Estimation, Computation, and Experimental Correction Vibrational Energies

Journal of Physical Chemistry A 109, 6779-6789 DOI: 10.1021/jp0519464

Citation Report

#	Article	IF	CITATIONS
1	Assessing a new nonempirical density functional: Difficulties in treating π-conjugation effects. Journal of Chemical Physics, 2006, 124, 124112.	1.2	34
2	One-Dimensional Free-Energy Profiles of Complex Systems:Â Progress Variables that Preserve the Barriers. Journal of Physical Chemistry B, 2006, 110, 12689-12698.	1.2	105
3	Surface-Mediated Nucleation in the Solid-State Polymorph Transformation of Terephthalic Acid. Journal of the American Chemical Society, 2007, 129, 4714-4723.	6.6	83
4	Experimental Vibrational Zero-Point Energies: Diatomic Molecules. Journal of Physical and Chemical Reference Data, 2007, 36, 389-397.	1.9	336
5	An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry A, 2007, 111, 11683-11700.	1.1	2,264
6	Thermodynamic Properties and Hydrogen Accumulation Ability of Fullerene Hydride C ₆₀ H ₃₆ . Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15, 227-247.	1.0	14
7	Coarse Master Equations for Peptide Folding Dynamics. Journal of Physical Chemistry B, 2008, 112, 6057-6069.	1.2	444
8	Uncertainties in scaling factors for <i>ab initio</i> vibrational zero-point energies. Journal of Chemical Physics, 2009, 130, 114102.	1.2	74
9	Performance of Density Functional Theory for 3d Transition Metal-Containing Complexes: Utilization of the Correlation Consistent Basis Sets. Journal of Physical Chemistry A, 2009, 113, 8607-8614.	1.1	84
10	Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH. Journal of Chemical Physics, 2010, 132, 054105.	1.2	8
11	Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. Journal of Chemical Theory and Computation, 2010, 6, 2872-2887.	2.3	1,183
12	The Role of Anharmonicity in Hydrogen-Bonded Systems: The Case of Water Clusters. Journal of Chemical Theory and Computation, 2011, 7, 2804-2817.	2.3	87
13	General Perturbative Approach for Spectroscopy, Thermodynamics, and Kinetics: Methodological Background and Benchmark Studies. Journal of Chemical Theory and Computation, 2012, 8, 1015-1036.	2.3	256
14	Geometries and Vibrational Frequencies of Small Radicals: Performance of Coupled Cluster and More Approximate Methods. Journal of Chemical Theory and Computation, 2012, 8, 2165-2179.	2.3	42
15	CH ₂ D ⁺ , the Search for the Holy Grail. Journal of Physical Chemistry A, 2013, 117, 9959-9967.	1.1	45
16	Computing UV/vis spectra from the adiabatic and vertical Franck-Condon schemes with the use of Cartesian and internal coordinates. Journal of Chemical Physics, 2013, 139, 234108.	1.2	40
17	Bromination and Accompanying Rearrangement of the Polycyclic Oxetane 2,4-Oxytwistane. Journal of Organic Chemistry, 2014, 79, 8786-8799.	1.7	8
18	Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	74

