Calibrated Measurement of Gating-Charge Arginine Dis Voltage-Dependent K+ Channel

Cell 123, 463-475 DOI: 10.1016/j.cell.2005.08.041

Citation Report

#	Article	IF	CITATIONS
1	How Far Will You Go to Sense Voltage?. Neuron, 2005, 48, 719-725.	3.8	60
2	Vstx1, a Modifier of Kv Channel Gating, Localizes to the Interfacial Region of Lipid Bilayersâ€. Biochemistry, 2006, 45, 11844-11855.	1.2	33
3	How Does Voltage Open an Ion Channel?. Annual Review of Cell and Developmental Biology, 2006, 22, 23-52.	4.0	286
4	COMPUTER SIMULATIONS OF TRANSPORT THROUGH MEMBRANES: PASSIVE DIFFUSION, PORES, CHANNELS AND TRANSPORTERS. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 893-903.	0.9	45
5	Membrane-protein topology. Nature Reviews Molecular Cell Biology, 2006, 7, 909-918.	16.1	450
6	hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440, 463-469.	13.7	1,346
7	Molecular Template for a Voltage Sensor in a Novel K+ Channel. II. Conservation of a Eukaryotic Sensor Fold in a Prokaryotic K+ Channel. Journal of General Physiology, 2006, 128, 293-300.	0.9	8
8	Short-range Molecular Rearrangements in Ion Channels Detected by Tryptophan Quenching of Bimane Fluorescence. Journal of General Physiology, 2006, 128, 337-346.	0.9	46
9	Membrane Stretch Slows the Concerted Step prior to Opening in a Kv Channel. Journal of General Physiology, 2006, 127, 687-701.	0.9	56
10	Reversal of HCN Channel Voltage Dependence via Bridging of the S4–S5 Linker and Post-S6. Journal of General Physiology, 2006, 128, 273-282.	0.9	56
11	Molecular Template for a Voltage Sensor in a Novel K+ Channel. I. Identification and Functional Characterization of KvLm, a Voltage-gated K+ Channel from Listeria monocytogenes. Journal of General Physiology, 2006, 128, 283-292.	0.9	24
12	Constraints on Voltage Sensor Movement in the Shaker K+ Channel. Journal of General Physiology, 2006, 128, 687-699.	0.9	18
13	Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7292-7297.	3.3	219
14	Tarantula Toxins Interact with Voltage Sensors within Lipid Membranes. Journal of General Physiology, 2007, 130, 497-511.	0.9	111
15	Mapping the Membrane-aqueous Border for the Voltage-sensing Domain of a Potassium Channel. Journal of Biological Chemistry, 2007, 282, 37597-37604.	1.6	14
16	Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2631-2636.	3.3	100
17	On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4943-4948.	3.3	254
18	Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon, 2007, 49, 213-230.	0.8	153

TION RE

#	Article	IF	CITATIONS
19	On the opening of voltage-gated ion channels. Physiology and Behavior, 2007, 92, 1-7.	1.0	28
20	Closing In on the Resting State of the Shaker K+ Channel. Neuron, 2007, 56, 124-140.	3.8	270
21	Biological Membrane Ion Channels. Biological and Medical Physics Series, 2007, , .	0.3	48
22	Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7904-7909.	3.3	164
23	Acidic Residues on the Voltage-Sensor Domain Determine the Activation of the NaChBac Sodium Channel. Biophysical Journal, 2007, 92, 3513-3523.	0.2	27
24	Imaging single events at the cell membrane. , 2007, 3, 92-98.		121
25	The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature, 2007, 445, 546-549.	13.7	130
26	Structure prediction for the down state of a potassium channel voltage sensor. Nature, 2007, 445, 550-553.	13.7	64
27	Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 2007, 450, 376-382.	13.7	1,313
28	Portability of paddle motif function and pharmacology in voltage sensors. Nature, 2007, 450, 370-375.	13.7	202
29	How Does a Voltage Sensor Interact with a Lipid Bilayer? Simulations of a Potassium Channel Domain. Structure, 2007, 15, 235-244.	1.6	96
30	Accessibility of Four Arginine Residues on the S4 Segment of the Bacillus halodurans Sodium Channel. Journal of Membrane Biology, 2007, 215, 169-180.	1.0	17
31	Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/d-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence. Biophysical Chemistry, 2007, 127, 69-77.	1.5	8
32	Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels. Cell Biochemistry and Biophysics, 2008, 52, 149-74.	0.9	117
33	The structure of the lipidâ€embedded potassium channel voltage sensor determined by doubleâ€electron–electron resonance spectroscopy. Protein Science, 2008, 17, 506-517.	3.1	25
34	Deconstructing voltage sensor function and pharmacology in sodium channels. Nature, 2008, 456, 202-208.	13.7	258
35	Sensing voltage across lipid membranes. Nature, 2008, 456, 891-897.	13.7	269
36	How membrane proteins sense voltage. Nature Reviews Molecular Cell Biology, 2008, 9, 323-332.	16.1	468

