The effects of N-glycosylation sites and the N-terminal of $\hat{I}^2_{1,3}$ -N-acetylglucosaminyltransferase 2 and its secre

Biochemical and Biophysical Research Communications 329, 699-705

DOI: 10.1016/j.bbrc.2005.02.033

Citation Report

#	Article	IF	CITATIONS
1	N-Glycosylation of secretion enhancer peptide as influencing factor for the secretion of target proteins from Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2005, 337, 557-562.	1.0	6
2	Site-specific Glycosylation at Asn-292 in Ovalbumin is Essential to Efficient Secretion in Yeast. Journal of Biochemistry, 2006, 141, 193-199.	0.9	11
3	Construction of a Library of Human Glycosyltransferases Immobilized in the Cell Wall of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2006, 72, 7003-7012.	1.4	40
4	Specific expression of GFPuv-β1,3-N-acetylglucosaminyltransferase 2 fusion protein in fat body of Bombyx mori silkworm larvae using signal peptide. Biochemical and Biophysical Research Communications, 2007, 359, 543-548.	1.0	11
5	Effects of N-glycosylation on the activity and localization of GlcNAc-6-sulfotransferase 1. Glycobiology, 2009, 19, 1068-1077.	1.3	12
6	Comparison of the N-linked glycosylation of human β1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae. Journal of Biotechnology, 2009, 143, 27-33.	1.9	29
7	The effect of individual N-glycans on enzyme activity. Bioorganic and Medicinal Chemistry, 2009, 17, 2645-2653.	1.4	158
8	Enhanced gene expression in insect cells and silkworm larva by modified polyhedrin promoter using repeated burst sequence and very late transcriptional factorâ€1. Biotechnology and Bioengineering, 2010, 107, 909-916.	1.7	17
9	A combined approach for improving alkaline acetyl xylan esterase production in Pichia pastoris, and effects of glycosylation on enzyme secretion, activity and stability. Protein Expression and Purification, 2012, 85, 44-50.	0.6	15
10	Differential expression patterns of N-acetylglucosaminyl transferases and polylactosamines in uterine lesions. European Journal of Histochemistry, 2014, 58, 2334.	0.6	8
11	Involvement of B3GALNT2 overexpression in the cell growth of breast cancer. International Journal of Oncology, 2014, 44, 427-434.	1.4	11
12	3′-Azidothymidine may potently inhibit the biosynthesis of polylactosamine chains on highly glycosylated-CD147 and reduce matrix metalloproteinase-2 expression in SGC-7901 and U251 cells. Molecular Medicine Reports, 2015, 11, 4713-4719.	1.1	2
13	Sialylation potentials of the silkworm, <i>Bombyx mori</i> ; <i>B. mori</i> possesses an active α2,6-sialyltransferase. Glycobiology, 2015, 25, 1441-1453.	1.3	31
14	N-glycosylation of the human β1,4-galactosyltransferase 4 is crucial for its activity and Golgi localization. Glycoconjugate Journal, 2020, 37, 577-588.	1.4	14
15	How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology, 2020, 30, 941-969.	1.3	37
16	Comparison of human poly-N-acetyl-lactosamine synthase structure with GT-A fold glycosyltransferases supports a modular assembly of catalytic subsites. Journal of Biological Chemistry, 2021, 296, 100110.	1.6	15
18	Missing the sweet spot: one of the two N-glycans on human Gb3/CD77 synthase is expendable. Glycobiology, 2021, 31, 1145-1162.	1.3	1
19	Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide. Journal of Physical Chemistry B, 2021, 125, 6559-6571.	1.2	3

CITATION REPORT