Points at a Polyamine-Dependent Trade-Off between Growth and Tolerance Responses. Frontiers in Plant Science, 2016, 7, 379.	1.7	35
783	New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts. Frontiers in Plant Science, 2016, 7, 656.	1.7	73
784	Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity. Frontiers in Plant Science, 2016, 7, 842.	1.7	81
785	The Effect of Green Synthesized CuO Nanoparticles on Callogenesis and Regeneration of Oryza sativa L Frontiers in Plant Science, 2016, 7, 1330.	1.7	52
786	Halophytes As Bioenergy Crops. Frontiers in Plant Science, 2016, 7, 1372.	1.7	68

#	Article	IF	CITATIONS
787	Ability to Remove Na+ and Retain K+ Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings. Frontiers in Plant Science, 2016, 7, 1716.	1.7	72
788	Comparison of Ionomic and Metabolites Response under Alkali Stress in Old and Young Leaves of Cotton (Gossypium hirsutum L.) Seedlings. Frontiers in Plant Science, 2016, 7, 1785.	1.7	37
789	A Halotolerant Bacterium Bacillus licheniformis HSW-16 Augments Induced Systemic Tolerance to Salt Stress in Wheat Plant (Triticum aestivum). Frontiers in Plant Science, 2016, 7, 1890.	1.7	131
790	A Simple Greenhouse Method for Screening Salt Tolerance in Soybean. Crop Science, 2016, 56, 585-594.	0.8	29
791	Advancement in protocol for in vitro seed germination, regeneration, bulblet maturation, and acclimatization of Fritillaria persica. Turkish Journal of Biology, 2016, 40, 878-888.	2.1	6
792	Genomics of Salinity Tolerance in Plants. , 0, , .		9
793	Study on Germination of Seven Barley Cultivars (Hordeum vulgare L.) under Salt Stress. Journal of Agricultural Science, 2016, 8, 88.	0.1	4
794	Application of silicon ameliorated salinity stress and improved wheat yield. Journal of Soil Science and Environmental Management, 2016, 7, 81-91.	0.4	14
795	Endophytic microbial diversity of the halophyte <i>Arthrocnemum macrostachyum</i> across plant compartments. FEMS Microbiology Ecology, 2016, 92, fiw145.	1.3	56
796	Role of Arbuscular Mycorrhiza in Alleviating Salinity Stress in Wheat (<i>Triticum aestivum</i> L.) Grown Under Ambient and Elevated CO ₂ . Journal of Agronomy and Crop Science, 2016, 202, 486-496.	1.7	37
797	Molecular dissection of <i>Oryza sativa saltâ€induced <scp>RING</scp> Finger Protein 1</i> (<i><scp>OsSIRP1</scp></i>): possible involvement in the sensitivity response to salinity stress. Physiologia Plantarum, 2016, 158, 168-179.	2.6	31
798	Potassium and Its Role in Sustainable Agriculture. , 2016, , 235-253.		76
799	Halophilic Bacteria: Potential Bioinoculants for Sustainable Agriculture and Environment Management Under Salt Stress. , 2016, , 297-325.		5
800	Involvement of Carbohydrates in Response to Preconditioning Flooding in Two Clones ofÂPopulus deltoidesÂMarsh.Â×ÂP.ÂnigraÂL Journal of Plant Growth Regulation, 2016, 35, 492-503.	2.8	11
801	Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 2016, 108, 2189-2200.	0.9	228
802	Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in <i>Hyssopus officinalis</i> L. plants under salt stress. Acta Biologica Hungarica, 2016, 67, 195-204.	0.7	32
803	Substrate Factors Determine Roadside Vegetation Structure and Species Richness: A Case Study Along a Meridional Gradient in Fennoscandia. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 554-560.	1.3	7
804	How rootstocks influence salt tolerance in grapevine? The roles of conferred vigor and ionic exclusion. Acta Horticulturae, 2016, , 145-154.	0.1	3

#	Article	IF	CITATIONS
805	<i>Tamarix arborea</i> var. <i>arborea</i> and <i>Tamarix parviflora</i> : Two species valued for their adaptability to stress conditions. Acta Biologica Hungarica, 2016, 67, 42-52.	0.7	2
806	Detection of salt in soil by employing the unique sub-target effect in a pulsed carbon dioxide (CO <inf>2</inf>) laser-induced breakdown spectroscopy. , 2016, , .		5
807	Water and Nutrient Uptake Efficiency in Containerized Production of Fern Leaf Lavender Irrigated with Saline Water. HortTechnology, 2016, 26, 742-747.	0.5	3
808	Evaluation of Selected Indian Bread Wheat (<i>Triticum aestivum</i> L.) Genotypes for Morpho-physiological and Biochemical Characterization under Salt Stress Conditions. Cereal Research Communications, 2016, 44, 341-348.	0.8	1
809	Germination characters and early seedling growth of wheat (Triticum aestivum L.) genotypes under salt stress conditions. Journal of Crop Science and Biotechnology, 2016, 19, 383-392.	0.7	24
810	Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 2016, 6, 19199.	1.6	161
811	Use of compost to mitigate the salt effect of sediment from Taylor Creek in south Florida. Acta Horticulturae, 2016, , 157-164.	0.1	0
812	Priming of Plant Defense and Plant Growth in Disease-Challenged Crops Using Microbial Consortia. , 2016, , 39-56.		3
813	Cambial dormancy induced growth rings in Heritiera fomes Buch Ham.: a proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees - Structure and Function, 2016, 30, 227-239.	0.9	18
814	The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant and Soil, 2016, 406, 231-249.	1.8	70
815	Investigating the carbon isotope composition and leaf wax n-alkane concentration of C3 and C4 plants in Stiffkey saltmarsh, Norfolk, UK. Organic Geochemistry, 2016, 96, 28-42.	0.9	29
816	Hybridization between salt resistant and salt susceptible genotypes of mungbean (Vigna radiata L.) Tj ETQq1 1 0 2016, 15, 521-527.	.784314 r 1.7	gBT /Overloc 9
817	Alleviating salt stress in tomato seedlings using <i>Arthrobacter</i> and <i>Bacillus megaterium</i> isolated from the rhizosphere of wild plants grown on saline–alkaline lands. International Journal of Phytoremediation, 2016, 18, 1113-1121.	1.7	57
818	Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL- 12 isolated from a salt lake. Symbiosis, 2016, 69, 101-111.	1.2	66
819	Improved reactive aldehyde, salt and cadmium tolerance of transgenic barley due to the expression of aldo–keto reductase genes. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	12
820	Methyl jasmonate regulated diploid and tetraploid black locust (Robinia pseudoacacia L.) tolerance to salt stress. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	35
821	The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Plant Molecular Biology, 2016, 91, 375-396.	2.0	16
822	Analysis on the transcriptome information of two different wheat mutants and identification of salt-induced differential genes. Biochemical and Biophysical Research Communications, 2016, 473, 1197-1204.	1.0	8

#	Article	IF	CITATIONS
823	Effect of salinity stress on finger millet (Eleusine coracana (L.) Gaertn): Histochemical and morphological analysis of coleoptile and coleorhizae. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 222, 111-120.	0.6	18
824	Grapes. , 2016, , 183-205.		1
825	Halophytes as a source of salt tolerance genes and mechanisms: a case study for the Salt Lake area, Turkey. Functional Plant Biology, 2016, 43, 575.	1.1	21
826	Exogenous Diethyl Aminoethyl Hexanoate, a Plant Growth Regulator, Highly Improved the Salinity Tolerance of Important Medicinal Plant Cassia obtusifolia L Journal of Plant Growth Regulation, 2016, 35, 330-344.	2.8	21
827	Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. Plant Physiology and Biochemistry, 2016, 105, 260-270.	2.8	15
828	Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms. Applied Soil Ecology, 2016, 105, 36-47.	2.1	36
829	The Importance of Coprophagous Macrodetritivores for the Maintenance of Vegetation Heterogeneity in an African Savannah. Ecosystems, 2016, 19, 674-684.	1.6	12
830	Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. Journal of Plant Physiology, 2016, 198, 32-38.	1.6	61
831	Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. South African Journal of Botany, 2016, 105, 36-44.	1.2	37
832	Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides : Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. Journal of Biotechnology, 2016, 228, 18-27.	1.9	78
833	Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development. Plant Signaling and Behavior, 2016, 11, e1173301.	1.2	19
834	Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Functional Plant Biology, 2016, 43, 607.	1.1	37
835	Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat () Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 5(174
836	Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Annals of Warsaw University of Life Sciences, Land Reclamation, 2016, 48, 153-163.	0.2	8
837	Influence of 5-aminolevulinic acid on photosynthetically related parameters and gene expression in <i>Brassica napus</i> L. under drought stress. Soil Science and Plant Nutrition, 2016, 62, 254-262.	0.8	22
838	Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea. Journal of Plant Physiology, 2016, 206, 133-142.	1.6	26
839	Saline soil microbiome: A rich source of halotolerant PGPR. Journal of Crop Science and Biotechnology, 2016, 19, 231-239.	0.7	12

840Reclamation of Salt-Affected Soils: Socioeconomic Impact Assessment. , 2016, , 489-505.1

#	Article	IF	CITATIONS
841	Proteomic changes in kenaf (Hibiscus cannabinus L.) leaves under salt stress. Industrial Crops and Products, 2016, 91, 255-263.	2.5	12
842	Morpho–physiological responses of Rocket (Eruca sativa L.) varieties to sodium sulfate (Na2SO4) stress: an experimental approach. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	1
843	Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge. Estuarine, Coastal and Shelf Science, 2016, 181, 338-344.	0.9	10
844	Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide - Biology and Chemistry, 2016, 61, 10-19.	1.2	145
845	Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Scientia Horticulturae, 2016, 211, 70-78.	1.7	30
846	Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast. Phytochemistry, 2016, 129, 14-23.	1.4	8
847	Seed priming with cysteine modulates the growth and metabolic activity of wheat plants under salinity and osmotic stresses at early stages of growth. Indian Journal of Plant Physiology, 2016, 21, 279-286.	0.8	12
848	Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings. Ecotoxicology and Environmental Safety, 2016, 133, 252-259.	2.9	55
849	Degraded Soils: Origin, Types and Management. , 2016, , 23-65.		9
850	Influence of Rhizophagus spp. and <i>Burkholderia seminalis</i> on the Growth of Tomato (<i>Lycopersicon esculatum</i>) and Bell Pepper (<i>Capsicum annuum</i>) under Drought Stress. Communications in Soil Science and Plant Analysis, 2016, 47, 1975-1984.	0.6	18
851	<i>Sulla carnosa</i> > modulates root invertase activity in response to the inhibition of longâ€distance		
	sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037.	1.8	10
852	sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1275-1287.	1.8 1.3	10 8
852 854	sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1275-1287. Role of microRNAs in rice plant under salt stress. Annals of Applied Biology, 2016, 168, 2-18.	1.8 1.3 1.3	10 8 44
852 854 855	 sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1275-1287. Role of microRNAs in rice plant under salt stress. Annals of Applied Biology, 2016, 168, 2-18. Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 2016, 176, 255-262. 	1.8 1.3 1.3 2.4	10 8 44 20
852 854 855 856	sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1275-1287. Role of microRNAs in rice plant under salt stress. Annals of Applied Biology, 2016, 168, 2-18. Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 2016, 176, 255-262. Ion concentrations in seagrass: A comparison of results from field and controlled-environment studies. Estuarine, Coastal and Shelf Science, 2016, 181, 209-217.	1.8 1.3 2.4 0.9	10 8 44 20 9
852 854 855 856 857	sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research C: Biogeosciences, 2016, 121, 1275-1287. Role of microRNAs in rice plant under salt stress. Annals of Applied Biology, 2016, 168, 2-18. Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 2016, 176, 255-262. Ion concentrations in seagrass: A comparison of results from field and controlled-environment studies. Estuarine, Coastal and Shelf Science, 2016, 181, 209-217. Phytoextraction of Na+ and Clâ ^{-,} by Atriplex halimus L. and Atriplex hortensis L.: A promising solution for remediation of road runoff contaminated with deicing salts. Ecological Engineering, 2016, 94, 182-189.	1.8 1.3 1.3 2.4 0.9 1.6	10 8 44 20 9 27
852 854 855 856 857 858	 sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research C: Biogeosciences, 2016, 121, 1275-1287. Role of microRNAs in rice plant under salt stress. Annals of Applied Biology, 2016, 168, 2-18. Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 2016, 176, 255-262. Ion concentrations in seagrass: A comparison of results from field and controlled-environment studies. Estuarine, Coastal and Shelf Science, 2016, 181, 209-217. Phytoextraction of Na+ and Cla^{o+} by Atriplex halimus L. and Atriplex hortensis L.: A promising solution for remediation of road runoff contaminated with deicing salts. Ecological Engineering, 2016, 94, 182-189. A review on salinity adaptation mechanism and characteristics of Populus euphratica, a boon for arid ecosystems. Acta Ecologica Sinica, 2016, 36, 497-503. 	1.8 1.3 1.3 2.4 0.9 1.6 0.9	10 8 44 20 9 27 23

#	Article	IF	CITATIONS
860	Ectomycorrhizal inoculation of Populus nigra modifies the response of absorptive root respiration and root surface enzyme activity to salinity stress. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 123-129.	0.6	8
861	Influence of leaf vein density and thickness on hydraulic conductance and photosynthesis in rice (Oryza sativa L.) during water stress. Scientific Reports, 2016, 6, 36894.	1.6	20
862	Physiological response of lupine and associated weeds grown at salt-affected soil to α‑tocopherol and hoeing treatments. Gesunde Pflanzen, 2016, 68, 117-127.	1.7	10
863	Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance. Botanical Review, The, 2016, 82, 371-406.	1.7	216
864	Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Scientific Reports, 2016, 6, 32403.	1.6	28
866	Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Scientific Reports, 2016, 6, 20582.	1.6	109
867	Genetic diversity andin vitroassessment of salt tolerance responses and associated changes in gene expression of male poplar (Populus) trees. Journal of Horticultural Science and Biotechnology, 2016, 91, 551-561.	0.9	2
868	Characterizing dominant controls governing evapotranspiration within a natural saline fen in the Athabasca Oil Sands of Alberta, Canada. Ecohydrology, 2016, 9, 817-829.	1.1	18
869	Development of a SCAR marker associated with salt tolerance in durum wheat (Triticum turgidum ssp.) Tj ETQqO	0 8.5gBT /0	Overlock 10
870	Nitrogenous compounds enhance the growth of petunia and reprogram biochemical changes against the adverse effect of salinity. Journal of Horticultural Science and Biotechnology, 2016, 91, 562-572.	0.9	21
871	High water availability increases the negative impact of a native hemiparasite on its non-native host. Journal of Experimental Botany, 2016, 67, 1567-1575.	2.4	18
872	Prediction of 2-acetyl-1-pyrroline content in grains of Thai Jasmine rice based on planting condition, plant growth and yield component data using chemometrics. Chemometrics and Intelligent Laboratory Systems, 2016, 156, 203-210.	1.8	17

872	Prediction of 2-acetyl-1-pyrroline content in grains of Thai Jasmine rice based on planting condition, plant growth and yield component data using chemometrics. Chemometrics and Intelligent Laboratory Systems, 2016, 156, 203-210.	1.8	17
873	Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees - Structure and Function, 2016, 30, 1873-1891.	0.9	18
874	Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regulation, 2016, 79, 391-399.	1.8	145
875	Impact of water composition on association of Ag and CeO2 nanoparticles with aquatic macrophyte Elodea canadensis. Environmental Science and Pollution Research, 2016, 23, 5277-5287.	2.7	15
876	Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L Environmental and Experimental Botany, 2016, 130, 11-21.	2.0	57
878	Biochemical and molecular changes induced by salinity stress in Oryza sativa L Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	15
879	Ion uptake of marigold under saline growth conditions. SpringerPlus, 2016, 5, 139.	1.2	30

#	Article	IF	CITATIONS
880	Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress. Plant Cell, Tissue and Organ Culture, 2016, 124, 361-375.	1.2	4
881	Morphophysiology and Biochemistry of Prosopis strombulifera Under Salinity. Are Halophytes Tolerant to All Salts?. Tasks for Vegetation Science, 2016, , 57-71.	0.6	2
882	Metabolic response of maize plants to multiâ€factorial abiotic stresses. Plant Biology, 2016, 18, 120-129.	1.8	60
883	Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels. Journal of Plant Research, 2016, 129, 423-434.	1.2	8
884	Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology, 2016, 100, 154-161.	2.1	81
885	Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 2016, 192, 38-46.	1.6	486
886	Morpho-Physiological Responses of Grape Rootstock â€~Dogridge' to Arbuscular Mycorrhizal Fungi Inoculation Under Salinity Stress. International Journal of Fruit Science, 2016, 16, 191-209.	1.2	11
887	NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake. Agricultural Water Management, 2016, 165, 22-32.	2.4	36
888	Photosynthetic responses of the low intertidal macroalga Sargassum fusiforme (Sargassaceae) to saline stress. Photosynthetica, 2016, 54, 430-437.	0.9	20
889	Improving salinity resilience in <i>Swertia chirayita</i> clonal line with <i>Lactobacillus plantarum</i> . Canadian Journal of Plant Science, 2016, 96, 117-127.	0.3	9
890	Phosphoproteomic Analysis in Phaseolus vulgaris Roots Treated with Rhizobium etli Nodulation Factors. Plant Molecular Biology Reporter, 2016, 34, 961-969.	1.0	2
891	Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany, 2016, 125, 1-11.	2.0	60
892	Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters. Scientia Horticulturae, 2016, 201, 211-217.	1.7	42
893	The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	33
894	Salt effects on proline and glycine betaine levels and photosynthetic performance in Melilotus siculus, Tecticornia pergranulata and Thinopyrum ponticum measured in simulated saline conditions. Functional Plant Biology, 2016, 43, 254.	1.1	9
895	Upregulation ofOsNAS1, OsPCS1, andDREB1Atranscripts along with antioxidative defense confers salt tolerance in rice (Oryza sativaL. cv Pokkali). Archives of Agronomy and Soil Science, 2016, 62, 1381-1395.	1.3	2
896	Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Scientia Horticulturae, 2016, 201, 84-91.	1.7	42
897	Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South African Journal of Botany, 2016, 103, 275-282.	1.2	92

#	Article	IF	CITATIONS
898	Ameliorative Effect of Humic Acid and Plant Growth-Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress. Communications in Soil Science and Plant Analysis, 2016, 47, 602-618.	0.6	21
899	Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. Journal of Plant Nutrition, 2016, 39, 1372-1379.	0.9	22
900	Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiology and Biochemistry, 2016, 101, 54-59.	2.8	48
901	Salt acclimation processes in wheat. Plant Physiology and Biochemistry, 2016, 101, 68-75.	2.8	44
902	Mannitol in Plants, Fungi, and Plant–Fungal Interactions. Trends in Plant Science, 2016, 21, 486-497.	4.3	131
903	Restoration of saline greenhouse soil and its effect on crop's growth through <i>in situ</i> field-scale electrokinetic technology. Separation Science and Technology, 2016, 51, 1227-1237.	1.3	6
904	Influence of Zeolite, Selenium and Silicon upon Some Agronomic and Physiologic Characteristics of Canola Grown under Salinity. Communications in Soil Science and Plant Analysis, 2016, 47, 832-850.	0.6	33
905	Foliar treatment with Lolium perenne (Poaceae) leaf extract alleviates salinity and nickel-induced growth inhibition in pea. Revista Brasileira De Botanica, 2016, 39, 453-463.	0.5	15
906	Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 2016, 193, 1-11.	1.6	88
907	Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	43
908	Salinity Tolerance: Growth, Mineral Nutrients, and Roles of Organic Osmolytes, Case of Lygeum spartum L., A Review. , 2016, , 27-35.		2
909	Assessment of Antioxidant Enzyme Activity and Mineral Nutrients in Response to NaCl Stress and its Amelioration Through Glutathione in Chickpea. Applied Biochemistry and Biotechnology, 2016, 178, 267-284.	1.4	18
910	Roles of Osmolytes in Plant Adaptation to Drought and Salinity. , 2016, , 37-68.		51
911	Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance. Photosynthetica, 2016, 54, 405-413.	0.9	13
912	Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture. Environmental Science and Pollution Research, 2016, 23, 6227-6243.	2.7	24
913	Root biochemical responses of grain and sweet-forage sorghum cultivars under saline conditions at vegetative and reproductive phases. Revista Brasileira De Botanica, 2016, 39, 115-122.	0.5	6
914	Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. Plant Science, 2016, 243, 56-70.	1.7	30
915	Salinity stress effects on direct and indirect defence metabolites in maize. Environmental and Experimental Botany, 2016, 122, 68-77.	2.0	62

#	Article	IF	CITATIONS
916	Changes in the microbial activity and thermal properties of soil treated with sodium fluoride. Applied Soil Ecology, 2016, 98, 159-165.	2.1	26
917	Seed vigor and boron and calcium nutrition influence oilseed rape germinability and seedling growth under salt stress. Journal of Plant Nutrition, 2016, 39, 1688-1696.	0.9	10
918	Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Environmental Science and Pollution Research, 2016, 23, 1254-1264.	2.7	29
919	Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma, 2016, 253, 1325-1345.	1.0	66
920	Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 2016, 102, 50-59.	1.2	26
921	Saline water and municipal solid waste compost application on tomato crop: Effects on plant and soil. Journal of Plant Nutrition, 2016, 39, 491-501.	0.9	6
922	Bacterial-Mediated Tolerance and Resistance to Plants Under Abiotic and Biotic Stresses. Journal of Plant Growth Regulation, 2016, 35, 276-300.	2.8	138
923	Poly(γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L Plant Growth Regulation, 2016, 78, 233-241.	1.8	66
924	Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 2016, 54, 19-27.	0.9	221
925	Ethanol production from halophyte Juncus maritimus using freezing and thawing biomass pretreatment. Renewable Energy, 2016, 85, 1357-1361.	4.3	33
926	Mangrove root: adaptations and ecological importance. Trees - Structure and Function, 2016, 30, 451-465.	0.9	116
927	Salinity Influences on Aboveground and Belowground Net Primary Productivity in Tidal Wetlands. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	32
928	The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences, 2017, 24, 170-179.	1.8	138
929	Fresh Water Lens Persistence and Root Zone Salinization Hazard Under Temperate Climate. Water Resources Management, 2017, 31, 689-702.	1.9	13
930	Allocation pattern, ion partitioning, and chlorophyll <i>a</i> fluorescence in <i>Arundo donax</i> L. in responses to salinity stress. Plant Biosystems, 2017, 151, 613-622.	0.8	35
931	Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. Photosynthetica, 2017, 55, 231-239.	0.9	10
932	Influence of high levels of Na+ and Clâ^' on ion concentration, growth, and photosynthetic performance of three salt-tolerant plants. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 228, 1-9.	0.6	8
933	Salt Tolerance in Apple Seedlings is Affected by an Inhibitor of ABA 8′-Hydroxylase CYP707A. Journal of Plant Growth Regulation, 2017, 36, 643-650.	2.8	12

#	Article	IF	CITATIONS
934	Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physio-biochemical attributes in sweet basil (<i>Ocimum basilicum</i> L.). Journal of Plant Nutrition, 2017, 40, 908-919.	0.9	23
935	Salt stress–induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive <i>Frankia</i> strains. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 420-428.	0.9	11
936	The role of antioxidative metabolism of tomato leaves in longâ€ŧerm saltâ€stress response. Journal of Plant Nutrition and Soil Science, 2017, 180, 105-112.	1.1	12
937	Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma, 2017, 292, 96-110.	2.3	53
939	Leaf thickness to predict plant water status. Biosystems Engineering, 2017, 156, 148-156.	1.9	38
940	Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters. Environmental Pollution, 2017, 223, 409-415.	3.7	81
941	Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	27
942	Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russian Journal of Plant Physiology, 2017, 64, 235-241.	0.5	81
943	Different mechanisms of ion homeostasis are dominant in the recretohalophyte Tamarix ramosissima under different soil salinity. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	18
944	Interactive salt—Alkali stress and exogenous Ca 2+ effects on growth and osmotic adjustment of Lolium multiflorum in a coastal estuary. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 229, 92-99.	0.6	10
945	CaCO ₃ and MgCO ₃ Dissolving Halophilic Bacteria. Geomicrobiology Journal, 2017, 34, 804-810.	1.0	9
946	DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Scientific Reports, 2017, 7, 41010.	1.6	41
947	Identification of GT Factors in Response to Stresses and Leaf Senescence in Gossypium hirsutum L Journal of Plant Growth Regulation, 2017, 36, 22-42.	2.8	2
948	Attempting to predict the plant-mediated trophic effects of soil salinity: A mechanistic approach to supplementing insufficient information. Food Webs, 2017, 13, 67-79.	0.5	12
949	Diurnal Changes in Transcript and Metabolite Levels during the Iron Deficiency Response of Rice. Rice, 2017, 10, 14.	1.7	25
950	Potential Use of Alluvial Groundwater for Irrigation in Arid Zones - Mhamid Oasis (S Morocco). Ecological Chemistry and Engineering S, 2017, 24, 129-140.	0.3	5
951	Transcriptional regulation of salinity stress in plants: A short review. Plant Gene, 2017, 11, 160-169.	1.4	69
952	RNA-seq analysis of the salt stress-induced transcripts in fast-growing bioenergy tree, <i>Paulownia elongata</i> . Journal of Plant Interactions, 2017, 12, 128-136.	1.0	12

		CITATION RE	PORT	
#	Article		IF	CITATIONS
953	Salt Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Science, 2017, 24, 123-14	14.	1.7	266
954	ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenio Planta, 2017, 246, 453-469.	cotton.	1.6	113
955	Reclamation of Sodic Soils in India: An Economic Impact Assessment. , 2017, , 257-274.			2
956	Salinity affects metabolomic profiles of different trophic levels in a food chain. Science of the Environment, 2017, 599-600, 198-206.	Total	3.9	17
957	Improved quinoa growth, physiological response, and seed nutritional quality in three soils ha different stresses by the application of acidified biochar and compost. Plant Physiology and Biochemistry, 2017, 116, 127-138.	iving	2.8	86
958	Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance the seedling stage. Physiology and Molecular Biology of Plants, 2017, 23, 529-544.	at	1.4	43
959	Relationship observed between salinity-tolerant callus cell lines and anatomical structure of L 367-378.	ine 2 () Tj ETQq0 0 0) rgBT /Ov 1.5	erlock 10 Tf 5 3
960	Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars. Acta Physiologiae Plantarum, 2017, 39, 1.		1.0	12
961	Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition antioxidative metabolism and steviol glycoside content. Plant Physiology and Biochemistry, 2 484-496.	, 017, 115,	2.8	68
962	Temporal variations in physiological responses of Kandelia obovata seedlings exposed to mul heavy metals. Marine Pollution Bulletin, 2017, 124, 1089-1095.	tiple	2.3	22
963	Water Management for Enhancing Crop Nutrient Use Efficiency and Reducing Losses. Advan Olericulture, 2017, , 247-265.	ces in	0.4	1
964	Interactive effects of salt and alkali stresses on growth, physiological responses and nutrient removal performance of Ruppia maritima. Ecological Engineering, 2017, 104, 177-183.	(N, P)	1.6	24
965	Evaluation of proline functions in saline conditions. Phytochemistry, 2017, 140, 52-68.		1.4	229
966	Mitigation by sodium nitroprusside of the effects of salinity on the morpho-physiological and biochemical characteristics of Rubus idaeus under in vitro conditions. Physiology and Molecu Biology of Plants, 2017, 23, 73-83.	lar	1.4	42
967	Alleviation of ionic and osmotic stress of salinity in seedling emergence of <i>Lolium perenne with halopriming treatments growing in an hydroponic system. Journal of Plant Nutrition, 20 219-226.</i>	L. 17, 40,	0.9	4
968	The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown b Eugenia myrtifolia plants in response to saline reclaimed water. Plant Physiology and Biocher 2017, 111, 244-256.	y histry,	2.8	45
969	Morphoâ€physiological response of <scp><i>Retama monosperma</i></scp> to extreme sal Ecohydrology, 2017, 10, e1871.	nity levels.	1.1	3
970	Osmolyte System and Its Biological Significance. , 2017, , 1-34.			2

	CITATION I	KEPORT	
#	Article	IF	Citations
971	Homeostatic responses of crustaceans to salinity changes. Hydrobiologia, 2017, 799, 1-20.	1.0	42
972	Two-Step Salt Stress Acclimatization Confers Marked Salt Tolerance Improvement in Four Rice Genotypes Differing in Salt Tolerance. Arabian Journal for Science and Engineering, 2017, 42, 2191-2200.	1.7	1
973	The steroidal glycoalkaloids solamargine and solasonine in Solanum plants. South African Journal of Botany, 2017, 112, 253-269.	1.2	62
974	Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar. Tree Physiology, 2017, 37, 380-388.	1.4	26
975	Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Applied Soil Ecology, 2017, 119, 26-34.	2.1	105
976	Development changes in calla lily plants due to salt stress. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	8
977	Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc. Environmental Monitoring and Assessment, 2017, 189, 282.	1.3	20
978	Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard. Plant Signaling and Behavior, 2017, 12, e1297000.	1.2	30
979	Effect of salt stress on photosynthesis and related physiological characteristics of <i>Lycium ruthenicum Murr</i> . Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 680-692.	0.3	7
980	Effects of Silicon Application on Wheat Growth and Some Physiological Characteristics under Different Levels and Sources of Salinity. Communications in Soil Science and Plant Analysis, 2017, 48, 1114-1122.	0.6	16
981	Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes. Rice Science, 2017, 24, 155-162.	1.7	125
982	Salinity and periodic inundation controls on the soil-plant-atmosphere continuum of gray mangroves. Hydrological Processes, 2017, 31, 1271-1282.	1.1	14
983	Ethylenediamineâ€ <i>N</i> , <i>N</i> ′â€disuccinic acid mitigates saltâ€stress damages in strawberry by interfering with effects on the plant ionome. Annals of Applied Biology, 2017, 171, 190-201.	1.3	1
984	Phytoremediation of Metal- and Salt-Affected Soils. , 2017, , 211-231.		4
985	Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Plant Growth Regulation, 2017, 82, 409-420.	1.8	13
986	Recent methods of drought stress tolerance in plants. Plant Growth Regulation, 2017, 82, 363-375.	1.8	115
987	Simulating NaCl accumulation in a closed hydroponic crop of zucchini: Impact on macronutrient uptake, growth, yield, and photosynthesis. Journal of Plant Nutrition and Soil Science, 2017, 180, 283-293.	1.1	18
988	Coordination between <i>Bradyrhizobium</i> and <i>Pseudomonas</i> alleviates salt stress in soybean through altering root system architecture. Journal of Plant Interactions, 2017, 12, 100-107.	1.0	145

#	Article	IF	Citations
989	On the use of spectral reflectance indices to assess agroâ€morphological traits of wheat plants grown under simulated saline field conditions. Journal of Agronomy and Crop Science, 2017, 203, 406-428.	1.7	15
990	Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron. Journal of Hazardous Materials, 2017, 333, 319-328.	6.5	21
991	Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions. Agricultural Water Management, 2017, 187, 37-46.	2.4	54
992	Germination and growth of Atriplex prostrata and Plantago coronopus: Two strategies to survive in saline habitats. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 227, 56-63.	0.6	19
993	Amelioration of saline–sodic soil with gypsum can increase yield and nitrogen use efficiency in rice–wheat cropping system. Archives of Agronomy and Soil Science, 2017, 63, 1267-1280.	1.3	33
994	A Novel Wheat Nicotianamine Synthase Gene, TaNAS-D, Confers High Salt Tolerance in Transgenic Arabidopsis. Plant Molecular Biology Reporter, 2017, 35, 252-264.	1.0	5
995	Drought tolerance of bioenergy grass Saccharum spontaneum L. enhanced by arbuscular mycorrhizae. Rhizosphere, 2017, 3, 1-8.	1.4	22
996	Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environmental Reviews, 2017, 25, 269-281.	2.1	90
997	Response of dihaploid tobacco roots to salt stress. Acta Botanica Croatica, 2017, 76, 49-54.	0.3	0
998	<i>Lavandula multifida</i> response to salinity: Growth, nutrient uptake, and physiological changes. Journal of Plant Nutrition and Soil Science, 2017, 180, 96-104.	1.1	27
999	Plant Responses to Salinity Through an Antioxidative Metabolism and Proteomic Point of View. , 2017, , 173-200.		6
1000	Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.—Relationship to plant response to salt stress. Journal of Plant Physiology, 2017, 210, 9-17.	1.6	35
1001	Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 2017, 137, 64-70.	2.9	236
1002	ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis. Plant Physiology and Biochemistry, 2017, 120, 242-251.	2.8	43
1003	Physiological response to salinity stress and tolerance mechanics of Populus euphratica. Environmental Monitoring and Assessment, 2017, 189, 533.	1.3	13
1004	Role of Root Nodule Bacteria in Improving Soil Fertility and Growth Attributes of Leguminous Plants Under Arid and Semiarid Environments. Soil Biology, 2017, , 39-60.	0.6	3
1005	The effect of N and NaCl on growth, yield, and nitrate content of salad rocket (Eruca sativa Mill.). Journal of Plant Nutrition, 2017, 40, 2611-2618.	0.9	19
1006	Arbuscular Mycorrhizal Symbiosis: A Promising Approach for Imparting Abiotic Stress Tolerance in Crop Plants. , 2017, , 377-402.		4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1007	Ameliorating Salt Stress in Crops Through Plant Growth-Promoting Bacteria. , 2017, , 5	49-575.		3
1008	Effect of lignite on alleviation of salt toxicity in soybean (Glycine max L.) plants. Plant P Biochemistry, 2017, 120, 186-193.	hysiology and	2.8	13
1009	Loss of Ribosomal Protein L24A (RPL24A) suppresses proline accumulation of Arabidop zinc finger 1 (atrzf1) mutant in response to osmotic stress. Biochemical and Biophysica Communications, 2017, 494, 499-503.	sis thaliana ring al Research	1.0	10
1010	Evapotranspiration and Mineral Content of Sedum kamtschaticum Fischer Under Saline Communications in Soil Science and Plant Analysis, 2017, 48, 1399-1408.	Irrigation.	0.6	1
1011	Medicinal, Non-medicinal, Biopesticides, Color- and Dye-Yielding Plants; Secondary Met Drug Principles; Significance of Medicinal Plants; Use of Medicinal Plants in the System Traditional and Complementary and Alternative Medicines (CAMs). Progress in Drug Re Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2013	abolites and s of search 7, , 61-104.	0.6	11
1012	Genotypic differences in physiological and biochemical responses to salinity stress in m Biochemistry, 2017, 119, 294-311.	elon () Tj ETQq1 1 0.7843	14 rgBT /C 2.8)verlock 10 83
1013	Physiological responses of crop plants against Trichoderma harzianum in saline environ Botanica Croatica, 2017, 76, 154-162.	ment. Acta	0.3	42
1014	Incorporating thresholds into understanding salinity tolerance: A study using saltâ€ŧole salt marshes. Ecology and Evolution, 2017, 7, 6326-6333.	erant plants in	0.8	31
1015	Kinetics of metal toxicity in plant roots and its effects on root morphology. Plant and S 269-279.	oil, 2017, 419,	1.8	6
1016	Beneficial effects of silicon on abiotic stress tolerance in legumes. Journal of Plant Nutri 40, 2224-2236.	tion, 2017,	0.9	33
1017	Enhanced values of various physiological traits and VvNAC1 gene expression showing b stress tolerance in some grapevine cultivars as well as rootstocks. Scientia Horticultura 317-326.	etter salinity e, 2017, 225,	1.7	22
1018	Photochemical performance of Carpobrotus edulis in response to various substrate salt concentrations. South African Journal of Botany, 2017, 111, 258-266.		1.2	9
1019	Leaf Traits and Antioxidant Defense for Drought Tolerance During Early Growth Stage in Popular Traditional Rice Landraces from Koraput, India. Rice Science, 2017, 24, 207-217	n Some 7.	1.7	53
1020	Colonization with endo-mycorrhiza affects the resistance of safflower in response to sa condition. Journal of Plant Nutrition, 2017, 40, 1856-1867.	linity	0.9	3
1021	Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Go hirsutum. Journal of Plant Physiology, 2017, 218, 222-234.	ssypium	1.6	67
1022	Physiological, nutritional and growth responses of melon (Cucumis meloL.) to a gradua built-up in recirculating nutrient solution. Journal of Plant Nutrition, 2017, 40, 2168-21	l salinity 80.	0.9	14
1023	Effect of humic and fulvic substances and Moringa leaf extract on Sudan grass plants g saline conditions. Canadian Journal of Soil Science, 2017, , .	rown under	0.5	8
1024	Salt stress resilience potential of a fungal inoculant isolated from tea cultivation area in Biologia (Poland), 2017, 72, 619-627.	maize.	0.8	5

