An Immunomodulatory Molecule of Symbiotic Bacteria Immune System

Cell 122, 107-118 DOI: 10.1016/j.cell.2005.05.007

Citation Report

#	Article	IF	CITATIONS
1	Associations among Health Perceptions and Health Status within Three Age Groups. Journal of Aging and Health, 1990, 2, 58-80.	0.9	66
2	Immunology. Current Opinion in Gastroenterology, 2005, 21, 684-686.	1.0	1
3	Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cellular Microbiology, 2005, 7, 1398-1403.	1.1	82
4	Regulatory T cells: which role in the pathogenesis and treatment of allergic disorders?. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 3-14.	2.7	72
8	Oral tolerance. Immunological Reviews, 2005, 206, 232-259.	2.8	630
9	One Commensal Bacterial Molecule — All We Need for Health?. New England Journal of Medicine, 2005, 353, 2078-2080.	13.9	15
10	Virus-Induced Inhibition of CD1d1-Mediated Antigen Presentation: Reciprocal Regulation by p38 and ERK. Journal of Immunology, 2005, 175, 4301-4308.	0.4	79
11	Probiotics and Prebiotics in Human Health. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 22-25.	1.0	38
12	Sugar-Coated Regulation of T Cells. Cell, 2005, 122, 2-4.	13.5	5
13	Bacteria and mucosal immunity. Digestive and Liver Disease, 2006, 38, S256-S260.	0.4	17
14	Redirection of allergen-specific TH2 responses by a modified adenine through Toll-like receptor 7 interaction and IL-12/IFN release. Journal of Allergy and Clinical Immunology, 2006, 118, 511-517.	1.5	50
15	Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 2006, 124, 837-848.	13.5	2,744
16	Bacterial Glycans: Key Mediators of Diverse Host Immune Responses. Cell, 2006, 126, 847-850.	13.5	183
17	Pathogen-derived immunomodulatory molecules: future immunotherapeutics?. Trends in Immunology, 2006, 27, 470-476.	2.9	68
18	Safe and efficacious probiotics: what are they?. Trends in Microbiology, 2006, 14, 348-352.	3.5	55
19	Leeches and their microbiota: naturally simple symbiosis models. Trends in Microbiology, 2006, 14, 365-371.	3.5	89
20	Probiotics to Prevent the Need for, and Augment the Use of, Antibiotics. Canadian Journal of Infectious Diseases and Medical Microbiology, 2006, 17, 291-295.	0.7	30
21	Mode of delivery and cord blood cytokines: a birth cohort study. Clinical and Molecular Allergy, 2006, 4, 13.	0.8	63

#	Article	IF	CITATIONS
22	Could peripartum antibiotics have delayed health consequences for the infant?. BJOG: an International Journal of Obstetrics and Gynaecology, 2006, 113, 758-765.	1.1	112
23	Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunological Reviews, 2006, 213, 82-100.	2.8	92
24	Regulation of the T cell response. Clinical and Experimental Allergy, 2006, 36, 1357-1366.	1.4	326
25	Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology, 2006, 118, 202-215.	2.0	248
26	The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Reviews Immunology, 2006, 6, 849-858.	10.6	297
27	The gut flora as a forgotten organ. EMBO Reports, 2006, 7, 688-693.	2.0	2,226
28	Mechanisms of the hygiene hypothesis — molecular and otherwise. Current Opinion in Immunology, 2006, 18, 733-737.	2.4	91
29	Metagenomic Analysis of the Human Distal Gut Microbiome. Science, 2006, 312, 1355-1359.	6.0	3,964
30	lgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity. Seminars in Immunopathology, 2006, 28, 397-403.	4.0	63
31	Microbial-Epithelial Cell Crosstalk during Inflammation: The Host Response. Annals of the New York Academy of Sciences, 2006, 1072, 313-320.	1.8	25
32	Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics, 2006, 58, 714-725.	1.2	78
33	Gastrointestinal Maturation and Feeding. Seminars in Perinatology, 2006, 30, 77-80.	1.1	36
34	Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota. BMC Microbiology, 2006, 6, 98.	1.3	52
35	Shield as Signal: Lipopolysaccharides and the Evolution of Immunity to Gram-Negative Bacteria. PLoS Pathogens, 2006, 2, e67.	2.1	116
36	The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H 2 for Methane Formation and ATP Synthesis. Journal of Bacteriology, 2006, 188, 642-658.	1.0	245
37	A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. Journal of Experimental Medicine, 2006, 203, 2853-2863.	4.2	245
38	Characterization of the Primary Starch Utilization Operon in the Obligate Anaerobe Bacteroides fragilis : Regulation by Carbon Source and Oxygen. Journal of Bacteriology, 2006, 188, 4663-4672.	1.0	109
39	Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13780-13785.	3.3	3,871

#	Article	IF	Citations
40	Commensal Bacteria Exacerbate Intestinal Inflammation but Are Not Essential for the Development of Murine Ileitis. Journal of Immunology, 2007, 178, 1809-1818.	0.4	74
41	In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7622-7627.	3.3	154
42	Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the United States of America, 2007, 104, 10643-10648.	3.3	451
43	Gingival Epithelial Cell Transcriptional Responses to Commensal and Opportunistic Oral Microbial Species. Infection and Immunity, 2007, 75, 2540-2547.	1.0	102
44	Microbes and the Developing Gastrointestinal Tract. Nutrition in Clinical Practice, 2007, 22, 174-182.	1.1	69
45	Transport of Streptococcus pneumoniae Capsular Polysaccharide in MHC Class II Tubules. PLoS Pathogens, 2007, 3, e32.	2.1	22
46	<i>Bacteroides</i> : the Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 2007, 20, 593-621.	5.7	1,630
47	Spatial and Temporal Population Dynamics of a Naturally Occurring Two-Species Microbial Community inside the Digestive Tract of the Medicinal Leech. Applied and Environmental Microbiology, 2007, 73, 1984-1991.	1.4	53
48	Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2413-2418.	3.3	55
49	Heterogeneity in the CD4 T Cell Compartment and the Variability of Neonatal Immune Responsiveness. Current Immunology Reviews, 2007, 3, 151-159.	1.2	21
50	Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology, 2007, 17, 46-55.	1.3	40
51	Exploring the link between gut microbes and obesity. Future Microbiology, 2007, 2, 261-263.	1.0	Ο
52	Cross-Talk between Probiotic Bacteria and the Host Immune System1,. Journal of Nutrition, 2007, 137, 781S-790S.	1.3	276
53	The normal intestinal microbiota. Current Opinion in Infectious Diseases, 2007, 20, 508-513.	1.3	114
54	INTESTINAL CROSSTALK. Shock, 2007, 28, 384-393.	1.0	385
55	Effect of polydextrose on intestinal microbes and immune functions in pigs. British Journal of Nutrition, 2007, 98, 123-133.	1.2	54
56	Induction of secretory immunity and memory at mucosal surfaces. Vaccine, 2007, 25, 5467-5484.	1.7	385
57	We know you are in there: Conversing with the indigenous gut microbiota. Research in Microbiology,	1.0	78

# 58	ARTICLE Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Seminars in Immunology, 2007, 19, 59-69.	IF 2.7	CITATIONS
59	Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Seminars in Immunology, 2007, 19, 70-83.	2.7	346
60	Benefits and Risks of Breastfeeding. Advances in Pediatrics, 2007, 54, 275-304.	0.5	24
61	Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host and Microbe, 2007, 2, 119-129.	5.1	946
62	IgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis. Cell Host and Microbe, 2007, 2, 328-339.	5.1	729
63	Using house dust extracts to understand the immunostimulatory activities of living environments. Immunobiology, 2007, 212, 491-498.	0.8	16
64	Epidemiological and immunological evidence for the hygiene hypothesis. Immunobiology, 2007, 212, 441-452.	0.8	176
65	Debugging how Bacteria Manipulate the Immune Response. Immunity, 2007, 26, 149-161.	6.6	182
66	Complexities of targeting innate immunity to treat infection. Trends in Immunology, 2007, 28, 260-266.	2.9	91
67	From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends in Immunology, 2007, 28, 423-428.	2.9	30
68	Preventing necrotising enterocolitis with probiotics. Lancet, The, 2007, 369, 1578-1580.	6.3	25
69	IgA and Intestinal Homeostasis. , 2007, , 221-268.		12
70	Real and artificial immune systems: computing the state of the body. Nature Reviews Immunology, 2007, 7, 569-574.	10.6	96
71	Allergic disorders in African countries: linking immunology to accurate phenotype. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 237-246.	2.7	21
72	A Perspective on Cancer Immunology and Immunotherapy. , 2007, , 3-15.		0
73	Gut Microbiota: Mining for Therapeutic Potential. Clinical Gastroenterology and Hepatology, 2007, 5, 274-284.	2.4	116
74	Mesenteric dendritic cells from germ-free mice cause less T-cell stimulation but still induce α4β7 integrin. Microbial Ecology in Health and Disease, 2007, 19, 171-183.	3.8	3
76	Potential uses of probiotics in the neonate. Seminars in Fetal and Neonatal Medicine, 2007, 12, 45-53.	1.1	40

#	Article	IF	CITATIONS
77	The gut microbiota and disease – an inner repository for drug discovery. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 195-200.	0.5	11
78	Evolution of Symbiotic Bacteria in the Distal Human Intestine. PLoS Biology, 2007, 5, e156.	2.6	490
79	Mother-infant Interactions and the Development of Immunity from Conception through Weaning. , 2007, , 455-474.		12
80	Probiotics as Drugs Against Human Gastrointestinal Infections. Recent Patents on Anti-infective Drug Discovery, 2007, 2, 148-156.	0.5	67
81	Immune-Modulatory Effects and Potential Working Mechanisms of Orally Applied Nondigestible Carbohydrates. Critical Reviews in Immunology, 2007, 27, 97-140.	1.0	171
82	Enterotoxigenic Bacteroides fragilis: A potential instigator of colitis. Inflammatory Bowel Diseases, 2007, 13, 1475-1483.	0.9	113
83	Gut flora antigens are not important in the maintenance of regulatory T cell heterogeneity and homeostasis. European Journal of Immunology, 2007, 37, 1916-1923.	1.6	54
84	The inside story. Nature, 2007, 448, 542-544.	13.7	23
85	Immunology research: challenges and opportunities in a time of budgetary constraint. Nature Immunology, 2007, 8, 114-117.	7.0	20
86	Immune responses to commensal and environmental microbes. Nature Immunology, 2007, 8, 1173-1178.	7.0	150
87	The Human Microbiome Project. Nature, 2007, 449, 804-810.	13.7	4,750
88	An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature, 2007, 449, 811-818.	13.7	1,430
89	Retinol concentrations after birth are inversely associated with atopic manifestations in children and young adults. Clinical and Experimental Allergy, 2007, 37, 54-61.	1.4	24
90	Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical and Experimental Allergy, 2007, 37, 661-670.	1.4	223
91	Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation. FEMS Immunology and Medical Microbiology, 2007, 51, 535-546.	2.7	42
92	Bacteria and early human development. Early Human Development, 2007, 83, 165-170.	0.8	29
93	Importance of microbial colonization of the gut in early life to the development of immunity. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 622, 58-69.	0.4	190
94	Prior stimulation of antigen-presenting cells with Lactobacillus regulates excessive antigen-specific cytokine responses inÂvitro when compared with Bacteroides. Cytotechnology, 2007, 55, 89-101.	0.7	19

#	Article	IF	CITATIONS
95	Commensal bacteria and epithelial cross talk in the developing intestine. Current Gastroenterology Reports, 2007, 9, 385-392.	1.1	44
98	Multi-layered regulation of intestinal antimicrobial defense. Cellular and Molecular Life Sciences, 2008, 65, 3019-3027.	2.4	123
99	From bugs to drugs—Mining the gut microbiota. Current Gastroenterology Reports, 2008, 10, 515-516.	1.1	1
100	New horizons for the infectious diseases specialist: How gut microflora promote health and disease. Current Infectious Disease Reports, 2008, 10, 92-98.	1.3	22
101	Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek, 2008, 94, 35-50.	0.7	182
102	Inflammatory bowel disease, past, present and future: lessons from animal models. Journal of Gastroenterology, 2008, 43, 1-17.	2.3	142
103	Early intestinal Bacteroides fragilis colonisation and development of asthma. BMC Pulmonary Medicine, 2008, 8, 19.	0.8	105
104	Diversity of the gut microbiota and eczema in early life. Clinical and Molecular Allergy, 2008, 6, 11.	0.8	99
105	Identification of the Weevil immune genes and their expression in the bacteriome tissue. BMC Biology, 2008, 6, 43.	1.7	114
106	Interaction of allergic airway inflammation and innate immunity: hygiene and beyond. Journal of Occupational Medicine and Toxicology, 2008, 3, S3.	0.9	9
107	Proteomic investigation of the adaptation of <i>Lactococcus lactis</i> to the mouse digestive tract. Proteomics, 2008, 8, 1661-1676.	1.3	31
108	Innate and adaptive mechanisms to control of pathological intestinal inflammation. Journal of Pathology, 2008, 214, 242-259.	2.1	66
109	EvoDevo and niche construction: building bridges. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 549-566.	0.6	116
110	Resident enteric microbiota and CD8 ⁺ T cells shape the abundance of marginal zone B cells. European Journal of Immunology, 2008, 38, 3411-3425.	1.6	47
111	Pbp, a cell-surface exposed plasminogen binding protein of Bacteroides fragilis. Microbes and Infection, 2008, 10, 514-521.	1.0	13
112	Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut, 2008, 57, 1185-1191.	6.1	239
113	<i>Comparative Genomics of Clostridia</i> . Annals of the New York Academy of Sciences, 2008, 1125, 73-81.	1.8	23
114	The interleukinâ€⊋3 axis in intestinal inflammation. Immunological Reviews, 2008, 226, 147-159.	2.8	157

#	Article	IF	CITATIONS
115	The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME Journal, 2008, 2, 739-748.	4.4	178
116	A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453, 620-625.	13.7	2,094
117	Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 2008, 8, 411-420.	10.6	952
118	Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nature Reviews Immunology, 2008, 8, 764-775.	10.6	228
119	Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cellular Microbiology, 2008, 10, 1093-1103.	1.1	131
120	The neutrophil-activating protein of <i>Helicobacter pylori</i> down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cellular Microbiology, 2008, 10, 2355-2363.	1.1	100
121	Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems. Allergy: European Journal of Allergy and Clinical Immunology, 2008, 63, 1428-1437.	2.7	19
122	Oral delivery of <i>Lactobacillus casei</i> Shirota modifies allergenâ€induced immune responses in allergic rhinitis. Clinical and Experimental Allergy, 2008, 38, 1282-1289.	1.4	128
123	Dendritic Cells from Peyer's Patches and Mesenteric Lymph Nodes Differ from Spleen Dendritic Cells in their Response to Commensal Gut Bacteria. Scandinavian Journal of Immunology, 2008, 68, 270-279.	1.3	36
124	Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunology, 2008, 9, 65.	0.9	177
125	Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, 2008, 3, e2836.	1,1	901
126	NKT Cell-Dependent Amelioration of a Mouse Model of Multiple Sclerosis by Altering Gut Flora. American Journal of Pathology, 2008, 173, 1714-1723.	1.9	226
127	The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biology, 2008, 6, e280.	2.6	2,013
128	Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB Journal, 2008, 22, 2416-2426.	0.2	430
129	The Damage-Response Framework of Microbial Pathogenesis and Infectious Diseases. Advances in Experimental Medicine and Biology, 2008, 635, 135-146.	0.8	81
130	Intestinal Bacteria: Mucosal Tissue Development and Gut Homeostasis. , 2008, , 135-150.		0
131	GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, 2008, , .	0.8	11
132	Probiotics and prebiotics – Progress and challenges. International Dairy Journal, 2008, 18, 969-975.	1.5	114

#	Article	IF	CITATIONS
133	Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Seminars in Immunology, 2008, 20, 59-66.	2.7	67
134	Homeostatic chemokines in development, plasticity, and functional organization of the intestinal immune system. Seminars in Immunology, 2008, 20, 171-180.	2.7	23
135	Metagenomic Approaches for Defining the Pathogenesis of Inflammatory Bowel Diseases. Cell Host and Microbe, 2008, 3, 417-427.	5.1	423
136	The Tiny Conductor: Immune Regulation via Commensal Organisms. Cell Host and Microbe, 2008, 3, 340-341.	5.1	8
137	Paradoxical Roles of Foxp3+ T Cells during Infection: From Regulators to Regulators. Cell Host and Microbe, 2008, 3, 341-343.	5.1	4
138	Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host and Microbe, 2008, 4, 337-349.	5.1	1,495
139	Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflammatory Bowel Diseases, 2008, 14, 1585-1596.	0.9	275
140	Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection. Infection and Immunity, 2008, 76, 4726-4736.	1.0	445
142	Laboratory Maintenance and Cultivation of <i>Bacteroides</i> Species. Current Protocols in Microbiology, 2008, 9, Unit 13C.1.	6.5	75
143	Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3951-3956.	3.3	101
144	The Commensal <i>Streptococcus salivarius</i> K12 Downregulates the Innate Immune Responses of Human Epithelial Cells and Promotes Host-Microbe Homeostasis. Infection and Immunity, 2008, 76, 4163-4175.	1.0	230
145	Predominant Role of Host Genetics in Controlling the Composition of Gut Microbiota. PLoS ONE, 2008, 3, e3064.	1.1	263
146	Microbial Imprinting in Gut Development and Health. Journal of Applied Poultry Research, 2008, 17, 174-188.	0.6	27
147	Intestinal Immune Health. Nestle Nutrition Workshop Series Paediatric Programme, 2008, 62, 111-125.	1.5	11
148	Host Transmission of <i>Salmonella enterica</i> Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota. Infection and Immunity, 2008, 76, 403-416.	1.0	263
149	Sharing the benefits in IBD. Science-Business EXchange, 2008, 1, 471-471.	0.0	0
150	Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont <i>Bacteroides fragilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13099-13104.	3.3	93
151	Deficient TACI Expression on B Lymphocytes of Newborn Mice Leads to Defective Ig Secretion in Response to BAFF or APRIL. Journal of Immunology, 2008, 181, 976-990.	0.4	72

#	Article	IF	CITATIONS
152	Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11323-11328.	3.3	90
153	The "Perfect Storm―for Type 1 Diabetes. Diabetes, 2008, 57, 2555-2562.	0.3	453
154	Expression of a Uniquely Regulated Extracellular Polysaccharide Confers a Large-Capsule Phenotype to <i>Bacteroides fragilis</i> . Journal of Bacteriology, 2008, 190, 1020-1026.	1.0	26
155	Gut Decontamination with Norfloxacin and Ampicillin Enhances Insulin Sensitivity in Mice. Nestle Nutrition Workshop Series Paediatric Programme, 2008, 62, 127-140.	1.5	47
156	Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine. Journal of Experimental Medicine, 2008, 205, 2191-2198.	4.2	255
157	Association of Enterotoxigenic <i>Bacteroides fragilis</i> Infection with Inflammatory Diarrhea. Clinical Infectious Diseases, 2008, 47, 797-803.	2.9	137
158	Commensal Gut Flora Drives the Expansion of Proinflammatory CD4 T Cells in the Colonic Lamina Propria under Normal and Inflammatory Conditions. Journal of Immunology, 2008, 180, 559-568.	0.4	177
159	How Science Will Help Shape Future Clinical Applications of Probiotics. Clinical Infectious Diseases, 2008, 46, S62-S66.	2.9	11
160	Niche-Specific Features of the Intestinal <i>Bacteroidales</i> . Journal of Bacteriology, 2008, 190, 736-742.	1.0	66
161	Microbial carbohydrate depolymerization by antigen-presenting cells: Deamination prior to presentation by the MHCII pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5183-5188.	3.3	73
162	Neonatal Microbial Flora and Disease Outcome. , 2008, 61, 211-224.		18
163	Modulation of the Maturing Gut Barrier and Microbiota: A Novel Target in Allergic Disease. Current Pharmaceutical Design, 2008, 14, 1368-1375.	0.9	79
164	Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology, 2008, 24, 4-10.	1.0	348
165	Symbiotic commensal bacteria direct maturation of the host immune system. Current Opinion in Gastroenterology, 2008, 24, 720-724.	1.0	35
166	Lactobacillus reuteri 100-23 Transiently Activates Intestinal Epithelial Cells of Mice That Have a Complex Microbiota during Early Stages of Colonization13. Journal of Nutrition, 2008, 138, 1684-1691.	1.3	42
167	Toll-like Receptor Responses in Neonatal Dendritic Cells. , 2008, , 106-134.		0
168	Neonatal T-Cell Immunity and its Regulation by Innate Immunity and Dendritic Cells. , 2008, , 208-230.		0
169	Elevated Systemic Antibodies towards Commensal Gut Microbiota in Autoinflammatory Condition. PLoS ONE, 2008, 3, e3172.	1.1	27

#	Article	IF	CITATIONS
170	Application of Ecological Network Theory to the Human Microbiome. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-6.	0.6	31
171	The Human Microbiome and Infectious Diseases: Beyond Koch. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-2.	0.6	11
172	The emerging role of the microbial-gastrointestinal-neural axis. Gastroenterology Insights, 2009, 1, 3.	0.7	5
173	Identification of the Site-Specific DNA Invertase Responsible for the Phase Variation of SusC/SusD Family Outer Membrane Proteins in <i>Bacteroides fragilis</i> . Journal of Bacteriology, 2009, 191, 6003-6011.	1.0	34
174	Role of Autophagy and Autophagy Genes in Inflammatory Bowel Disease. Current Topics in Microbiology and Immunology, 2009, 335, 141-167.	0.7	43
175	Development and Regulation of Immune Responses to Food Antigens in Pre- and Postnatal Life. Nestle Nutrition Workshop Series Paediatric Programme, 2009, 64, 139-155.	1.5	7
176	A Paradigm for Commensalism: The Role of a Specific Microbial Polysaccharide in Health and Disease. Nestle Nutrition Workshop Series Paediatric Programme, 2009, 64, 1-10.	1.5	1
177	Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. American Journal of Clinical Nutrition, 2009, 89, 1393-1401.	2.2	162
178	Role of Fc Receptors as a Therapeutic Target. Inflammation and Allergy: Drug Targets, 2009, 8, 80-86.	1.8	28
179	Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28â^' Regulatory T Lymphocytes by TCR Crosslinking. PLoS Pathogens, 2009, 5, e1000596.	2.1	17
180	News & Highlights. Mucosal Immunology, 2009, 2, 98-99.	2.7	0
181	Suppression of airway inflammation by a natural acute infection of the intestinal epithelium. Mucosal Immunology, 2009, 2, 144-155.	2.7	10
182	Oligoclonal CD4 ⁺ T Cells Promote Host Memory Immune Responses to Zwitterionic Polysaccharide of <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2009, 77, 3705-3712.	1.0	26
183	Microbiology and Aging. , 2009, , .		14
185	IL-27 Regulates Homeostasis of the Intestinal CD4+ Effector T Cell Pool and Limits Intestinal Inflammation in a Murine Model of Colitis. Journal of Immunology, 2009, 183, 2037-2044.	0.4	68
186	Enterotoxigenic <i>Bacteroides fragilis</i> : a Rogue among Symbiotes. Clinical Microbiology Reviews, 2009, 22, 349-369.	5.7	330
187	Induction of Persistent Colitis by a Human Commensal, Enterotoxigenic <i>Bacteroides fragilis</i> , in Wild-Type C57BL/6 Mice. Infection and Immunity, 2009, 77, 1708-1718.	1.0	240
188	Gut Immunity: A NOD to the Commensals. Current Biology, 2009, 19, R171-R174.	1.8	16

#	ARTICLE	IF	CITATIONS
189	Microtubule Assembly: Lattice GTP to the Rescue. Current Biology, 2009, 19, R174-R176.	1.8	10
190	Impact of coffee consumption on the gut microbiota: A human volunteer study. International Journal of Food Microbiology, 2009, 130, 117-121.	2.1	173
191	Evidence for dendritic cell-dependent CD4+ T helper-1 type responses to commensal bacteria in normal human intestinal lamina propria. Clinical Immunology, 2009, 131, 317-332.	1.4	38
192	Debugging the intestinal microbiota in IBD. Gastroenterologie Clinique Et Biologique, 2009, 33, S131-S136.	0.9	4
193	Utilization of the Porcine System to Study Lymphotoxin-β Regulation in Intestinal Lymphoid Tissue. Biochemical Genetics, 2009, 47, 126-136.	0.8	3
194	Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatric Surgery International, 2009, 25, 309-318.	0.6	89
195	Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity, 2009, 31, 368-376.	6.6	369
196	The gastrointestinal microbiome: a malleable, third genome of mammals. Mammalian Genome, 2009, 20, 395-403.	1.0	56
197	Prediction of surface exposed proteins in <i>Streptococcus pyogenes</i> , with a potential application to other Gramâ€positive bacteria. Proteomics, 2009, 9, 61-73.	1.3	123
198	Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biology, 2009, 7, 79.	1.7	228
199	Effects of Human Fecal Flora on Intestinal Morphology and Mucosal Immunity in Human Floraâ€associated Piglet. Scandinavian Journal of Immunology, 2009, 69, 223-233.	1.3	30
200	Type I <i>Streptococcus pneumoniae</i> carbohydrate utilizes a nitric oxide and MHC IIâ€dependent pathway for antigen presentation. Immunology, 2009, 127, 73-82.	2.0	63
201	Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clinical and Experimental Allergy, 2009, 39, 1842-1851.	1.4	277
202	Induction of regulatory T cells by probiotics: potential for treatment of allergy?. Clinical and Experimental Allergy, 2010, 40, 5-8.	1.4	10
203	The biocompatible polysaccharide chitosan enhances the oral tolerance to type II collagen. Clinical and Experimental Immunology, 2009, 155, 79-87.	1.1	17
204	The role of the intestinal microbiota in enteric infection. Journal of Physiology, 2009, 587, 4159-4167.	1.3	161
205	Therapeutic implications of manipulating and mining the microbiota. Journal of Physiology, 2009, 587, 4175-4179.	1.3	40
206	Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME Journal, 2009, 3, 536-548.	4.4	211

#	Article	IF	CITATIONS
207	Unleashing the therapeutic potential of NOD-like receptors. Nature Reviews Drug Discovery, 2009, 8, 465-479.	21.5	184
208	The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009, 9, 313-323.	10.6	3,946
209	A window of environmental dependence is evident in multiple phylogenetically distinct subgroups in the faecal community of piglets. FEMS Microbiology Letters, 2009, 290, 91-97.	0.7	14
210	Innate and specific gut-associated immunity and microbial interference. FEMS Immunology and Medical Microbiology, 2009, 55, 6-12.	2.7	40
211	Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig. Journal of Animal Physiology and Animal Nutrition, 2009, 93, 586-595.	1.0	52
212	Recognition between symbiotic <i>Vibrio fischeri</i> and the haemocytes of <i>Euprymna scolopes</i> . Environmental Microbiology, 2009, 11, 483-493.	1.8	124
213	Disturbing epithelial homeostasis in the metazoan <i>Hydra</i> leads to drastic changes in associated microbiota. Environmental Microbiology, 2009, 11, 2361-2369.	1.8	64
214	Composition and function of the human-associated microbiota. Nutrition Reviews, 2009, 67, S164-S171.	2.6	59
215	Plasticity of CD4+ T Cell Lineage Differentiation. Immunity, 2009, 30, 646-655.	6.6	1,306
216	Regulatory T Cells Reinforce Intestinal Homeostasis. Immunity, 2009, 31, 401-411.	6.6	327
217	Gut Immune Balance Is as Easy as S-F-B. Immunity, 2009, 31, 536-538.	6.6	10
218	Gut Microbiota and Probiotics in Modulation of Epithelium and Gut-Associated Lymphoid Tissue Function. International Reviews of Immunology, 2009, 28, 397-413.	1.5	62
219	The Human Intestinal Microbiome: A New Frontier of Human Biology. DNA Research, 2009, 16, 1-12.	1.5	227
220	A General O-Glycosylation System Important to the Physiology of a Major Human Intestinal Symbiont. Cell, 2009, 137, 321-331.	13.5	151
221	Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell, 2009, 139, 485-498.	13.5	3,818
222	Getting the Bugs out of the Immune System: Do Bacterial Microbiota "Fix―Intestinal T Cell Responses?. Cell Host and Microbe, 2009, 5, 8-12.	5.1	50
223	Microbes in Gastrointestinal Health and Disease. Gastroenterology, 2009, 136, 65-80.	0.6	1,150
224	Patterns and Scales in Gastrointestinal Microbial Ecology. Gastroenterology, 2009, 136, 1989-2002.	0.6	84

# 225	ARTICLE Toll-Like Receptor 4-Mediated Regulation of Spontaneous Helicobacter-Dependent Colitis in IL-10–Deficient Mice. Gastroenterology, 2009, 137, 1380-1390.e3.	IF 0.6	CITATIONS
226	The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunology, 2009, 2, 478-485.	2.7	125
227	Mucosal Immune System. , 2009, , 675-682.		0
228	Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunology, 2009, 2, 187-196.	2.7	93
229	Gut Check: Testing a Role for the Intestinal Microbiome in Human Obesity. Science Translational Medicine, 2009, 1, 6ps7.	5.8	24
230	Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, 2009, , .	0.7	4
231	Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3698-3703.	3.3	2,198
232	Mucosal Immunity: from Allergy to Coeliac Disease. , 2009, , 529-561.		1
233	Prolonged Duration of Initial Empirical Antibiotic Treatment Is Associated With Increased Rates of Necrotizing Enterocolitis and Death for Extremely Low Birth Weight Infants. Pediatrics, 2009, 123, 58-66.	1.0	796
234	The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Current Opinion in Gastroenterology, 2009, 25, 496-502.	1.0	86
235	Role of the Innate Immune System in the Pathogenesis of Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, 142-151.	0.9	37
236	3 Wechselwirkung zwischen Darmflora und intestinalem Immunsystem. , 2009, , .		Ο
237	ENDOGENOUS VERSUS EXOGENOUS ORIGINS OF DISEASES. Journal of Biological Systems, 2009, 17, 225-267.	0.5	13
238	Th17 lineage commitment and HIV-1 pathogenesis. Current Opinion in HIV and AIDS, 2010, 5, 158-165.	1.5	44
239	Bacteroides spp. and diarrhea. Current Opinion in Infectious Diseases, 2010, 23, 470-474.	1.3	79
240	Gut health: predictive biomarkers for preventive medicine and development of functional foods. British Journal of Nutrition, 2010, 103, 1539-1544.	1.2	28
241	Butyrate and Type 1 Diabetes Mellitus: Can We Fix the Intestinal Leak?. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, 414-417.	0.9	37
242	Probiotics: progress toward novel therapies for intestinal diseases. Current Opinion in Gastroenterology, 2010, 26, 95-101.	1.0	87

#	Article	IF	CITATIONS
243	The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Current Opinion in Gastroenterology, 2010, 26, 327-331.	1.0	133
244	Early life: gut microbiota and immune development in infancy. Beneficial Microbes, 2010, 1, 367-382.	1.0	246
245	How Bacterial Carbohydrates Influence the Adaptive Immune System. Annual Review of Immunology, 2010, 28, 107-130.	9.5	203
246	Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov. Archives of Microbiology, 2010, 192, 427-435.	1.0	25
247	Analysis of Oral Microbiota in Children with Dental Caries by PCR-DGGE and Barcoded Pyrosequencing. Microbial Ecology, 2010, 60, 677-690.	1.4	240
248	Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Current Opinion in Immunology, 2010, 22, 455-460.	2.4	177
249	Novel perspectives in probiotic treatment: the efficacy and unveiled mechanisms of the physiological functions. Clinical Journal of Gastroenterology, 2010, 3, 117-127.	0.4	7
252	The role of natural plant products in modulating the immune system: An adaptable approach for combating disease in grazing animals. Small Ruminant Research, 2010, 89, 131-139.	0.6	62
253	SusG: A Unique Cell-Membrane-Associated α-Amylase from a Prominent Human Gut Symbiont Targets Complex Starch Molecules. Structure, 2010, 18, 200-215.	1.6	115
254	Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics, 2010, 11, 488.	1.2	284
255	Mode of delivery affects the bacterial community in the newborn gut. Early Human Development, 2010, 86, 13-15.	0.8	442
257	Why bacteria matter in animal development and evolution. BioEssays, 2010, 32, 571-580.	1.2	257
258	Delivery of Therapeutic Proteins. Journal of Pharmaceutical Sciences, 2010, 99, 2557-2575.	1.6	454
259	The hygiene hypothesis: an evolutionary perspective. Microbes and Infection, 2010, 12, 421-427.	1.0	73
260	Microbial control of regulatory and effector T cell responses in the gut. Current Opinion in Immunology, 2010, 22, 63-72.	2.4	25
261	Bacteria and MAMP-induced morphogenesis of the immune system. Current Opinion in Immunology, 2010, 22, 448-454.	2.4	28
262	Programming infant gut microbiota: influence of dietary and environmental factors. Current Opinion in Biotechnology, 2010, 21, 149-156.	3.3	256
263	Gut-Residing Segmented Filamentous Bacteria Drive Autoimmune Arthritis via T Helper 17 Cells. Immunity, 2010, 32, 815-827.	6.6	1,391

#	Article	IF	CITATIONS
264	Hostâ€bacteria interactions in the intestine: homeostasis to chronic inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 80-97.	6.6	36
265	Roles of Bâ€1 and Bâ€2 cells in innate and acquired IgAâ€mediated immunity. Immunological Reviews, 2010, 237, 180-190.	2.8	62
266	Mucosal regulatory cells in the gastrointestinal tract and periodontium. Periodontology 2000, 2010, 54, 247-256.	6.3	5
267	The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunology and Medical Microbiology, 2010, 58, 169-181.	2.7	176
268	ls there a â€~gut–brain–skin axis'?. Experimental Dermatology, 2010, 19, 401-405.	1.4	147
269	Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model. Immunology, 2010, 131, 242-256.	2.0	31
270	Infections and asthma: new insights into old ideas. Clinical and Experimental Allergy, 2010, 40, 1142-1154.	1.4	20
271	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Induction and control of regulatory T cells in the gastrointestinal tract: consequences for local and peripheral immune responses. Clinical and Experimental Immunology, 2010, 160, 35-41.	1.1	15
272	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Host–microbe interactions in the gut: target for drug therapy, opportunity for drug discovery. Clinical and Experimental Immunology, 2010, 160, 92-97.	1.1	16
273	Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME Journal, 2010, 4, 367-376.	4.4	102
274	Convergent temporal dynamics of the human infant gut microbiota. ISME Journal, 2010, 4, 151-158.	4.4	86
275	Antimicrobial activity of mucosal-associated invariant T cells. Nature Immunology, 2010, 11, 701-708.	7.0	828
276	The future of mucosal immunology: studying an integrated system-wide organ. Nature Immunology, 2010, 11, 558-560.	7.0	104
277	Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine, 2010, 16, 228-231.	15.2	966
278	Inside the microbial and immune labyrinth: Gut microbes: friends or fiends?. Nature Medicine, 2010, 16, 1195-1197.	15.2	18
279	Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology, 2010, 10, 159-169.	10.6	1,192
280	The immune system and the gut microbiota: friends or foes?. Nature Reviews Immunology, 2010, 10, 735-744.	10.6	582
281	Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Reviews Microbiology, 2010, 8, 171-184.	13.6	828