#	Article	IF	CITATIONS
37	Assessing Atomistic and Coarse-Grained Force Fields for Proteinâ~'Lipid Interactions: the Formidable Challenge of an Ionizable Side Chain in a Membrane. Journal of Physical Chemistry B, 2008, 112, 9588-9602.	1.2	103
38	Ligand Binding to the Voltage-Gated Kv1.5 Potassium Channel in the Open State—Docking and Computer Simulations of a Homology Model. Biophysical Journal, 2008, 94, 820-831.	0.2	60
39	Molecular Dynamics Simulation of Kv Channel Voltage Sensor Helix in a Lipid Membrane with Applied Electric Field. Biophysical Journal, 2008, 95, 1729-1744.	0.2	40
40	Double Bilayers and Transmembrane Gradients: A Molecular Dynamics Study of a Highly Charged Peptide. Biophysical Journal, 2008, 95, 3161-3173.	0.2	14
41	Models of Voltage-Dependent Conformational Changes in NaChBac Channels. Biophysical Journal, 2008, 95, 3663-3676.	0.2	30
42	Gating Motions in Voltage-Gated Potassium Channels Revealed by Coarse-Grained Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2008, 112, 3277-3282.	1.2	64
43	Inferred Motions of the S3a Helix during Voltage-Dependent K+ Channel Gating. Journal of Molecular Biology, 2008, 381, 569-580.	2.0	25
44	Extent of Voltage Sensor Movement during Gating of Shaker K+ Channels. Neuron, 2008, 59, 98-109.	3.8	68
45	Large-Scale Movement within the Voltage-Sensor Paddle of a Potassium Channel—Support for a Helical-Screw Motion. Neuron, 2008, 59, 770-777.	3.8	57
46	Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience, 2008, 155, 31-44.	1.1	56
47	Molecular Dynamic Simulation of the Kv1.2 Voltage-Gated Potassium Channel in Open and Closed State Conformations. Journal of Physical Chemistry B, 2008, 112, 16966-16974.	1.2	10
48	Atomic Constraints between the Voltage Sensor and the Pore Domain in a Voltage-gated K+ Channel of Known Structure. Journal of General Physiology, 2008, 131, 549-561.	0.9	27
49	Mg2+ Enhances Voltage Sensor/Gate Coupling in BK Channels. Journal of General Physiology, 2008, 131, 13-32.	0.9	45
50	Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel. Journal of General Physiology, 2008, 132, 651-666.	0.9	22
51	Consequences of phosphate-arginine complexes in voltage gated ion channels. Channels, 2008, 2, 395-400.	1.5	5
52	Tethering Chemistry and K+ Channels. Journal of Biological Chemistry, 2008, 283, 25105-25109.	1.6	9
53	Transmembrane Domain 9 of Presenilin Determines the Dynamic Conformation of the Catalytic Site of Î ³ -Secretase. Journal of Biological Chemistry, 2008, 283, 19793-19803.	1.6	67
54	Gating Pore Currents in DIIS4 Mutations of NaV1.4 Associated with Periodic Paralysis: Saturation of Ion Flux and Implications for Disease Pathogenesis. Journal of General Physiology, 2008, 132, 447-464.	0.9	68