#	Article	IF	CITATIONS
1025	Application of Bioinoculants for Sustainable Agriculture. , 2017, , 473-495.		4
1026	Role of Arbuscular Mycorrhizal Fungi (AMF) in Salinity Tolerance and Growth Response in Plants Under Salt Stress Conditions. , 2017, , 71-86.		22
1027	Nutrients Requirement of Medicinal Plants of Dhofar Region of Oman. , 2017, , 71-80.		0
1028	Growth, nutrient acquisition, and physiological responses of three olive cultivars to induced salt stress. Journal of Plant Nutrition, 2017, 40, 1955-1968.	0.9	1
1029	Role of Biofertilizers in Sustainable Agriculture Under Abiotic Stresses. Microorganisms for Sustainability, 2017, , 281-301.	0.4	6
1031	Effect of the foliar enrichment and herbicides on maize and associated weeds irrigated with drainage water. Annals of Agricultural Sciences, 2017, 62, 183-192.	1.1	9
1032	Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. , 2017, , 123-144.		12
1033	β-Cyclodextrin–hemin enhances tolerance against salinity in tobacco seedlings by reestablishment of ion and redox homeostasis. Plant Growth Regulation, 2017, 81, 533-542.	1.8	6
1034	Soil salinization and critical shallow groundwater depth under saline irrigation condition in a Saharan irrigated land. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	17
1035	Photosynthetic parameters and redox homeostasis of Artemisia santonica L. under conditions of Elton region. Plant Physiology and Biochemistry, 2017, 118, 385-393.	2.8	9
1036	Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environmental and Experimental Botany, 2017, 141, 113-123.	2.0	35
1037	Plant-Microbe Interactions in Adaptation of Agricultural Crops to Abiotic Stress Conditions. , 2017, , 163-200.		91
1038	Growth Parameter and These Ratio Ionics Responses of Three Cultivars Pistachio to Low and High Salinity. Communications in Soil Science and Plant Analysis, 2017, 48, 1369-1377.	0.6	0
1039	The use of saline aquaculture effluent for production of Enterolobium contortisiliquum seedlings. Environmental Science and Pollution Research, 2017, 24, 19306-19312.	2.7	2
1040	Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russian Journal of Plant Physiology, 2017, 64, 464-477.	0.5	43
1041	Predicting green: really radical (plant) predictive processing. Journal of the Royal Society Interface, 2017, 14, 20170096.	1.5	76
1042	GC-TOF-MS analysis reveals salt stress-responsive primary metabolites in Casuarina glauca tissues. Metabolomics, 2017, 13, 1.	1.4	36
1043	Management and Remediation of Problem Soils, Solid Waste and Soil Pollution. , 2017, , 143-171.		12

#	Article	IF	CITATIONS
1044	The influence of salinity on growth, morphology, leaf ultrastructure, and cell viability of the seagrass Halodule wrightii Ascherson. Protoplasma, 2017, 254, 1529-1537.	1.0	9
1045	Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 2017, 108, 261-266.	1.2	252
1046	Reclamation of a coastal reclaimed tidal land soil by gypsum and rice straw. Archives of Agronomy and Soil Science, 2017, 63, 761-770.	1.3	5
1047	Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica, 2017, 55, 443-453.	0.9	13
1048	Potential use and perspectives of nitric oxide donors in agriculture. Journal of the Science of Food and Agriculture, 2017, 97, 1065-1072.	1.7	40
1049	Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 2017, 410, 335-356.	1.8	309
1050	Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation. Journal of the Science of Food and Agriculture, 2017, 97, 1868-1875.	1.7	45
1051	Na ⁺ Retention in the Root is a Key Adaptive Mechanism to Low and High Salinity in the Glycophyte, <i>Talinum paniculatum</i> (Jacq.) Gaertn. (Portulacaceae). Journal of Agronomy and Crop Science, 2017, 203, 56-67.	1.7	33
1052	Enzymatic and Biochemical Responses of Sesame to Sodium Chloride at Germination and Early Seedling Growth. International Journal of Vegetable Science, 2017, 23, 87-101.	0.6	3
1053	Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiologia Plantarum, 2017, 159, 290-312.	2.6	157
1054	Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environmental and Experimental Botany, 2017, 133, 70-77.	2.0	25
1055	Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population. Genome, 2017, 60, 104-127.	0.9	12
1056	Differentially expressed gene analysis of Tamarix chinensis provides insights into NaCl-stress response. Trees - Structure and Function, 2017, 31, 645-658.	0.9	13
1057	Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering, 2017, 99, 282-289.	1.6	172
1058	Codonopsis lanceolata and Nelumbo nucifera Gaertn. root extracts for functional food: metabolic profiling by MS, FTIR and fluorescence and evaluation of cytotoxicity and anti-obesity properties on 3T3-L1 cell line. European Food Research and Technology, 2017, 243, 689-700.	1.6	6
1059	Exogenous CaCl2 reduces salt stress in sour jujube by reducing Na+ and increasing K+, Ca2+, and Mg2+ in different plant organs. Journal of Horticultural Science and Biotechnology, 2017, 92, 98-106.	0.9	12
1060	Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 2017, 108, 364-369.	1.2	57
1061	24-Epibrassinolide and Sodium Nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant and Soil, 2017, 411, 483-498.	1.8	96

#	Article	IF	CITATIONS
1062	Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture, 2017, 16, 2357-2374.	1.7	156
1063	Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 2017, 68, 5961-5976.	2.4	89
1064	Salinity tolerance of three competing rangeland plant species: Studies in hydroponic culture. Ecology and Evolution, 2017, 7, 10916-10929.	0.8	10
1065	Effect of silicon on improving salinity tolerance of Taliouine <i>Crocus sativus</i> L Acta Horticulturae, 2017, , 219-228.	0.1	2
1066	A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genetics, 2017, 18, 79.	2.7	16
1067	Effect of Drought and Salinity on Volatile Organic Compounds and Other Secondary Metabolites of Citrus aurantium Leaves. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	3
1068	Biomass and Rootstock Quality of Guava (Psidium guajava L.) Saline Water Irrigated under Nitrogen Fertilization. Journal of Agricultural Science, 2017, 9, 162.	0.1	1
1069	Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira De Engenharia Agricola E Ambiental, 2017, 21, 232-237.	0.4	31
1070	Effect of Different NaCl Concentrations on Germinations Period of Oil Sunflower Seeds (Helianthus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
1071	Irrigation and Drainage in Agriculture: A Salinity and Environmental Perspective. , 2017, , .		2
1072	Production of Hydroponic Lettuce under Different Salt Levels of Nutritive Solution. Journal of Agricultural Science, 2017, 9, 242.	0.1	2
1073	Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell. Genes, 2017, 8, 195.	1.0	4
1074	Salt Stress Tolerance in Rice: Emerging Role of Exogenous Phytoprotectants. , 0, , .		14
1075	Genetic Diversity of Salt Tolerance in Miscanthus. Frontiers in Plant Science, 2017, 8, 187.	1.7	20
1075 1076	Genetic Diversity of Salt Tolerance in Miscanthus. Frontiers in Plant Science, 2017, 8, 187. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Frontiers in Plant Science, 2017, 8, 294.	1.7	86
1075 1076 1077	Genetic Diversity of Salt Tolerance in Miscanthus. Frontiers in Plant Science, 2017, 8, 187. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Frontiers in Plant Science, 2017, 8, 294. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa. Frontiers in Plant Science, 2017, 8, 356.	1.7 1.7 1.7	26 86 70
1075 1076 1077 1078	Genetic Diversity of Salt Tolerance in Miscanthus. Frontiers in Plant Science, 2017, 8, 187. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Frontiers in Plant Science, 2017, 8, 294. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa. Frontiers in Plant Science, 2017, 8, 356. Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions. Frontiers in Plant Science, 2017, 08, 435.	1.7 1.7 1.7 1.7	26 86 70 73

# 1080	ARTICLE Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance. Frontiers in Plant Science, 2017, 8, 1985.	IF 1.7	CITATIONS
1081	Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry. Ciencia Rural, 2017, 48, .	0.3	17
1082	Effects of salinity on the physiology of Salvinia auriculata Aubl. (Salviniales, Pteridophyta). Biotemas, 2017, 30, 25.	0.2	1
1083	Studying Vegetation Salinity: From the Field View to a Satellite-Based Perspective. Remote Sensing, 2017, 9, 122.	1.8	12
1084	Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 2017, 7, 18.	1.3	872
1085	Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy, 2017, 7, 61.	1.3	164
1086	Form Follows Environment: Biomimetic Approaches to Building Envelope Design for Environmental Adaptation. Buildings, 2017, 7, 40.	1.4	56
1087	Growth, Physiological, Biochemical, and Ionic Responses of Morus alba L. Seedlings to Various Salinity Levels. Forests, 2017, 8, 488.	0.9	7
1088	Comparative Analysis of Cotton Small RNAs and Their Target Genes in Response to Salt Stress. Genes, 2017, 8, 369.	1.0	21
1089	Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers. Frontiers in Microbiology, 2017, 8, 944.	1.5	71
1090	The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Frontiers in Microbiology, 2017, 8, 1945.	1.5	222
1091	Coalâ€Bed Methane Water: Effects on Soil Properties and Camelina Productivity. Journal of Environmental Quality, 2017, 46, 641-648.	1.0	6
1092	The Solanum lycopersicum WRKY3 Transcription Factor SIWRKY3 Is Involved in Salt Stress Tolerance in Tomato. Frontiers in Plant Science, 2017, 8, 1343.	1.7	89
1093	Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS ONE, 2017, 12, e0178313.	1.1	54
1094	Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE, 2017, 12, e0185017.	1.1	103
1095	Nutritional and physiological responses of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Australian Journal of Botany, 2017, 65, 573.	0.3	16
1096	Characterization of the BETA1 gene, which might play a role inBeta vulgaris subsp. maritima salt tolerance. Turkish Journal of Botany, 2017, 41, 552-558.	0.5	1
1097	Postharvest Behavior of Bioactive Compounds in Tomato Fruits Treated with Cu Nanoparticles and NaCl Stress. Applied Sciences (Switzerland), 2017, 7, 980.	1.3	34

	CITATION REF	ORT	
#	Article	IF	CITATIONS
1098	Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture. Acta Agriculturae Slovenica, 2017, 109, .	0.2	20
1099	Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracuncalus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation under salinity. Acta Agriculturae Slovenica, 2017, 109, 215.	0.2	4
1100	Approaches to Enhance Salt Stress Tolerance in Wheat. , 0, , .		27
1101	Morphophysiology of peppermint irrigated with salt water and bovine biofertilizer. African Journal of Biotechnology, 2017, 16, 1314-1323.	0.3	2
1102	Biochemical mechanisms of salinity tolerance in new promising salt tolerant cereal, tritipyrum (TriticumDurum× Thinopyrum Bessarabicum). Australian Journal of Crop Science, 2017, 11, 701-710.	0.1	1
1103	Effects of Salt Stress on Plant Growth, Nutrient Partitioning, Chlorophyll Content, Leaf Relative Water Content, Accumulation of Osmolytes and Antioxidant Compounds in Pepper (Capsicum annuum) Tj ETQq1	b.@. 7843	1542rgBT /0
1104	Response of Spring Wheat to Sulfate-Based Salinity Stress under Greenhouse and Field Conditions. Agronomy Journal, 2017, 109, 442-454.	0.9	11
1105	Effects of silicon on antioxidant enzymes, CO2, proline and biological activity of in vitro-grown cape gooseberry under salinity stress. Australian Journal of Crop Science, 2017, 11, 438-446.	0.1	11
1106	Improved Salinity Resilience in Black Bean by Seed Elicitation Using Organic Compounds. Agronomy Journal, 2017, 109, 1991-2003.	0.9	6
1107	Tolerance of Basil Genotypes to Salinity. Journal of Agricultural Science, 2017, 9, 283.	0.1	10
1108	Response of eggplant crop fertigated with doses of nitrogen and potassium. Revista Brasileira De Engenharia Agricola E Ambiental, 2017, 21, 21-26.	0.4	8
1109	Shoot and Root Biomass Allocation of Sunflower Varying with Soil Salinity and Nitrogen Applications. Agronomy Journal, 2017, 109, 2545-2555.	0.9	21
1110	Re-watering: An effective measure to recover growth and photosynthetic characteristics in salt-stressed Brassica napus L. Chilean Journal of Agricultural Research, 2017, 77, 78-86.	0.4	11
1111	Physiology of â€ ⁻ Paluma' guava under irrigation with saline water and nitrogen fertilization. Semina:Ciencias Agrarias, 2017, 38, 623.	0.1	8
1112	Salt stress affects mRNA editing in soybean chloroplasts. Genetics and Molecular Biology, 2017, 40, 200-208.	0.6	28
1113	"Omics†A Gateway Towards Abiotic Stress Tolerance. , 2018, , 1-45.		3
1114	Omics-Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.). , 2018, , 243-266.		5
1115	<i>Phelipanche aegyptiaca</i> parasitism impairs salinity tolerance in young leaves of tomato. Physiologia Plantarum, 2018, 164, 191-203.	2.6	2

#	Article	IF	CITATIONS
1116	Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiology and Biochemistry, 2018, 126, 11-21.	2.8	20
1117	Soil moisture and salt ionic composition effects on species distribution and diversity in semiarid inland saline habitats, northwestern China. Ecological Research, 2018, 33, 505-515.	0.7	12
1118	Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicology and Environmental Safety, 2018, 154, 171-179.	2.9	65
1119	Alleviation of NaCl toxicity in the cyanobacterium Synechococcus sp. PCC 7942 by exogenous calcium supplementation. Journal of Applied Phycology, 2018, 30, 1465-1482.	1.5	14
1120	Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum). Environmental and Experimental Botany, 2018, 149, 109-119.	2.0	49
1121	Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus albaÂ×ÂP. glandulosa). Trees - Structure and Function, 2018, 32, 823-833.	0.9	20
1122	Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Scientia Horticulturae, 2018, 233, 349-358.	1.7	38
1123	Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Scientia Horticulturae, 2018, 234, 312-317.	1.7	72
1124	Interactive effects of road salt and sediment disturbance on the productivity of seven common aquatic macrophytes. Freshwater Biology, 2018, 63, 709-720.	1.2	15
1125	Salinity Stress Responses and Adaptive Mechanisms in Major Glycophytic Crops: The Story So Far. , 2018, , 1-39.		9
1126	Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. Journal of Plant Physiology, 2018, 226, 136-144.	1.6	72
1127	The responses of cucumber plants subjected to different salinity or fertilizer concentrations and reproductive success of Tetranychus urticae mites on these plants. Experimental and Applied Acarology, 2018, 75, 41-53.	0.7	4
1128	Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 2018, 236, 244-250.	1.7	94
1129	Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants. , 2018, , 85-136.		52
1130	Plant Osmoregulation as an Emergent Waterâ€Saving Adaptation. Water Resources Research, 2018, 54, 2781-2798.	1.7	18
1131	Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Current Plant Biology, 2018, 13, 16-22.	2.3	50
1132	Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant Physiology and Biochemistry, 2018, 125, 164-171.	2.8	77
1133	Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (<i>Pistacia vera</i> L.) rootstocks. Journal of Plant Interactions, 2018, 13, 73-82.	1.0	252

#	Article	IF	CITATIONS
1134	Healthy, Tasty and Sustainable Mediterranean Food. UMAMI Taste and Polyphenols of Twiggy Glasswort (Salicornia ramosissima). , 2018, , 191-198.		1
1135	Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. Microorganisms for Sustainability, 2018, , 127-163.	0.4	38
1136	In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston. Environmental Science and Pollution Research, 2018, 25, 6783-6796.	2.7	11
1137	Induction of priming by salt stress in neighboring plants. Environmental and Experimental Botany, 2018, 147, 261-270.	2.0	34
1138	Ameliorative effects of Trichoderma harzianum on monocot crops under hydroponic saline environment. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	26
1139	Recent Advances in Halophilic Protozoa Research. Journal of Eukaryotic Microbiology, 2018, 65, 556-570.	0.8	30
1140	The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). Planta, 2018, 247, 875-886.	1.6	21
1141	Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 2018, 255, 953-962.	1.0	127
1142	Potential of combined Water Sensitive Urban Design systems for salinity treatment in urban environments. Journal of Environmental Management, 2018, 209, 169-175.	3.8	17
1143	Nitrogen nutrition and adaptation of glycophytes to saline environment: a review. Archives of Agronomy and Soil Science, 2018, 64, 1181-1206.	1.3	34
1144	Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?. Photosynthetica, 2018, 56, 86-104.	0.9	305
1145	Effect of drought and salinity stresses on morphological and physiological characteristics of canola. International Journal of Environmental Science and Technology, 2018, 15, 1859-1866.	1.8	34
1146	Mangrove carbon assessment tool: Model development and sensitivity analysis. Estuarine, Coastal and Shelf Science, 2018, 208, 23-35.	0.9	18
1147	Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 275-287.	1.7	61
1148	Different tolerance mechanism to alkaline stresses between Populus bolleana and its desert relative Populus euphratica. Plant and Soil, 2018, 426, 349-363.	1.8	11
1149	GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean. Journal of Integrative Agriculture, 2018, 17, 530-538.	1.7	27
1150	Plant distribution along an elevational gradient in a macrotidal salt marsh on the west coast of Korea. Aquatic Botany, 2018, 147, 52-60.	0.8	18
1151	Regulatory mechanism of NaCl stress on photosynthesis and antioxidant capacity mediated by transglutaminase in cucumber (Cucumis sativus L.) seedlings. Scientia Horticulturae, 2018, 235, 294-306.	1.7	32

#	Article	IF	CITATIONS
1152	Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous and Mesoporous Materials, 2018, 264, 240-247.	2.2	40
1153	Spermine Pre-Treatment Improves Some Physiochemical Parameters and Sodium Transporter Gene Expression of Pumpkin Seedlings under Salt Stress. Russian Journal of Plant Physiology, 2018, 65, 222-228.	0.5	4
1154	An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiologia Plantarum, 2018, 164, 279-289.	2.6	80
1155	Effects of Salt Stress on Photosynthetic Pigments and Activity of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Kalidium foliatum. Russian Journal of Plant Physiology, 2018, 65, 98-103.	0.5	52
1156	Influence of foliar application of polyamines on growth, gas-exchange characteristics, and chlorophyll fluorescence in Bakraii citrus under saline conditions. Photosynthetica, 2018, 56, 731-742.	0.9	46
1157	Effect of high light intensity on the photosynthetic apparatus of two hybrid lines of Paulownia grown on soils with different salinity. Photosynthetica, 2018, 56, 832-840.	0.9	19
1158	An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing. Food Chemistry, 2018, 239, 831-839.	4.2	38
1159	ACC deaminase-producing bacteria mediated drought and salt tolerance in <i>Capsicum annuum</i> . Journal of Plant Nutrition, 2018, 41, 574-583.	0.9	77
1160	Evaluation of two green composts for peat substitution in geranium (Pelargonium zonale L.) cultivation: Effect on plant growth, quality, nutrition, and photosynthesis. Scientia Horticulturae, 2018, 228, 213-221.	1.7	38
1161	Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 2018, 228, 56-65.	1.7	78
1162	The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. Journal of Plant Nutrition, 2018, 41, 123-135.	0.9	6
1163	Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 2018, 147, 881-896.	2.9	340
1164	Cascades of Ionic and Molecular Networks Involved in Expression of Genes Underpin Salinity Tolerance in Cotton. Journal of Plant Growth Regulation, 2018, 37, 668-679.	2.8	18
1165	Use of lowâ€voltage direct current electricity treatment to increase phenolics content of postharvest okra: effects of some treatment parameters. International Journal of Food Science and Technology, 2018, 53, 441-448.	1.3	3
1166	Comparative Analysis of the Reaction to Salinity of Different Chickpea (Cicer aretinum L.) Genotypes: A Biochemical, Enzymatic and Transcriptional Study. Journal of Plant Growth Regulation, 2018, 37, 391-402.	2.8	10
1167	Physiological and antioxidant responses of the sabkha biotope halophyte Limonium delicatulum to seasonal changes in environmental conditions. Plant Physiology and Biochemistry, 2018, 123, 180-191.	2.8	33
1168	Decadal shifts in macroalgae assemblages in impacted urban lagoons in Brazil. Ecological Indicators, 2018, 85, 869-877.	2.6	8
1169	Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Research, 2018, 215, 207-221.	2.3	86

ARTICLE

IF CITATIONS

1170 Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

1171	Photosynthetic Responses of a Wheat Mutant (Rht-B1c) with Altered DELLA Proteins to Salt Stress. Journal of Plant Growth Regulation, 2018, 37, 645-656.	2.8	25
1172	Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynthesis Research, 2018, 136, 291-301.	1.6	52
1173	Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecological Indicators, 2018, 85, 253-261.	2.6	38
1174	Physiological and biochemical responses of Camellia sinensis to stress associated with Empoasca vitis feeding. Arthropod-Plant Interactions, 2018, 12, 65-75.	0.5	5
1175	Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of <i>Trichoderma harzianum</i> . New Zealand Journal of Crop and Horticultural Science, 2018, 46, 117-132.	0.7	15
1176	Response of four woody species to salinity and water deficit in initial growth phase. Revista Brasileira De Engenharia Agricola E Ambiental, 2018, 22, 753-757.	0.4	8
1177	Physiological and structural modifications in snail medic (Medicago scutellata L.) plants exposed to salinity. Acta Biologica Hungarica, 2018, 69, 336-349.	0.7	1
1178	Comparison of the responses to NaCl stress of three tomato introgression lines. Acta Biologica Hungarica, 2018, 69, 464-480.	0.7	6
1179	PHYSIOLOGICAL INDICES AND GROWTH OF â€ ⁻ PALUMA' GUAVA UNDER SALINE WATER IRRIGATION AND NITROGEN FERTIGATION. Revista Caatinga, 2018, 31, 808-816.	0.3	8
1180	Effects of Spraying Abscisic Acid on Photosynthetic Physiology of Lettuce Seedlings under Salt Stress. IOP Conference Series: Earth and Environmental Science, 0, 199, 052011.	0.2	5
1181	Salty fertile lakes: how salinization and eutrophication alter the structure of freshwater communities. Ecosphere, 2018, 9, e02383.	1.0	48
1182	The Common Bean (Phaseolus vulgaris) Basic Leucine Zipper (bZIP) Transcription Factor Family: Response to Salinity Stress in Fertilized and Symbiotic N2-Fixing Plants. Agriculture (Switzerland), 2018, 8, 160.	1.4	5
1183	The Proteome Response of Salt-Sensitive Rapeseed (Brassica napus L.) Genotype to Salt Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 47, 17-23.	0.5	8
1184	The Influence of Osmotic Stress on Physiological and Biochemical Indices at Garlic (Allium sativum L.) Local Populations. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 2018, 75, 171.	0.1	0
1185	GERMINATION AND INITIAL GROWTH OF Sesbania punicea (Cav.)Benth.: INFLUENCE OF SALINITY, FLOODING AND LIGHT1. Revista Arvore, 2018, 42, .	0.5	0
1186	Physiological and biochemical characterization of rootlets response to salt stress in two <i>Medicago truncatula</i> Gaertn. ecotypes. Plant Root, 2018, 12, 1-10.	0.3	2
1187	Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice. Theoretical and Experimental Plant Physiology, 2018, 30, 335-345.	1.1	13

#	Article	IF	CITATIONS
1188	Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels. Revista Brasileira De Engenharia Agricola E Ambiental, 2018, 22, 231-236.	0.4	9
1189	Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality. Sustainability, 2018, 10, 3083.	1.6	39
1190	Exogenous Calcium Supplementation Improves Salinity Tolerance in BRRI Dhan28; a Salt-Susceptible High-Yielding Oryza Sativa Cultivar. Journal of Crop Science and Biotechnology, 2018, 21, 383-394.	0.7	39
1191	Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in Medicago truncatula through High-Throughput Sequencing. International Journal of Molecular Sciences, 2018, 19, 4076.	1.8	30
1192	Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture (Switzerland), 2018, 8, 201.	1.4	11
1193	Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (Vitis) Tj ETQq1 1	l 0.784314 rg 1.8	;BT_/Overlock
1194	iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (Beta vulgaris L.). International Journal of Molecular Sciences, 2018, 19, 3866.	1.8	16
1195	Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biology, 2018, 18, 311.	1.6	33
1196	Tritipyrum (Triticum durum × Thinopyrum bessarabicum) might be able to provide an economic and stable solution against the soil salinity problem. Australian Journal of Crop Science, 2018, 12, 1159-1168.	0.1	1
1197	The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Botanica Brasilica, 2018, 32, 37-46.	0.8	63
1198	Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. Journal of Plant Physiology, 2018, 231, 434-442.	1.6	82
1199	Vegetation Controls on Dryland Salinity. Geophysical Research Letters, 2018, 45, 11,669.	1.5	25
1200	Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. Journal of Plant Interactions, 2018, 13, 506-513.	1.0	59
1201	Serratia liquefaciens KM4 Improves Salt Stress Tolerance in Maize by Regulating Redox Potential, Ion Homeostasis, Leaf Gas Exchange and Stress-Related Gene Expression. International Journal of Molecular Sciences, 2018, 19, 3310.	1.8	109
1202	Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 2018, 133, 116-126.	2.8	61
1203	Salinity tolerance and sodium localization in mycorrhizal strawberry plants. Communications in Soil Science and Plant Analysis, 2018, 49, 2782-2792.	0.6	7
1204	Low-frequency electromagnetic treatment of oilfield produced water for reuse in agriculture: effect on water quality, germination, and plant growth. Environmental Science and Pollution Research, 2018, 25, 34380-34391.	2.7	5
1205	Combined effects of NaCl and Cd2+ stress on the photosynthetic apparatus of Thellungiella salsuginea. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1274-1287.	0.5	24

#	Article	IF	CITATIONS
1206	Legume plants may facilitate Zanthoxylum bungeanum tolerance to extreme rainfall. Scientific Reports, 2018, 8, 15996.	1.6	2
1207	Modeling the effect of soil physical amendments on reclamation and revegetation success of a saline-sodic soil in a semi-arid environment. Arid Land Research and Management, 2018, 32, 379-406.	0.6	11
1208	Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. to high environmental salinity. Ecotoxicology and Environmental Safety, 2018, 165, 250-260.	2.9	19
1209	Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety, 2018, 166, 18-25.	2.9	79
1210	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188.	1.7	30
1211	Transcript profiling of salt tolerant tobacco mutants generated via mutation breeding. Gene Expression Patterns, 2018, 29, 59-64.	0.3	2
1212	Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop and Pasture Science, 2018, 69, 535.	0.7	13
1213	Using Humic Substances and Foliar Spray with Moringa Leaf Extract to Alleviate Salinity Stress on Wheat. Handbook of Environmental Chemistry, 2018, , 265-286.	0.2	3
1214	The Induction of Salinity Stress Resistance in Rosemary as Influenced by Salicylic Acid and Jasmonic Acid. Communications in Soil Science and Plant Analysis, 2018, 49, 1761-1773.	0.6	8
1215	Relation between level of autumn dormancy and salt tolerance in lucerne (Medicago sativa). Crop and Pasture Science, 2018, 69, 194.	0.7	2
1216	Inducing drought tolerance in greenhouse grown Juglans regia by imposing controlled salt stress: The role of osmotic adjustment. Scientia Horticulturae, 2018, 239, 181-192.	1.7	30
1217	Photosynthetic, photochemical and osmotic regulation changes in tobacco resistant and susceptible to Alternaria alternata. Tropical Plant Pathology, 2018, 43, 413-421.	0.8	9
1218	Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.). Plant Cell Reports, 2018, 37, 1187-1199.	2.8	57
1219	Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 2018, 186, 999-1016.	1.4	204
1220	Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 2018, 56, 1313-1325.	0.9	70
1221	24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 2018, 130, 69-79.	2.8	129
1222	Environmental Controls, Emergent Scaling, and Predictions of Greenhouse Gas (GHG) Fluxes in Coastal Salt Marshes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2234-2256.	1.3	47
1223	Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environmental Science and Pollution Research, 2018, 25, 25916-25932.	2.7	32

#	Article	IF	Citations
1224	Proteomics Perspectives in Post-Genomic Era for Producing Salinity Stress-Tolerant Crops. , 2018, , 239-266.		4
1225	Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses. Agricultural Water Management, 2018, 203, 197-206.	2.4	12
1226	Growth stress response to sea level rise in species with contrasting functional traits: A case study in tidal freshwater forested wetlands. Environmental and Experimental Botany, 2018, 155, 378-386.	2.0	23
1227	The modulation of various physiochemical changes in Bruguiera cylindrica (L.) Blume affected by high concentrations of NaCl. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	16
1228	The Effects of NPR1 Dependent Salicylic Acid Change in Increasing Salt Tolerance of Soybean Leaves by Acclimation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46, 356-364.	0.5	1
1229	Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza, 2018, 28, 727-746.	1.3	51
1230	The Involvement of Different Secondary Metabolites in Salinity Tolerance of Crops. , 2018, , 21-48.		33
1231	Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula. Methods in Molecular Biology, 2018, 1822, 291-314.	0.4	6
1232	Morpho-physiological and antioxidant response to NaCl-induced stress in in vitro shoots of pomegranate (Punica granatum L.). Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	8
1233	Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L.) to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water. Plants, 2018, 7, 29.	1.6	24
1234	Effect of NaCl concentration and UV-B on lettuce crop in hydroponic system. Acta Horticulturae, 2018, , 51-58.	0.1	1
1235	Variation in Hydrogen Isotope Composition Among Salt Marsh Plant Organic Compounds Highlights Biochemical Mechanisms Controlling Biosynthetic Fractionation. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2645-2660.	1.3	8
1236	Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Frontiers in Microbiology, 2018, 9, 148.	1.5	304
1237	Plant Growth-Promoting Rhizobacteria (PGPR): Perspective in Agriculture Under Biotic and Abiotic Stress. , 2018, , 333-342.		32
1238	A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions. Agronomy, 2018, 8, 23.	1.3	46
1239	Melatonin: A Multifunctional Factor in Plants. International Journal of Molecular Sciences, 2018, 19, 1528.	1.8	148
1240	Nitric Oxide Is Required for Melatonin-Enhanced Tolerance against Salinity Stress in Rapeseed (Brassica napus L.) Seedlings. International Journal of Molecular Sciences, 2018, 19, 1912.	1.8	136
1241	Changes in Photosynthetic Pigments, Total Phenolic Content, and Antioxidant Activity of Salvia coccinea Buc'hoz Ex Etl. Induced by Exogenous Salicylic Acid and Soil Salinity. Molecules, 2018, 23, 1296.	1.7	41

#	Article	IF	CITATIONS
1242	Anthocyanins of Coloured Wheat Genotypes in Specific Response to SalStress. Molecules, 2018, 23, 1518.	1.7	55
1243	Lipids From Microalgae. , 2018, , 109-131.		20
1244	Changing relations between proteins and osmolytes: a choice of nature. Physical Chemistry Chemical Physics, 2018, 20, 20315-20333.	1.3	35
1245	Understanding the Phytohormones Biosynthetic Pathways for Developing Engineered Environmental Stress-Tolerant Crops. , 2018, , 417-450.		9
1246	Responses of Arabica coffee (Coffea arabica L. var. CatuaÃ) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 576-589.	0.9	15
1247	Epibrassinolide Application Regulates Some Key Physio-biochemical Attributes As Well As Oxidative Defense System in Maize Plants Grown Under Saline Stress. Journal of Plant Growth Regulation, 2018, 37, 1244-1257.	2.8	22
1248	Comparison of nutrient uptake and antioxidative response among four Labiatae herb species under salt stress condition. Soil Science and Plant Nutrition, 2018, 64, 589-597.	0.8	16
1249	Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnology for Biofuels, 2018, 11, 68.	6.2	36
1250	Saline and Sodic Soils. , 2018, , 255-298.		21
1251	Regeneration and colonization abilities of the invasive species Elodea canadensis and Elodea nuttallii under a salt gradient: implications for freshwater invasibility. Hydrobiologia, 2018, 817, 193-203.	1.0	16
1252	Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theoretical and Experimental Plant Physiology, 2018, 30, 113-127.	1.1	14
1253	Effects of arbuscular mycorrhizal fungi on <i>Leymus chinensis</i> seedlings under salt–alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance. RSC Advances, 2018, 8, 14500-14509.	1.7	22
1254	Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 2018, 10, 25-33.	0.9	20
1255	The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, 2018, 127, 599-607.	2.8	97
1256	Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Scientific Reports, 2018, 8, 12349.	1.6	170
1257	Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene, 2018, 678, 324-336.	1.0	31
1258	Penconazole alleviates salt-induced damage in safflower (<i>Carthamus tinctorius</i> L.) plants. Journal of Plant Interactions, 2018, 13, 420-427.	1.0	10
1259	Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicology and Environmental Safety, 2018, 164, 520-529.	2.9	90

#	Article	IF	CITATIONS
1260	Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil. Canadian Journal of Microbiology, 2018, 64, 968-978.	0.8	69
1261	Review: The economics of soil health. Food Policy, 2018, 80, 1-9.	2.8	30
1262	Evaluation of <i>Spinacia oleracea</i> (L.) for phytodesalination and augmented production of bioactive metabolite, 20-hydroxyecdysone. International Journal of Phytoremediation, 2018, 20, 981-994.	1.7	9
1263	Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules, 2018, 23, 178.	1.7	102
1264	Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L PLoS ONE, 2018, 13, e0193394.	1.1	27
1265	Salinity Stress Alleviation by Organic and Inorganic Fertilization. , 2018, , 437-476.		4
1266	Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Functional Plant Biology, 2018, 45, 1096.	1.1	82
1267	Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 2018, 240, 196-204.	1.7	145
1268	Response of Plants to Salinity Stress and the Role of Salicylic Acid in Modulating Tolerance Mechanisms: Physiological and Proteomic Approach. , 2018, , 103-136.		4
1269	Metabolomics-Guided Elucidation of Abiotic Stress Tolerance Mechanisms in Plants. , 2018, , 89-131.		15
1270	Recent Advances in Abiotic Stress Tolerance of Plants Through Chemical Priming: An Overview. , 2018, , 51-79.		31
1271	Assessment of different wheat genotypes with altered genetic background in response to different salinity levels. Journal of Plant Nutrition, 2018, 41, 1821-1833.	0.9	9
1272	Novel Perspectives of Biotic and Abiotic Stress Tolerance Mechanism in Actinobacteria. , 2018, , 235-244.		7
1273	Effect of salinity on germination characters and seedlings parameters of Egyptian flax cultivars growing in Nyiregyhaza. Acta Ecologica Sinica, 2019, 39, 102-108.	0.9	8
1274	Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Scientia Horticulturae, 2019, 243, 148-158.	1.7	21
1275	Beneficial Effects of Silicon Application in Alleviating Salinity Stress in Halophytic Puccinellia Distans Plants. Silicon, 2019, 11, 1001-1010.	1.8	25
1276	Overexpression of Ks-type dehydrins gene OeSRC1 from Olea europaea increases salt and drought tolerance in tobacco plants. Molecular Biology Reports, 2019, 46, 5745-5757.	1.0	8
1277	Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Frontiers in Plant Science, 2019, 10, 923.	1.7	195

#	Article	IF	CITATIONS
1278	Growth, Physiological and Biochemical Responses of two Greek Cotton Cultivars to Salt Stress and their Impact as Selection Indices for Salt Tolerance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, .	0.5	3
1279	Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of <i>Ocimum basilicum</i> L. against salt stress. Physiologia Plantarum, 2020, 168, 361-373.	2.6	68
1280	Restoration of Plant Growth Under Saline Soil by Halotolerant Plant Growth-Promoting Rhizobacteria (PGPR). , 2019, , 23-51.		3
1281	Development of Salt Tolerance in Crops Employing Halotolerant Plant Growth–Promoting Rhizobacteria Associated with Halophytic Rhizosphere Soils. , 2019, , 75-101.		3
1282	Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. , 2019, , 1-22.		25
1283	Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants. , 2019, , 103-146.		17
1284	Stress and defense responses in plant secondary metabolites production. Biological Research, 2019, 52, 39.	1.5	743
1285	Effect of salinity on the morphological, physiological and biochemical properties of lettuce (<i>Lactuca sativa</i> L.) in Bangladesh. Open Agriculture, 2019, 4, 361-373.	0.7	33
1286	Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in <i>Coriandrum sativum</i> . Journal of Plant Interactions, 2019, 14, 386-396.	1.0	50
1287	Nuclear Migration: An Indicator of Plant Salinity Tolerance in vitro. Frontiers in Plant Science, 2019, 10, 783.	1.7	6
1288	Host Plant Salinity Stress Affects the Development and Population Parameters of Nilaparvata lugens (Hemiptera: Delphacidae). Environmental Entomology, 2019, 48, 1149-1161.	0.7	8
1289	Molecular cloning and functional characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from Spartina alterniflora reveals its involvement in salt stress response. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	6
1290	Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage. Rice Science, 2019, 26, 207-219.	1.7	70
1291	A Physic Nut Stress-Responsive HD-Zip Transcription Factor, JcHDZ07, Confers Enhanced Sensitivity to Salinity Stress in Transgenic Arabidopsis. Frontiers in Plant Science, 2019, 10, 942.	1.7	25
1292	Soil Salinity and Maize Growth under Cycle Irrigation in Coastal Soils. Agronomy Journal, 2019, 111, 2276-2286.	0.9	11
1293	Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. Science of the Total Environment, 2019, 690, 911-922.	3.9	18
1294	Induction of Wheat Plant Resistance to Stressors by Donors of Nitric Oxide and Hydrogen Sulfide. , 2019, , 521-556.		3
1295	Behavior of Four Olive Cultivars During Salt Stress. Frontiers in Plant Science, 2019, 10, 867.	1.7	42
# 1296	ARTICLE Responses of plant distributions in drainage ditch banks to soil salinity in an arid agricultural irrigation region of Northwest China. Chemistry and Ecology. 2019, 35, 693-708.	IF 0.6	Citations
-----------	--	------------------	-------------
1297	Xylem–phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress. New Phytologist, 2019, 224, 644-662.	3.5	25
1298	Salinity Stress-Dependent Coordination of Metabolic Networks in Relation to Salt Tolerance in Plants. Soil Biology, 2019, , 401-422.	0.6	3
1299	The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi. Soil Biology, 2019, , 303-327.	0.6	5
1300	Insights in the Physiological, Biochemical and Molecular Basis of Salt Stress Tolerance in Plants. Soil Biology, 2019, , 353-374.	0.6	9
1301	Effect of Salt Stress on Plants and Role of Microbes in Promoting Plant Growth Under Salt Stress. Soil Biology, 2019, , 423-435.	0.6	13
1302	Effects of spermidine and salinity stress on growth and biochemical response of paraquatâ€susceptibe and â€resistant goosegrass (Eleusine indica L.). Weed Biology and Management, 2019, 19, 75-84.	0.6	6
1303	Salinity and growth effects on dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas of Skeletonema costatum, Phaeocystis globosa and Heterocapsa triquetra. Estuarine, Coastal and Shelf Science, 2019, 226, 106275.	0.9	12
1304	Extending Hyperspectral Imaging for Plant Phenotyping to the UV-Range. Remote Sensing, 2019, 11, 1401.	1.8	33
1305	Genomics and Molecular Breeding for Improving Tolerance to Abiotic Stress in Barley (Hordeum) Tj ETQq1 1 0.784	1314 rgBT 1.4	/Qverlock 1
1308	Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Physiology and Biochemistry, 2019, 144, 312-323.	2.8	28
1309	Transcriptome Profiling of the Salt-Stress Response in the Halophytic Green Alga Dunaliella salina. Plant Molecular Biology Reporter, 2019, 37, 421-435.	1.0	13
1310	Silicon and Salinity: Crosstalk in Crop-Mediated Stress Tolerance Mechanisms. Frontiers in Plant Science, 2019, 10, 1429.	1.7	106
1311	Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerance in cabbage (Brassica oleracea L.). Horticulture Environment and Biotechnology, 2019, 60, 853-869.	0.7	16
1312	Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biology, 2019, 19, 479.	1.6	98
1313	Compensatory effects stabilize the functioning of Baltic brackish and salt marsh plant communities. Estuarine, Coastal and Shelf Science, 2019, 231, 106480.	0.9	4
1314	Saltâ€Treated Roots of <i>Oryza australiensis</i> Seedlings are Enriched with Proteins Involved in Energetics and Transport. Proteomics, 2019, 19, e1900175.	1.3	6
1316	Melatonin: Role in Increasing Plant Tolerance in Abiotic Stress Conditions. , 0, , .		9