#	Article	IF	CITATIONS
282	Web of ecological interactions in an experimental gut microbiota. Environmental Microbiology, 2010, 12, 2677-2687.	1.8	36
283	The Modulation of Adaptive Immune Responses by Bacterial Zwitterionic Polysaccharides. International Journal of Microbiology, 2010, 2010, 1-12.	0.9	19
284	Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities. PLoS ONE, 2010, 5, e13963.	1.1	225
285	Effects of Food Components on Intestinal Flora, Intestinal Immune System and their Mutualism. Bioscience and Microflora, 2010, 29, 69-82.	0.5	8
286	Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Frontiers in Bioscience - Landmark, 2010, 15, 25.	3.0	241
287	Immunomodulation by zwitterionic polysaccharides. , 2010, , 957-980.		2
288	CD155 Is Involved in Negative Selection and Is Required To Retain Terminally Maturing CD8 T Cells in Thymus. Journal of Immunology, 2010, 184, 1681-1689.	0.4	14
289	Oral tolerance in neonates: from basics to potential prevention of allergic disease. Mucosal Immunology, 2010, 3, 326-333.	2.7	81
290	Disruption of NF-ÂB signalling by ancient microbial molecules: novel therapies of the future?. Gut, 2010, 59, 421-426.	6.1	20
291	Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 671-678.	1.8	120
292	Broad Conservation of Milk Utilization Genes in <i>Bifidobacterium longum</i> subsp. <i>infantis</i> as Revealed by Comparative Genomic Hybridization. Applied and Environmental Microbiology, 2010, 76, 7373-7381.	1.4	193
293	Recent Advances in Understanding the Microbiology of the Female Reproductive Tract and the Causes of Premature Birth. Infectious Diseases in Obstetrics and Gynecology, 2010, 2010, 1-10.	0.4	70
294	Infectious Diseases and Prematurity. Infectious Diseases in Obstetrics and Gynecology, 2010, 2010, 1-2.	0.4	3
295	Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. Journal of Medical Microbiology, 2010, 59, 1114-1122.	0.7	121
296	The effects of anthropogenic global changes on immune functions and disease resistance. Annals of the New York Academy of Sciences, 2010, 1195, 129-148.	1.8	192
297	Probiotics-host communication. Gut Microbes, 2010, 1, 148-163.	4.3	369
298	Novel Tools for Modulating Immune Responses in the Host—Polysaccharides from the Capsule of Commensal Bacteria. Advances in Immunology, 2010, 106, 61-91.	1.1	13
299	Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18933-18938.	3.3	1,113

#	Article	IF	CITATIONS
300	Carbohydrate Oxidation Acidifies Endosomes, Regulating Antigen Processing and TLR9 Signaling. Journal of Immunology, 2010, 184, 3789-3800.	0.4	18
301	B Cell Development in GALT: Role of Bacterial Superantigen-Like Molecules. Journal of Immunology, 2010, 184, 6782-6789.	0.4	37
302	Bacteria Associated with Immunoregulatory Cells in Mice. Applied and Environmental Microbiology, 2010, 76, 936-941.	1.4	121
303	Orientations of the <i>Bacteroides fragilis</i> Capsular Polysaccharide Biosynthesis Locus Promoters during Symbiosis and Infection. Journal of Bacteriology, 2010, 192, 5832-5836.	1.0	20
304	Inflammatory Bowel Diseases: When Natural Friends Turn into Enemies—The Importance of CpG Motifs of Bacterial DNA in Intestinal Homeostasis and Chronic Intestinal Inflammation. International Journal of Inflammation, 2010, 2010, 1-5.	0.9	5
305	Segmented filamentous bacteria take the stage. Mucosal Immunology, 2010, 3, 209-212.	2.7	160
306	A critical role for regulatory T cell–mediated control of inflammation in the absence of commensal microbiota. Journal of Experimental Medicine, 2010, 207, 2323-2330.	4.2	114
307	Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. International Immunology, 2010, 22, 953-962.	1.8	129
308	Probiotic manipulation of the gastrointestinal microbiota. Gut Microbes, 2010, 1, 335-338.	4.3	21
309	Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes, 2010, 1, 103-108.	4.3	121
310	The role of the immune system in regulating the microbiota. Gut Microbes, 2010, 1, 213-223.	4.3	32
311	Intestinal Bacteria and the Regulation of Immune Cell Homeostasis. Annual Review of Immunology, 2010, 28, 623-667.	9.5	486
312	Immunomodulation by Commensal and Probiotic Bacteria. Immunological Investigations, 2010, 39, 429-448.	1.0	144
313	REVIEW: Cereal Carbohydrates and Colon Health. Cereal Chemistry, 2010, 87, 331-341.	1.1	40
314	Inducible Foxp3 ⁺ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12204-12209.	3.3	1,899
315	Gut Microbiota in Health and Disease. Physiological Reviews, 2010, 90, 859-904.	13.1	3,287
316	Metabolomics: towards understanding host–microbe interactions. Future Microbiology, 2010, 5, 153-161.	1.0	48
317	Neuroimmune aspects of food intake. International Dairy Journal, 2010, 20, 253-258.	1.5	19

#	Article	IF	CITATIONS
318	Development of allergic responses related to microorganisms exposure in early life. International Dairy Journal, 2010, 20, 373-385.	1.5	13
319	Host pathways for recognition: Establishing gastrointestinal microbiota as relevant in animal health and nutrition. Livestock Science, 2010, 133, 82-91.	0.6	36
320	Coordination of tolerogenic immune responses by the commensal microbiota. Journal of Autoimmunity, 2010, 34, J220-J225.	3.0	232
321	Microbial Colonization Drives Expansion of IL-1 Receptor 1-Expressing and IL-17-Producing γ/δT Cells. Cell Host and Microbe, 2010, 7, 140-150.	5.1	190
322	A Pathobiont of the Microbiota Balances Host Colonization and Intestinal Inflammation. Cell Host and Microbe, 2010, 7, 265-276.	5.1	266
323	GALT. Advances in Immunology, 2010, 107, 153-185.	1.1	77
324	Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11971-11975.	3.3	3,738
326	Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System?. Science, 2010, 330, 1768-1773.	6.0	956
327	The Gastrointestinal Immune System*. , 2010, , 39-52.		0
328	Central Nervous System Demyelinating Disease Protection by the Human Commensal <i>Bacteroides fragilis</i> Depends on Polysaccharide A Expression. Journal of Immunology, 2010, 185, 4101-4108.	0.4	340
329	A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunology, 2010, 3, 487-495.	2.7	450
330	Host–Bacterial Symbiosis in Health and Disease. Advances in Immunology, 2010, 107, 243-274.	1.1	335
331	Gut Microbes: From Bugs to Drugs. American Journal of Gastroenterology, 2010, 105, 275-279.	0.2	48
332	Function of Mucosa-Associated Lymphoid Tissue in Antibody Formation. Immunological Investigations, 2010, 39, 303-355.	1.0	183
333	Novel αâ€glucosidase from human gut microbiome: substrate specificities and their switch. FASEB Journal, 2010, 24, 3939-3949.	0.2	49
334	Inflammatory bowel disease—From mechanisms to treatment strategies. Autoimmunity, 2010, 43, 463-477.	1.2	44
335	Novel immunotherapeutic approaches for allergy and asthma. Autoimmunity, 2010, 43, 493-503.	1.2	14
336	Immunomodulation with microbial vaccines to prevent type 1 diabetes mellitus. Nature Reviews Endocrinology, 2010, 6, 131-138.	4.3	27

	CITATION	Report	
#	Article	IF	CITATIONS
337	Gut microbiome-host interactions in health and disease. Genome Medicine, 2011, 3, 14.	3.6	550
338	Diversity of vaginal ecosystem on women in Southern China. , 2011, , .		0
339	Total Synthesis of the Bacteroides fragilis Zwitterionic Polysaccharide A1 Repeating Unit. Journal of the American Chemical Society, 2011, 133, 102-107.	6.6	58
340	Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the "COPA―pilot randomized trial. Mucosal Immunology, 2011, 4, 554-563.	2.7	177
341	Probiotics, Enteric and Diarrheal Diseases, and Global Health. Gastroenterology, 2011, 140, 8-14.e9.	0.6	113
342	Development of the Human Gastrointestinal Microbiota and Insights From High-Throughput Sequencing. Gastroenterology, 2011, 140, 1713-1719.	0.6	329
343	Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity?. Journal of Allergy and Clinical Immunology, 2011, 127, 1087-1094.	1.5	198
344	Microbial Induction of Immunity, Inflammation, and Cancer. Frontiers in Physiology, 2011, 1, 168.	1.3	97
345	Invasive Bacterial Pathogens Exploit TLR-Mediated Downregulation of Tight Junction Components to Facilitate Translocation across the Epithelium. Cell Host and Microbe, 2011, 9, 404-414.	5.1	102
346	Microbiota and Autoimmune Disease: The Hosted Self. Cell Host and Microbe, 2011, 10, 297-301.	5.1	53
347	Gut microbiota and the role of probiotics in therapy. Current Opinion in Pharmacology, 2011, 11, 593-603.	1.7	58
348	TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog. Developmental and Comparative Immunology, 2011, 35, 461-468.	1.0	66
349	Brain?Gut?Microbe Communication in Health and Disease. Frontiers in Physiology, 2011, 2, 94.	1.3	698
350	Toll-like receptor-dependent IL-12 production by dendritic cells is required for activation of natural killer cell-mediated Type-1 immunity induced by Chrysanthemum Coronarium L International Immunopharmacology, 2011, 11, 226-232.	1.7	16
351	Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends in Immunology, 2011, 32, 412-419.	2.9	294
352	Microbiota–immune system interaction: an uneasy alliance. Current Opinion in Microbiology, 2011, 14, 99-105.	2.3	89
353	Modulation of immune homeostasis by commensal bacteria. Current Opinion in Microbiology, 2011, 14, 106-114.	2.3	154
354	Commensal flora and the regulation of inflammatory and autoimmune responses. Seminars in Immunology, 2011, 23, 139-145.	2.7	79

	CITATION	Report	
#	Article	IF	CITATIONS
355	Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474, 327-336.	13.7	2,175
356	Host-Resistance Factors and Immunologic Significance of Human Milk. , 2011, , 153-195.		7
357	Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 1097-1107.	1.5	187
358	The Commensal Microbiota and Enteropathogens in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology, 2011, 140, 1720-1728.e3.	0.6	390
359	The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Science, 2011, 332, 974-977.	6.0	1,354
360	GROWTH AND DEVELOPMENT SYMPOSIUM: Promoting healthier humans through healthier livestock: Animal agriculture enters the metagenomics era12. Journal of Animal Science, 2011, 89, 835-844.	0.2	12
361	Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism. Frontiers in Microbiology, 2011, 2, 88.	1.5	53
362	The Intestinal Microbiota and Viral Susceptibility. Frontiers in Microbiology, 2011, 2, 92.	1.5	37
363	The Gut Microbiota and Mucosal T Cells. Frontiers in Microbiology, 2011, 2, 111.	1.5	86
364	The Starting Lineup: Key Microbial Players in Intestinal Immunity and Homeostasis. Frontiers in Microbiology, 2011, 2, 148.	1.5	59
365	Dysbiosis of the Faecal Microbiota in Patients with Crohn's Disease and Their Unaffected Relatives (Gut 2011;60:631-637). Intestinal Research, 2011, 9, 166-168.	1.0	0
366	Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics: Targets and Therapy, 2011, 5, 71.	3.0	181
367	Functional characterization of MIMP for its adhesion to the intestinal epithelium. Frontiers in Bioscience - Landmark, 2011, 16, 2106.	3.0	12
368	Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity. PLoS ONE, 2011, 6, e24776.	1.1	120
369	Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, 2011, 6, e22109.	1.1	199
370	Microbial Dysbiosis in Colorectal Cancer (CRC) Patients. PLoS ONE, 2011, 6, e16393.	1.1	706
371	Phosphorylated Dihydroceramides from Common Human Bacteria Are Recovered in Human Tissues. PLoS ONE, 2011, 6, e16771.	1.1	45
372	The Incidence of Type-1 Diabetes in NOD Mice Is Modulated by Restricted Flora Not Germ-Free Conditions. PLoS ONE, 2011, 6, e17049.	1.1	134

#	ARTICLE	IF	CITATIONS
373	Early Colonization with a Group of Lactobacilli Decreases the Risk for Allergy at Five Years of Age Despite Allergic Heredity. PLoS ONE, 2011, 6, e23031.	1.1	124
374	The Intestinal Flora Is Required to Support Antibody Responses to Systemic Immunization in Infant and Germ Free Mice. PLoS ONE, 2011, 6, e27662.	1.1	85
375	Regulation of T cells by gut commensal microbiota. Current Opinion in Rheumatology, 2011, 23, 372-376.	2.0	25
376	Lactic Acid Bacteria in the Gut. , 2011, , 403-420.		0
377	Gut Microbiota, Immunity, and Disease: A Complex Relationship. Frontiers in Microbiology, 2011, 2, 180.	1.5	161
378	Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts. Cellular Microbiology, 2011, 13, 508-517.	1.1	25
379	The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiology Reviews, 2011, 35, 681-704.	3.9	232
380	Development of gut microbiota in infants not exposed to medical interventions. Apmis, 2011, 119, 17-35.	0.9	130
381	Oral tolerance. Immunological Reviews, 2011, 241, 241-259.	2.8	488
382	Influence of gut microbiota on mouse B2 B cell ontogeny and function. Molecular Immunology, 2011, 48, 1091-1101.	1.0	39
383	Prolonged Initial Empirical Antibiotic Treatment is Associated with Adverse Outcomes in Premature Infants. Journal of Pediatrics, 2011, 159, 720-725.	0.9	497
384	Influencing mucosal homeostasis and immune responsiveness: The impact of nutrition and pharmaceuticals. European Journal of Pharmacology, 2011, 668, S101-S107.	1.7	17
385	The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe, 2011, 17, 137-141.	1.0	119
386	A Mixed Self: The Role of Symbiosis in Development. Biological Theory, 2011, 6, 80-88.	0.8	53
387	Identification of DC-SIGN as the receptor during the interaction of Lactobacillus plantarum CGMCC 1258 and dendritic cells. World Journal of Microbiology and Biotechnology, 2011, 27, 603-611.	1.7	14
388	Genetically determined epithelial dysfunction and its consequences for microflora–host interactions. Cellular and Molecular Life Sciences, 2011, 68, 3643-3649.	2.4	28
389	The potter's wheel: the host's role in sculpting its microbiota. Cellular and Molecular Life Sciences, 2011, 68, 3675-3685.	2.4	110
390	Bacteria-mediated disease therapy. Applied Microbiology and Biotechnology, 2011, 92, 1107-1113.	1.7	16

# 391	ARTICLE Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 2011, 6, 285-306.	lF 1.2	CITATIONS 628
392	Immunomodulatory mechanisms of lactobacilli. Microbial Cell Factories, 2011, 10, S17.	1.9	275
393	Gut, bugs, and brain: Role of commensal bacteria in the control of central nervous system disease. Annals of Neurology, 2011, 69, 240-247.	2.8	137
394	Aberrant response to commensal Bacteroides thetaiotaomicron in Crohn's disease. Inflammatory Bowel Diseases, 2011, 17, 1201-1208.	0.9	20
395	Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflammatory Bowel Diseases, 2011, 17, 2027-2037.	0.9	91
396	Harvesting the biological potential of the human gut microbiome. BioEssays, 2011, 33, 414-418.	1.2	8
397	Integrating â€~-omics' and natural product discovery platforms to investigate metabolic exchange in microbiomes. Current Opinion in Chemical Biology, 2011, 15, 79-87.	2.8	21
398	The continuum of intestinal CD4 ⁺ T cell adaptations in host-microbial mutualism. Gut Microbes, 2011, 2, 353-357.	4.3	17
399	Shifting from a gene-centric to metabolite-centric strategy to determine the core gut microbiome. Bioengineered Bugs, 2011, 2, 309-314.	2.0	3
400	Bacterial adaptation to the gut environment favors successful colonization. Gut Microbes, 2011, 2, 307-318.	4.3	18
401	Castrointestinal Immune System and Brain Dialogue Implicated in Neuroinflammatory and Neurodegenerative Diseases. Current Molecular Medicine, 2011, 11, 696-707.	0.6	45
402	Lactobacillus: Host–Microbe Relationships. Current Topics in Microbiology and Immunology, 2011, 358, 119-154.	0.7	61
403	Bacterial biogeography of the human digestive tract. Scientific Reports, 2011, 1, 170.	1.6	347
404	Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides. Applied and Environmental Microbiology, 2011, 77, 4539-4546.	1.4	43
405	MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation. Journal of Experimental Medicine, 2011, 208, 1041-1053.	4.2	48
406	Structural Bacterial Molecules as Potential Candidates for an Evolution of the Classical Concept of Probiotics. Advances in Nutrition, 2011, 2, 372-376.	2.9	20
407	Structural characterization and MHCII-dependent immunological properties of the zwitterionic O-chain antigen of Morganella morganii. Glycobiology, 2011, 21, 1266-1276.	1.3	22
408	Oral Treatment of Chickens with Lactobacilli Influences Elicitation of Immune Responses. Vaccine Journal, 2011, 18, 1447-1455.	3.2	105

# 409	ARTICLE A unique homologue of the eukaryotic protein-modifier ubiquitin present in the bacterium Bacteroides fragilis, a predominant resident of the human gastrointestinal tract. Microbiology	IF 0.7	CITATIONS 27
410	(United Kingdom), 2011, 157, 3071-3078. The Role of Microbes in Developmental Immunologic Programming. Pediatric Research, 2011, 69,	1.1	149
	465-472. Programming of Host Metabolism by the Gut Microbiota. Annals of Nutrition and Metabolism, 2011, 58,		
411	44-52.	1.0	201
412	Pathogen Pressure Puts Immune Defense into Perspective. Integrative and Comparative Biology, 2011, 51, 563-576.	0.9	52
413	Glycoantigens Induce Human Peripheral Tr1 Cell Differentiation with Gut-homing Specialization. Journal of Biological Chemistry, 2011, 286, 8810-8818.	1.6	36
414	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
415	Bactericidal Activity of Mouse α-Defensin Cryptdin-4 Predominantly Affects Noncommensal Bacteria. Journal of Innate Immunity, 2011, 3, 315-326.	1.8	84
416	Type 1 diabetes vaccine development: Animal models vs. humans. Hum Vaccin, 2011, 7, 19-26.	2.4	14
417	Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. Gut Microbes, 2011, 2, 178-182.	4.3	22
418	Bioactive Bacterial Components: Could they Change the Probiotic World?. Current Bioactive Compounds, 2011, 7, 237-242.	0.2	0
419	Reprogramming intestinal immunity is the answer to induced pathogenic inflammation. Immunotherapy, 2011, 3, 1415-1417.	1.0	3
420	Expression of Retinaldehyde Dehydrogenase Enzymes in Mucosal Dendritic Cells and Gut-Draining Lymph Node Stromal Cells Is Controlled by Dietary Vitamin A. Journal of Immunology, 2011, 186, 1934-1942.	0.4	165
421	Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11548-11553.	3.3	373
422	Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4615-4622.	3.3	1,110
423	Autoimmunity's collateral damage: Gut microbiota strikes 'back'. Nature Medicine, 2011, 17, 1055-1056.	15.2	40
424	The emerging role of the intestine in metabolic diseases. Archives of Physiology and Biochemistry, 2011, 117, 165-176.	1.0	18
425	Longitudinal Analysis of the Prevalence, Maintenance, and IgA Response to Species of the Order Bacteroidales in the Human Gut. Infection and Immunity, 2011, 79, 2012-2020.	1.0	111
426	Mucosal changes in a long-term bovine intestinal segment model following removal of ingesta and microflora. Gut Microbes, 2011, 2, 134-144.	4.3	39

~			~			
CF	ΓΑΤ	ION	R	FP	O	RT

#	Article	IF	CITATIONS
427	The Impact of Gut Microbiota in Human Health and Diseases: Implication for Therapeutic Potential. Biomolecules and Therapeutics, 2011, 19, 155-173.	1.1	5
428	Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	88
429	COMPANION ANIMALS SYMPOSIUM: Development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life1. Journal of Animal Science, 2011, 89, 1506-1519.	0.2	52
430	Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology, 2011, 21, 401-409.	1.3	207
431	Intestinal antimicrobial peptides during homeostasis, infection, and disease. Frontiers in Immunology, 2012, 3, 310.	2.2	181
432	Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression. American Journal of Physiology - Renal Physiology, 2012, 302, G55-G65.	1.6	19
433	The Evolution of Mutualism in Gut Microbiota Via Host Epithelial Selection. PLoS Biology, 2012, 10, e1001424.	2.6	182
434	Peroral Ciprofloxacin Therapy Impairs the Generation of a Protective Immune Response in a Mouse Model for Salmonella enterica Serovar Typhimurium Diarrhea, while Parenteral Ceftriaxone Therapy Does Not. Antimicrobial Agents and Chemotherapy, 2012, 56, 2295-2304.	1.4	23
435	Role of the Gut Microbiota in Age-Related Chronic Inflammation. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 361-367.	0.6	54
436	Possible relation between gut microflora composition and oncogenic risk. Reviews in Medical Microbiology, 2012, 23, 52-57.	0.4	3
437	The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3, 4-14.	4.3	881
438	Non-IgE Mediated Food Allergy – Update of Recent Progress in Mucosal Immunity. Inflammation and Allergy: Drug Targets, 2012, 11, 382-396.	1.8	12
439	Modulating intestinal immune responses by lipoteichoic acid-deficientLactobacillus acidophilus. Immunotherapy, 2012, 4, 151-161.	1.0	18
440	Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes, 2012, 3, 536-543.	4.3	21
441	Immunological Responses to Gut Bacteria. Journal of AOAC INTERNATIONAL, 2012, 95, 35-49.	0.7	12
442	Crossing the eukaryote-prokaryote divide. Mobile Genetic Elements, 2012, 2, 149-151.	1.8	12
443	The Human Microbiome and Its Potential Importance to Pediatrics. Pediatrics, 2012, 129, 950-960.	1.0	252
444	<i>Bifidobacterium infantis</i> 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut, 2012, 61, 354-366.	6.1	242

#	Article	IF	CITATIONS
445	Breathe easy: microbes protect from allergies. Nature Medicine, 2012, 18, 492-494.	15.2	4
446	The intestinal microbiome of the pig. Animal Health Research Reviews, 2012, 13, 100-109.	1.4	304
447	Differential Interleukin-10 (IL-10) and IL-23 Production by Human Blood Monocytes and Dendritic Cells in Response to Commensal Enteric Bacteria. Vaccine Journal, 2012, 19, 1207-1217.	3.2	41
448	A Basal Chordate Model for Studies of Gut Microbial Immune Interactions. Frontiers in Immunology, 2012, 3, 96.	2.2	31
449	The Role of the Intestinal Context in the Generation of Tolerance and Inflammation. Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	14
450	MyD88-deficient <i>Hydra</i> reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19374-19379.	3.3	154
451	Environmental Factors and Their Impact on the Intestinal Microbiota: A Role for Human Disease?. Digestive Diseases, 2012, 30, 20-27.	0.8	10
452	Differential cytokine expression in T-cell subsets of chicken caecal tonsils co-cultured with three species of Lactobacillus. Beneficial Microbes, 2012, 3, 205-210.	1.0	25
453	Importance of Commensal and Probiotic Bacteria in Human Health. Current Immunology Reviews, 2012, 8, 248-253.	1.2	6
454	Autoantibodies in patients with asthma: is there a link between asthma and autoimmunity?. International Journal of Immunological Studies, 2012, 1, 376.	0.2	3
455	The Commensal Microbiota Drives Immune Homeostasis. Frontiers in Immunology, 2012, 3, 33.	2.2	54
456	Interactions between parasites and microbial communities in the human gut. Frontiers in Cellular and Infection Microbiology, 2012, 2, 141.	1.8	111
457	TLR9 is important for protection against intestinal damage and for intestinal repair. Scientific Reports, 2012, 2, 574.	1.6	67
459	Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection. Cell Host and Microbe, 2012, 12, 509-520.	5.1	531
460	Exposure to a Galactooligosaccharides/Inulin Prebiotic Mix at Different Developmental Time Points Differentially Modulates Immune Responses in Mice. Journal of Agricultural and Food Chemistry, 2012, 60, 11942-11951.	2.4	29
461	Microbial contact during pregnancy, intestinal colonization and human disease. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 565-576.	8.2	392
462	Can Nutritional Modulation of Maternal Intestinal Microbiota Influence the Development of the Infant Gastrointestinal Tract?,. Journal of Nutrition, 2012, 142, 1921-1928.	1.3	96
463	Gut matters: Microbe-host interactions in allergic diseases. Journal of Allergy and Clinical Immunology, 2012, 129, 1452-1459.	1.5	68

	CITATION R	EPORT	
#	Article	IF	CITATIONS
464	Vaginal Microbiome: Rethinking Health and Disease. Annual Review of Microbiology, 2012, 66, 371-389.	2.9	584
465	Microbial regulation of allergic responses to food. Seminars in Immunopathology, 2012, 34, 671-688.	2.8	40
466	A review of the pharmacobiotic regulation of gastrointestinal inflammation by probiotics, commensal bacteria and prebiotics. Inflammopharmacology, 2012, 20, 251-266.	1.9	25
467	Intestinal Commensal Microbes as Immune Modulators. Cell Host and Microbe, 2012, 12, 496-508.	5.1	353
468	Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes Requires Instructive Signals from Commensal Microbiota. Immunity, 2012, 37, 171-186.	6.6	399
469	The world within: living with our microbial guests and guides. Translational Research, 2012, 160, 239-245.	2.2	9
470	A defined intestinal colonization microbiota for gnotobiotic pigs. Veterinary Immunology and Immunopathology, 2012, 149, 216-224.	0.5	36
471	Expression and purification of two Family CH31 α-glucosidases from Bacteroides thetaiotaomicron. Protein Expression and Purification, 2012, 86, 135-141.	0.6	14
472	Efecto de los probióticos en el control de la obesidad en humanos: hipótesis no demostradas. Revista Espanola De Nutricion Humana Y Dietetica, 2012, 16, 100-107.	0.1	0
473	Regulation of intestinal homeostasis by innate and adaptive immunity. International Immunology, 2012, 24, 673-680.	1.8	85
474	Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerance without affecting weight development and gut mucosal immunity. Research in Veterinary Science, 2012, 92, 501-508.	0.9	46
475	The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism. Seminars in Immunology, 2012, 24, 36-42.	2.7	32
476	The secret languages of coevolved symbioses: Insights from the Euprymna scolopes–Vibrio fischeri symbiosis. Seminars in Immunology, 2012, 24, 3-8.	2.7	100
477	Intestinal microbiota: Shaping local and systemic immune responses. Seminars in Immunology, 2012, 24, 58-66.	2.7	137
478	Induction of Treg cells in the mouse colonic mucosa: A central mechanism to maintain host–microbiota homeostasis. Seminars in Immunology, 2012, 24, 50-57.	2.7	50
479	Host responses to the human microbiome. Nutrition Reviews, 2012, 70, S14-S17.	2.6	65
480	Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biological Reviews, 2012, 87, 701-730.	4.7	122
481	Widespread fitness alignment in the legume–rhizobium symbiosis. New Phytologist, 2012, 194, 1096-1111.	3.5	143

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
482	Salmonella persistence and transmission strategies. Current Opinion in Microbiology, 2	2012, 15, 100-107.	2.3	78
483	Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Ce 1578-1593.	l, 2012, 149,	13.5	1,050
484	Obligate Symbionts Activate Immune System Development in the Tsetse Fly. Journal o 2012, 188, 3395-3403.	f Immunology,	0.4	144
485	Interaction between interleukin-10 (IL-10) polymorphisms and dietary fibre in relation colorectal cancer in a Danish case-cohort study. BMC Cancer, 2012, 12, 183.	to risk of	1.1	37
486	Fecal Microbiota Transplantation. Gastroenterology Clinics of North America, 2012, 41	., 781-803.	1.0	116
487	Mucosal Vaccine Design and Delivery. Annual Review of Biomedical Engineering, 2012	. 14, 17-46.	5.7	182
488	Regulatory role of suppressive motifs from commensal DNA. Mucosal Immunology, 20	12, 5, 623-634.	2.7	64
489	Intestinal Microbes Affect Phenotypes and Functions of Invariant Natural Killer T Cells i Gastroenterology, 2012, 143, 418-428.	n Mice.	0.6	197
490	Natural Killer T Cells: Born in the Thymus, Raised in the Gut. Gastroenterology, 2012, 1	43, 293-296.	0.6	3
491	Antibiotics, microbiota, and immune defense. Trends in Immunology, 2012, 33, 459-46	56.	2.9	279
492	T cell tolerance and immunity to commensal bacteria. Current Opinion in Immunology	, 2012, 24, 385-391.	2.4	86
493	A role for TLR1, TLR2 and NOD2 in cytokine induction by Bacteroides fragilis. Cytokine	, 2012, 60, 861-869.	1.4	8
494	Host–microbe interactions that facilitate gut colonization by commensal bifidobacto Microbiology, 2012, 20, 467-476.	eria. Trends in	3.5	164
495	Host glycans and antigen presentation. Microbes and Infection, 2012, 14, 894-903.		1.0	20
496	The Early Settlers: Intestinal Microbiology in Early Life. Annual Review of Food Science Technology, 2012, 3, 425-447.	and	5.1	164
497	Breast, Milk and Microbes: A Complex Relationship that Does Not End with Lactation. 2012, 8, 385-398.	Women's Health,	0.7	44
498	Probiotics, Prebiotics, and Synbiotics: Gut and Beyond. Gastroenterology Research and 2012, 1-16.	Practice, 2012,	0.7	164
499	Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and D 2012, 4, 1095-1119.	isease. Nutrients,	1.7	533

#	Article	IF	CITATIONS
500	Selfishness, warfare, and economics; or integration, cooperation, and biology. Frontiers in Cellular and Infection Microbiology, 2012, 2, 54.	1.8	9
501	In cancer drug resistance, germline matters too. Nature Medicine, 2012, 18, 494-496.	15.2	19
502	Specific Probiotics or 'Fecal Transplantation'. Digestive Diseases, 2012, 30, 81-84.	0.8	8
503	The Gut Microflora and Its Variety of Roles in Health and Disease. Current Topics in Microbiology and Immunology, 2012, 358, 273-289.	0.7	45
504	Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse. PLoS ONE, 2012, 7, e32962.	1.1	143
505	A Lactobacillus rhamnosus Strain Induces a Heme Oxygenase Dependent Increase in Foxp3+ Regulatory T Cells. PLoS ONE, 2012, 7, e47556.	1.1	38
506	Evidence of Bacteroides fragilis Protection from Bartonella henselae-Induced Damage. PLoS ONE, 2012, 7, e49653.	1.1	17
507	Microbiota and Allergy: From Dysbiosis to Probiotics. , 0, , .		5
508	Infant gut microbial colonization and health: recent findings from metagenomics studies. Journal of Integrated OMICS, 2012, 2, .	0.5	4
509	Pathogenesis of Inflammatory Bowel Diseases. , 2012, , .		2
510	Vol 2, No 1 (2012). Journal of Integrated OMICS, 2012, 2, .	0.5	0
511	Controlling Symbiotic Microbes with Antimicrobial Peptides. ACS Symposium Series, 2012, , 215-233.	0.5	1
512	Early life antibioticâ€driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Reports, 2012, 13, 440-447.	2.0	731
513	Effector functions of NLRs in the intestine: innate sensing, cell death, and disease. Immunologic Research, 2012, 54, 25-36.	1.3	30
514	Anti-inflammatory properties of dairy lactobacilli. Inflammatory Bowel Diseases, 2012, 18, 657-666.	0.9	68
515	Interactions Between the Microbiota and the Immune System. Science, 2012, 336, 1268-1273.	6.0	3,422
516	The gut microbiota regulates bone mass in mice. Journal of Bone and Mineral Research, 2012, 27, 1357-1367.	3.1	585
517	Roles for major histocompatibility complex glycosylation in immune function. Seminars in Immunopathology, 2012, 34, 425-441.	2.8	64

#	Article	IF	CITATIONS
518	Lactobacillus rhamnosus Exopolysaccharide Ameliorates Arthritis Induced by the Systemic Injection of Collagen and Lipopolysaccharide in DBA/1 Mice. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 211-220.	1.0	48
519	Analysis of the bacterial diversity in the fecal material of the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Molecular Biology Reports, 2012, 39, 5669-5676.	1.0	31
520	Metabolic footprint of Lactobacillus acidophilus NCFM at different pH. Metabolomics, 2012, 8, 244-252.	1.4	11
521	Novel Players in Inflammatory Bowel Disease Pathogenesis. Current Gastroenterology Reports, 2012, 14, 146-152.	1.1	24
522	Commensal gut flora and brain autoimmunity: a love or hate affair?. Acta Neuropathologica, 2012, 123, 639-651.	3.9	70
523	Microbiota and dietary interactions – an update to the hygiene hypothesis?. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 451-461.	2.7	105
524	Control of antiviral immunity by pattern recognition and the microbiome. Immunological Reviews, 2012, 245, 209-226.	2.8	87
525	The <i>yin yang</i> of bacterial polysaccharides: lessons learned from <i>B. fragilis</i> PSA. Immunological Reviews, 2012, 245, 13-26.	2.8	124
526	Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunological Reviews, 2012, 245, 164-176.	2.8	186
527	Innate immune signaling in defense against intestinal microbes. Immunological Reviews, 2012, 245, 113-131.	2.8	98
528	The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunological Reviews, 2012, 245, 45-55.	2.8	86
529	The influence of the microbiota on typeâ€l diabetes: on the threshold of a leap forward in our understanding. Immunological Reviews, 2012, 245, 239-249.	2.8	81
530	Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 81-92.	0.7	68
531	In celebration of Sydney M. Finegold, M.D.: Bacteroides fragilis in the colon: The good & the bad. Anaerobe, 2012, 18, 192-196.	1.0	4
532	The potential for probiotic manipulation of the gastrointestinal microbiome. Current Opinion in Biotechnology, 2012, 23, 192-201.	3.3	66
533	Bridging the gap from genetic association to functional understanding: the next generation of mouse models of multiple sclerosis. Immunological Reviews, 2012, 248, 10-22.	2.8	12
534	Systems immunology of human malaria. Trends in Parasitology, 2012, 28, 248-257.	1.5	34
535	Molecular methods for pathogen and microbial community detection and characterization: Current and potential application in diagnostic microbiology. Infection, Genetics and Evolution, 2012, 12, 505-521	1.0	123

#	Article	IF	CITATIONS
536	The germfree murine animal: An important animal model for research on the relationship between gut microbiota and the host. Veterinary Microbiology, 2012, 157, 1-7.	0.8	71
537	Maternal intestinal flora and wheeze in early childhood. Clinical and Experimental Allergy, 2012, 42, 901-908.	1.4	18
538	Characterization of the Gastrointestinal Microbiota in Health and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2012, 18, 372-390.	0.9	91
539	Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology, 2013, 140, 483-492.	2.0	65
540	Rapid assay to assess colonization patterns following in-vivo probiotic ingestion. BMC Research Notes, 2013, 6, 252.	0.6	11
541	The Role of Nutrition in Health and Disease in Premature Infants: Current Knowledge Gaps and Defining the Research Agenda. , 2013, , 111-133.		0
542	<scp>CD</scp> 4 ⁺ T ell subsets in intestinal inflammation. Immunological Reviews, 2013, 252, 164-182.	2.8	175
543	Disruption of the gut microbiome as a risk factor for microbial infections. Current Opinion in Microbiology, 2013, 16, 221-227.	2.3	174
544	An Integrated Method for Functional Analysis of Microbial Communities by Gene Ontology Based on 16S miRNA Gene. Communications in Computer and Information Science, 2013, , 219-224.	0.4	0
545	Emerging Intelligent Computing Technology and Applications. Communications in Computer and Information Science, 2013, , .	0.4	1
546	Speculation on Prevention of Type 1 Diabetes. , 2013, , 339-347.		1
548	Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics, 2013, 14, 390.	1.2	105
549	Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiology, 2013, 13, 12.	1.3	127
550	Bacteroides thetaiotaomicron and Faecalibacterium prausnitziiinfluence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology, 2013, 11, 61.	1.7	583
551	Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microbial Cell Factories, 2013, 12, 71.	1.9	188
552	The Gut Microbiome: A New Frontier in Autism Research. Current Psychiatry Reports, 2013, 15, 337.	2.1	218
553	Understanding Vulvovaginal Candidiasis Through a Community Genomics Approach. Current Fungal Infection Reports, 2013, 7, 126-131.	0.9	13
554	Primates, Pathogens, and Evolution. , 2013, , .		8

