Prospective Identification of Tumorigenic Prostate Can

Cancer Research 65, 10946-10951

DOI: 10.1158/0008-5472.can-05-2018

Citation Report

#	Article	IF	Citations
1	Models and Concepts., 2005,, 7-19.		7
2	First among equals: The cancer cell hierarchy. Leukemia and Lymphoma, 2006, 47, 2017-2027.	0.6	44
3	CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis. American Journal of Pathology, 2006, 169, 2223-2235.	1.9	161
4	Prominin-1 (CD133): from progenitor cells to human diseases. Future Lipidology, 2006, 1, 213-225.	0.5	62
5	SP analysis may be used to identify cancer stem cell populations. Experimental Cell Research, 2006, 312, 3701-3710.	1.2	295
6	Implications of cancer stem cells in the treatment of cancer. Future Oncology, 2006, 2, 723-731.	1.1	36
7	Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development, 2006, 20, 1218-1249.	2.7	1,118
8	The stem cell niche and bone metastasis. BoneKEy Osteovision, 2006, 3, 19-29.	0.6	3
9	Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell International, 2006, 6, 25.	1.8	108
10	Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 2006, 6, 924-935.	12.8	1,470
11	Targeting Gene-Virotherapy of Cancer and its prosperity. Cell Research, 2006, 16, 879-886.	5.7	55
12	The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 2006, 20, 1915-1924.	3.3	389
13	Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies. Stem Cells, 2006, 24, 2319-2345.	1.4	259
14	Cancer Stem Cells: An Old Idea—A Paradigm Shift. Cancer Research, 2006, 66, 1883-1890.	0.4	1,269
15	Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Reviews and Reports, 2006, 2, 103-109.	5.6	30
16	Epigenetics of prostate cancer: beyond DNA methylation. Journal of Cellular and Molecular Medicine, 2006, 10, 100-125.	1.6	102
17	$\text{C/EBP}\hat{\text{I}}_{\pm}$: A tumour suppressor in multiple tissues?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1766, 88-103.	3.3	64
18	Neoplastic stem cells: A novel therapeutic target in clinical oncology. Cancer, 2006, 107, 2512-2520.	2.0	77

#	Article	IF	CITATIONS
19	Brain tumor stem cells: new targets for clinical treatments?. Neurosurgical Focus, 2006, 20, E27.	1.0	17
20	Mechanisms Underlying the Development of Androgen-Independent Prostate Cancer. Clinical Cancer Research, 2006, 12, 1665-1671.	3.2	387
22	Low-Calcium Serum-Free Defined Medium Selects for Growth of Normal Prostatic Epithelial Stem Cells. Cancer Research, 2006, 66, 8598-8607.	0.4	135
23	Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16466-16471.	3.3	204
24	Type I Collagen Receptor ($\hat{l}\pm2\hat{l}^21$) Signaling Promotes the Growth of Human Prostate Cancer Cells within the Bone. Cancer Research, 2006, 66, 8648-8654.	0.4	116
25	Progenitor Marker CD133 mRNA Is Elevated in Peripheral Blood of Cancer Patients with Bone Metastases. Clinical Cancer Research, 2006, 12, 4859-4866.	3.2	84
26	Comparison of annexin II, p63 and Â-methylacyl-CoA racemase immunoreactivity in prostatic tissue: a tissue microarray study. Journal of Clinical Pathology, 2006, 60, 773-780.	1.0	26
27	Small-cell carcinoma of the urinary bladder: diagnosis and management. Expert Review of Anticancer Therapy, 2006, 6, 1707-1713.	1.1	28
28	The Response of CD24 â^/low /CD44 + Breast Cancerâ€"Initiating Cells to Radiation. Journal of the National Cancer Institute, 2006, 98, 1777-1785.	3.0	1,225
29	Reassessment of Id1 Protein Expression in Human Mammary, Prostate, and Bladder Cancers Using a Monospecific Rabbit Monoclonal Anti-Id1 Antibody. Cancer Research, 2006, 66, 10870-10877.	0.4	77
30	Improving the outcome of patients with castration-resistant prostate cancer through rational drug development. British Journal of Cancer, 2006, 95, 767-774.	2.9	72
31	Vitamin D and cancer. Expert Review of Endocrinology and Metabolism, 2006, 1, 219-231.	1.2	2
32	Stem cells in prostate cancer: Resolving the castrate-resistant conundrum and implications for hormonal therapy. Cancer Biology and Therapy, 2006, 5, 901-906.	1.5	50
33	Cancer stem cells and brain tumors: uprooting the bad seeds. Expert Review of Anticancer Therapy, 2007, 7, 1581-1590.	1.1	14
34	Identification of Putative Stem Cell Markers, CD133 and CXCR4, in hTERT–Immortalized Primary Nonmalignant and Malignant Tumor-Derived Human Prostate Epithelial Cell Lines and in Prostate Cancer Specimens. Cancer Research, 2007, 67, 3153-3161.	0.4	344
35	Cancer stem-like cells in human prostate carcinoma cells DU145: The seeds of the cell line?. Cancer Biology and Therapy, 2007, 6, 763-768.	1.5	102
37	Adenoviruses 16 and CV23 Efficiently Transduce Human Low-passage Brain Tumor and Cancer Stem Cells. Molecular Therapy, 2007, 15, 2140-2145.	3.7	29
38	Pathobiology of Head and Neck Squamous Tumorigenesis. Current Cancer Drug Targets, 2007, 7, 606-612.	0.8	9