#	Article	IF	CITATIONS
1317	Genome-Wide Mining and Identification of Protein Kinase Gene Family Impacts Salinity Stress Tolerance in Highly Dense Genetic Map Developed from Interspecific Cross between G. hirsutum L. and G. darwinii G. Watt. Agronomy, 2019, 9, 560.	1.3	21
1318	Methyl Jasmonate and Salinity Increase Anthocyanin Accumulation in Radish Sprouts. Horticulturae, 2019, 5, 62.	1.2	14
1319	Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science, 2019, , 810-820.	0.1	26
1320	Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum. Microorganisms, 2019, 7, 289.	1.6	37
1321	Physiological role of thiamine and weed control treatments on faba bean and associated weeds grown under salt affected soil. Bulletin of the National Research Centre, 2019, 43, .	0.7	8
1322	Compatible osmolytes - bioprotectants: Is there a common link between their hydration and their protective action under abiotic stresses?. Journal of Molecular Liquids, 2019, 292, 111339.	2.3	32
1323	Se Nanoparticles Induce Changes in the Growth, Antioxidant Responses, and Fruit Quality of Tomato Developed under NaCl Stress. Molecules, 2019, 24, 3030.	1.7	90
1324	Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 2019, 167, 103870.	2.0	46
1325	Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 2019, 25, 1107-1119.	1.4	56
1326	Chlorophyll a fluorescence analysis reveals divergent photosystem II responses to saline, alkaline and saline–alkaline stresses in the two Lotus japonicus model ecotypes MG20 and Gifu-129. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	11
1327	Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and µ-XRF Spectrometry. Frontiers in Plant Science, 2019, 10, 1139.	1.7	46
1328	NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.). Scientific Reports, 2019, 9, 12522.	1.6	38
1329	Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotoxicology and Environmental Safety, 2019, 184, 109624.	2.9	38
1330	Yield prediction of apricot using a hybrid particle swarm optimization-imperialist competitive algorithm- support vector regression (PSO-ICA-SVR) method. Scientia Horticulturae, 2019, 257, 108756.	1.7	33
1331	Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiology and Molecular Biology of Plants, 2019, 25, 1335-1347.	1.4	6
1332	Predicting the invasive potential of a non-native mangrove reforested plant (Laguncularia racemosa) in China. Ecological Engineering, 2019, 139, 105591.	1.6	9
1333	Identification of responsive miRNAs involved in combination stresses of phosphate starvation and salt stress in soybean root. Environmental and Experimental Botany, 2019, 167, 103823.	2.0	42
1334	Interspecific Variations in the Growth, Water Relations and Photosynthetic Responses of Switchgrass Genotypes to Salinity Targets Salt Exclusion for Maximising Bioenergy Production. Agriculture (Switzerland), 2019, 9, 205.	1.4	4

#	Δρτιςι ε	IF	CITATIONS
π 1335	Spatial Variability of Water Electrical Conductivity and Its Implications for Agricultural Planning.	0.6	0
1000	Journal of Irrigation and Drainage Engineering - ASCE, 2019, 145, 05019010.	0.0	0
1336	Effect of Soil and Irrigation Water Salinity in the Productivity and Essential Oil Constituents of Chamomile (Chamomilla recutita L.). Journal of Essential Oil-bearing Plants: JEOP, 2019, 22, 962-971.	0.7	8
1337	Geochemical assessment of water quality and its suitability for agricultural use in the Djedra wadi subwatershed, northeast Algeria. Euro-Mediterranean Journal for Environmental Integration, 2019, 4, 1.	0.6	10
1338	Validation of QTLs in Bangladeshi rice landrace Horkuch responsible for salt tolerance in seedling stage and maturation. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	8
1339	Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L Functional and Integrative Genomics, 2019, 19, 565-574.	1.4	24
1340	The Effect of Bacillus licheniformis MH48 on Control of Foliar Fungal Diseases and Growth Promotion of Camellia oleifera Seedlings in the Coastal Reclaimed Land of Korea. Pathogens, 2019, 8, 6.	1.2	33
1341	The Growth Promotion of Two Salt-Tolerant Plant Groups with PGPR Inoculation: A Meta-Analysis. Sustainability, 2019, 11, 378.	1.6	89
1342	Foliar- and soil-applied salicylic acid and bagasse compost addition to soil reduced deleterious effects of salinity on wheat. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	7
1343	Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics, 2019, 20, 76.	1.2	59
1344	Seawater potential use in soilless culture: A review. Scientia Horticulturae, 2019, 249, 199-207.	1.7	42
1345	Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 773-792.	1.9	32
1346	Evaluation of Salt Tolerance and Its Relationship with Carbon Isotope Discrimination and Physiological Parameters of Barley Genotypes. Communications in Soil Science and Plant Analysis, 2019, 50, 594-610.	0.6	6
1347	Effects of Two Doses of Organic Extract-Based Biostimulant on Greenhouse Lettuce Grown Under Increasing NaCl Concentrations. Frontiers in Plant Science, 2018, 9, 1870.	1.7	45
1348	Transgenic Arabidopsis overexpressing MsSNAT enhances salt tolerance via the increase in autophagy, and the reestablishment of redox and ion homeostasis. Environmental and Experimental Botany, 2019, 164, 20-28.	2.0	30
1349	Polyamines are involved in GABA-regulated salinity-alkalinity stress tolerance in muskmelon. Environmental and Experimental Botany, 2019, 164, 181-189.	2.0	35
1350	Relative Salt Tolerance of Four Herbaceous Perennial Ornamentals. Horticulturae, 2019, 5, 36.	1.2	8
1351	Protective effect of oil extracted from Neophocaena asiaeorientalis against hydgrogen peroxide-induced oxidative stress in HepG2 cells. Fisheries Science, 2019, 85, 867-876.	0.7	2
1352	Pyraclostrobin can mitigate salinity stress in tomato crop. Agricultural Water Management, 2019, 222, 254-264.	2.4	19

#	Article	IF	CITATIONS
1353	Effects of salt stress on the morphological characteristics, total phenol and total anthocyanin contents of Roselle (Hibiscus sabdariffa L.). Plant Physiology Reports, 2019, 24, 210-214.	0.7	11
1354	Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere, 2019, 235, 734-748.	4.2	96
1355	Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae, 2019, 256, 108594.	1.7	53
1356	Characterization of physiochemical and anatomical features associated with enhanced phytostabilization of copper in <i>Bruguiera cylindrica</i> (L.) Blume. International Journal of Phytoremediation, 2019, 21, 1423-1441.	1.7	24
1357	Impact of Paper Mill Waste on Physicochemical Properties of Soil, Crop Yield, and Chemical Composition of Plants. Clean - Soil, Air, Water, 2019, 47, 1900080.	0.7	2
1358	Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Science of the Total Environment, 2019, 686, 107-117.	3.9	52
1359	Plants and salt: Plant response and adaptations to salinity. , 2019, , 101-112.		27
1360	Ontogenetic variation in salinity tolerance and ecophysiology of coastal dune plants. Annals of Botany, 2020, 125, 301-314.	1.4	10
1361	1980s–2010s: The world's largest mangrove ecosystem is becoming homogeneous. Biological Conservation, 2019, 236, 79-91.	1.9	41
1362	The physiological and biochemical photosynthetic properties of Lycium ruthenicum Murr in response to salinity and drought. Scientia Horticulturae, 2019, 256, 108530.	1.7	21
1363	Nanotechnology for Phytoremediation of Heavy Metals: Mechanisms of Nanomaterial-Mediated Alleviation of Toxic Metals. , 2019, , 315-327.		9
1364	Plant Abiotic Stress: Function of Nitric Oxide and Hydrogen Peroxide. , 2019, , 201-219.		2
1365	Protein Modification in Plants in Response to Abiotic Stress. , 2019, , 171-201.		9
1366	The elemental composition of halophytes correlates with key morphological adaptations and taxonomic groups. Plant Physiology and Biochemistry, 2019, 141, 259-278.	2.8	40
1367	Growing spinach (Spinacia oleracea) with different seawater concentrations: Effects on fresh, boiled and steamed leaves. Scientia Horticulturae, 2019, 256, 108540.	1.7	23
1368	Antioxidant Activity and Bioactive Compounds Contents in Different Stages of Flower Bud Development from Three Spanish Caper (<i>Capparis spinosa</i>) Cultivars. Horticulture Journal, 2019, 88, 410-419.	0.3	6
1369	Role of Silicon in Mediating Salt Tolerance in Plants: A Review. Plants, 2019, 8, 147.	1.6	131
1370	Effect of Saline Soils on the Functional State of Species of the Genus Artemisia. Biology Bulletin, 2019, 46, 294-301.	0.1	3

#	Article	IF	CITATIONS
1371	24-epibrassinolide pre-treatment alleviates the salt-induced deleterious effects in medicinal pumpkin (Cucurbita pepo) by enhancement of GABA content and enzymatic antioxidants. South African Journal of Botany, 2019, 124, 111-117.	1.2	8
1372	Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses. Scientific Reports, 2019, 9, 7642.	1.6	30
1373	Transcriptomic evaluation of Miscanthus photosynthetic traits to salinity stress. Biomass and Bioenergy, 2019, 125, 123-130.	2.9	16
1374	Association Analysis of Salt Tolerance in Asiatic cotton (Gossypium arboretum) with SNP Markers. International Journal of Molecular Sciences, 2019, 20, 2168.	1.8	28
1375	Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L) seedlings to salt stress. Scientia Horticulturae, 2019, 253, 429-438.	1.7	106
1376	Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 2019, 141, 30-39.	2.8	57
1377	Progress and Challenges of Wheat Production in the Era of Climate Change: A Bangladesh Perspective. , 2019, , 615-679.		8
1378	QTLian breeding for climate resilience in cereals: progress and prospects. Functional and Integrative Genomics, 2019, 19, 685-701.	1.4	34
1379	Vermicompost Leachate as a Promising Agent for Priming and Rejuvenation of Salt-Treated Germinating Seeds in Brassica Napus. Communications in Soil Science and Plant Analysis, 2019, 50, 1344-1357.	0.6	11
1380	Lipid-Extracted Algae as a Soil Amendment Can Increase Soil Salinization and Reduce Forage Growth. Sustainability, 2019, 11, 1946.	1.6	2
1381	Exogenous trehalose alleviates the adverse effects of salinity stress in wheat. Turkish Journal of Botany, 2019, 43, 48-57.	0.5	10
1382	Halophyte Growth and Physiology Under Metal Toxicity. , 2019, , 83-113.		5
1383	An Overview of the Germination Behavior of Halophytes and Their Role in Food Security. , 2019, , 39-61.		1
1384	Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 2019, 135, 311-320.	2.5	199
1385	EsHO 1 mediated mitigation of NaCl induced oxidative stress and correlation between ROS, antioxidants and HO 1 in seedlings of Eruca sativa: underutilized oil yielding crop of arid region. Physiology and Molecular Biology of Plants, 2019, 25, 895-904.	1.4	27
1386	Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiology and Biochemistry, 2019, 140, 113-121.	2.8	42
1387	Amelioration of the Oxidative Stress Generated by Simple or Combined Abiotic Stress through the K+ and Ca2+ Supplementation in Tomato Plants. Antioxidants, 2019, 8, 81.	2.2	49
1388	Metabolic response and correlations between ions and metabolites in Phragmites communis under long-term salinity toxicity. Plant Physiology and Biochemistry, 2019, 139, 651-659.	2.8	5

#	Article	IF	CITATIONS
1389	The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Scientia Horticulturae, 2019, 252, 379-387.	1.7	32
1390	Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 2019, 11, 10511-10523.	2.8	60
1391	The impact of Pseudomonas putida UW3 and UW4 strains on photosynthetic activities of selected field crops under saline conditions. International Journal of Phytoremediation, 2019, 21, 944-952.	1.7	4
1392	Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environmental Science and Pollution Research, 2019, 26, 13410-13421.	2.7	33
1393	The remediation of drought stress under VAM inoculation through proline chemical transformation action. Journal of Photochemistry and Photobiology B: Biology, 2019, 193, 155-161.	1.7	9
1394	Dynamic species-specific metabolic changes in the trees exposed to chronic N+S additions at the Bear Brook Watershed in Maine, USA. Annals of Forest Science, 2019, 76, 1.	0.8	8
1395	Root exudation of carbohydrates and cations from barley in response to drought and elevated CO2. Plant and Soil, 2019, 438, 127-142.	1.8	24
1396	Breeding strategies for structuring salinity tolerance in wheat. Advances in Agronomy, 2019, 155, 121-187.	2.4	53
1397	Effects of moderate soil salinity on osmotic adjustment and energy strategy in soybean under drought stress. Plant Physiology and Biochemistry, 2019, 139, 307-313.	2.8	40
1398	Salt Stress-Induced Changes in In Vitro Cultured Stevia rebaudiana Bertoni: Effect on Metabolite Contents, Antioxidant Capacity and Expression of Steviol Glycosides-Related Biosynthetic Genes. Journal of Plant Growth Regulation, 2019, 38, 1341-1353.	2.8	21
1399	Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Scientia Horticulturae, 2019, 250, 254-265.	1.7	33
1400	Grasping at straws: a reâ€evaluation of sweepstakes colonisation of islands by mammals. Biological Reviews, 2019, 94, 1364-1380.	4.7	12
1401	Silicon: A Sustainable Tool in Abiotic Stress Tolerance in Plants. , 2019, , 333-356.		20
1402	Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiology and Biochemistry, 2019, 141, 466-476.	2.8	48
1403	Oxidative Stress and Antioxidant Defence Under Metal Toxicity in Halophytes. , 2019, , 115-155.		2
1404	Nanoparticles and Abiotic Stress Tolerance in Plants. , 2019, , 549-561.		41
1405	The Role of Melatonin in Salt Stress Responses. International Journal of Molecular Sciences, 2019, 20, 1735.	1.8	122
1406	Signaling Molecules in Ecophysiological Response Mechanisms of Salt-Stressed Plants. , 2019, , 1-18.		3

#	Article	IF	CITATIONS
1407	Influence of Cd2+ on structural and functional parameters of halophyte Suaeda salsa. AIP Conference Proceedings, 2019, , .	0.3	0
1408	Salinity Stress Tolerance in Plants: Physiological, Molecular, and Biotechnological Approaches. , 2019, , 101-127.		10
1409	Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Industrial Crops and Products, 2019, 134, 168-176.	2.5	78
1410	Maize Production Under Salinity and Drought Conditions: Oxidative Stress Regulation by Antioxidant Defense and Glyoxalase Systems. , 2019, , 1-34.		4
1411	Calcium-Mediated Growth Regulation and Abiotic Stress Tolerance in Plants. , 2019, , 291-331.		15
1412	Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Scientia Horticulturae, 2019, 250, 45-58.	1.7	37
1413	Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS ONE, 2019, 14, e0210903.	1.1	58
1414	Traits uncover quasi-neutral community assembly in a coastal heath vegetation. Journal of Plant Ecology, 2019, 12, 703-712.	1.2	5
1415	The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota. Fungal Biology, 2019, 123, 318-329.	1.1	12
1416	Assessing the capability of broadband indices derived from Landsat 8 Operational Land Imager to monitor above ground biomass and salinity in semiarid saline environments of the BahÃa Blanca Estuary, Argentina. International Journal of Remote Sensing, 2019, 40, 4817-4838.	1.3	10
1417	How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis. Scientific Reports, 2019, 9, 2561.	1.6	26
1418	1-Methylcyclopropene Modulates Physiological, Biochemical, and Antioxidant Responses of Rice to Different Salt Stress Levels. Frontiers in Plant Science, 2019, 10, 124.	1.7	37
1419	Breeding for Climate Resilience in Castor: Current Status, Challenges, and Opportunities. , 2019, , 441-498.		2
1420	A low-cost and open-source platform for automated imaging. Plant Methods, 2019, 15, 6.	1.9	12
1421	Effect of salt stress on two types of lettuce crop in floating root hydroponic system. Acta Horticulturae, 2019, , 525-232.	0.1	0
1422	Salt acclimation induced salt tolerance in wild-type and abscisic acid-deficient mutant barley. Plant, Soil and Environment, 2019, 65, 516-521.	1.0	4
1423	Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. Sustainability, 2019, 11, 6076.	1.6	25
1424	The Impact of Drought Stress on Antioxidant Responses and Accumulation of Flavonolignans in Milk Thistle (Silybum marianum (L.) Gaertn). Plants, 2019, 8, 611.	1.6	29

#	Article	IF	CITATIONS
1425	Relationships between sodium adsorption ratio and water productivity of tomato plants affected by NaCl applications at different growth stages. IOP Conference Series: Earth and Environmental Science, 2019, 393, 012034.	0.2	0
1426	Mitigation effect of exogenous nitric oxide (NO) on some metabolic compounds of maize seedling grown under salt stress. Journal of Physics: Conference Series, 2019, 1294, 052008.	0.3	5
1427	Physiological and Proteomic Analyses Reveal Adaptive Mechanisms of Ryegrass (Annual vs. Perennial) Seedlings to Salt Stress. Agronomy, 2019, 9, 843.	1.3	5
1428	Deicing Salt Pollution Affects the Foliar Traits and Arthropods' Biodiversity of Lime Trees in Riga's Street Greeneries. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	9
1429	Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors, 2019, 19, 4814.	2.1	44
1430	Effect of simulated warming on the functional traits of Leymus chinensis plant in Songnen grassland. AoB PLANTS, 2019, 11, plz073.	1.2	3
1431	Ameliorating the deleterious effects of saline water on the antioxidants defense system and yield of eggplant using foliar application of zinc sulphate. Annals of Agricultural Sciences, 2019, 64, 244-251.	1.1	17
1432	Phylostratigraphic Analysis Shows the Earliest Origination of the Abiotic Stress Associated Genes in A. thaliana. Genes, 2019, 10, 963.	1.0	11
1433	Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress. Turkish Journal of Biology, 2019, 43, 314-325.	2.1	10
1434	Transcriptome profiling and environmental linkage to salinity across Salicornia europaea vegetation. BMC Plant Biology, 2019, 19, 427.	1.6	15
1435	Listeria monocytogenes Ïf A Is Sufficient to Survive Gallbladder Bile Exposure. Frontiers in Microbiology, 2019, 10, 2070.	1.5	13
1436	Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress. Agronomy, 2019, 9, 739.	1.3	10
1437	Effect of Water Quality on the Germination of Okra (<i>Abelmoschus esculentus</i>) Seeds. International Journal of Agronomy, 2019, 2019, 1-7.	0.5	6
1438	Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	52
1439	Alleviation of Salinity Stress in Maize Using Silicon Nutrition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, 1340-1347.	0.5	23
1440	Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses. Plants, 2019, 8, 569.	1.6	15
1441	Seedling Emergence and Seedling Growth of Mustard and Rapeseed Genotypes under Salt Stress. , 2019, 2, 1-8.		3
1442	Dynamic Response of Key Germination Traits to NaCl Stress in Sugar Beet Seeds. Sugar Tech, 2019, 21, 661-671.	0.9	7

#	Article	IF	CITATIONS
1443	NaCl stress on physioâ€biochemical metabolism and antioxidant capacity in germinated hulless barley (<scp><i>Hordeum vulgare</i></scp> L.). Journal of the Science of Food and Agriculture, 2019, 99, 1755-1764.	1.7	30
1444	Plant Growth-Promoting Microbial Enzymes. , 2019, , 521-534.		8
1445	Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. Forest Ecology and Management, 2019, 432, 73-82.	1.4	18
1446	Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Archives of Agronomy and Soil Science, 2019, 65, 1237-1247.	1.3	27
1447	Morpho-physiological and biochemical responses of four ornamental herbaceous species to water stress. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	11
1448	Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. Plant Physiology and Biochemistry, 2019, 136, 76-91.	2.8	46
1449	Effect of salinity on seed germination of five mangroves from Sri Lanka: use of hydrotime modelling for mangrove germination. Seed Science Research, 2019, 29, 55-63.	0.8	16
1450	Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Theoretical and Applied Genetics, 2019, 132, 323-346.	1.8	20
1451	Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain). Agricultural Water Management, 2019, 213, 468-476.	2.4	22
1452	Recent Advancements in Developing Salinity Tolerant Rice. , 2019, , 87-112.		3
1453	Abiotic Stress and Rice Grain Quality. , 2019, , 571-583.		33
1454	Strategy of Ginkgo biloba L. in the mitigation of salt stress in the urban environment. Urban Forestry and Urban Greening, 2019, 38, 223-231.	2.3	16
1455	NaCl and glucose improve health-promoting properties in mung bean sprouts. Scientia Horticulturae, 2019, 247, 235-241.	1.7	10
1456	Osmolytes resist against harsh osmolarity: Something old something new. Biochimie, 2019, 158, 156-164.	1.3	34
1457	Sustainable methodology for production of potassic fertilizer from agro-residues: Case study using empty cotton boll. Journal of Cleaner Production, 2019, 215, 22-33.	4.6	11
1458	A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genetics, 2019, 15, e1007798.	1.5	70
1459	Salinity stress response and â€~omics' approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 2019, 38, 255-277.	2.8	74
1460	Grain filling pattern of Hordeum vulgare as affected by salicylic acid and salt stress. Journal of Plant Nutrition, 2019, 42, 278-286.	0.9	6

#	Article	IF	CITATIONS
1461	Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L Agriculture and Food Security, 2019, 8, .	1.6	29
1462	Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Functional Plant Biology, 2019, 46, 136.	1.1	31
1463	Activity maintenance of the excised branches and a case study of NO2 exchange between the atmosphere and P. nigra branches. Journal of Environmental Sciences, 2019, 80, 316-326.	3.2	1
1464	Essential oil of peppermint in symbiotic relationship with Piriformospora indica and methyl jasmonate application under saline condition. Industrial Crops and Products, 2019, 127, 195-202.	2.5	50
1465	Physiological and biochemical attributes of Mentha spicata when subjected to saline conditions and cation foliar application. Journal of Plant Physiology, 2019, 232, 27-38.	1.6	24
1466	Effect of elicitors on the metabolites in the suspension cell culture of Salvia miltiorrhiza Bunge. Physiology and Molecular Biology of Plants, 2019, 25, 229-242.	1.4	21
1467	Stress is an agonist for the induction of programmed cell death: A review. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 699-712.	1.9	18
1468	Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 2019, 12, 1-12.	0.9	173
1469	What do we know about salt stress in bryophytes?. Plant Biosystems, 2019, 153, 478-489.	0.8	12
1470	Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology, 2019, 28, 103-116.	1.1	50
1471	Multiple riparian–stream connections are predicted to change in response to salinization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180042.	1.8	35
1472	Metabolic Adjustment of Arabidopsis Root Suspension Cells During Adaptation to Salt Stress and Mitotic Stress Memory. Plant and Cell Physiology, 2019, 60, 612-625.	1.5	24
1473	Different Responses of Capsicum annuum L. Root and Shoot to Salt Stress with Pseudomonas putida Rs-198 Inoculation. Journal of Plant Growth Regulation, 2019, 38, 799-811.	2.8	20
1474	Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management. Journal of Pest Science, 2019, 92, 1359-1370.	1.9	43
1475	Seawater and water footprint in different cropping systems: A chicory (Cichorium intybus L.) case study. Agricultural Water Management, 2019, 211, 172-177.	2.4	24
1476	Impact of Nanoparticles on Abiotic Stress Responses in Plants. , 2019, , 305-322.		29
1477	Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Applied Soil Ecology, 2019, 133, 104-113.	2.1	56
1478	Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 2019, 21, 480-486.	1.8	31

#	Article	IF	CITATIONS
1479	Silicon promotes seedling growth and alters endogenous IAA, GA ₃ and ABA concentrations in <i>Glycyrrhiza uralensis</i> under 100 mM NaCl stress. Journal of Horticultural Science and Biotechnology, 2019, 94, 87-93.	0.9	31
1480	Characterization of eggplant grown in animal manure amended soil. International Journal of Environmental Health Research, 2020, 30, 492-503.	1.3	5
1481	Evaluation of subtropical ornamental trees for reclaiming salinity affected lands. Journal of Forestry Research, 2020, 31, 807-817.	1.7	3
1482	Tolerant varieties and exogenous application of nutrients can effectively manage drought stress in rice. Archives of Agronomy and Soil Science, 2020, 66, 13-32.	1.3	1
1483	Differential Responses of Two Wheat Varieties Differing in Salt Tolerance to the Combined Stress of Mn and Salinity. Journal of Plant Growth Regulation, 2020, 39, 795-808.	2.8	5
1484	A Putative Common Bean Chalcone O-Methyltransferase Improves Salt Tolerance in Transgenic Arabidopsis thaliana. Journal of Plant Growth Regulation, 2020, 39, 957-969.	2.8	4
1485	Effect of Mycorrhiza and Vermicompost on Drought Tolerance of Lime Seedlings (<i>Citrus) Tj ETQq0 0 0 rgBT /C</i>	Verlock 10 1.2	0 Jf 50 502
1486	Interactive effects of salinity and inundation on native Spartina foliosa, invasive S. densiflora and their hybrid from San Francisco Estuary, California. Annals of Botany, 2020, 125, 377-389.	1.4	16
1407	Relating soil salinity, clay content and water vapour sorption isotherms. European Journal of Soil	1.0	0

1487	Relating soil salinity, clay content and water vapour sorption isotherms. European Journal of Soil Science, 2020, 71, 399-414.	1.8	2
1488	Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Scientia Horticulturae, 2020, 259, 108823.	1.7	78
1489	Investigation on the effects of nitrate and salinity stress on the antioxidant properties of green algae with special reference to the use of processed biomass as potent fish feed ingredient. Aquaculture International, 2020, 28, 211-234.	1.1	16
1490	Mangrove distribution in relation to seasonal water salinity and ion compartmentation: a field study along a freshwater-dominated river. Hydrobiologia, 2020, 847, 549-561.	1.0	7
1491	Differential physiological and molecular responses of three-leaf stage barley (Hordeum vulgare L.) under salt stress within hours. Plant Biotechnology Reports, 2020, 14, 89-97.	0.9	6
1492	Comparative study of wild and cultivated populations of Cichorium spinosum: The influence of soil and organic matter addition. Scientia Horticulturae, 2020, 261, 108942.	1.7	10
1493	Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Scientia Horticulturae, 2020, 261, 108930.	1.7	67
1494	Effect of Salinity Stress on Enzymes' Activity, Ions Concentration, Oxidative Stress Parameters, Biochemical Traits, Content of Sulforaphane, and CYP79F1 Gene Expression Level in Lepidium draba Plant. Journal of Plant Growth Regulation, 2020, 39, 1075-1094.	2.8	21
1495	Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. Journal of Experimental Botany, 2020, 71, 1171-1184.	2.4	22
1496	Salinity-induced changes in biometric, physiological and anatomical parameters of Passiflora edulis Sims plants propagated by different methods. Archives of Agronomy and Soil Science, 2020, 66,	1.3	9

#	Article	IF	CITATIONS
1497	Upâ€regulation of lipid metabolism and glycine betaine synthesis are associated with cholineâ€induced salt tolerance in halophytic seashore paspalum. Plant, Cell and Environment, 2020, 43, 159-173.	2.8	35
1498	Photosynthesis, fluorescence and mesophyll conductance responses to increasing salinity levels in Jatropha curcas at early vegetative stages. Journal of Agronomy and Crop Science, 2020, 206, 52-63.	1.7	5
1499	Seed Priming with Jasmonic Acid Counteracts Root Knot Nematode Infection in Tomato by Modulating the Activity and Expression of Antioxidative Enzymes. Biomolecules, 2020, 10, 98.	1.8	26
1500	Seed Biopriming with Salt-Tolerant Endophytic Pseudomonas geniculata-Modulated Biochemical Responses Provide Ecological Fitness in Maize (Zea mays L.) Grown in Saline Sodic Soil. International Journal of Environmental Research and Public Health, 2020, 17, 253.	1.2	39
1501	Insights Into Oxidized Lipid Modification in Barley Roots as an Adaptation Mechanism to Salinity Stress. Frontiers in Plant Science, 2020, 11, 1.	1.7	477
1502	Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 2020, 145, 108-123.	3.6	69
1503	Sarcocornia fruticosa photosynthetic response to short-term extreme temperature events in combination with optimal and sub-optimal salinity concentrations. Plant Physiology and Biochemistry, 2020, 148, 45-52.	2.8	4
1504	Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environmental and Experimental Botany, 2020, 171, 103946.	2.0	57
1505	The cloning and characterization of <i>hypersensitive to salt stress</i> mutant, affected in quinolinate synthase, highlights the involvement of NAD in stressâ€induced accumulation of ABA and proline. Plant Journal, 2020, 102, 85-98.	2.8	31
1506	Comparative Cytological and Gene Expression Analysis Reveals Potential Metabolic Pathways and Target Genes Responsive to Salt Stress in Kenaf (Hibiscus cannabinus L.). Journal of Plant Growth Regulation, 2020, 39, 1245-1260.	2.8	20
1507	Salinity modulates growth, morphology, and essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro. Plant Cell, Tissue and Organ Culture, 2020, 140, 593-603.	1.2	7
1508	Plasmaâ€activated water to improve the stress tolerance of barley. Plasma Processes and Polymers, 2020, 17, 1900123.	1.6	28
1509	Tissue sodium and chloride concentrations in relation to needle injury in boreal conifer seedlings subjected to salt stress. Trees - Structure and Function, 2020, 34, 521-529.	0.9	4
1510	Selecting high performance rootstocks for pistachio cultivars under salinity stress based on their morpho-physiological characteristics. International Journal of Fruit Science, 2020, 20, S29-S47.	1.2	9
1511	Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiology and Biochemistry, 2020, 147, 77-90.	2.8	48
1512	Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry, 2020, 147, 31-42.	2.8	114
1513	The mechanisms of improving coastal saline soils by planting rice. Science of the Total Environment, 2020, 703, 135529.	3.9	75
1514	Comparative adaptive strategies of old and young leaves to alkali-stress in hexaploid wheat. Environmental and Experimental Botany, 2020, 171, 103955.	2.0	14

#	Article	IF	CITATIONS
1515	Enhancement of salt-stressed cucumber tolerance by application of glucose for regulating antioxidant capacity and nitrogen metabolism. Canadian Journal of Plant Science, 2020, 100, 253-263.	0.3	7
1516	Anatomical, agro-morphological and physiological changes in rice under cumulative and stage specific drought conditions prevailed in eastern region of India. Field Crops Research, 2020, 245, 107658.	2.3	29
1517	Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods. Scientia Horticulturae, 2020, 261, 109012.	1.7	6
1518	Three-dimensional ultrastructural change of chloroplasts in rice mesophyll cells responding to salt stress. Annals of Botany, 2020, 125, 833-840.	1.4	27
1519	Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta, 2020, 251, 3.	1.6	174
1520	Transcriptional Regulation in Rocket Leaves as Affected by Salinity. Plants, 2020, 9, 20.	1.6	22
1521	Jasmonic and Abscisic Acid Contribute to Metabolism Re-adjustment in Strawberry Leaves under NaCl Stress. International Journal of Fruit Science, 2020, 20, S123-S144.	1.2	10
1522	Investigation of an Antioxidative System for Salinity Tolerance in Oenanthe javanica. Antioxidants, 2020, 9, 940.	2.2	33
1523	Halophytes in India and Their Role in Phytoremediation. , 2020, , 1-21.		1
1524	Halophytes and the Future of Agriculture. , 2020, , 1-15.		1
1525	Physiological and biochemical changes in sorghum under combined heavy metal stress: An adaptive defence against oxidative stress. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101830.	1.5	16
1526	Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 2020, 324, 198-210.	1.9	57
1527	Functions of dopamine in plants: a review. Plant Signaling and Behavior, 2020, 15, 1827782.	1.2	54
1528	Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling. Plant Physiology and Biochemistry, 2020, 156, 345-356.	2.8	26
1529	Increased adaptation of an energy willow cultivar to soil salinity by duplication of its genome size. Biomass and Bioenergy, 2020, 140, 105655.	2.9	8
1530	Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicology and Environmental Safety, 2020, 206, 111396.	2.9	69
1531	Induced anti-oxidation efficiency and others by salt stress in Rosa damascena Miller. Scientia Horticulturae, 2020, 274, 109681.	1.7	26
1532	Physiological Responses of Halophytes to the Combined Effects of Salinity and Phosphorus Deficiency. , 2020, , 1-17.		0

#	Article	IF	CITATIONS
1533	Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions. , 2020, , 503-533.		31
1534	Application of Next Generation Sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101801.	1.5	15
1535	Control of stem-rot disease of rice caused by Sclerotium oryzae catt and its cellular defense mechanism – A review. Physiological and Molecular Plant Pathology, 2020, 112, 101536.	1.3	7
1536	Numeric Study on the Influence of Sluice-Gate Operation on Salinity, Nutrients and Organisms in the Jiaojiang River Estuary, China. Water (Switzerland), 2020, 12, 2026.	1.2	10
1537	Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid Pennisetum. Plant Physiology and Biochemistry, 2020, 155, 93-104.	2.8	45
1538	River basin salinization as a form of aridity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17635-17642.	3.3	33
1539	Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy, 2020, 10, 938.	1.3	179
1540	Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. Biology, 2020, 9, 172.	1.3	34
1541	Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules, 2020, 10, 959.	1.8	125
1543	Abscisic Acid Mediates Drought and Salt Stress Responses in Vitis vinifera—A Review. International Journal of Molecular Sciences, 2020, 21, 8648.	1.8	44
1544	An Ecological Overview of Halophytes in Inland Areas of Central Europe. , 2020, , 1-21.		0
1545	Temporal salt stress-induced transcriptome alterations and regulatory mechanisms revealed by PacBio long-reads RNA sequencing in Gossypium hirsutum. BMC Genomics, 2020, 21, 838.	1.2	19
1546	Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage. International Journal of Molecular Sciences, 2020, 21, 9174.	1.8	30
1547	Adaptation of food legumes to problem soils using integrated approaches. Euphytica, 2020, 216, 1.	0.6	1
1548	CAX1a TILLING Mutations Modify the Hormonal Balance Controlling Growth and Ion Homeostasis in Brassica rapa Plants Subjected to Salinity. Agronomy, 2020, 10, 1699.	1.3	3
1549	Metabolic changes associated with differential salt tolerance in sorghum genotypes. Planta, 2020, 252, 34.	1.6	28
1550	PeSNAC-1 a NAC transcription factor from moso bamboo (<i>Phyllostachys edulis</i>) confers tolerance to salinity and drought stress in transgenic rice. Tree Physiology, 2020, 40, 1792-1806.	1.4	19
1551	Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules, 2020, 25, 2416.	1.7	41

\mathbf{C}	TAT	ON	DEDC	NDT.
	IAI	UN	KEPU	жт

#	Article	IF	CITATIONS
1552	iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots. BMC Plant Biology, 2020, 20, 347.	1.6	12
1553	Physiological and biochemical insights for salt stress tolerance in the habitat-indifferent halophyte Salsola drummondii during the vegetative stage. Botany, 2020, 98, 673-689.	0.5	11
1554	Heat shock proteins gene expression and physiological responses in durum wheat (Triticum durum) under salt stress. Physiology and Molecular Biology of Plants, 2020, 26, 1599-1608.	1.4	11
1555	Volatile Organic Compounds from Rhizobacteria Increase the Biosynthesis of Secondary Metabolites and Improve the Antioxidant Status in Mentha piperita L. Grown under Salt Stress. Agronomy, 2020, 10, 1094.	1.3	33
1556	Rhizobacteria Isolated from Saline Soil Induce Systemic Tolerance in Wheat (Triticum aestivum L.) against Salinity Stress. Agronomy, 2020, 10, 989.	1.3	43
1557	Anticancer activities of marine macroalgae: status and future perspectives. , 2020, , 257-275.		3
1558	Molecular Cloning and the Expression Pattern of a Phospholipid Hydroperoxide Glutathione Peroxidase in Kalidium foliatum under NaCl Treatment. Russian Journal of Plant Physiology, 2020, 67, 750-757.	0.5	1
1559	Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics, 2020, 21, 550.	1.2	17
1560	Zinc nutrition in chickpea (Cicer arietinum): a review. Crop and Pasture Science, 2020, 71, 199.	0.7	41
1561	A consortium of arbuscular mycorrizal fungi improves nutrient uptake, biochemical response, nodulation and growth of the pea (Pisum sativum L.) under salt stress. Rhizosphere, 2020, 15, 100235.	1.4	10
1562	Silicon Coating on Maize Seed Mitigates Saline Stress in Yermosols of Southern Punjab. Silicon, 2021, 13, 4293-4303.	1.8	3
1563	Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. Applied Sciences (Switzerland), 2020, 10, 7025.	1.3	57
1564	Molecular Markers Improve Abiotic Stress Tolerance in Crops: A Review. Plants, 2020, 9, 1374.	1.6	48
1565	A Cytoplasmic Receptor-like Kinase Contributes to Salinity Tolerance. Plants, 2020, 9, 1383.	1.6	7
1566	Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum [Sorghum bicolor (L.) Moench]. South African Journal of Botany, 2021, 140, 409-418.	1.2	22
1567	Ecological parameter reductions, environmental regimes, and characteristic process diagram of carbon dioxide fluxes in coastal salt marshes. Scientific Reports, 2020, 10, 15732.	1.6	1
1568	An Evaluation of Different Parameters to Screen Ornamental Shrubs for Salt Spray Tolerance. Biology, 2020, 9, 250.	1.3	9
1569	Rootstocks increase grapevine tolerance to NaCl through ion compartmentalization and exclusion. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	10