#	Article	IF	CITATIONS
555	Two faces of microbiota in inflammatory and autoimmune diseases: triggers and drugs. Apmis, 2013, 121, 403-421.	0.9	25
556	Gut microbiota: so much to explore!. Expert Review of Anti-Infective Therapy, 2013, 11, 759-761.	2.0	Ο
557	Bacterial colonization factors control specificity and stability of the gut microbiota. Nature, 2013, 501, 426-429.	13.7	530
558	Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome, 2013, 1, 13.	4.9	281
559	Immunity to viruses: learning from successful human vaccines. Immunological Reviews, 2013, 255, 243-255.	2.8	76
560	Isolation, characterization and complete genome sequence of PhaxI: a phage of Escherichia coli O157 : H7. Microbiology (United Kingdom), 2013, 159, 1629-1638.	0.7	32
561	IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology, 2013, 218, 645-651.	0.8	123
562	The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry?. Journal of Applied Poultry Research, 2013, 22, 637-646.	0.6	54
563	Diabetes and Viruses. , 2013, , .		2
564	Host interactions with Segmented Filamentous Bacteria: An unusual trade-off that drives the post-natal maturation of the gut immune system. Seminars in Immunology, 2013, 25, 342-351.	2.7	71
565	Peripheral education of the immune system by the colonic microbiota. Seminars in Immunology, 2013, 25, 364-369.	2.7	82
566	Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 2013, 13, 790-801.	10.6	1,138
567	GPR15-Mediated Homing Controls Immune Homeostasis in the Large Intestine Mucosa. Science, 2013, 340, 1456-1459.	6.0	251
568	Systems biological approaches to measure and understand vaccine immunity in humans. Seminars in Immunology, 2013, 25, 209-218.	2.7	58
569	Carbohydrates and T cells: A sweet twosome. Seminars in Immunology, 2013, 25, 146-151.	2.7	86
570	Shaping Intestinal Bacterial Community by TLR and NLR Signaling. World Review of Nutrition and Dietetics, 2013, , 32-42.	0.1	0
571	The Genomic and Cellular Foundations of Animal Origins. Annual Review of Genetics, 2013, 47, 509-537.	3.2	169
572	The gut as a sensory organ. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 729-740.	8.2	386

#	Article	IF	CITATIONS
573	Alterations in the Gut Microbiota Associated with HIV-1 Infection. Cell Host and Microbe, 2013, 14, 329-339.	5.1	387
574	Dyeing to Learn More about the Gut Microbiota. Cell Host and Microbe, 2013, 13, 119-120.	5.1	1
575	Crystal ball – 2013. Environmental Microbiology Reports, 2013, 5, 1-16.	1.0	2
576	Initial Intestinal Colonization in the Human Infant and Immune Homeostasis. Annals of Nutrition and Metabolism, 2013, 63, 8-15.	1.0	137
577	Helicobacter and Salmonella Persistent Infection Strategies. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010348-a010348.	2.9	34
578	Mucosal Immunology and Probiotics. Current Allergy and Asthma Reports, 2013, 13, 19-26.	2.4	95
579	16 <scp>S rRNA</scp> survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids. Environmental Microbiology, 2013, 15, 535-547.	1.8	39
580	Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature, 2013, 494, 116-120.	13.7	405
581	Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory. Innate Immunity, 2013, 19, 315-327.	1.1	82
582	Biodiversity and functional genomics in the human microbiome. Trends in Genetics, 2013, 29, 51-58.	2.9	207
583	Mucosal immunity in liver autoimmunity: A comprehensive review. Journal of Autoimmunity, 2013, 46, 97-111.	3.0	110
584	Fluorescent probes for investigation of isoprenoid configuration and size discrimination by bactoprenol-utilizing enzymes. Bioorganic and Medicinal Chemistry, 2013, 21, 5428-5435.	1.4	11
585	The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants. Veterinary Immunology and Immunopathology, 2013, 152, 13-19.	0.5	55
586	Resident commensals shaping immunity. Current Opinion in Immunology, 2013, 25, 450-455.	2.4	59
587	Ontogeny of the avian intestinal immunoglobulin repertoire: Modification in CDR3 length and conserved VH-pseudogene usage. Molecular Immunology, 2013, 56, 811-818.	1.0	7
588	Gut microbiota, host health, and polysaccharides. Biotechnology Advances, 2013, 31, 318-337.	6.0	181
589	Biosynthetic Assembly of the <i>Bacteroides fragilis</i> Capsular Polysaccharide A Precursor Bactoprenyl Diphosphate-Linked Acetamido-4-amino-6-deoxygalactopyranose. Biochemistry, 2013, 52, 1939-1949.	1.2	14
590	Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice. Gastroenterology, 2013, 144, 967-977.	0.6	387

#	Article	IF	CITATIONS
591	Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nature Reviews Immunology, 2013, 13, 118-132.	10.6	612
592	American Journal of Gastroenterology Lecture: Intestinal Microbiota and the Role of Fecal Microbiota Transplant (FMT) in Treatment of C. difficile Infection. American Journal of Gastroenterology, 2013, 108, 177-185.	0.2	155
593	Infant Gut Microbiota: Developmental Influences and Health Outcomes. , 2013, , 233-256.		13
594	Glycansâ€byâ€design: Engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnology and Bioengineering, 2013, 110, 1550-1564.	1.7	43
595	Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology, 2013, 13, 321-335.	10.6	1,771
596	Tuning of skin immunity by skin commensal bacteria. Immunotherapy, 2013, 5, 23-25.	1.0	7
597	Chemistry and Biology of Oligovalent βâ€(1→2)‣inked Oligomannosides: New Insights into Carbohydrateâ€Based Adjuvants in Immunotherapy. Chemistry - A European Journal, 2013, 19, 7961-7974.	1.7	20
598	Pyrosequencing Analysis of the Salivary Microbiota of Healthy Chinese Children and Adults. Microbial Ecology, 2013, 65, 487-495.	1.4	55
599	Darmgesundheit und Mikrobiota. Springer-Lehrbuch, 2013, , 67-83.	0.1	1
600	The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 2013, 37, 699-735.	3.9	1,853
601	Bacterial oncogenesis in the colon. Future Microbiology, 2013, 8, 445-460.	1.0	72
602	<scp>SMAD</scp> regulatory networks construct a balanced immune system. Immunology, 2013, 139, 1-10.	2.0	74
603	Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology, 2013, 14, 668-675.	7.0	481
604	Resident viruses and their interactions with the immune system. Nature Immunology, 2013, 14, 654-659.	7.0	247
605	Metabolomics approaches for characterizing metabolic interactions between host and its commensal microbes. Electrophoresis, 2013, 34, 2787-2798.	1.3	53
606	Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 139-155.	1.0	83
607	Specific Gut Commensal Flora Locally Alters T Cell Tuning to Endogenous Ligands. Immunity, 2013, 38, 1198-1210.	6.6	39
608	Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, 2013, 358, v-vii.	0.7	8

		CITATION REPORT	
#	Article	IF	Citations
609	Effector and memory T cell responses to commensal bacteria. Trends in Immunology, 2013, 34, 2	99-306. 2.9	61
610	Lubiprostone Decreases Mouse Colonic Inner Mucus Layer Thickness and Alters Intestinal Microb Digestive Diseases and Sciences, 2013, 58, 668-677.	iota. 1.1	42
611	Bacterial colonization of <i>Hydra</i> hatchlings follows a robust temporal pattern. ISME Journal 2013, 7, 781-790.	. 4.4	96
612	A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th1 suppression. Mucosal Immunology, 2013, 6, 415-426.	7 2.7	71
613	Segmented filamentous bacteria are a major group in terminal ileum of piglets. Anaerobe, 2013, 2 109-111.	23, 1.0	8
614	Characterization of Fecal Microbiota of Children With Diarrhea in 2 Locations in Colombia. Journa of Pediatric Gastroenterology and Nutrition, 2013, 56, 503-511.	l 0.9	25
615	Novel Developmental Analyses Identify Longitudinal Patterns of Early Gut Microbiota that Affect Infant Growth. PLoS Computational Biology, 2013, 9, e1003042.	1.5	76
616	Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiom Science and Medicine, 2013, 1, .	e 0.3	138
617	Host and Microbial Factors in Regulation of T Cells in the Intestine. Frontiers in Immunology, 201 141.	3, 4, 2.2	11
618	Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE, 2013, 8, e59260.	1.1	305
619	Evolving Bacterial Envelopes and Plasticity of TLR2-Dependent Responses: Basic Research and Translational Opportunities. Frontiers in Immunology, 2013, 4, 347.	2.2	63
620	Immune activation and HIV persistence. Current Opinion in HIV and AIDS, 2013, 8, 211-216.	1.5	74
621	The intestinal microbiota dysbiosis and <i>Clostridium difficile</i> infection: is there a relationship with inflammatory bowel disease?. Therapeutic Advances in Gastroenterology, 2013, 6, 53-68.	1.4	182
622	Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization. Infection and Immunity, 2013, 81, 965-973.	1.0	391
623	Secretory IgA: Designed for Anti-Microbial Defense. Frontiers in Immunology, 2013, 4, 222.	2.2	255
624	Identification of a TLR2-stimulating lipoprotein in <i>Bacteroides fragilis</i> JCM 11019 (NCTC 93 Innate Immunity, 2013, 19, 132-139.	43). 1.1	6
625	Exploring host–microbiota interactions in animal models and humans. Genes and Development 27, 701-718.	c, 2013, 2.7	413
626	Analysis of the Intestinal Microbiome of a Recovered <i>Clostridium difficile</i> Patient after Fecal Transplantation. Digestion, 2013, 88, 243-251.	1.2	33

#	Article	IF	CITATIONS
627	Intestinal bacteria and probiotics: effects on the immune system and impacts on human health. , 2013, , 267-291.		5
628	The primate vaginal microbiome: Comparative context and implications for human health and disease. American Journal of Physical Anthropology, 2013, 152, 119-134.	2.1	115
629	Development of CD27 ⁺ marginal zone B cells requires GALT. European Journal of Immunology, 2013, 43, 1484-1488.	1.6	9
631	Probiotics: Properties, Examples, and Specific Applications. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010074-a010074.	2.9	192
632	A case for antibiotic perturbation of the microbiota leading to allergy development. Expert Review of Clinical Immunology, 2013, 9, 1019-1030.	1.3	31
633	The role of gut microbiota in programming the immune phenotype. Journal of Developmental Origins of Health and Disease, 2013, 4, 203-214.	0.7	126
634	TCR Transgenic Mice That Shed Light on Immune and Environmental Regulators in Multiple Sclerosis. Journal of Immunology, 2013, 190, 3015-3017.	0.4	0
635	Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3730-8.	3.3	312
636	Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes, 2013, 4, 222-231.	4.3	125
637	Guidance on the environmental risk assessment of genetically modified animals. EFSA Journal, 2013, 11, 3200.	0.9	54
639	Probiotics and nutrients for the first 1000 days of life in the developing world. Beneficial Microbes, 2013, 4, 3-16.	1.0	16
640	The diversity of intestinal microbiota of Mongolians living in Inner Mongolia, China. Beneficial Microbes, 2013, 4, 319-328.	1.0	19
641	Relevance of Commensal Microbiota in the Treatment and Prevention of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 2478-2489.	0.9	19
642	Role of the TLR/MyD88 pathway in the modulation of the immune system activation mediated by Lactobacillus casei CRL 431. Proceedings of the Nutrition Society, 2013, 72, .	0.4	1
643	THE MICROBIOME: A MEDIATOR OF HUMAN WELLNESS. Technology and Innovation, 2013, 15, 5-15.	0.2	0
644	The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life. International Journal of Environmental Research and Public Health, 2013, 10, 7235-7256.	1.2	50
645	Plasmacytoid Dendritic Cells Are Crucial in Bifidobacterium adolescentis-Mediated Inhibition of Yersinia enterocolitica Infection. PLoS ONE, 2013, 8, e71338.	1.1	13
646	Actual concept of "probiotics": Is it more functional to science or business?. World Journal of Gastroenterology, 2013, 19, 1527.	1.4	51

#	Article	IF	Citations
647	<i>Clostridium difficile</i> and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World Journal of Gastroenterology, 2013, 19, 7577.	1.4	133
648	Effects of Diet on Gut Microbiota Profile and the Implications for Health and Disease. Bioscience of Microbiota, Food and Health, 2013, 32, 1-12.	0.8	41
649	Molecular Mapping to Species Level of the Tonsillar Crypt Microbiota Associated with Health and Recurrent Tonsillitis. PLoS ONE, 2013, 8, e56418.	1.1	113
650	Impact of Colonoscopy Bowel Preparation on Intestinal Microbiota. PLoS ONE, 2013, 8, e62815.	1.1	85
651	Distribution of CD4pos -, CD8pos – and Regulatory T Cells in the Upper and Lower Gastrointestinal Tract in Healthy Young Subjects. PLoS ONE, 2013, 8, e80362.	1.1	18
652	Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth. PLoS ONE, 2013, 8, e63157.	1.1	240
653	Neonatal Immune Adaptation of the Gut and Its Role during Infections. Clinical and Developmental Immunology, 2013, 2013, 1-17.	3.3	70
654	Impact of the gut microbiota on rodent models of human disease. World Journal of Gastroenterology, 2014, 20, 17727-17736.	1.4	69
655	Aerosol Mycobacterium tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLoS ONE, 2014, 9, e97048.	1.1	124
656	Lymphoma Caused by Intestinal Microbiota. International Journal of Environmental Research and Public Health, 2014, 11, 9038-9049.	1.2	21
657	Intestinal barrier: A gentlemen's agreement between microbiota and immunity. World Journal of Gastrointestinal Pathophysiology, 2014, 5, 18.	0.5	101
658	Maternally acquired genotoxic <i>Escherichia coli</i> alters offspring's intestinal homeostasis. Gut Microbes, 2014, 5, 313-512.	4.3	72
659	Role of SFB in autoimmune arthritis. Gut Microbes, 2014, 5, 259-264.	4.3	15
660	The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 2014, 14, 311.	1.3	178
661	Role of Hfq in an animal–microbe symbiosis under simulated microgravity conditions. International Journal of Astrobiology, 2014, 13, 53-61.	0.9	12
662	Do Genetic Susceptibility, Toll-like Receptors, and Pathogen-associated Molecular Patterns Modulate the Effects of Wear?. Clinical Orthopaedics and Related Research, 2014, 472, 3709-3717.	0.7	28
663	Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes, 2014, 5, 129-140.	4.3	22
664	Host-Microbe Interactions in Microgravity: Assessment and Implications. Life, 2014, 4, 250-266.	1.1	27

#	Article	IF	CITATIONS
665	Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions. PLoS Pathogens, 2014, 10, e1004093.	2.1	49
666	Oral Administration of Bovine Milk from Cows Hyperimmunized with Intestinal Bacterin Stimulates Lamina Propria T Lymphocytes to Produce Th1-Biased Cytokines in Mice. International Journal of Molecular Sciences, 2014, 15, 5458-5471.	1.8	7
667	Epithelial Antimicrobial Peptides: Guardian of the Oral Cavity. International Journal of Peptides, 2014, 2014, 1-13.	0.7	63
668	Gut Microbiota in Human Health and Diseases. , 2014, , 469-469.		0
669	Monocolonization of Germ-Free Mice with <i>Bacteroides fragilis</i> Protects against Dextran Sulfate Sodium-Induced Acute Colitis. BioMed Research International, 2014, 2014, 1-9.	0.9	41
670	Blowing on Embers: Commensal Microbiota and Our Immune System. Frontiers in Immunology, 2014, 5, 318.	2.2	62
671	Gut Microbiota in HIV Infection: Implication for Disease Progression and Management. Gastroenterology Research and Practice, 2014, 2014, 1-6.	0.7	35
672	Infections and Chronic Inflammatory Bowel Disease. Viszeralmedizin, 2014, 30, 6-6.	0.0	16
673	Association between Toll-like receptor 4 and interleukin 17 gene polymorphisms and colorectal cancer susceptibility in Northeast China. Medical Oncology, 2014, 31, 73.	1.2	11
674	Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Letters, 2014, 588, 4214-4222.	1.3	58
675	The role of the microbiome in immune cell development. Annals of Allergy, Asthma and Immunology, 2014, 113, 593-598.	0.5	23
676	Microbiome, holobiont and the net of life. Critical Reviews in Microbiology, 2016, 42, 1-10.	2.7	46
677	Epigenetic Modifications Underlying Symbiont–Host Interactions. Advances in Genetics, 2014, 86, 253-276.	0.8	15
678	Lack of microbiota reduces innate responses and enhances adaptive immunity against <i>Listeria monocytogenes</i> infection. European Journal of Immunology, 2014, 44, 1710-1715.	1.6	20
679	Downregulation of micro <scp>RNA</scp> â€107 in intestinal <scp>CD</scp> 11c ⁺ myeloid cells in response to microbiota and proinflammatory cytokines increases <scp>IL</scp> â€23p19 expression. European Journal of Immunology, 2014, 44, 673-682.	1.6	52
680	Viruses and the Microbiota. Annual Review of Virology, 2014, 1, 55-69.	3.0	137
681	Marek's disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication. FEMS Microbiology Ecology, 2014, 90, 300-312.	1.3	38
682	Transcriptional fingerprints of antigen-presenting cell subsets in the human vaginal mucosa and skin reflect tissue-specific immune microenvironments. Genome Medicine, 2014, 6, 98.	3.6	21

#	Article	IF	CITATIONS
683	Postbiotic Activities of Lactobacilli-derived Factors. Journal of Clinical Gastroenterology, 2014, 48, S18-S22.	1.1	118
684	Physiologic TLR9-CpG-DNA Interaction Is Essential for the Homeostasis of the Intestinal Immune System. Inflammatory Bowel Diseases, 2014, 20, 136-143.	0.9	15
685	Ageing, immunity and influenza: a role for probiotics?. Proceedings of the Nutrition Society, 2014, 73, 309-317.	0.4	35
686	Intestinal Microbiota. Journal of Clinical Gastroenterology, 2014, 48, 657-666.	1.1	19
687	Intestinal Microbiome and Lymphoma Development. Cancer Journal (Sudbury, Mass), 2014, 20, 190-194.	1.0	37
688	Intestinal microbiota during early life – impact on health and disease. Proceedings of the Nutrition Society, 2014, 73, 457-469.	0.4	54
689	Identifying Gut Microbe–Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice. Science Translational Medicine, 2014, 6, 220ra11.	5.8	325
690	The mucosal microbiome in shaping health and disease. F1000prime Reports, 2014, 6, 11.	5.9	24
691	Early life establishment of site-specific microbial communities in the gut. Gut Microbes, 2014, 5, 192-201.	4.3	55
693	The Ellis Island Effect. Mobile Genetic Elements, 2014, 4, e29801.	1.8	20
694	Understanding Host-Adherent-Invasive <i>Escherichia coli</i> Interaction in Crohn's Disease: Opening Up New Therapeutic Strategies. BioMed Research International, 2014, 2014, 1-16.	0.9	51
695	Effects of Lactobacillus salivarius-containing tablets on caries risk factors: a randomized open-label clinical trial. BMC Oral Health, 2014, 14, 110.	0.8	49
696	Microbiota abnormalities in inflammatory airway diseases — Potential for therapy. , 2014, 141, 32-39.		88
697	Molecular Characterization of Skin Microbiota Between Cancer Cachexia Patients and Healthy Volunteers. Microbial Ecology, 2014, 67, 679-689.	1.4	21
698	Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radical Biology and Medicine, 2014, 68, 122-133.	1.3	147
699	The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 377-383.	1.3	38
700	The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2014, 2, 4.	4.9	607
701	Gut Microbiota Promote Hematopoiesis to Control Bacterial Infection. Cell Host and Microbe, 2014, 15, 374-381.	5.1	501

ARTICLE IF CITATIONS # Synthesis of conjugation-ready zwitterionic oligosaccharides by chemoselective thioglycoside 702 3.7 43 activation. Chemical Science, 2014, 5, 1992-2002. The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 2014, 38, 629 1-12. 704 Role of the Microbiota in Immunity and Inflammation. Cell, 2014, 157, 121-141. 13.5 3,494 Relationship between gut microbiota and development of T cell associated disease. FEBS Letters, 2014, 84 588, 4195-4206. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatrics 706 0.2 118 International, 2014, 56, 336-343. Regulation of the Immune System by the Resident Intestinal Bacteria. Gastroenterology, 2014, 146, 0.6 220 1477-1488. Altered Fecal Microbiota Composition Associated with Food Allergy in Infants. Applied and 708 1.4 295 Environmental Microbiology, 2014, 80, 2546-2554. Exploring & amp; exploiting our $\hat{a} \in \hat{b}$ other self $\hat{a} \in \hat{b}$ Does the microbiota hold the key to the future therapy in 1.0 Crohn's?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 399-409. Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. 710 0.7 57 Current Topics in Microbiology and Immunology, 2014, 381, 279-326. Intestinal Microbiota Reduces Genotoxic Endpoints Induced By High-Energy Protons. Radiation Research, 2014, 181, 45-53. Microbial view of central nervous system autoimmunity. FEBS Letters, 2014, 588, 4207-4213. 712 1.3 119 Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology, 2014, 10, 539 416-424. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in 714 6.1 823 infants delivered by Caesarean section. Gut, 2014, 63, 559-566. Gut-Targeted Immunonutrition Boosting Natural Killer Cell Activity Using <i>Saccharomyces boulardii</i>Lysates in Immuno-Compromised Healthy Elderly Subjects. Rejuvenation Research, 2014, 17, 184-187. Sphingolipids from a Symbiotic Microbe Regulate Homeostasis of Host Intestinal Natural Killer T 13.5 491 716 Cells. Cell, 2014, 156, 123-133. The mucosal immune system for vaccine development. Vaccine, 2014, 32, 6711-6723. Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from 718 the gut of tarantula Chilobrachys guangxiensis. International Biodeterioration and Biodegradation, 1.9 21 2014, 96, 26-32. Determining Microbial Products and Identifying Molecular Targets in the Human Microbiome. Cell 719 Metabolism, 2014, 20, 731-741.

#	Article	IF	Citations
720	The Medium Is the Message: Interspecies and Interkingdom Signaling by Peptidoglycan and Related Bacterial Glycans. Annual Review of Microbiology, 2014, 68, 137-154.	2.9	83
721	Severe viral respiratory infections: are bugs bugging?. Mucosal Immunology, 2014, 7, 227-238.	2.7	37
722	The bacteriome–mycobiome interaction and antifungal host defense. European Journal of Immunology, 2014, 44, 3182-3191.	1.6	96
723	Microbiome Diversity and Asthma and Allergy Risk. Current Allergy and Asthma Reports, 2014, 14, 466.	2.4	59
724	An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nature Communications, 2014, 5, 4432.	5.8	167
725	Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. Journal of the Science of Food and Agriculture, 2014, 94, 163-168.	1.7	96
726	Gut Commensalism, Cytokines, and Central Nervous System Demyelination. Journal of Interferon and Cytokine Research, 2014, 34, 605-614.	0.5	17
727	Elucidating structural features of an entirely carbohydrate cancer vaccine construct employing circular dichroism and fluorescent labeling. MedChemComm, 2014, 5, 1143-1149.	3.5	16
728	Rethinking the role of immunity: lessons from Hydra. Trends in Immunology, 2014, 35, 495-502.	2.9	83
729	Mucosal Immune Responses to Microbiota in the Development of Autoimmune Disease. Rheumatic Disease Clinics of North America, 2014, 40, 711-725.	0.8	32
730	The Gut Microbiome, Kidney Disease, and Targeted Interventions. Journal of the American Society of Nephrology: JASN, 2014, 25, 657-670.	3.0	553
731	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014, 40, 824-832.	6.6	256
732	Influence of the microbiota on vaccine effectiveness. Trends in Immunology, 2014, 35, 526-537.	2.9	137
733	Inflammatory Bowel Disease as a Model for Translating the Microbiome. Immunity, 2014, 40, 843-854.	6.6	284
734	TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination. Immunity, 2014, 41, 478-492.	6.6	444
735	Immune-directed support of rich microbial communities in the gut has ancient roots. Developmental and Comparative Immunology, 2014, 47, 36-51.	1.0	45
736	Functional identification of a galactosyltransferase critical to Bacteroides fragilis Capsular Polysaccharide A biosynthesis. Carbohydrate Research, 2014, 395, 19-28.	1.1	7
737	The cross talk between microbiota and the immune system: metabolites take center stage. Current Opinion in Immunology, 2014, 30, 54-62.	2.4	159

#	Article	IF	CITATIONS
738	Fermented or unfermented milk using Bifidobacterium animalis subsp. lactis HN019: Technological approach determines the probiotic modulation of mucosal cellular immunity. Food Research International, 2014, 64, 283-288.	2.9	17
739	Conditioned medium from <i>Bifidobacteria infantis</i> protects against <i>Cronobacter sakazakii</i> -induced intestinal inflammation in newborn mice. American Journal of Physiology - Renal Physiology, 2014, 306, G779-G787.	1.6	44
740	Effects of Antibiotics on Human Microbiota and Subsequent Disease. Annual Review of Microbiology, 2014, 68, 217-235.	2.9	223
741	Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters. Cell, 2014, 158, 412-421.	13.5	801
742	Digesting the emerging role for the gut microbiome in central nervous system demyelination. Multiple Sclerosis Journal, 2014, 20, 1553-1559.	1.4	60
743	Microbiota-Driven Immune Cellular Maturation Is Essential for Antibody-Mediated Adaptive Immunity to Staphylococcus aureus Infection in the Eye. Infection and Immunity, 2014, 82, 3483-3491.	1.0	18
744	A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics. Cell, 2014, 158, 1402-1414.	13.5	573
745	Report of the joint ESOT and TTS basic science meeting 2013: current concepts and discoveries in translational transplantation. Transplant International, 2014, 27, 987-993.	0.8	0
746	Gastrointestinal Microbiota–Mediated Control of Enteric Pathogens. Annual Review of Genetics, 2014, 48, 361-382.	3.2	53
747	Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 2014, 22, 607-613.	3.5	100
748	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	0.4	126
749	Bacterial Influences on Animal Origins. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016162.	2.3	50
750	Epithelial Adhesion Mediated by Pilin SpaC Is Required for Lactobacillus rhamnosus GG-Induced Cellular Responses. Applied and Environmental Microbiology, 2014, 80, 5068-5077.	1.4	78
751	454 pyrosequencing reveals changes in the faecal microbiota of adults consuming <i>Lactobacillus casei</i> Zhang. FEMS Microbiology Ecology, 2014, 88, 612-622.	1.3	64
752	The Microbiota, the Immune System and the Allograft. American Journal of Transplantation, 2014, 14, 1236-1248.	2.6	53
753	Lectins. Methods in Molecular Biology, 2014, , .	0.4	7
754	The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature Medicine, 2014, 20, 524-530.	15.2	438
755	Plasmacytoid Dendritic Cells Mediate Anti-inflammatory Responses to a Gut Commensal Molecule via Both Innate and Adaptive Mechanisms. Cell Host and Microbe, 2014, 15, 413-423.	5.1	239

#	Article	IF	CITATIONS
756	Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease. Pathophysiology, 2014, 21, 267-288.	1.0	52
757	Friendly pathogens: prevent or provoke autoimmunity. Critical Reviews in Microbiology, 2014, 40, 273-280.	2.7	11
758	Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 2014, 71, 183-203.	2.4	265
759	Deciphering the tête-Ã-tête between the microbiota and the immune system. Journal of Clinical Investigation, 2014, 124, 4197-203.	3.9	89
760	Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. Journal of Clinical Investigation, 2014, 124, 4166-4172.	3.9	245
761	Gut ecosystem: how microbes help us. Beneficial Microbes, 2014, 5, 219-233.	1.0	32
763	Commensal Intestinal Microbiota and Mucosal Immune System Development and Function. , 2014, , .		0
764	The microbiome and childhood diseases: Focus on brainâ€gut axis. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 296-313.	3.6	34
765	Micromanagement in the gut: microenvironmental factors govern colon mucosal biofilm structure and functionality. Npj Biofilms and Microbiomes, 2015, 1, 15026.	2.9	54
766	Microorganisms in Fermented Foods and Beverages. , 2015, , 16-125.		3
768	Fecal microbiota transplantation broadening its application beyond intestinal disorders. World Journal of Gastroenterology, 2015, 21, 102.	1.4	190
769	Allergie und das Mikrobiom des Darms – Teil 1. Deutsche Zeitschrift Für Akupunktur, 2015, 58, 22-26.	0.1	1
770	Protective effect of diet supplemented with rice prolamin extract against DNCB-induced atopic dermatitis in BALB/c mice. BMC Complementary and Alternative Medicine, 2015, 15, 353.	3.7	25
771	Influence and effect of the human microbiome in allergy and asthma. Current Opinion in Rheumatology, 2015, 27, 373-380.	2.0	49
772	Immunoregulation of multiple sclerosis by gut environmental factors. Clinical and Experimental Neuroimmunology, 2015, 6, 362-369.	0.5	5
773	An Appropriate Cutoff Value for Determining the Colonization of <i>Helicobacter pylori</i> by the Pyrosequencing Method: Comparison with Conventional Methods. Helicobacter, 2015, 20, 370-380.	1.6	61
774	A new era of secreted phospholipase A ₂ . Journal of Lipid Research, 2015, 56, 1248-1261.	2.0	99
775	<i>Lactobacillus rhamnosus</i> GG Dosage Affects the Adjuvanticity and Protection Against Rotavirus Diarrhea in Gnotobiotic Pigs. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 834-843.	0.9	33

#	Article	IF	CITATIONS
776	Fecal Microbiota Composition of Breastâ€Fed Infants Is Correlated With Human Milk Oligosaccharides Consumed. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 825-833.	0.9	201
777	Understanding probiotics' role in allergic children. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 495-503.	1.1	21
778	Gut Microbiota and Energy Expenditure in Health and Obesity. Journal of Clinical Gastroenterology, 2015, 49, S13-S19.	1.1	22
779	Oral administration of <i>Lactobacillus casei</i> variety <i>rhamnosus</i> partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. Journal of Applied Microbiology, 2015, 119, 560-570.	1.4	35
780	Commensal Microbiome Promotes Resistance to Local and Systemic Infections. Chinese Medical Journal, 2015, 128, 2250-2255.	0.9	24
781	Comparative Analysis of Vaginal Bacterial Diversity in Northern-Chinese Women Associated With or Without Bacterial Vaginosis. , 2015, s5, .		0
782	Persistent Organic Pollutants Modify Gut Microbiota–Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation. Environmental Health Perspectives, 2015, 123, 679-688.	2.8	262
783	Determining the role of a probiotic in the restoration of intestinal microbial balance by molecular and cultural techniques. Genetics and Molecular Research, 2015, 14, 1526-1537.	0.3	9
784	Anaerobic Infections. , 2015, , 2736-2743.e1.		5
785	Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. Scientific World Journal, The, 2015, 2015, 1-15.	0.8	91
786	Effects of Oral Administration of Chitin Nanofiber on Plasma Metabolites and Gut Microorganisms. International Journal of Molecular Sciences, 2015, 16, 21931-21949.	1.8	16
787	Metabolic Interactions in the Gastrointestinal Tract (GIT): Host, Commensal, Probiotics, and Bacteriophage Influences. Microorganisms, 2015, 3, 913-932.	1.6	9
788	The Gut Microbiota Reduces Colonization of the Mesenteric Lymph Nodes and IL-12-Independent IFN-γ Production During Salmonella Infection. Frontiers in Cellular and Infection Microbiology, 2015, 5, 93.	1.8	15
789	Re-evaluating the environment in developmental evolution. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	24
790	Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Frontiers in Microbiology, 2015, 6, 825.	1.5	44
791	Regulation of lung immunity and host defense by the intestinal microbiota. Frontiers in Microbiology, 2015, 6, 1085.	1.5	301
792	Transcriptome Analysis of the White Body of the Squid Euprymna tasmanica with Emphasis on Immune and Hematopoietic Gene Discovery. PLoS ONE, 2015, 10, e0119949.	1.1	33
793	Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS ONE, 2015, 10, e0125495.	1.1	190

#	Article	IF	Citations
794	Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	68
795	Characterization of the human gut microbiome during travelers' diarrhea. Gut Microbes, 2015, 6, 110-119.	4.3	111
797	Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nature Medicine, 2015, 21, 808-814.	15.2	333
799	A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. Journal of Gastroenterology, 2015, 50, 928-939.	2.3	111
800	Development and Physiology of the Intestinal Mucosal Defense. , 2015, , 9-29.		8
801	The Mucosal Microbiome. , 2015, , 63-77.		2
802	Gnotobiology and the Study of Complex Interactions between the Intestinal Microbiota, Probiotics, and the Host. , 2015, , 109-133.		6
803	The Mucosal B Cell System. , 2015, , 623-681.		8
804	Mucosal-Resident T Lymphocytes with Invariant Antigen Receptors. , 2015, , 749-764.		0
805	Gut Microbiota and Intestinal Adaptive Immunity. , 2015, , 849-858.		0
806	Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environmental Microbiology, 2015, 17, 4954-4964.	1.8	279
808	From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 2015, 163, 1326-1332.	13.5	156
809	Which games are growing bacterial populations playing?. Journal of the Royal Society Interface, 2015, 12, 20150121.	1.5	51
810	An integrated strategy for functional analysis of microbial communities based on gene ontology and 16S rRNA gene. International Journal of Data Mining and Bioinformatics, 2015, 13, 63.	0.1	4
811	Infectious Causes of Necrotizing Enterocolitis. Clinics in Perinatology, 2015, 42, 133-154.	0.8	97
812	Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. Journal of Allergy and Clinical Immunology, 2015, 135, 100-109.e5.	1.5	118
813	The role of IL-10 in microbiome-associated immune modulation and disease tolerance. Cytokine, 2015, 75, 291-301.	1.4	30
814	<scp>dâ€</scp> amino carboxamideâ€based recruitment of dinitrophenol antibodies to bacterial surfaces via peptidoglycan remodeling. Biopolymers, 2015, 104, 351-359.	1.2	21

ARTICLE IF CITATIONS # Alterations in Antigen-Specific Naive CD4 T Cell Precursors after Sepsis Impairs Their Responsiveness 815 0.4 55 to Pathogen Challenge. Journal of Immunology, 2015, 194, 1609-1620. Gut microbial and short-chain fatty acid profiles in adults with chronic constipation before and 1.0 49 after treatment with lubiprostone. Anaerobe, 2015, 33, 33-41. The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. 817 5.0 350 Annual Review of Medicine, 2015, 66, 343-359. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in 818 Endocrine and Metabolic Disorders, 2015, 16, 55-65. MyD88 Signaling in T Cells Directs IgA-Mediated Control of the Microbiota to Promote Health. Cell 819 5.1 277 Host and Microbe, 2015, 17, 153-163. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. 820 154 Nature Immunology, 2015, 16, 237-245. Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences. Cell, 2015, 160, 821 13.5 828 37-47. Microbial Activities and Intestinal Homeostasis: A Delicate Balance Between Health and Disease. 2.3 Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 28-40. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. Annual Review of 823 9.5 227 Immunology, 2015, 33, 227-256. The intestinal microbiota: its role in health and disease. European Journal of Pediatrics, 2015, 174, 824 1.3 144 151-167. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in 825 1.6 150 children. Scientific Reports, 2014, 4, 7485. Drugging the gut microbiome. Nature Biotechnology, 2015, 33, 228-231. 826 9.4 46 Microbiology of Oral Biofilm-Dependent Diseases: Have We Made Significant Progress to Understand 827 0.5 15 and Treat These Diseases?. Current Oral Health Reports, 2015, 2, 37-47. Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 287-298. 1.0 Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver 829 1.7 25 injuries in rats fed a high-cholesterol diet. Applied Microbiology and Biotechnology, 2015, 99, 9111-9122. A commensal symbiotic factor derived from<i>Bacteroides fragilis</i>promotes human CD39⁺Foxp3⁺T cells and T_{reg}function. Gut Microbes, 2015, 6, 188 234-242. 831 Immuneâ€"microbiota interactions in health and disease. Clinical Immunology, 2015, 159, 122-127. 1.4 245 Metagenomics of the human intestinal tract: from who is there to what is done there. Current 4.1 Opinion in Food Science, 2015, 4, 64-68.