3

#	ARTICLE	IF	Citations
39	Brain tumour stem cells: possibilities of new therapeutic strategies. Expert Opinion on Biological Therapy, 2007, 7, 1129-1135.	1.4	36
40	A Novel Population of Repair Cells Identified in the Stroma of the Human Cornea. Stem Cells and Development, 2007, 16, 733-746.	1.1	28
41	Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. Journal of the National Cancer Institute, 2007, 99, 1410-1414.	3.0	268
42	Prostate Cancer Cells with Stem Cell Characteristics Reconstitute the Original Human Tumor In vivo. Cancer Research, 2007, 67, 4807-4815.	0.4	325
43	Colon cancer stem cells. Gut, 2007, 57, 538-548.	6.1	64
44	Hierarchical Organization of Prostate Cancer Cells in Xenograft Tumors: The CD44+α2β1+ Cell Population Is Enriched in Tumor-Initiating Cells. Cancer Research, 2007, 67, 6796-6805.	0.4	334
45	Interplay of distinct growth factors during epithelial–mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Annals of Oncology, 2007, 18, 1605-1619.	0.6	89
46	Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Molecular Cancer Therapeutics, 2007, 6, 967-978.	1.9	86
47	CD133 Is Not Present on Neurogenic Astrocytes in the Adult Subventricular Zone, but on Embryonic Neural Stem Cells, Ependymal Cells, and Glioblastoma Cells. Cancer Research, 2007, 67, 5727-5736.	0.4	186
48	Cancer Stem Cells. , 2007, , .		2
49	Prostate Cancer Stem Cells: A Target for New Therapies. , 2007, , 155-179.		35
50	Progression of Prostate Cancer from a Subset of p63-Positive Basal Epithelial Cells in FG/Tag Transgenic Mice. Molecular Cancer Research, 2007, 5, 1171-1179.	1.5	20
51	The Fuzzy Math of Solid Tumor Stem Cells: A Perspective. Cancer Research, 2007, 67, 8985-8988.	0.4	96
52	Identification and Clinical Significance of Mobilized Endothelial Progenitor Cells in Tumor Vasculogenesis of Hepatocellular Carcinoma. Clinical Cancer Research, 2007, 13, 3814-3824.	3.2	80
53	Stem cell-like cancer cells in cancer cell lines. Cancer Biomarkers, 2007, 3, 245-250.	0.8	70
54	Establishment of Clonal Colony-Forming Assay for Propagation of Pancreatic Cancer Cells With Stem Cell Properties. Pancreas, 2007, 34, 429-435.	0.5	113
55	Breast Stem Cells and Cancer. , 2007, , 141-154.		10
56	Tumorigenic Epithelial Stem Cells and Their Normal Counterparts. , 2007, , 245-263.		19

