Triptolide protects dopaminergic neurons from inflamment lipopolysaccharide intranigral injection

Neurobiology of Disease 18, 441-449 DOI: 10.1016/j.nbd.2004.12.005

Citation Report

#	Article	IF	CITATIONS
1	Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures. Life Sciences, 2006, 80, 193-199.	2.0	121
2	Triptolide inhibits COX-2 expression via NF-kappa B pathway in astrocytes. Neuroscience Research, 2006, 55, 154-160.	1.0	45
3	Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. British Journal of Pharmacology, 2006, 148, 314-325.	2.7	114
4	3â€Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTPâ€elicited damage both in vivo and in vitro. FASEB Journal, 2006, 20, 2496-2511.	0.2	77
5	Simple method for determination of five terpenoids from different parts ofTripterygium wilfordii and its preparations by HPLC coupled with evaporative light scattering detection. Journal of Separation Science, 2007, 30, 1284-1291.	1.3	24
6	Tripchlorolide protects against MPTPâ€induced neurotoxicity in C57BL/6 mice. European Journal of Neuroscience, 2007, 26, 1500-1508.	1.2	35
7	Neuroprotective effect of catalpol against MPP+-induced oxidative stress in mesencephalic neurons. European Journal of Pharmacology, 2007, 568, 142-148.	1.7	58
8	Triptolide Upregulates NGF Synthesis in Rat Astrocyte Cultures. Neurochemical Research, 2007, 32, 1113-1119.	1.6	43
9	The Neuroscience Research Institute at Peking University: A Place for the Solution of Pain and Drug Abuse. Cellular and Molecular Neurobiology, 2008, 28, 13-19.	1.7	4
10	Therapeutic Strategies for Parkinson's Disease: The Ancient Meets the Future—Traditional Chinese Herbal Medicine, Electroacupuncture, Gene Therapy and Stem Cells. Neurochemical Research, 2008, 33, 1956-1963.	1.6	50
11	Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: Implication for immunosuppressive therapy in Parkinson's disease. Neuroscience Bulletin, 2008, 24, 133-142.	1.5	36
12	Triptolide inhibits COXâ€2 expression and PGE ₂ release by suppressing the activity of NFâ€₽B and JNK in LPSâ€treated microglia. Journal of Neurochemistry, 2008, 107, 779-788.	2.1	82
13	Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochemical Pharmacology, 2008, 76, 362-372.	2.0	50
14	Prenatal inflammatory effects on nigrostriatal development in organotypic cultures. Brain Research, 2008, 1233, 160-167.	1.1	14
15	Triptolide inhibits amyloid-β1-42-induced TNF-α and IL-1β production in cultured rat microglia. Journal of Neuroimmunology, 2008, 205, 32-36.	1.1	63
16	Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neuroscience Letters, 2008, 448, 175-179.	1.0	119
17	Protective effect of isoflavones from Trifolium pratense on dopaminergic neurons. Neuroscience Research, 2008, 62, 123-130.	1.0	56
18	Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration. Neurobiology of Aging, 2009, 30, 1361-1378.	1.5	72