		CITATION REPORT		
#	Article		IF	CITATIONS
833	The multifaceted biology of plasmacytoid dendritic cells. Nature Reviews Immunology,	2015, 15, 471-485.	10.6	873
834	The immune system as a self-centered network of lymphocytes. Immunology Letters, 2	015, 166, 109-116.	1.1	9
835	The Environment of Regulatory T Cell Biology: Cytokines, Metabolites, and the Microbi in Immunology, 2015, 6, 61.	ome. Frontiers	2.2	116
836	Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Neuroscience, 2015, 16, 469-486.	ure Reviews	4.9	393
837	Engineering the Microbiome: a Novel Approach to Immunotherapy for Allergic and Imm Current Allergy and Asthma Reports, 2015, 15, 39.	iune Diseases.	2.4	13
838	Parallels Between Mammals and Flies in Inflammatory Bowel Disease. Healthy Ageing a 2015, , 151-189.	nd Longevity,	0.2	1
839	Influence of nutrient-derived metabolites on lymphocyte immunity. Nature Medicine, 2	015, 21, 709-718.	15.2	52
840	Emerging roles of gut microbiota and the immune system in the development of the er system. Journal of Clinical Investigation, 2015, 125, 956-964.	nteric nervous	3.9	87
841	Type 1 diabetes and gut microbiota: Friend or foe?. Pharmacological Research, 2015, 9	8, 9-15.	3.1	48
842	Gut microbiota and the development of pediatric diseases. Journal of Gastroenterology 720-726.	v, 2015, 50,	2.3	41
844	Correlation of Serum Thyroid Hormones Autoantibodies with Self-Reported Exposure to Disruptors in a Group of Nonsegmental Vitiligo Patients. Archives of Environmental Co and Toxicology, 2015, 69, 181-190.		2.1	18
845	Microbiota and Gut Stem Cells Cross-Talks: A New View of Epithelial Homeostasis. Curr Reports, 2015, 1, 48-52.	rent Stem Cell	0.7	15
846	Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad dive bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC G 2015, 16, 174.		1.2	60
847	Microbiota—implications for immunity and transplantation. Nature Reviews Nephrolo 342-353.	ogy, 2015, 11,	4.1	47
848	The significance and scope of evolutionary developmental biology: a vision for the 21st Evolution & Development, 2015, 17, 198-219.	t century.	1.1	92
849	An Integrative View of Microbiome-Host Interactions in Inflammatory Bowel Diseases. Microbe, 2015, 17, 577-591.	Cell Host and	5.1	235
850	The influence of the microbiota on the immune response to transplantation. Current C Organ Transplantation, 2015, 20, 1-7.	pinion in	0.8	28
851	Associations between Gut Microbial Colonization in Early Life and Respiratory Outcom Fibrosis. Journal of Pediatrics, 2015, 167, 138-147.e3.	es in Cystic	0.9	131

#	Article	IF	CITATIONS
852	Autoimmune host–microbiota interactions at barrier sites and beyond. Trends in Molecular Medicine, 2015, 21, 233-244.	3.5	100
853	Why Is Initial Bacterial Colonization of the Intestine Important to Infants' and Children's Health?. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 294-307.	0.9	252
854	Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance. Gut Microbes, 2015, 6, 24-32.	4.3	37
855	Oral Tolerance Failure upon Neonatal Gut Colonization with Escherichia coli Producing the Genotoxin Colibactin. Infection and Immunity, 2015, 83, 2420-2429.	1.0	29
856	The Gut Microbiome in Multiple Sclerosis. Current Treatment Options in Neurology, 2015, 17, 344.	0.7	87
857	Gut Microbiota: The Conductor in the Orchestra of Immune–Neuroendocrine Communication. Clinical Therapeutics, 2015, 37, 954-967.	1.1	163
858	Epithelial Cell Contributions to Intestinal Immunity. Advances in Immunology, 2015, 126, 129-172.	1.1	100
859	Early feeding and early life housing conditions influence the response towards a noninfectious lung challenge in broilers. Poultry Science, 2015, 94, 2041-2048.	1.5	28
860	Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350, 1079-1084.	6.0	2,539
861	TNFR2 Deficiency Acts in Concert with Gut Microbiota To Precipitate Spontaneous Sex-Biased Central Nervous System Demyelinating Autoimmune Disease. Journal of Immunology, 2015, 195, 4668-4684.	0.4	53
862	Nutritional control of immunity: Balancing the metabolic requirements with an appropriate immune function. Seminars in Immunology, 2015, 27, 300-309.	2.7	55
863	Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends in Endocrinology and Metabolism, 2015, 26, 758-770.	3.1	134
864	Dysbiotic gut microbiome: A key element of Crohn's disease. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 43, 36-49.	0.7	59
865	A new era of secreted phospholipase A2. Journal of Lipid Research, 2015, 56, 1248-1261.	2.0	186
866	Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics, 2015, 16, 631.	1.2	90
867	Effect of feeding a direct-fed microbial on total and antimicrobial-resistant fecal coliform counts in preweaned dairy calves. American Journal of Veterinary Research, 2015, 76, 780-788.	0.3	6
868	Revisiting the hygiene hypothesis for allergy and asthma. Journal of Allergy and Clinical Immunology, 2015, 136, 860-865.	1.5	130
869	Bacteria Come into Focus: New Tools for Visualizing the Microbiota. Cell Host and Microbe, 2015, 18, 392-394.	5.1	10

#	Article	IF	CITATIONS
870	The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhalation Toxicology, 2015, 27, 451-461.	0.8	19
871	In vivo imaging and tracking of host–microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nature Medicine, 2015, 21, 1091-1100.	15.2	178
872	Dps and DpsL Mediate Survival <i>In Vitro</i> and <i>In Vivo</i> during the Prolonged Oxidative Stress Response in Bacteroides fragilis. Journal of Bacteriology, 2015, 197, 3329-3338.	1.0	17
873	Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nature Reviews Genetics, 2015, 16, 611-622.	7.7	281
874	Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Canadian Journal of Microbiology, 2015, 61, 771-784.	0.8	47
875	Intestinal Microbiota in Animal Models of Inflammatory Diseases. ILAR Journal, 2015, 56, 179-191.	1.8	40
876	A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR Journal, 2015, 56, 250-264.	1.8	28
877	Manipulating the Gut Microbiota: Methods and Challenges: FigureÂ1. ILAR Journal, 2015, 56, 205-217.	1.8	114
878	Gut Microbiome and the Development of Food Allergy and Allergic Disease. Pediatric Clinics of North America, 2015, 62, 1479-1492.	0.9	60
879	Potential Etiologic Factors of Microbiome Disruption in Autism. Clinical Therapeutics, 2015, 37, 976-983.	1.1	48
880	Assessing the Intestinal Microbiota in the SHINE Trial. Clinical Infectious Diseases, 2015, 61, S738-S744.	2.9	14
881	Intestinal epithelial cell transported TLR2 ligand stimulates Ly6C+ monocyte differentiation in a G-CSF dependent manner. Immunobiology, 2015, 220, 1255-1265.	0.8	5
882	Could microbial therapy boost cancer immunotherapy?. Science, 2015, 350, 1031-1032.	6.0	36
883	Standardised animal models of host microbial mutualism. Mucosal Immunology, 2015, 8, 476-486.	2.7	112
884	Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME Journal, 2015, 9, 1543-1556.	4.4	196
885	The Role of the Gut Microbiota in the Pathogenesis of Antiphospholipid Syndrome. Current Rheumatology Reports, 2015, 17, 472.	2.1	32
886	Commensal enteric bacteria lipopolysaccharide impairs host defense against disseminated Candida albicans fungal infection. Mucosal Immunology, 2015, 8, 886-895.	2.7	7
887	Antibiotics in early life and obesity. Nature Reviews Endocrinology, 2015, 11, 182-190.	4.3	427

		CITATION REP	ORT	
#	Article		IF	Citations
888	The intestine-renal connection in IgA nephropathy. Nephrology Dialysis Transplantation, 2015, 360-366.	30,	0.4	67
889	Towards a better understanding of <i><scp>A</scp>pis mellifera</i> and <i><scp>V</scp>arro destructor</i> microbiomes: introducing â€~ <scp>phyloh</scp> ' as a novel phylogenetic d analysis tool. Molecular Ecology Resources, 2015, 15, 697-710.	a versity	2.2	17
890	The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin and Experimental Allergy, 2015, 45, 43-53.	cal	1.4	166
891	Commensal microbiota regulates T cell fate decision in the gut. Seminars in Immunopathology, 17-25.	2015, 37,	2.8	90
892	Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology, 2015, 25, 368-375.		1.3	67
893	Solving the genetic puzzle of systemic lupus erythematosus. Pediatric Nephrology, 2015, 30, 1	735-1748.	0.9	9
894	Molecular details of a starch utilization pathway in the human gut symbiont <scp><i>E</i></scp> <i>ubacterium rectale</i> . Molecular Microbiology, 2015, 95, 209-230.		1.2	104
895	Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrology Dialysis Transplantation, 2015, 30, 924-933.		0.4	167
896	Effects of gluten-free, dairy-free diet on childhood nephrotic syndrome and gut microbiota. Ped Research, 2015, 77, 252-255.	iatric	1.1	32
897	Metabolic control of regulatory T cell development and function. Trends in Immunology, 2015,	36, 3-12.	2.9	227
898	Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi So of Agricultural Sciences, 2016, 15, 99-111.	ciety	1.0	136
899	Helminth–bacteria interaction in the gut of domestic pigeon Columba livia domestica. Journa Parasitic Diseases, 2016, 40, 116-123.	l of	0.4	3
900	Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World Jou Gastroenterology, 2016, 22, 9257.	rnal of	1.4	55
901	Proteomics and Human Diseases. Journal of Proteomics and Bioinformatics, 2016, 09, .		0.4	9
902	Importance of the Microbiota in Early Life and Influence on Future Health. , 2016, , 159-184.			5
903	Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology, 2016, 22,	501.	1.4	578
904	Role of the Microbiota in Immune Development. , 2016, , 109-119.			0
905	Comparison of Gastric Microbiota Between Gastric Juice and Mucosa by Next Generation Seque Method. Journal of Cancer Prevention, 2016, 21, 60-65.	encing	0.8	56

#	Article	IF	CITATIONS
906	Probiotics as an Adjuvant Therapy in Major Depressive Disorder. Current Neuropharmacology, 2016, 14, 952-958.	1.4	44
907	Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells. Mediators of Inflammation, 2016, 2016, 1-8.	1.4	19
908	A Randomized, Double-Blind, Placebo-Controlled Trial: The Efficacy of Multispecies Probiotic Supplementation in Alleviating Symptoms of Irritable Bowel Syndrome Associated with Constipation. BioMed Research International, 2016, 2016, 1-10.	0.9	73
909	The Pathology of Methanogenic Archaea in Human Gastrointestinal Tract Disease. , 0, , .		9
910	The Physiological Induction of Tolerance to Allergens. , 2016, , 153-170.		5
911	Microbiome and the Effect on Immune Response. , 2016, , 171-194.		0
912	Microbial Influences on the Development of Atopy. , 2016, , 209-217.		1
913	Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses. Vaccines, 2016, 4, 19.	2.1	58
914	The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation. Frontiers in Cellular and Infection Microbiology, 2016, 6, 15.	1.8	60
915	Dysbiosis May Trigger Autoimmune Diseases via Inappropriate Post-Translational Modification of Host Proteins. Frontiers in Microbiology, 2016, 7, 84.	1.5	79
916	Novel Approach for Evaluation of Bacteroides fragilis Protective Role against Bartonella henselae Liver Damage in Immunocompromised Murine Model. Frontiers in Microbiology, 2016, 7, 1750.	1.5	10
917	Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology, 2016, 16, 150.	1.3	48
918	Spatial and Temporal Changes in the Broiler Chicken Cecal and Fecal Microbiomes and Correlations of Bacterial Taxa with Cytokine Gene Expression. Frontiers in Veterinary Science, 2016, 3, 11.	0.9	169
919	Allergic diseases among children: nutritional prevention and intervention. Therapeutics and Clinical Risk Management, 2016, 12, 361.	0.9	34
920	Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment. BMC Genomics, 2016, 17, 440.	1.2	55
921	Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. ELife, 2016, 5, .	2.8	81
922	Patterns of Kingella kingae Disease Outbreaks. Pediatric Infectious Disease Journal, 2016, 35, 340-346.	1.1	41
923	Microbiota as Therapeutic Targets. Digestive Diseases, 2016, 34, 558-565.	0.8	14

#	Article	IF	CITATIONS
924	Male Syrian Hamsters Experimentally Infected with <i><scp>H</scp>elicobacter</i> spp. of the <i><scp>H</scp>.Âbilis</i> Cluster Develop <scp>MALT</scp> â€Associated Gastrointestinal Lymphomas. Helicobacter, 2016, 21, 201-217.	1.6	8
925	Role of Gut Microbiome in the Modulation of Environmental Toxicants and Therapeutic Agents. , 2016, , 491-518.		2
926	Analysis of the intestinal microbial community and inferred functional capacities during the host response to <i>Pneumocystis</i> pneumonia. Experimental Lung Research, 2016, 42, 425-439.	0.5	26
928	Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish. Scientific Reports, 2016, 6, 39054.	1.6	40
929	A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages. Scientific Reports, 2016, 6, 29401.	1.6	79
931	Microbiota, regulatory T cell subsets, and allergic disorders. Allergo Journal International, 2016, 25, 114-123.	0.9	26
932	Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2016, 22, 2767-2787.	0.9	41
933	The role of the gut microbiota in food allergy. Current Opinion in Pediatrics, 2016, 28, 748-753.	1.0	79
934	SkÅ,ad mikrobiomu jelit we wczesnym okresie życia a ustÄ™powanie alergii na biaÅ,ka mleka. Alergologia Polska - Polish Journal of Allergology, 2016, 3, T69-T81.	0.0	0
935	Predicting disease-microbe association by random walking on the heterogeneous network. , 2016, , .		11
936	Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein–Polysaccharide Interactions. Journal of the American Chemical Society, 2016, 138, 9109-9118.	6.6	17
937	Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology, 2016, 26, 1029-1040.	1.3	65
938	Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 2016, 16, 341-352.	10.6	2,212
940	Early microbial contact, the breast milk microbiome and child health. Journal of Developmental Origins of Health and Disease, 2016, 7, 5-14.	0.7	106
941	Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. British Journal of Nutrition, 2016, 116, 191-203.	1.2	72
942	Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird. Journal of Experimental Biology, 2016, 219, 1985-93.	0.8	7
943	Germ-Free Mice Model for Studying Host–Microbial Interactions. Methods in Molecular Biology, 2016, 1438, 123-135.	0.4	51
944	Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont. MBio, 2016, 7, e02134-15.	1.8	62

		CITATION REPORT		
#	Article		IF	CITATIONS
945	How colonization by microbiota in early life shapes the immune system. Science, 2016, 35	52, 539-544.	6.0	1,378
946	Bugging inflammation: role of the gut microbiota. Clinical and Translational Immunology,	2016, 5, e72.	1.7	49
947	Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabo International Immunopharmacology, 2016, 37, 79-86.	lite axis.	1.7	16
948	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular N 2016, 22, 458-478.	Medicine,	3.5	630
949	Early-life gut microbiome composition and milk allergy resolution. Journal of Allergy and Cl Immunology, 2016, 138, 1122-1130.	linical	1.5	307
950	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinolog Metabolism, 2016, 27, 831-843.	y and	3.1	195
951	The Role of the Microbiota in Shaping Infectious Immunity. Trends in Immunology, 2016, 3	37, 647-658.	2.9	81
952	When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of th Society B: Biological Sciences, 2016, 371, 20150504.	ne Royal	1.8	100
953	Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host and Microbe, 2016, 20, 535-547.		5.1	108
954	The Roles of the Secreted Phospholipase A2 Gene Family in Immunology. Advances in Imm 132, 91-134.	iunology, 2016,	1.1	64
955	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therap Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	eutic	1.6	12
956	Inflammation and Stroke: An Overview. Neurotherapeutics, 2016, 13, 661-670.		2.1	631
957	The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implicatio Stroke. Neurotherapeutics, 2016, 13, 762-774.	ons for	2.1	89
958	Dietary supplementation with Bifidobacterium longum subsp. infantis (B. infantis) in healt infants: study protocol for a randomised controlled trial. Trials, 2016, 17, 340.	hy breastfed	0.7	7
959	Qualitatively and quantitatively investigating the regulation of intestinal microbiota on the metabolism of panax notoginseng saponins. Journal of Ethnopharmacology, 2016, 194, 33		2.0	46
960	The Microbiome and Musculoskeletal Conditions of Aging: A Review of Evidence for Impac Potential Therapeutics. Journal of Bone and Mineral Research, 2016, 31, 261-269.	ct and	3.1	81
961	Comparative analysis of the fecal bacterial community ofÂfive harbor seals (Phoca vitulina MicrobiologyOpen, 2016, 5, 782-792.	a).	1.2	28
962	Metabolites: messengers between the microbiota and the immune system. Genes and Dev 30, 1589-1597.	velopment, 2016,	2.7	321

#	Article	IF	CITATIONS
963	Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cellular Microbiology, 2016, 18, 632-644.	1.1	113
964	The Microbiota Contributes to CD8 ⁺ T Cell Activation and Nutrient Malabsorption following Intestinal Infection with Giardia duodenalis. Infection and Immunity, 2016, 84, 2853-2860.	1.0	42
965	Incorporating the gut microbiota into models of human and nonâ€human primate ecology and evolution. American Journal of Physical Anthropology, 2016, 159, 196-215.	2.1	99
966	The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clinical and Translational Immunology, 2016, 5, e90.	1.7	36
967	Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome. Cancer Research, 2016, 76, 4602-4607.	0.4	92
968	The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Medicine, 2016, 8, 77.	3.6	282
969	Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 590-600.	8.2	381
970	Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2016, , .	0.6	9
971	Patient-Specific <i>Bacteroides</i> Genome Variants in Pouchitis. MBio, 2016, 7, .	1.8	38
973	Microbiota, regulatory T cell subsets, and allergic disorders. Allergo Journal, 2016, 25, 16-25.	0.1	0
974	Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools. Advances in Biochemical Engineering/Biotechnology, 2016, 156, 433-464.	0.6	12
975	Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7894-7899.	3.3	120
976	The Microbiota and Its Modulation in Immune-Mediated Disorders. , 2016, , 191-227.		1
977	The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local T _H 17 Responses. Applied and Environmental Microbiology, 2016, 82, 7185-7196.	1.4	126
978	Antibiotic Use in Animal Feed and its Impact on Antibiotic Resistance in Human Pathogens. , 2016, , 145-164.		1
979	Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Scientific Reports, 2016, 6, 30673.	1.6	153
980	Novel perspectives on the role of the human microbiota in regenerative medicine and surgery. Biomedical Reports, 2016, 5, 519-524.	0.9	10
981	Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016, 167, 1125-1136.e8.	13.5	806

#	Article	IF	CITATIONS
982	Development of an Antigen-driven Colitis Model to Study Presentation of Antigens by Antigen Presenting Cells to T Cells. Journal of Visualized Experiments, 2016, , .	0.2	0
983	Immunological mechanisms involved in probiotic-mediated protection against Citrobacter rodentium-induced colitis. Beneficial Microbes, 2016, 7, 397-407.	1.0	15
984	The microbiome in asthma. Current Opinion in Pediatrics, 2016, 28, 764-771.	1.0	57
985	Understanding Luminal Microorganisms and Their Potential Effectiveness in Treating Intestinal Inflammation. Inflammatory Bowel Diseases, 2016, 22, 194-201.	0.9	8
986	Shaping Theoretic Foundations of Holobiont-Like Systems. Progress in Botany Fortschritte Der Botanik, 2016, , 219-244.	0.1	4
987	The relativity of Darwinian populations and the ecology of endosymbiosis. Biology and Philosophy, 2016, 31, 619-637.	0.7	8
988	The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell, 2016, 165, 1708-1720.	13.5	484
989	Whole genome sequencing of "Faecalibaculum rodentium―ALO17, isolated from C57BL/6J laboratory mouse feces. Gut Pathogens, 2016, 8, 3.	1.6	35
990	How the microbiota shapes rheumatic diseases. Nature Reviews Rheumatology, 2016, 12, 398-411.	3.5	122
991	The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biology, 2016, 14, 38.	1.7	330
992	Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 2016, 38, 455-464.	1.2	63
993	Enhanced vaccination effect against influenza by prebiotics in elderly patients receiving enteral nutrition. Geriatrics and Gerontology International, 2016, 16, 205-213.	0.7	37
994	The microbiota as a component of the celiac disease and non-celiac gluten sensitivity. Clinical Nutrition Experimental, 2016, 6, 17-24.	2.0	28
995	The microbial environment and its influence on asthma prevention in early life. Journal of Allergy and Clinical Immunology, 2016, 137, 680-689.	1.5	162
996	The Microbiome, Systemic Immune Function, and Allotransplantation. Clinical Microbiology Reviews, 2016, 29, 191-199.	5.7	39
997	A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing. Cell Host and Microbe, 2016, 19, 470-480.	5.1	134
998	Distinct mechanisms of the newborn innate immunity. Immunology Letters, 2016, 173, 42-54.	1.1	73
999	Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 2016, 7, 126-135.	4.3	38

#	Article	IF	CITATIONS
1000	Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens. Poultry Science, 2016, 95, 1543-1554.	1.5	63
1001	Indigenous microbiota and Leishmaniasis. Parasite Immunology, 2016, 38, 37-44.	0.7	21
1002	Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδT cells. Nature Medicine, 2016, 22, 516-523.	15.2	770
1003	The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?. Current Obesity Reports, 2016, 5, 51-64.	3.5	83
1004	Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nature Communications, 2016, 7, 10391.	5.8	784
1005	Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chemical Biology, 2016, 23, 18-30.	2.5	115
1006	Sex differences in the gut microbiome–brain axis across the lifespan. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150122.	1.8	211
1007	Modulation of the <i>eps</i> -ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiology Ecology, 2016, 92, fiw056.	1.3	44
1008	The Potential Influence of the Microbiota and Probiotics on Women during Long Spaceflights. Women's Health, 2016, 12, 193-198.	0.7	12
1009	The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of Stress, 2016, 4, 23-33.	1.9	399
1010	The mouse gut microbiome revisited: From complex diversity to model ecosystems. International Journal of Medical Microbiology, 2016, 306, 316-327.	1.5	70
1011	Probiotics in early life: a preventative and treatment approach. Food and Function, 2016, 7, 1752-1768.	2.1	35
1012	Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells. Microbes and Infection, 2016, 18, 378-386.	1.0	35
1013	Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmunity Reviews, 2016, 15, 379-392.	2.5	107
1014	Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes, 2016, 7, 68-74.	4.3	98
1015	Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. , 2016, 158, 52-62.		394
1016	Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. Advances in Experimental Medicine and Biology, 2016, 874, 301-336.	0.8	50
1017	Synbiotics. , 2016, , 567-574.		3

#	Article	IF	Citations
1018	Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME Journal, 2016, 10, 460-477.	4.4	100
1019	An analysis of human microbe–disease associations. Briefings in Bioinformatics, 2017, 18, 85-97.	3.2	173
1020	Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple. NeurologÃa, 2017, 32, 175-184.	0.3	27
1021	Gut microbiota-bone axis. Critical Reviews in Food Science and Nutrition, 2017, 57, 1664-1672.	5.4	72
1022	Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology, 2017, 42, 178-192.	2.8	174
1023	Gut microbiome in chronic kidney disease: challenges and opportunities. Translational Research, 2017, 179, 24-37.	2.2	186
1024	The microbiome and atopic eczema: More than skin deep. Australasian Journal of Dermatology, 2017, 58, 18-24.	0.4	46
1025	Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology, 2017, 18, 2.	0.9	492
1026	Host-Microbiota Interactions Shape Local and Systemic Inflammatory Diseases. Journal of Immunology, 2017, 198, 564-571.	0.4	99
1027	An expanding stage for commensal microbes in host immune regulation. Cellular and Molecular Immunology, 2017, 14, 339-348.	4.8	35
1028	Helicobacter pylori infection is associated with an altered gastric microbiota in children. Mucosal Immunology, 2017, 10, 1169-1177.	2.7	80
1029	Patterns in Gut Microbiota Similarity Associated with Degree of Sociality among Sex Classes of a Neotropical Primate. Microbial Ecology, 2017, 74, 250-258.	1.4	70
1030	Carcinogenesis and therapeutics: the microbiota perspective. Nature Microbiology, 2017, 2, 17008.	5.9	108
1031	Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 2017, 168, 928-943.e11.	13.5	554
1032	Microbe Hunting Hits Home. Cell Host and Microbe, 2017, 21, 282-285.	5.1	5
1033	From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity. Microbiology Spectrum, 2017, 5, .	1.2	7
1034	AMPlified Defense: Antimicrobial Peptides During Candida albicans Infection. , 2017, , 185-203.		0
1035	Age-Dependent Allergic Asthma Development and Cystathionine Gamma-Lyase Deficiency. Antioxidants and Redox Signaling, 2017, 27, 931-944.	2.5	18

#	Article	IF	Citations
1036	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
1037	Roles of the intestinal microbiota in pathogen protection. Clinical and Translational Immunology, 2017, 6, e128.	1.7	142
1038	Virulence factor activity relationships (VFARs): a bioinformatics perspective. Environmental Sciences: Processes and Impacts, 2017, 19, 247-260.	1.7	16
1039	Tunable Expression Tools Enable Single-Cell Strain Distinction in the Gut Microbiome. Cell, 2017, 169, 538-546.e12.	13.5	172
1040	Association of Maternal Gestational Weight Gain With the Infant Fecal Microbiota. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, 509-515.	0.9	16
1041	The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatric Research, 2017, 82, 387-395.	1.1	120
1042	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
1043	Spheres of Hope, Packets of Doom: the Good and Bad of Outer Membrane Vesicles in Interspecies and Ecological Dynamics. Journal of Bacteriology, 2017, 199, .	1.0	69
1044	Gastrointestinal Pharmacology. Handbook of Experimental Pharmacology, 2017, , .	0.9	13
1045	Homeostatic Immunity and the Microbiota. Immunity, 2017, 46, 562-576.	6.6	840
1046	Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5497-5502.	3.3	23
1047	Multi-receptor detection of individual bacterial products by the innate immune system. Nature Reviews Immunology, 2017, 17, 376-390.	10.6	163
1048	Single Delivery of High-Diversity Fecal Microbiota Preparation by Colonoscopy Is Safe and Effective in Increasing Microbial Diversity in Active Ulcerative Colitis. Inflammatory Bowel Diseases, 2017, 23, 903-911.	0.9	91
1049	An insider's perspective: Bacteroides as a window into the microbiome. Nature Microbiology, 2017, 2, 17026.	5.9	416
1050	Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2017, 2, 17057.	5.9	553
1051	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
1052	Introduction to the human gut microbiota. Biochemical Journal, 2017, 474, 1823-1836.	1.7	1,988
1053	The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 2017, 46, 910-926.	6.6	342

	CITATION	REPORT	
#	Article	IF	Citations
1054	The gut microbiome and hypertension. Current Opinion in Nephrology and Hypertension, 2017, 26, 1-8.	1.0	80
1055	The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Experimental and Molecular Medicine, 2017, 49, e339-e339.	3.2	146
1056	Microbiota in T-cell homeostasis and inflammatory diseases. Experimental and Molecular Medicine, 2017, 49, e340-e340.	3.2	143
1057	Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1859-1867.	2.7	64
1058	Early-life origin of intestinal inflammatory disorders. Nutrition Reviews, 2017, 75, 175-187.	2.6	24
1059	Investigation of gut microbial communities associated with indigenous honey bee (Apis mellifera) Tj ETQq1 1 24, 1061-1068.	l 0.784314 rg 1.8	BT /Overloc 36
1060	The effect of penicillin administration in early life on murine gut microbiota and blood lymphocyte subsets. Anaerobe, 2017, 47, 18-24.	1.0	4
1061	The Microbiome and Human Biology. Annual Review of Genomics and Human Genetics, 2017, 18, 65-86.	2.5	266
1062	Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. Journal of Autoimmunity, 2017, 83, 31-42.	3.0	120
1063	Role of intestinal microbiota in the development of multiple sclerosis. NeurologÃa (English Edition), 2017, 32, 175-184.	0.2	12
1064	Fecal Microbiota Succession of Piglets from Birth to Post-weaning by 454 Pyrosequencing Analysis. Transactions of Tianjin University, 2017, 23, 211-220.	3.3	9
1065	Microbiota and reproducibility of rodent models. Lab Animal, 2017, 46, 114-122.	0.2	186
1066	Reduced Th22 cell proportion and prevention of atopic dermatitis in infants following maternal probiotic supplementation. Clinical and Experimental Allergy, 2017, 47, 1014-1021.	1.4	46
1068	Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 2017, 120, 1183-1196.	2.0	1,079
1069	Sensitivity to oxazolone induced dermatitis is transferable with gut microbiota in mice. Scientific Reports, 2017, 7, 44385.	1.6	52
1070	CD4+ virtual memory: Antigen-inexperienced T cells reside in the naÃ ⁻ ve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity. Journal of Autoimmunity, 2017, 77, 76-88.	3.0	24
1071	The Role of the Gastrointestinal Microbiota in Visceral Pain. Handbook of Experimental Pharmacology, 2017, 239, 269-287.	0.9	47
1072	Irritable bowel syndrome: a gut microbiota-related disorder?. American Journal of Physiology - Renal Physiology, 2017, 312, G52-G62.	1.6	198

#	Article	IF	Citations
" 1073	Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Medicinal Research Reviews, 2017, 37, 1140-1185.	5.0	241
1074	Variability in Antibiotic Regimens for Surgical Necrotizing Enterocolitis Highlights the Need for New Guidelines. Surgical Infections, 2017, 18, 215-220.	0.7	30
1075	Microbiome and chronic inflammatory bowel diseases. Journal of Molecular Medicine, 2017, 95, 21-28.	1.7	14
1076	Administration of non-pathogenic isolates of Escherichia coli and Clostridium perfringens type A to piglets in a herd affected with a high incidence of neonatal diarrhoea. Animal, 2017, 11, 670-676.	1.3	7
1077	Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood, 2017, 129, 171-176.	0.6	98
1078	The synergy between ionizing radiation and immunotherapy in the treatment of prostate cancer. Immunotherapy, 2017, 9, 1005-1018.	1.0	2
1079	Beneficial effects of a probiotic blend on gastrointestinal side effects induced by leflunomide and amlodipine in a rat model. Beneficial Microbes, 2017, 8, 801-808.	1.0	9
1080	Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens. Applied and Environmental Microbiology, 2017, 83, .	1.4	47
1081	A Two-Component System Regulates Bacteroides fragilis Toxin to Maintain Intestinal Homeostasis and Prevent Lethal Disease. Cell Host and Microbe, 2017, 22, 443-448.e5.	5.1	22
1082	A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. Cell Host and Microbe, 2017, 22, 494-506.e8.	5.1	82
1083	Household triclosan and triclocarban effects on the infant and maternal microbiome. EMBO Molecular Medicine, 2017, 9, 1732-1741.	3.3	76
1084	Indoles from commensal bacteria extend healthspan. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7506-E7515.	3.3	136
1085	Building conventions for unconventional lymphocytes. Immunological Reviews, 2017, 279, 52-62.	2.8	17
1086	Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunological Reviews, 2017, 279, 8-22.	2.8	101
1087	Interplay of innate lymphoid cells and the microbiota. Immunological Reviews, 2017, 279, 36-51.	2.8	50
1088	Regulation of Inflammatory Signaling in Health and Disease. Advances in Experimental Medicine and Biology, 2017, , .	0.8	7
1089	Microbial Factors in Inflammatory Diseases and Cancers. Advances in Experimental Medicine and Biology, 2017, 1024, 153-174.	0.8	20
1090	Biochemical Mechanisms of Pathogen Restriction by Intestinal Bacteria. Trends in Biochemical Sciences, 2017, 42, 887-898.	3.7	39

#	Article	IF	CITATIONS
1091	Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. American Journal of Clinical Nutrition, 2017, 106, 1274-1286.	2.2	124
1092	Key players in the immune response to biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews, 2017, 114, 184-192.	6.6	259
1093	Impact of the Microbiota on Bacterial Infections during Cancer Treatment. Trends in Microbiology, 2017, 25, 992-1004.	3.5	36
1094	The Microbiome in Crohn's Disease. Gastroenterology Clinics of North America, 2017, 46, 481-492.	1.0	45
1095	Extending epigenesis: from phenotypic plasticity to the bio-cultural feedback. Biology and Philosophy, 2017, 32, 705-728.	0.7	15
1096	Eco-Aging: stem cells and microbes are controlled by aging antagonist FoxO. Current Opinion in Microbiology, 2017, 38, 181-187.	2.3	26
1097	Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Animal Feed Science and Technology, 2017, 233, 104-119.	1.1	68
1098	The evolution of the host microbiome as an ecosystem on a leash. Nature, 2017, 548, 43-51.	13.7	687
1099	<i>Lactobacillus reuteri</i> induces gut intraepithelial CD4 ⁺ CD8αα ⁺ T cells. Science, 2017, 357, 806-810.	6.0	543
1100	Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microbial Ecology in Health and Disease, 2017, 28, 1322447.	3.8	41
1101	Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Science Immunology, 2017, 2, .	5.6	167
1102	Infectious Agents in Childhood Leukemia. Archives of Medical Research, 2017, 48, 305-313.	1.5	4
1103	Colorectal carcinoma masked by systemic inflammatory response syndrome: A case report. Oncology Letters, 2017, 14, 4906-4910.	0.8	1
1104	Gut Microbiome in Inflammatory Bowel Disease and Other Chronic Immune-Mediated Inflammatory Diseases. Inflammatory Intestinal Diseases, 2017, 2, 116-123.	0.8	71
1105	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	1,118
1106	Changes in the Qualitative and Quantitative Composition of the Intestinal Microflora in Rats in Experimental Allergic Encephalomyelitis. Neuroscience and Behavioral Physiology, 2017, 47, 328-336.	0.2	0
1108	Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages. Gut Pathogens, 2017, 9, 27.	1.6	24
1109	Prioritizing disease-causing microbes based on random walking on the heterogeneous network. Methods, 2017, 124, 120-125.	1.9	14

#	Article	IF	CITATIONS
1110	The Critical Roles of Polysaccharides in Gut Microbial Ecology and Physiology. Annual Review of Microbiology, 2017, 71, 349-369.	2.9	185
1111	Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state. Mucosal Immunology, 2017, 10, 936-945.	2.7	25
1112	Factors influencing the infant gut microbiome at age 3-6Âmonths: Findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). Journal of Allergy and Clinical Immunology, 2017, 139, 482-491.e14.	1.5	125
1113	An introduction to microbiome analysis for human biology applications. American Journal of Human Biology, 2017, 29, e22931.	0.8	22
1114	The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Translational Research, 2017, 179, 126-138.	2.2	27
1115	Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2017, 52, 183-190.	1.3	50
1116	Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology, 2017, 10, 18-26.	2.7	533
1117	Biological roles of glycans. Glycobiology, 2017, 27, 3-49.	1.3	1,676
1118	Eye of the Finch: characterization of the ocular microbiome of house finches in relation to mycoplasmal conjunctivitis. Environmental Microbiology, 2017, 19, 1439-1449.	1.8	17
1119	The gutâ€kidney axis in chronic renal failure: A new potential target for therapy. Hemodialysis International, 2017, 21, 323-334.	0.4	42
1120	Altered Gut Microbiota Profiles in Sows and Neonatal Piglets Associated with Porcine Epidemic Diarrhea Virus Infection. Scientific Reports, 2017, 7, 17439.	1.6	39
1121	Resident Microbiome Disruption with Antibiotics Enhances Virulence of a Colonizing Pathogen. Scientific Reports, 2017, 7, 16177.	1.6	33
1122	Interplay between Gut Microbiota and T Lymphocytes in Colorectal Cancer. Colorectal Cancer Open Access, 2017, 03, .	0.0	2
1123	The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. Annals of Translational Medicine, 2017, 5, 145-145.	0.7	29
1125	Probiotics in Asthma and Allergy Prevention. Frontiers in Pediatrics, 2017, 5, 165.	0.9	55
1126	Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus kefiri Administration. Nutrients, 2017, 9, 470.	1.7	33
1127	Gut Microbiota as a Target for Preventive and Therapeutic Intervention against Food Allergy. Nutrients, 2017, 9, 672.	1.7	81
1128	Parenteral Nutrition-Associated Liver Disease: The Role of the Gut Microbiota. Nutrients, 2017, 9, 987.	1.7	54

ARTICLE IF CITATIONS Gut–CNS-Axis as Possibility to Modulate Inflammatory Disease Activity—Implications for Multiple 1129 37 1.8 Sclerosis. International Journal of Molecular Sciences, 2017, 18, 1526. Role of human microbiome and selected bacterial infections in the pathogenesis of rheumatoid 29 arthritis. Reumatologia, 2017, 55, 242-250. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection 1131 1.8 50 in Mice. Frontiers in Cellular and Infection Microbiology, 2017, 7, 170. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Frontiers in Immunology, 2017, 8, 265. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological 1133 2.2 144 Perspective. Frontiers in Immunology, 2017, 8, 788. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Frontiers in 2.2 Immunology, 2017, 8, 1164. Human Gut Symbiont Roseburia hominis Promotes and Regulates Innate Immunity. Frontiers in 1135 2.2 128 Immunology, 2017, 8, 1166. Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice. Frontiers in Immunology, 2017, 8, 1385. Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. 1137 2.2 105 Frontiers in Immunology, 2017, 8, 1674. Protective Microbiota: From Localized to Long-Reaching Co-Immunity. Frontiers in Immunology, 2017, 2.2 8, 1678. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective 1139 Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-Î^oB Pathway. Frontiers 167 1.5 in Microbiology, 2017, 8, 114. Safety Evaluation of a Novel Strain of Bacteroides fragilis. Frontiers in Microbiology, 2017, 8, 435. 1140 1.5 1141 Evolutionary Biology Needs Wild Microbiomes. Frontiers in Microbiology, 2017, 8, 725. 1.5 179 MicroRNAs-Based Inter-Domain Communication between the Host and Members of the Gut Microbiome. 1142 1.5 46 Frontiers in Microbiology, 2017, 8, 1896. Promotion of Early Gut Colonization by Probiotic Intervention on Microbiota Diversity in Pregnant 1143 1.5 26 Sows. Frontiers in Microbiology, 2017, 8, 2028. Early-Life Host–Microbiome Interphase: The Key Frontier for Immune Development. Frontiers in 1144 Pediatrics, 2017, 5, 111. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. 1145 0.9 52 Journal of Immunology Research, 2017, 2017, 1-14. Role of the Gastrointestinal Tract Microbiome in the Pathophysiology of Diabetes Mellitus. Journal of 1146 Diabetes Research, 2017, 2017, 1-9.