#	Article	IF	CITATIONS
57	Donor cell leukemia: insight into cancer stem cells and the stem cell niche. Blood, 2007, 109, 2688-2692.	0.6	134
58	CD44 as a Functional Cancer Stem Cell Marker and a Potential Therapeutic Target. , 2007, , 317-334.		1
59	Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4. Cell Stem Cell, 2007, 1, 389-402.	5.2	968
60	ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 2007, 1, 555-567.	5.2	3,550
61	Analytical Methods for Cancer Stem Cells. Methods in Molecular Biology, 2007, 407, 83-95.	0.4	7
62	Tumour-initiating cells vs. cancer â€~stem' cells and CD133: What's in the name?. Biochemical and Biophysical Research Communications, 2007, 355, 855-859.	1.0	176
63	Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis. Biochemical and Biophysical Research Communications, 2007, 357, 1084-1089.	1.0	38
64	A rapid assay for drug sensitivity of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2007, 358, 908-913.	1.0	27
65	Reduced expression of INK4a/ARF genes in stem-like sphere cells from rat sarcomas. Biochemical and Biophysical Research Communications, 2007, 362, 773-778.	1.0	8
66	Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochemical and Biophysical Research Communications, 2007, 364, 778-782.	1.0	96
67	Cancer Stem Cells: At the Headwaters of Tumor Development. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 175-189.	9.6	136
68	EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms. Radiotherapy and Oncology, 2007, 83, 238-248.	0.3	170
69	EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: Differential response of cancer stem cells and nontumourigenic cells?. Radiotherapy and Oncology, 2007, 83, 316-325.	0.3	51
70	Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells. Neoplasia, 2007, 9, 1122-1129.	2.3	61
71	Cancer Stem Cells as Mediators of Treatment Resistance in Brain Tumors: Status and Controversies. Neoplasia, 2007, 9, 882-892.	2.3	144
72	Origin of Androgen-Insensitive Poorly Differentiated Tumors in the Transgenic Adenocarcinoma of Mouse Prostate Model. Neoplasia, 2007, 9, 938-IN1.	2.3	60
73	Prostate (Cancer) Stem Cells. , 2007, , 63-72.		1
74	Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man?. Breast Cancer Research, 2007, 9, 303.	2.2	132