#	Article	IF	CITATIONS
19	Microglial responses to dopamine in a cell culture model of Parkinson's disease. Neurobiology of Aging, 2009, 30, 1805-1817.	1.5	90
20	Catalpol attenuates nitric oxide increase via ERK signaling pathways induced by rotenone in mesencephalic neurons. Neurochemistry International, 2009, 54, 264-270.	1.9	33
21	β-1,4-Galactosyltransferase-l participates in lipopolysaccharide induced reactive microgliosis. NeuroToxicology, 2009, 30, 1107-1113.	1.4	1
22	Chinese Herbal Medicine: Perspectives on Age-Related Neurodegenerative Diseases. Annals of Traditional Chinese Medicine, 2010, , 143-170.	0.1	0
23	Potential therapeutic agents against Alzheimer's disease from natural sources. Archives of Pharmacal Research, 2010, 33, 1589-1609.	2.7	64
24	Recent progress in neurodegenerative disorder research in China. Science China Life Sciences, 2010, 53, 348-355.	2.3	29
25	Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity. Journal of Neuroimmunology, 2010, 225, 43-51.	1.1	33
26	Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation. Glia, 2010, 58, 901-915.	2.5	59
27	Retrospect and prospect of active principles from Chinese herbs in the treatment of dementia. Acta Pharmacologica Sinica, 2010, 31, 649-664.	2.8	52
28	Extract of <i>Tripterygium wilfordii</i> Hook F Protect Dopaminergic Neurons Against Lipopolysaccharide-Induced Inflammatory Damage. The American Journal of Chinese Medicine, 2010, 38, 801-814.	1.5	20
29	Triptolide T10 enhances AAV-mediated gene transfer in mice striatum. Neuroscience Letters, 2010, 479, 187-191.	1.0	5
30	Triptolide Downâ€regulates COXâ€2 Expression and PGE2 Release by Suppressing the Activity of NFâ€Î®B and MAP kinases in Lipopolysaccharideâ€treated PC12 Cells. Phytotherapy Research, 2012, 26, 337-343.	2.8	40
31	Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons. ISRN Neurology, 2011, 2011, 1-16.	1.5	36
32	The Inhibition of Spinal Astrocytic JAK2-STAT3 Pathway Activation Correlates with the Analgesic Effects of Triptolide in the Rat Neuropathic Pain Model. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-13.	0.5	38
33	Triptolide Inhibits Amyloid-β Production and Protects Neural Cells by Inhibiting CXCR2 Activity. Journal of Alzheimer's Disease, 2012, 33, 217-229.	1.2	17
34	Inflammation in Parkinson's Disease. Advances in Protein Chemistry and Structural Biology, 2012, 88, 69-132.	1.0	154
35	Involvement of CtBP2 in LPS-induced microglial activation. Journal of Molecular Histology, 2012, 43, 327-334.	1.0	10
36	Triptolide increases transcript and protein levels of survival motor neurons in human SMA fibroblasts and improves survival in SMAâ€kke mice. British Journal of Pharmacology, 2012, 166, 1114-1126.	2.7	19

#	Article	IF	CITATIONS
37	Mechanism of Action of the Anti-cancer Agent, Triptolide. , 2012, , 135-150.		4
38	A comprehensive study on longâ€ŧerm injury to nigral dopaminergic neurons following intracerebroventricular injection of lipopolysaccharide in rats. Journal of Neurochemistry, 2012, 123, 771-780.	2.1	22
39	Tenuigenin Protects Dopaminergic Neurons from Inflammationâ€Mediated Damage Induced by the Lipopolysaccharide. CNS Neuroscience and Therapeutics, 2012, 18, 584-590.	1.9	37
40	Intranigral lipopolysaccharide administration induced behavioral deficits and oxidative stress damage in laboratory rats: Relevance for Parkinson's disease. Behavioural Brain Research, 2013, 253, 25-31.	1.2	25
41	Wnt signaling pathways participate in Astragalus injection-induced differentiation of bone marrow mesenchymal stem cells. Neuroscience Letters, 2013, 553, 29-34.	1.0	5
42	Triptolide with Potential Medicinal Value for Diseases of the Central Nervous System. CNS Neuroscience and Therapeutics, 2013, 19, 76-82.	1.9	74
43	Naturally derived anti-inflammatory compounds from Chinese medicinal plants. Journal of Ethnopharmacology, 2013, 146, 9-39.	2.0	191
44	Recent advances in herbal medicines treating Parkinson's disease. Fìtoterapìâ, 2013, 84, 273-285.	1.1	100
45	Molecular Imaging in Traditional Chinese Medicine Therapy for Neurological Diseases. BioMed Research International, 2013, 2013, 1-11.	0.9	22
46	Study on the Dynamic Changes in Synaptic Vesicle-Associated Protein and Axonal Transport Protein Combined with LPS Neuroinflammation Model. ISRN Neurology, 2013, 2013, 1-12.	1.5	5
47	Improved Retinal Ganglion Cell Survival through Retinal Microglia Suppression by a Chinese Herb Extract, Triptolide, in the DBA/2J Mouse Model of Glaucoma. Ocular Immunology and Inflammation, 2013, 21, 378-389.	1.0	17
48	Herbs treating Parkinson's disease. Biomedicine and Aging Pathology, 2014, 4, 369-376.	0.8	4
49	Terpenes. , 2014, , 189-284.		1
50	Triptolide treatment reduces Alzheimer's disease (AD)-like pathology through inhibition of BACE1 in a transgenic mouse model of AD. DMM Disease Models and Mechanisms, 2014, 7, 1385-1395.	1.2	50
51	Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. Studies in Natural Products Chemistry, 2014, 42, 153-194.	0.8	13
52	Triptolide: Progress on research in pharmacodynamics and toxicology. Journal of Ethnopharmacology, 2014, 155, 67-79.	2.0	294
53	Triptolide improves nerve regeneration and functional recovery following crush injury to rat sciatic nerve. Neuroscience Letters, 2014, 561, 198-202.	1.0	21
54	Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma. Drug Design, Development and Therapy, 2015, 9, 6095.	2.0	11