#	Article	IF	CITATIONS
1570	Arbuscular mycorrhizal fungi mediated salt tolerance by regulating antioxidant enzyme system, photosynthetic pathways and ionic equilibrium in pea (Pisum sativumÂL.). Biologia Futura, 2020, 71, 289-300.	0.6	4
1571	Salinity Stress Enhances the Antioxidant Capacity of Bacillus and Planococcus Species Isolated From Saline Lake Environment. Frontiers in Microbiology, 2020, 11, 561816.	1.5	19
1572	Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of IbNAC7 Confers Salt Tolerance in Arabidopsis. Frontiers in Plant Science, 2020, 11, 572540.	1.7	42
1573	Regulation of a Cytochrome P450 Gene <i>CYP94B1</i> by WRKY33 Transcription Factor Controls Apoplastic Barrier Formation in Roots to Confer Salt Tolerance. Plant Physiology, 2020, 184, 2199-2215.	2.3	61
1574	When Salt Meddles Between Plant, Soil, and Microorganisms. Frontiers in Plant Science, 2020, 11, 553087.	1.7	83
1575	Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum. Agriculture (Switzerland), 2020, 10, 328.	1.4	18
1576	Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. International Journal of Molecular Sciences, 2020, 21, 6036.	1.8	24
1577	Halophytes: A Climpse of Indian Sundarbans – A World Heritage Site, Its Existing Status, and Sustainability. , 2020, , 1-36.		0
1578	The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiology and Molecular Biology of Plants, 2020, 26, 1815-1829.	1.4	24
1579	Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Scientific Reports, 2020, 10, 13886.	1.6	37
1580	Comparative Transcriptome, Metabolome, and Ionome Analysis of Two Contrasting Common Bean Genotypes in Saline Conditions. Frontiers in Plant Science, 2020, 11, 599501.	1.7	11
1581	How to Choose a Hydrological Recovery Mode for Degraded Semiarid Wetland in China? A Case Study on Restoration of Phragmites australis Saline-Alkaline Wetland. Sustainability, 2020, 12, 10103.	1.6	1
1582	Sequential Application of Antioxidants Rectifies Ion Imbalance and Strengthens Antioxidant Systems in Salt-Stressed Cucumber. Plants, 2020, 9, 1783.	1.6	58
1583	Pepper. , 2020, , 223-238.		6
1584	Physiological responses of the xerohalophyte Suaeda vermiculata to salinity in its hyper-arid environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 273, 151705.	0.6	12
1585	Deciphering rice metabolic flux reprograming under salinity stress via in silico metabolic modeling. Computational and Structural Biotechnology Journal, 2020, 18, 3555-3566.	1.9	16
1586	Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Scientific Reports, 2020, 10, 20951.	1.6	39
1587	lonic responses of bean (Phaseolus vulgaris L.) plants under salinity stress and humic acid applications. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1317-1331.	0.5	10

#	Article	IF	Citations
1588	Foliar Application of Zn Alleviates Salt Stress Symptoms of Pak Choi Plants by Activating Water Relations and Glucosinolate Synthesis. Agronomy, 2020, 10, 1528.	1.3	10
1589	Physiological Response of Populus balsamifera and Salix eriocephala to Salinity and Hydraulic Fracturing Wastewater: Potential for Phytoremediation Applications. International Journal of Environmental Research and Public Health, 2020, 17, 7641.	1.2	5
1590	The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany, 2020, 180, 104254.	2.0	13
1591	ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants, 2020, 9, 1078.	2.2	73
1592	Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environmental and Experimental Botany, 2020, 175, 104061.	2.0	13
1593	Transcriptome profile analysis of two Vicia faba cultivars with contrasting salinity tolerance during seed germination. Scientific Reports, 2020, 10, 7250.	1.6	23
1594	Salt Stress Mitigating Potential of Halotolerant/Halophilic Plant Growth Promoting. Geomicrobiology Journal, 2020, 37, 663-669.	1.0	19
1595	Mitigating Climate Change for Sugarcane Improvement: Role of Silicon in Alleviating Abiotic Stresses. Sugar Tech, 2020, 22, 741-749.	0.9	67
1596	Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific. Scientific Reports, 2020, 10, 8051.	1.6	7
1597	Effects of anthropogenic disturbance on the species assemblages of birds in the back mangrove forests. Wetlands Ecology and Management, 2020, 28, 479-494.	0.7	5
1598	Impact of Nutrient Intake on Hydration Biomarkers Following Exercise and Rehydration Using a Clustering-Based Approach. Nutrients, 2020, 12, 1276.	1.7	4
1599	Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Applied Soil Ecology, 2020, 155, 103674.	2.1	121
1600	Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. Scientia Horticulturae, 2020, 271, 109495.	1.7	41
1604	Salinity and its tolerance strategies in plants. , 2020, , 47-76.		16
1605	Arginine and salinity stress affect morphology and metabolism of Indian borage (Plectranthus) Tj ETQq0 0 0 rgBT	/Qvgrlock	10 Tf 50 18
1606	Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. Plant Physiology and Biochemistry, 2020, 154, 248-259.	2.8	30
1607	Differential response strategies of pomegranate cultivars lead to similar tolerance to increasing salt concentrations. Scientia Horticulturae, 2020, 271, 109441.	1.7	13

1608Effects of foliar selenium application on some physiological and phytochemical parameters of <i>Vitis
vinifera </i>0.93030

#	ARTICLE Nitrogen alleviates NaCl toxicity in maize seedlings by regulating photosynthetic activity and ROS	IF	CITATIONS
1609	homeostasis. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	6
1610	Effect of Silicon on Antioxidant Enzymes of Wheat (Triticum aestivum L.) Grown under Salt Stress. Silicon, 2020, 12, 2783-2788.	1.8	29
1611	Phytohormonal metabolic engineering for abiotic stress in plants: New avenues and future prospects. , 2020, , 543-576.		2
1612	Regulation of the Calvin cycle under abiotic stresses: an overview. , 2020, , 681-717.		14
1613	Cellular mechanism of salinity tolerance in wheat. , 2020, , 55-76.		2
1614	Silica-based nanosystems: Their role in sustainable agriculture. , 2020, , 437-459.		7
1615	Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS ONE, 2020, 15, e0233616.	1.1	25
1616	Exogenous Abscisic Acid Alleviates Harmful Effect of Salt and Alkali Stresses on Wheat Seedlings. International Journal of Environmental Research and Public Health, 2020, 17, 3770.	1.2	29
1617	Agronomic performance of irrigated quinoa in desert areas: Comparing different approaches for early assessment of salinity stress. Agricultural Water Management, 2020, 240, 106205.	2.4	13
1618	Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context. Agricultural Water Management, 2020, 240, 106261.	2.4	14
1619	Salinity responses of inland and coastal neotropical trees species. Plant Ecology, 2020, 221, 695-708.	0.7	5
1620	Exogenous application of selenium (Se) mitigates NaCl stress in proso and foxtail millets by improving their growth, physiology and biochemical parameters. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	21
1621	Calcium Improves Germination and Growth of Sorghum bicolor Seedlings under Salt Stress. Plants, 2020, 9, 730.	1.6	24
1622	Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: An integrated metabolomics strategy. Environmental and Experimental Botany, 2020, 176, 104094.	2.0	16
1623	Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet- wheat. Saudi Journal of Biological Sciences, 2020, 27, 2010-2017.	1.8	101
1624	The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plant Signaling and Behavior, 2020, 15, 1777372.	1.2	70
1625	Coâ€culture of shrimp with commercially important plants: a review. Reviews in Aquaculture, 2020, 12, 2411-2428.	4.6	11
1626	Effect of Soil Salinity and Foliar Application of Jasmonic Acid on Mineral Balance of Carrot Plants Tolerant and Sensitive to Salt Stress. Agronomy, 2020, 10, 659.	1.3	12

#	Article	IF	CITATIONS
1627	Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum. Agricultural Water Management, 2020, 234, 106117.	2.4	10
1628	Effects of Climate Temperature and Water Stress on Plant Growth and Accumulation of Antioxidant Compounds in Sweet Basil (<i>Ocimum basilicum</i> L.) Leafy Vegetable. Scientifica, 2020, 2020, 1-12.	0.6	32
1629	Comparative Transcriptome Analysis Reveals Molecular Defensive Mechanism of <i>Arachis hypogaea</i> in Response to Salt Stress. International Journal of Genomics, 2020, 2020, 1-13.	0.8	20
1630	Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress. BMC Genomics, 2020, 21, 197.	1.2	35
1631	The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS ONE, 2020, 15, e0229513.	1.1	27
1632	BpTCP7 gene from Betula platyphylla regulates tolerance to salt and drought stress through multiple hormone pathways. Plant Cell, Tissue and Organ Culture, 2020, 141, 17-30.	1.2	7
1633	Effect of Salinity Stress on Phenylpropanoid Genes Expression and Related Gene Expression in Wheat Sprout. Agronomy, 2020, 10, 390.	1.3	28
1634	Management of Biotic and Abiotic Stress Affecting Agricultural Productivity Using Beneficial Microorganisms Isolated from Higher Altitude Agro-ecosystems: A Remedy for Sustainable Agriculture. Rhizosphere Biology, 2020, , 113-134.	0.4	1
1635	Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil. Applied Sciences (Switzerland), 2020, 10, 945.	1.3	50
1636	The Effect of Salinity on the Growth of Lavender Species. Water (Switzerland), 2020, 12, 618.	1.2	15
1637	A Salt Tolerance Evaluation Method for Sunflower (Helianthus annuus L.) at the Seed Germination Stage. Scientific Reports, 2020, 10, 10626.	1.6	37
1638	Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 485-494.	0.3	14
1639	The distribution and abundance of an unusual resource for koalas (Phascolarctos cinereus) in a sodium-poor environment. PLoS ONE, 2020, 15, e0234515.	1.1	3
1640	Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.)) Tj ETQq1 1	0.784314 1.3	rgBT/Over
1641	Exogenously applied selenium (Se) mitigates the impact of salt stress in Setaria italica L. and Panicum miliaceum L Nucleus (India), 2020, 63, 327-339.	0.9	23
1642	Effects of salinity on sprouting and growth of three submerged macrophytes. Ecohydrology, 2020, 13, e2235.	1.1	3
1643	Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae, 2020, 272, 109537.	1.7	109
1644	Solute strongly impacts freezing under confinement. Applied Physics Letters, 2020, 116, .	1.5	12

#	Article	IF	CITATIONS
1645	Melatonin Regulatory Mechanisms and Phylogenetic Analyses of Melatonin Biosynthesis Related Genes Extracted from Peanut under Salinity Stress. Plants, 2020, 9, 854.	1.6	41
1646	Morphophysiological and Comparative Metabolic Profiling of Purslane Genotypes (<i>Portulaca) Tj ETQq1 1 0.784</i>	314 rgBT	/Qverlock]
1647	Driving Forces Analysis of Non-structural Carbohydrates for Phragmites australis in Different Habitats of Inland River Wetland. Water (Switzerland), 2020, 12, 1700.	1.2	3
1648	Effect of Abiotic Stress on Crops. , 0, , .		98
1649	Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 2020, 13, .	0.6	85
1650	Pyridoxal 5′-phosphate enhances the growth and morpho-physiological characteristics of rice cultivars by mitigating the ethylene accumulation under salinity stress. Plant Physiology and Biochemistry, 2020, 154, 782-795.	2.8	14
1651	Effects of ABA and NaCl on physiological responses in selected bryophyte species. Botany, 2020, 98, 639-650.	0.5	8
1652	Transcription Factor CaSBP12 Negatively Regulates Salt Stress Tolerance in Pepper (Capsicum annuum) Tj ETQq1	1,0,7843] 1,8	14 rgBT /Ov
1653	Algal Response to Metal Oxide Nanoparticles: Analysis of Growth, Protein Content, and Fatty Acid Composition. Bioenergy Research, 2020, 13, 944-954.	2.2	21
1654	The wheat E3 ligase TaPUB26 is a negative regulator in response to salt stress in transgenic Brachypodium distachyon. Plant Science, 2020, 294, 110441.	1.7	16
1655	Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Plant Physiology and Biochemistry, 2020, 149, 313-323.	2.8	90
1656	Grafting Tomato as a Tool to Improve Salt Tolerance. Agronomy, 2020, 10, 263.	1.3	63
1657	Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO3 stress. Ecotoxicology and Environmental Safety, 2020, 193, 110259.	2.9	51
1658	Halophyte ion regulation traits support saline adaptation of Lepidium latifolium, L. draba, and L. alyssoides. Plant Ecology, 2020, 221, 295-308.	0.7	4
1659	Use of ecotoxicity assessment for determining reusability of treated marine sediment on terrestrial land. Journal of Soils and Sediments, 2020, 20, 2306-2315.	1.5	5
1660	Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon. Plant Cell Reports, 2020, 39, 653-667.	2.8	6
1661	Silicon Confers Soybean Resistance to Salinity Stress Through Regulation of Reactive Oxygen and Reactive Nitrogen Species. Frontiers in Plant Science, 2019, 10, 1725.	1.7	55
1662	Melatonin facilitates the coordination of cell growth and lipid accumulation in nitrogen-stressed Chlamydomonas reinhardtii for biodiesel production. Algal Research, 2020, 46, 101786.	2.4	25

	Сітатіс	on Report	
# 1663	ARTICLE A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline–alkali mixed stress. Trees - Structure and Function, 2020, 34, 693-706.	IF 0.9	Citations 27
1664	Importance of silicon in fruit nutrition: Agronomic and physiological implications. , 2020, , 255-277.		15
1665	Salt stress alleviation through fertilization in fruit crops. , 2020, , 465-480.		4
1666	Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiology and Biochemistry, 2020, 148, 207-219.	2.8	18
1667	QTL analysis of salt tolerance in <i>Sorghum bicolor</i> during wholeâ€plant growth stages. Plant Breeding, 2020, 139, 455-465.	1.0	22
1668	Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy, 2020, 10, 127.	1.3	119
1669	Plant-Growth Promoting Bacillus oryzicola YC7007 Modulates Stress-Response Gene Expression and Provides Protection From Salt Stress. Frontiers in Plant Science, 2019, 10, 1646.	1.7	34
1670	Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 377-389.	0.9	46
1671	Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environmental and Experimental Botany, 2020, 176, 104063.	2.0	78
1672	Effect of calcium applications on ion accumulation in different organs of pepper plant under salt stress. BIO Web of Conferences, 2020, 17, 00231.	0.1	2
1673	Light-Dependent Activation of the GCN2 Kinase Under Cold and Salt Stress Is Mediated by the Photosynthetic Status of the Chloroplast. Frontiers in Plant Science, 2020, 11, 431.	1.7	21
1674	Use of Gibberellic Acid to Increase the Salt Tolerance of Leaf Lettuce and Rocket Grown in a Floating System. Agronomy, 2020, 10, 505.	1.3	18
1675	Exogenous spermidine improves salt tolerance of pecan-grafted seedlings via activating antioxidant system and inhibiting the enhancement of Na+/K+ ratio. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	17
1676	Selenium and Salt Interactions in Black Gram (Vigna mungo L): Ion Uptake, Antioxidant Defense System, and Photochemistry Efficiency. Plants, 2020, 9, 467.	1.6	36
1677	Sodium Exclusion Affects Seed Yield and Physiological Traits of Wheat Genotypes Grown Under Salt Stress. Journal of Soil Science and Plant Nutrition, 2020, 20, 1442-1456.	1.7	15
1678	Salinity sensitivity and mycorrhizal responsiveness of polyphenolics in â€ [~] Siam Queen' basil grown in soilless substrate. Scientia Horticulturae, 2020, 269, 109394.	1.7	6
1679	The tolerance to saline–alkaline stress was dependent on the roots in wheat. Physiology and Molecular Biology of Plants, 2020, 26, 947-954.	1.4	25
1680	Inducing salt tolerance in strawberry (<i>Fragaria</i> × <i>ananassa</i> Duch) plants by acetate application. Journal of Plant Nutrition, 2020, 43, 1780-1793.	0.9	7

#	Article	IF	CITATIONS
1681	Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in Gossypium hirsutum. Plants, 2020, 9, 450.	1.6	43
1682	Silicon in Horticultural Crops: Cross-talk, Signaling, and Tolerance Mechanism under Salinity Stress. Plants, 2020, 9, 460.	1.6	46
1683	Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of <i>Trigonella foenum-graecum</i> under salinity stress. Plant Biosystems, 2021, 155, 267-280.	0.8	33
1684	Biomarker evidence of algal-microbial community changes linked to redox and salinity variation, Upper Devonian Chattanooga Shale (Tennessee, USA). Bulletin of the Geological Society of America, 2021, 133, 409-424.	1.6	25
1685	Correlation Between Vase Life and Biochemical Parameters in Ornamental Sunflower (Helianthus) Tj ETQq0 0 0 rg Growth Regulation, 2021, 40, 179-186.	gBT /Overl 2.8	ock 10 Tf 50 4
1686	Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (<i>Crocus) Tj ETQq1 1 0.784</i>	-314 rgBT 0.8	Overlock 10
1687	GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 2021, 105, 333-345.	2.0	106
1688	Azospirillum-biofertilizer for sustainable cereal crop production: Current status. , 2021, , 193-209.		16
1689	Exogenous salicylic acid application against mitodepressive and clastogenic effects induced by salt stress in barley apical meristems. Biologia (Poland), 2021, 76, 341-350.	0.8	5
1690	Unraveling Physiological and Metabolomic Responses Involved in Phlox subulata L. Tolerance to Drought Stress. Plant Molecular Biology Reporter, 2021, 39, 98-111.	1.0	11
1691	Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University - Science, 2021, 33, 101207.	1.6	148
1692	Soilless revegetation: An efficient means of improving physicochemical properties and reshaping microbial communities of high-salty gold mine tailings. Ecotoxicology and Environmental Safety, 2021, 207, 111246.	2.9	15
1693	Sensitivity to salinity at the emergence and seedling stages of barnyardgrass (Echinochloa crus-galli), weedy rice (Oryza sativa), and rice with different tolerances to ALS-inhibiting herbicides. Weed Science, 2021, 69, 39-51.	0.8	4
1694	In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Reports, 2021, 40, 29-42.	2.8	24
1695	Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiology and Biochemistry, 2021, 158, 53-64.	2.8	51
1696	The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in <i>Populus</i> . Plant Journal, 2021, 105, 1258-1273.	2.8	49
1697	Lead and aluminium-induced oxidative stress and alteration in the activities of antioxidant enzymes in chicory plants. Scientia Horticulturae, 2021, 278, 109847.	1.7	16
1698	Negative impact of longâ€ŧerm exposure of salinity and drought stress on native <i>Tetraena mandavillei</i> L. Physiologia Plantarum, 2021, 172, 1336-1351.	2.6	78

#	ADTICLE	IE	CITATIONS
#	Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach, Journal of	IF	CHATIONS
1699	the Science of Food and Agriculture, 2021, 101, 3787-3794.	1.7	14
1700	Effect of salt stress on secondary metabolites of cotton and biological characteristics and detoxification enzyme activity of cotton spider mites. Crop Protection, 2021, 141, 105498.	1.0	8
1701	Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment, 2021, 764, 144164.	3.9	115
1702	Effects of salinity on growth, physiological and anatomical traits of Passiflora species propagated from seeds and cuttings. Revista Brasileira De Botanica, 2021, 44, 17-32.	0.5	3
1703	Mechanistic overview of metal tolerance in edible plants: A physiological and molecular perspective. , 2021, , 23-47.		8
1704	Salinity and phosphorus availability differentially affect plant growth, leaf morphology, water relations, solutes accumulation and antioxidant capacity in <i>Aeluropus littoralis</i> . Plant Biosystems, 2021, 155, 935-943.	0.8	4
1705	Advances on plant salinity stress responses in the post-genomic era: a review. Journal of Crop Science and Biotechnology, 2021, 24, 117-126.	0.7	9
1706	Growth and antioxidant responses in plants induced by heavy metals present in fly ash. Energy, Ecology and Environment, 2021, 6, 92-110.	1.9	10
1707	Effect of Exogenous Spermidine on Osmotic Adjustment, Antioxidant Enzymes Activity, and Gene Expression of Gladiolus gandavensis Seedlings Under Salt Stress. Journal of Plant Growth Regulation, 2021, 40, 1353-1367.	2.8	22
1708	Prospective Role of Plant Growth Regulators for Tolerance to Abiotic Stresses. , 2021, , 1-38.		11
1709	Salt-Tolerant and Plant Growth-Promoting Rhizobacteria: A New-Fangled Approach for Improving Crop Yield. , 2021, , 367-385.		1
1710	Effects of Soil Water Deficit on Carbon Metabolism of Plants: A Review. , 2021, , 99-192.		0
1711	An Ecological Overview of Halophytes in Inland Areas of Central Europe. , 2021, , 451-470.		0
1712	Salt acclimation induced salt tolerance in wild-type and chlorophyl b-deficient mutant wheat. Plant, Soil and Environment, 2021, 67, 26-32.	1.0	7
1713	Growing season evapotranspiration in boreal fens in the Athabasca Oil Sands Region: Variability and environmental controls. Hydrological Processes, 2021, 35, e14020.	1.1	9
1714	Protection of Photosynthesis by Halotolerant Staphylococcus sciuri ET101 in Tomato (Lycoperiscon) Tj ETQq1 1 Carboxylation and Oxygenation in Stress Mitigation. Frontiers in Microbiology, 2020, 11, 547750.	0.784314 1.5	rgBT /Overlo 30
1715	Enhanced Abiotic Stress Tolerance of Vicia faba L. Plants Heterologously Expressing the PR10a Gene from Potato. Plants, 2021, 10, 173.	1.6	8
1716	Toward the mitigation of biotic and abiotic stresses through plant growth promoting rhizobacteria. , 2021, , 161-172.		1

#	Article	IF	CITATIONS
1717	Stem Photosynthesis—A Key Element of Grass Pea (Lathyrus sativus L.) Acclimatisation to Salinity. International Journal of Molecular Sciences, 2021, 22, 685.	1.8	23
1718	Arbuscular Mycorrhizal Fungi: The Natural Biotechnological Tools for Sustainable Crop Production Under Saline Soils in the Modern Era of Climate Change. , 2021, , 373-401.		1
1719	Next-generation genetic engineering tools for abiotic stress tolerance in plants. , 2021, , 153-197.		8
1720	Halophytes in India and Their Role in Phytoremediation. , 2021, , 2345-2365.		Ο
1721	Preliminary screening of domestic barley and wild barley genotypes for salt tolerance. , 2021, 4, e20151.		2
1722	Evaluating salinity tolerance in progeny of domestic and wild barley crosses at germination stage. , 2021, 4, e20189.		1
1723	Effect of sodium chloride on the expression of genes involved in the salt tolerance of <i>Bacillus</i> sp. strain "SX4―isolated from salinized greenhouse soil. Open Chemistry, 2021, 19, 9-22.	1.0	3
1724	Effect of Soil Water Deficit on Nitrogen Metabolism in Plants: A Review. , 2021, , 193-285.		0
1725	Prioritisation of candidate genes in QTL regions for seed germination and early seedling growth in bread wheat (Triticum aestivum) under salt-stress conditions. Crop and Pasture Science, 2021, 72, 1.	0.7	2
1726	Halophytes: A Glimpse of Indian Sundarbans – A World Heritage Site, Its Existing Status, and Sustainability. , 2021, , 163-197.		0
1727	Effect of NaCl, copper and cadmium ions on halophytes with different types of salt resistance: accumulation, physiological and biochemical reactions. Functional Plant Biology, 2021, 48, 1053.	1.1	1
1728	Current approaches in horticultural crops to mitigate the effect of salt stress. , 2021, , 259-273.		0
1729	De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC Genomics, 2021, 22, 82.	1.2	25
1730	Microbiomes of Hypersaline Soils and Their Role in Mitigation of Salt Stress. Sustainable Development and Biodiversity, 2021, , 243-266.	1.4	0
1731	Leaf photosynthetic and biomass parameters related to the tolerance of Vicia faba L.Âcultivars to salinity stress. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	0.6	7
1732	Halophytes and the Future of Agriculture. , 2021, , 2225-2239.		1
1733	Halophyte Use and Cultivation. , 2021, , 2517-2535.		2
1734	Distinct Morpho-Physiological Responses of Maize to Salinity Stress. American Journal of Plant Sciences, 2021, 12, 946-959.	0.3	12

#	Article	IF	CITATIONS
1735	Plant Abiotic Stress Tolerance Mechanisms. , 2021, , 29-59.		2
1736	Effects of Irrigation of Crops with NaCl and Heavy Metals Contaminated Water: Case Study, Germination and Survival of Maize and Beans Seeds. SSRN Electronic Journal, 0, , .	0.4	0
1737	Application of Soil Microorganisms for Agricultural and Environmental Sustainability: A Review. Rhizosphere Biology, 2021, , 151-175.	0.4	3
1738	Towards the Development of Salt-Tolerant Potato. , 2021, , 850-864.		0
1739	Systems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of Medicago truncatula plant genotypes to salt stress. Computational and Structural Biotechnology Journal, 2021, 19, 2133-2147.	1.9	15
1740	Elicitors as a Biotechnological Tool for In Vitro Production of Bioactive Phenolic Compounds. , 2021, , 195-226.		4
1741	Thermotolerant Soil Microbes and Their Role in Mitigation of Heat Stress in Plants. Sustainable Development and Biodiversity, 2021, , 203-242.	1.4	6
1742	Foliar Application of Silicon Enhances Growth, Flower Yield, Quality and Postharvest Life of Tuberose (Polianthes tuberosa L.) under Saline Conditions by Improving Antioxidant Defense Mechanism. Silicon, 2022, 14, 1511-1518.	1.8	29
1743	Phytohormonal signaling under abiotic stress in legumes. , 2021, , 175-187.		0
1744	Synthesis and Regulation of Secondary Metabolites in Plants in Conferring Tolerance Against Pollutant Stresses. , 2021, , 57-76.		0
1745	The study of morphometric and the number of biochemical characteristics of the salt-resistant plastomic mutant "SR-3―of mustard plants and its parental variety "Donskaya-5― Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2021, 66, 7-16.	0.2	0
1746	Engineered BcZAT12 gene mitigates salt stress in tomato seedlings. Physiology and Molecular Biology of Plants, 2021, 27, 535-541.	1.4	3
1747	Genome-wide search and structural and functional analyses for late embryogenesis-abundant (LEA) gene family in poplar. BMC Plant Biology, 2021, 21, 110.	1.6	18
1748	Response of Olive Shoots to Salinity Stress Suggests the Involvement of Sulfur Metabolism. Plants, 2021, 10, 350.	1.6	16
1749	The Spectral Reflectance Response of â€~Riviera' Common Bermudagrass to Increasing Saline Irrigation Concentrations. HortTechnology, 2021, 31, 36-41.	0.5	2
1750	CORRELATION ANALYSIS BETWEEN MORPHOLOGICAL, PHYSIOLOGICAL AND YIELD TRAITS UNDER SALINITY STRESS CONDITION IN WHEAT (TRITICUM AESTIVUM L.) GENOTYPES. Pakistan Journal of Agriculture, Agricultural Engineering & Veterinary Sciences, 2021, 36, 129-134.	0.2	0
1751	Effect of Salinity and Nitrogen Form in Irrigation Water on Growth, Antioxidants and Fatty Acids Profiles in Halophytes Salsola australis, Suaeda maritima, and Enchylaena tomentosa for a Perspective of Biosaline Agriculture. Agronomy, 2021, 11, 449.	1.3	6
1752	Identification and Functional Analysis of Two Purple Acid Phosphatases AtPAP17 and AtPAP26 Involved in Salt Tolerance in Arabidopsis thaliana Plant. Frontiers in Plant Science, 2020, 11, 618716.	1.7	12

#	Article	IF	CITATIONS
1753	Ameliorating Effect of Bicarbonate on Salinity Induced Changes in the Growth, Nutrient Status, Cell Constituents and Photosynthetic Attributes of Microalga Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 2021, , 1.	1.3	3
1754	Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects. Agronomy, 2021, 11, 342.	1.3	42
1755	Influences of sea water on the ethylene-biosynthesis, senescence-associated gene expressions, and antioxidant characteristics of Arabidopsis plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12205.	0.5	0
1756	Overexpression of WssgtL3.1 gene from Withania somnifera confers salt stress tolerance in Arabidopsis. Plant Cell Reports, 2021, 40, 2191-2204.	2.8	12
1757	Physiological Mechanism of Salicylic Acid in Mentha pulegium L. under salinity and drought stress. Revista Brasileira De Botanica, 2021, 44, 359-369.	0.5	21
1758	Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 2021, 159, 113-122.	2.8	46
1759	Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 159, 257-267.	2.8	28
1760	Comparative anatomy and salt management of <i>Sonneratia caseolaris</i> (L.) Engl. (Lythraceae) grown in saltwater and freshwater. PeerJ, 2021, 9, e10962.	0.9	10
1761	The Determination of the Genetic Distance of Various Snake Melon Cucumis melo var. flexuosus Cultivars Using Inter Simple Sequence Repeat Technique (ISSR). Basrah Journal of Agricultural Sciences, 2021, 34, 111-123.	0.2	1
1762	Morphological and Physiological Traits Related to the Response and Adaption of Bolboschoenus planiculmis Seedlings Grown Under Salt-Alkaline Stress Conditions. Frontiers in Plant Science, 2021, 12, 567782.	1.7	23
1763	Low-Cost Chlorophyll Fluorescence Imaging for Stress Detection. Sensors, 2021, 21, 2055.	2.1	10
1764	Alleviative effects of Faradarmani Consciousness Field on Triticum aestivum L. under salinity stress. F1000Research, 0, 9, 1089.	0.8	2
1766	de novo transcriptomic profiling of differentially expressed genes in grass halophyte Urochondra setulosa under high salinity. Scientific Reports, 2021, 11, 5548.	1.6	14
1767	Reduction of the environmental footprint of thermoâ€alkali pretreatment by reusing black liquor during anaerobic digestion of lignocellulosic biomasses. Biofuels, Bioproducts and Biorefining, 2021, 15, 657-670.	1.9	5
1768	Investigation of silicon effects on some growth and biochemical parameters of Lens culinaris Medik under salt stress. Journal of Plant Nutrition, 0, , 1-15.	0.9	1
1769	Salinity Tolerance in Canola: Insights from Proteomic Studies. , 0, , .		3
1771	The apple palmitoyltransferase MdPAT16 influences sugar content and salt tolerance via an MdCBL1–MdCIPK13–MdSUT2.2 pathway. Plant Journal, 2021, 106, 689-705.	2.8	17
1772	Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond. Plant Physiology and Biochemistry, 2021, 160, 239-256.	2.8	70

#	Article		CITATIONS
1773	Effects of salt stress on physiological and biochemical responses of three maize genotypes at the early seedling stage. Acta Agriculturae Slovenica, 2021, 117, .	0.2	0
1774	Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi Journal of Biological Sciences, 2021, 28, 4276-4290.	1.8	67
1775	Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defenseâ€related gene expression, and photosynthetic capacity of <scp><i>Phaseolus vulgaris</i></scp> L. to confer salt stress tolerance. Physiologia Plantarum, 2021, 173, 1369-1381.	2.6	57
1776	Halophyte Plants and Their Residues as Feedstock for Biogas Production—Chances and Challenges. Applied Sciences (Switzerland), 2021, 11, 2746.	1.3	18
1777	Dose–Effect Relationship of Water Salinity Levels on Osmotic Regulators, Nutrient Uptake, and Growth of Transplanting Vetiver [Vetiveria zizanioides (L.) Nash]. Plants, 2021, 10, 562.	1.6	6
1778	The Relationship between the Antioxidant System and Proline Metabolism in the Leaves of Cucumber Plants Acclimated to Salt Stress. Cells, 2021, 10, 609.	1.8	57
1780	Impact of Biochar on Growth, Physiology and Antioxidant Activity of Common Bean Subjected to Salinity Stress. Global Journal of Botanical Science, 0, 9, 8-13.	0.4	2
1781	Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell, Tissue and Organ Culture, 2021, 146, 215-224.	1.2	13
1782	Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Journal of Proteomics, 2021, 234, 104097.	1.2	45
1783	Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	11
1784	Arabidopsis thaliana in aquatic culture as model object for research of physiological effects of signal mediators and stress phytohormones. VĬsnik HarkĬvsʹkogo NacĬonalʹnogo Agrarnogo UnĬversitetu SerĬĢ BĬologiâ, 2021, 2021, 89-97.	0.1	0
1785	Effect of Salt Stress on Some Growth and Physiological Parameters of Peanut (Arachis hypogea L.) Varieties. Yuzuncu Yil University Journal of Agricultural Sciences, 2021, 31, 228-236.	0.1	3
1786	Effect of NaCl road salt on the ionic composition of soils and Aesculus hippocastanum L. foliage and leaf damage intensity. Scientific Reports, 2021, 11, 5309.	1.6	13
1787	<scp>WRKY9</scp> transcription factor regulates cytochrome <scp>P450</scp> genes <scp><i>CYP94B3</i></scp> and <scp><i>CYP86B1</i></scp> , leading to increased root suberin and salt tolerance in Arabidopsis. Physiologia Plantarum, 2021, 172, 1673-1687.	2.6	27
1788	Tobacco transcription factor bHLH123 improves salt tolerance by activating NADPH oxidase <i>NtRbohE</i> expression. Plant Physiology, 2021, 186, 1706-1720.	2.3	43
1789	Multifaceted intervention of <i>Bacillus</i> spp. against salinity stress and Fusarium wilt in tomato. Journal of Applied Microbiology, 2021, 131, 2387-2401.	1.4	15
1790	Effect of sea water substitution on growth, physiological and biochemical processes of coconut (Cocos nucifera L.) seedlings—A hydroponic study. Scientia Horticulturae, 2021, 280, 109935.	1.7	3
1791	PRODUCTION OF SAGE (Salvia officinalis L.) IN A HYDROPONICS SYSTEM USING BRACKISH WATER AT LOW COST*. Irrigation and Drainage, 0, , .	0.8	0

#	Article		CITATIONS
1792	Physiological, biochemical and molecular responses of durum wheat under salt stress. Plant Genetic Resources: Characterisation and Utilisation, 2021, 19, 93-103.		5
1793	Response of Lawn Grasses to Salinity Stress and Protective Potassium Effect. Agronomy, 2021, 11, 843.	1.3	6
1794	Production of Betacyanins in Transgenic Nicotiana tabacum Increases Tolerance to Salinity. Frontiers in Plant Science, 2021, 12, 653147.	1.7	9
1795	Comparative Genomics and Transcriptomics of the Extreme Halophyte Puccinellia tenuiflora Provides Insights Into Salinity Tolerance Differentiation Between Halophytes and Glycophytes. Frontiers in Plant Science, 2021, 12, 649001.	1.7	14
1797	Effect of floral traits mediated by plant-soil feedback on the relationship between plant density and fecundity: Case study of Tamarix chinensis in the Yellow River Delta, China. Global Ecology and Conservation, 2021, 26, e01479.	1.0	2
1798	Construction of Saline-Alkali Tolerance Evaluation System and Isolation of Differentially Expressed Genes in High-Oleic Peanut (Arachis hypogaea L.). Journal of Biobased Materials and Bioenergy, 2021, 15, 145-155.	0.1	0
1799	Acclimation to salinity in halophytic ice plant prevents a decline of linear electron transport. Environmental and Experimental Botany, 2021, 184, 104401.	2.0	8
1800	Adaptability and yield potential of new quinoa lines under agro-ecological conditions of Faisalabad-Pakistan. Asian Journal of Agriculture and Biology, 0, , .	1.4	9
1801	Tailoring Next Generation Plant Growth Promoting Microorganisms as Versatile Tools beyond Soil Desalinization: A Road Map towards Field Application. Sustainability, 2021, 13, 4422.	1.6	23
1802	Calcium, Magnesium and Micronutrient Uptake in Watercress (Nasturtium officinale) under Arsenic and Salinity Stress Conditions. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 251-255.	0.1	0
1803	Exogenous Application of Zinc to Mitigate the Salt Stress in Vigna radiata (L.) Wilczek—Evaluation of Physiological and Biochemical Processes. Plants, 2021, 10, 1005.	1.6	23
1804	Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture (Switzerland), 2021, 11, 463.	1.4	104
1805	Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 2021, 11, 74.	1.4	17
1806	Label-Free Proteomic Analysis of Smoke-Drying and Shade-Drying Processes of Postharvest Rhubarb: A Comparative Study. Frontiers in Plant Science, 2021, 12, 663180.	1.7	3
1807	The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites, 2021, 11, 337.	1.3	118
1808	Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy, 2021, 11, 968.	1.3	256
1809	Ammonium transporter PsAMT1.2 from Populus simonii functions in nitrogen uptake and salt resistance. Tree Physiology, 2021, 41, 2392-2408.	1.4	7
1810	Effect of different control applications on Cuscuta campestris, and biochemical content of eggplant. Journal of the Saudi Society of Agricultural Sciences, 2021, 20, 209-216.	1.0	3