#	Article	IF	CITATIONS
55	KCNE Peptides Differently Affect Voltage Sensor Equilibrium and Equilibration Rates in KCNQ1 K+ Channels. Journal of General Physiology, 2008, 131, 59-68.	0.9	60
56	Chapter 13 A Brief Introduction to Voltage-Gated K+ Channels. Current Topics in Membranes, 2008, , 369-384.	0.5	2
57	Chapter 15 Charged Protein Side Chain Movement in Lipid Bilayers Explored with Free Energy Simulation. Current Topics in Membranes, 2008, , 405-459.	0.5	2
58	Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochemical Society Transactions, 2008, 36, 27-32.	1.6	117
59	Electromechanical coupling in the membranes of Shaker-transfected HEK cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6626-6631.	3.3	41
60	A K _V 2.1 gating modifier binding assay suitable for high throughput screening. Channels, 2009, 3, 437-447.	1.5	9
61	Voltage-dependent conformational changes of KVAP S4 segment in bacterial membrane environment. Channels, 2009, 3, 356-365.	1.5	5
62	Molecular Dynamics Simulations of Kv Channels and Gating-Modifier Peptide Toxins. Current Computer-Aided Drug Design, 2009, 5, 155-173.	0.8	0
63	Alternative splicing of NaV1.7 exon 5 increases the impact of the painful PEPD mutant channel I1461T. Channels, 2009, 3, 261-269.	1.5	21
64	Movement of the S4 segment in the hERG potassium channel during membrane depolarization. Molecular Membrane Biology, 2009, 26, 435-447.	2.0	21
65	Probing S4 and S5 segment proximity in mammalian hyperpolarization-activated HCN channels by disulfide bridging and Cd2+ coordination. Pflugers Archiv European Journal of Physiology, 2009, 458, 259-272.	1.3	9
66	Structure and hydration of membranes embedded with voltage-sensing domains. Nature, 2009, 462, 473-479.	13.7	175
67	Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nature Structural and Molecular Biology, 2009, 16, 1080-1085.	3.6	135
68	Chemical Tools for K+ Channel Biology. Biochemistry, 2009, 48, 517-526.	1.2	18
69	Solution Structure of the HsapBK K ⁺ Channel Voltage-Sensor Paddle Sequence [,] . Biochemistry, 2009, 48, 5813-5821.	1.2	12
70	Jingzhaotoxin-IX, a novel gating modifier of both sodium and potassium channels from Chinese tarantula Chilobrachys jingzhao. Neuropharmacology, 2009, 57, 77-87.	2.0	21
71	Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels. Biophysical Journal, 2009, 97, 90-100.	0.2	17
72	NMR Structural and Dynamical Investigation of the Isolated Voltage-Sensing Domain of the Potassium Channel KvAP: Implications for Voltage Gating. Journal of the American Chemical Society, 2010, 132, 5630-5637.	6.6	63

#	Article	IF	CITATIONS
73	Oligomerization of the voltage gated proton channel. Channels, 2010, 4, 260-265.	1.5	23
74	Transfer of ion binding site from ether-Ã-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening. Journal of General Physiology, 2010, 135, 415-431.	0.9	9
75	Double gaps alongShakerS4 demonstrate omega currents at three different closed states. Channels, 2010, 4, 93-100.	1.5	39
76	Interactions Between a Voltage Sensor and a Toxin via Multiscale Simulations. Biophysical Journal, 2010, 98, 1558-1565.	0.2	24
77	Calculation of the Gating Charge for the Kv1.2 Voltage-Activated Potassium Channel. Biophysical Journal, 2010, 98, 2189-2198.	0.2	135
78	Down-State Model of the Voltage-Sensing Domain of a Potassium Channel. Biophysical Journal, 2010, 98, 2857-2866.	0.2	33
79	Structure and Orientation of a Voltage-Sensor Toxin in Lipid Membranes. Biophysical Journal, 2010, 99, 638-646.	0.2	28
80	Chemical versus Mechanical Perturbations on the Protonation State ofÂArginine in Complex Lipid Membranes: Insights from Microscopic pKaÂCalculations. Biophysical Journal, 2010, 99, 1529-1538.	0.2	14
81	A Gating Charge Transfer Center in Voltage Sensors. Science, 2010, 328, 67-73.	6.0	430
82	High-Resolution Orientation and Depth of Insertion of the Voltage-Sensing S4 Helix of a Potassium Channel in Lipid Bilayers. Journal of Molecular Biology, 2010, 401, 642-652.	2.0	34
83	Solution Structure and Phospholipid Interactions of the Isolated Voltage-Sensor Domain from KvAP. Journal of Molecular Biology, 2010, 403, 591-606.	2.0	88
84	A Shaker K+ Channel with a Miniature Engineered Voltage Sensor. Cell, 2010, 142, 580-589.	13.5	44
85	Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology. Neuron, 2010, 67, 915-928.	3.8	448
86	Targeting voltage sensors in sodium channels with spider toxins. Trends in Pharmacological Sciences, 2010, 31, 175-182.	4.0	129
87	Structural Dynamics of the S4 Voltage-Sensor Helix in Lipid Bilayers Lacking Phosphate Groups. Journal of Physical Chemistry B, 2011, 115, 8732-8738.	1.2	18
88	Interaction of Diverse Voltage Sensor Homologs with Lipid Bilayers Revealed by Self-Assembly Simulations. Biophysical Journal, 2011, 100, 875-884.	0.2	13
89	Lipid-dependent gating of a voltage-gated potassium channel. Nature Communications, 2011, 2, 250.	5.8	85
90	In Search of a Consensus Model of the Resting State of a Voltage-Sensing Domain. Neuron, 2011, 72, 713-720.	3.8	93