	CITATION	CITATION REPORT	
#	ARTICLE A novel compound <scp>VSC</scp> 2 has antiâ€inflammatory and antioxidant properties in microglia and	IF 2.7	CITATIONS
56	in <scp>P</scp> arkinson's disease animal model. British Journal of Pharmacology, 2015, 172, 1087-1100. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. Journal of Neuroinflammation, 2015, 12, 9.	3.1	192
57	Possible Anti-Parkinson's Disease Therapeutics From Nature: A Review. Studies in Natural Products Chemistry, 2015, 44, 447-520.	0.8	10
58	A Novel Compound ITC-3 Activates the Nrf2 Signaling and Provides Neuroprotection in Parkinson's Disease Models. Neurotoxicity Research, 2015, 28, 332-345.	1.3	19
59	Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407.		1
60	EP2-PKA signaling is suppressed by triptolide in lipopolysaccharide-induced microglia activation. Journal of Neuroinflammation, 2015, 12, 50.	3.1	19
61	Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson's disease. Pharmacology Biochemistry and Behavior, 2015, 138, 96-103.	1.3	63
62	Design, synthesis and biological evaluation of tricyclic diterpene derivatives as novel neuroprotective agents against ischemic brain injury. European Journal of Medicinal Chemistry, 2015, 103, 396-408.	2.6	6
63	GLP-2 Attenuates LPS-Induced Inflammation in BV-2 Cells by Inhibiting ERK1/2, JNK1/2 and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 2016, 17, 190.	1.8	42
64	Alkaloids from piper longum protect dopaminergic neurons against inflammation-mediated damage induced by intranigral injection of lipopolysaccharide. BMC Complementary and Alternative Medicine, 2016, 16, 412.	3.7	23
65	Deciphering variability in the role of interleukin-1β in Parkinson's disease. Reviews in the Neurosciences, 2016, 27, 635-650.	1.4	18
66	Plant-Derived Natural Products for Parkinson's Disease Therapy. Advances in Neurobiology, 2016, 12, 415-496.	1.3	21
67	Biochanin A Protects Against Lipopolysaccharide-Induced Damage of Dopaminergic Neurons Both In Vivo and In Vitro via Inhibition of Microglial Activation. Neurotoxicity Research, 2016, 30, 486-498.	1.3	39
68	Antiâ€Inflammatory and Neuroprotective Effects of Triptolide via the <scp>NF</scp> â€Îº <scp>B</scp> Signaling Pathway in a Rat <scp>MCAO</scp> Model. Anatomical Record, 2016, 299, 256-266.	0.8	65
69	Recent advances in discovery and development of natural products asÂsource for anti-Parkinson's disease lead compounds. European Journal of Medicinal Chemistry, 2017, 141, 257-272.	2.6	66
70	Neuroprotective strategies to prevent and treat Parkinson's disease based on its pathophysiological mechanism. Archives of Pharmacal Research, 2017, 40, 1117-1128.	2.7	16
71	Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models. International Journal of Molecular Sciences, 2017, 18, 2043.	1.8	65
72	A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model. , 2017, 8, 31.		13