	СІТАТІО	CITATION REPORT	
#	ARTICLE A Review of the Oesophageal Microbiome in Health and Disease. Methods in Microbiology, 2017, , 19-35.	IF 0.4	CITATIONS 2
1147	A Review of the Oesophagear Microbiome in Health and Disease. Methods in Microbiology, 2017, , 19-55.	0.4	2
1148	Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Network, 2017, 17, 1.	1.6	147
1149	The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1Î ² -induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS ONE, 2017, 12, e0172738.	1.1	55
1150	TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS ONE, 2017, 12, e0180025.	1.1	70
1151	The microbiome and the hallmarks of cancer. PLoS Pathogens, 2017, 13, e1006480.	2.1	111
1152	The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 2017, 12, e0178426.	1.1	175
1153	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5, 71.	4.9	117
1154	Signalling from the gut lumen. Animal Production Science, 2017, 57, 2175.	0.6	6
1155	Microbiota Influences Vaccine and Mucosal Adjuvant Efficacy. Immune Network, 2017, 17, 20.	1.6	19
1156	Isolation and Characterization of a Shewanella Phage–Host System from the Gut of the Tunicate, Ciona intestinalis. Viruses, 2017, 9, 60.	1.5	18
1157	Basic Principles of Formulation for Biotherapeutics: Approaches to Alternative Drug Delivery. , 2017, , 131-156.		0
1158	Use of a novel oleaginous microorganism as a potential source of lipids for weanling pigs1,2. Translational Animal Science, 2017, 1, 201-207.	0.4	0
1159	Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science, 2018, 97, 1572-1578.	1.5	61
1160	A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018, 24, 558-572.	0.9	276
1161	Relationships Between Perinatal Interventions, Maternal-Infant Microbiomes, and Neonatal Outcomes. Clinics in Perinatology, 2018, 45, 339-355.	0.8	29
1162	Modulation of intestine development by fecal microbiota transplantation in suckling pigs. RSC Advances, 2018, 8, 8709-8720.	1.7	18
1163	To respond or not to respond — a personal perspective of intestinal tolerance. Nature Reviews Immunology, 2018, 18, 405-415.	10.6	130
1164	Selective maternal seeding and environment shape the human gut microbiome. Genome Research, 2018, 28, 561-568.	2.4	247

#	Article	IF	CITATIONS
1165	Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γÎ′ T-Cell Receptor–Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology, 2018, 154, 2178-2193.	0.6	99
1166	Role of dendritic cells in peanut allergy. Expert Review of Clinical Immunology, 2018, 14, 367-378.	1.3	2
1167	Immune senescence, epigenetics and autoimmunity. Clinical Immunology, 2018, 196, 59-63.	1.4	137
1168	How uterine microbiota might be responsible for a receptive, fertile endometrium. Human Reproduction Update, 2018, 24, 393-415.	5.2	176
1169	The gut microbiota influences anticancer immunosurveillance and general health. Nature Reviews Clinical Oncology, 2018, 15, 382-396.	12.5	389
1170	Antibiotics as Instigators of Microbial Dysbiosis: Implications for Asthma and Allergy. Trends in Immunology, 2018, 39, 697-711.	2.9	75
1171	Gut microbiota and Crohn's disease. Mediterranean Journal of Nutrition and Metabolism, 2018, 11, 65-72.	0.2	0
1172	The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiology Ecology, 2018, 94, .	1.3	1
1173	Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. Journal of Dairy Science, 2018, 101, 3099-3109.	1.4	83
1174	Cesarean Delivery and Childhood Malignancies: A Single-Center, Population-Based Cohort Study. Journal of Pediatrics, 2018, 197, 292-296.e3.	0.9	25
1175	Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends in Microbiology, 2018, 26, 329-338.	3.5	106
1176	Role of antimicrobial peptides in controlling symbiotic bacterial populations. Natural Product Reports, 2018, 35, 336-356.	5.2	95
1177	Adaptive immune education by gut microbiota antigens. Immunology, 2018, 154, 28-37.	2.0	203
1178	Biomarkers for immune-related toxicities of checkpoint inhibitors: current progress and the road ahead. Expert Review of Molecular Diagnostics, 2018, 18, 297-305.	1.5	23
1179	Investigating Caesarean Section Birth as a Risk Factor for Childhood Overweight. Childhood Obesity, 2018, 14, 131-138.	0.8	15
1180	Sieving through gut models of colonization resistance. Nature Microbiology, 2018, 3, 132-140.	5.9	54
1181	Age-related changes of CD4+ T cell migration and cytokine expression in germ-free and SPF mice periodontium. Archives of Oral Biology, 2018, 87, 72-78.	0.8	11
1182	Recent advances in the understanding of microglial development and homeostasis. Cellular Immunology, 2018, 330, 68-78.	1.4	39

#	Article	IF	CITATIONS
1183	Early-life gut microbiome and cow's milk allergy- a prospective case - control 6-month follow-up study. Saudi Journal of Biological Sciences, 2018, 25, 875-880.	1.8	45
1184	Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nature Reviews Rheumatology, 2018, 14, 146-156.	3.5	167
1185	Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 318-326.	1.7	401
1186	The Gut Microbiome and Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029017.	2.9	86
1187	Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiology Reviews, 2018, 42, 273-292.	3.9	103
1188	Change in gut microbiota for eczema: Implications for novel therapeutic strategies. Allergologia Et Immunopathologia, 2018, 46, 281-290.	1.0	11
1189	Gut microbiome modulates efficacy of immune checkpoint inhibitors. Journal of Hematology and Oncology, 2018, 11, 47.	6.9	138
1190	The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cellular and Molecular Immunology, 2018, 15, 595-609.	4.8	160
1191	Gut-immune-brain dysfunction in Autism: Importance of sex. Brain Research, 2018, 1693, 214-217.	1.1	14
1192	Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Scientific Reports, 2018, 8, 5098.	1.6	37
1193	Commensal regulation of T cell survival through Erdr1. Gut Microbes, 2018, 9, 1-7.	4.3	9
1194	Disruption of the Gut Microbiota With Antibiotics Exacerbates Acute Vascular Rejection. Transplantation, 2018, 102, 1085-1095.	0.5	24
1195	Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host and Microbe, 2018, 23, 447-457.e4.	5.1	86
1196	Prebiotic Potential of Herbal Medicines Used in Digestive Health and Disease. Journal of Alternative and Complementary Medicine, 2018, 24, 656-665.	2.1	59
1197	Moleculer nutritional immunology and cancer. Journal of Oncological Science, 2018, 4, 40-46.	0.1	6
1198	Opportunistic pathogens are abundant in the gut of cultured giant spiny frog (<i>Paa spinosa</i>). Aquaculture Research, 2018, 49, 2033-2041.	0.9	51
1199	Finding a needle in a haystack: <i>Bacteroides fragilis</i> polysaccharide A as the archetypical symbiosis factor. Annals of the New York Academy of Sciences, 2018, 1417, 116-129.	1.8	47
1200	Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028860.	2.3	27

#	Article	IF	CITATIONS
1201	The gut–kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatric Nephrology, 2018, 33, 53-61.	0.9	61
1202	Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations. Microbial Ecology, 2018, 75, 140-151.	1.4	21
1203	Gut Microbiota, Immune System, and Bone. Calcified Tissue International, 2018, 102, 415-425.	1.5	160
1204	Synthetic Biology and the Gut Microbiome. Biotechnology Journal, 2018, 13, e1700159.	1.8	35
1205	Effect of antibiotic, probiotic, and human rotavirus infection on colonisation dynamics of defined commensal microbiota in a gnotobiotic pig model. Beneficial Microbes, 2018, 9, 71-86.	1.0	18
1206	Lactobacillus gasseri attenuates allergic airway inflammation through PPARÎ ³ activation in dendritic cells. Journal of Molecular Medicine, 2018, 96, 39-51.	1.7	22
1207	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiology Spectrum, 2017, 5, .	1.2	69
1208	Insights on the impact of diet-mediated microbiota alterations on immunity and diseases. American Journal of Transplantation, 2018, 18, 550-555.	2.6	6
1209	Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 2018, 15, 20-32.	6.1	287
1210	The role of gut microbiota in the pathogenesis of rheumatic diseases. Clinical Rheumatology, 2018, 37, 25-34.	1.0	83
1211	Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmunity Reviews, 2018, 17, 165-174.	2.5	82
1212	The triune of intestinal microbiome, genetics and inflammatory status and its impact on the healing of lower gastrointestinal anastomoses. FEBS Journal, 2018, 285, 1212-1225.	2.2	6
1213	How Research on Microbiomes is Changing Biology: A Discussion on the Concept of the Organism. Foundations of Science, 2018, 23, 603-620.	0.4	17
1214	Postprandial gut microbiota-driven choline metabolism links dietary cues to adipose tissue dysfunction. Adipocyte, 2018, 7, 49-56.	1.3	25
1215	Gutsy Moves: The Amygdala as a Critical Node in Microbiota to Brain Signaling. BioEssays, 2018, 40, 1700172.	1.2	80
1216	The Impact of the Microbiome on Immunosenescence. Immunological Investigations, 2018, 47, 801-811.	1.0	29
1217	Treatment With Probiotic Bacteria Does Not Diminish the Impact of a Cystoisospora suis Challenge in Suckling Piglets. Frontiers in Veterinary Science, 2018, 5, 313.	0.9	6
1218	Immune Response to Perianal Abscess. , 2018, , 23-31.		0

	CITATION	INLFORT	
#	Article	IF	Citations
1219	Gut microbes as a therapeutic armory. Drug Discovery Today: Disease Models, 2018, 28, 51-59.	1.2	3
1220	An Update on the Gut Microbiome and the Use of Probiotics for Disease Prevention in Preterm Infants. Epidemiology (Sunnyvale, Calif), 2018, 08, .	0.3	0
1221	Using gnotobiotic mice to discover and validate therapeutically active microbiota to maintain mucosal homeostasis and treat intestinal inflammation. Drug Discovery Today: Disease Models, 2018, 28, 73-77.	1.2	1
1222	The Gastrointestinal Immune System. , 2018, , 45-58.		0
1223	The Protective Role of <i>Bacteroides fragilis</i> in a Murine Model of Colitis-Associated Colorectal Cancer. MSphere, 2018, 3, .	1.3	91
1224	Current Status of <1>Clostridium Difficile 1 Infection. Nihon Daicho Komonbyo Gakkai Zasshi, 2018, 71, 456-469.	0.1	1
1225	Demystifying Dysbiosis: Can the Gut Microbiome Promote Oral Tolerance Over IgE-mediated Food Allergy?. Current Pediatric Reviews, 2018, 14, 156-163.	0.4	22
1226	Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Frontiers in Physiology, 2018, 9, 1534.	1.3	375
1227	The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes. , 2018, , 241-338.		2
1228	Characterisation of gut, lung, and upper airways microbiota in patients with non-small cell lung carcinoma. Medicine (United States), 2018, 97, e13676.	0.4	28
1229	Isolated Rearing at Lactation Increases Gut Microbial Diversity and Post-weaning Performance in Pigs. Frontiers in Microbiology, 2018, 9, 2889.	1,5	16
1231	Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proceedings of the United States of America, 2018, 115, 12902-12910.	3.3	72
1232	Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. Microbiome, 2018, 6, 217.	4.9	34
1233	Visions of Eye Commensals: The Known and the Unknown About How the Microbiome Affects Eye Disease. BioEssays, 2018, 40, e1800046.	1.2	38
1234	Gut microbiota and Hashimoto's thyroiditis. Reviews in Endocrine and Metabolic Disorders, 2018, 19, 293-300.	2.6	86
1235	Revisiting Inbred Mouse Models to Study the Developing Brain: The Potential Role of Intestinal Microbiota. Frontiers in Human Neuroscience, 2018, 12, 358.	1.0	7
1236	How Can We Define "Optimal Microbiota?― A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Frontiers in Nutrition, 2018, 5, 90.	1.6	61
1237	Characterization of Eukaryotic Microbiome Using 18S Amplicon Sequencing. Methods in Molecular Biology, 2018, 1849, 29-48.	0.4	10

#	Article	IF	CITATIONS
1238	Short-term and long-term effects of caesarean section on the health of women and children. Lancet, The, 2018, 392, 1349-1357.	6.3	682
1239	Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Frontiers in Microbiology, 2018, 9, 2426.	1.5	170
1240	Role of non-classical T cells in skin immunity. Molecular Immunology, 2018, 103, 286-292.	1.0	5
1241	Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	108
1242	In vivo Imaging of a Novel Strain of Bacteroides fragilis via Metabolic Labeling. Frontiers in Microbiology, 2018, 9, 2298.	1.5	11
1243	Microbiome and the immune system: From a healthy steady-state to allergy associated disruption. Human Microbiome Journal, 2018, 10, 11-20.	3.8	51
1244	Ventilator-induced lung injury is aggravated by antibiotic mediated microbiota depletion in mice. Critical Care, 2018, 22, 282.	2.5	17
1245	Defining Dysbiosis in Disorders of Movement and Motivation. Journal of Neuroscience, 2018, 38, 9414-9422.	1.7	17
1247	The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends in Immunology, 2018, 39, 900-920.	2.9	56
1248	Cell surface polysaccharides of <i>Bifidobacterium bifidum</i> induce the generation of Foxp3 ⁺ regulatory T cells. Science Immunology, 2018, 3, .	5.6	145
1249	Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Scientific Reports, 2018, 8, 15451.	1.6	59
1250	Glycans for good. Science Immunology, 2018, 3, .	5.6	2
1251	Origin and Evolution of Biodiversity. , 2018, , .		10
1252	Chemical Synthesis of Rare, Deoxy-Amino Sugars Containing Bacterial Glycoconjugates as Potential Vaccine Candidates. Molecules, 2018, 23, 1997.	1.7	25
1253	Microbiota dysbiosis and its pathophysiological significance in bowel obstruction. Scientific Reports, 2018, 8, 13044.	1.6	45
1254	The Gut-Renal Connection in IgA Nephropathy. Seminars in Nephrology, 2018, 38, 504-512.	0.6	81
1255	Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response. Expert Opinion on Biological Therapy, 2018, 18, 1061-1071.	1.4	27
1256	Modulation of the gut microbiota to improve innate resistance. Current Opinion in Immunology, 2018, 54, 137-144.	2.4	28

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
1257	Microbial exposure and human health. Current Opinion in Microbiology, 2018, 44, 79-87.	2.3	32
1258	Probiotics and Ruminant Health. , 2018, , .		9
1259	Cnidarian Interaction with Microbial Communities: From Aid to Animal's Health to Rejection Responses. Marine Drugs, 2018, 16, 296.	2.2	18
1260	The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Medical Sciences (Basel,) Tj ETQq1 1 (0.784314 1.3	rgBT /Overlo
1261	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
1262	Tracing the Evolutionary Origin of the Gut–Brain Axis. , 2018, , 61-80.		0
1263	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. , 2018, , 1-47.		0
1264	Efficacy and Safety of Probiotics and Synbiotics in Liver Transplantation. Pharmacotherapy, 2018, 38, 758-768.	1.2	18
1265	The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatric Research, 2018, 84, 71-79.	1.1	101
1266	Plasma metabolite profiles in children with current asthma. Clinical and Experimental Allergy, 2018, 48, 1297-1304.	1.4	30
1267	Impact of commensal flora on periodontal immune response to lipopolysaccharide. Journal of Periodontology, 2018, 89, 1213-1220.	1.7	7
1268	Emerging biomarkers for immune checkpoint inhibition in lung cancer. Seminars in Cancer Biology, 2018, 52, 269-277.	4.3	67
1269	The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology, 2018, 14, 442-456.	4.1	413
1270	The presence of genetic risk variants within PTPN2 and PTPN22 is associated with intestinal microbiota alterations in Swiss IBD cohort patients. PLoS ONE, 2018, 13, e0199664.	1.1	35
1271	Alterations to the Intestinal Microbiome and Metabolome of <i>Pimephales promelas</i> and <i>Mus musculus</i> Following Exposure to Dietary Methylmercury. Environmental Science & Technology, 2018, 52, 8774-8784.	4.6	77
1272	Update on the Gastrointestinal Microbiome in Systemic Sclerosis. Current Rheumatology Reports, 2018, 20, 49.	2.1	42
1273	The Significance of the Intestinal Microbiome for Vaccinology: From Correlations to Therapeutic Applications. Drugs, 2018, 78, 1063-1072.	4.9	21
1274	Influence of the Gut Microbiome on Immune Development During Early Life. , 2018, , 767-774.		3

		CITATION REI	PORT	
#	Article		IF	CITATIONS
1275	Induction and Amelioration of Methotrexate-Induced Gastrointestinal Toxicity are Related to Imn Response and Gut Microbiota. EBioMedicine, 2018, 33, 122-133.	iune	2.7	80
1276	Intestinal Immunomodulatory Cells (T Lymphocytes): A Bridge between Gut Microbiota and Diab Mediators of Inflammation, 2018, 2018, 1-8.	etes.	1.4	18
1277	Microbiome and Gut Immunity: T Cells. , 2018, , 119-140.			4
1278	The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients, 2018, 10, 988.		1.7	380
1279	Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance. MBio, 2018	9,.	1.8	230
1280	Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation. Theory in Biosciences, 2018, 137, 197-206.		0.6	40
1281	Murine colitis reveals a disease-associated bacteriophage community. Nature Microbiology, 2018 1023-1031.	, 3,	5.9	132
1282	The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biol 2018, 49, e01788.	ogy,	0.6	194
1283	Diarrhea-Associated Intestinal Microbiota in Captive Sichuan Golden Snub-Nosed Monkeys (<i>Rhinopithecus roxellana</i>). Microbes and Environments, 2018, 33, 249-256.		0.7	14
1284	Standardization in host–microbiota interaction studies: challenges, gnotobiology as a tool, and perspective. Current Opinion in Microbiology, 2018, 44, 50-60.	1	2.3	27
1285	Solvent Networks Tune Thermodynamics of Oligosaccharide Complex Formation in an Extended Protein Binding Site. Journal of the American Chemical Society, 2018, 140, 10447-10455.		6.6	11
1286	Gut Microbiota Composition in Healthy Japanese Infants and Young Adults Born by C-Section. Ar of Nutrition and Metabolism, 2018, 73, 4-11.	nals	1.0	29
1287	The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understand Disease Progression and What We Can Do to Prevent It. Cancers, 2018, 10, 83.	ng	1.7	83
1288	Toll-Like Receptor 2-Mediated Suppression of Colorectal Cancer Pathogenesis by Polysaccharide From Bacteroides fragilis. Frontiers in Microbiology, 2018, 9, 1588.	A	1.5	31
1289	Mother's Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Ir Frontiers in Immunology, 2018, 9, 361.	nmunity.	2.2	327
1290	Modulation of Gut Microbiota: A Novel Paradigm of Enhancing the Efficacy of Programmed Deatl and Programmed Death Ligand-1 Blockade Therapy. Frontiers in Immunology, 2018, 9, 374.	n-1	2.2	51
1291	Enterococcus faecalis AHG0090 is a Genetically Tractable Bacterium and Produces a Secreted Pe Bioactive that Suppresses Nuclear Factor Kappa B Activation in Human Gut Epithelial Cells. Front in Immunology, 2018, 9, 790.		2.2	15
1292	Bacteroides fragilis Protects Against Antibiotic-Associated Diarrhea in Rats by Modulating Intesti Defenses. Frontiers in Immunology, 2018, 9, 1040.	nal	2.2	80

#	Article	IF	CITATIONS
1293	Comparison Between the Fecal Bacterial Microbiota of Healthy and Diarrheic Captive Musk Deer. Frontiers in Microbiology, 2018, 9, 300.	1.5	50
1294	Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii. Frontiers in Microbiology, 2018, 9, 346.	1.5	84
1295	Stem Cell Transcription Factor FoxO Controls Microbiome Resilience in Hydra. Frontiers in Microbiology, 2018, 9, 629.	1.5	24
1296	Lactation Stage-Dependency of the Sow Milk Microbiota. Frontiers in Microbiology, 2018, 9, 945.	1.5	55
1297	Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Frontiers in Microbiology, 2018, 9, 1394.	1.5	39
1298	Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients, 2018, 10, 862.	1.7	77
1299	Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression. Pharmaceuticals, 2018, 11, 63.	1.7	113
1300	Gut Microbiota and Mucosal Immunity in the Neonate. Medical Sciences (Basel, Switzerland), 2018, 6, 56.	1.3	67
1301	Composition of gut microbiota and its influence on the immunogenicity of oral rotavirus vaccines. Vaccine, 2018, 36, 3427-3433.	1.7	26
1302	Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biology of Sex Differences, 2018, 9, 7.	1.8	27
1303	Developmental Immunotoxicology Testing (DIT). , 2018, , 467-497.		2
1304	Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients, 2018, 10, 1055.	1.7	115
1305	Synergetic action between the rumen microbiota and bovine health. Microbial Pathogenesis, 2018, 124, 106-115.	1.3	84
1306	Sex-specific associations of infants' gut microbiome with arsenic exposure in a US population. Scientific Reports, 2018, 8, 12627.	1.6	47
1307	Staphylococcus aureus Lipoprotein Induces Skin Inflammation, Accompanied with IFN-Î ³ -Producing T Cell Accumulation through Dermal Dendritic Cells. Pathogens, 2018, 7, 64.	1.2	10
1308	Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 2018, 4, 267-285.	0.5	438
1309	Common ground: shared risk factors for type 1 diabetes and celiac disease. Nature Immunology, 2018, 19, 685-695.	7.0	33
1310	Probiotic and synbiotic therapy in the critically ill: State of the art. Nutrition, 2019, 59, 29-36.	1.1	38

		CITATION REPORT		
#	Article		IF	CITATIONS
1311	Microbial metabolite effects on TLR to develop autoimmune diseases. Toxin Reviews, 2019, 38	3, 273-289.	1.5	1
1312	Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic dise Trends in Cardiovascular Medicine, 2019, 29, 141-147.	ases.	2.3	36
1313	Clostridium difficile, the Difficult "Kloster―Fuelled by Antibiotics. Current Microbiology, 2 774-782.	.019, 76,	1.0	41
1314	MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and associations. Genome Biology, 2019, 20, 154.	disease	3.8	29
1315	The role of microbiome in rheumatoid arthritis treatment. Therapeutic Advances in Musculosk Disease, 2019, 11, 1759720X1984463.	eletal	1.2	88
1316	Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBI Treatment Targeting the Gut Microbiome. Pathogens, 2019, 8, 126.)	1.2	464
1317	When Cultures Meet: The Landscape of "Social―Interactions between the Host and Its In Microbes. BioEssays, 2019, 41, 1900002.	digenous	1.2	3
1318	Host Microbe Interactions in the Lactating Mammary Gland. Frontiers in Microbiology, 2019, 2	10, 1863.	1.5	33
1320	Early life microbial exposure shapes subsequent animal health. Canadian Journal of Animal Scie 2019, 99, 661-677.	ence,	0.7	8
1321	Polysaccharide A–Dependent Opposing Effects of Mucosal and Systemic Exposures to Hum Commensal <i>Bacteroides fragilis</i> in Type 1 Diabetes. Diabetes, 2019, 68, 1975-1989.	an Gut	0.3	28
1322	Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Modulating Gut Microbiota and Decreasing Inflammation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 221.	Mice by	1.8	68
1323	Inflammation, Immunity, and Oxidative Stress in Hypertension—Partners in Crime?. Advance Kidney Disease, 2019, 26, 122-130.	s in Chronic	0.6	66
1324	A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragi health. Food Research International, 2019, 126, 108590.	lis in	2.9	65
1325	How the Interplay Between the Commensal Microbiota, Gut Barrier Integrity, and Mucosal Imr Regulates Brain Autoimmunity. Frontiers in Immunology, 2019, 10, 1937.	nunity	2.2	53
1326	Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sc 2019, 76, 3917-3937.	iences,	2.4	176
1327	The Commensal Microbiota and Viral Infection: A Comprehensive Review. Frontiers in Immuno 2019, 10, 1551.	logy,	2.2	195
1328	GUT Microbiome-GUT Dysbiosis-Arterial Hypertension: New Horizons. Current Hypertension R 2019, 15, 40-46.	eviews,	0.5	19
1329	Alleviation of Intestinal Inflammation by Oral Supplementation With 2-Fucosyllactose in Mice. Frontiers in Microbiology, 2019, 10, 1385.		1.5	49

#	Article	IF	CITATIONS
1330	Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology. Nature Communications, 2019, 10, 4877.	5.8	69
1331	The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Frontiers in Neuroscience, 2019, 13, 1196.	1.4	61
1332	Helicobacter pylori Infection Aggravates Dysbiosis of Gut Microbiome in Children With Gastritis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 375.	1.8	45
1333	The Skin Microbiota of Eleutherodactylus Frogs: Effects of Host Ecology, Phylogeny, and Local Environment. Frontiers in Microbiology, 2019, 10, 2571.	1.5	9
1334	A Listeria monocytogenes Bacteriocin Can Target the Commensal Prevotella copri and Modulate Intestinal Infection. Cell Host and Microbe, 2019, 26, 691-701.e5.	5.1	66
1335	Characteristics of Gut Microbiota in Patients With Rheumatoid Arthritis in Shanghai, China. Frontiers in Cellular and Infection Microbiology, 2019, 9, 369.	1.8	117
1336	CD4CD8αα IELs: They Have Something to Say. Frontiers in Immunology, 2019, 10, 2269.	2.2	20
1337	Abundance of Probiotics and Butyrateâ€Production Microbiome Manages Constipation via Shortâ€Chain Fatty Acids Production and Hormones Secretion. Molecular Nutrition and Food Research, 2019, 63, e1801187.	1.5	80
1338	Impact of infection on transplantation tolerance. Immunological Reviews, 2019, 292, 243-263.	2.8	6
1339	Symbiosis in Sustainable Agriculture: Can Olive Fruit Fly Bacterial Microbiome Be Useful in Pest Management?. Microorganisms, 2019, 7, 238.	1.6	10
1340	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304
1341	Impact of the Microbiome on the Human Genome. Trends in Parasitology, 2019, 35, 809-821.	1.5	5
1342	Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders?. BioMed Research International, 2019, 2019, 1-11.	0.9	21
1343	Almond Snacking for 8 wk Increases Alpha-Diversity of the Gastrointestinal Microbiome and Decreases Bacteroides fragilis Abundance Compared with an Isocaloric Snack in College Freshmen. Current Developments in Nutrition, 2019, 3, nzz079.	0.1	40
1344	A gut punch fights cancer and infection. Nature, 2019, 565, 573-574.	13.7	7
1345	Atmospheric reaction networks affecting climate are more complex than was thought. Nature, 2019, 565, 574-575.	13.7	1
1346	Metabolic and Vascular Effect of the Mediterranean Diet. International Journal of Molecular Sciences, 2019, 20, 4716.	1.8	144
1347	Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators of Inflammation, 2019, 2019, 1-14.	1.4	30

#	Article	IF	CITATIONS
1348	The spleen may be an important target of stem cell therapy for stroke. Journal of Neuroinflammation, 2019, 16, 20.	3.1	37
1349	Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ TH Cells. Frontiers in Immunology, 2018, 9, 3177.	2.2	33
1350	Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatric Research, 2019, 85, 518-526.	1.1	32
1351	Role of the microbiome in human development. Gut, 2019, 68, 1108-1114.	6.1	496
1352	Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Scientific Reports, 2019, 9, 918.	1.6	29
1353	Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. Circulation Research, 2019, 125, 104-116.	2.0	73
1354	Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Frontiers in Immunology, 2019, 10, 1142.	2.2	70
1355	The PPAR–microbiota–metabolic organ trilogy to fineâ€ŧune physiology. FASEB Journal, 2019, 33, 9706-9730.	0.2	46
1356	Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals, 2019, 12, 84.	1.7	76
1357	Autoimmunity in microbiome-mediated diseases and novel therapeutic approaches. Current Opinion in Pharmacology, 2019, 49, 34-42.	1.7	13
1358	Evaluation of Methods for the Extraction of Microbial DNA From Vaginal Swabs Used for Microbiome Studies. Frontiers in Cellular and Infection Microbiology, 2019, 9, 197.	1.8	27
1359	CRTAM Shapes the Gut Microbiota and Enhances the Severity of Infection. Journal of Immunology, 2019, 203, 532-543.	0.4	8
1360	The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research, 2019, 97, 1223-1241.	1.3	261
1361	Conjunctival dysbiosis in mucosa-associated lymphoid tissue lymphoma. Scientific Reports, 2019, 9, 8424.	1.6	14
1362	Health promoting activities of probiotics. Journal of Food Biochemistry, 2019, 43, e12944.	1.2	33
1363	The Other Side of the Coin: What Beneficial Microbes Can Teach Us about Pathogenic Potential. Journal of Molecular Biology, 2019, 431, 2946-2956.	2.0	16
1364	Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-19.	1.9	194
1365	Bacterial species to be considered in quality assurance of mice and rats. Laboratory Animals, 2019, 53, 281-291.	0.5	7

#	Article	IF	CITATIONS
1366	Oxidization of TGFÎ ² -activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis. Nature Microbiology, 2019, 4, 1378-1388.	5.9	20
1367	Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nature Communications, 2019, 10, 2153.	5.8	178
1368	Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 184-192.	2.3	126
1369	Sex-specific effects of microbiome perturbations on cerebral AÎ ² amyloidosis and microglia phenotypes. Journal of Experimental Medicine, 2019, 216, 1542-1560.	4.2	165
1370	Host–MicroRNA–Microbiota Interactions in Colorectal Cancer. Genes, 2019, 10, 270.	1.0	22
1371	Identification of the Bacterial Biosynthetic Gene Clusters of the Oral Microbiome Illuminates the Unexplored Social Language of Bacteria during Health and Disease. MBio, 2019, 10, .	1.8	73
1372	Exploring the emerging role of the microbiome in cancer immunotherapy. , 2019, 7, 108.		217
1373	Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology, 2019, 156, 2174-2189.	0.6	132
1374	Effects of <i>Enterococcus faecalis</i> on egg production, egg quality and caecal microbiota of hens during the late laying period. Archives of Animal Nutrition, 2019, 73, 208-221.	0.9	27
1375	The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food and Function, 2019, 10, 2290-2312.	2.1	157
1376	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
1377	The Microbiota and Ovarian Cancer. Current Cancer Research, 2019, , 205-245.	0.2	0
1378	Characterization of a novel extracellular α-amylase from Ruminococcus bromii ATCC 27255 with neopullulanase-like activity. International Journal of Biological Macromolecules, 2019, 130, 605-614.	3.6	18
1379	The human-microbiome superorganism and its modulation to restore health. International Journal of Food Sciences and Nutrition, 2019, 70, 781-795.	1.3	77
1380	Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 2019, 16, 53.	3.1	446
1381	The role of microbiota in the development of allergic diseases. Health Problems of Civilization, 2019, 13, 135-146.	0.1	0
1382	Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Review of Gastroenterology and Hepatology, 2019, 13, 485-496.	1.4	51
1383	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211