#	Article	IF	Citations
7 5	Stem Cell Assays. Methods in Molecular Biology, 2007, , .	0.4	3
76	Molecular Pathogenesis of Adult Brain Tumors and the Role of Stem Cells. Neurologic Clinics, 2007, 25, 891-924.	0.8	34
77	Metastasis of Prostate Cancer. Cancer Metastasis - Biology and Treatment, 2007, , .	0.1	4
78	Novel Cell Culture Technique for Primary Ductal Carcinoma In Situ: Role of Notch and Epidermal Growth Factor Receptor Signaling Pathways. Journal of the National Cancer Institute, 2007, 99, 616-627.	3.0	288
79	Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927.	1.5	58
80	Improvement of cytotoxic effects induced by mitoxantrone on hormone-refractory metastatic prostate cancer cells by co-targeting epidermal growth factor receptor and hedgehog signaling cascades. Growth Factors, 2007, 25, 400-416.	0.5	23
81	Identification of Cancer Stem Cell–Like Side Population Cells in Human Nasopharyngeal Carcinoma Cell Line. Cancer Research, 2007, 67, 3716-3724.	0.4	365
82	Prostatic Stem Cell Marker Identified by cDNA Microarray in Mouse. Journal of Urology, 2007, 178, 686-691.	0.2	12
83	Conference Report and Review: Current Status of Biomarkers Potentially Associated With Prostate Cancer Outcomes. Journal of Urology, 2007, 177, 1229-1237.	0.2	14
84	Cancer stem cell: target for antiâ€cancer therapy. FASEB Journal, 2007, 21, 3777-3785.	0.2	241
85	Identification of a subset of breast carcinomas characterized by expression of cytokeratin 15: Relationship between CK15+ progenitor/amplified cells and preâ€malignant lesions and invasive disease. Molecular Oncology, 2007, 1, 321-349.	2.1	24
86	BMP7, a Putative Regulator of Epithelial Homeostasis in the Human Prostate, Is a Potent Inhibitor of Prostate Cancer Bone Metastasis in Vivo. American Journal of Pathology, 2007, 171, 1047-1057.	1.9	183
87	Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Molecular Cancer, 2007, 6, 26.	7.9	41
88	Concise Review: Cancer/Testis Antigens, Stem Cells, and Cancer. Stem Cells, 2007, 25, 707-711.	1.4	122
89	The Biology of Cancer Stem Cells. Annual Review of Cell and Developmental Biology, 2007, 23, 675-699.	4.0	943
90	Identification and Characterization of Tumorigenic Liver Cancer Stem/Progenitor Cells. Gastroenterology, 2007, 132, 2542-2556.	0.6	1,096
91	Carcinogenesis of Helicobacter pylori. Gastroenterology, 2007, 133, 659-672.	0.6	584
92	Cancer stem cells. Drug Discovery Today: Disease Models, 2007, 4, 47-52.	1.2	1

#	Article	IF	Citations
93	Distilling the Past – Envisioning the Future. , 2008, , 355-397.		0
94	Biology and clinical management of prostate cancer bone metastasis. Frontiers in Bioscience - Landmark, 2007, 12, 3273.	3.0	35
96	Stem cell-like cancer cells in cancer cell lines. Inflammation and Regeneration, 2007, 27, 506-511.	1.5	1
97	Unraveling the complex nature of prostate cancer stem cells. Cancer Biomarkers, 2007, 3, 233-244.	0.8	2
99	The theoretical basis of cancerâ€stemâ€cellâ€based therapeutics of cancer: can it be put into practice?. BioEssays, 2007, 29, 1269-1280.	1.2	81
100	Novel combination therapy against metastatic and androgen-independent prostate cancer by using gefitinib, tamoxifen and etoposide. International Journal of Cancer, 2007, 120, 160-169.	2.3	29
101	CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International Journal of Cancer, 2007, 120, 1444-1450.	2.3	496
102	Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT. International Journal of Cancer, 2008, 122, 1483-1495.	2.3	37
103	The role of androgen in determining differentiation and regulation of androgen receptor expression in the human prostatic epithelium transient amplifying population. Journal of Cellular Physiology, 2007, 212, 572-578.	2.0	45
104	Old disease, new culprit: Tumor stem cells in cancer. Journal of Cellular Physiology, 2007, 213, 603-609.	2.0	37
105	Developmental signaling pathways in brain tumorâ€derived stemâ€like cells. Developmental Dynamics, 2007, 236, 3297-3308.	0.8	63
106	Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Molecular Carcinogenesis, 2007, 46, 1-14.	1.3	201
107	Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 2007, 18, 460-466.	3.3	470
108	The ageing male reproductive tract. Journal of Pathology, 2007, 211, 206-218.	2.1	81
109	TGFBR3 loss and consequences in prostate cancer. Prostate, 2007, 67, 301-311.	1.2	68
110	Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate, 2007, 67, 1384-1396.	1.2	102
111	CD133, One of the Markers of Cancer Stem Cells in Hep-2 Cell Line. Laryngoscope, 2007, 117, 455-460.	1.1	116
112	Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 2007, 17, 3-14.	5.7	551