#	Article	IF	CITATIONS
1811	Anatomical adaptations and ionic homeostasis in aquatic halophyte Cyperus laevigatus L. Under high salinities. Saudi Journal of Biological Sciences, 2021, 28, 2655-2666.	1.8	20
1812	Plant Responses to Salt Stress. , 0, , .		10
1813	Mapping of potential environmental risks associated to formation water in the Oriente Basin, Ecuador. Groundwater for Sustainable Development, 2021, 13, 100566.	2.3	3
1814	Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride. Sustainability, 2021, 13, 5429.	1.6	2
1815	Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress. Plant Cell Reports, 2021, 40, 1199-1213.	2.8	15
1816	Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide - Biology and Chemistry, 2021, 111-112, 14-30.	1.2	29
1817	Understanding seed germination of forage crops under various salinity and temperature stress. Journal of Crop Science and Biotechnology, 2021, 24, 545-554.	0.7	7
1818	Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites, 2021, 11, 428.	1.3	47
1819	Flavonoids: A Myth or a Reality for Cancer Therapy?. Molecules, 2021, 26, 3583.	1.7	36
1820	Impact of Salinity on the Growth and Chemical Composition of Two Underutilized Wild Edible Greens: Taraxacum officinale and Reichardia picroides. Horticulturae, 2021, 7, 160.	1.2	13
1821	Spinach Growth Regulation Due to Interactive Salinity, Water, and Nitrogen Stresses. Journal of Plant Growth Regulation, 2022, 41, 1654-1671.	2.8	9
1822	Deciphering the role of helicases and translocases: A multifunctional gene family safeguarding plants from diverse environmental adversities. Current Plant Biology, 2021, 26, 100204.	2.3	9
1824	Effect of the Pesticide Endosulfan and Two Different Biostimulants on the Stress Responses of Phaseolus leptostachyus Plants Grown in a Saline Soil. Agronomy, 2021, 11, 1208.	1.3	3
1825	Determining the Heritability and Genetic Parameters of Antioxidant Enzymes Activity in Barley Cultivars. Tarim Bilimleri Dergisi, 0, , .	0.4	1
1826	Wuxal amino (Bio stimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential. Saudi Journal of Biological Sciences, 2021, 28, 3204-3213.	1.8	17
1827	New insights into the salt tolerance of the extreme halophytic species Lycium humile (Lycieae,) Tj ETQq1 1 0.784	314 rgBT / 2.8	Oyerlock I
1828	Optical cryomicroscopy and differential scanning calorimetry of buffer solutions containing cryoprotectants. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 127-140.	2.0	10
1829	Reducing nitrogen rate and hill distance improves rice dry matter production in saline–alkali soils. Agronomy Journal, 0, , .	0.9	3

#	Article		CITATIONS
1830	Melatonin Improves Cotton Salt Tolerance by Regulating ROS Scavenging System and Ca2 + Signal Transduction. Frontiers in Plant Science, 2021, 12, 693690.		44
1831	Electrochemical In Situ pH Control Enables Chemical-Free Full Urine Nitrification with Concomitant Nitrate Extraction. Environmental Science & Technology, 2021, 55, 8287-8298.	4.6	9
1832	FATOR DE DISPONIBILIDADE DE ÃGUA NO SOLO E ADUBAÇÃ∱O NITROGENADA PARA A CULTURA DA BETERRABA. Nativa, 2021, 9, 222-228.	0.2	1
1833	Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. Plant Physiology, 2021, 187, 873-885.	2.3	10
1834	Phytochemical Properties of Roselle (<i>Hibiscus sabdariffa,</i> L) Plants Grown under Bio and Mineral Fertilizers in Different Types of Soil. International Letters of Natural Sciences, 0, 83, 1-14.	1.0	0
1835	Breeding Mustard (<i>Brassica juncea</i>) for Salt Tolerance: Problems and Prospects. , 0, , .		5
1836	Assessment of early physiological and biochemical responses in chia (Salvia hispanica L.) sprouts under salt stress. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	12
1837	Synergistic and antagonistic interactions of soil water potential and osmotic potential linked to nitrogen fertilization on spinach traits and water use efficiency. Journal of Plant Nutrition, 2022, 45, 389-412.	0.9	3
1838	Salinity tolerance evaluation of barley germplasm for marginal soil utilization. Italian Journal of Agronomy, 2021, 16, .	0.4	1
1839	Role of flavonoids and proline in the protection of photosynthetic apparatus in Paulownia under salt stress. South African Journal of Botany, 2021, 139, 246-253.	1.2	20
1840	Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biology, 2021, 21, 331.		54
1841	Traitâ€based adaptability of <i>Phragmites australis</i> to the effects of soil water and salinity in the Yellow River Delta. Ecology and Evolution, 2021, 11, 11352-11361.	0.8	8
1842	Farklı Tuz Konsantrasyonlarının Bazı Tatlı Sorgum ï•Sorghum bicolor var. saccharatum (L.) Mohlenbr.ï• Çeşitlerinin Çimlenme Özellikleri Üzerine Etkileri. Türkiye Tarımsal Araştırmalar Dergisi, 0, , .	0.5	4
1843	Evaluating the efficacy of chitosan and salicylic acid on photosynthetic pigments and antioxidant enzymes towards resistance of mango malformation. Scientia Horticulturae, 2021, 285, 110160.	1.7	14
1844	Diversity in Phytochemical Composition, Antioxidant Capacities, and Nutrient Contents Among Mungbean and Lentil Microgreens When Grown at Plain-Altitude Region (Delhi) and High-Altitude Region (Leh-Ladakh), India. Frontiers in Plant Science, 2021, 12, 710812.	1.7	18
1845	Antioxidant defense and secondary metabolites concentration in hyssop (Hyssopus officinalis L.) plants as affected by salt stress. Acta Agriculturae Slovenica, 2021, 117, 1.	0.2	2
1846	How Phosphorus Fertilization Alleviates the Effect of Salinity on Sugar Beet (Beta vulgaris L.) Productivity and Quality. Agronomy, 2021, 11, 1491.	1.3	14
1847	The Response of Halophyte (Tetragonia tetragonioides (Pallas) Kuntz.) and Glycophyte (Lactuca sativa) Tj ETQq1 Applied Sciences (Switzerland), 2021, 11, 6336.	1 0.78431 1.3	4 rgBT /Ove 7

#	Article		CITATIONS
1848	Different Sensitivity Levels of the Photosynthetic Apparatus in Zea mays L. and Sorghum bicolor L. under Salt Stress. Plants, 2021, 10, 1469.	1.6	14
1849	Effects of Salinity on Seed Germination and Early Seedling Stage. , 0, , .		19
1850	Salt Stress in Plants and Amelioration Strategies: A Critical Review. , 0, , .		15
1851	Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. PLoS ONE, 2021, 16, e0253812.	1.1	13
1852	Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species. Plants, 2021, 10, 1401.	1.6	6
1853	Salinity Influences Plant–Pest–Predator Tritrophic Interactions. Journal of Economic Entomology, 2021, 114, 1470-1479.	0.8	3
1854	Effect of salt stress on some physio-biochemical traits and antioxidative enzymes of two Brassica species under callus culture. Plant Cell, Tissue and Organ Culture, 2021, 147, 453-465.	1.2	1
1855	Influence of Chloride- and Soda-Dominated Salinity on Physiological and Biochemical Aspects of Halophytes with Different Strategies of Salt Metabolism. IOP Conference Series: Earth and Environmental Science, 2021, 818, 012033.	0.2	0
1856	Improving Drought Tolerance in Mungbean (Vigna radiata L. Wilczek): Morpho-Physiological, Biochemical and Molecular Perspectives. Agronomy, 2021, 11, 1534.	1.3	19
1857	Post-stress restorative response of two quinoa genotypes differing in their salt resistance after salinity release. Plant Physiology and Biochemistry, 2021, 164, 222-236.	2.8	10
1858	CULTIVO DE PLANTAS DE Erythrina velutina EM SUBSTRATO CONTENDO VERMICOMPOSTO. Nativa, 2021, 9, 247-252.	0.2	1
1859	Responses to Salinity in Four Plantago Species from Tunisia. Plants, 2021, 10, 1392.	1.6	13
1860	Interactive Impacts of Beneficial Microbes and Si-Zn Nanocomposite on Growth and Productivity of Soybean Subjected to Water Deficit under Salt-Affected Soil Conditions. Plants, 2021, 10, 1396.	1.6	35
1861	Osmolyte Accumulation and Sodium Compartmentation Has a Key Role in Salinity Tolerance of Pistachios Rootstocks. Agriculture (Switzerland), 2021, 11, 708.	1.4	26
1862	Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiology and Biochemistry, 2021, 165, 161-172.	2.8	15
1863	The Potential Application of Endophytes in Management of Stress from Drought and Salinity in Crop Plants. Microorganisms, 2021, 9, 1729.	1.6	70
1864	Changes in Carbon Partitioning and Pattern of Antioxidant Enzyme Activity Induced by Arginine Treatment in the Green Microalga Dunaliella salina Under Long-Term Salinity. Microbial Ecology, 2022, 84, 198-212.	1.4	7
1865	Managing sodic soils for better productivity and farmers' income by integrating use of salt tolerant rice varieties and matching agronomic practices. Field Crops Research, 2021, 270, 108192.	2.3	11

#	Article	IF	CITATIONS
1866	Genotypic Variability in Architectural Development of Mungbean (Vigna radiata L.) Root Systems and Physiological Relationships With Shoot Growth Dynamics. Frontiers in Plant Science, 2021, 12, 725915.	1.7	4
1867	Dynamic alterations of metabolites in Plectranthus amboinicus (Lour.) Spreng. to encounter drought and Zn toxicity. Revista Brasileira De Botanica, 2021, 44, 587-599.	0.5	3
1868	Effects of Salinity Stress on Chloroplast Structure and Function. Cells, 2021, 10, 2023.	1.8	107
1869	Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Italian Journal of Agronomy, 2021, 16, .	0.4	18
1870	Understanding the peak growing season ecosystem waterâ€use efficiency at four boreal fens in the Athabasca oil sands region. Hydrological Processes, 2021, 35, e14323.	1.1	6
1871	The Effect of Trichoderma citrinoviride Treatment under Salinity Combined to Rhizoctonia solani Infection in Strawberry (Fragaria x ananassa Duch.). Agronomy, 2021, 11, 1589.	1.3	14
1872	Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types. Microorganisms, 2021, 9, 1673.	1.6	6
1873	Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. Journal of Microbiology and Biotechnology, 2021, 31, 1045-1059.	0.9	68
1874	Intraspecific variation in elemental accumulation and its association with salt tolerance in <i>Paspalum vaginatum</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
1875	Combined effects of salinity and nitrogen levels on some physiological and biochemical aspects at the halophytic forage legume <i>Sulla carnosa</i> . Archives of Agronomy and Soil Science, 2023, 69, 119-134.	1.3	3
1876	Towards adverse outcome pathways for metals in saltmarsh ecosystems – A review. Journal of Hazardous Materials, 2021, 416, 126252.	6.5	9
1877	Amelioration of saltâ€induced damage on alfalfa by exogenous application of silicon. Grassland Science, 2022, 68, 60-69.	0.6	3
1878	Role of PGPR on the physiology of sunflower irrigated with produced water containing high total dissolved solids (TDS) and its residual effects on soil fertility. International Journal of Phytoremediation, 2022, 24, 567-579.	1.7	5
1879	Liquid Organic Fertilizer Amendment Alters Rhizosphere Microbial Community Structure and Co-occurrence Patterns and Improves Sunflower Yield Under Salinity-Alkalinity Stress. Microbial Ecology, 2022, 84, 423-438.	1.4	19
1880	The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. Environmental Science and Pollution Research, 2021, 28, 60383-60405.	2.7	15
1881	Combined Treatment of a Pyroligneous Solution and Soluble Calcium Enhances Cotton Growth Through Improving Soil Quality in Saline-Alkali Soils. Journal of Soil Science and Plant Nutrition, 0, , 1.	1.7	1
1882	Assessing the Adaptive Mechanisms of Two Bread Wheat (Triticum aestivum L.) Genotypes to Salinity Stress. Agronomy, 2021, 11, 1979.	1.3	5
1883	Unraveling the Modulation of Controlled Salinity Stress on Morphometric Traits, Mineral Profile, and Bioactive Metabolome Equilibrium in Hydroponic Basil, Horticulturae, 2021, 7, 273,	1.2	7

		CITATION REPOR	т	
#	ARTICLE Fulvic acid enhances drought resistance in tea plants by regulating the starch and sucrose	IF	C	ITATIONS
1004	metabolism and certain secondary metabolism. Journal of Proteomics, 2021, 247, 104337.	1.2	2	0
1885	Coupling Relationship of Leaf Economic and Hydraulic Traits of Alhagisparsitolia Shap. in a Hyper- Desert Ecosystem. Plants, 2021, 10, 1867.	Arid 1.6	9	
1886	Assessment of the Physiological Condition of Spring Barley Plants in Conditions of Increased Soil Salinity. Agronomy, 2021, 11, 1928.	1.3	2	
1887	Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells, 2021, 10, 2537.	1.8	8	4
1888	Oxidative stress tolerance potential of milk thistle ecotypes after supplementation of different pl growth-promoting agents under salinity. Plant Physiology and Biochemistry, 2021, 166, 53-65.	ant 2.8	; 1;	3
1889	Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis. Environmental and Experimental Botany, 2021, 189, 104530.	2.0) 24	4
1890	Phenological and physio-biochemical variations in Salicornia brachiata Roxb. under different soil a water treatments (salinity). Aquatic Botany, 2021, 174, 103429.	ınd 0.8	3 1	
1891	Exploring natural diversity reveals alleles to enhance antioxidant system in barley under salt stres Plant Physiology and Biochemistry, 2021, 166, 789-798.	s. 2.8	1	5
1892	Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil. International Journal o Environmental Research and Public Health, 2021, 18, 9936.	Plant f 1.2	2	0
1893	Combined effect of salinity and hypoxia in seedlings of two varieties of <scp><i>Panicum coloratum</i></scp> : Morphology, root system architecture, oxidative damage and antioxidant response. Annals of Applied Biology, 2022, 180, 283-293.	1.3	4	
1894	Interactive Effect of Organic and Inorganic Amendments along with Plant Growth Promoting Rhizobacteria on Ameliorating Salinity Stress in Maize. , 0, , .		0	i
1895	Abscisic acid mitigates NaCl toxicity in grapevine by influencing phytochemical compounds and mineral nutrients in leaves. Scientia Horticulturae, 2021, 288, 110336.	1.7	1	7
1896	Transcriptome analysis of genes in response to magnesium nitrate stress on cucumber leaf. Scier Horticulturae, 2021, 288, 110391.	itia 1.7	3	
1897	Acclimation to nitrogen × salt stress in Populus bolleana mediated by potassium/sodium baland Industrial Crops and Products, 2021, 170, 113789.	ce. 2.5	1	2
1898	Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. Plant Science, 2021, 311, 111013.	1.7	8	
1899	Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. unde salt stress. Plant Physiology and Biochemistry, 2021, 167, 607-618.	er 2.8	5 21	7
1900	Evaluation and prediction of salinity tolerance behavior of citrus rootstocks. Scientia Horticulturae, 2021, 289, 110422.	1.7	3	
1901	Salt stress causes a significant increase in anti-cancer crocins content of saffron stigma. South African Journal of Botany, 2021, 143, 61-68.	1.2	1	

#		IF	CITATIONS
π 1902	Overexpression of the tyrosine decarboxylase gene MdTyDC in apple enhances long-term moderate drought tolerance and WUE. Plant Science, 2021, 313, 111064.	1.7	14
1903	Ameliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stress. South African Journal of Botany, 2021, 143, 79-89.	1.2	10
1904	Too much of a good thing: Evidence of sodium stress in an inland subtropical riparian detrital system. Applied Soil Ecology, 2022, 169, 104194.	2.1	3
1905	Changes in Growth, Photosynthetic Pigments, Cell Viability, Lipid Peroxidation and Antioxidant Defense System in Two Varieties of Chickpea (Cicer arietinum L.) Subjected to Salinity Stress. Phyton, 2022, 91, 149-168.	0.4	9
1906	Role of secondary metabolites in salt and heavy metal stress mitigation by halophytic plants: An overview. , 2021, , 307-327.		4
1907	Effects of Salt Stress on Photosynthesis and Water in Plants. Botanical Research, 2021, 10, 231-238.	0.0	0
1908	Photosynthetic and cellular responses in plants under saline conditions. , 2021, , 293-365.		2
1909	Saline-Sodic Soils Treated with Some Soil Amendments and Foliar Application with Compost Tea and Proline for Improvement Some Soil Properties and Yield-Water Productivity of Rice. International Journal of Plant & Soil Science, 0, , 1-15.	0.2	1
1910	Exogenous Application of Exogenous Effectors Confers Tolerance to Heavy Metals in Plants. Modern Concepts & Developments in Agronomy, 2021, 7, .	0.1	0
1911	Silicon Compounds and Potassium Sulfate Improve Salinity Tolerance of Potato Plants through Instigating the Defense Mechanisms, Cell Membrane Stability, and Accumulation of Osmolytes. Communications in Soil Science and Plant Analysis, 2021, 52, 843-858.	0.6	22
1912	Salt Modulates Plant Litter Decomposition in Stream Ecosystems. , 2021, , 323-345.		6
1913	Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatalysis and Agricultural Biotechnology, 2021, 31, 101914.	1.5	35
1914	Nutrient Composition, Antioxidant Components and Ascorbic Acid Content Response of Pepper Fruit (Capsicum annuum L.) Cultivars Grown under Salt Stress. Open Access Library Journal (oalib), 2021, 08, 1-20.	0.1	1
1915	Physiological Responses of Halophytes to the Combined Effects of Salinity and Phosphorus Deficiency. , 2021, , 1547-1563.		1
1916	Antioxidant Molecules and Enzymes and Their Relevance to the Salt Adaptation of Halophytes. , 2021, , 1459-1475.		1
1917	Phytoremediation of Salt-Affected Soils Using Halophytes. , 2021, , 2261-2278.		1
1918	Regulation of salinity stress by hydrogen sulfide in plants. , 2021, , 213-227.		2
1919	Physiological and molecular mechanisms in improving salinity stress tolerance by beneficial microorganisms in plants. , 2021, , 13-43.		0

		IATION REPO	JRI	
#	Article		IF	CITATIONS
1920	Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. Plants, 2021, 10, 243.		1.6	56
1921	Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. Frontiers in Plant Science, 2020, 11, 618680.		1.7	48
1922	Effect of salt stress in urban conditions on two <i>Acer</i> species with different sensitivity. PeerJ, 2021, 9, e10577.		0.9	7
1923	Exogenous metabolites spray, which identified from metabolomics analysis and transcriptomic analysis, can improve salt tolerance of Chinese cabbages (<i>Brassica rapa</i> L.ssp <i>pekinensis</i> Journal of Plant Interactions, 2021, 16, 452-461.)*.	1.0	3
1927	Does Elevated CO2 Mitigate the Salt Effect on Photosynthesis in Barley Cultivars?. , 2008, , 1529-153	3.		4
1928	Nitrogen-Use-Efficiency (NUE) in Plants Under NaCl Stress. , 2013, , 415-437.			13
1929	Mechanisms and Adaptation of Plants to Environmental Stress: A Case of Woody Species. , 2014, , 1-2	24.		6
1930	Importance of Protective Compounds in Stress Tolerance. , 2014, , 265-284.			2
1931	Impact of Biotic, Abiotic Stressors: Biotechnologies for Alleviating Plant Stress. , 2014, , 87-120.			3
1932	Plant Physiological Mechanisms of Salt Tolerance Induced by Mycorrhizal Fungi and Piriformospora indica. , 2014, , 133-152.			1
1933	Antioxidant Molecules and Enzymes and Their Relevance to the Salt Adaptation of Halophytes. , 2020, 1-17.			2
1934	Phytoremediation of Salt-Affected Soils Using Halophytes. , 2020, , 1-18.			7
1935	Durum Wheat (Triticum turgidum ssp. durum) Breeding to Meet the Challenge of Climate Change. , 2019, , 471-524.			20
1936	Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. Sustainable Development and Biodiversity, 2019, , 279-335.		1.4	12
1937	Alleviation of Stress-Induced Ethylene-Mediated Negative Impact on Crop Plants by Bacterial ACC Deaminase: Perspectives and Applications in Stressed Agriculture Management. Sustainable Development and Biodiversity, 2020, , 287-315.		1.4	12
1938	Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. Fungal Biology, 2020, , 101-14	-8.	0.3	3
1939	Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. Signaling and Communication in Plants, 2020, , 49-73.		0.5	6
1940	Ecohydrology: Understanding and Maintaining Ecosystem Services for IWRM. , 2015, , 121-145.			4

#	Article	IF	CITATIONS
1942	Site Specific Bioinoculants for Sustainable Agriculture in Coastal Saline Soil. Sustainable Development and Biodiversity, 2015, , 209-234.	1.4	3
1943	Identification of Distinctive Variants of the Olive Pollen Allergen Ole e 5 (Cu,Zn Superoxide) Tj ETQq1 1 0.784314 Science, 2015, , 460-470.	rgBT /Ov 1.0	verlock 10 Tf 2
1944	Impact of Sulfate Salinity on the Uptake and Metabolism of Sulfur in Chinese Cabbage. Proceedings of the International Plant Sulfur Workshop, 2015, , 227-238.	0.1	6
1945	Nitrogen Management in Rice-Wheat Cropping System in Salt-Affected Soils. , 2016, , 67-89.		3
1946	Impact of Atmospheric H2S, Salinity and Anoxia on Sulfur Metabolism in Zea mays. Proceedings of the International Plant Sulfur Workshop, 2017, , 93-101.	0.1	4
1947	Ecology of Inland Saline Plants. , 2010, , 299-320.		7
1948	Interaction Between Salinity and Elevated CO2: A Physiological Approach. Progress in Botany Fortschritte Der Botanik, 2012, , 97-126.	0.1	2
1949	Sustainable Agriculture in Saline-Arid and Semiarid by Use Potential of AM Fungi on Mitigates NaCl Effects. Soil Biology, 2013, , 347-369.	0.6	7
1950	Molecular Mapping and Breeding for Genes/QTLS Related to Climate Change. , 2013, , 179-212.		4
1951	Biodiversity of plant species and adaptation to drought and salt conditions. Selection of species for sustainable reforestation activity to combat desertification. , 2008, , 197-206.		6
1952	Yield and Growth Responses of Autochthonous Pearl Millet Ecotype (Pennisetum glaucum (L.) R. Br.) Under Saline Water Irrigation in Tunisia. , 2013, , 437-450.		2
1953	Physiological Adaptation of Alfalfa Genotypes to Salt Stress (One of Deleterious Impacts of Climate) Tj ETQq1 1 C).784314	rg₿T /Over o
1954	Plant Growth-Promoting Rhizobacteria and Salinity Stress: A Journey into the Soil. Microorganisms for Sustainability, 2019, , 21-34.	0.4	23
1955	Plant Growth-Promoting Rhizobacteria: Benign and Useful Substitute for Mitigation of Biotic and Abiotic Stresses. Microorganisms for Sustainability, 2019, , 81-101.	0.4	8
1956	Mechanisms of Seed Priming Involved in Salt Stress Amelioration. , 2019, , 219-251.		10
1957	Soil-Plant and Microbial Interaction in Improving Salt Stress. , 2019, , 217-235.		3
1958	Potentiality of Plant Growth-Promoting Rhizobacteria in Easing of Soil Salinity and Environmental Sustainability. , 2019, , 21-58.		3
1959	Use of Plant Hormones for the Improvement of Plant Growth and Production Under Salt Stress. , 2019, , 59-90.		2
#	Article	IF	CITATIONS
------	--	-------------	--------------
1960	Use of Nanoparticles in Alleviating Salt Stress. , 2019, , 199-215.		9
1961	Impact of Salinity Stress in Crop Plants and Mitigation Strategies. , 2020, , 49-63.		3
1962	Biosynthesis of Secondary Metabolites in Plants as Influenced by Different Factors. , 2020, , 61-100.		4
1963	Growth and Development Dynamics in Agronomic Crops Under Environmental Stress. , 2019, , 83-114.		7
1964	A review of Arthrocnemum (Arthrocaulon) macrostachyum chemical content and bioactivity. Phytochemistry Reviews, 2020, 19, 1427-1448.	3.1	15
1965	Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101636.	1.5	31
1966	Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 2020, 178, 104124.	2.0	176
1967	Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. , 0, .		1
1968	Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochemical Journal, 2019, 476, 2393-2409.	1.7	36
1969	The effectiveness of zinc in alleviating salinity stress on pistachio seedlings. Fruits, 2016, 71, 433-445.	0.3	2
1970	Growth and physiological responses of balansa clover and burr medic to low levels of salinity. Australian Journal of Agricultural Research, 2008, 59, 605.	1.5	4
1971	Crop diversification through halophyte production on salt-prone land resources CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2006, 1, .	0.6	15
1972	Na ⁺ accumulation alleviates drought stress induced photosynthesis inhibition of PSII and PSI in leaves of <i>Medicago sativa</i> . Journal of Plant Interactions, 2021, 16, 1-11.	1.0	14
1973	MORPHO-PHYSIOLOGICAL CHARACTERISTICS, SELECTED MACRONUTRIENT UPTAKE, AND OXIDATIVE STRESS LEVEL OF Andrographis paniculata UNDER SALINE CONDITION. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.784	3 bAargBT ,	'Overlock 10
1975	Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. , 2020, 61, 13.		36
1976	Chapter 39Nutrient Management of Golf Course Putting Greens under Stresses. , 2016, , 1017-1046.		1
1977	Principal Component Analysis and Comprehensive Evaluation on Salt Tolerance Related Traits in Brassica napus L. Botanical Research, 2018, 07, 101-112.	0.0	9
1978	Alleviative effects of Fara-darmani Consciousness Field on Triticum aestivum L. under salinity stress. F1000Research, 0, 9, 1089.	0.8	4

#	Article	IF	CITATIONS
1979	The Study of Electrolyte Leakage from Barley (<i>Hordeum vulgare L</i>) and Pearlmillet Using Plant Growth Promotion (PGPR) and Reverse Osmosis. Journal of Food and Nutrition Research (Newark, Del), 2015, 3, 422-429.	0.1	20
1981	Effect of ascorbic acid application on yield and yield components of lentil (Lens culinaris Medik.) under salinity stress. International Journal of Biosciences, 2015, 6, 43-49.	0.4	5
1982	Differential response of parent and advanced mutant lines of wheat (Triticum aestivum L. cv. Tabasi) genotypes in antioxidant activity to salinity stress at seedling stage. International Journal of Biosciences, 2015, 6, 133-147.	0.4	1
1983	Evaluation of NaCl Tolerance in the Physical Reduction of Jatropha Curcus L. Seedlings. Agricultural Science, 2014, 2, 23-35.	0.3	1
1984	Investigation of Physiological and Biochemical Responses and Essential oil Yieldof Peppermint under Salt Stress. Biosciences, Biotechnology Research Asia, 2018, 15, 407-418.	0.2	2
1985	Salinity and subsequent freshwater influences on the growth, biomass, and polyisoprenoids distribution of Rhizophora apiculata seedlings. Biodiversitas, 2018, 20, .	0.2	12
1986	Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste, 2016, 103, 229-238.	0.3	109
1987	Combination of Multiple Resistance Traits from Wild Relative Species in Chrysanthemum via Trigeneric Hybridization. PLoS ONE, 2012, 7, e44337.	1.1	13
1988	Whole Genome Duplication and Enrichment of Metal Cation Transporters Revealed by De Novo Genome Sequencing of Extremely Halotolerant Black Yeast Hortaea werneckii. PLoS ONE, 2013, 8, e71328.	1.1	96
1989	An Ipomoea batatas Iron-Sulfur Cluster Scaffold Protein Gene, IbNFU1, Is Involved in Salt Tolerance. PLoS ONE, 2014, 9, e93935.	1.1	26
1990	Morphological and Physiological Responses of Cotton (Gossypium hirsutum L.) Plants to Salinity. PLoS ONE, 2014, 9, e112807.	1.1	122
1991	A Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato. PLoS ONE, 2014, 9, e115128.	1.1	51
1992	Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. PLoS ONE, 2016, 11, e0147398.	1.1	23
1993	Nitrate and Ammonium Contribute to the Distinct Nitrogen Metabolism of Populus simonii during Moderate Salt Stress. PLoS ONE, 2016, 11, e0150354.	1.1	54
1994	Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity. PLoS ONE, 2016, 11, e0164369.	1.1	30
1995	No evidence for local adaptation to salt stress in the existing populations of invasive Solidago canadensis in China. PLoS ONE, 2017, 12, e0175252.	1.1	8
1996	Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLoS ONE, 2017, 12, e0187124.	1.1	10
1997	Effect of native growth promoting bacteria and commercial biofertilizers on growth and yield of wheat (Triticum aestivum) and barley (Hordeum vulgare) under salinity stress conditions. Cellular and Molecular Biology, 2019, 65, 22-27.	0.3	10

#	Article	IF	CITATIONS
1998	Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. Tarim Bilimleri Dergisi, 2013, 19, 79-88.	0.4	13
1999	Water Quality Characterisitcs of Three Rain Gardens Located Within the Twin Cities Metropolitan Area, Minnesota. Cities and the Environment, 2011, 4, 1-17.	0.1	7
2000	Plant Responses under Environmental Stress Conditions. Advances in Plants & Agriculture Research, 2015, 2, .	0.3	35
2001	ECOTOXICOLOGICAL ASSESSMENT OF THE SOILFERTILIZED WITH SEWAGE SLUDGE. Present Environment and Sustainable Development, 2020, 14, .	0.1	3
2002	CRESCIMENTO E ACUMULAÇÃO DE SOLUTOS EM FEIJÃO-DE-CORDA IRRIGADO COM ÃGUAS DE SALINIDADE CRESCENTE EM DIFERENTES FASES DE DESENVOLVIMENTO. Irriga, 2013, 18, 148.	0.2	13
2004	Arbuscular Mycorrhizal Colonization Enhances Biochemical Status and Mitigates Adverse Salt Effect on Two Legumes. Notulae Scientia Biologicae, 2014, 6, .	0.1	3
2005	Physiology and production of sesame genotypes BRS-Seda and Preto under organomineral fertilization. Revista Brasileira De Engenharia Agricola E Ambiental, 2019, 23, 914-918.	0.4	1
2006	Crescimento e tolerância à salinidade em três espécies medicinais do gênero Plectranthus expostas a diferentes nÃveis de radiação. Revista Brasileira De Plantas Medicinais, 2014, 16, 839-849.	0.3	12
2007	Condutividade elétrica da solução nutritiva para o cultivo do crisântemo em vaso. Revista Brasileira De Ciencia Do Solo, 2010, 34, 747-756.	0.5	6
2008	O estresse salino retarda o desenvolvimento morfofisiológico e a ativação de galactosidases de parede celular em caules de Vigna unguiculata. Acta Botanica Brasilica, 2011, 25, 17-24.	0.8	2
2009	Germinação, vigor e crescimento de cultivares de feijoeiro em soluções salinas. Revista Brasileira De Engenharia Agricola E Ambiental, 2009, 13, 882-889.	0.4	9
2010	CaracterÃsticas fisiológicas, nutricionais e rendimento de forrageiras fertigadas com água residuária de bovinocultura. Revista Brasileira De Engenharia Agricola E Ambiental, 2010, 14, 458-466.	0.4	16
2011	Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress. Brazilian Journal of Plant Physiology, 2012, 24, 281-292.	0.5	25
2012	Morphophysiological responses of young oil palm plants to salinity stress. Pesquisa Agropecuaria Brasileira, 0, 55, .	0.9	7
2013	Crescimento de girassol em função da inoculação de sementes com bactérias endofÃŧicas. Pesquisa Agropecuaria Tropical, 2014, 44, 142-150.	1.0	9
2014	A preliminary study on salt tolerance of some barley genotypes. Sakarya University Journal of Science, 0, , 1-1.	0.3	8
2015	Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean. EXCLI Journal, 2015, 14, 1187-206.	0.5	24
2017	Effect of various soil salinity level on the antioxidant and physiological properties of corn plant (Zea) Tj ETQq1 1 0	.784314 r 0.1	gBT /Overlo

ARTICLE IF CITATIONS Tuz Stresi Altında Vermikompost Uygulamasının Kıyırcık Salatada (Lactuca Sativa Var. Crispa) Makro ve Mikro Element İçerikleri Üzerine Étkisi. KahramanmaraÅŸ Sütçü İmam Üniversitesi Tarım Ve DoÄŸa@ærgisi, 09, 2018 Germination and Seedling Growth of <i>Zea mays</i>L. under Different Levels of Sodium Chloride 2019 1.0 Stress. International Letters of Natural Sciences, 0, 12, 5-15. Ameliorative Effect of CaCl₂ on Growth, Membrane Permeability and Nutrient Uptake in <i>Oryza</i> <i>sativa</i> Grown at High NaCl Salinity. International Letters of Natural Sciences, 0, 8, 2020 1.0 4 14-22. Improvement Salt Tolerance of Safflower Plants by Endophytic Bacteria. Journal of Horticulture and 0.0 Plant Research, 0, 5, 38-56. The effects of CaCl2 on fruit yield, quality and nutrient contents of tomato under NaCl stress 2022 0.2 1 conditions. Eurasian Journal of Soil Science, 2017, 6, 84-84. Impact of Seed Priming on Proline Content and Antioxidant Enzymes to Mitigate Drought Stress in Rice Genotype. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2459-2466. Osmotolerant Plant Growth Promoting Bacterial Inoculation Enhances the Antioxidant Enzyme Levels 2024 of Tomato Plants Under Water Stress Conditions. International Journal of Current Microbiology and 0.0 7 Applied Sciences, 2018, 7, 2824-2833. Ion and mineral concentrations in roots and leaves of two grapevine cultivars as affected by nitric oxide foliar application under NaCl stress. Oeno One, 2015, 49, 155. Mitigation of Salt Stress in Lettuce (Lactuca sativa L. var. Crispa) by Seed and Foliar 24-epibrassinolide 2026 Treatments. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 0.5 46 631-636. The Interactive Effects of Daytime High Temperature and Humidity on Growth and Endogenous Hormone Concentration of Tomato Seedlings. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1575-1583. Response of Blackberry Cultivars to Fertilizer Source during Establishment in an Organic Fresh 2028 0.5 15 Market Production System. HortTechnology, 2015, 25, 277-292. Applying Spermidine for Differential Responses of Antioxidant Enzymes in Cucumber Subjected to 0.5 Short-term Salinity. Journal of the American Society for Horticultural Science, 2010, 135, 18-24. Isolation and molecular characterization of a novel Na+/H+ antiporter gene, AlNHX2, from Aeluropus 2030 0.4 5 littoralis and comparison of AlNHX1 and AlNHX2. Plant OMICS, 2016, 9, 205-212. MINIMIZING THE EFFECT OF SOIL SALINITY ON FENNEL PLANT USING CYANOBACTERIA AND COMPOST. Journal of Productivity and Development, 2016, 21, 153-178. Effect of Nano Chitosan on Growth, Physiological and Biochemical Parameters of Phaseolus vulgaris 2032 0.0 38 under Salt Stress. Journal of Plant Production, 2017, 8, 577-585. Looking at Halophytic Adaptation to High Salinity Through Genomics Landscape. Current Genomics, 2017, 18, 542-552. Evaluation of performance of different barley genotypes irrigated with saline water in South Tunisian 2036 0.3 8 Saharan conditions. Environmental and Experimental Biology, 2016, 14, 15-21. Effects of mixed saline and alkaline stress on the morphology and anatomy of Pisum sativum L.: The role of peroxidase and ascorbate oxidase in growth regulation. Archives of Biological Sciences, 2013, 65, 265-278.