#	Article	IF	CITATIONS
91	Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6109-6114.	3.3	171
92	The Voltage-Sensing Domain of Kv7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants. Frontiers in Pharmacology, 2011, 2, 2.	1.6	24
93	Recurrent Stroke Due to a Novel Voltage Sensor Mutation in Ca _v 2.1 Responds to Verapamil. Stroke, 2011, 42, e14-7.	1.0	39
94	Mechanisms of closedâ€state inactivation in voltageâ€gated ion channels. Journal of Physiology, 2011, 589, 461-479.	1.3	87
95	Structure-Function Map of the Receptor Site for β-Scorpion Toxins in Domain II of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 33641-33651.	1.6	76
96	Mobility in geometrically confined membranes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12605-12610.	3.3	95
97	Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. Journal of General Physiology, 2011, 138, 59-72.	0.9	46
98	The anthrax toxin channel: a barrel of LFs. Journal of General Physiology, 2011, 137, 337-341.	0.9	1
99	Arrangement and Mobility of the Voltage Sensor Domain in Prokaryotic Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 7409-7417.	1.6	14
100	Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10174-10177.	3.3	272
101	Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons. International Journal of Molecular Sciences, 2012, 13, 1680-1709.	1.8	21
102	Membrane bending is critical for the stability of voltage sensor segments in the membrane. Journal of General Physiology, 2012, 140, 55-68.	0.9	29
103	Intermediate state trapping of a voltage sensor. Journal of General Physiology, 2012, 140, 635-652.	0.9	50
104	The influence of lipids on voltage-gated ion channels. Current Opinion in Structural Biology, 2012, 22, 529-536.	2.6	33
105	Water wires in atomistic models of the Hv1 proton channel. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 286-293.	1.4	67
106	Computational studies of membrane proteins: Models and predictions for biological understanding. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 927-941.	1.4	36
107	Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1726-1736.	1.4	18
108	A Theoretical Model for Calculating Voltage Sensitivity of Ion Channels andÂthe Application on Kv1.2 Potassium Channel. Biophysical Journal, 2012, 102, 1815-1825.	0.2	3

#	ARTICLE Microscopic Origin of Gating Current Fluctuations in a Potassium Channel Voltage Sensor.	IF	Citations
109	Biophysical Journal, 2012, 102, L44-L46.	0.2	28
110	Structural Interactions between Lipids, Water and S1–S4 Voltage-Sensing Domains. Journal of Molecular Biology, 2012, 423, 632-647.	2.0	21
111	K ⁺ Channels: Function tructural Overview. , 2012, 2, 2087-2149.		179
112	Molecular Dynamics Simulations of Voltage-Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation. Frontiers in Pharmacology, 2012, 3, 97.	1.6	26
113	Opposite Effects of the S4–S5 Linker and PIP2 on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels. Frontiers in Pharmacology, 2012, 3, 125.	1.6	27
114	Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels. Frontiers in Pharmacology, 2012, 3, 166.	1.6	78
115	Mechanism of Voltage Gating in Potassium Channels. Science, 2012, 336, 229-233.	6.0	516
116	Understanding of Molecular Substructures that Contribute to hERG K+ Channel Blockade: Synthesis and Biological Evaluation of E-4031 Analogues. ChemMedChem, 2012, 7, 107-113.	1.6	16
117	Optically Detected Structural Change in the N-Terminal Region ofÂtheÂVoltage-Sensor Domain. Biophysical Journal, 2013, 105, 108-115.	0.2	20
118	Tethered Spectroscopic Probes Estimate Dynamic Distances with Subnanometer Resolution in Voltage-Dependent Potassium Channels. Biophysical Journal, 2013, 105, 2724-2732.	0.2	11
119	New Rule(r)s for FRET. Biophysical Journal, 2013, 105, 2619-2620.	0.2	1
120	Removal of Human Ether-Ã-go-go Related Gene (hERG) K ⁺ Channel Affinity through Rigidity: A Case of Clofilium Analogues. Journal of Medicinal Chemistry, 2013, 56, 9427-9440.	2.9	30
121	Exploring structure-function relationships between TRP and Kv channels. Scientific Reports, 2013, 3, 1523.	1.6	30
122	The conformational shifts of the voltage sensing domains between NavRh and NavAb. Cell Research, 2013, 23, 444-447.	5.7	14
123	Energetic role of the paddle motif in voltage gating of Shaker K+ channels. Nature Structural and Molecular Biology, 2013, 20, 574-581.	3.6	22
124	The design principle of paddle motifs in voltage sensors. Nature Structural and Molecular Biology, 2013, 20, 534-535.	3.6	0
125	Strategies To Reduce hERG K ⁺ Channel Blockade. Exploring Heteroaromaticity and Rigidity in Novel Pyridine Analogues of Dofetilide. Journal of Medicinal Chemistry, 2013, 56, 2828-2840.	2.9	35
126	Voltage sensor ring in a native structure of a membrane-embedded potassium channel. Proceedings of the United States of America, 2013, 110, 3369-3374.	3.3	2