#	Article	IF	CITATIONS
113	Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2007, 36, 594-603.	1.4	154
114	Cancer initiation and progression: Involvement of stem cells and the microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 283-297.	3.3	85
115	Cellular signaling in normal and cancerous stem cells. Cellular Signalling, 2007, 19, 2428-2433.	1.7	60
116	Radioresistant glioma stem cells—Therapeutic obstacle or promising target?. DNA Repair, 2007, 6, 1391-1394.	1.3	35
117	Seeding drug discovery: integrating telomerase cancer biology and cellular senescence to uncover new therapeutic opportunities in targeting cancer stem cells. Drug Discovery Today, 2007, 12, 611-621.	3.2	30
118	High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: High expression of CD55 as a novel character for side-population. Experimental Cell Research, 2007, 313, 1877-1885.	1.2	44
119	Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of Cellular and Molecular Medicine, 2007, 11, 981-1011.	1.6	213
120	Cancer stem cells: the lessons from preâ€cancerous stem cells. Journal of Cellular and Molecular Medicine, 2008, 12, 67-96.	1.6	87
121	Glioma stem cells: Evidence and limitation. Seminars in Cancer Biology, 2007, 17, 214-218.	4.3	69
122	Stem cells and cancer. Seminars in Cancer Biology, 2007, 17, 191-203.	4.3	78
123	Prostate stem cells: From development to cancer. Seminars in Cancer Biology, 2007, 17, 219-224.	4.3	35
124	Human neuroblastoma stem cells. Seminars in Cancer Biology, 2007, 17, 241-247.	4.3	104
125	The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends in Cell Biology, 2007, 17, 438-447.	3.6	363
126	Cancer Stem Cells: Models and Concepts. Annual Review of Medicine, 2007, 58, 267-284.	5.0	1,184
127	Brain Tumor Stem Cells: Identification and Concepts. Neurosurgery Clinics of North America, 2007, 18, 31-38.	0.8	53
128	Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. Journal of Neuro-Oncology, 2007, 83, 121-131.	1.4	138
129	Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer and Metastasis Reviews, 2007, 26, 203-214.	2.7	58
130	TGF-Î ² and BMP7 interactions in tumour progression and bone metastasis. Clinical and Experimental Metastasis, 2007, 24, 609-617.	1.7	111

#	Article	IF	Citations
131	Hedgehog signaling in prostate growth and benign prostate hyperplasia. Current Prostate Reports, 2007, 5, 27-32.	0.1	0
132	Hedgehog signaling in prostate growth and benign prostate hyperplasia. Current Urology Reports, 2007, 8, 275-280.	1.0	22
133	Mammary Stem Cells and Breast Cancerâ€"Role of Notch Signalling. Stem Cell Reviews and Reports, 2007, 3, 169-175.	5.6	342
134	Breast Cancer Stem Cells-Research Opportunities Utilizing Mathematical Modeling. Stem Cell Reviews and Reports, 2007, 3, 176-182.	5.6	15
135	Stem Cells and Cancer: An Overview. Stem Cell Reviews and Reports, 2007, 3, 249-255.	5.6	59
136	Isolation of side population cells and detection of ABCG2 from SW480. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2007, 19, 238-243.	0.7	1
137	Brain Tumor Stem Cells. Current Problems in Cancer, 2008, 32, 124-142.	1.0	22
138	Cancer stem cells: markers or biomarkers?. Cancer and Metastasis Reviews, 2008, 27, 459-470.	2.7	102
139	Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clinical and Experimental Metastasis, 2008, 25, 11-32.	1.7	82
140	Expression of stem cell markers in human astrocytomas of different WHO grades. Journal of Neuro-Oncology, 2008, 86, 31-45.	1.4	154
141	CD133 identifies perivascular niches in grade II–IV astrocytomas. Journal of Neuro-Oncology, 2008, 90, 157-170.	1.4	101
142	Cancer stem cells as targets for cancer therapy: selected cancers as examples. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 165-180.	1.0	54
143	Androgen receptor expression in prostate cancer stem cells: is there a conundrum?. Cancer Chemotherapy and Pharmacology, 2008, 62, 921-923.	1.1	19
144	The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. Journal of Molecular Medicine, 2008, 86, 1025-1032.	1.7	237
146	A novel strategy for cancer treatment: Targeting cancer stem cells. Science Bulletin, 2008, 53, 1777-1783.	4.3	1
147	Tumorstammzellen: Grundlagen, klinische Implikationen und Kontroversen. Onkopipeline, 2008, 1, 91-100.	0.0	1
148	Exploring the Origins of the Normal Prostate and Prostate Cancer Stem Cell. Stem Cell Reviews and Reports, 2008, 4, 193-201.	5.6	97
149	Stemming Cancer: Functional Genomics of Cancer Stem Cells in Solid Tumors. Stem Cell Reviews and Reports, 2008, 4, 319-328.	5.6	56