#	Article	IF	CITATIONS
1384	Inhibition of enterohemorrhagic Escherichia coli O157:H7 infection in a gnotobiotic mouse model with pre‑colonization by Bacteroides strains. Biomedical Reports, 2019, 10, 175-182.	0.9	14
1385	Intestinal microbiome as a novel therapeutic target for local and systemic inflammation. , 2019, 199, 164-172.		49
1386	Chronic kidney disease and the gut microbiome. American Journal of Physiology - Renal Physiology, 2019, 316, F1211-F1217.	1.3	147
1387	Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens. Frontiers in Immunology, 2019, 10, 607.	2.2	133
1388	Food Allergy and the Microbiota: Implications for Probiotic Use in Regulating Allergic Responses. , 2019, , 179-194.		2
1389	Microbes, metabolites, and the gut–lung axis. Mucosal Immunology, 2019, 12, 843-850.	2.7	540
1390	Intestinal Microbiota in Early Life and Its Implications on Childhood Health. Genomics, Proteomics and Bioinformatics, 2019, 17, 13-25.	3.0	159
1391	Complementary therapies for patients with systemic sclerosis. Journal of Scleroderma and Related Disorders, 2019, 4, 187-199.	1.0	2
1392	BRWMDA:Predicting microbe-disease associations based on similarities and bi-random walk on disease and microbe networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	1.9	33
1393	The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology, 2019, 156, 2097-2115.e2.	0.6	73
1395	The Effect of Butyrate-Supplemented Parenteral Nutrition on Intestinal Defence Mechanisms and the Parenteral Nutrition-Induced Shift in the Gut Microbiota in the Rat Model. BioMed Research International, 2019, 2019, 1-14.	0.9	29
1396	The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism?. Cardiovascular Research, 2019, 115, 1435-1447.	1.8	58
1397	Effect of Lactobacillus rhamnosus GG immunopathologic changes in chronic mouse asthma model. Journal of Microbiology, Immunology and Infection, 2019, 52, 911-919.	1.5	20
1398	Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 2019, 15, 263-274.	4.1	80
1399	Diet modulates colonic T cell responses by regulating the expression of a <i>Bacteroides thetaiotaomicron</i> antigen. Science Immunology, 2019, 4, .	5.6	70
1400	Germ-Free Mouse Technology in Cardiovascular Research. , 2019, , 13-25.		1
1401	Differences in Systemic IgA Reactivity and Circulating Th Subsets in Healthy Volunteers With Specific Microbiota Enterotypes. Frontiers in Immunology, 2019, 10, 341.	2.2	15
1403	Microbes, Their Metabolites, and Effector Molecules: A Pharmacological Perspective for Host-Microbiota Interaction. Environmental Chemistry for A Sustainable World, 2019, , 155-206.	0.3	4

#	ARTICLE	IF	CITATIONS
1404	Promoter orientation of the immunomodulatory <i>Bacteroides fragilis</i> capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD). Gut Microbes, 2019, 10, 569-577.	4.3	30
1405	Immune cell populations residing in mesenteric adipose depots and mesenteric lymph nodes of lean dairy cows. Journal of Dairy Science, 2019, 102, 3452-3468.	1.4	4
1406	ls it true that gut microbiota is considered as panacea in cancer therapy?. Journal of Cellular Physiology, 2019, 234, 14941-14950.	2.0	27
1407	Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host and Microbe, 2019, 25, 285-299.e8.	5.1	342
1408	Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. Journal of Zhejiang University: Science B, 2019, 20, 180-192.	1.3	39
1409	The Therapeutic Potential of the "Yin-Yang―Garden in Our Gut. , 2019, , .		2
1410	Research Progress in Fecal Microbiota Transplantation as Treatment for Irritable Bowel Syndrome. Gastroenterology Research and Practice, 2019, 2019, 1-8.	0.7	12
1411	Iron Transport Tocopheryl Polyethylene Glycol Succinate in Animal Health and Diseases. Molecules, 2019, 24, 4289.	1.7	6
1412	The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms, 2019, 7, 583.	1.6	80
1413	Oral Administration of miR-30d from Feces of MS Patients Suppresses MS-like Symptoms in Mice by Expanding Akkermansia muciniphila. Cell Host and Microbe, 2019, 26, 779-794.e8.	5.1	118
1414	Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Molecular Cancer, 2019, 18, 173.	7.9	67
1415	One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Frontiers in Immunology, 2019, 10, 2947.	2.2	18
1416	Symbionts exploit complex signaling to educate the immune system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26157-26166.	3.3	88
1417	Microbial Communities in Human Milk Relate to Measures of Maternal Weight. Frontiers in Microbiology, 2019, 10, 2886.	1.5	28
1418	Depletion of microbiome-derived molecules in the host using <i>Clostridium</i> genetics. Science, 2019, 366, .	6.0	103
1419	Profile of Dennis L. Kasper. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26144-26146.	3.3	0
1420	Impact of the microbiota on solid organ transplant rejection. Current Opinion in Organ Transplantation, 2019, 24, 679-686.	0.8	21
1421	The bidirectional interaction of the gut microbiome and the innate immune system: Implications for chemotherapyâ€induced gastrointestinal toxicity. International Journal of Cancer, 2019, 144, 2365-2376.	2.3	48

#	Article	IF	CITATIONS
1422	Investigations of Bacteroides spp. towards next-generation probiotics. Food Research International, 2019, 116, 637-644.	2.9	121
1423	Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiology Reviews, 2019, 43, 1-18.	3.9	86
1424	El Niño Altered Gut Microbiota of Children: A New Insight on Weather–Gut Interactions and Protective Effects of Probiotic. Journal of Medicinal Food, 2019, 22, 230-240.	0.8	6
1425	Impact of maternal HIV exposure, feeding status, and microbiome on infant cellular immunity. Journal of Leukocyte Biology, 2019, 105, 281-289.	1.5	8
1426	Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses, 2019, 11, 10.	1.5	236
1427	Immunologic Effects of the Microbiota in Organ Transplantation. Clinics in Laboratory Medicine, 2019, 39, 185-195.	0.7	4
1428	Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine. Engineering, 2019, 5, 40-49.	3.2	21
1429	The Role of the Microbiome in Asthma: The Gut–Lung Axis. International Journal of Molecular Sciences, 2019, 20, 123.	1.8	162
1430	The role of microbiota in the pathogenesis of lupus: Dose it impact lupus nephritis?. Pharmacological Research, 2019, 139, 191-198.	3.1	23
1431	Study on the ability of partially hydrolyzed guar gum to modulate the gut microbiota and relieve constipation. Journal of Food Biochemistry, 2019, 43, e12715.	1.2	18
1432	Single Nucleotide Polymorphisms of PTPN22 Gene in Iranian Patients with Ulcerative Colitis. Fetal and Pediatric Pathology, 2019, 38, 8-13.	0.4	1
1433	A mini-review on the microbial continuum: consideration of a link between judicious consumption of a varied diet of macroalgae and human health and nutrition. Journal of Oceanology and Limnology, 2019, 37, 790-805.	0.6	10
1434	Effects and immune responses of probiotic treatment in ruminants. Veterinary Immunology and Immunopathology, 2019, 208, 58-66.	0.5	33
1435	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	95
1436	The Microbiome in Celiac Disease. Gastroenterology Clinics of North America, 2019, 48, 115-126.	1.0	38
1437	Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542.	1.1	21
1438	Old Friends, immunoregulation, and stress resilience. Pflugers Archiv European Journal of Physiology, 2019, 471, 237-269.	1.3	45
1439	Predicting the associations between microbes and diseases by integrating multiple data sources and path-based HeteSim scores. Neurocomputing, 2019, 323, 76-85.	3.5	32

#	Article	IF	Citations
1440	Nucleic Acid Sensing Perturbation: How Aberrant Recognition of Self-Nucleic Acids May Contribute to Autoimmune and Autoinflammatory Diseases. International Review of Cell and Molecular Biology, 2019, 344, 117-137.	1.6	6
1441	DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food and Function, 2019, 10, 277-288.	2.1	63
1442	Control of bacterial colonization in the glands and crypts. Current Opinion in Microbiology, 2019, 47, 38-44.	2.3	16
1443	Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1876-1897.	1.8	102
1444	Obesity and the microbiome: Big changes on a small scale?. , 2019, , 281-300.		0
1445	Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A. Mucosal Immunology, 2019, 12, 164-177.	2.7	70
1446	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38
1447	Caenorhabditis elegans: a model to understand host–microbe interactions. Cellular and Molecular Life Sciences, 2020, 77, 1229-1249.	2.4	56
1448	Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. Trends in Microbiology, 2020, 28, 95-108.	3.5	120
1449	Fecal microbiota transplantation results in bacterial strain displacement in patients with inflammatory bowel diseases. FEBS Open Bio, 2020, 10, 41-55.	1.0	14
1450	Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Medicinal Research Reviews, 2020, 40, 606-632.	5.0	100
1451	The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. International Journal of Cancer, 2020, 146, 1780-1790.	2.3	74
1452	The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?. Cellular and Molecular Life Sciences, 2020, 77, 1497-1509.	2.4	48
1453	Historical Perspectives on Mucosal Vaccines. , 2020, , 3-17.		1
1454	Camel milk regulates Tâ€cell proliferation to alleviate dextran sodium sulphateâ€induced colitis in mice. International Journal of Food Science and Technology, 2020, 55, 1648-1660.	1.3	4
1455	Gut bacteria characteristic of the infant microbiota down-regulate inflammatory transcriptional responses in HT-29†cells. Anaerobe, 2020, 61, 102112.	1.0	8
1456	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	2.9	51
1457	Package of anti-allergic probiotic Lactobacillus by focusing on the regulatory role of immunosuppressive motifs in allergy. Informatics in Medicine Unlocked, 2020, 18, 100280.	1.9	10

# 1458	ARTICLE CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100032.	IF 2.0	Citations
1459	Novel Strategies for Targeting the Control of Mucosal Inflammation. , 2020, , 869-879.		0
1460	The gut microbiome in neurological disorders. Lancet Neurology, The, 2020, 19, 179-194.	4.9	669
1461	Distant Immune and Microbiome Regulation. , 2020, , 599-611.		0
1462	Gut microbiota and immunology of the gastrointestinal tract. , 2020, , 63-78.		3
1463	The role of microbiota in tissue repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 539-555.	1.3	23
1464	Brain–kidney interaction: Renal dysfunction following ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 246-262.	2.4	43
1465	Early development of the skin microbiome: therapeutic opportunities. Pediatric Research, 2021, 90, 731-737.	1.1	14
1466	Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. Environmental Toxicology and Pharmacology, 2020, 80, 103485.	2.0	44
1467	High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt's voles (Lasiopodomys brandtii). Hormones and Behavior, 2020, 126, 104838.	1.0	21
1468	Heterogeneity of CD4+CD25+Foxp3+Treg TCR Î ² CDR3 Repertoire Based on the Differences of Symbiotic Microorganisms in the Gut of Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 576445.	1.8	4
1469	From Welfare to Warfare: The Arbitration of Host-Microbiota Interplay by the Type VI Secretion System. Frontiers in Cellular and Infection Microbiology, 2020, 10, 587948.	1.8	21
1471	The microbiome: An emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	76
1472	Metabarcoding Analyses of Gut Microbiota of Nile Tilapia (Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms, 2020, 8, 1040.	1.6	37
1473	No correlation between microbiota composition and blood parameters in nesting flatback turtles (Natator depressus). Scientific Reports, 2020, 10, 8333.	1.6	7
1474	Effects of Ligustrum lucidum on egg production, egg quality, and caecal microbiota of hens during the late laying period. Italian Journal of Animal Science, 2020, 19, 687-696.	0.8	7
1475	Vertically Transmitted Gut Bacteria and Nutrition Influence the Immunity and Fitness of Bactrocera dorsalis Larvae. Frontiers in Microbiology, 2020, 11, 596352.	1.5	17
1476	Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell, 2020, 183, 1312-1324.e10.	13.5	157

#	Article	IF	CITATIONS
1477	Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Critical Reviews in Food Science and Nutrition, 2022, 62, 1427-1452.	5.4	56
1478	Gut Microbiota-Bile Acid Crosstalk in Diarrhea-Irritable Bowel Syndrome. BioMed Research International, 2020, 2020, 1-16.	0.9	42
1479	The Impact of Air Pollution on Intestinal Microbiome of Asthmatic Children: A Panel Study. BioMed Research International, 2020, 2020, 1-13.	0.9	20
1480	The gut microbiota is associated with immune cell dynamics in humans. Nature, 2020, 588, 303-307.	13.7	273
1481	Adhesive Bacteria in the Terminal lleum of Children Correlates With Increasing Th17 Cell Activation. Frontiers in Pharmacology, 2020, 11, 588560.	1.6	10
1482	Capsaicin and Gut Microbiota in Health and Disease. Molecules, 2020, 25, 5681.	1.7	41
1483	Characterization of Polysaccharide A Response Reveals Interferon Responsive Gene Signature and Immunomodulatory Marker Expression. Frontiers in Immunology, 2020, 11, 556813.	2.2	18
1484	Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Frontiers in Microbiology, 2020, 11, 575455.	1.5	110
1485	Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Frontiers in Microbiology, 2020, 11, 594820.	1.5	26
1486	The Effectiveness of Multi-Session FMT Treatment in Active Ulcerative Colitis Patients: A Pilot Study. Biomedicines, 2020, 8, 268.	1.4	20
1487	Herpes simplex virus infection, Acyclovir and IVIG treatment all independently cause gut dysbiosis. PLoS ONE, 2020, 15, e0237189.	1.1	7
1488	The Impact of the Microbiome on Immunity to Vaccination in Humans. Cell Host and Microbe, 2020, 28, 169-179.	5.1	104
1489	Impact of Host, Lifestyle and Environmental Factors in the Pathogenesis of MPN. Cancers, 2020, 12, 2038.	1.7	7
1490	Effects of Antibiotic Treatment on Gut Microbiota and How to Overcome Its Negative Impacts on Human Health. ACS Infectious Diseases, 2020, 6, 2544-2559.	1.8	57
1491	Roles of intestinal <i>bacteroides</i> in human health and diseases. Critical Reviews in Food Science and Nutrition, 2021, 61, 3518-3536.	5.4	66
1492	The dialogue between unconventional T cells and the microbiota. Mucosal Immunology, 2020, 13, 867-876.	2.7	16
1493	Microbial modulation of intestinal T helper cell responses and implications for disease and therapy. Mucosal Immunology, 2020, 13, 855-866.	2.7	23
1494	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2020, 11, 571731.	2.2	281

#	Article	IF	CITATIONS
1496	Genome Characterization of a Novel Wastewater Bacteroides fragilis Bacteriophage (vB_BfrS_23) and its Host GB124. Frontiers in Microbiology, 2020, 11, 583378.	1.5	5
1497	Effects of grazing and confinement on the morphology and microflora of the gastrointestinal tract of Small-tailed Han sheep. Livestock Science, 2020, 241, 104208.	0.6	5
1498	Invited Review: Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Applied Animal Science, 2020, 36, 630-651.	0.4	50
1499	Parkinson's disease: Are gut microbes involved?. American Journal of Physiology - Renal Physiology, 2020, 319, G529-G540.	1.6	7
1500	The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33.	1.0	15
1501	Interplay of intestinal microbiota and mucosal immunity in inflammatory bowel disease: a relationship of frenemies. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482093518.	1.4	16
1503	To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microbial Pathogenesis, 2020, 149, 104506.	1.3	36
1504	Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports, 2020, 10, 14977.	1.6	78
1505	Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncolmmunology, 2020, 9, 1794423.	2.1	7
1506	Editorial: The Role of the Gut Microbiota in Health and Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 565305.	2.2	8
1507	The Influence of Bacteria on Animal Metamorphosis. Annual Review of Microbiology, 2020, 74, 137-158.	2.9	42
1508	Vaccine Interactions With the Infant Microbiome: Do They Define Health and Disease?. Frontiers in Pediatrics, 2020, 8, 565368.	0.9	11
1509	The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. International Journal of Molecular Sciences, 2020, 21, 9580.	1.8	27
1510	Resolving the Paradox of Colon Cancer Through the Integration of Genetics, Immunology, and the Microbiota. Frontiers in Immunology, 2020, 11, 600886.	2.2	43
1511	Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far?. Frontiers in Microbiology, 2020, 11, 585857.	1.5	9
1512	Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy. Cancers, 2020, 12, 3729.	1.7	55
1513	Applications of gut microbiota in patients with hematopoietic stem-cell transplantation. Experimental Hematology and Oncology, 2020, 9, 35.	2.0	14
1514	Effect of Low-Immunogenic Yogurt Drinks and Probiotic Bacteria on Immunoreactivity of Cow's Milk Proteins and Tolerance Induction—In Vitro and In Vivo Studies. Nutrients, 2020, 12, 3390.	1.7	16

#	Article	IF	CITATIONS
1515	The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Progress in Molecular Biology and Translational Science, 2020, 176, 43-110.	0.9	35
1516	Higher-Order Interactions Dampen Pairwise Competition in the Zebrafish Gut Microbiome. MBio, 2020, 11, .	1.8	32
1517	Pediatrics Consequences of Caesarean Section—A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 8031.	1.2	53
1518	The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells, 2020, 9, 2401.	1.8	18
1519	Impact of Microbiota: A Paradigm for Evolving Herd Immunity against Viral Diseases. Viruses, 2020, 12, 1150.	1.5	7
1520	The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Frontiers in Microbiology, 2020, 11, 1065.	1.5	146
1521	Association of initial empirical antibiotic therapy with increased risk of necrotizing enterocolitis. European Journal of Pediatrics, 2020, 179, 1047-1056.	1.3	12
1522	Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. European Respiratory Journal, 2020, 56, 1902320.	3.1	17
1523	The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells, 2020, 9, 1234.	1.8	121
1524	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
1525			
	The Emerging Role of Gut Dysbiosis in Cardio-metabolic Risk Factors for Heart Failure. Current Hypertension Reports, 2020, 22, 38.	1.5	19
1526		1.5 1.8	19 40
1526 1527	Hypertension Reports, 2020, 22, 38. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving,		
	Hypertension Reports, 2020, 22, 38. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. MBio, 2020, 11, .	1.8	40
1527	 Hypertension Reports, 2020, 22, 38. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. MBio, 2020, 11, . Interaction between microbiota and immunity in health and disease. Cell Research, 2020, 30, 492-506. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative 	1.8 5.7	40 1,724
1527 1528	 Hypertension Reports, 2020, 22, 38. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. MBio, 2020, 11, . Interaction between microbiota and immunity in health and disease. Cell Research, 2020, 30, 492-506. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Review of Neurotherapeutics, 2020, 20, 673-686. Free Amino Acids in Human Milk: A Potential Role for Glutamine and Glutamate in the Protection 	1.8 5.7 1.4	40 1,724 26
1527 1528 1529	Hypertension Reports, 2020, 22, 38. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. MBio, 2020, 11, . Interaction between microbiota and immunity in health and disease. Cell Research, 2020, 30, 492-506. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Review of Neurotherapeutics, 2020, 20, 673-686. Free Amino Acids in Human Milk: A Potential Role for Clutamine and Clutamate in the Protection Against Neonatal Allergies and Infections. Frontiers in Immunology, 2020, 11, 1007.	1.8 5.7 1.4 2.2	40 1,724 26 32

#	Article	IF	CITATIONS
1533	Cecal microbiome composition and metabolic function in probiotic treated broilers. PLoS ONE, 2020, 15, e0225921.	1.1	19
1534	Host dysbiosis negatively impacts IL-9-producing T-cell differentiation and antitumour immunity. British Journal of Cancer, 2020, 123, 534-541.	2.9	14
1535	Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiology, 2020, 20, 140.	1.3	38
1536	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	1.3	102
1537	Study on the correlation among dysbacteriosis, imbalance of cytokine and the formation of intrauterine adhesion. Annals of Translational Medicine, 2020, 8, 52-52.	0.7	10
1538	Considering the Immune System during Fecal Microbiota Transplantation for Clostridioides difficile Infection. Trends in Molecular Medicine, 2020, 26, 496-507.	3.5	25
1539	The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Frontiers in Cellular and Infection Microbiology, 2020, 10, 9.	1.8	383
1540	Microbiota in organ transplantation: An immunological and therapeutic conundrum?. Cellular Immunology, 2020, 351, 104080.	1.4	10
1541	Microbiome and cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 114-117.	3.3	13
1542	Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes, 2020, 11, 680-690.	4.3	45
1543	Immunomodulatory Roles of Polysaccharide Capsules in the Intestine. Frontiers in Immunology, 2020, 11, 690.	2.2	23
1544	Gut dysbiosis and multiple sclerosis. Clinical Immunology, 2022, 235, 108380.	1.4	28
1545	Strategies to Dissect Host-Microbial Immune Interactions That Determine Mucosal Homeostasis vs. Intestinal Inflammation in Gnotobiotic Mice. Frontiers in Immunology, 2020, 11, 214.	2.2	23
1546	The link "Cancer and autoimmune diseases―in the light of microbiota: Evidence of a potential culprit. Immunology Letters, 2020, 222, 12-28.	1.1	14
1547	Changes in Symbiotic Microbiota and Immune Responses in Early Development Stages of Rapana venosa (Valenciennes, 1846) Provide Insights Into Immune System Development in Gastropods. Frontiers in Microbiology, 2020, 11, 1265.	1.5	6
1548	Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Molecular Ecology Resources, 2020, 20, 1558-1571.	2.2	61
1549	Development and Functions of the Infant Gut Microflora: Western <i>vs</i> . Indian Infants. International Journal of Pediatrics (United Kingdom), 2020, 2020, 1-10.	0.2	9
1551	The use of fecal microbiota transplant in sepsis. Translational Research, 2020, 226, 12-25.	2.2	25

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1552	Candida gut commensalism and inflammatory disease. Medicine in Microecology, 2020, 3,	100008.	0.7	6
1553	Influence of microbiota on immunity and immunotherapy for gastric and esophageal cance Gastroenterology Report, 2020, 8, 206-214.	rs.	0.6	18
1554	Pretreatment with Antibiotics Impairs Th17-Mediated Antifungal Immunity in Newborn Rat Inflammation, 2020, 43, 2202-2208.	3.	1.7	7
1555	The perinatal period, the developing intestinal microbiome and inflammatory bowel disease links early life events with later life disease?. Journal of the Royal Society of New Zealand, 2 371-383.	s: What 020, 50,	1.0	2
1556	Distinct microbial and immune niches of the human colon. Nature Immunology, 2020, 21,	343-353.	7.0	175
1557	Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Digestive Diseases and Sciences, 2020, 65, 695-705.		1.1	104
1558	Dendritic Cell Subsets in Intestinal Immunity and Inflammation. Journal of Immunology, 20. 1075-1083.	20, 204,	0.4	64
1559	Host–microbiome intestinal interactions during early life: considerations for atopy and as development. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 138-148.	sthma	1.1	10
1560	A Europe-wide assessment of antibiotic resistance rates in Bacteroides and Parabacteroides from intestinal microbiota of healthy subjects. Anaerobe, 2020, 62, 102182.	s isolates	1.0	26
1561	When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Metabolism, 2020, 31, 448-471.	Cell	7.2	101
1562	Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Can Annual Review of Immunology, 2020, 38, 649-671.	cers.	9.5	31
1563	Host-mediated ubiquitination of a mycobacterial protein suppresses immunity. Nature, 202 682-688.	0, 577,	13.7	61
1564	Suppression of Staphylococcus aureus Superantigen-Independent Interferon Gamma Respo Probiotic Polysaccharide. Infection and Immunity, 2020, 88, .	onse by a	1.0	11
1565	Relationship Between the Gastrointestinal Side Effects of an Anti-Hypertensive Medication Changes in the Serum Lipid Metabolome. Nutrients, 2020, 12, 205.	and	1.7	4
1566	The progress of gut microbiome research related to brain disorders. Journal of Neuroinflam 2020, 17, 25.	nation,	3.1	252
1567	Insights into the role of intestinal microbiota in hematopoietic stem-cell transplantation. Th Advances in Hematology, 2020, 11, 204062071989696.	ierapeutic	1.1	36
1568	Intestinal microbes influence development of thymic lymphocytes in early life. Proceedings National Academy of Sciences of the United States of America, 2020, 117, 2570-2578.	of the	3.3	65
1569	Intestinal Organoids as a Tool for Inflammatory Bowel Disease Research. Frontiers in Medic 6, 334.	ine, 2019,	1.2	44

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
1570	Intestinal microbes derived butyrate is related to the immunomodulatory activities of Dendrobium officinale polysaccharide. International Journal of Biological Macromolecules, 2020, 149, 717-723.		6	76
1571	Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annual Review o Immunology, 2020, 38, 23-48.	f 9.	5	294
1572	Dysbiosis of Fecal Microbiota in Allergic Rhinitis Patients. American Journal of Rhinology and Allerg 2020, 34, 650-660.	у, 1.0	0	20
1573	A Comprehensive Review on Natural Bioactive Compounds and Probiotics as Potential Therapeutic Food Allergy Treatment. Frontiers in Immunology, 2020, 11, 996.	cs in 2.	2	29
1574	Establishing a high microbial load maternal-offspring asthma model in adult mice. International Immunopharmacology, 2020, 83, 106453.	1.7	7	1
1575	Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urina Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Frontiers in Neuroscience, 20 14, 296.		4	12
1576	Prebiotics and the Modulation on the Microbiota-GALT-Brain Axis. , 2020, , .			2
1577	The microbiota protects against Pseudomonas aeruginosa pneumonia via Î ³ δT cell-neutrophil axis mice. Microbes and Infection, 2020, 22, 294-302.	in 1.	0	8
1578	The association between gut butyrateâ€producing bacteria and nonâ€smallâ€cell lung cancer. Jou Clinical Laboratory Analysis, 2020, 34, e23318.	rnal of 0.	.9	59
1579	Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology 2020, , .	, O.	.8	7
1580	Colons or semi-colons: punctuating the regional variation of intestinal microbial–immune interactions. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 319-320.	8.	2	2
1581	The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech, 2020, 21, 114.	1.;	5	16
1582	Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Frontiers in Endocrinology, 2020, 11, 125.	1.;	5	70
1583	Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeut Interventions: Special Focus on Anthocyanins. Cells, 2020, 9, 853.	ic 1.	8	55
1584	Soybean Oil Modulates the Gut Microbiota Associated with Atherogenic Biomarkers. Microorganis 2020, 8, 486.	:ms, 1.0	6	5
1585	Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients, 2020, 12, 823.	1.'	7	83
1586	Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Critical Reviews in Food Science and Nutrition, 2021, 61, 1900-1913.	5.	4	13
1587	Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1415-1428.	5.	4	20

#	Article	IF	CITATIONS
1588	Emerging role of microbiota in immunomodulation and cancer immunotherapy. Seminars in Cancer Biology, 2021, 70, 37-52.	4.3	19
1589	The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein and Cell, 2021, 12, 331-345.	4.8	133
1590	Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Seminars in Cancer Biology, 2021, 70, 11-23.	4.3	26
1591	The role of maternal diet on offspring gut microbiota development: A review. Journal of Neuroscience Research, 2021, 99, 284-293.	1.3	27
1592	A survey on predicting microbe-disease associations: biological data and computational methods. Briefings in Bioinformatics, 2021, 22, .	3.2	15
1593	A new Illumina MiSeq highâ€ŧhroughput sequencingâ€based method for evaluating the composition of the Bacteroides community in the intestine using the rpsD gene sequence. Microbial Biotechnology, 2021, 14, 577-586.	2.0	9
1594	The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetologica, 2021, 58, 249-265.	1.2	15
1595	Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabetic Medicine, 2021, 38, e14415.	1.2	34
1596	The Gut Microbiome of Adults with Allergic Rhinitis Is Characterised by Reduced Diversity and an Altered Abundance of Key Microbial Taxa Compared to Controls. International Archives of Allergy and Immunology, 2021, 182, 94-105.	0.9	24
1597	CNS and peripheral immunity in cerebral ischemia: partition and interaction. Experimental Neurology, 2021, 335, 113508.	2.0	21
1598	Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188484.	3.3	11
1599	Lactobacillus reuteri CCFM1072 and CCFM1040 with the role of Treg cells regulation alleviate airway inflammation through modulating gut microbiota in allergic asthma mice. Journal of Functional Foods, 2021, 76, 104286.	1.6	11
1600	Mechanisms of microbial–neuronal interactions in pain and nociception. Neurobiology of Pain (Cambridge, Mass), 2021, 9, 100056.	1.0	29
1601	Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. Journal of Functional Foods, 2021, 76, 104289.	1.6	61
1602	The role of the gut microbiome on radiation therapy efficacy and gastrointestinal complications: A systematic review. Radiotherapy and Oncology, 2021, 156, 1-9.	0.3	44
1603	Human immunology and immunotherapy: main achievements and challenges. Cellular and Molecular Immunology, 2021, 18, 805-828.	4.8	96
1604	Toll-like receptor 4 prevents AOM/DSS-induced colitis-associated colorectal cancer in Bacteroides fragilis gnotobiotic mice. Human and Experimental Toxicology, 2021, 40, 622-633.	1.1	4
1605	Gut microbiota–brain axis in depression: The role of neuroinflammation. European Journal of Neuroscience, 2021, 53, 222-235.	1.2	118

	Сіта	TION REPORT	
#	Article	IF	Citations
1606	Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01. Applied Microbiology and Biotechnology, 2021, 105, 1629-1645.	1.7	19
1607	Oral administration of <i>Clostridium butyricum</i> rescues streptomycin-exacerbated respiratory syncytial virus-induced lung inflammation in mice. Virulence, 2021, 12, 2133-2148.	1.8	10
1608	The Role of Gut Microbiota in the High-Risk Construct of Severe Mental Disorders: A Mini Review. Frontiers in Psychiatry, 2020, 11, 585769.	1.3	13
1609	Next-Generation Probiotics. , 2021, , 45-79.		0
1610	Risk Factors and Clinical Profile of Sapovirus-associated Acute Gastroenteritis in Early Childhood. Pediatric Infectious Disease Journal, 2021, 40, 220-226.	1.1	18
1611	Polysaccharides and immune function. , 2021, , 155-167.		0
1612	Gut Microbiota in Health and Diseases. , 2022, , 182-198.		3
1613	Comparison of mucosa-associated microbiota in Crohn's disease patients with and without anti-tumor necrosis factor-α therapy. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 182-188.	0.6	3
1614	Microbiota, a New Playground for the Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Diseases. Marine Drugs, 2021, 19, 54.	2.2	12
1615	Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nature Reviews Immunology, 2021, 21, 454-468.	10.6	127
1616	The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes, 2021, 13, 1966262.	4.3	4
1617	Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. , 2022, , 271-288.		1
1618	Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. International Journal of Molecular Sciences, 2021, 22, 1026.	1.8	31
1619	The interactions between gut and brain in psychiatric and neurological disorders. , 2021, , 49-65.		0
1620	Diversity–Function Relationships and the Underlying Ecological Mechanisms in Host-Associated Microbial Communities. Advances in Environmental Microbiology, 2021, , 297-326.	0.1	1
1621	Gut Microbiota as a Mediator of Host Neuro-Immune Interactions: Implications in Neuroinflammatory Disorders. Modern Trends in Psychiatry, 2021, 32, 40-57.	2.1	9
1622	Dysbiotic microbiota interactions in Crohn's disease. Gut Microbes, 2021, 13, 1949096.	4.3	38
1623	Dietary Regulation of the Crosstalk between Gut Microbiome and Immune Response in Inflammatory Bowel Disease. Foods, 2021, 10, 368.	1.9	4

#	Article	IF	CITATIONS
1624	Can we modulate the breastfed infant gut microbiota through maternal diet?. FEMS Microbiology Reviews, 2021, 45, .	3.9	18
1625	Examining the Gastrointestinal and Immunomodulatory Effects of the Novel Probiotic Bacillus subtilis DE111. International Journal of Molecular Sciences, 2021, 22, 2453.	1.8	21
1626	New Insights Into the Cancer–Microbiome–Immune Axis: Decrypting a Decade of Discoveries. Frontiers in Immunology, 2021, 12, 622064.	2.2	91
1627	Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-F, AppNL-F, and wild type mice. Scientific Reports, 2021, 11, 4678.	1.6	38
1628	When a Neonate Is Born, So Is a Microbiota. Life, 2021, 11, 148.	1.1	33
1629	Gut Health and Immunity in Improving Poultry Production. , 0, , .		2
1630	Exploring the Effect of Probiotics, Prebiotics, and Postbiotics in Strengthening Immune Activity in the Elderly. Vaccines, 2021, 9, 136.	2.1	21
1631	COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 2022, 41, 171-206.	1.5	30
1632	Intrapartum Cesarean Delivery Due to Nonreassuring Fetal Heart Rate and the Risk of Pediatric Infectious Morbidity-related Hospitalizations of the Offspring. Pediatric Infectious Disease Journal, 2021, 40, 669-673.	1.1	2
1633	Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma. Blood Advances, 2021, 5, 1194-1198.	2.5	14
1634	Bacterial microbiota similarity between predators and prey in a blue tit trophic network. ISME Journal, 2021, 15, 1098-1107.	4.4	16
1635	Review article: key aspects of mammal microbiome development. Veterinary Science Today, 2021, 1, 68-71.	0.1	2
1636	Interactions of hostâ€associated multispecies bacterial communities. Periodontology 2000, 2021, 86, 14-31.	6.3	3
1637	Role of the gut microbiome in Alzheimer's disease. Reviews in the Neurosciences, 2021, 32, 767-789.	1.4	6
1638	p300 Serine 89: A Critical Signaling Integrator and Its Effects on Intestinal Homeostasis and Repair. Cancers, 2021, 13, 1288.	1.7	8
1639	Host/microbiota interactions in health and diseases—Time for mucosal microbiology!. Mucosal Immunology, 2021, 14, 1006-1016.	2.7	51
1640	In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System?. Nutrients, 2021, 13, 870.	1.7	12
1641	Gut Microbiota Interaction with the Central Nervous System throughout Life. Journal of Clinical Medicine, 2021, 10, 1299.	1.0	47

#	Article	IF	Citations
1642	Escherichia coli Nissle 1917 Enhances Innate and Adaptive Immune Responses in a Ciprofloxacin-Treated Defined-Microbiota Piglet Model of Human Rotavirus Infection. MSphere, 2021, 6, .	1.3	14
1643	Gut-derived Shewanella induces the differentially expressed proteins in leukocytes of Lampetra japonica. Journal of Proteomics, 2021, 236, 104123.	1.2	1
1645	Making the Enterobacterial Common Antigen Glycan and Measuring Its Substrate Sequestration. ACS Chemical Biology, 2021, 16, 691-700.	1.6	13
1646	Relationship between Nutrient Intake and Human Gut Microbiota in Monozygotic Twins. Medicina (Lithuania), 2021, 57, 275.	0.8	8
1647	Strainâ€level immunomodulatory variation of gut bacteria. FEBS Letters, 2021, 595, 1322-1327.	1.3	3
1648	Gut microbiome and Mediterranean diet in the context of obesity. Current knowledge, perspectives and potential therapeutic targets. Metabolism Open, 2021, 9, 100081.	1.4	21
1649	Effects of supplemental feeding on the fecal bacterial communities of Rocky Mountain elk in the Greater Yellowstone Ecosystem. PLoS ONE, 2021, 16, e0249521.	1.1	10
1650	Connecting the dots: Targeting the microbiome in drug toxicity. Medicinal Research Reviews, 2022, 42, 83-111.	5.0	8
1651	Dynamic Changes in Fecal Microbial Communities of Neonatal Dairy Calves by Aging and Diarrhea. Animals, 2021, 11, 1113.	1.0	36
1652	Acceptive Immunity: The Role of Fucosylated Glycans in Human Host–Microbiome Interactions. International Journal of Molecular Sciences, 2021, 22, 3854.	1.8	15
1653	Alcoholâ€essociated intestinal dysbiosis alters mucosalâ€essociated invariant Tâ€cell phenotype and function. Alcoholism: Clinical and Experimental Research, 2021, 45, 934-947.	1.4	9
1654	Asthma in the Precision Medicine Era: Biologics and Probiotics. International Journal of Molecular Sciences, 2021, 22, 4528.	1.8	35
1656	Immune Response and Hemolymph Microbiota of <i>Apis mellifera</i> and <i>Apis cerana</i> After the Challenge With Recombinant <i>Varroa</i> Toxic Protein. Journal of Economic Entomology, 2021, 114, 1310-1320.	0.8	7
1657	Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid–Driven Colonic Inflammation. American Journal of Pathology, 2021, 191, 704-719.	1.9	39
1658	The link among microbiota, epigenetics, and disease development. Environmental Science and Pollution Research, 2021, 28, 28926-28964.	2.7	19
1659	Amelioration of Graft-versus-Host Disease by Exopolysaccharide from a Commensal Bacterium. Journal of Immunology, 2021, 206, 2101-2108.	0.4	7
1660	Interactions between Cryptosporidium, Enterocytozoon, Giardia and Intestinal Microbiota in Bactrian Camels on Qinghai-Tibet Plateau, China. Applied Sciences (Switzerland), 2021, 11, 3595.	1.3	4
1661	Could the Gut Microbiota Serve as a Therapeutic Target in Ischemic Stroke?. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-15.	0.5	8