ARTICLE IF CITATIONS # Nonlinearity of a Voltage-Gated Potassium Channel Revealed by the Mechanical Susceptibility. Physical 127 2.8 5 Review X, 2013, 3, . Molecular Description of Scorpion Toxin Interaction with Voltage-Gated Sodium Channels., 2013, 1-19. Orientations and Proximities of the Extracellular Ends of Transmembrane Helices S0 and S4 in Open 129 7 1.1 and Closed BK Potassium Channels. PLoS ONE, 2013, 8, e58335. Hydrophobic plug functions as a gate in voltage-gated proton channels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E273-82. Proton channel models. Channels, 2014, 8, 180-192. 131 1.5 12 Structural interactions of a voltage sensor toxin with lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5463-70. 3.3 133 Conformational Mechanisms of Signaling Bias of Ion Channels., 2014, , 173-207. 3 Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nature Structural and Molecular Biology, 2014, 21, 244-252. 134 3.6 228 Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain. 135 3.6 62 Nature Structural and Molecular Biology, 2014, 21, 160-166. Direct Evidence of Conformational Changes Associated with Voltage Gating in a Voltage Sensor 1.6 Protein by Time-Resolved X-ray/Neutron Interferometry. Langmuir, 2014, 30, 4784-4796. Modulation of TRP Ion Channels by Venomous Toxins. Handbook of Experimental Pharmacology, 2014, 137 0.9 6 223, 1119-1142. Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental 138 0.9 Pharmacology, 2014, , . Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin. 140 1.6 18 Scientific Reports, 2015, 5, 14226. Molecular Description of Scorpion Toxin Interaction with Voltage-Gated Sodium Channels., 2015,, 143 471-491. Caution Is Required in Interpretation of Mutations in the Voltage Sensing Domain of Voltage Gated 144 Channels as Evidence for Gating Mechanisms. International Journal of Molecular Sciences, 2015, 16, 1.8 9 1627-1643. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Current 145 84 Opinion in Chemical Biology, 2015, 27, 31-38. Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 146 1.511 derivatives. Biophysical Chemistry, 2015, 203-204, 1-11. Voltage $\hat{\epsilon}$ gated proton (H_v1) channels, a singular voltage sensing domain. FEBS Letters, 1.3 2015, 589, 3471-3478.

#	Article	IF	CITATIONS
148	Conformational Dynamics of Shaker-Type Kv1.1 Ion Channel in Open, Closed, and Two Mutated States. Journal of Membrane Biology, 2015, 248, 241-255.	1.0	6
149	Normal mode dynamics of voltage-gated K+ channels: gating principle, opening mechanism, and inhibition. Journal of Computational Neuroscience, 2015, 38, 83-88.	0.6	1
150	Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel. Scientific Reports, 2016, 6, 37303.	1.6	2
151	Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Cold Spring Harbor Perspectives in Biology, 2016, 8, a029231.	2.3	91
152	Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth. Nanoscale, 2016, 8, 17030-17038.	2.8	9
153	Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels. Scientific Reports, 2016, 6, 23894.	1.6	19
154	Functional diversity of potassium channel voltage-sensing domains. Channels, 2016, 10, 202-213.	1.5	18
155	Elucidating the Link Between Structure and Function of Ion Channels and Transporters with Voltage-Clamp and Patch-Clamp Fluorometry. Neuromethods, 2016, , 67-95.	0.2	0
156	Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature, 2016, 531, 196-201.	13.7	216
157	Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Progress in Biophysics and Molecular Biology, 2016, 120, 18-27.	1.4	10
158	Structure-activity relationships of ω-Agatoxin IVA in lipid membranes. Biochemical and Biophysical Research Communications, 2017, 482, 170-175.	1.0	8
159	Gating energetics of a voltageâ€dependent K ⁺ channel pore domain. Journal of Computational Chemistry, 2017, 38, 1472-1478.	1.5	4
160	A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. Journal of General Physiology, 2017, 149, 577-593.	0.9	30
161	Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature, 2017, 541, 46-51.	13.7	209
162	Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. Journal of Biological Chemistry, 2017, 292, 12351-12365.	1.6	13
163	Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Frontiers in Physiology, 2017, 8, 43.	1.3	107
164	Illuminating Brain Activities with Fluorescent Protein-Based Biosensors. Chemosensors, 2017, 5, 32.	1.8	19
165	Voltage and pH sensing by the voltage-gated proton channel, H _V 1. Journal of the Royal	1.5	57