#	Article	IF	Citations
73	Protective effects of DL-3-n-butylphthalide in the lipopolysaccharide-induced mouse model of Parkinson's disease. Molecular Medicine Reports, 2017, 16, 6184-6189.	1.1	14
74	Triptolide up-regulates metabotropic glutamate receptor 5 to inhibit microglia activation in the lipopolysaccharide-induced model of Parkinson's disease. Brain, Behavior, and Immunity, 2018, 71, 93-107.	2.0	35
75	Triptolide induces autophagy and apoptosis through ERK activation in human breast cancer MCFâ€′7 cells. Experimental and Therapeutic Medicine, 2018, 15, 3413-3419.	0.8	21
76	Myricetin prevents dopaminergic neurons from undergoing neuroinflammation-mediated degeneration in a lipopolysaccharide-induced Parkinson's disease model. Journal of Functional Foods, 2018, 45, 452-461.	1.6	29
77	Peiminine Protects Dopaminergic Neurons from Inflammation-Induced Cell Death by Inhibiting the ERK1/2 and NF-κB Signalling Pathways. International Journal of Molecular Sciences, 2018, 19, 821.	1.8	32
78	Triptolide inhibits angiogenesis in microvascular endothelial cells through regulation of miR-92a. Journal of Physiology and Biochemistry, 2019, 75, 573-583.	1.3	13
79	Chronic unpredictable mild stress accelerates lipopolysaccharide- induced microglia activation and damage of dopaminergic neurons in rats. Pharmacology Biochemistry and Behavior, 2019, 179, 142-149.	1.3	11
80	Treatment of Neurodegenerative Diseases with Bioactive Components of <i>Tripterygium wilfordii</i> . The American Journal of Chinese Medicine, 2019, 47, 769-785.	1.5	36
81	Application and Mechanisms of Triptolide in the Treatment of Inflammatory Diseases—A Review. Frontiers in Pharmacology, 2019, 10, 1469.	1.6	80
82	The Counteracting Performance of Phytoconstituents Against Neurodegeneration Involved in Parkinson's Disease. Journal of Scientific Research, 2021, 65, 146-158.	0.1	4
83	Triptolide improves neurobehavioral functions, inflammation, and oxidative stress in rats under deep hypothermic circulatory arrest. Aging, 2021, 13, 3031-3044.	1.4	11
84	The Role of Chronic Inflammation in Various Diseases and Antiâ€inflammatory Therapies Containing Natural Products. ChemMedChem, 2021, 16, 1576-1592.	1.6	25
85	Neuroprotective Effects of a GLP-2 Analogue in the MPTP Parkinson's Disease Mouse Model. Journal of Parkinson's Disease, 2021, 11, 529-543.	1.5	9
86	Novel Anti-Inflammatory and Neuroprotective Agents for Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 232-240.	0.8	27
87	Andrographolide had Positive Effects on Anti-inflammatory and Protected Against LPS-induced DIC in Rabbits. International Journal of Pharmacology, 2016, 12, 532-540.	0.1	1
88	Effects of triptolide on hippocampal microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer′s disease. Neural Regeneration Research, 2016, 11, 1492.	1.6	20
89	Neuroinflammatory penumbra in Parkinson's disease. International Neurological Journal, 2021, 17, 82-85.	0.2	0
90	Triptolide Protects Dopaminergic Neurons from 6-OHDA Lesion in a Rat Model of Parkinson's Disease. International Journal of Pharmacology, 2014, 11, 10-18.	0.1	2

#	Article	IF	CITATIONS
91	A Study on Triptolide Protects Against Lipopolysaccharide- induced Endotoxemia by Anti-inflammation Effect. International Journal of Pharmacology, 2016, 12, 597-604.	0.1	0
92	Effect of Triptolide on retinal ganglion cell survival in an optic nerve crush model. Cellular and Molecular Biology, 2017, 63, 102.	0.3	20
93	Tripterygium hypoglaucum (Levl.) Hutch: A Systematic Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology. Pharmacological Research Modern Chinese Medicine, 2022, , 100094.	0.5	0
94	The therapeutic potential of triptolide and celastrol in neurological diseases. Frontiers in Pharmacology, 0, 13, .	1.6	11
95	Neuroprotective Effect of Swertiamarin in a Rotenone Model of Parkinson's Disease: Role of Neuroinflammation and Alpha-Synuclein Accumulation. ACS Pharmacology and Translational Science, 2023, 6, 40-51.	2.5	8
96	Neurotrophic Natural Products. Progress in the Chemistry of Organic Natural Products, 2024, , 1-473.	0.8	0