#	Article	IF	CITATIONS
1662	Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. Applied Sciences (Switzerland), 2021, 11, 3717.	1.3	21
1663	Intestinal eosinophils, homeostasis and response to bacterial intrusion. Seminars in Immunopathology, 2021, 43, 295-306.	2.8	21
1664	Contourner la résistance à l'immunothérapie des cancersÂ: interventions centrées sur le microbiome intestinal. Bulletin De L'Academie Nationale De Medecine, 2021, 205, 364-382.	0.0	0
1665	Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease. Journal of Molecular Neuroscience, 2021, 71, 1436-1455.	1.1	30
1666	Total Synthesis of the Repeating Unit of <i>Bacteroides fragilis</i> Zwitterionic Polysaccharide A1. Journal of Organic Chemistry, 2021, 86, 6090-6099.	1.7	12
1667	Control of Immunity by the Microbiota. Annual Review of Immunology, 2021, 39, 449-479.	9.5	129
1668	From the Role of Microbiota in Gut-Lung Axis to SARS-CoV-2 Pathogenesis. Mediators of Inflammation, 2021, 2021, 1-12.	1.4	17
1669	Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis. Experimental Biology and Medicine, 2021, 246, 1563-1575.	1.1	11
1670	Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Frontiers in Immunology, 2021, 12, 643255.	2.2	6
1671	A comprehensive review of the multifaceted role of the microbiota in human pancreatic carcinoma. Seminars in Cancer Biology, 2022, 86, 682-692.	4.3	30
1672	Contribution of Gut Microbiota to Immunological Changes in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 683068.	2.2	25
1673	The Immunomodulatory Effect of the Gut Microbiota in Kidney Disease. Journal of Immunology Research, 2021, 2021, 1-16.	0.9	48
1674	Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101484.	2.2	42
1675	Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients, 2021, 13, 1716.	1.7	41
1676	Metabolic regulation on the immune environment of glioma through gut microbiota. Seminars in Cancer Biology, 2022, 86, 990-997.	4.3	20
1677	Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Frontiers in Immunology, 2021, 12, 662807.	2.2	19
1678	The Kidney-Associated Microbiome of Wild-Caught Artibeus spp. in Grenada, West Indies. Animals, 2021, 11, 1571.	1.0	3
1679	Immunomodulatory role of Faecalibacterium prausnitzii in obesity and metabolic disorders. Minerva Biotechnology and Biomolecular Research, 2021, 33, .	0.3	10

		CITATION REPORT		
#	Article		IF	Citations
1680	The emerging role of gut microbiota in cardiovascular diseases. Indian Heart Journal, 20)21, 73, 264-272.	0.2	18
1681	Gut microbiome, parathyroid hormone, and bone. Current Opinion in Nephrology and H 2021, 30, 418-423.	Hypertension,	1.0	10
1682	Capsular polysaccharide correlates with immune response to the human gut microbe <i>Ruminococcus gnavus</i> . Proceedings of the National Academy of Sciences of the America, 2021, 118, .	United States of	3.3	66
1683	Emerging concepts in intestinal immune control of obesity-related metabolic disease. N Communications, 2021, 12, 2598.	lature	5.8	65
1684	Role of lung and gut microbiota on lung cancer pathogenesis. Journal of Cancer Resear Clinical Oncology, 2021, 147, 2177-2186.	ch and	1.2	78
1685	Small Animals Gut Microbiome and Its Relationship with Cancer. , 0, , .			5
1686	Microbial sensing in the neonatal pig gut: effect of diet-independent and diet-depender Canadian Journal of Animal Science, 2021, 101, 201-209.	nt factors1.	0.7	1
1687	The influence of gut microbiome on bone health and related dietary strategies against dysfunctions. Food Research International, 2021, 144, 110331.	bone	2.9	11
1688	Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue TLR5 signaling in obese mice. Scientific Reports, 2021, 11, 11788.	e axis involving	1.6	33
1689	Profiling of Intestinal Microbiota in Patients Infected with Respiratory Influenza A and E Pathogens, 2021, 10, 761.	8 Viruses.	1.2	13
1690	The role of the microbiome in gastrointestinal inflammation. Bioscience Reports, 2021,	41,.	1.1	27
1691	Biosynthesis of the Immunomodulatory Molecule Capsular Polysaccharide A from <i>B. fragilis</i> ., 0, , .	acteroides		0
1692	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Jour 4251-4303.	nal, 2022, 289,	2.2	39
1693	The microbiome mediates epiphyseal bone loss and metabolomic changes after acute j mice. Osteoarthritis and Cartilage, 2021, 29, 882-893.	oint trauma in	0.6	18
1694	Chronic Stress-Induced Depression and Anxiety Priming Modulated by Gut-Brain-Axis In Frontiers in Immunology, 2021, 12, 670500.	nmunity.	2.2	54
1695	The Mammalian Metaorganism: A Holistic View on How Microbes of All Kingdoms and I Local and Systemic Immunity. Frontiers in Immunology, 2021, 12, 702378.	Niches Shape	2.2	14
1696	Application of NGS Technology in Understanding the Pathology of Autoimmune Diseas Clinical Medicine, 2021, 10, 3334.	es. Journal of	1.0	3
1697	Functional enrichment of gut microbiome by early supplementation of Bacillus based p free hens: a field study. Animal Microbiome, 2021, 3, 50.	robiotic in cage	1.5	7

		CITATION REPORT		
#	Article		IF	CITATIONS
1698	Gut Microbiota in Cancer Immune Response and Immunotherapy. Trends in Cancer, 202	1, 7, 647-660.	3.8	136
1699	The ammonia oxidizing bacterium Nitrosomonas eutropha blocks T helper 2 cell polariza anti-inflammatory cytokine IL-10. Scientific Reports, 2021, 11, 14162.	tion via the	1.6	17
1700	Contributions of neuroimmune and gut-brain signaling to vulnerability of developing sub disorders. Neuropharmacology, 2021, 192, 108598.	ostance use	2.0	21
1701	The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation Epileptogenesis. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 743-760		0.2	2
1702	The Role of Gut Microbiota in Overcoming Resistance to Checkpoint Inhibitors in Cancer Mechanisms and Challenges. International Journal of Molecular Sciences, 2021, 22, 803	r Patients: 6.	1.8	11
1703	The Microbiota-Gut-Brain Axis: A New Direction in Research on Depression. Journal of Stu Research, 2021, 10, .	udent	0.0	0
1704	Bacterial and immune cell co-evolution in the gut. Nature Reviews Gastroenterology and 2021, 18, 676-676.	Hepatology,	8.2	2
1705	Influence of immunomodulatory drugs on the gut microbiota. Translational Research, 20 144-161.	21, 233,	2.2	14
1706	Bacillus amyloliquefaciens-9 Reduces Somatic Cell Count and Modifies Fecal Microbiota Goats. Marine Drugs, 2021, 19, 404.	in Lactating	2.2	5
1707	Gut Microbiota Is Involved in Alcohol-Induced Osteoporosis in Young and Old Rats Throu Regulation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 636231.	ıgh Immune	1.8	17
1708	A Common Pathway for Activation of Host-Targeting and Bacteria-Targeting Toxins in Hu Intestinal Bacteria. MBio, 2021, 12, e0065621.	uman	1.8	5
1709	Lactococcus lactis Delivery of Surface Layer Protein A Protects Mice from Colitis by Re-S Immune Repertoire. Biomedicines, 2021, 9, 1098.	etting Host	1.4	5
1710	Causative Microbes in Host-Microbiome Interactions. Annual Review of Microbiology, 20)21, 75, 223-242.	2.9	9
1711	Novel insights on gut microbiota manipulation and immune checkpoint inhibition in can International Journal of Oncology, 2021, 59, .	cer (Review).	1.4	17
1712	The Gut Microbiota-Derived Immune Response in Chronic Liver Disease. International Jou Molecular Sciences, 2021, 22, 8309.	ırnal of	1.8	15
1713	The biological regulatory activities of Flammulina velutipes polysaccharide in mice intest microbiota, immune repertoire and heart transcriptome. International Journal of Biologic Macromolecules, 2021, 185, 582-591.		3.6	9
1714	Spatial variation in the gastrointestinal microbiome, diet, and nutritional condition of a j flatfish among coastal habitats. Marine Environmental Research, 2021, 170, 105413.	uvenile	1.1	6
1716	Microbiome analysis, the immune response and transplantation in the era of next genera sequencing. Human Immunology, 2021, 82, 883-901.	ation	1.2	7

#	Article	IF	CITATIONS
1717	The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs. Current Hypertension Reports, 2021, 23, 40.	1.5	15
1718	Fecal Metabolome Signature in the HIV-1 Elite Control Phenotype: Enrichment of Dipeptides Acts as an HIV-1 Antagonist but a <i>Prevotella</i> Agonist. Journal of Virology, 2021, 95, e0047921.	1.5	7
1719	Bacterial-Induced Blood Pressure Reduction: Mechanisms for the Treatment of Hypertension via the Gut. Frontiers in Cardiovascular Medicine, 2021, 8, 721393.	1.1	15
1720	Koumiss promotes <i>Mycobacterium</i> bovis infection by disturbing intestinal flora and inhibiting endoplasmic reticulum stress. FASEB Journal, 2021, 35, e21777.	0.2	4
1721	Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer's disease. Neurobiology of Disease, 2021, 156, 105403.	2.1	39
1722	Increased CD3+, CD8+, or FoxP3+ T Lymphocyte Infiltrations Are Associated with the Pathogenesis of Colorectal Cancer but Not with the Overall Survival of Patients. Biology, 2021, 10, 808.	1.3	6
1723	The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses. Critical Reviews in Oncology/Hematology, 2021, 165, 103429.	2.0	20
1724	A Modern-World View of Host–Microbiota–Pathogen Interactions. Journal of Immunology, 2021, 207, 1710-1718.	0.4	10
1725	Advances in activity-based diagnostics for infectious disease and microbiome health. Current Opinion in Biomedical Engineering, 2021, 19, 100296.	1.8	0
1726	Probiotic Interventions Alleviate Food Allergy Symptoms Correlated With Cesarean Section: A Murine Model. Frontiers in Immunology, 2021, 12, 741371.	2.2	11
1727	Commensals shape the immune system. Nature Reviews Immunology, 2021, 21, 615-615.	10.6	1
1728	Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology, 2021, 164, 476-493.	2.0	35
1729	Effects of obesity and weight-loss surgery shift the microbiome and impact alloimmune responses. Current Opinion in Organ Transplantation, 2021, Publish Ahead of Print, 603-608.	0.8	0
1730	Bacteriophage-mediated modulation of microbiota for diseases treatment. Advanced Drug Delivery Reviews, 2021, 176, 113856.	6.6	18
1731	Association of female reproductive tract microbiota with egg production in layer chickens. GigaScience, 2021, 10, .	3.3	7
1732	Tumor Necrosis Factor's Pathway in Crohn's Disease: Potential for Intervention. International Journal of Molecular Sciences, 2021, 22, 10273.	1.8	7
1733	Effects of Different Fermented Feeds on Production Performance, Cecal Microorganisms, and Intestinal Immunity of Laying Hens. Animals, 2021, 11, 2799.	1.0	9
1734	Mining the Gut Microbiota for Microbial-Based Therapeutic Strategies in Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 721249.	1.3	3

ARTICLE IF CITATIONS # T helper cells in depression: central role of Th17 cells. Critical Reviews in Clinical Laboratory 1735 2.7 18 Sciences, 2022, 59, 19-39. Influence of the Microbiome on Chronic Rhinosinusitis With and Without Polyps: An Evolving 1.2 Discussion. Frontiers in Allergy, 2021, 2, 737086. The role of the pediatric cutaneous and gut microbiomes in childhood disease: A review. Seminars in 1737 1.1 1 Perinatology, 2021, 45, 151452. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radical Biology and Medicine, 2021, 176, 105-117. Gut Dysbiosis and Neurological Disordersâ€"An Eclectic Perspective. , 2022, , 489-500. 1739 0 Gastrointestinal Tract and COVID-19. Advances in Medical Diagnosis, Treatment, and Care, 2022, , 1740 0.1 127-140. Why and how do protective symbionts impact immune priming with pathogens in invertebrates?. 1741 1.0 9 Developmental and Comparative Immunology, 2022, 126, 104245. Mechanisms of Gut Microbiota Modulation by Food, Probiotics, Prebiotics and More., 2021, , 84-84. 1742 1743 Gut microbiota and the immune system and inflammation., 2021, , 311-333. 0 1744 Zwitterionic Polysaccharides in Immunity., 2021, , 454-469. The Impact of Gut Microbiota on the Immune Response to Vaccination., 2022, , 145-160. 1745 0 The emerging world of microbiome in autoimmune disorders: Opportunities and challenges. Indian 1746 Journal of Rheumatology, 2021, 16, 57. Associations between the Gut Microbiota, Immune Reconstitution, and Outcomes of Allogeneic 1747 0.7 10 Hematopoietic Stem Cell Transplantation. Immunometabolism, 2021, 3, . The Microbiome as an Endocrine Organ., 2021, , . 1748 Regulation of Intestinal Barrier Function by Microbial Metabolites. Cellular and Molecular 1749 2.3235 Gastroenterology and Hepatology, 2021, 11, 1463-1482. Immunity and Gut Microbiome: Role of Probiotics and Prebiotics. Microorganisms for Sustainability, 0.4 2021,, 61-83. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules, 2021, 26, 206. 1751 1.7 15 Effects of <i>Pediococcus pentosaceus</i> LI05 on immunity and metabolism in germ-free rats. Food 2.1 and Function, 2021, 12, 5077-5086.

#	Article	IF	CITATIONS
1753	Gut microbiota and brain function and pathophysiology. , 2021, , 335-354.		0
1754	The multi-faceted roles of TGF-β in regulation of immunity to infection. Advances in Immunology, 2021, 150, 1-42.	1.1	8
1755	Nutrition-Based Management of Inflammaging in CKD and Renal Replacement Therapies. Nutrients, 2021, 13, 267.	1.7	11
1756	Intestinal Inflammation Breaks Established Immune Tolerance to a Skin Commensal. SSRN Electronic Journal, 0, , .	0.4	1
1757	The Gut-Brain Axis. Annals of Nutrition and Metabolism, 2021, 77, 1-3.	1.0	8
1758	Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nature Reviews Chemistry, 2021, 5, 197-216.	13.8	120
1759	COVID-19 and Gut Microbiota: A Potential Connection. Indian Journal of Clinical Biochemistry, 2021, 36, 266-277.	0.9	31
1760	Arsenic: A Global Environmental Challenge. Annual Review of Pharmacology and Toxicology, 2021, 61, 47-63.	4.2	127
1761	Modulatory effects of gut microbiome in cancer immunotherapy: A novel paradigm for blockade of immune checkpoint inhibitors. Cancer Medicine, 2021, 10, 1141-1154.	1.3	34
1762	Host-Microbe Communication within the GI Tract. Advances in Experimental Medicine and Biology, 2008, 635, 93-101.	0.8	23
1763	IgA and Respiratory Immunity. , 2007, , 269-290.		3
1764	Novel Functions for Mucosal SIgA. , 2007, , 183-202.		5
1765	Immunological Effects of Probiotics and their Significance to Human Health. , 2009, , 901-948.		5
1766	The Mucosal B-Cell System. , 2008, , 33-76.		2
1767	Application of Lectin Microarray to Bacteria Including Lactobacillus casei/paracasei Strains. Methods in Molecular Biology, 2014, 1200, 295-311.	0.4	5
1768	Probiotics 101. , 2009, , 41-52.		2
1769	Phage Interaction with the Mammalian Immune System. , 2019, , 91-122.		6
1770	Gastrointestinal Tract Commensal Bacteria and Probiotics: Influence on End-Organ Physiology. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2015, 70, 1-33.	0.6	4

	CHAIION	REPORT	
#	ARTICLE Lactobacillus: Host–Microbe Relationships. Current Topics in Microbiology and Immunology, 2011, ,	IF 0.7	CITATIONS
1772	119-154. Introduction: The changing microbial environment, Darwinian medicine and the hygiene hypothesis. , 2009, , 1-27.		8
1773	Immunoregulation by microbes and parasites in the control of allergy and autoimmunity. , 2009, , 45-75.		3
1774	Linking lifestyle with microbiota and risk of chronic inflammatory disorders. , 2009, , 93-102.		1
1775	Gut Microbiota and Immune Responses. Advances in Experimental Medicine and Biology, 2020, 1238, 165-193.	0.8	14
1776	Immunological Reactions on H. pylori Infection. , 2016, , 35-52.		2
1777	The microbiome and immune system development. , 2020, , 43-66.		4
1778	Anaerobic Infections. , 2010, , 3083-3089.		1
1779	Bacteroides, Prevotella, Porphyromonas, and Fusobacterium Species (and Other Medically Important) Tj ETQc)/ 0 0 rgBT (0 0 م	Overlock 10 T
1780	The Intestinal Microbiota and the Microbiome. , 2008, , 73-92.		5
1781	Neonatal T Cell Immunity and Its Regulation by Innate Immunity and Dendritic Cells. , 2012, , 189-217.		1
1782	Prebiotics, Probiotics, and Synbiotics. , 2015, , 19-25.e1.		5
1783	Food, microbes, sex and old age: on the plasticity of gastrointestinal innervation. Current Opinion in Neurobiology, 2020, 62, 83-91.	2.0	10
1784	Gut microbiome and multiple sclerosis: New insights and perspective. International Immunopharmacology, 2020, 88, 107024.	1.7	30
1785	Role of the gut microbiota in immunity and inflammatory disease. , 0, .		1
1786	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.1	2
1787	Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochemical Society Transactions, 2020, 48, 915-931.	1.6	31

1788	Drug response in association with pharmacogenomics and pharmacomicrobiomics: towards a better personalized medicine. Briefings in Bioinformatics, 2021, 22, .		3.2	14
------	---	--	-----	----

	C	TATION REP	ORT	
#	Article		IF	CITATIONS
1789	Gut Microbiota and Cardiovascular Diseases. Cardiology in Review, 2021, 29, 195-204.		0.6	22
1790	Changes in the gastrointestinal microbiota of children with acute lymphoblastic leukaemia and its association with antibiotics in the short term. Journal of Medical Microbiology, 2017, 66, 1297-1307.		0.7	46
1806	Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. Journal of Clinical Investigation, 2006, 116, 2142-2151.		3.9	199
1807	Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biology, 2020, 21, 122.		3.8	48
1808	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 6	99.	0.8	81
1809	Probiotics supplementation in prophylaxis and treatment of depressive and anxiety disorders – a review of current research. Psychiatria Polska, 2019, 53, 459-473.		0.2	14
1810	The Bile Acid Sensor FXR Is Required for Immune-Regulatory Activities of TLR-9 in Intestinal Inflammation. PLoS ONE, 2013, 8, e54472.		1.1	82
1811	Metagenomic Analysis of the Pygmy Loris Fecal Microbiome Reveals Unique Functional Capacity Rela to Metabolism of Aromatic Compounds. PLoS ONE, 2013, 8, e56565.	ted	1.1	82
1812	Characterization of Adherent Bacteroidales from Intestinal Biopsies of Children and Young Adults with Inflammatory Bowel Disease. PLoS ONE, 2013, 8, e63686.		1.1	77
1813	Role of Murine Intestinal Interleukin-1 Receptor 1-Expressing Lymphoid Tissue Inducer-Like Cells in Salmonella Infection. PLoS ONE, 2013, 8, e65405.		1.1	16
1814	High-Throughput System for the Presentation of Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional Metagenomics Studies. PLoS ONE, 2013, 8, e65956.		1.1	14
1815	Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans. PLoS ONE, 2013, 8, e68919.		1.1	42
1816	A New Method for Extracting Skin Microbes Allows Metagenomic Analysis of Whole-Deep Skin. PLoS ONE, 2013, 8, e74914.		1.1	19
1817	Immune Response Elicited by DNA Vaccination Using Lactococcus lactis Is Modified by the Productio of Surface Exposed Pathogenic Protein. PLoS ONE, 2014, 9, e84509.	n	1.1	13
1818	Intestinal Microbiota Succession and Immunomodulatory Consequences after Introduction of Lactobacillus reuteri I5007 in Neonatal Piglets. PLoS ONE, 2015, 10, e0119505.		1.1	38
1819	DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis. PLoS ONE, 2016 11, e0148887.	5	1.1	20
1820	Relative Importance and Additive Effects of Maternal and Infant Risk Factors on Childhood Asthma. PLoS ONE, 2016, 11, e0151705.		1.1	53
1821	Altered Gut Microbiota Composition Associated with Eczema in Infants. PLoS ONE, 2016, 11, e01660)26.	1.1	130

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1822	Efecto de los probióticos en el control de la obesidad en humanos: hipótesis no demos Espanola De Nutricion Humana Y Dietetica, 2014, 16, 100.	stradas. Revista	0.1	2
1823	The changes of gut microbiota associated with age and lifestyle. Obesity and Metabolisr	n, 2015, 12, 3-9.	0.4	2
1824	Microbiota-immune interactions: from gut to brain. LymphoSign Journal, 2020, 7, 1-23.		0.1	24
1826	The temporal variations of gut microbiota composition in overwintering Hooded Crane (<i>Grus) Tj ETQq1 1 0.784</i>	·314 rgBT 0.3	/Overlock
1827	Intestinal immunity in hypopituitary dwarf mice: effects of age. Aging, 2018, 10, 358-37	0.	1.4	6
1828	Constructing personalized longitudinal holo'omes of colon cancer-prone humans an modeling in flies and mice. Oncotarget, 2019, 10, 4224-4246.	d their	0.8	9
1829	Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhi 744-761.	oitors. , 2019, 2,		3
1830	Symbionts Exploit Complex Signaling to Educate the Immune System. SSRN Electronic J	ournal, 0, , .	0.4	3
1831	Impact of Altered Early Infant Gut Microbiota Following Breastfeeding and Delivery Mod Diseases. Inflammation and Allergy: Drug Targets, 2013, 12, 410-418.	e on Allergic	1.8	10
1832	Reciprocity in Microbiome and Immune System Interactions and its Implications in Disea Inflammation and Allergy: Drug Targets, 2014, 13, 94-104.	se and Health.	1.8	25
1833	Microbiome Regulation of Autoimmune, Gut and Liver Associated Diseases. Inflammatio Drug Targets, 2016, 14, 84-93.	n and Allergy:	1.8	12
1834	Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis ar Immunopathology. Nutrients, 2013, 5, 1869-1912.	nd	1.7	392
1835	Advances in understanding the interaction between the gut microbiota and adaptive muresponses. F1000 Biology Reports, 2010, 2, .	icosal immune	4.0	7
1836	Role of mucosal dendritic cells in inflammatory bowel disease. World Journal of Gastroer 2008, 14, 5138.	iterology,	1.4	74
1837	Effect of herbal medicine Juzentaihoto on hepatic and intestinal heat shock gene expres intestinal microflora in mouse. World Journal of Gastroenterology, 2007, 13, 2289.	sion requires	1.4	18
1838	Polysaccharide A: An Immunomodulatory Molecule having Therapeutic Potential against Gut Diseases. Journal of Microbial & Biochemical Technology, 2012, 04, .	Inflammatory	0.2	1
1839	Association between Gut Microbiome Composition and Rotavirus Vaccine Response amo Infants. American Journal of Tropical Medicine and Hygiene, 2020, 102, 213-219.	ong Nicaraguan	0.6	35
1841	Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflamm disease. Intestinal Research, 2019, 17, 177-191.	atory bowel	1.0	14

#	Article	IF	CITATIONS
1842	Probiotics in inflammatory bowel disease: Pathophysiological background and clinical applications. World Journal of Immunology, 2013, 3, 31.	0.5	8
1844	A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. ELife, 2012, 1, e00013.	2.8	224
1845	Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. ELife, 2017, 6, .	2.8	125
1846	A bacterial immunomodulatory protein with lipocalin-like domains facilitates host–bacteria mutualism in larval zebrafish. ELife, 2018, 7, .	2.8	46
1847	The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. ELife, 2019, 8, .	2.8	41
1848	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
1849	A reproducible approach to high-throughput biological data acquisition and integration. PeerJ, 2015, 3, e791.	0.9	12
1850	The Intestinal Commensal, Bacteroides fragilis, Modulates Host Responses to Viral Infection and Therapy: Lessons for Exploration during Mycobacterium tuberculosis Infection. Infection and Immunity, 2022, 90, IAI0032121.	1.0	14
1851	The mucosal immune system and IgA nephropathy. Seminars in Immunopathology, 2021, 43, 657-668.	2.8	46
1852	Obesity Modulates the Gut Microbiome in Triple-Negative Breast Cancer. Nutrients, 2021, 13, 3656.	1.7	15
1853	Impact of the ileal microbiota on colon cancer. Seminars in Cancer Biology, 2022, 86, 955-966.	4.3	11
1854	Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Scientific Reports, 2021, 11, 20493.	1.6	7
1855	Short-Chain Fatty Acids Calibrate RARα Activity Regulating Food Sensitization. Frontiers in Immunology, 2021, 12, 737658.	2.2	9
1856	Hallmarks of the human intestinal microbiome on liver maturation and function. Journal of Hepatology, 2022, 76, 694-725.	1.8	12
1857	In Vitro Evaluation of the Therapeutic Potential of Phage VA7 against Enterotoxigenic Bacteroides fragilis Infection. Viruses, 2021, 13, 2044.	1.5	3
1858	Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Frontiers in Immunology, 2021, 12, 694787.	2.2	28
1859	Bacteroides fragilis restricts colitis-associated cancer via negative regulation of the NLRP3 axis. Cancer Letters, 2021, 523, 170-181.	3.2	44
1861	Molecular Interactions of Commensal Enteric Bacteria with the Intestinal Epithelium and the Mucosal Immune System. Bioscience and Microflora, 2008, 27, 37-48.	0.5	0

#	ARTICLE Probiotics in Infectious Diseases. , 2009, , 227-260.	IF	CITATIONS
1864	Neonatal and Infant Microflora. , 2009, , 83-97.		0
1865	The Role of Probiotics in the Treatment and Prevention of Asthma. , 2009, , 269-281.		0
1866	Vaccines Against Infectious Diseases: A Biotechnology-Driven Evolution. , 2009, , 562-572.		Ο
1867	Mechanisms of Probiotic Regulation of Host Homeostasis. , 2009, , 53-68.		0
1868	Indigenous Microbiota and Association with the Host. , 2009, , 15-37.		0
1870	Symbionts as an Epigenetic Source of Heritable Variation. , 2011, , .		1
1871	Extracellular Nucleic Acids Secreted by Lactobacillus Regulate TLR9 Expression. Journal of Hard Tissue Biology, 2011, 20, 153-160.	0.2	2
1872	Host-microbe Interactions in the Gut. , 2011, , 49-60.		0
1873	Immunology: Sweet presentation. Functional Glycomics Gateway, 2011, , .	0.0	0
1874	A Role for Bacteria in the Development of Autoimmunity for Type 1 Diabetes. , 2012, , 231-242.		0
1875	Importance of Bacteria as Trigger in Inflammatory Bowel Disease. , 2012, 01, .		0
1876	Clostridium difficile-Associated Colitis: Role of the Immune Response and Approach to Treatment. , 0, , .		1
1877	The Novel Use of Zwitterionic Bacterial Components and Polysaccharides in Immunotherapy of Cancer and Immunosuppressed Cancer Patients. , 0, , .		0
1878	MODERN VIEW ON THE INTESTINE MICROBIOTA FUCTION AND IT'S CORRECTION IN CHILDREN WITH FOOD ALLERGY. Russian Journal of Allergy, 2012, 9, 36-45.	0.1	1
1879	Animal Diseases, Applications of Metagenomics. , 2013, , 1-5.		Ο
1880	Microbial Exposures and Other Early Childhood Influences on the Subsequent Function of the Immune System. , 2013, , 331-362.		1
1881	A Comparison of Skin Microbiota under Adhesive Bandages versus Uncovered Adjacent Skin. American Journal of Undergraduate Research, 2013, 11, .	0.3	0

#	Article	IF	CITATIONS
1884	Probiotics and Prebiotics and the Gut Microbiota. , 2013, , 258-268.		2
1885	Molecular Microecological Techniques. Advanced Topics in Science and Technology in China, 2014, , 153-188.	0.0	1
1886	The Gut Microbiota: Ecology and Function. , 0, , 39-65.		1
1887	General Methods To Investigate Microbial Symbioses. , 0, , 394-419.		4
1889	Exopolysaccharides: Sweet success with probiotic therapeutics. Inflammation and Cell Signaling, 0, , .	1.6	2
1890	Recent Update in Fecal Microbiota Transplantation. Korean Journal of Microbiology, 2014, 50, 265-274.	0.2	1
1891	Gut Commensal Microbes and the Gut Immune System. Microbiology Monographs, 2015, , 149-166.	0.3	0
1892	Animal Diseases, Applications of Metagenomics. , 2015, , 10-14.		0
1893	Commensals and Foodborne Pathogens can Arbitrate Epithelial-carcinogenesis. British Microbiology Research Journal, 2016, 15, 1-11.	0.2	0
1894	The Humoral Immune Response to T Cell–Independent Antigens. , 2016, , 227-236.		0
1896	Bases da Fisiopatologia da Diarreia (The Pathophysiology of Diarrhea). , 0, , 809-826.		0
1897	Basic Immunobiology. Molecular and Integrative Toxicology, 2017, , 1-93.	0.5	0
1898	The Lost Friend: H. pylori. Birkhauser Advances in Infectious Diseases, 2017, , 69-97.	0.3	0
1899	Chapter 6 The intestinal microbiota and the child's immune system. , 2017, , 121-139.		3
1900	Direct Physiological Effects on Local Gi and Indirect Systemic Effects of Prebiotic Fructan Treatment, and its Role in Disease Prevention and Therapy. , 2018, , 155-196.		0
1902	Role of Gut Microbiota inÂlmmune Homeostasis. , 2018, , 135-154.		1
1904	Fire in the Forest: Adverse Effects of Antibiotics on the Healthy Human Gut Microbiome. International Journal of Medical Reviews, 2018, 5, 19-26.	0.4	1
1905	From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity. , 0, , 33-62.		0

		CITATION REPORT	
#	Article	IF	Citations
1909	Diet, Gut Microbiome and Multiple Sclerosis. RSC Drug Discovery Series, 2019, , 302-326.	0.2	0
1911	Development of Airway Allergic Diseases and Immunotherapy in Children. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2019, 62, 261-269.	0.0	0
1912	Principles of Immunotherapy. Current Clinical Neurology, 2020, , 17-42.	0.1	1
1914	Design, Synthesis and Bioactivity of Core 1 O-glycan and its Derivative on Human Gut Micro Letters in Drug Design and Discovery, 2019, 16, 1348-1353.	biota. 0.4	0
1915	Mechanistic Insights into Aspartame-induced Immune Dysregulation. Current Nutrition and Science, 2019, 15, 653-661.	Food 0.3	0
1917	Pets and Immunomodulation. , 2020, , 209-243.		0
1918	Microbiota, mucosal immunity, and Colon cancer. , 2020, , 157-209.		1
1919	Influence of Bifidobacterium Bifidum and Lactobacillus Reuteri Cell-Free Extracts On Indicato Innate Immunity in Vivo. UkraÃ⁻nsʹkij žurnal Medicini BìologìÃ⁻ Ta Sportu, 2020, 5, 2		ο
1920	Imbalance in the Gut Microbiota of Children With Autism Spectrum Disorders. Frontiers in C and Infection Microbiology, 2021, 11, 572752.	ellular 1.8	23
1921	Environmental Pollutants that Can Be Metabolized by the Host, but Would Be Harmful to Hu (e.g., Causing Cancers, etc.). , 2020, , 169-198.	umans	Ο
1922	Monocyte Reconstitution and Gut Microbiota Composition after Hematopoietic Stem Cell Transplantation. Clinical Hematology International, 2020, 2, 156.	0.7	4
1924	The role of major virulence factors and pathogenicity of adherent-invasive Escherichia coli in patients with Crohn's disease. Przeglad Gastroenterologiczny, 2020, 15, 279-288.	0.3	6
1925	Mechanisms of Immune-Related Adverse Events. , 2020, , 179-186.		1
1926	Gut microbiota dysbiosis and chronic kidney disease. Journal of Renal Nutrition and Metabol 6, 70.	ism, 2020, 0.1	1
1927	Vitamin D: its impact on disease and the microbiome. , 2020, , 183-194.		0
1928	Allergie, Mikrobiom und weitere epigenetische Faktoren. , 2020, , 47-118.		0
1929	Increased Expression of Caspase Genes in Colorectal Cancer Cell Line by Nisin. Archives of C Infectious Diseases, 2020, 15, .	linical 0.1	10
1931	Microbiotaâ€derived extracellular vesicles in interkingdom communication in the gut. Journa Extracellular Vesicles, 2021, 10, e12161.	al of 5.5	102

#	Article	IF	CITATIONS
1932	Gut microbiota in a population highly affected by obesity and type 2 diabetes and susceptibility to COVID-19. World Journal of Gastroenterology, 2021, 27, 7065-7079.	1.4	6
1933	Risk factors for immune-related adverse events: what have we learned and what lies ahead?. Biomarker Research, 2021, 9, 79.	2.8	36
1934	Berberine inhibits dendritic cells differentiation in DSS-induced colitis by promoting Bacteroides fragilis. International Immunopharmacology, 2021, 101, 108329.	1.7	7
1936	Disturbances in microbiota — cause or effect?. , 0, , 79-82.		0
1938	Gut Microbiome: The Third Musketeer in the Cancer-Immune System Cross-Talk. Journal of Pancreatology, 2020, 3, 181-187.	0.3	3
1939	Fecal transplantation: clinical realities and prospects in the treatment of metabolic syndrome. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, 183, 102-112.	0.1	0
1940	Microbiota-Immune System Interactions in Human Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2020, 19, 509-526.	0.8	0
1942	Effects of Gametophytes of Ecklonia Kurome on the Levels of Glucose and Triacylglycerol in db/db, Prediabetic C57BL/6J and IFN-Î ³ KO Mice. International Journal of Biomedical Science, 2012, 8, 64-75.	0.5	3
1943	Bugs & us: the role of the gut in autoimmunity. Indian Journal of Medical Research, 2013, 138, 732-43.	0.4	20
1944	Gut bacteria in health and disease. Gastroenterology and Hepatology, 2013, 9, 560-9.	0.2	120
1946	The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome. , 2015, 37, 209-22.		15
1947	Fecal Microbiota Transplantation: A Review of Emerging Indications Beyond Relapsing Clostridium difficile Toxin Colitis. Gastroenterology and Hepatology, 2015, 11, 24-32.	0.2	16
1948	Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis. Yale Journal of Biology and Medicine, 2016, 89, 389-395.	0.2	24
1950	The microbiome: an emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	23
1951	Effect of Nakai extract on immunity and anti-inflammation in dogs. Canadian Journal of Veterinary Research, 2020, 84, 294-301.	0.2	0
1952	Evaluation of the genetic relatedness of isolates by TRs analysis. Iranian Journal of Basic Medical Sciences, 2020, 23, 1323-1327.	1.0	1
1953	Description of the bacterial microbiota of anal sacs in healthy dogs. Canadian Journal of Veterinary Research, 2021, 85, 12-17.	0.2	0
1954	Riddle of Herd Immunity in SARS-CoV-2-Induced Viral Terrorism: Science to Society. , 2022, , 51-71.		0