#	Article	IF	CITATIONS
2038	Effects of partial defoliation on the growth, ion relations and photosynthesis of Lycium chinense Mill. under salt stress. Archives of Biological Sciences, 2015, 67, 1185-1194.	0.2	9
2039	Antioxidant responses of peanut (Arachis hypogaea L.) seedlings to prolonged salt-induced stress. Archives of Biological Sciences, 2015, 67, 1303-1312.	0.2	16
2040	Effect of Salt Stress on Medicinal Plants and its Amelioration by Plant Growth Promoting Microbes. International Journal of Bio-resource and Stress Management, 2017, 8, 316-326.	0.1	6
2041	The Effect of Salinity on Solamargine and Solasonine Contents of Solanum incanum Plants Grown in Oman. Maǧallatl^ ǧÄmiÊ¿atl^ Al-Sulá¹Än QÄbÅ«s Li-l-buá,¥Å«á¹⁻ Al-Ê¿ilmiyyatl^ Al-Ê¿ulÅ«m Wa-al-handasatl`, 201	.7, ⁰ 19, 1.	1
2042	Priming, a Promising Practical Approach to Improve Seed Germination and Plant Growth in Saline Conditions. Asian Journal of Agriculture and Food Science, 2020, 8, .	0.2	3
2043	Cultivation of dandelion (<i>Taraxacum erythropodium</i>) on coastal saline land based on the control of salinity and fertilizer. Folia Horticulturae, 2019, 31, 277-284.	0.6	10
2044	PGPR Potentially Improve Growth of Tomato Plants in Salt-Stressed Environment. Turkish Journal of Agriculture: Food Science and Technology, 2016, 4, 455.	0.1	7
2045	Isolation and biochemical characterization of Plant Growth Promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. Journal of Plant Science and Phytopathology, 2019, 3, 013-027.	0.4	18
2046	Pakistan Journal of Botany, 2019, 51, .	0.2	6
2047	Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. Journal of Applied and Natural Science, 2012, 4, 144-155.	0.2	33
2048	EFFECTS OF A WASHING PROCESS OF CATTLE MANURE ASH ON ROOT AND SHOOT GROWTH OF KOMATSUNA (<i>BRASSICA RAPA</i> VAR. <i>PERVIRIDIS</i>) AT THE SEEDLING STAGE. Journal of Environmental Science for Sustainable Society, 2017, 8, 15-21.	0.1	1
2049	INITIAL SPROUT GROWTH OF POTATO SEED MINITUBERS UNDER SALT STRESS. Revista De Agricultura Neotropical, 2016, 3, 7-11.	0.3	1
2051	Oxidative Stress Tolerance Mechanism in Rice under Salinity. Phyton, 2020, 89, 497-517.	0.4	14
2052	Effects of methyl jasmonate on growth, antioxidants, and carbon and nitrogen metabolism of Glycyrrhiza uralensis under salt stress. Biologia Plantarum, 2019, 63, 89-96.	1.9	13
2053	Exogenous spermidine enhances expression of Calvin cycle genes andphotosynthetic efficiency in sweet sorghum seedlings under salt stress. Biologia Plantarum, 0, , .	1.9	6
2054	Nitric oxide mediated mechanisms adopted by plants to cope with salinity. Biologia Plantarum, 0, 64, 512-518.	1.9	21
2055	Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biologia Plantarum, 0, 64, 604-615.	1.9	50
2056	Allocation pattern, photosynthetic performance and sugar metabolism in hydroponically grown seedlings of loquat (Eriobotrya japonica Lindl.) subjected to salinity. Photosynthetica, 2019, 57, 258-267.	0.9	11

#	Article	IF	CITATIONS
2057	How glycine betaine induces tolerance of cucumber plants to salinity stress?. Photosynthetica, 2019, 57, 753-761.	0.9	32
2058	Relationship between leaf gas-exchange characteristics and the performance of Ziziphus spina-christi (L.) Willd. seedlings subjected to salt stress. Photosynthetica, 2019, 57, 897-903.	0.9	5
2059	Mitigation mechanism of ozone-induced reduction in net photosynthesis of Bangladeshi wheat under soil salinity stress. Photosynthetica, 2019, 57, 1025-1034.	0.9	4
2060	Performance of Medicago sativa Grown in Clay Soil Favored by Compost or Farmyard Manure to Mitigate Salt Stress. Agronomy, 2020, 10, 94.	1.3	16
2061	Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. Agronomy, 2020, 10, 194.	1.3	41
2062	RNA-Binding Proteins as Targets to Improve Salt Stress Tolerance in Crops. Agronomy, 2020, 10, 250.	1.3	10
2063	Melatonin as Master Regulator in Plant Growth, Development and Stress Alleviator for Sustainable Agricultural Production: Current Status and Future Perspectives. Sustainability, 2021, 13, 294.	1.6	75
2064	Functioning of plants antioxidative system under salt stress. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2017, 2017, 23-45.	0.1	5
2065	MSAP Analysis of Epigenetic Changes in Cotton (<i>Gossypium hirsutum</i> L.) under Salt Stress. Acta Agronomica Sinica(China), 2009, 35, 588-596.	0.1	5
2066	Cloning and Salt-tolerance Analysis of Gene <l>Plastid Transcriptionally Ac-tive</l> (<l>ChPTAC</l>) from <l>Gossypium hirsutum</l> L Acta Agronomica Sinica(China), 2011, 37, 1551-1558.	0.1	3
2067	Salinity strongly drives the survival, growth, leaf demography, and nutrient partitioning in seedlings of Xylocarpus granatum J. K¶nig. IForest, 2017, 10, 851-856.	0.5	11
2068	Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology, 0, , .	2.1	11
2069	Influence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza (Lemnaceae). Turkish Journal of Biology, 0, , .	2.1	8
2070	Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia) Tj ETQq1 Forestry, 0, , .	l 0.78431 0.8	4 rgBT /Over 38
2071	Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , .	0.8	22
2072	Effect of plant growth-promoting bacteria and arbuscular mycorrhizal fungi on lipid peroxidation and total phenolics of strawberry (Fragaria × ananassa â€~San Andreas') under salt stress. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 992-998.	0.8	10
2073	Comparative Studies in Salinity Tolerance Between New Zealand Spinach (Tetragonia tetragonioides) and Chard (Beta vulgaris) to Salt Stress. Agricultural Journal, 2010, 5, 19-24.	0.1	7
2074	Seed Germination Protocols for Ex situ Conservation of Some Hypericum species from Turkey. American Journal of Plant Physiology, 2007, 2, 287-294.	0.2	17

#	Article	IF	CITATIONS
2075	Comparative Study on Biochemical Parameters and Antioxidant Enzymes in a Drought Tolerant and a Sensitive Variety of Horsegram (Macrotyloma uniflorum) under Drought Stress. American Journal of Plant Physiology, 2011, 7, 17-29.	0.2	49
2076	Response of Pea Plants to Natural Bio-stimulants Under Soil Salinity Stress. American Journal of Plant Physiology, 2016, 12, 28-37.	0.2	7
2077	Proteomic Analysis of Salinity Stress-responsive Proteins in Plants. Asian Journal of Plant Sciences, 2010, 9, 307-313.	0.2	24
2078	Pretreatment with Spermidine Reverses Inhibitory Effects of Salt Stress in Two Rice (Oryza sativa L.) Cultivars Differing in Salinity Tolerance. Asian Journal of Plant Sciences, 2011, 10, 245-254.	0.2	26
2079	Assessing Five Citrus Rootstocks for NaCl Salinity Tolerance Using Mineral Concentrations, Proline and Relative Water Contents as Indicators. Asian Journal of Plant Sciences, 2014, 14, 20-26.	0.2	7
2080	The Effect of Salinity and Fertilizer Applications on Leaf Nutrient Status and Some Quality Characteristics of Ficus benjamina. International Journal of Botany, 2006, 2, 107-112.	0.2	4
2081	The Effect of Salinity on Gas Exchange on Different Developmental Stages of Mung Bean (Vigna radiata) Tj ETQqC	0.0 rgBT	/Overlock 10
2082	Olive Mill Wastewaters: Diversity of the Fatal Product in Olive Oil Industry and its Valorisation as Agronomical Amendment of Poor Soils: A Review. Journal of Agronomy, 2008, 8, 1-13.	0.4	24
2083	Effects of Arbuscular Mycorrhizal Fungus on the Mineral Nutrition and Yield of Trifolium alexandrinum Plants under Salinity Stress. Journal of Agronomy, 2009, 8, 79-83.	0.4	84
2084	Growth, Biochemical Constituents, Micronutrient Uptake and Yield Response of six Tomato (Lycopersicum esculentum L.) Cultivars Grown under Salinity Stress. Journal of Agronomy, 2016, 15, 58-67.	0.4	11
2085	Effect of Different Levels of Salinity Stress on Growth and Morphological Characteristic of Two Legumes. Journal of Biological Sciences, 2008, 8, 984-992.	0.1	1
2086	Effect of Salinity and Wytch Farm Crude Oil on Paspalum conjugatum Bergius (Sour Grass). Journal of Biological Sciences, 2010, 10, 122-130.	0.1	3
2087	Impact of Salinity and Light Intensity Stress on B Vitamins Content in Marine Diatom Skeletonema costatum. Journal of Fisheries and Aquatic Science, 2016, 12, 22-28.	0.1	1
2088	Comparative Study of Vegetative Morphology and the Existing Taxonomic Status of Aloe vera L Journal of Plant Sciences, 2007, 2, 558-563.	0.2	32

2089	Response of Tomato Plant Under Salt Stress: Role of Exogenous Calcium. Journal of Plant Sciences, 2015, 10, 222-233.	0.2	33
2090	Morphological Characteristics of Different Mastic Tree (Pistacia lentiscus L.) Accessions in Response to Salt Stress under Nursery Conditions. Journal of Plant Sciences, 2016, 11, 75-80.	0.2	3
2091	Enhancing Salinity Tolerance in Brinjal Plants by Application of Salicylic Acid. Journal of Plant Sciences, 2016, 12, 46-51.	0.2	6
2092	Amiloride Inhibition of Vacuolar Na+/H+ Antiporter Enhance Salt Stress in Zea mays L. Seedlings. Pakistan Journal of Biological Sciences, 2007, 10, 2020-2024.	0.2	1

#	Article	IF	CITATIONS
2093	Salt Pretreatment Enhance Salt Tolerance in Zea mays L. Seedlings. Pakistan Journal of Biological Sciences, 2007, 10, 2086-2090.	0.2	17
2094	Modification of Photosynthetic Pigments, Osmotic Solutes and Ions Accumulation in Chlorella vulgaris and Wheat Cv. Sds-1 Seedlings under the Influence of NaCl with Salicylic Acids. Journal of Botany (Faisalabad), 2011, 6, 100-111.	0.8	3
2095	Historical biogeography of Sri Lankan mangroves. Ceylon Journal of Science, 2017, 46, 111.	0.1	3
2096	Vegetation structure and potential gross primary productivity of mangroves at Kadolkele in Meegamuwa (Negombo) estuary, Sri Lanka. Sri Lanka Journal of Aquatic Sciences, 0, 13, 95-108.	0.4	10
2097	Physiological Responses of <i>Tamarix ramosissima</i> to Extreme NaCl Concentrations. American Journal of Plant Sciences, 2011, 02, 808-815.	0.3	8
2098	Effect of Root-Zone Temperature on Growth and Quality of Hydroponically Grown Red Leaf Lettuce (Lactuca sativa L. cv. Red Wave). American Journal of Plant Sciences, 2015, 06, 2350-2360.	0.3	64
2099	Beans with Benefits—The Role of Mungbean (<i>Vigna radiate</i>) in a Changing Environment. American Journal of Plant Sciences, 2018, 09, 1577-1600.	0.3	40
2100	Alleviation of Adverse Effects of Salt Stress in Wheat Cultivars by Foliar Treatment with Antioxidant 2—Changes in Some Biochemical Aspects, Lipid Peroxidation, Antioxidant Enzymes and Amino Acid Contents. Agricultural Sciences, 2014, 05, 1269-1280.	0.2	19
2101	Soil Quality of a Semi-Arid Pasture Irrigated with Reverse Osmosis Wastewater—A Case Study from Northern New Mexico. Journal of Water Resource and Protection, 2015, 07, 1121-1130.	0.3	3
2105	Specification of sewage sludge arising from a domestic wastewater treatment plant for agricultural uses. , 0, 143, 178-183.		3
2106	Desenvolvimento e concentração de nitrogênio, fÃ3sforo e potássio no tecido foliar da berinjela em função da salinidade. Revista Brasileirade Ciencias Agrarias, 2011, 6, 37-45.	0.3	7
2107	Efeito da utilização de biofertilizante bovino na produção de mudas de pimentão irrigadas com água salina. Revista Brasileirade Ciencias Agrarias, 2011, 6, 258-264.	0.3	9
2108	Solute patterns of four halophytic plant species at Suncheon Bay in Korea. Journal of Ecology and Environment, 2014, 37, 131-137.	1.6	4
2109	YIELD AND NUTRIENT UPTAKE IN SWEET POTATO PLANTS GROWN WITH SALT AND WATER STRESS. Revista Chapingo, Serie Horticultura, 2014, XX, 19-28.	1.1	1
2110	Effects of Salt Stress on Dry Matter, Glucose, Minerals Content and Composition in Potato (Solanum) Tj ETQq0 C	0_rgBT /O	verlock 10 T
2111	Survival percentage, photosynthetic abilities and growth characters of two indica rice (Oryza sativa) Tj ETQq1 1 C 2011, 9, 262.).784314 r 0.3	gBT /Overloo 19
2112	Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobotanica, 2015, 68, 247-253.	1.0	5
2113	Occurrence and Biosynthesis of Melatonin and Its Exogenous Effect on Plants. Acta Societatis Botanicorum Poloniae, 2020, 89, .	0.8	14

#	Article	IF	CITATIONS
2114	THE INFLUENCE OF VERMICOMPOST FROM KITCHEN WASTE ON THE YIELD-ENHANCING CHARACTERISTICS OF PEAS PISUM SATIVUM L. VAR. SACCHARATUM SER. BAJKA VARIETY. Inżynieria Ekologiczna, 2013, 14, 49-53.	0.2	3
2115	Provision of Essential Minerals Through Foliar Sprays. , 0, , .		1
2116	Antioxidant Enzyme Activities as a Tool to Discriminate Ecotypes of Crithmum maritimum L. Differing in Their Capacity to Withstand Salinity. , 0, , .		4
2117	Pepper cultivation on a substrate consisting of soil, natural zeolite, and olive mill waste sludge: changes in soil properties. Comptes Rendus Chimie, 2020, 23, 721-732.	0.2	2
2121	The response and protein pattern of spring rapeseed genotypes to sodium chloride stress. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	1
2125	Use of biostimulants in relieving salt stress in popcorn. Revista Ciencia Agronomica, 2016, 47, .	0.1	15
2126	Variation in Carbohydrate Accumulation in Two Cultivars of Mustard and its Association with Salt Tolerance. Journal of Functional and Environmental Botany, 2013, 3, 94.	0.1	4
2127	Construction and analysis of the transgenic carrot and celery plants expressing the recombinant thaumatin II protein. Biopolymers and Cell, 2015, 31, 285-293.	0.1	2
2128	Comparisons of Ion Balance, Fruit Yield, Water, and Fertilizer Use Efficiencies in Open and Closed Soilless Culture of Paprika (Capsicum annuum L.). Horticultural Science and Technology, 2013, 31, 423-428.	0.9	5
2129	Exogenous melatonin improves salt stress adaptation of cotton seedlings by regulating active oxygen metabolism. PeerJ, 2020, 8, e10486.	0.9	44
2130	Screening for drought tolerance in cultivars of the ornamental genus <i>Tagetes</i> (Asteraceae). PeerJ, 2016, 4, e2133.	0.9	34
2131	Biochemical and growth responses of silver maple (Acer saccharinumL.) to sodium chloride and calcium chloride. PeerJ, 2018, 6, e5958.	0.9	15
2132	Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ, 2019, 7, e8191.	0.9	30
2133	Evaluation of salt tolerance in <i>Eruca sativa</i> accessions based on morpho-physiological traits. PeerJ, 0, 8, e9749.	0.9	9
2134	Assessment on Antioxidant Potential and Enzyme Activity of Some Economic Resource Plants. Korean Journal of Plant Resources, 2012, 25, 349-356.	0.2	13
2135	Comparative Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum by Different Drying Methods. Korean Journal of Plant Resources, 2013, 26, 389-396.	0.2	8
2136	Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum. Hang'uk Jakmul Hakhoe Chi, 2015, 60, 239-247.	0.2	2
2137	Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 582-592.	0.1	21

#	Article	IF	CITATIONS
2138	In Vitro Screening ofCatharanthus Roseus L.Cultivars for Salt Tolerance Using Physiological Parameters. International Journal of Environmental Science and Development, 0, , 24-30.	0.2	5
2139	Effect of Calcium Chloride Concentration on Roadside Ground Cover Plant Growth. Journal of the Korean Institute of Landscape Architecture, 2013, 41, 17-23.	0.1	8
2140	The Effects of Several Halophytes on Insulin Resistance in Otsuka Long-evans Tokushima Fatty Rats. Korean Journal of Food Science and Technology, 2014, 46, 100-107.	0.0	14
2141	Effect of salinity on sodium and chloride uptake, proline and soluble carbohydrate contents in three alfalfa varieties. IOSR Journal of Agriculture and Veterinary Science, 2012, 1, 01-06.	0.1	11
2142	The negative effects of Calcium Chloride on Kodo millet (Paspalum scrobiculatum) germplasm during germination. IOSR Journal of Agriculture and Veterinary Science, 2013, 6, 63-74.	0.1	1
2143	Effect of multi-ingredient of Bokashi on productivity of mandarin trees and soil properties under saline water irrigation. IOSR Journal of Agriculture and Veterinary Science, 2014, 7, 79-87.	0.1	1
2144	Effect of Effective Microorganisms (EM) and Potassium Sulphate on Productivity and Fruit Quality of "Hayany" Date Palm Grown Under Salinity Stress. IOSR Journal of Agriculture and Veterinary Science, 2014, 7, 90-99.	0.1	9
2145	Environmental Factors Enhance Production of Plant Secondary Metabolites Toward More Tolerance and Human Health: Cocoa and Coffee Two Model Species. , 2021, , 155-183.		0
2147	Trehalose treatment alters carbon partitioning and reduces the accumulation of individual metabolites but does not affect salt tolerance in the green microalga Dunaliella bardawil. Physiology and Molecular Biology of Plants, 2021, 27, 2333-2344.	1.4	2
2148	Changes in Photosynthetic Pigments Content in Non-Transformed and AtCKX Transgenic Centaury (Centaurium erythraea Rafn) Shoots Grown under Salt Stress In Vitro. Agronomy, 2021, 11, 2056.	1.3	2
2149	Assessment of physiological, biochemical and yield responses of wheat plants under natural saline and non-saline field conditions. Physiology and Molecular Biology of Plants, 2021, 27, 2315-2331.	1.4	2
2150	Growth, Yield, and Bunch Quality of "Superior Seedless―Vines Grown on Different Rootstocks Change in Response to Salt Stress. Plants, 2021, 10, 2215.	1.6	4
2152	Different responses of two Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress. Planta, 2021, 254, 102.	1.6	15
2153	Antioxidant gene expression analysis and evaluation of total phenol content and oxygen-scavenging system in tea accessions under normal and drought stress conditions. BMC Plant Biology, 2021, 21, 494.	1.6	12
2154	Response of Spodoptera frugiperda (Lepidoptera: Noctuidae) to saltâ€stressed maize plants. Entomological Research, 2021, 51, 552.	0.6	0
2155	Salinity tolerance of lentil is achieved by enhanced proline accumulation, lower level of sodium uptake and modulation of photosynthetic traits. Journal of Agronomy and Crop Science, 2022, 208, 40-52.	1.7	8
2156	Role of Nanoparticles in Abiotic Stress. , 0, , .		9
2157	Evaluation of Complete Fertilizer in the Aspect of the Antioxidant Enzyme System of Maize Hybrids. Agronomy, 2021, 11, 2129.	1.3	1

#	Article	IF	Citations
2158	Morphological, Physiological, and Biochemical Modulations in Crops under Salt Stress. , 2022, , 195-210.		3
2159	Effects of Irrigation Water in Different Salinity on Yield and Quality Parameters of Tobacco (Nicotiana tabacumÂL.) Plant. Gesunde Pflanzen, 2022, 74, 9-16.	1.7	3

Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine) Tj ETQq000 rgBT /Overlock 10 T 14^{-11}

2164	Guidance for mangrove replanting: 1. Interspecific variations in responses of mangrove saplings to two contrasting salinities. Ruhuna Journal of Science, 2019, 1, 47.	0.3	1
2165	Characterization of a Degraded Ultisol Amended with Cassava Peel, Cattle Dung and Poultry Droppings in Southeastern Nigeria. Journal of Plant Sciences, 2007, 2, 564-569.	0.2	2
2166	Identification of Cymbopogon Species and C. flexuosus (Nees Ex. Steud) Wats Cultivars Based on Polymorphism in Esterase Isoenzymes. Journal of Plant Sciences, 2007, 2, 552-557.	0.2	2
2167	Induction of Phenolics and Terpenoids in Edible Plants Using Plant Stress Responses. , 2009, , 249-258.		1
2168	Indole-3-butyric acid application mitigates sodium chloride stress in two cotton cultivars differing in salt tolerance. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2009, 57, 471-488.	0.2	0
2169	Stimulated Soil Formation in a Degraded Anthroscape: A Case Study in Southeast Spain. , 2010, , 193-203.		1
2170	Difference of Salt Tolerance of Four Halophytes in Salinized Desert in the Junggar Basin. Arid Zone Research, 2010, 27, 97-101.	0.1	1
2171	Respuesta fotosintética de diferentes ecotipos de frÃjol a la radiación y la salinidad. Ciencia Tecnologia Agropecuaria, 2014, 10, 129-140.	0.3	1
2172	Salt Tolerance in MungbeanVigna radiata[L.] Genotypes: Role of Proline and Glycinebetaine. Journal of Functional and Environmental Botany, 2011, 1, 139.	0.1	3
2173	Physiological and Biochemical Analysis of the Selected Halophytes of District Mardan, Pakistan. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2011, , 239-243.	0.2	1
2175	Spectral Remote Sensing of the Responses of Soybean Plants to Environmental Stresses. , 0, , .		3
2176	Effect of seed priming on growth and biochemical traits of wheat under saline conditions. African Journal of Biotechnology, 2011, 10, .	0.3	5
2177	Microbial ACC-Deaminase Biotechnology: Perspectives and Applications in Stress Agriculture. , 2012, , 141-185.		0
2178	Effect of Salinity and Bentonite on Mineral Soil Characteristics: Behavior Study of Leguminous Plant (Vicia faba L.). Journal of Plant Sciences, 2011, 7, 1-12.	0.2	0
2179	Jatropha and Phytoremediation of Metal Contaminated Land. , 2012, , 427-439.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2180	Responses of Cymbopogon schoenanthus to salt stress. African Journal of Biotechnology, 2012, 1	1,.	0.3	0
2181	Response of in vitro Cultured Palm Oil Seedling Under Saline Condition to Elevated Carbon Dioxid and Photosynthetic Photon Flux Density. Annals of Tropical Research, 2012, , 52-64.	2	0.1	0
2183	Effect of Salinity and Bentonite on the Characteristics of Mineral Soil and Behavior of Leguminous Plants (Vicia faba L.). , 2013, , 783-794.			0
2184	Effect of NaCl Stress on Growth, Cell Ultrastructure and Ion Homeostasis in Poplar Seedlings. Chinese Bulletin of Botany, 2013, 47, 615-624.		0.0	0
2185	Effect of NaCl on Photosynthesis and Water Status in Arrowleaf Saltbush Under Osmotic Stress. Chinese Bulletin of Botany, 2013, 47, 500-507.		0.0	0
2186	Improvement of Seed Germination in a Spontaneous Autotetraploid of Poncirus and Chlorophyll Fluorescence of Seedlings in Salt Stress. Journal of Life Science, 2013, 23, 1079-1087.		0.2	0
2187	Germination and early growth of physic nut submitted to levels of salinity. Engenharia Agricola, 20 33, 1110-1123.	13,	0.2	0
2188	Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impa on plant growth. Ciencia E Investigacion Agraria, 2013, 40, 597-607.	ct	0.2	0
2189	Bi-Factorial Interactive Effects of Osmotic Potential and Lead on the Content of Naï¹¢, Kï¹¢ and Pb Three Cultivars of Triticumaestivum L Open Access Library Journal (oalib), 2014, 01, 1-11.	2ï¹¢ lons in	0.1	1
2190	Viability of oilseed rape (Brassica napus L.) seeds under salt stress. Genetika, 2014, 46, 137-148.		0.1	4
2191	Growth and ion accumulation of <1>Avicennia marina 1 and <1>Kandelia obovata 1 seedlings grown under hydroponic culture with different salinity. Journal of the Japanese Society of Revegetation Technology, 2014, 40, 49-53.		0.0	1
2192	Water Quality Effects on Agronomic Parameters of Subsurface Drip Irrigated Potato (Solanum) Tj	ETQq1 1 0.784	314 rgBT 0.4	/Oyerlock 10
2193	Growth and Physiological Response of Jatropha Interspecific Hybrid (Jatropha curcas x J. integerrim under Salt Stress. International Journal on Advanced Science, Engineering and Information Technology, 2014, 4, 54.	a)	0.2	0
2194	Tuz Stresi Altındaki Bitkilerin Metabolik Yollarındaki Proteom Değişimleri. Bitlis Eren Ünivo Bilimleri Dergisi, 2014, 3, .	ersitesi Fen	0.1	0
2195	Avaliação do processo germinativo das sementes e o crescimento inicial de plântulas de giras (Helliantus annus L.) submetidas a diferentes nÃveis de salinidade. Revista Agrogeoambiental, 201	;ol 5, 7, .	0.0	0
2197	Comparative Analysis of Salinity-Induced Proteomic Changes in Cotton (Gossypium hirsutum L.). Agricultural Sciences, 2015, 06, 78-86.		0.2	1
2198	Some Growth Promoting Essential Mineral Elements Alleviates The Salinity Effect on Nitrate Reductase and Hill Reaction Activities in Cotton (Gossypium hirsutum) cv. "CIM 496― Journa Sciences (Science Publishing Group), 2015, 3, 54.	of Plant	0.1	2
2199	Effect of Salt Stress on Some Growth Indicators and Cellular Components of Wheat (<i>Triticum aestivum</i> L.) Callus. International Journal of Applied Agricultural Science 2015, 1, 91.	2S,	0.2	0

#	Article	IF	CITATIONS
2200	Study of the Effect of Salt Stress on Biometric Characteristics of Barley: Hordeum Vulgare L. (Poaceae). Journal of Medical and Bioengineering, 2015, 4, 270-274.	0.5	0
2201	Comparative Adaptability Assessment of Two Mangroves from Indian Sundarbans: Some Biochemical Appearances. Natural Science, 2015, 07, 519-534.	0.2	0
2202	Response of Test-Organisms to Different Na and Cu Salts. Botanica Lithuanica, 2015, 20, 131-141.	0.4	0
2204	MORPHOLOGICAL CHARACTERISTICS AND WATER STATUS OF SOME TUNISIAN BARLEY GENOTYPES SUBMITTED TO WATER STRESS. International Journal of Research -GRANTHAALAYAH, 2015, 3, 60-76.	0.1	2
2205	Antioxidant Activity of Several Cabbage (Brassica oleracea L.) Cultivars. Korean Journal of Plant Resources, 2015, 28, 312-320.	0.2	4
2206	Salt tolerance and proline accumulation of potato (Solanum tuberosum L.) in vitro plants to NaCl treatment. Journal of Plant Biotechnology, 2015, 42, 129-134.	0.1	0
2207	Chemical Characteristics of Cell Wall in Pinus thunbergii Parl. Grown with High Salinity. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2015, 47, 144-150.	0.1	1
2208	Seed Yield, Fixed Oil, Fatty Acids and Nutrient Content of Nigella sativa L. Cultivated under Salt Stress Conditions. Journal of Agronomy, 2015, 14, 241-246.	0.4	0
2209	Development of Seedling and Germination of Tomato (Lycopersicon esculentum Mill.) Seeds Pre-applied 24-Epibrassinolide Under NaCl Stress Conditions. Afyon Kocatepe University Journal of Sciences and Engineering, 2015, 15, 18-27.	0.1	1
2211	The Impact of Drought Stress on some Morpho-Physiological Traits and RAPD Markers in Wheat Genotypes. Journal of Plant Production Sciences, 2015, 4, 27-37.	0.0	2
2212	Tuzluluk Stresi Altındaki Soya Çeşitlerinin Fizyolojik Olarak Karşılaştırılması. Yuzuncu Yil Universit Journal of Agricultural Sciences, 2015, 25, 269-284.	^y 0.1	5
2213	THE EFFECT OF SALINITY AND NITROGEN DEFICIENCY ON THE CHANGES IN SELECTED PHYSIOLOGICAL PARAMETERS OF COMMON BEAN (PHASEOLEUS VULGARIS L.) GROWN IN HYDROPONIC CULTURES. Journal of Ecological Engineering, 2016, 17, 321-327.	0.5	1
2215	Performance of Castor Bean Selects In Saline Sodic Soil. International Journal of Applied Agricultural Sciences, 2016, 2, 64.	0.2	0
2216	Effects of Ca(NO ₃) ₂ Stress on Some Physiological Indicators of the Daylily. Hans Journal of Agricultural Sciences, 2016, 06, 132-137.	0.0	0
2217	Criblage De Quelques Genotypes De Ble Dur (Triticum Durum Desf.) Sous Un Stress Salin En Culture De Pot. European Scientific Journal, 2016, 12, 313.	0.0	0
2218	Adaptive Strategies of Tropical Forage Grasses to Low Phosphorus Stress: The Case of Brachiaria Grasses. , 2016, , 1141-1174.		2
2219	IMPROVEMENT OF SOME PROPERTIES OF SALT AFFECTED SOILS USING COMPOST, PROLINE, BIOFERTILIZER AND RODUCTIVITY. Fayoum Journal of Agricultural Research and Development, 2016, 30, 1-17.	0.0	0
2220	Artan NaCl stres şartlarında besin çözeltisine ilave edilen humik asidin domates bitkisinin verim ve bazı meyve kalite özellikleri üzerine etkileri. Anadolu Journal of Agricultural Sciences, 2016, 31, 275-282.	0.3	2

#ARTICLEIFCITATIONS2221Enzymatic activity of three sugarcane varieties under salt stress. Revista Brasileira De Engenharia0.422222Chapter 4 Silicon: A Potential Element to Impart Resistance to Photosynthetic Machinery underv0

CITATION REPORT

2223 Determining of resistance mechanism against abiotic stress factories in native walnut variety (Juglans) Tj ETQq0 0 0 rg BT /Overlock 10 T

2224	Ameliorative Effect of Salicylic Acid on Growth, Minerals and Nitrogenous Compounds ofVicia fabaL. Plants under Salt Stress. Egyptian Journal of Botany, 2016, .	0.1	1
2225	Seed Germination and Early Growth of Physic Nut Seedlings Under Salinity Stress. Scientia Agraria Paranaensis, 2016, 15, 416-420.	0.1	0
2227	Influence of salicylic acid on biochemical parameters and antioxidant system in mashbean plants grown under salt stress conditions. Journal of Applied and Natural Science, 2016, 8, 1786-1792.	0.2	0
2228	Jojoba Irrigated with Diluted Seawater as Affected by Ascorbic Acid Application. International Journal of Agricultural Research, 2016, 12, 1-9.	0.0	2
2229	Towards the Development of Salt-Tolerant Potato. Impact of Meat Consumption on Health and Environmental Sustainability, 2017, , 133-151.	0.4	0
2230	Germination Kinetics in Two Acacia karroo Hayne Ecotypes under Salinity Conditions. Open Access Library Journal (oalib), 2017, 04, 1-11.	0.1	3
2231	Evaluation of Salinity Stress on Marigold's Growth with Bacteria Inoculation. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 1109-1112.	0.0	0
2233	OXIDATIVE STRESS STUDY OF JATROPHA CURCAS SEEDS SUBJECTED TO SALT STRESS DURING GERMINATION AND SEEDLING DEVELOPMENT. , 2017, , .		0
2234	Comparative foliar studies in saline sand and fresh water soil - grown Trigonella foenum - graecum Linn. plants. International Journal of Bioassays, 2017, 6, 5304.	0.1	0
2235	Salinity Effects on Direct Shoot Regeneration of Two Male Populus Clones. International Journal of Biotech Trends and Technology, 2017, 20, 1-9.	0.2	0
2236	Soil Properties, Growth, Mineral Content and Ultra-structural Leaf Morphology of Swiss Chard in Response to Landfill Leachates Used as Irrigation Water. International Journal of Agriculture and Biology, 2017, 19, 403-409.	0.2	2
2237	Integrated Physiological, Biochemical, Anatomical and Molecular Studies Reveals Salt Stress Responsive Mechanism Associated with Popular Rice Land-Races in Eastern Part of India. Current Agriculture Research Journal, 2017, 5, 342-353.	0.3	0
2238	Using some Compounds to Alleviate Salinity Stress on Sweet Pepper Plants Journal of Plant Production, 2017, 8, 961-967.	0.0	0
2239	Effects of NaCl on Growth, Dry Matter and Ion Accumulation in Forage Crop Astragalus Adsurgens Seedlings. DEStech Transactions on Environment Energy and Earth Science, 2017, , .	0.0	1
2240	Proteome Analysis of Tobacco (Nicotiana tabacum L.) Leaves under Salt Stress using Two-Dimensional Electrophoresis. Journal of Crop Breeding, 2017, 9, 138-145.	0.4	0

#	Article	IF	CITATIONS
2241	Changes in Antioxidant and Cancer Cell Growth Inhibitory Activities of Spergularia marina Griseb Extract according to Different Cooking Methods. Korean Journal of Food and Cookery Science, 2017, 33, 673-681.	0.2	2
2242	SALINITY STRESS AMELIORATION USING HUMIC ACID AND MYCORRHIZAE ON PEPPER PLANTS. Zagazig Journal of Agricultural Research, 2017, 44, 2515-2527.	0.1	3
2243	ROLE OF SIGNAL MEDIATORS AND STRESS HORMONES IN REGULATION OF PLANTS ANTIOXIDATIVE SYSTEM. Fiziologia Rastenij I Genetika, 2017, 49, 463-481.	0.1	3
2244	Molecular Genetics of Salt Tolerance in Tomato F2 Segregating Population with the Aid of RAPD Markers. Agricultural Sciences, 2018, 09, 1553-1568.	0.2	1
2245	Morphological based screening and genetic diversity analysis of the local rice (Oryza sativa L.) landraces at the seedling stage for salinity tolerance. Journal of Bioscience and Agriculture Research, 2018, 18, 1496-1511.	0.2	5
2246	Growth, Metabolites, Protein Profile and Esterase Enzyme of Wheat Grown under Osmotic Stress with Exogenous Application of <i>Allium sativum</i> . American Journal of Plant Sciences, 2018, 09, 902-919.	0.3	1
2248	Evaluation of different wheat cultivars under salinity stress. Journal of Applied and Natural Science, 2018, 10, 479-481.	0.2	1
2249	Effects of NaCl on Growth and Physiological Characteristics of <i>Synurus deltoides</i> (Aiton) Nakai. Journal of Agriculture & Life Science, 2018, 52, 55-72.	0.1	1
2250	Screening of cotton genotypes against salinity stress based on its physiological and biochemical responses. Agriculture Update, 2018, 13, 128-138.	0.0	0
2251	Assessment of Proline, Chlorophyll and Malondialdehyde in Sensitive and Tolerant Rice (Oryza sativa) Tj ETQq1 1	0.784314 0.4	rgBT /Overic
2252	EFFECTS OF TIME COURSE SALICYLIC ACID ON THE ANTIOXIDANT DEFENSE SYSTEM IN BARLEY ROOTS UNDER SALT STRESS. Anadolu University Journal of Science and Technology - C Life Sciences and Biotechnology, 0, , 1-1.	0.0	0
2253	Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana. Yaftah, 2018, 5, 106-117.	0.1	0
2254	Effects of Electro-conductivity on Growth of Beet and Turnip in the Reclaimed Land Soil. Korean Journal of Environmental Agriculture, 2018, 37, 197-206.	0.0	5
2255	Helianthus annuus L. Yapraklarında Tuz Stresi, Bazı Bitki Hormonları ve SNP Uygulamalarının Sinyal Moleküllerine Etkisi. KahramanmaraÅŸ SütÁ§Ã¼ İmam Üniversitesi Tarım Ve DoÄŸa Dergisi, 2018, 21, 6	665 - 671.	0
2256	Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları. KahramanmaraÅŸ Sütçü Ä Üniversitesi Tarım Ve Doğa Dergisi, 2018, 21, 800-808.	°mam 0.2	10
2257	Growth and Anatomical Alterations in Leaves of Popcorn Induced by Abiotic Stresses. Journal of Agricultural Science, 2021, 10, 349.	0.1	0
2258	Photosynthetic activity of bryophytes under the conditions of salinity on the territory of tailing of Stebnyk State Mining and Chemical Enterprise «Polimineral». Visnyk L'vivs'koho Universytetu Seriia Biolohichna, 2019, , 184-194.	0.0	0
2259	Changes in the physicochemical characteristics of low-salt Doenjang by addition of halophytes. Korean Journal of Food Preservation, 2018, 25, 819-829.	0.2	4

#	ARTICLE EFFECT OF SALINITY AND LITHOVIT ON GROWTH, YIELD COMPONENTS AND CHEMICAL CONSTITUENTS OF	IF	CITATIONS
2260	CLUSTER BEAN (Cyamopsis tetragonoloba, Taub.). Zagazig Journal of Agricultural Research, 2018, 45, 1913-1924.	0.1	2
2261	Phytochemical compounds of Lilium ledebourii Bioss using bulb explants. Bangladesh Journal of Botany, 2020, 47, 911-920.	0.2	1
2262	Aqueous Leaf Extract of Duranta repens Promotes Seed Germination and Seedling Growth of Salinity-Stressed Solanum lycopersicum Seedlings Fountain Journal of Natural and Applied Sciences, 2018, 7, .	0.1	0
2263	Advances in Functional Genomics in Investigating Salinity Tolerance in Plants. , 2019, , 171-188.		2
2264	Role of Signaling Pathways in Improving Salt Stress in Plants. , 2019, , 183-211.		1
2265	Fundamental Processes Involved in Seed Priming. , 2019, , 63-115.		9
2266	Plants Growing Under Salinity Stress Can Be Eased Through Mycorrhizal Association. , 2019, , 237-248.		1
2267	The Physiological Response of Three <i>Narcissus pseudonarcissus</i> under NaCl Stress. American Journal of Plant Sciences, 2019, 10, 447-461.	0.3	3
2268	Kombine Tuz ve Nikel Stresinin Limon Otu (Melissa officinalis)'nun ROS Üretimi ve Antioksidan Enzim Aktiviteleri Üzerine Etkisi. Turkish Journal of Agricultural and Natural Sciences, 2019, 6, 97-105.	0.1	1
2269	Salt-Induced Changes in Growth and Damage Avoidance Mechanisms of Hydroponically Grown Chinese Kale (Brassica alboglabra L.). Tasks for Vegetation Science, 2019, , 99-111.	0.6	0
2270	Crop Improvement Through Microbial Biotechnology: A Cross Talk. , 2019, , 69-90.		7
2271	Cobalt+Salt-Stressed Salvia officinalis: ROS Scavenging Capacity and Antioxidant Potency. International Journal of Secondary Metabolite, 2019, 6, 49-61.	0.5	6
2272	ISOLATION, PURIFICATION AND PARTIAL CHARACTERIZATION OF LOW MOLECULAR WEIGHT PEPTIDES FROM NONPRIMED AND HALOPRIMED SEEDLINGS of Vigna mungo L. AND Cajanus cajan L. AND THEIR IMPACT ON PHYSIOLOGICAL ASPECTS UNDER NaCI EXPOSURE. Journal of Experimental Biology and Agricultural Sciences, 2019, 7, 12-24.	0.1	2
2273	Tuzluluk Stresinin Patlıcanda (Solanum melongena L.) Su Kullanım Etkinliği, Verim Bileşenleri, Yaprak Klorofil ve Karotenoid İçeriği Üzerine Etkileri. Yuzuncu Yil University Journal of Agricultural Sciences, 0, , 61-68.	0.1	1
2274	The Effect of Putrescine and Salicylic Acid on Physiological Characteristics and Antioxidant in Stevia Rebaudiana B. Under Salinity Stress. Journal of Crop Breeding, 2019, 11, 40-54.	0.4	7
2275	The determination of gibberellic acid effects on seed germination of Echinacea purpurea (l.) Moench under salt stress. International Journal of Agriculture Environment and Food Sciences, 0, , 100-105.	0.2	2
2276	AnatomÃa foliar de cuatro especies halófilas del noroeste argentino. Lilloa, 0, , 14-23.	0.1	1