#	Article	IF	CITATIONS
19	A Theoretical Study on the Functionalisation Process of C ₁₈ NB Fullerene Through its Open [5,5] Cycloaddition with 4-Pyridine Nitrile Oxide. Progress in Reaction Kinetics and Mechanism, 2015, 40, 169-176.	1.1	8
20	Diels-Alder <i>versus</i> 1,3-dipolar cycloaddition pathways in the reaction of C ₂₀ fullerene and 2-furan nitrile oxide. Progress in Reaction Kinetics and Mechanism, 2015, 40, 383-390.	1.1	15
21	A simple way to predict vibrational zero point energy of organophosphorus (III) compounds. Computational and Theoretical Chemistry, 2015, 1068, 13-20.	1.1	5
22	Intermolecular Reactions of a Foiled Carbene with Carbonyl Compounds: The Effects of Trishomocyclopropyl Stabilization. Journal of Organic Chemistry, 2015, 80, 11877-11887.	1.7	4
23	Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided?. Journal of Physical Chemistry A, 2015, 119, 1701-1714.	1.1	441
24	An Evaluation of Gas Phase Enthalpies of Formation for Hydrogen-Oxygen (HxOy) Species. Journal of Research of the National Institute of Standards and Technology, 2016, 121, 108.	0.4	5
25	A computational chemist's guide to accurate thermochemistry for organic molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 292-310.	6.2	185
26	Competitive 1,2-C Atom Shifts in the Strained Carbene Spiro[3.3]hept-1-ylidene Explained by Distinct Ring-Puckered Conformers. Journal of Organic Chemistry, 2016, 81, 12388-12400.	1.7	12
27	Theoretical study on the reaction mechanisms of CH3ONO with F, Cl and Br atoms. Progress in Reaction Kinetics and Mechanism, 2016, 41, 135-143.	1.1	0
28	Vibrational zero point energy of organophosphorus(V) compounds. Vibrational Spectroscopy, 2016, 86, 173-180.	1.2	2
29	Rational computing of energy levels for organic electronics: the case of 2-benzylidene-1,3-indandiones. RSC Advances, 2016, 6, 85242-85253.	1.7	2
30	Energetic Properties of Rocket Propellants Evaluated through the Computational Determination of Heats of Formation of Nitrogenâ€Rich Compounds. Chemistry - an Asian Journal, 2016, 11, 730-744.	1.7	6
31	Investigating the reaction pathways of chemical functionalization of C20 fullerene by nitrile oxide and azide; A computational study. Journal of Theoretical and Computational Chemistry, 2018, 17, 1850003.	1.8	0
32	Theoretical calculation of enthalpy of formation of multiconformational molecules: 1,2-ethanediol, propanediols, and glycerol. Chemical Physics Letters, 2018, 698, 218-222.	1.2	8
33	Anharmonic vibrational analysis of s-trans and s-cis conformers of acryloyl fluoride using numerical-analytic Van Vleck operator perturbation theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 66-79.	2.0	6
34	Density functional theory study of CO formation through reactions of polycyclic aromatic hydrocarbons with atomic oxygen (O(3P)). Fuel, 2019, 241, 851-860.	3.4	5
35	Scaling Procedures in Vibrational Spectroscopy. Challenges and Advances in Computational Chemistry and Physics, 2019, , 49-95.	0.6	3
36	Can Small Polyaromatics Describe Their Larger Counterparts for Local Reactions? A Computational Study on the H-Abstraction Reaction by an H-Atom from Polyaromatics. Journal of Physical Chemistry A. 2020, 124, 9626-9637.	1.1	8

CITATION REPORT

#	Article	IF	CITATIONS
37	Anharmonic Frequencies of (MO) ₂ and Related Hydrides for M = Mg, Al, Si, P, S, Ca, and Ti and Heuristics for Predicting Anharmonic Corrections of Inorganic Oxides. Journal of Physical Chemistry A, 2020, 124, 3191-3204.	1.1	26
38	Tricyclo[2.1.0.0 ^{2,5}]pent-3-ylidene: Stereoelectronic Control of Bridge-Flapping within a Nonclassical Nucleophilic Carbene. Journal of Organic Chemistry, 2021, 86, 878-891.	1.7	2
39	Experimental and computational insights into the synthesis and characterization of a novel Schiff base ligand 2, $2\hat{a}\in^{2-}[(1z, 14e)-2, 5, 8, 11, 14$ -pentaazapentadeca-1, 14-diene-diyl] diphenol. CSI Transactions on ICI 2021, 9, 71-81.	,0.7	0
40	Density Functional Geometries and Zero-Point Energies in Ab Initio Thermochemical Treatments of Compounds with First-Row Atoms (H, C, N, O, F). Journal of Chemical Theory and Computation, 2021, 17, 4872-4890.	2.3	22
41	An automatized workflow from molecular dynamic simulation to quantum chemical methods to identify elementary reactions and compute reaction constants. Journal of Computational Chemistry, 2021, 42, 2264-2282.	1.5	6
42	First-principles study of hydrogen-vacancy interactions in CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2022, 922, 166259.	2.8	7
43	Carbene Routes to Cyclopropatetrahedrane. Journal of Organic Chemistry, 2022, 87, 16902-16906.	1.7	0
44	High-Accuracy Heats of Formation for Alkane Oxidation: From Small to Large via the Automated CBH-ANL Method. Journal of Physical Chemistry A, 2023, 127, 1512-1531.	1.1	10
46	DFT and TD-DFT study of hydrogen bonded complexes of aspartic acid and n water (n = 1 and 2). Journal of Molecular Modeling, 2023, 29, .	0.8	0

CITATION REPORT