#	Article	IF	CITATIONS
1955	Organ-specific LPS-induced inflammatory gene expression in adult Zebrafish. Medical Immunology (Russia), 2021, 23, 1069-1078.	0.1	2
1956	Thyroid and Gut Microbiome. International Journal of Thyroidology, 2021, 14, 117-126.	0.1	0
1957	Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases. Frontiers in Genetics, 2021, 12, 785153.	1.1	28
1959	Gut biofilms: <i>Bacteroides</i> as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiology Reviews, 2022, 46, .	3.9	18
1961	Chimeric Antigen Receptors Expand the Repertoire of Antigenic Macromolecules for Cellular Immunity. Cells, 2021, 10, 3356.	1.8	5
1962	Vaccine Hyporesponse Induced by Individual Antibiotic Treatment in Mice and Non-Human Primates Is Diminished upon Recovery of the Gut Microbiome. Vaccines, 2021, 9, 1340.	2.1	5
1963	Clinical Parasitology and Parasitome Maps as Old and New Tools to Improve Clinical Microbiomics. Pathogens, 2021, 10, 1550.	1.2	4
1964	Habitat shapes diversity of gut microbiomes in a wild population of blue tits <i>Cyanistes caeruleus</i> . Journal of Avian Biology, 2022, 2022, .	0.6	12
1967	The Effect of COVID-19 Pandemic on the Infants' Microbiota and the Probability of Development of Allergic and Autoimmune Diseases. International Archives of Allergy and Immunology, 2022, 183, 435-442.	0.9	5
1968	Functional roles of the microbiota-gut-brain axis in Alzheimer's disease: Implications of gut microbiota-targeted therapy. Translational Neuroscience, 2021, 12, 581-600.	0.7	21
1969	Effects of alkaline protease on the production performance, egg quality, and cecal microbiota of hens during late laying period. Animal Science Journal, 2021, 92, e13658.	0.6	3
1971	The role of gut microbiota in infectious diseases. WIREs Mechanisms of Disease, 2022, 14, e1551.	1.5	4
1972	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165
1973	The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167.	9.5	24
1975	The role of the intestinal microbiota in the development of food allergy. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 94-101.	0.1	1
1976	The Role of the Microbiome in Asthma Inception and Phenotype. Respiratory Medicine, 2022, , 85-146.	0.1	1
1977	Complex Glycans and Immune Regulation. , 2023, , 404-414.		2
1979	Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen, 2022, 11, e1260.	1.2	169

#	Article	IF	CITATIONS
1980	The Human Gut Microbiota-Lymphocyte Crosstalk. , 2022, , 168-174.		0
1981	A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. Journal of Zhejiang University: Science B, 2022, 23, 1-18.	1.3	16
1983	Beneficial microbes from human and animal intestines. , 2022, , 55-76.		0
1984	How microbiomes can help inform conservation: landscape characterisation of gut microbiota helps shed light on additional population structure in a specialist folivore. Animal Microbiome, 2022, 4, 12.	1.5	7
1985	Probiotic Molecules That Inhibit Inflammatory Diseases. Applied Sciences (Switzerland), 2022, 12, 1147.	1.3	3
1986	Host innate and adaptive immunity shapes the gut microbiota biogeography. Microbiology and Immunology, 2022, 66, 330-341.	0.7	16
1987	Lipidomics Analysis of Outer Membrane Vesicles and Elucidation of the Inositol Phosphoceramide Biosynthetic Pathway in Bacteroides thetaiotaomicron. Microbiology Spectrum, 2022, 10, e0063421.	1.2	24
1988	Early intestinal microbial features are associated with CD4 T-cell recovery after allogeneic hematopoietic transplant. Blood, 2022, 139, 2758-2769.	0.6	25
1989	Biomarkers related to immune checkpoint inhibitors therapy. Biomedicine and Pharmacotherapy, 2022, 147, 112470.	2.5	14
1991	Integrative analyses of probiotics, pathogenic infections and host immune response highlight the importance of gut microbiota in understanding disease recovery in rainbow trout (Oncorhynchus) Tj ETQq1 1 0.7	78 43 14 rg	;BT1/Overlock
1992	A Special Network Comprised of Macrophages, Epithelial Cells, and Gut Microbiota for Gut Homeostasis. Cells, 2022, 11, 307.	1.8	8
1993	Characterizing the oral and distal gut microbiota of the threatened southern sea otter (<i>Enhydra) Tj ETQq1 1 C</i>).784314 0.9	rgBT /Overloc
1994	Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides, 2022, 151, 170753.	1.2	7
1995	Effects of endometriosis on immunity and mucosal microbial community dynamics in female olive baboons. Scientific Reports, 2022, 12, 1590.	1.6	6
1996	Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. Journal of Personalized Medicine, 2022, 12, 66.	1.1	30
1997	Gluten-free diet reduces autoimmune diabetes mellitus in mice across multiple generations in a microbiota-independent manner. Journal of Autoimmunity, 2022, 127, 102795.	3.0	9
1998	Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poultry Science, 2022, 101, 101769.	1.5	13
1999	Effects of combined OncoTherad immunotherapy and probiotic supplementation on modulating the chronic inflammatory process in colorectal carcinogenesis. Tissue and Cell, 2022, 75, 101747.	1.0	7

#	Article	IF	CITATIONS
2000	Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota–host co-metabolites and intestinal barrier damage. Science of the Total Environment, 2022, 821, 153279.	3.9	13
2001	Immunotherapy resistance of lung cancer. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 114-128.	0.9	0
2002	Characteristics of the Gut Microbiome and Its Relationship With Peripheral CD4+ T Cell Subpopulations and Cytokines in Rheumatoid Arthritis. Frontiers in Microbiology, 2022, 13, 799602.	1.5	25
2003	Chemical Reporters for Bacterial Glycans: Development and Applications. Chemical Reviews, 2022, 122, 3336-3413.	23.0	45
2004	Gut microbiota–driven brain Aβ amyloidosis in mice requires microglia. Journal of Experimental Medicine, 2022, 219, .	4.2	44
2005	Regulation of Host Immunity by the Gut Microbiota. , 2022, , 105-140.		1
2006	Intestinal microbiota profile in healthy Saudi children: The bacterial domain. Saudi Journal of Gastroenterology, 2022, 28, 312.	0.5	3
2007	The Impacts of Microbiota on Animal Development and Physiology. , 2022, , 177-196.		3
2009	Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy. Immune Network, 2022, 22, e3.	1.6	11
2010	Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses, 2022, 14, 477.	1.5	18
2011	Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunology, 2022, 15, 408-417.	2.7	16
2012	Correlation between Lymphocyte-to-Monocyte Ratio (LMR), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Tumor-Infiltrating Lymphocytes (TILs) in Left-Sided Colorectal Cancer Patients. Biology, 2022, 11, 385.	1.3	17
2013	Antibiotic Exposure, Common Morbidities and Main Intestinal Microbial Groups in Very Preterm Neonates: A Pilot Study. Antibiotics, 2022, 11, 237.	1.5	2
2014	Next-generation probiotics – do they open new therapeutic strategies for cancer patients?. Gut Microbes, 2022, 14, 2035659.	4.3	38
2015	Roles of Probiotics in Animal Health. Animal Health, Production and Hygiene, 0, , .	0.0	0
2016	A Review of the Diversity of the Genital Tract Microbiome and Implications for Fertility of Cattle. Animals, 2022, 12, 460.	1.0	21
2017	Multi-Omics Analysis After Vaginal Administration of Bacteroides fragilis in Chickens. Frontiers in Microbiology, 2022, 13, 846011.	1.5	4
2018	Alterations in the Gut Microbiome of Individuals With Tuberculosis of Different Disease States. Frontiers in Cellular and Infection Microbiology, 2022, 12, 836987.	1.8	7

#	Article	IF	CITATIONS
2019	Adapting to Novel Environments Together: Evolutionary and Ecological Correlates of the Bacterial Microbiome of the World's Largest Cavefish Diversification (Cyprinidae, Sinocyclocheilus). Frontiers in Microbiology, 2022, 13, 823254.	1.5	4
2020	Intestinal Exposure to Ceftiofur and Cefquinome after Intramuscular Treatment and the Impact of Ceftiofur on the Pig Fecal Microbiome and Resistome. Antibiotics, 2022, 11, 342.	1.5	3
2021	Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Frontiers in Immunology, 2022, 13, 844335.	2.2	12
2022	Roles of Microbiota in Cancer: From Tumor Development to Treatment. Journal of Oncology, 2022, 2022, 1-15.	0.6	8
2023	Immunological regulation of the active fraction from Polygonatum sibiricum F. Delaroche based on improvement of intestinal microflora and activation of RAW264.7Âcells. Journal of Ethnopharmacology, 2022, 293, 115240.	2.0	17
2024	Application of omics in hypertension and resistant hypertension. Hypertension Research, 2022, 45, 775-788.	1.5	10
2025	The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Critical Reviews in Food Science and Nutrition, 2023, 63, 7510-7528.	5.4	23
2026	Microbiota, IgA and Multiple Sclerosis. Microorganisms, 2022, 10, 617.	1.6	9
2027	GVHD, IBD, and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. European Journal of Immunology, 2022, 52, 1406-1418.	1.6	8
2028	The gut commensal bacterium <scp><i>Enterococcus faecalis</i> LX10</scp> contributes to defending against <scp><i>Nosema bombycis</i></scp> infection in <scp><i>Bombyx mori</i></scp> . Pest Management Science, 2022, 78, 2215-2227.	1.7	11
2029	Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life, 2022, 12, 495.	1.1	18
2030	Modulated Gut Microbiota for Potential COVID-19 Prevention and Treatment. Frontiers in Medicine, 2022, 9, 811176.	1.2	14
2031	Gastrointestinal Microbiome Disruption and Antibiotic-Associated Diarrhea in Children Receiving Antibiotic Therapy for Community-Acquired Pneumonia. Journal of Infectious Diseases, 2022, 226, 1109-1119.	1.9	6
2032	The gut microbiota mediates protective immunity against tuberculosis <i>via</i> modulation of IncRNA. Gut Microbes, 2022, 14, 2029997.	4.3	25
2033	Gut-disc axis: A cause of intervertebral disc degeneration and low back pain?. European Spine Journal, 2022, 31, 917-925.	1.0	26
2034	Immune Tolerance vs. Immune Resistance: The Interaction Between Host and Pathogens in Infectious Diseases. Frontiers in Veterinary Science, 2022, 9, 827407.	0.9	6
2036	Efficacy and Safety of Lactobacillus reuteri CCFM1040 in Allergic Rhinitis and Asthma: A Randomized, Placebo-Controlled Trial. Frontiers in Nutrition, 2022, 9, 862934.	1.6	5
2037	Gut barrier dysfunction and type 2 immunity: Implications for compulsive behavior. Medical Hypotheses, 2022, 161, 110799.	0.8	2

#	Article	IF	CITATIONS
2038	Gut Microbiome and Metabolomics Profiles of Allergic and Non-Allergic Childhood Asthma. Journal of Asthma and Allergy, 2022, Volume 15, 419-435.	1.5	11
2039	Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. Science of the Total Environment, 2022, 833, 155085.	3.9	6
2040	Correlations between oligosaccharides in breast milk and the composition of the gut microbiome in breastfed infants. Journal of Dairy Science, 2022, 105, 4818-4828.	1.4	0
2041	Impaired central tolerance induces changes in the gut microbiota that exacerbate autoimmune hepatitis. Journal of Autoimmunity, 2022, 128, 102808.	3.0	3
2042	Imbalance of the Gut Microbiota May Be Associated with Missed Abortions: A Perspective Study from a General Hospital of Hunan Province. Journal of Immunology Research, 2021, 2021, 1-13.	0.9	3
2043	Perinatal origins of chronic lung disease: mechanisms–prevention–therapy—sphingolipid metabolism and the genetic and perinatal origins of childhood asthma. Molecular and Cellular Pediatrics, 2021, 8, 22.	1.0	3
2044	New Metabolic, Digestive, and Oxidative Stress-Related Manifestations Associated with Posttraumatic Stress Disorder. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	1.9	13
2045	Human Gut Microbiota in Health and Selected Cancers. International Journal of Molecular Sciences, 2021, 22, 13440.	1.8	23
2046	Gut Microbiota and Acute Central Nervous System Injury: A New Target for Therapeutic Intervention. Frontiers in Immunology, 2021, 12, 800796.	2.2	30
2047	Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota?. Microorganisms, 2021, 9, 2549.	1.6	6
2048	Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms, 2021, 9, 2518.	1.6	6
2049	Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clinical Reviews in Allergy and Immunology, 2022, 63, 499-529.	2.9	17
2051	GPR15–C10ORF99 functional pairing initiates colonic Treg homing in amniotes. EMBO Reports, 2022, 23, e53246.	2.0	4
2053	Unraveling the Metabolic Requirements of the Gut Commensal Bacteroides ovatus. Frontiers in Microbiology, 2021, 12, 745469.	1.5	12
2054	Role of the duodenal microbiota in functional dyspepsia. Neurogastroenterology and Motility, 2022, 34, e14372.	1.6	10
2055	The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 1123-1139.	1.1	5
2056	Molecular interactions between the intestinal microbiota and the host. Molecular Microbiology, 2022, 117, 1297-1307.	1.2	19
2057	Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 86, 1501-1526.	1.2	9

#	Article	IF	CITATIONS
2058	Targeting the gut and tumor microbiota in cancer. Nature Medicine, 2022, 28, 690-703.	15.2	159
2059	Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Frontiers in Immunology, 2022, 13, 816689.	2.2	13
2060	Mucosal Immune Defense. , 2001, , 593-593.		0
2125	Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics, 2022, 11, 590.	1.5	6
2126	Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. Journal of Hematology and Oncology, 2022, 15, 47.	6.9	121
2127	Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. Journal of Inflammation Research, 2022, Volume 15, 2631-2647.	1.6	19
2128	Bone marrow transplantation induces changes in the gut microbiota that chronically increase the cytokine response pattern of splenocytes. Scientific Reports, 2022, 12, 6883.	1.6	2
2129	Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, 143.	7.1	83
2130	Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation. Frontiers in Microbiology, 2022, 13, 863407.	1.5	20
2131	Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Molecular Ecology, 2022, 31, 3342-3359.	2.0	16
2132	Microbiome "Inceptionâ€e an Intestinal Cestode Shapes a Hierarchy of Microbial Communities Nested within the Host. MBio, 2022, 13, e0067922.	1.8	8
2133	Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer and Metastasis Reviews, 2022, 41, 281-299.	2.7	16
2134	Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-like Cells. Cancers, 2022, 14, 2381.	1.7	4
2135	Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee's larval food. BMC Microbiology, 2022, 22, 127.	1.3	6
2136	Enrofloxacin Induces Intestinal Microbiota-Mediated Immunosuppression in Zebrafish. Environmental Science & Technology, 2022, 56, 8428-8437.	4.6	18
2137	Redox signaling induces laminin receptor ribosomal protein-SA expression to improve cell adhesion following radiofrequency glow discharge treatments. Scientific Reports, 2022, 12, 7742.	1.6	1
2138	The Microbiota–Gut–Brain Axis: Gut Microbiota Modulates Conspecific Aggression in Diversely Selected Laying Hens. Microorganisms, 2022, 10, 1081.	1.6	6
2139	Disruption of Genes Encoding Putative Zwitterionic Capsular Polysaccharides of Diverse Intestinal Bacteroides Reduces the Induction of Host Anti-Inflammatory Factors. Microbial Ecology, 2023, 85, 1620-1629.	1.4	4

#	Article	IF	CITATIONS
2140	Obesity and the Brain. International Journal of Molecular Sciences, 2022, 23, 6145.	1.8	8
2142	The gut microbiome and the immune system. Exploration of Medicine, 0, , 219-233.	1.5	3
2143	Intestinal inflammation alters the antigen-specific immune response to a skin commensal. Cell Reports, 2022, 39, 110891.	2.9	8
2145	Capsular polysaccarides of probiotics and their immunomodulatory roles. Food Science and Human Wellness, 2022, 11, 1111-1120.	2.2	5
2148	Long-distance relationships - regulation of systemic host defense against infections by the gut microbiota. Mucosal Immunology, 2022, 15, 809-818.	2.7	17
2149	Mucus and Mucins: The Underappreciated Host Defence System. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	20
2150	Microbiome Changes in Connective Tissue Diseases and Vasculitis: Focus on Metabolism and Inflammation. International Journal of Molecular Sciences, 2022, 23, 6532.	1.8	6
2151	Implications of Gut Microbiota in Epithelial–Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers, 2022, 14, 2964.	1.7	6
2152	Temporal Alignment of Longitudinal Microbiome Data. Frontiers in Microbiology, 0, 13, .	1.5	1
2153	The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	65
2154	Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. International Review of Neurobiology, 2022, , .	0.9	0
2155	Comparison and Correlation Analysis of Immune Function and Gut Microbiota of Broiler Chickens Raised in Double-Layer Cages and Litter Floor Pens. Microbiology Spectrum, 2022, 10, .	1.2	5
2156	Bioactive polysaccharides and oligosaccharides from garlic (<i>Allium sativum</i> L.): Production, physicochemical and biological properties, and structure–function relationships. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3033-3095.	5.9	25
2158	GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. International Journal of Molecular Sciences, 2022, 23, 7373.	1.8	4
2159	Limosilactobacillus reuteri Attenuates Atopic Dermatitis via Changes in Gut Bacteria and Indole Derivatives from Tryptophan Metabolism. International Journal of Molecular Sciences, 2022, 23, 7735.	1.8	14
2160	Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	45
2161	Modulation of intestinal immune cell responses by eubiotic or dysbiotic microbiota in inflammatory bowel diseases. PharmaNutrition, 2022, 21, 100303.	0.8	2
2162	Mother–infant transmission of human microbiota. Current Opinion in Microbiology, 2022, 69, 102173.	2.3	23

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2163	Bacterial membrane vesicles in inflammatory bowel disease. Life Sciences, 2022, 306,	120803.	2.0	6
2164	The gut microbiome, immune check point inhibition and immune-related adverse even cell lung cancer. Cancer and Metastasis Reviews, 2022, 41, 347-366.	ts in non-small	2.7	11
2167	Impact of indigenous microbiota in gut inflammatory disorders. , 2022, , 179-209.			0
2168	Influence of microbiome in shaping the newborn immune system: an overview. , 2022,	, 11-24.		0
2169	The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response Therapy against Cancer. Cancers, 2022, 14, 3563.	to Systemic	1.7	22
2170	Age-dependent changes of hindgut microbiota succession and metabolic function of N in the semi-arid rangelands. Frontiers in Microbiology, 0, 13, .	Iongolian cattle	1.5	2
2171	The contribution of the intestinal microbiome to immune recovery after HCT. Frontiers Immunology, 0, 13, .	, in	2.2	3
2172	Alterations of gut microbial pathways and virulence factors in hemodialysis patients. F Cellular and Infection Microbiology, 0, 12, .	rontiers in	1.8	3
2173	Extremely small and incredibly close: Gut microbes as modulators of inflammation and therapeutic intervention. Frontiers in Microbiology, 0, 13, .	targets for	1.5	3
2174	Role of Intestinal Dysbiosis and Nutrition in Rheumatoid Arthritis. Cells, 2022, 11, 243	6.	1.8	15
2175	Autism: genetics, environmental stressors, maternal immune activation, and the male 0, , .	bias in autism. ,		0
2176	Utilization of gut environment-mediated control system of host immunity in the devel vaccine adjuvants. Vaccine, 2022, 40, 5399-5403.	opment of	1.7	1
2177	Disaggregation as an interaction mechanism among intestinal bacteria. Biophysical Jou 3458-3473.	ırnal, 2022, 121,	0.2	2
2178	Postnatal probiotic supplementation can prevent and optimize treatment of childhood atopic disorders: A systematic review of randomized controlled trials. Frontiers in Pedi	l asthma and atrics, 0, 10, .	0.9	7
2179	Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseas 11, 2575.	es. Foods, 2022,	1.9	14
2180	Analyzing the Complicated Connection Between Intestinal Microbiota and Cardiovasc Cureus, 2022, , .	ular Diseases.	0.2	3
2181	Approaches to discern if microbiome associations reflect causation in metabolic and ir disorders. Gut Microbes, 2022, 14, .	nmune	4.3	5
2182	Impact of the Host Microbiome on Vaccine Responsiveness: Lessons Learned and Futu Biochemistry, 2022, 61, 2849-2855.	re Perspective.	1.2	2

#	Article	IF	CITATIONS
2183	Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a Re-Emerging Therapy for Autoimmune Diseases. Antibiotics, 2022, 11, 1093.	1.5	4
2184	The natural substances with anti-allergic properties in food allergy. Trends in Food Science and Technology, 2022, 128, 53-67.	7.8	11
2185	Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches?. Clinical Immunology, 2022, 244, 109109.	1.4	6
2186	Volatile Signatures of the Microbiome. , 2022, , 181-196.		0
2187	Comparative Analysis of the Gut Microbiota in Mice under Lard or Vegetable Blend Oil Diet. Journal of Oleo Science, 2022, , .	0.6	5
2188	Microbiome influences on neuro-immune interactions in neurodegenerative disease. International Review of Neurobiology, 2022, , 25-57.	0.9	6
2189	The Interaction of Gut Microbiota with Immune System and Their Effects on Immune Cell Development and Function. , 2022, , 21-32.		0
2190	Modulation of gut microbiota by probiotic interventions: A potential approach toward alleviating food allergy. , 2022, , 139-157.		0
2191	The Factors Influencing Gut Microbiota in Autoimmune Diseases. , 2022, , 69-90.		0
2192	Immunological paradox for maintaining normal flora: it is all by design, not by chance. , 2022, , 39-73.		0
2193	Study of effects of dietary quercetin (Que) on growth performance and disease resistance mechanism of Litopenaeus vannamei. Aquaculture, 2023, 563, 738887.	1.7	4
2194	Latent Autoimmune Diabetes in Adults (LADA): From Immunopathogenesis to Immunotherapy. Frontiers in Endocrinology, 0, 13, .	1.5	5
2196	Local and systemic effects of microbiomeâ€derived metabolites. EMBO Reports, 2022, 23, .	2.0	15
2197	The neurovascular unit and systemic biology in stroke — implications for translation and treatment. Nature Reviews Neurology, 2022, 18, 597-612.	4.9	30
2198	Difference in Intestinal Flora and Characteristics of Plasma Metabonomics in Pneumoconiosis Patients. Metabolites, 2022, 12, 917.	1.3	1
2199	Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. Journal of Immunology Research, 2022, 2022, 1-23.	0.9	3
2200	Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host and Microbe, 2022, 30, 1481-1498.e5.	5.1	22
2201	Gut microbiome and breast-feeding: Implications for early immune development. Journal of Allergy and Clinical Immunology, 2022, 150, 523-534.	1.5	26

ARTICLE IF CITATIONS # Temporal Changes in the Faecal Microbiota of Beef Cattle on Feedlot Placement. Animals, 2022, 12, 2202 1.0 1 2500. Gut microbiotaâ€stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis., 2022, 1, . Intestinal microbiota is modified in pediatric food protein–induced enterocolitis syndrome. , 2022, 1, 2204 0 217-224. Microbiome in Chronic Kidney Disease. Life, 2022, 12, 1513. 1.1 The influence of different dietary patterns on changes in the intestinal microbiota and human body 2206 0.0 0 weight. Medical Alphabet, 2022, , 29-39. Multi-omics analysis reveals the effects of microbiota on oral homeostasis. Frontiers in Immunology, 2.2 0, 13, . Bioencapsulation of proteins in therapeutics., 2022, , 155-178. 2208 0 Prophylactic effect of pectic oligosaccharides against poly I: C―induced virusâ€like infection in BALB/c 1.2 2209 mice. Journal of Food Biochemistry, 2022, 46, . Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. 2210 1.7 5 Cancers, 2022, 14, 5317. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice. Nature Communications, 2022, 2211 5.8 13, Mechanisms and clinical management of eosinophilic oesophagitis: an overview. Nature Reviews 2212 4 8.2 Gastroenterology and Hepatology, 2023, 20, 101-119. Chemical and Synthetic Biology Approaches for Cancer Vaccine Development. Molecules, 2022, 27, 6933. 1.7 Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. International 2214 1.8 4 Journal of Molecular Sciences, 2022, 23, 12324. Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. Microbiome, 2022, 10, . Difference analysis of intestinal microbiota and metabolites in piglets of different breeds exposed to 2216 7 1.5 porcine epidemic diarrhea virus infection. Frontiers in Microbiology, 0, 13, . Disquiet concerning cesarean birth. Journal of Perinatal Medicine, 2023, 51, 591-599. 2218 Correlation of the Gut Microbiota and Antitumor Immune Responses Induced by a Human 2219 1.8 1 Papillomavirus Therapeutic Vaccine. ACS Infectious Diseases, 2022, 8, 2494-2504. Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple 0.2 sclerosis. Meditsinskii Akademicheskii Zhurnal, 2022, 2, 9-36.

			_
#	Article	IF	CITATIONS
2221	Gut microbiome in type 1 diabetes: the immunological perspective. Expert Review of Clinical Immunology, 2023, 19, 93-109.	1.3	4
2224	Determining the association between gut microbiota and its metabolites with higher intestinal Immunoglobulin A response. Veterinary and Animal Science, 2023, 19, 100279.	0.6	9
2225	The role of the gut microbiome in colonization resistance and recurrent <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482211343.	1.4	14
2226	The thin line between conventional dendritic cells (cDCs) and group 3 innate lymphoid cells (ILC3s) in the gut. International Immunology, 2023, 35, 107-121.	1.8	2
2227	SÃndrome de intestino irritable (SII): Nuevos conceptos en 2023 , 2022, 44, 347-371.		0
2228	Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
2229	Alzheimer's disease and depression in the elderly: A trajectory linking gut microbiota and serotonin signaling. Frontiers in Psychiatry, 0, 13, .	1.3	5
2230	The Species of Gut Bacteria Associated with Antitumor Immunity in Cancer Therapy. Cells, 2022, 11, 3684.	1.8	1
2231	Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients, 2022, 14, 5038.	1.7	13
2232	Effect of Different Coffee Brews on Tryptophan Metabolite-Induced Cytotoxicity in HT-29 Human Colon Cancer Cells. Antioxidants, 2022, 11, 2458.	2.2	0
2233	The heightened importance of the microbiome in cancer immunotherapy. Trends in Immunology, 2023, 44, 44-59.	2.9	17
2234	Development and function of natural TCR+ CD8î \pm î \pm + intraepithelial lymphocytes. Frontiers in Immunology, 0, 13, .	2.2	4
2236	Diet and Proteinuria: State of Art. International Journal of Molecular Sciences, 2023, 24, 44.	1.8	5
2237	Gut Dysbiosis in Children with Cystic Fibrosis: Development, Features and the Role of Gut–Lung Axis on Disease Progression. Microorganisms, 2023, 11, 9.	1.6	2
2238	Gut Microbiota Promotes Immune Tolerance by Regulating RORγt+ Treg Cells in Food Allergy. , 2022, 2022, 1-9.		2
2239	Construction and characterization of a genome-scale ordered mutant collection of Bacteroides thetaiotaomicron. BMC Biology, 2022, 20, .	1.7	8
2240	Linking the gut microbiome to microglial activation in opioid use disorder. Frontiers in Neuroscience, 0, 16, .	1.4	0
2241	The Effect of the Gut Microbiota on Transplanted Kidney Function. International Journal of Molecular Sciences, 2023, 24, 1260.	1.8	4

#	Article	IF	CITATIONS
2242	Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier. Immune Network, 2022, 22, .	1.6	7
2243	Gut microbiota in brain tumors: An emerging crucial player. CNS Neuroscience and Therapeutics, 2023, 29, 84-97.	1.9	4
2244	Immunological consequences of microbiome-based therapeutics. Frontiers in Immunology, 0, 13, .	2.2	7
2245	Human Gut Microbiota Plasticity throughout the Life Course. International Journal of Environmental Research and Public Health, 2023, 20, 1463.	1.2	11
2246	The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Frontiers in Immunology, 0, 13, .	2.2	2
2247	Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biology, 2022, 20, .	1.7	2
2248	The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Research, 2023, 33, 87-103.	0.6	3
2249	The potential role of short chain fatty acids improving ex vivo T and CAR-T cell fitness and expansion for cancer immunotherapies. Frontiers in Immunology, 0, 14, .	2.2	0
2250	Integrated Multiâ€Cohort Analysis of the Parkinson's Disease Gut Metagenome. Movement Disorders, 2023, 38, 399-409.	2.2	4
2251	The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis. CNS Drugs, 2023, 37, 117-132.	2.7	0
2252	Rheumatic diseases: The microbiota-immunity axis in development and treatment. , 2023, , 83-111.		0
2253	Dysbiosis—An Etiological Factor for Cardiovascular Diseases and the Therapeutic Benefits of Gut Microflora. , 2023, 2023, 1-8.		1
2254	Effects of Lactobacillus casei NCU011054 on immune response and gut microbiota of cyclophosphamide induced immunosuppression mice. Food and Chemical Toxicology, 2023, 174, 113662.	1.8	8
2255	Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Advanced Drug Delivery Reviews, 2023, 196, 114774.	6.6	4
2256	Current Challenges in Research with Exploring the Microbial Pathomechanisms of Autoimmune Diseases. , 2022, , 469-488.		0
2257	In Pursuit of Understanding the Rumen Microbiome. Fermentation, 2023, 9, 114.	1.4	2
2258	The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Multiple Sclerosis and Related Disorders, 2023, 71, 104547.	0.9	14
2259	Endometrial Microbiota and Immune Tolerance in Pregnancy. International Journal of Molecular Sciences, 2023, 24, 2995.	1.8	8

#	Article	IF	CITATIONS
2260	An Archetypical Model for Engrafting Bacteroides fragilis into Conventional Mice Following Reproducible Antibiotic Conditioning of the Gut Microbiota. Microorganisms, 2023, 11, 451.	1.6	1
2261	The Gut Microbiome and Metastatic Renal Cell Carcinoma. Journal of Clinical Medicine, 2023, 12, 1502.	1.0	3
2262	Early antibiotics and risk for necrotizing enterocolitis in premature infants: A narrative review. Frontiers in Pediatrics, 0, 11, .	0.9	4
2263	Immunomodulatory role of oral microbiota in inflammatory diseases and allergic conditions. Frontiers in Allergy, 0, 4, .	1.2	4
2264	The gut microbiota promotes distal tissue regeneration via RORÎ ³ + regulatory T cell emissaries. Immunity, 2023, 56, 829-846.e8.	6.6	29
2265	Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines, 2023, 11, 529.	2.1	0
2266	Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32.		0
2267	Mining chicken ileal microbiota for immunomodulatory microorganisms. ISME Journal, 2023, 17, 758-774.	4.4	5
2268	Interplay between gut microbiota in immune homeostasis and inflammatory diseases. , 2023, , 143-154.		0
2269	Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. Journal of Functional Biomaterials, 2023, 14, 132.	1.8	10
2271	Current landscape and tailored management of immune-related adverse events. Frontiers in Pharmacology, 0, 14, .	1.6	1
2272	The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Frontiers in Neuroendocrinology, 2023, 70, 101064.	2.5	2
2273	Beneficial insights into postbiotics against colorectal cancer. Frontiers in Nutrition, 0, 10, .	1.6	6
2274	The animal's microbiome and cancer: A translational perspective. Veterinary and Comparative Oncology, 0, , .	0.8	1
2276	The role of gut microbiota in T cell immunity and immune mediated disorders. International Journal of Biological Sciences, 2023, 19, 1178-1191.	2.6	20
2277	Alanyl-Glutamine (Ala-Gln) Ameliorates Dextran Sulfate Sodium (DSS)-Induced Acute Colitis by Regulating the Gut Microbiota, PI3K-Akt/NF-I®B/STAT3 Signaling, and Associated Pulmonary Injury. ACS Infectious Diseases, 2023, 9, 979-992.	1.8	4
2278	Cross-Talk Between Gut Microbiota and Immune Cells and Its Impact on Inflammatory Diseases. , 2023, , 139-162.		0
2279	Intestinal barrier dysfunction as a key driver of severe COVID-19. World Journal of Virology, 0, 12, 68-90.	1.3	4

ARTICLE IF CITATIONS # Postbiotics Implication in the Microbiota-Host Intestinal Epithelial Cells Mutualism. Probiotics and 2280 1.9 2 Antimicrobial Proteins, 0, , Role of gut microbiota in infectious and inflammatory diseases. Frontiers in Microbiology, 0, 14, . 1.5 Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Scientific 2282 1.6 5 Reports, 2023, 13, . Inflammation: the driver of poor outcomes among children with severe acute malnutrition?. Nutrition Reviews, 2023, 81, 1636-1652. Intestinal mucin-type <i>O</i>-glycans: the major players in the host-bacteria-rotavirus interactions. 2285 4.3 3 Gut Microbes, 2023, 15, . Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. Applied Sciences (Switzerland), 2023, 13, 4726. 1.3 Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. 2287 1.6 1 Frontiers in Pharmacology, 0, 14, . The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp.. Life, 2288 1.1 2023, 13, 1017. Prebiotic and Probiotic Modulation of the Microbiotaâ€"Gutâ€"Brain Axis in Depression. Nutrients, 2023, 2289 1.7 10 15, 1880. 2290 Impact of the Microbiota on Viral Infections. Annual Review of Virology, 2023, 10, 371-395. Gut Microbiota and Atrial Fibrillation: Pathogenesis, Mechanisms and Therapies. Arrhythmia and 2291 3 1.3 Electrophysiology Review, 0, 12, . Estimation of silent phenotypes of calf antibiotic dysbiosis. Scientific Reports, 2023, 13, . 1.6 Microbiota and parasite relationship. Diagnostic Microbiology and Infectious Disease, 2023, 106, 115954. 2293 0.8 5 Gut Microbiome–Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chemical Neuroscience, 2023, 14, 1717-1763. 1.7 24 Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. 2302 7.1 27 Signal Transduction and Targeted Therapy, 2023, 8, . Microbiome therapeutics as an alternative to the antibiotics., 2023, , 421-441. Overview of microbial therapeutics in immunological disorders., 2023, 289-353. 2306 1 Human Microbiome and the Susceptibility to Infections., 2023, , 117-138.

#	Article	IF	CITATIONS
2313	Probiotic-based Anticancer Immunity In Hepato-cellular Carcinoma (liver Cancer). , 2023, , 189-210.		0
2314	Gut Microbiota and Host Immune System in Cancer. , 2023, , 1-40.		0
2318	Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618.	12.8	21
2319	Gut-Microbiota-Immune-Brain Axis and Brain Glioma: A Well-Established Connection and a Potential Strategy for Precision Oncology. , 2023, , 1-16.		0
2328	Diversity of various symbiotic associations between microbes and host plants. , 2023, , 1-18.		0
2340	Systemic Onco-Sphere: Host Microbiome and Cancer. , 2023, , 553-577.		0
2362	Vitamin D, microbiota, and inflammatory bowel disease. , 2024, , 1057-1073.		0
2367	Microbiome-based approaches to food allergy treatment. , 2023, , .		0
2377	Microbial underdogs: exploring the significance of low-abundance commensals in host-microbe interactions. Experimental and Molecular Medicine, 2023, 55, 2498-2507.	3.2	0
2379	Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotoxicity Research, 2024, 42, .	1.3	0
2380	Influence of the Gut Microbiome on Cardiovascular Health and Hypertension. , 2023, , 335-359.		0
2381	Secrets and lies of host–microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cellular and Molecular Life Sciences, 2024, 81, .	2.4	0
2387	MKGSAGE: A Computational Framework via Multiple Kernel Fusion on GraphSAGE for Inferring Potential Disease-Related Microbes. , 2023, , .		0
2389	Human virome in health and disease. , 2024, , 2641-2658.		0
2405	What is a healthy microbiome?. , 2024, , 17-43.		0
2406	Microbiota to brain communication. , 2024, , 63-82.		0
2407	METLIN Tandem Mass Spectrometry and Neutral Loss Databases for the Identification of Microbial Natural Products and Other Chemical Entities. Learning Materials in Biosciences, 2023, , 105-124.	0.2	0
2413	Immunological Reactions on H. pylori Infection. , 2023, , 39-59.		0

#	Article	IF	CITATIONS
2427	Role of symbiotics in the treatment of diabetes mellitus via modification of the immune system. , 2024, , 289-303.		0