Different Effects of Penconazole on Enzymatic and Non-enzymatic Antioxidants of Sesame (Sesamum) Tj ETQq1 1 8.784314 rgBT /Ov

#	Article	IF	CITATIONS
2278	Examination of ion accumulation and some physiological characteristics of grafted eggplants grown under salinity conditions. Acta Horticulturae, 2019, , 69-76.	0.1	0
2279	Exploring the potential of four medicinal plants for antioxidant enzymes activity, proximate and nutritional composition. Acta Botanica Hungarica, 2019, 61, 219-231.	0.1	1
2280	Effect of Sulfur and Clean Salt on Antioxidant Enzymes and Proline Content in Improving Salt Tolerance of Two Lettuce Cultivars Grown in Basrah. Basrah Journal of Agricultural Sciences, 0, 32, 80-89.	0.2	0
2281	Characterization and Identification of Native Plant Growth-Promoting Bacteria Colonizing Tef (Eragrostis Tef) Rhizosphere During the Flowering Stage for A Production of Bio Inoculants. Biomedical Journal of Scientific & Technical Research, 2019, 22, .	0.0	7
2282	Modifying sugarcane mineral levels through sodium chloride and mannitol exposure in temporary immersion bioreactors. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 169-176.	0.9	1
2283	Effect of Glycine Betaine on Morphological and Physiological Attributes of Tomato (<i>Lycopersicon) Tj ETQq1 1 0 8, 22-29.</i>	0.784314 0.0	rgBT /Overlo 2
2285	Sodium Chloride Salt Tolerance Evaluation and Classification of Spring Rapeseed (Brassica napus L.). Journal of Crop Breeding, 2019, 11, 154-162.	0.4	1
2286	Evaluation of Heat Shock-Induced Stress Tolerance to Some Abiotic Factors in Barley Seedlings by Chlorophyll a Fluorescence Technique. Sinop Üniversitesi Fen Bilimleri Dergisi, 2020, 5, 112-124.	0.4	1
2287	Salicylic Acid-Mediated Salt Stress Tolerance in Plants. , 2020, , 1-38.		5
2288	THE EFFECT OF PRE-SOWN PRIMING OF BARLEY SEEDS IN THE SOLUTIONS OF DIFFERENT SALTS IN THE COMBINATION WITH DIATOMITE ON ALLANTOIN CONTENT IN ROOTS SEEDLINGS UNDER SALINĐ• Đ¡ONDITIONS. 2020, 1, 97-104.		0
2289	Effect of Substrate Salinity on Growth of Juvenile Plants Pyrus pyraster (L.) Burgsd. Plants in Urban Areas and Landscape, 0, , 66-73.	0.0	0
2291	EFFECTS OF SALT STRESS ON PLANT GROWTH AND BIOMASS ALLOCATION IN SOME WETLAND GRASS SPECIES IN THE MEKONG DELTA. Science and Technology, 2020, 58, 50.	0.1	0
2292	Impact of Organic and Chemical Compounds on Growth, Yield and Fruit Quality of Sweet Pepper under Saline Conditions. Alexandria Science Exchange, 2020, 41, 241-258.	0.0	0
2293	Tuz Stresi Altındaki Biber Bitkisindeki Kalsiyum Uygulamalarının Antioksidatif Enzim Aktivitelerine Etkisinin Araştırılması. ISPEC Journal of Agricultural Sciences, 2020, 4, 346-357.	0.0	0
2294	Inducing Salinity Tolerance in Mango (Mangifera indica L.) Cv. "El-Gahrawey―by Sodium Silicate Pentahydrate and Glycine Betaine تعزUŒØ² تØÙÙ" شتلات اÙ"ÙØ§Ù†Ø¬Ù^ صنٕ̋ الجG	øø£øşù^	ù <mark>1</mark> ‰ ̕للI
2295	Evaluation of Some Sesbania sesban Genotypes for their Salt Tolerance, Biomass Yield, Nutrient Composition and Soil Ameliorative Response. Asian Journal of Plant Sciences, 2020, 19, 300-312.	0.2	Ο
2297	Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS Applied Materials & amp; Interfaces, 2021, 13, 52250-52273.	4.0	14
2298	Effects of Salinity on the Growth and Nutrition of Taro (Colocasia esculenta): Implications for Food Security. Plants, 2021, 10, 2319.	1.6	4

#	Article	IF	CITATIONS
2299	A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere, 2022, 291, 132672.	4.2	36
2300	Aquaponic production of sea asparagus and Pacific white shrimp using biofloc technology: Different irrigation regimes affect plant production of bioactive compounds and antioxidant capacity. Aquaculture Research, 2022, 53, 1001-1010.	0.9	2
2301	Effect of seawater irrigation on germination and seedling growth of Carob tree (Ceratonia siliqua L.) from Gouraya National park (BA©jaĀa, Algeria). Reforesta, 2020, , 1-10.	0.4	1
2302	Salinity Tolerance of Four Hardy Ferns from the Genus Dryopteris Adans. Grown under Different Light Conditions. Agronomy, 2021, 11, 49.	1.3	5
2303	Alleviative effects of Fara-darmani Consciousness Field on Triticum aestivum L. under salinity stress. F1000Research, 0, 9, 1089.	0.8	0
2304	Tuz Stresi Altındaki Mısır Bitkilerinde Eksojen Askorbik Asit Uygulamasının Etkileri. Yuzuncu Yil University Journal of Agricultural Sciences, 0, , 919-927.	0.1	1
2305	Silisyum Ön Uygulamalarının Fasulyede (Phaseolus vulgaris L.) Tuzluluğa Dayanıklık Üzerine Etkisi. Kahramanmarağ Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	0.2	1
2306	The Î ³ -Aminobutyric Acid (GABA) Towards Abiotic Stress Tolerance. , 2021, , 171-187.		11
2307	Exogenous application of indole-3-acetic acid to ameliorate salt induced harmful effects on four eggplants (Solanum melongena L.) varieties. Scientia Horticulturae, 2022, 292, 110662.	1.7	10
2308	Nano-phytoremediation for soil contamination: An emerging approach for revitalizing the tarnished resource. , 2022, , 115-138.		3
2309	Phenolics as Plant Protective Companion Against Abiotic Stress. , 2020, , 277-308.		13
2310	Microbe-Mediated Mitigation of Abiotic Stress in Plants. , 2020, , 227-250.		0
2311	Halophyte Use and Cultivation. , 2020, , 1-19.		1
2312	Effect of salinity stress in Setaria viridis (L.) P. Beauv. accession A10.1 during seed germination and plant development. Ciencia E Agrotecnologia, 0, 44, .	1.5	0
2313	Effect of Casuarina Crushed Nodules, Rhizospheric Soil and Leaves Compost on Salt Tolerance of <i>Casuarina equisetifolia</i> L. and <i>Casuarina obesa</i> Miq Open Journal of Soil Science, 2020, 10, 359-373.	0.3	0
2314	Mechanisms of Abiotic Stress Tolerance and Their Management Strategies in Fruit Crops. , 2020, , 579-607.		1
2315	Abiotic Stress Resistance. Compendium of Plant Genomes, 2020, , 225-243.	0.3	0
2316	Role of ionomics in plant abiotic stress tolerance. , 2020, , 835-860.		2

	CITATION	Report	
#	ARTICLE Regulatory Role of Transcription Factors in Abiotic Stress Responses in Plants 2020 543-565	IF	CITATIONS
2317			1
2318	Tef (Eragrostis tef): A Superfood Grain from Ethiopia with Great Potential as an Alternative Crop for Marginal Environments. Environment & Policy, 2020, , 265-278.	0.4	5
2319	Assessment of the sorption potential of the plant l. Sativum l. in the process of formation of the biogeochemical barrier. E3S Web of Conferences, 2020, 192, 04020.	0.2	1
2320	CRISPR/Cas9-based genome editing, with focus on transcription factors, for plant improvement. , 2020, , 63-84.		Ο
2321	IMPACT OF NFERTILIZER RATE ON BARELY (HORDUM VULGARE) IRRIGATED WITH MAGNETIZED AND NON-MAGNETIZED SALINE WATER WITH APPLICATIONOF 15N STABLE ISOTOPE. Menoufia Journal of Soil Science, 2020, 5, 19-31.	0.1	0
2322	Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano. Korean Journal of Medicinal Crop Science, 2020, 28, 1-8.	0.1	1
2325	The effect of laundry grey water irrigation on the growth response of selected local bean species in Nigeria. Agricultural Science and Technology, 2020, 12, 64-70.	0.0	4
2326	Investigation on the Relationship Between Salinity Stress and Epibrassinolide in Spinach (Spinacia) Tj ETQq1 1	0.784314 rg 0.1	gBT ₀ /Overlock
2327	Tuzluluk Stresi altında Lathyrus sativus L.'nin Çimlenme ve Büyümesini İyileştirmede, Salisilik Asit ile Tohum Priming Uygulaması. Yuzuncu Yil University Journal of Agricultural Sciences, 2020, 30, 68-79.	0.1	2
2328	Isolation, characterization and screening of PGPR capable of providing relief in salinity stress. Eurasian Journal of Soil Science, 2020, 9, 85-91.	0.2	8
2329	Exogenous Silicon Application Promotes Tolerance of Legumes and Their N2 Fixing Symbiosis to Salt Stress. Silicon, 2022, 14, 6517-6534.	1.8	14
2330	RsSOS1 Responding to Salt Stress Might Be Involved in Regulating Salt Tolerance by Maintaining Na+ Homeostasis in Radish (Raphanus sativus L.). Horticulturae, 2021, 7, 458.	1.2	2
2331	Evaluation of morphological traits of wheat varieties at germination stage under salinity stress. PLoS ONE, 2021, 16, e0258703.	1.1	3
2332	Developing a salinity tolerance indicator for tree varieties at challenging sites and urban forests based on inferences of physiological responses: an example of Ulmus pumila. Trees - Structure and Function, 2022, 36, 593-607.	0.9	1
2333	Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress. Journal of Tekirdag Agricultural Faculty, 0, , .	0.2	3
2334	Microbial ACC-Deaminase Biotechnology: Perspectives and Applications in Stress Agriculture. , 2012, , 141-185.		0
2335	Effect of Calcium Salts on Salinity Stress on Morphology and Biochemical Estimation of Rice Seedlings. Lecture Notes in Bioengineering, 2021, , 305-315.	0.3	0
2336	Effect of Humic Acid on Reducing Salt (NaCl) Stress in Broad Bean (Vicia faba L.). Journal of the Institute of Science and Technology, 2020, 10, 2168-2179.	0.3	2

#	Article	IF	CITATIONS
2337	Halophytes: A Climpse of Indian Sundarbans $\hat{a} \in$ " A World Heritage Site, Its Existing Status, and Sustainability. , 2021, , 1-36.		0
2338	Effect of drill cuttings addition on physicochemical and chemical properties of soil and red clover (Trifolium pretense L.) growth. PLoS ONE, 2020, 15, e0242081.	1.1	4
2339	Comparison to Effects of Salt Stress in Zinnia Cultivars During Seed Germination and at the Early Stages of Seedling Growth. Türkiye Tarımsal Araştırmalar Dergisi, 0, , .	0.5	1
2340	Ecological Adaptations of Urochondra setulosa (Poaceae) against Drought and Salinity. Asian Journal of Plant Sciences, 2020, 19, 443-454.	0.2	0
2341	Plant–Microbe Interactions: An Insight into the Underlying Mechanisms to Mitigate Diverse Environmental Stresses. Rhizosphere Biology, 2021, , 127-150.	0.4	0
2342	Involvement of brassinosteroids in plant response to salt stress. , 2022, , 237-253.		4
2343	Choline Chloride Mediates Salinity Tolerance in Cluster Bean (<i>Cyamopsis tetragonoloba</i> L.) by Improving Growth, Oxidative Defense, and Secondary Metabolism. Dose-Response, 2021, 19, 155932582110550.	0.7	3
2344	Nutritional responses of grafted cucumber on two types of Iranian local squash to alkalinity and salinity stresses. Journal of Plant Nutrition, 0, , 1-8.	0.9	0
2345	The role of exogenous glycinebetaine on some antioxidant activity of non-T and T tobacco (Nicotiana) Tj ETQq0 (0 0 ₀ gBT /O	verlock 107
2346	Exogenous application of liquiritin alleviated salt stress and improved growth of Chinese kale plants. Scientia Horticulturae, 2022, 294, 110762.	1.7	11
2347	Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. Science of the Total Environment, 2022, 819, 152035.	3.9	17
2348	Effects of red to far-red light ratio on growth and photosynthetic characteristics of tomato seedlings under calcium nitrate stress. Photosynthetica, 2021, 59, 625-632.	0.9	7
2349	Salinity thresholds for understory plants in coastal wetlands. Plant Ecology, 2022, 223, 323-337.	0.7	15
2350	In vitro screening of Indian potato cultivars for the salt stress and associated physio-biochemical changes. Biologia (Poland), 0, , 1.	0.8	4
2351	Target-Based Physiological Modulations and Chloroplast Proteome Reveals a Drought Resilient Rootstock in Okra (Abelmoschus esculentus) Genotypes. International Journal of Molecular Sciences, 2021, 22, 12996.	1.8	7
2352	Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes. International Journal of Molecular Sciences, 2021, 22, 12238.	1.8	12
2353	Use of biochar for alleviating negative impact of salinity stress in corn grown in arid soil. Canadian Journal of Soil Science, 2022, 102, 187-196.	0.5	7

Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the 1.8 219 1.8 219

#	Article	IF	CITATIONS
2355	Selection of the Salt Tolerance Gene GmSALT3 During Six Decades of Soybean Breeding in China. Frontiers in Plant Science, 2021, 12, 794241.	1.7	4
2356	The Biochemical Mechanisms of Salt Tolerance in Plants. Physiology, 0, , .	4.0	2
2357	ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum. 3 Biotech, 2021, 11, 514.	1.1	32
2358	Drought priming alleviated salinity stress and improved water use efficiency of wheat plants. Plant Growth Regulation, 2022, 96, 357-368.	1.8	11
2359	Plant metabolomics in biotic and abiotic stress: a critical overview. Phytochemistry Reviews, 2022, 21, 503-524.	3.1	32
2360	Unravelling the distinctive growth mechanism of proso millet (<i>Panicum miliaceum</i> L.) under salt stress: From rootâ€ŧoâ€ŀeaf adaptations to molecular response. GCB Bioenergy, 2022, 14, 192-214.	2.5	4
2361	Spatial distribution of halophytes and environment factors in salt marshes along the eastern Yellow Sea. Journal of Ecology and Environment, 2021, 45, .	1.6	0
2362	PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils. Applied Sciences (Switzerland), 2021, 11, 11442.	1.3	13
2363	Physiological and transcriptomic analyses reveal novel insights into the cultivar-specific response to alkaline stress in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety, 2021, 228, 113017.	2.9	0
2365	Salt interferences to metabolite accumulation, flavonoid biosynthesis and photosynthetic activity in Tetrastigma hemsleyanum. Environmental and Experimental Botany, 2022, 194, 104765.	2.0	5
2366	TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. Journal of Proteomics, 2022, 253, 104457.	1.2	6
2367	Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere, 2022, 32, 223-245.	2.1	55
2368	Growth parameters, mineral distribution, chlorophyll content, biochemical constituents and non-enzymatic antioxidant compounds of white yam (Dioscorea rotundata (L) var. gana) grown under salinity stress. GSC Biological and Pharmaceutical Sciences, 2020, 12, 139-149.	0.1	3
2369	Utilização de bioestimulante e extrato vegetal no milheto submetido a estresse salino. Research, Society and Development, 2020, 9, e1079108318.	0.0	0
2370	Effect of Soil-Applied L-tryptophan on the Amount of Biomass and Nitrogen and Sulfur Utilization by Maize. Agronomy, 2021, 11, 2582.	1.3	8
2371	The effect of three types of aquatic plants on water purification and removal of cadmium under different salinity conditions in northwestern Iran. Journal of Water Supply: Research and Technology - AQUA, 2022, 71, 301-311.	0.6	1
2372	Heterogeneous saline and nutritional conditions in the root-zone and its effect on water uptake and plant mineral content. Acta Horticulturae, 2022, , 59-68.	0.1	0
2373	The impact of Vermicompost on Pisum sativum spp. Arvence L exposed to methylisothiazolinone. Biologia (Poland), 2022, 77, 1109-1119.	0.8	4

#	Article	IF	CITATIONS
2374	Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. Horticulturae, 2022, 8, 75.	1.2	29
2375	Nutrient Solution for Hydroponics. , 0, , .		2
2376	The Response of Cowpea (Vigna unguiculata) Plants to Three Abiotic Stresses Applied with Increasing Intensity: Hypoxia, Salinity, and Water Deficit. Metabolites, 2022, 12, 38.	1.3	11
2377	Toxicity of TiO2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under long-term exposure. Environmental Science and Pollution Research, 2022, 29, 30427-30440.	2.7	8
2378	A Melatonin Treatment Delays Postharvest Senescence, Maintains Quality, Reduces Chilling Injury, and Regulates Antioxidant Metabolism in Mango Fruit. Journal of Food Quality, 2022, 2022, 1-18.	1.4	15
2379	Digital soil assessment in support of a soil information system for monitoring salinization and sodification in agricultural areas. Land Degradation and Development, 2022, 33, 1204-1218.	1.8	8
2381	Applications of nanoparticles for mitigating salinity and drought stress in plants: an overview on the physiological, biochemical and molecular genetic aspects. New Zealand Journal of Crop and Horticultural Science, 2023, 51, 297-327.	0.7	18
2382	Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology, 2022, 11, 155.	1.3	70
2383	A potent cadmium bioaccumulating Enterobacter cloacae strain displays phytobeneficial property in Cd-exposed rice seedlings. Current Research in Microbial Sciences, 2022, 3, 100101.	1.4	11
2384	Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. Journal of Plant Growth Regulation, 2023, 42, 539-553.	2.8	31
2385	Significant contribution of haloalkaliphilic cyanobacteria to organic matter in an ancient alkaline lacustrine source rock: A case study from the Permian Fengcheng Formation, Junggar Basin, China. Marine and Petroleum Geology, 2022, 138, 105546.	1.5	11
2386	Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiology and Molecular Biology of Plants, 2022, 28, 347-361.	1.4	33
2387	Effect of different soil amendments on soil buffering capacity. PLoS ONE, 2022, 17, e0263456.	1.1	13
2388	Arbuscular mycorrhizal fungi enhanced salt tolerance of Gleditsia sinensis by modulating antioxidant activity, ion balance and P/N ratio. Plant Growth Regulation, 2022, 97, 33-49.	1.8	17
2389	Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. International Journal of Molecular Sciences, 2022, 23, 1947.	1.8	63
2390	1H-NMR and LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage. Molecules, 2022, 27, 1187.	1.7	2
2391	Modulation of photosynthesis under salinity and the role of mineral nutrients in <i>Jatropha curcas</i> L Journal of Agronomy and Crop Science, 2022, 208, 314-334.	1.7	8
2392	Imperative role of trehalose metabolism and trehaloseâ€6â€phosphate signaling on salt stress responses in plants. Physiologia Plantarum, 2022, 174, e13647	2.6	27

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2395	Salinity Stress in Wheat: Effects, Mechanisms and Management Strategies. Phyton, 20	22, 91, 667-694.	0.4	58
2397	Genetic Analysis of Agronomic Traits of Barley (Hordeum vulgare L.) Cultivars under Sal using Diallel Cross. Plant Genetic Researches, 2021, 7, 83-96.	inity Stress	0.4	1
2398	Claroideoglomus etunicatum improved the growth and saline– alkaline tolerance of I anserina by altering physiological and biochemical properties. Biocell, 2022, 46, 1967-1	Potentilla 978.	0.4	4
2400	Integrated OMICS Approaches to Ameliorate the Abiotic Stress in Brassica Napus. Adva Technology and Innovation, 2022, , 361-373.	nces in Science,	0.2	2
2401	Morphological differentiation for the environmental adaptation of biomimetic buildings surfaces, and structures. , 2022, , 439-466.	:: Skins,		0
2402	Effects of Salt Stress on Changes of Na+ and K ⁺ in Four Salt Ma Botanical Research, 2022, 11, 210-217.	rsh Grasses.	0.0	0
2403	Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progratoward crop security and nutritional quality. Advances in Agronomy, 2022, , 1-78.	essive step	2.4	21
2404	Silicon and zinc nanoparticles-enriched miscanthus biochar enhanced seed germinatior defense system, and nutrient status of radish under NaCl stress. Crop and Pasture Scie 556-572.	ı, antioxidant nce, 2022, 73,	0.7	16
2405	Effects of Different Irrigation Water Salinity on the Soil Water-Salt, Photosynthesis, Yie Quality of Winter Jujube (Zizyphus Jujuba Mill. "Dongzaoâ€) Under Drip Irrigation ir Delta of China. SSRN Electronic Journal, 0, , .	ld and 1 the Yellow River	0.4	0
2406	Vulnerability and Resilience of Sorghum to Changing Climatic Conditions: Lessons from Hope for the Future. Advances in Science, Technology and Innovation, 2022, , 169-181	the Past and	0.2	2
2408	Endophytic fungus <i>Bipolaris</i> sp. CSL-1 induces salt tolerance in <i>Glycine max.< modulating its endogenous hormones, antioxidative system and gene expression. Journ Interactions, 2022, 17, 319-332.</i>	:/i>L via nal of Plant	1.0	16
2409	Salt Stress Induced Changes in Photosynthesis and Metabolic Profiles of One Tolerant One Sensitive (†Black Beauty') Eggplant Cultivars (Solanum melongena L.). Plant	(â€~Bonica') and s, 2022, 11, 590.	1.6	26
2410	Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defer 2022, 17, e0263036.	ise. PLoS ONE,	1.1	14
2411	Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Abilities to Reveal the Mechanism of Salt Tolerance. International Journal of Molecular S 2022, 23, 2272.	Salt Tolerance Sciences,	1.8	10
2412	Improvement of Selected Morphological, Physiological, and Biochemical Parameters of (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate a saponaria Extract. Plants, 2022, 11, 497.	Roselle Ind Aloe	1.6	6
2413	Growth Parameters and Antioxidant Activity in Cucumber Seedlings with the Applicatio and Hydroxycinnamic Acids Conjugates under Salt Stress. Applied Biochemistry and Mi 2022, 58, 69-76.	n of Chitosan crobiology,	0.3	10
2414	Functional structure of plant communities along salinity gradients in Iranian salt marsh Plant-Environment Interactions, 2022, 3, 16-27.	es.	0.7	5
2415	Phosphatidylcholine Enhances Homeostasis in Peach Seedling Cell Membrane and Incre Stress Tolerance by Phosphatidic Acid. International Journal of Molecular Sciences, 202	ases Its Salt 2, 23, 2585.	1.8	15

#	Article	IF	CITATIONS
2416	Salt Spray and Surfactants Induced Morphological, Physiological, and Biochemical Responses in Callistemon citrinus (Curtis) Plants. Horticulturae, 2022, 8, 261.	1.2	8
2417	Plant E3 Ligases and Their Role in Abiotic Stress Response. Cells, 2022, 11, 890.	1.8	28
2418	Response to salinity in black calla lily plant under Mediterranean conditions. Agronomy Journal, 0, , .	0.9	1
2419	Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L Applied Biochemistry and Biotechnology, 2022, 194, 4400-4423.	1.4	11
2420	Landscape genetics of the tropical willow <i>Salix humboldtiana</i> : influence of climate, salinity, and orography in an altitudinal gradient. American Journal of Botany, 2022, 109, 456-469.	0.8	3
2421	Salt Stress Tolerance in Rice and Wheat: Physiological and Molecular Mechanism. , 0, , .		2
2422	Exploring genetic variation among Jordanian Solanum lycopersicon L. landraces and their performance under salt stress using SSR markers. Journal of Genetic Engineering and Biotechnology, 2022, 20, 45.	1.5	6
2423	Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Horticulture Research, 2022, 9, .	2.9	21
2424	Eustress in Space: Opportunities for Plant Stressors Beyond the Earth Ecosystem. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	8
2425	Structure, Function, and Regulation of the Plasma Membrane Na+/H+ Antiporter Salt Overly Sensitive 1 in Plants. Frontiers in Plant Science, 2022, 13, 866265.	1.7	13
2426	Salinity Tolerance in a Synthetic Allotetraploid Wheat (SISIAA) Is Similar to Its Higher Tolerant Parent Aegilops longissima (SISI) and Linked to Flavonoids Metabolism. Frontiers in Plant Science, 2022, 13, 835498.	1.7	2
2427	Physiological Studies on Sulla carnosa Growth, Ionic Compartmentation and Oxidative Stress under Salt Stress. Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	5
2428	Differential Response to NaCl Osmotic Stress in Sequentially Harvested Hydroponic Red and Green Basil and the Role of Calcium. Frontiers in Plant Science, 2022, 13, 799213.	1.7	11
2429	Multidimensional screening and evaluation of morphoâ€physiological indices for salinity stress tolerance in wheat. Journal of Agronomy and Crop Science, 2022, 208, 454-471.	1.7	11
2430	Root Na+ Content Negatively Correlated to Salt Tolerance Determines the Salt Tolerance of Brassica napus L. Inbred Seedlings. Plants, 2022, 11, 906.	1.6	12
2431	Can grazing by elk and bison stimulate herbaceous plant productivity in semiarid ecosystems?. Ecosphere, 2022, 13, .	1.0	3
2432	Phytoglobin Expression Alters the Na+/K+ Balance and Antioxidant Responses in Soybean Plants Exposed to Na2SO4. International Journal of Molecular Sciences, 2022, 23, 4072.	1.8	4
2433	Recent Trends in Microbial Approaches for Soil Desalination. Applied Sciences (Switzerland), 2022, 12, 3586.	1.3	8

#		IF	CITATIONS
т 9434	Digestate-Derived Ammonium Fertilizers and Their Blends as Substitutes to Synthetic Nitrogen	19	6
2404	Fertilizers. Applied Sciences (Switzerland), 2022, 12, 3787.	1.5	0
2435	Evaluating the physiological and biochemical responses of melon plants to NaCl salinity stress using supervised and unsupervised statistical analysis. Plant Stress, 2022, 4, 100067.	2.7	11
2436	Arsenic bioaccumulation and biotransformation in aquatic organisms. Environment International, 2022, 163, 107221.	4.8	43
2437	Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed (Brassica napus) Tj ETQq1	1 D &7843]	l 421gBT /Ove
2438	Saline aquaponics: A review of challenges, opportunities, components, and system design. Aquaculture, 2022, 555, 738173.	1.7	7
2439	pH and salinity are the dominant limiting factors for the application of mariculture sludge to paddy soil. Applied Soil Ecology, 2022, 175, 104463.	2.1	4
2440	Effects of Different Irrigation Waters and Silicon Doses on Leaf SPAD Meter Readings, Chlorophyll and Carotenoid Contents of Tomato Plants. Tarim Bilimleri Dergisi, 0, , .	0.4	0
2441	Effects of Sequential Hydrogen Peroxide Applications on Salt Stress Tolerance in Bread Wheat Varieties. Tarim Bilimleri Dergisi, 0, , .	0.4	1
2442	Investigation of The Roles of Hydrogen Peroxide and NADPH Oxidase in The Regulation of Polyamine Metabolism in Maize Plants under Drought Stress Conditions. Tarim Bilimleri Dergisi, 0, , .	0.4	0
2443	Proximate Composition, Bioactive Compounds, and Antioxidant Potential of Wild Halophytes Grown in Coastal Salt Marsh Habitats. Molecules, 2022, 27, 28.	1.7	6
2444	Morphological and Physiological Response of Different Lettuce Genotypes to Salt Stress. Stresses, 2021, 1, 285-304.	1.8	12
2445	Potential Role of Plant Growth Regulators in Administering Crucial Processes Against Abiotic Stresses. Frontiers in Agronomy, 2021, 3, .	1.5	50
2446	A Critical-Systematic Review of the Interactions of Biochar with Soils and the Observable Outcomes. Sustainability, 2021, 13, 13726.	1.6	18
2448	Physiological and Biochemical Responses of Medicinal Plants to Salt Stress. Environmental Challenges and Solutions, 2022, , 153-181.	0.5	4
2450	Nanosilicon-mediated salt stress tolerance in plants. , 2022, , 105-119.		2
2451	Genotypic Variation for Salt Tolerance within and between â€~Alamo' and â€~Kanlow' Switchgrass (Panicum virgatum L.) Cultivars. Agronomy, 2022, 12, 973.	1.3	1
2452	Identifying Signal-Crosstalk Mechanism in Maize Plants during Combined Salinity and Boron Stress Using Integrative Systems Biology Approaches. BioMed Research International, 2022, 2022, 1-17.	0.9	6
2453	Bio-Synthesized Nanoparticles in Developing Plant Abiotic Stress Resilience: A New Boon for Sustainable Approach. International Journal of Molecular Sciences, 2022, 23, 4452.	1.8	29

#	Article	IF	Citations
2504	Identification of candidate genes involved in salt stress response at germination and seedling stages by QTL mapping in upland cotton. G3: Genes, Genomes, Genetics, 2022, , .	0.8	3
2505	Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS ONE, 2022, 17, e0263194.	1.1	43
2507	Microbial behavior, responses toward salinity stress, mechanism of microbe-mediated remediation for sustainable crop production. , 2022, , 103-127.		1
2508	Arbuscular mycorrhizal fungi in biotic and abiotic stress conditions: function and management in horticulture. , 2022, , 157-183.		3
2512	Morphological Responses of Some Pistacia Species to Salinity Under the Effect of Pgpr Application. SSRN Electronic Journal, 0, , .	0.4	1
2513	Transcriptomic Analysis Elaborates the Resistance Mechanism of Grapevine Rootstocks against Salt Stress. Plants, 2022, 11, 1167.	1.6	4
2514	Baseline hydroponicÂstudy for biofortification of bread wheat genotypes with iron and zinc under salinity: growth, ionic, physiological and biochemical adjustments. Journal of Plant Nutrition, 2023, 46, 743-764.	0.9	2
2515	Constitutive and Adaptive Traits of Environmental Stress Tolerance in the Threatened Halophyte Limonium angustebracteatum Erben (Plumbaginaceae). Plants, 2022, 11, 1137.	1.6	3
2516	Growth, photosynthesis and production of safflower (Carthamus tinctorius L.) in response to different levels of salinity and drought. International Agrophysics, 2022, 36, 93-104.	0.7	0
2517	Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress. Physiology and Molecular Biology of Plants, 2022, 28, 899-910.	1.4	12
2518	Mitigation of Salinity Stress on Pomegranate (Punica granatum L. cv. Wonderful) Plant Using Salicylic Acid Foliar Spray. Horticulturae, 2022, 8, 375.	1.2	18
2519	Multiple Stressors in Vegetable Production: Insights for Trait-Based Crop Improvement in Cucurbits. Frontiers in Plant Science, 2022, 13, 861637.	1.7	7
2520	Topraksız Baş salata (Lactuca sativa var. capitata) Yetiştiriciliğinde Farklı Tuzluluk Düzeylerinin Bitki Be Elementlerinin Üzerindeki Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, O, , .	esin 0.4	0
2521	Vermicompost and its role in alleviation of salt stress in plants – I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. Journal of Plant Nutrition, 2023, 46, 1446-1457.	0.9	9
2522	Green Synthesis of Phosphorous-Containing Hydroxyapatite Nanoparticles (nHAP) as a Novel Nano-Fertilizer: Preliminary Assessment on Pomegranate (Punica granatum L.). Nanomaterials, 2022, 12, 1527.	1.9	28
2523	Tuz stresi altındaki mısır fidelerine aseton o-(4 klorofenilsülfonil) oksim ön uygulamasının biyokimyasal parametreler üzerine etkilerinin araştırılması. Artvin ‡oruh Üniversitesi Orman Fakült Dergisi, 2022, 23, 74-83.	e sj. 5	2
2524	Vermicompost and its role in alleviation of salt tress in plants – II. Impact of vermicompost on the physiological responses of salt-stressed plants. Journal of Plant Nutrition, 2023, 46, 1458-1478.	0.9	1
2525	Climate Change and Its Adverse Impacts on Plant Growth in South Asia: Current Status and Upcoming Challenges. Phyton, 2022, 91, 695-711.	0.4	9

#	Article	IF	CITATIONS
2526	Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [<i>Brassica campestris</i> (syn. <i>Brassica rapa</i>) ssp. <i>chinensis</i>]. Horticulture Research, 2022, 9, .	2.9	11
2527	Breeding Chickpea for Climate Resilience: An Overview. , 2022, , 27-58.		1
2528	A comparative analysis of photosynthetic function and reactive oxygen species metabolism responses in two hibiscus cultivars under saline conditions. Plant Physiology and Biochemistry, 2022, 184, 87-97.	2.8	8
2529	Salinity Tolerance of Halophytic Grass Puccinellia nuttalliana Is Associated with Enhancement of Aquaporin-Mediated Water Transport by Sodium. International Journal of Molecular Sciences, 2022, 23, 5732.	1.8	4
2531	Germination and Survival of Maize and Beans Seeds: Effects of Irrigation with NaCl and Heavy Metals Contaminated Water. Open Journal of Applied Sciences, 2022, 12, 769-792.	0.2	0
2534	Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil. Journal of Soils and Water Conservation, 2022, 77, 381-388.	0.8	4
2535	Changes in Germination, Antioxidant Enzyme Activities and Biochemical Contents of Safflower (Carthamus tinctorius L.) Under Different Salinity Levels. SDU Journal of Science, 2022, 17, 186-196.	0.1	1
2536	Physiological and biochemical responses of Tanacetum balsamita L. to the foliar application of Dobogen biostimulant, glucose and KNO3 under salinity stress. Scientific Reports, 2022, 12, .	1.6	2
2537	Supplemental light application can improve the growth and development of strawberry plants under salinity and alkalinity stress conditions. Scientific Reports, 2022, 12, .	1.6	9
2539	Plant growth-promoting rhizobacteria: an alternative for NPK fertilizers. , 2022, , 149-167.		2
2540	Photosynthesis and salt cations adsorption response of spring maize (<i>Zea mays</i> L.) to salinity stress caused by different drip irrigation regimes in an arid saline area, Northwest China. Journal of Agronomy and Crop Science, 0, , .	1.7	1
2541	Improving Salt Tolerance in Trifolium alexandrinum L. through Interspecific Hybridization, Polyploidization and Induced Variations. Cytology and Genetics, 2022, 56, 301-311.	0.2	1
2542	The Involvement of Antioxidant Enzyme System, Nitrogen Metabolism and Osmoregulatory Substances in Alleviating Salt Stress in Inbred Maize Lines and Hormone Regulation Mechanisms. Plants, 2022, 11, 1547.	1.6	6
2543	Evaluation of the Biostimulant Activity of Zaxinone Mimics (MiZax) in Crop Plants. Frontiers in Plant Science, 0, 13, .	1.7	5
2544	Melatonin: First-line soldier in tomato under abiotic stress current and future perspective. Plant Physiology and Biochemistry, 2022, 185, 188-197.	2.8	54
2545	Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. Phenomics, 2023, 3, 1-21.	0.9	3
2546	The Sweetpotato Voltage-Gated K+ Channel β Subunit, KIbB1, Positively Regulates Low-K+ and High-Salinity Tolerance by Maintaining Ion Homeostasis. Genes, 2022, 13, 1100.	1.0	3
2547	Salt Priming as a Smart Approach to Mitigate Salt Stress in Faba Bean (Vicia faba L.). Plants, 2022, 11, 1610.	1.6	4

#	Article	IF	Citations
2548	Sodium Chloride (NaCl)-Induced Physiological Alteration and Oxidative Stress Generation in <i>Pisum sativum</i> (L.): A Toxicity Assessment. ACS Omega, 2022, 7, 20819-20832.	1.6	13
2549	Effect of Salt Treatment on the Growth, Water Status, and Gas Exchange of Pyrus pyraster L. (Burgsd.) and Tilia cordata Mill. Seedlings. Horticulturae, 2022, 8, 519.	1.2	3

2550 Comparative Analysis of Gene Expression Related to Salt Tolerance with Sorghum (<i>Sorghum) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50 60.3

2551	Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. Plant Science, 2022, 322, 111346.	1.7	13
2552	Early evidence of the impacts of microplastic and nanoplastic pollution on the growth and physiology of the seagrass Cymodocea nodosa. Science of the Total Environment, 2022, 838, 156514.	3.9	17
2553	The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 2022, 304, 111272.	1.7	13
2554	Trichoderma asperellum isolated from salinity soil using rice straw waste as biocontrol agent for cowpea plant pathogens. Journal of Applied Pharmaceutical Science, 0, , 91-98.	0.7	13
2555	Reconnoitering bionanomaterials for mitigation of abiotic stress in plants. , 2022, , 101-126.		0
2556	An Efficient Machine Learning Enabled Non-Destructive Technique for Remote Monitoring of Sugarcane Crop Health. IEEE Access, 2022, 10, 75956-75970.	2.6	0
2557	Ameliorating effect of vermicompost on <i>Foeniculum vulgare</i> under saline condition. Journal of Plant Nutrition, 2023, 46, 1601-1615.	0.9	4
2558	The effect of foliar application of zinc oxide nanoparticles and Moringa oleifera leaf extract on growth, biochemical parameters and in promoting salt stress tolerance in faba bean. African Journal of Biotechnology, 2022, 21, 252-266.	0.3	5
2559	Spermidine Modify Antioxidant Activity in Cucumber Exposed to Salinity Stress. Agronomy, 2022, 12, 1554.	1.3	2
2560	Effects of Salinity Stress at Reproductive Growth Stage on Rice (Oryza sativa L.) Composition, Starch Structure, and Physicochemical Properties. Frontiers in Nutrition, 0, 9, .	1.6	7
2561	Pivotal Role of Phytohormones and Their Responsive Genes in Plant Growth and Their Signaling and Transduction Pathway under Salt Stress in Cotton. International Journal of Molecular Sciences, 2022, 23, 7339.	1.8	17
2562	Responses of Spinach (<i>Spinacia oleracea</i> L.) to Acidic Saline Soils as Affected by Different Amendments. , 0, , .		0
2563	Coapplication of Effective Microorganisms and Nanomagnesium Boosts the Agronomic, Physio-Biochemical, Osmolytes, and Antioxidants Defenses Against Salt Stress in Ipomoea batatas. Frontiers in Plant Science, 0, 13, .	1.7	16
2564	Recent Advancements and Development in Nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants. Frontiers in Plant Science, 0, 13, .	1.7	21
2565	Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Clycyrrhiza) Tj ETQq1 1 0.78	4314 rgB1 1.6	/Overlock