#	Article	IF	CITATIONS
166	Surface imaging microscopy with tunable penetration depth as short as 20 nm by employing hyperbolic metamaterials. Journal of Materials Chemistry C, 2018, 6, 1797-1805.	2.7	6
167	Time-Resolved Neutron Interferometry and the Mechanism of Electromechanical Coupling in Voltage-Gated Ion Channels. Methods in Enzymology, 2018, 603, 67-90.	0.4	1
168	Thermodynamics of voltage-gated ion channels. Biophysics Reports, 2018, 4, 300-319.	0.2	22
169	The Role of Proton Transport in Gating Current in a Voltage Gated Ion Channel, as Shown by Quantum Calculations. Sensors, 2018, 18, 3143.	2.1	6
170	Evolution and Structural Characteristics of Plant Voltage-Gated K ⁺ Channels. Plant Cell, 2018, 30, 2898-2909.	3.1	51
171	Gating currents. Journal of General Physiology, 2018, 150, 911-932.	0.9	76
172	Advances in Membrane Proteins. , 2018, , .		0
173	Ion Channels. , 2018, , 17-45.		Ο
174	Voltage-Dependent Profile Structures of a Kv-Channel via Time-Resolved Neutron Interferometry. Biophysical Journal, 2019, 117, 751-766.	0.2	3
175	Molecular mechanisms of coupling to voltage sensors in voltage-evoked cellular signals. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 111-135.	1.6	8
176	Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor. Biophysical Journal, 2019, 117, 2005-2019.	0.2	13
177	The Voltage-Dependent Deactivation of the KvAP Channel Involves the Breakage of Its S4 Helix. Frontiers in Molecular Biosciences, 2020, 7, 162.	1.6	5
178	Voltage-Gated Ion Channels. Biological and Medical Physics Series, 2007, , 81-118.	0.3	8
180	Two Separate Interfaces between the Voltage Sensor and Pore Are Required for the Function of Voltage-Dependent K+ Channels. PLoS Biology, 2009, 7, e1000047.	2.6	138
181	S1 Constrains S4 in the Voltage Sensor Domain of Kv7.1 K+ Channels. PLoS ONE, 2008, 3, e1935.	1.1	21
182	Voltage-dependent calcium channels in mammalian spermatozoa revisited. Frontiers in Bioscience - Landmark, 2007, 12, 1420.	3.0	19
183	Mechanisms of Activation of Voltage-Gated Potassium Channels. Acta Naturae, 2014, 6, 10-26.	1.7	45
184	Proton currents constrain structural models of voltage sensor activation. ELife, 2016, 5, .	2.8	32

#	Article	IF	CITATIONS
185	Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology. ELife, 2019, 8, .	2.8	17
188	Mechanisms of activation of voltage-gated potassium channels. Acta Naturae, 2014, 6, 10-26.	1.7	25
189	Electromechanics of lipid-modulated gating of potassium channels. Mathematics and Mechanics of Solids, 0, , 108128652110600.	1.5	0
190	The pH-dependent gating of the human voltage-gated proton channel from computational simulations. Physical Chemistry Chemical Physics, 2022, 24, 9964-9977.	1.3	8
191	Voltage-gated Ion Channels. , 2004, , 1003-1003.		0
194	Studying KcsA Channel Clustering Using Single Channel Voltage-Clamp Fluorescence Imaging*. Frontiers in Physiology, 2022, 13, .	1.3	2
195	Not so optimal: The evolution of mutual information in potassium voltage-gated channels. PLoS ONE, 2023, 18, e0264424.	1.1	0