#	Article	IF	CITATIONS
2566	Identification of hub salt-responsive genes in Cucumis sativus using a long non-coding RNA and mRNA interaction network. Horticulture Environment and Biotechnology, 2022, 63, 539-556.	0.7	1
2567	How soil salinization and alkalinization drive vegetation change in salt-affected inland wetlands. Plant and Soil, 2022, 480, 571-581.	1.8	4
2568	Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress. Plants, 2022, 11, 1831.	1.6	6
2569	Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Current Microbiology, 2022, 79, .	1.0	30
2570	Cerium-doped carbon quantum dots trigger mung bean seeds to help mitigate salt stress by increasing the degree of stomata opening. Carbon Letters, 2022, 32, 1715-1727.	3.3	4
2571	PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biology, 2022, 23, .	3.8	10
2572	The Effect of Frankia and Hebeloma crustiliniforme on Alnus alnobetula subsp. Crispa Growing in Saline Soil. Plants, 2022, 11, 1860.	1.6	2
2573	Comprehensive Genome-Wide Analysis of the Catalase Enzyme Toolbox in Potato (Solanum tuberosum) Tj ETQq1	1 0.7843 1.2	1ჭ rgBT /O\
2574	Reclamation of Salt-Affected Land: A Review. Soil Systems, 2022, 6, 61.	1.0	19
2575	Sweet basil can be grown hydroponically at low phosphorus and high sodium chloride concentration: Effect on plant and nutrient solution management. Scientia Horticulturae, 2022, 304, 111324.	1.7	10
2576	Salt Stress Effects on the Growth, Photosynthesis and Antioxidant Enzyme Activities in Maize (Zea) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 5
2577	Response of Potted Hebe andersonii to Salinity under an Efficient Irrigation Management. Agronomy, 2022, 12, 1696.	1.3	2
2578	TiO2 Nanoparticle Improve Germination and Seedling Parameters and Enhance Tolerance of Bitter Vetch (Vicia ervilia L.) Plants under Salinity and Drought Stress. Nanobiotechnology Reports, 2022, 17, 411-419.	0.2	1
2579	Screening of salt tolerance traits and the salt tolerance evaluation method in Brassica napus at the seed germination stage. Italian Journal of Agronomy, 2022, 17, .	0.4	0
2580	Removal Efficiency, Accumulation and Biochemical Response of Lemna minor L. Exposed to Some Heavy Metals. IOP Conference Series: Earth and Environmental Science, 2022, 1060, 012037.	0.2	1
2581	Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology, 2022, 22, .	1.6	17
2582	Exogenous Application of Green Titanium Dioxide Nanoparticles (TiO2 NPs) to Improve the Germination, Physiochemical, and Yield Parameters of Wheat Plants under Salinity Stress. Molecules, 2022, 27, 4884.	1.7	12
2583	Physiological and Biochemical Parameters of Salinity Resistance of Three Durum Wheat Genotypes. International Journal of Molecular Sciences, 2022, 23, 8397.	1.8	8

#	Article	IF	CITATIONS
2584	Transcriptomic and Metabolomic Analysis of the Effects of Exogenous Trehalose on Salt Tolerance in Watermelon (Citrullus lanatus). Cells, 2022, 11, 2338.	1.8	13
2585	Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. Sustainability, 2022, 14, 9280.	1.6	14
2586	Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. Frontiers in Plant Science, 0, 13, .	1.7	14
2587	Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biology, 2022, 22, .	1.6	5
2588	Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. Frontiers in Plant Science, 0, 13, .	1.7	16
2589	Saline-alkali stress tolerance is enhanced by MhPR1 in Malus halliana leaves as shown by transcriptomic analyses. Planta, 2022, 256, .	1.6	4
2590	OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice. Journal of Integrative Agriculture, 2023, 22, 341-359.	1.7	9
2591	Identification of Alkaline Salt Tolerance Genes in Brassica napus L. by Transcriptome Analysis. Genes, 2022, 13, 1493.	1.0	2
2592	Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	15
2593	Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. Frontiers in Plant Science, 0, 13, .	1.7	13
2594	Comparative study of the effects of different soluble salts on seed germination of wild marigold (Tagetes minuta L.). Journal of Applied Research on Medicinal and Aromatic Plants, 2022, , 100421.	0.9	1
2595	Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. International Journal of Molecular Sciences, 2022, 23, 9599.	1.8	8
2596	Responses of Four Peatland Emergent Macrophytes to Salinity and Short Salinity Pulses. Wetlands, 2022, 42, .	0.7	3
2597	Physio-chemical response of brinjal (Solanum melongena L.) genotypes to soil salinity. Plant Physiology Reports, 2022, 27, 521-537.	0.7	1
2598	Characterization of NAC transcription factor NtNAC028 as a regulator of leaf senescence and stress responses. Frontiers in Plant Science, 0, 13, .	1.7	6
2599	Attenuation of Chilling Injury and Improving Antioxidant Capacity of Persimmon Fruit by Arginine Application. Foods, 2022, 11, 2419.	1.9	7
2600	Habitat-adapted heterologous symbiont Salinispora arenicola promotes growth and alleviates salt stress in tomato crop plants. Frontiers in Plant Science, 0, 13, .	1.7	2
2601	Transcriptome and Metabolome Analyses of Salt Stress Response in Cotton (Gossypium hirsutum) Seed Pretreated with NaCl. Agronomy, 2022, 12, 1849.	1.3	2

#	Article	IF	CITATIONS
2602	Restoring ecological function to saline–sodic soils in South Dakota with perennial grass mixtures. Agronomy Journal, 2023, 115, 135-146.	0.9	2
2603	Effects of Exogenous Linoleic Acid on Barley (Hordeum vulgare L.) Seedlings Under Salinity. Journal of the Institute of Science and Technology, 2022, 12, 1790-1800.	0.3	1
2605	Validating a smart nutrient solution replenishment strategy to save water and nutrients in hydroponic crops. Frontiers in Environmental Science, 0, 10, .	1.5	8
2606	Effects of constant and fluctuating saltwater addition on CH4 fluxes and methanogens of a tidal freshwater wetland: A mesocosm study. Estuarine, Coastal and Shelf Science, 2022, 277, 108076.	0.9	2
2607	FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2022, 191, 20-33.	2.8	5
2608	Osmotic adjustment, production, and post-harvest quality of mini watermelon genotypes differing in salt tolerance. Scientia Horticulturae, 2022, 306, 111463.	1.7	1
2609	Impact of biochar-compost derived from thermal pyrolysis of poultry litter and woodchips on N mineralization and maize growth in contrasting tropical dryland soils. Bioresource Technology Reports, 2022, 20, 101225.	1.5	2
2610	Environment relevant concentrations of lithium influence soybean development via metabolic reprogramming. Journal of Hazardous Materials, 2023, 441, 129898.	6.5	17
2611	Effects of irrigation and nitrogen fertilization on mitigating salt-induced Na ⁺ toxicity and sustaining sea rice growth. Open Life Sciences, 2022, 17, 1165-1173.	0.6	1
2612	Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils. Ecological Studies, 2022, , 205-233.	0.4	0
2613	Marigold. , 2022, , 1-23.		0
2614	The Effect of Salinity (NaCl) Stress and Different Magnetic Applications on The Germination of Cucumber Seeds (Cucumis sativus L.). Journal of Tekirdag Agricultural Faculty, 2022, 19, 529-540.	0.2	0
2615	Comparison between Salicylic Acid and Pomegranate Peel Extract in Reducing the Deleterious Effect of Salinity Stress on Wheat Plant. International Journal of Agricultural Research, 2022, 17, 129-140.	0.0	1
2616	Impact of starch-based bioplastic on growth and biochemical parameters of basil plants. Science of the Total Environment, 2023, 856, 159163.	3.9	14
2617	Categories of exogenous substances and their effect on alleviation of plant salt stress. European Journal of Agronomy, 2023, 142, 126656.	1.9	16
2618	Comparative Physiological and Transcriptomic Analyses of Two Contrasting Pepper Genotypes under Salt Stress Reveal Complex Salt Tolerance Mechanisms in Seedlings. International Journal of Molecular Sciences, 2022, 23, 9701.	1.8	1
2620	Alleviation of Salt Stress in Solanum tuberosum L. by Exogenous Application of Indoleacetic acid and l-Tryptophan. Journal of Plant Growth Regulation, 2023, 42, 3257-3273.	2.8	5
2621	A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress. Plant Methods, 2022, 18, .	1.9	10

#	Article	IF	CITATIONS
2622	Nitric Oxide Is Essential for Melatonin to Enhance Nitrate Tolerance of Cucumber Seedlings. Molecules, 2022, 27, 5806.	1.7	6
2623	Foliar Application of Salicylic Acid on Growth and Yield Components of Tomato Plant Grown under Salt Stress. , 0, , .		0
2624	Physiological effects of salt stress on plant growth. MaÄŸallaẗ TikrÄ«t Li-l-Ê»ulÅ«m Al-zirÄÊ»aẗ, 2022, 22, 93	-9 7. 0	0
2625	Salinity Effect on Plant Growth Parameters and Fruit Bioactive Compounds of Two Strawberry Cultivars, Coupled with Environmental Conditions Monitoring. Agronomy, 2022, 12, 2279.	1.3	16
2626	Identification of the OsCML4 Gene in Rice Related to Salt Stress Using QTL Analysis. Plants, 2022, 11, 2467.	1.6	4
2628	Combined Effect of Rice-Straw Biochar and Humic Acid on Growth, Antioxidative Capacity, and Ion Uptake in Maize (Zea mays L.) Grown Under Saline Soil Conditions. Journal of Plant Growth Regulation, 2023, 42, 3211-3228.	2.8	8
2629	Climate Change and Abiotic Stresses in Plants. , 0, , .		0
2630	Longâ€ŧerm <scp><i>Spartina alterniflora</i></scp> invasion simplified soil seed bank and regenerated community in a coastal marsh wetland. Ecological Applications, 2024, 34, .	1.8	0
2631	lon contents, physiological characteristics and growth of Carum copticum as influenced by salinity and alkalinity stresses. Biologia Futura, 2022, 73, 301-308.	0.6	2
2632	Effects of Melatonin Priming on Seed Germination of Wheat under Salt Stress. Asian Journal of Advances in Agricultural Research, 0, , 1-14.	0.2	0
2633	Deciphering salinity tolerance in the cyanobacterium Anabaena sphaerica: an evaluation of physiological and biochemical adjustments. Acta Physiologiae Plantarum, 2022, 44, .	1.0	1
2634	Biogenic nanoparticles and generation of abiotic stress-resilient plants: A new approach for sustainable agriculture. Plant Stress, 2022, 6, 100117.	2.7	4
2635	Mild and severe salt stress responses are age-dependently regulated by abscisic acid in tomato. Frontiers in Plant Science, 0, 13, .	1.7	8
2636	Over-expression of spermidine synthase 2 (SISPDS2) in tomato plants improves saline-alkali stress tolerance by increasing endogenous polyamines content to regulate antioxidant enzyme system and ionic homeostasis. Plant Physiology and Biochemistry, 2022, 192, 172-185.	2.8	10
2637	Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. South African Journal of Botany, 2022, 151, 33-46.	1.2	40
2638	Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. Plant Physiology and Biochemistry, 2022, 192, 10-19.	2.8	8
2639	Protocol for salt stress screening of African marigold under hydroponic system. , 2021, 91, .		0
2640	Phytochemical Properties of Roselle (<i>Hibiscus sabdariffa,</i> L.) Plants Grown under Bio and Mineral Fertilizers in Different Types of Soil. International Letters of Natural Sciences, 0, 83, 1-14.	1.0	0

#	Article	IF	CITATIONS
2642	Acetic acid application timing on strawberry: an alleviator for salinity adverse effect. Acta Physiologiae Plantarum, 2022, 44, .	1.0	0
2643	Different Traits Affect Salinity and Drought Tolerance during Germination of Citrullus colocynthis, a Potential Cash Crop in Arid Lands. Seeds, 2022, 1, 244-259.	0.7	1
2644	Ecological stoichiometry, salt ions and homeostasis characteristics of different types of halophytes and soils. Frontiers in Plant Science, 0, 13, .	1.7	6
2645	The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity. Sustainability, 2022, 14, 12676.	1.6	1
2646	Tamarix hispida NAC Transcription Factor ThNAC4 Confers Salt and Drought Stress Tolerance to Transgenic Tamarix and Arabidopsis. Plants, 2022, 11, 2647.	1.6	9
2647	Biofertilisation with a consortium of growthâ€promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions. Physiologia Plantarum, 2022, 174, .	2.6	10
2648	Desert plant transcriptomics and adaptation to abiotic stress. , 2023, , 199-256.		0
2649	Vegetation of temperate inland salt-marshes reflects local environmental conditions. Science of the Total Environment, 2023, 856, 159015.	3.9	3
2650	Improving salt tolerance and yield by Mn supplementation in Vigna radiata. , 2020, 90, 297-301.		0
2651	Seed Priming as a Sustainable Solution to Mitigate Salinity and Drought Stress in Plants. Environmental Contamination Remediation and Management, 2022, , 357-370.	0.5	1
2652	Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity. Microbiological Research, 2023, 266, 127254.	2.5	16
2653	Response of Salt-Stressed Common Bean Plant Performances to Foliar Application of Phosphorus (MAP). International Letters of Natural Sciences, 0, 72, 7-20.	1.0	3
2654	Mitigation of Salinity Stress Effects on Growth, Physio-Chemical Parameters and Yield of Snapbean (<i>Phaseolus vulgaris</i> L.) by Exogenous Application of Glycine Betaine. International Letters of Natural Sciences, 0, 76, 60-71.	1.0	1
2655	Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. International Journal of Molecular Sciences, 2022, 23, 13745.	1.8	0
2656	Effects of NaCl Stress on the Growth, Physiological Characteristics and Anatomical Structures of Populus talassica × Populus euphratica Seedlings. Plants, 2022, 11, 3025.	1.6	5
2657	Exogenous Î ³ -Aminobutyric Acid (GABA) Application Mitigates Salinity Stress in Maize Plants. Life, 2022, 12, 1860.	1.1	6
2659	Foliar Application of Melatonin Improves the Salt Tolerance, Ion and Redox Homeostasis and Seed Oil Fatty Acid Profile in Camelina sativa. Plants, 2022, 11, 3113.	1.6	3
2660	Autotetraploidization Gives Rise to Differential Gene Expression in Response to Saline Stress in Rice. Plants, 2022, 11, 3114.	1.6	6

#	Article	IF	CITATIONS
2661	Sustainable livelihoods and household participation in agroforestry: a case study adjacent to the Sundarban reserve forest in Bangladesh. Geo Journal, 0, , .	1.7	1
2662	The role of artificial intelligence strategies to mitigate abiotic stress and climate change in crop production. , 2023, , 273-293.		2
2663	Response to Inoculation with Arbuscular Mycorrhizal Fungi of Two Tomato (<i>Solanum lycopersicum</i> L.) Varieties Subjected to Salt Stress under Semi-Controlled Conditions. Agricultural Sciences, 2022, 13, 1334-1362.	0.2	0
2664	Salt tolerance of seven genotypes of zoysiagrass (<i>Zoysia</i> spp.). , 2022, 2, 1-7.		1
2665	Sorghum: Role and Responses Under Abiotic Stress. , 2022, , 107-124.		1
2666	Salt Stress Affects the Growth and Yield of Wheat (L.) by Altering the Antioxidant Machinery and Expression of Hormones and Stress-Specific Genes. Phyton, 2023, 92, 861-881.	0.4	0
2667	Does the salt stress intensify the independent allelopathy and the co-allelopathy of Solidago canadensis L. and Conyza canadensis (L.) Cronq.?. South African Journal of Botany, 2023, 153, 37-45.	1.2	5
2668	Nanotechnology and Its Role in Cereal Crops under Abiotic Stress. , 2022, , 675-687.		1
2669	Variation of some growth, agronomical and biochemical parameters of Vigna unguiculata (L. Walp) under salinity stress. African Journal of Agricultural Research Vol Pp, 2022, 18, 956-966.	0.2	0
2670	Investigating genetic control of salt stress tolerance in tomato commercial hybrid cultivars and <i>Solanum pennellii</i> introgression lines. Acta Horticulturae, 2022, , 165-174.	0.1	0
2671	Regulation of salt tolerance in the roots of Zea mays by L-histidine through transcriptome analysis. Frontiers in Plant Science, 0, 13, .	1.7	5
2672	Investigating genetic control of salt stress tolerance in tomato commercial hybrid cultivars and <i>Solanum pennellii</i> introgression lines. Acta Horticulturae, 2022, , 165-174.	0.1	0
2673	Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings. Scientific Reports, 2022, 12, .	1.6	11
2674	Proteomics and photosynthetic apparatus response to vermicompost attenuation of salinity stress Vicia faba leaves. Acta Physiologiae Plantarum, 2023, 45, .	1.0	8
2675	Agro-Morphological, Yield and Biochemical Responses of Selected Wheat (Triticum aestivum L.) Genotypes to Salt Stress. Agronomy, 2022, 12, 3027.	1.3	5
2676	Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in plants. Frontiers in Environmental Science, 0, 10, .	1.5	4
2677	The desertÂplantÂCalotropis procera maintains C3 photosynthetic metabolism under salt stress. Theoretical and Experimental Plant Physiology, 2023, 35, 1-16.	1.1	1
2678	Potential Effect of DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one) on Alleviating the Autotoxic Coumarin Stress in Alfalfa (Medicago sativa) Seedlings. Life, 2022, 12, 2140.	1.1	1

_	_
CITATION	REPORT
Christian	

#	Article	IF	CITATIONS
2679	Potential of green synthesized titanium dioxide nanoparticles for enhancing seedling emergence, vigor and tolerance indices and DPPH free radical scavenging in two varieties of soybean under salinity stress. BMC Plant Biology, 2022, 22, .	1.6	19
2680	Ecophysiological and Biochemical Responses Depicting Seed Tolerance to Osmotic Stresses in Annual and Perennial Species of Halopeplis in a Frame of Global Warming. Life, 2022, 12, 2020.	1.1	1
2681	The effects of extracellular algicidal compounds of Bacillus sp. B1 on Heterosigma akashiwo: a metabolomics approach. Environmental Science and Pollution Research, 2023, 30, 35635-35645.	2.7	0
2682	Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites, 2022, 12, 1289.	1.3	7
2683	Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress. Functional and Integrative Genomics, 2023, 23, .	1.4	4
2684	Determination of the Effect of Salt Stress on Germination, Biochemical and Antioxidant Defense Systems in Linas Safflower Seeds. Yuzuncu Yil University Journal of Agricultural Sciences, 0, , 682-691.	0.1	1
2685	Identification of a DEAD-box RNA Helicase BnRH6 Reveals Its Involvement in Salt Stress Response in Rapeseed (Brassica napus). International Journal of Molecular Sciences, 2023, 24, 2.	1.8	10
2686	In vitro Production of Plant Nutraceuticals. Biotechnology, 2022, 22, 1-17.	0.5	0
2687	ACC Deaminase Produced by PGPR Mitigates the Adverse Effect of Osmotic and Salinity Stresses in Pisum sativum through Modulating the Antioxidants Activities. Plants, 2022, 11, 3419.	1.6	8
2688	Testing the Effect of High pH and Low Nutrient Concentration on Four Leafy Vegetables in Hydroponics. Agronomy, 2023, 13, 41.	1.3	4
2689	Linking whole-plant responses to cell physiology in glycophytes exposed to NaCl stress. Acta Physiologiae Plantarum, 2023, 45, .	1.0	1
2690	Physiological, Morphological and Biochemical Responses of Exogenous Hydrogen Sulfide in Salt-Stressed Tomato Seedlings. Sustainability, 2023, 15, 1098.	1.6	9
2691	Medicinal Plants Proteomics in Response to Abiotic Stresses. , 2023, , 35-107.		0
2692	Medicinal Plants Metabolomics in Response to Abiotic Stresses. , 2023, , 109-125.		0
2693	Medicinal Plants and Abiotic Stress: An Overview. , 2023, , 1-34.		4
2694	Biostimulants and Phytohormones Improve Productivity and Quality of Medicinal Plants Under Abiotic Stress. , 2023, , 335-362.		1
2695	Combined Use of Mycorrhizae and Green Compost for Reducing the Deleterious Effects of Salt Stress in Two Genotypes of Quinoa (Chenopodium quinoa). Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1
2696	The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. Frontiers in Plant Science, 0, 13, .	1.7	3

#	Article	IF	CITATIONS
2697	Soil Salinity and Climate Change: Microbiome-Based Strategies for Mitigation of Salt Stress to Sustainable Agriculture. Climate Change Management, 2023, , 191-243.	0.6	4
2698	Characteristics of Root Cells during In Vitro Rhizogenesis under Action of NaCl in Two Tomato Genotypes Differing in Salt Tolerance. International Journal of Plant Biology, 2023, 14, 104-119.	1.1	4
2699	Overexpression of Rice C3HC4-Type RING Finger Protein Gene, OsSIRHC-2, Improves Salinity Tolerance Through Low Na+ Accumulation. Journal of Plant Biology, 2023, 66, 147-162.	0.9	3
2700	Role of Phenolic Metabolites in Salinity Stress Management in Plants. , 2023, , 353-368.		0
2701	Mangroves: An Underutilized Gene Pool to Combat Salinity. Sustainable Development and Biodiversity, 2023, , 215-259.	1.4	2
2702	Hydrogen sulfide regulates NaCl tolerance in brinjal and tomato seedlings by Na+/K+ homeostasis and nitrogen metabolism. Plant Stress, 2023, 7, 100129.	2.7	1
2703	SWATH-based quantitative proteomics gives insight into a significant proteome shift in UCB-1 pistachio rootstock under salt stress. Scientia Horticulturae, 2023, 311, 111822.	1.7	1
2704	Silicon as vital element in flower crop production. Journal of Plant Nutrition, 2023, 46, 2747-2762.	0.9	0
2705	Physiological responses of seven varieties of soybean [Glycine max (L.) Merr.] to salt stress. Plant Science Today, 0, , .	0.4	0
2706	Analysis of the Energy Parameters of Selected Biomass and Biochar Types and the Environmental Impact of Their Ashes. Civil and Environmental Engineering Reports, 2022, 32, 147-166.	0.2	1
2707	Fertilisation with compost mitigates salt stress in tomato by affecting plant metabolomics and nutritional profiles. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	6
2708	Determination of the Effects of Salicylic Acid Treatments on Germination and Seed Properties of Barley (Hordeum vulgare L.) Cultivars under Salt Stress. , 2022, 12, 119-134.		1
2709	Transcriptomic Profiling Reveals Key Genes of Halophyte Apocyni Veneti Folium (Apocynum venetum L.) and Regulatory Mechanism of Salt Tolerance. Journal of Plant Growth Regulation, 2023, 42, 6565-6584.	2.8	5
2710	How does silicon help alleviate biotic and abiotic stresses in plants? Mechanisms and future prospects. , 2023, , 359-402.		3
2711	Ethylene and cellular redox management in plants. , 2023, , 141-170.		3
2712	Morpho-Physiological and Transcriptional Regulation of Root System under Saline Conditions in Nymphaea Plants. Horticulturae, 2023, 9, 132.	1.2	1
2714	PGPR reduces the adverse effects of abiotic stresses by modulating morphological and biochemical properties in plants. , 2023, , 201-208.		0
2715	Determination of Environmental Flows in Data-Poor Estuaries—Wami River Estuary in Saadani National Park, Tanzania. Hydrology, 2023, 10, 33.	1.3	4
#	Article	IF	CITATIONS
------	--	-----	-----------
2716	Investigation of the agroecological applications of olive mill wastewater fractions from the ultrafiltration-nanofiltration process. Journal of Environmental Management, 2023, 333, 117467.	3.8	5
2717	NUTRIENT COMPOSITION, ANTIOXIDANT COMPONENTS AND ASCORBIC ACID CONTENT RESPONSE OF PEPPER FRUIT (Capsicum annuum L.) CULTIVARS GROWN UNDER SALT STRESS. , 2021, 2, 43-70.		0
2718	Evaluation of Relative Changes in the Expression Level of SOS2, MYB-related and HD-ZIP Genes in Oil Seed Sunflower Lines under Salinity Stress. Journal of Crop Breeding, 2021, 13, 152-165.	0.4	1
2719	Assessment and mechanism analysis of plant salt tolerance regulates soil moisture dynamics and controls root zone salinity and sodicity in seasonally irrigated agroecosystems. Journal of Hydrology, 2023, 617, 129138.	2.3	5
2720	Potassium-Nitrogen Ratio Improved Cotton Yield by Regulating Antioxidant Metabolism Under a New Cropping Model for the Yangtze River Valley of China. Journal of Soil Science and Plant Nutrition, 0, ,	1.7	0
2722	Modulation of Morpho-Physiological and Metabolic Profiles of Lettuce Subjected to Salt Stress and Treated with Two Vegetal-Derived Biostimulants. Plants, 2023, 12, 709.	1.6	3
2723	Ascorbateâ^'glutathione cycle involving in response of Bangia fuscopurpurea (Bangiales, Rhodophyta) to hyposalinity. Frontiers in Marine Science, 0, 10, .	1.2	0
2724	Enhanced production of bioactive compounds from marine microalgae Tetraselmis tetrathele under salinity and light stresses: A two-stage cultivation strategy. Bioresource Technology, 2023, 376, 128899.	4.8	8
2725	Salinity affects the efficiency of a brackish aquaponics system of sea bass (Dicentrarchus labrax) and rock samphire (Crithmum maritimum). Aquaculture, 2023, 571, 739493.	1.7	2
2729	Small-scale land use change modelling using transient groundwater levels and salinities as driving factors – An example from a sub-catchment of Australia's Murray-Darling Basin. Agricultural Water Management, 2023, 278, 108174.	2.4	5
2730	Mitigation impacts of localized salt replacement on the salinity damage of cucumber: The relationship between cucumber growth and salt level in the root region. Scientia Horticulturae, 2023, 312, 111870.	1.7	2
2731	Characterization of HAK protein family in Casuarina equisetifolia and the positive regulatory role of CeqHAK6 and CeqHAK11 genes in response to salt tolerance. Frontiers in Plant Science, 0, 13, .	1.7	3
2732	Seed Priming with Nanoparticles and 24-Epibrassinolide Improved Seed Germination and Enzymatic Performance of Zea mays L. in Salt-Stressed Soil. Plants, 2023, 12, 690.	1.6	23
2733	Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life, 2023, 13, 493.	1.1	26
2734	Plant Growth Promoting Bacteria and Arbuscular Mycorrhizae Improve the Growth of Persea americana var. Zutano under Salt Stress Conditions. Journal of Fungi (Basel, Switzerland), 2023, 9, 233.	1.5	4
2735	Comparative Analysis of Morphological, Physiological, Anatomic and Biochemical Responses in Relatively Sensitive Zinnia elegans †Zinnita Scarlet' and Relatively Tolerant Zinnia marylandica †Double Zahara Fire Improved' under Saline Conditions. Horticulturae, 2023, 9, 247.	1.2	4
2736	Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon, 2023, 9, e13744.	1.4	11
2737	In vitro selection for drought and salt stress tolerance in rice: an overview. Plant Physiology Reports, 2023, 28, 8-33.	0.7	4

#	Article	IF	CITATIONS
2738	PIGMENT CHANGES OF RUBINIA TINCTORUM ROOT UNDER DIFFERENT LEVELS OF SALINITY AND THEIR RELATIONSHIP WITH SOME CHEMICAL CHARACTERISTICS OF WATER. , 2023, 1, 21-24.		0
2739	Salinity pretreatment synergies heat shock toxicity in cyanobacterium Anabaena PCC7120. Frontiers in Microbiology, 0, 14, .	1.5	1
2740	Comprehensive evaluation, analysis of mechanisms and the prediction of salinity tolerance in pomegranate. Scientia Horticulturae, 2023, 313, 111918.	1.7	3
2741	Exogenous melatonin (MT) enhances salt tolerance of okra (Abelmoschus esculentus L.) plants by regulating proline, photosynthesis, ion homeostasis and ROS pathways. Vegetos, 2024, 37, 224-238.	0.8	1
2742	Estimation of salinity stress tolerant level of chickpea cultivars (Cicer arietinum) using seed germination experiment followed by good agricultural practices recommendation. Vegetos, 2024, 37, 421-425.	0.8	1
2743	Plant Growth Promoting Rhizobacteria to Mitigate Biotic and Abiotic Stress in Plants. Sustainable Agriculture Reviews, 2023, , 47-68.	0.6	5
2744	Effects of foliage-applied exogenous γ-aminobutyric acid on seedling growth of two rice varieties under salt stress. PLoS ONE, 2023, 18, e0281846.	1.1	2
2745	Sodium as a subsidy in the spring: evidence for a phenology of sodium limitation. Oecologia, 2023, 201, 783-795.	0.9	1
2746	Secondary Metabolites and Bioprospecting. , 2023, , 229-255.		0
2747	Inoculation with Azorhizobium caulinodans ORS571 enhances plant growth and salt tolerance of switchgrass (Panicum virgatum L.) seedlings. , 2023, 16, .		1
2748	Endophytic Fungi Regulate HbNHX1 Expression and Ion Balance in Hordeum bogdanii under Alkaline Stress. Journal of Fungi (Basel, Switzerland), 2023, 9, 331.	1.5	0
2750	Responses of two strawberry cultivars to NaCl-induced salt stress under the influence of ZnO nanoparticles. Saudi Journal of Biological Sciences, 2023, 30, 103623.	1.8	2
2751	Chitin, Biochar, and Animal Manures Impact on Eggplant and Green Pepper Yield and Quality. Agricultural Sciences, 2023, 14, 368-383.	0.2	0
2752	Mechanisms of nanomaterials for improving plant salt tolerance. , 2023, 2, 92-99.		2
2753	Salt-Affected Rocket Plants as a Possible Source of Glucosinolates. International Journal of Molecular Sciences, 2023, 24, 5510.	1.8	0
2754	GmGSTU23 Encoding a Tau Class Glutathione S-Transferase Protein Enhances the Salt Tolerance of Soybean (Glycine max L.). International Journal of Molecular Sciences, 2023, 24, 5547.	1.8	6
2755	Investigation of Some Physiological Traits in Dracocephalum Moldavica L. Ecotypes under Salt Stress Condition. Journal of Crop Breeding, 2022, 14, 155-163.	0.4	0
2756	Review of phenotypic response of diatoms to salinization with biotechnological relevance. Hydrobiologia, 2023, 850, 4665-4688.	1.0	3

#	Article	IF	CITATIONS
2757	Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Frontiers in Microbiology, 0, 14, .	1.5	2
2758	Abiotic elicitor strategies for improving secondary metabolite production in in vitro cultures of plants. , 2023, , 89-98.		0
2759	Prohexadione-calcium alleviates the leaf and root damage caused by salt stress in rice (Oryza sativa L.) at the tillering stage. PLoS ONE, 2023, 18, e0279192.	1.1	0
2760	Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules, 2023, 28, 2726.	1.7	3
2761	Effect of Microbial Consortium Vs. Perfected Chemical Fertilizers for Sustainable Crop Growth. Microorganisms for Sustainability, 2023, , 319-337.	0.4	1
2762	Elevated root zone pH and NaCl leads to decreased foliar nitrogen, chlorophyll, and physiological performance in trembling aspen (Populus tremuloides), green alder (Alnus alnobetula), tamarack (Larix laricina), and white spruce (Picea glauca). Trees - Structure and Function, 0, , .	0.9	0
2763	Research Progress on Improvement of Saline Alkali Soil. , 2023, 3, 36-42.		0
2764	Study of the Effect of Salt Stress on aÂLegume Faba Bean (ViciaÂfabaÂL.). Gesunde Pflanzen, 0, , .	1.7	0
2765	Tuz Stresi Altındaki Buğdayda Bacillus thuringiensis LU3 ile Biyopriming'in Fizyolojik ve Biyokimyasal Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	0.2	0
2767	Transcriptomic and Physiological Analyses Reveal the Molecular Mechanism through Which Exogenous Melatonin Increases Drought Stress Tolerance in Chrysanthemum. Plants, 2023, 12, 1489.	1.6	3
2768	Comparative Analysis of Antioxidant System and Salt-Stress Tolerance in Two Hibiscus Cultivars Exposed to NaCl Toxicity. Plants, 2023, 12, 1525.	1.6	2
2769	Effects of Two Biochar Types on Mitigating Drought and Salt Stress in Tomato Seedlings. Agronomy, 2023, 13, 1039.	1.3	13
2770	Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation. Agronomy, 2023, 13, 1020.	1.3	1
2771	Changes in growth, physiology, and photosynthetic capacity of spinach (Spinacia oleracea L.) under different nitrate levels. PLoS ONE, 2023, 18, e0283787.	1.1	0
2772	Using cDNA SCoT method to identify differentially expressed genes in date palm (<i>Phoenix) Tj ETQq0 0 0 rgBT /</i>	Overlock	10 Tf 50 182
2773	Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth under Salt Stress by Gibberellin. International Journal of Molecular Sciences, 2023, 24, 6777.	1.8	9
2774	Study on germination and seedling growth of various ecotypes of fennel (Foeniculum vulgare Mill.) under salinity stress. Journal of Applied Research on Medicinal and Aromatic Plants, 2023, 34, 100481.	0.9	2
2775	Cerium oxide- salicylic acid nanocomposite foliar use impacts physiological responses and essential oil composition of spearmint (Mentha spicata L.) under salt stress. Scientia Horticulturae, 2023, 317, 112050.	1.7	3

		15	0
# 2776	Natural multi-osmolyte cocktails form deep eutectic systems of unprecedented complexity: discovery,	IF 4.6	2
2110	affordances and perspectives. Green Chemistry, 2023, 25, 3398-3417.	1.0	2
2777	Plant-derived smoke water and karrikinolide (KAR1) enhance physiological activities, essential oil yield and bioactive constituents of Mentha arvensis L Frontiers in Plant Science, 0, 14, .	1.7	0
2778	Microbial interventions for improving agricultural performance under salt stress. , 2023, , 393-406.		0
2779	Plant-microbe interactions to reduce salinity stress in plants for the improvement of the agricultural system. , 2023, , 297-309.		0
2781	Turfgrass Salinity Stress and Tolerance—A Review. Plants, 2023, 12, 925.	1.6	9
2792	Plant Secondary Metabolites and Abiotic Stress Tolerance: Overview and Implications. , 0, , .		0
2841	Plant Secondary Metabolites and Their Impact on Human Health. , 2023, , 295-321.		0
2852	Melatonin-Mediated Salt Stress Tolerance in Plants. Plant in Challenging Environments, 2023, , 299-312.	0.4	0
2860	Fungal secondary metabolites and their role in stress management. , 2024, , 15-56.		0
2866	Sustainable Development Goals, Deep Tech, and the Path Forward. , 2023, , 241-300.		0
2870	Perspective Chapter: Rootstock-Scion Interaction Effect on Improving Salt Tolerance in Fruit Trees. , 0, , .		0
2878	Physiological and Postharvest Quality Changes of Horticultural Crops Under Salt Stress. , 2023, , 97-119.		0
2879	Occurrence of Salinity and Drought Stresses: Status, Impact, and Management. , 2023, , 1-28.		2
2880	Physiological, Biochemical, and Molecular Responses to Salt Stress and Seed Priming Approach to Enhance Salt Tolerance in Bread Wheat. , 2023, , 61-86.		0
2885	Plant phenolics: neglected secondary metabolites in plant stress tolerance. Revista Brasileira De Botanica, 0, , .	0.5	1
2903	Biochemical, Physiological, and Molecular Mechanisms of Plant Adaptation to Salinity. , 2023, , 895-914.		0
2906	Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments. Current Microbiology, 2024, 81, .	1.0	1
2909	Alleviation of Salinity Stress by Microbes. , 2023, , 145-174.		0

#	Article	IF	CITATIONS
2910	Evaluation of the Effect of De-icing Materials on Soil Quality in Selected Areas of the Moravian-Silesian Region. , 0, , .		0
2914	The Role of Metabolites in Abiotic and Biotic Stress Tolerance in Legumes. , 0, , .		Ο
2917	Salinity and Its Impact on Sustainable Crop Production. Earth and Environmental Sciences Library, 2023, , 29-92.	0.3	1
2929	Emerging Role of Melatonin in Integrated Management of Crop Pathogens. , 2023, , 195-221.		0
2930	Sorghum: a Star Crop to Combat Abiotic Stresses, Food Insecurity, and Hunger Under a Changing Climate: a Review. Journal of Soil Science and Plant Nutrition, 2024, 24, 74-101.	1.7	1
2943	Role of nanofertilizers in improving abiotic stress tolerance. , 2024, , 195-226.		0
2944	Perspectives of phytohormones application to enhance salinity tolerance in plants. , 0, , .		0
2946	Salinity Stress in Pearl Millet: From Physiological to Molecular Responses. , 2024, , 361-394.		0
2949	Effect of Melatonin in Regulating Salt Stress Responses in Plants. , 2024, , 109-139.		0
2955	Biodiversity, spreading, and practical appliance of nodule bacteria in Armenia: review. , 2024, , 419-442.		0
2956	Lentil breeding. , 2024, , 43-92.		0
2957	Smart stimuli-responsive polymer nanogels as an efficient delivery system for controlling abiotic stress tolerance: synthesis, characterizations, and properties. , 2024, , 307-326.		0
2958	Genomics for physiological traits in lentil under stressed environments. , 2024, , 267-306.		0
2960	Role of nanoparticles to protect plants from abiotic stress by scavenging reactive oxygen species. , 2024, , 95-114.		0