#	Article	IF	CITATIONS
150	In Search of Liver Cancer Stem Cells. Stem Cell Reviews and Reports, 2008, 4, 179-192.	5.6	21
151	An update on the biology of cancer stem cells in breast cancer. Clinical and Translational Oncology, 2008, 10, 786-793.	1.2	16
152	Brain tumor stem cells as research and treatment targets. Brain Tumor Pathology, 2008, 25, 67-72.	1.1	32
153	Robust expression of Prominin-2 all along the adult male reproductive system and urinary bladder. Histochemistry and Cell Biology, 2008, 130, 749-759.	0.8	21
154	Stem cells and cancer: a deadly mix. Cell and Tissue Research, 2008, 331, 109-124.	1.5	47
155	microRNA and stem cell function. Cell and Tissue Research, 2008, 331, 57-66.	1.5	145
156	Ovarian cancer: emerging concept on cancer stem cells. Journal of Ovarian Research, 2008, 1, 4.	1.3	61
157	Stem cell markers: Insights from membrane proteomics?. Proteomics, 2008, 8, 4946-4957.	1.3	25
158	Expression profiling of CD133 ⁺ and CD133 ^{â€"} epithelial cells from human prostate. Prostate, 2008, 68, 1007-1024.	1.2	64
159	CD133: molecule of the moment. Journal of Pathology, 2008, 214, 3-9.	2.1	470
160	CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 2008, 122, 761-768.	2.3	508
161	Inflammation as the primary aetiological agent of human prostate cancer: A stem cell connection?. Journal of Cellular Biochemistry, 2008, 105, 931-939.	1.2	38
162	Stem cells: The root of prostate cancer?. Journal of Cellular Physiology, 2008, 216, 332-336.	2.0	39
163	Cancer stem cells in prostate adenocarcinoma: a target for new anticancer strategies. Journal of Cellular Physiology, 2008, 216, 571-575.	2.0	10
164	Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008, 47, 919-928.	3.6	314
165	Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology, 2008, 48, 1964-1978.	3.6	147
166	Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008, 48, 2047-2063.	3.6	571
167	Investigation of cellular movement in the prostate epithelium using an agent-based model. Journal of Theoretical Biology, 2008, 250, 642-654.	0.8	7

#	Article	lF	Citations
168	MCF7 Side Population Cells with Characteristics of Cancer Stem/Progenitor Cells Express the Tumor Antigen MUC1. Cancer Research, 2008, 68, 2419-2426.	0.4	198
169	Characterization of Adult Prostatic Progenitor/Stem Cells Exhibiting Self-Renewal and Multilineage Differentiation. Stem Cells, 2008, 26, 600-610.	1.4	57
170	The Stem Cell-Associated Antigen CD133 (Prominin-1) Is a Molecular Therapeutic Target for Metastatic Melanoma. Stem Cells, 2008, 26, 3008-3017.	1.4	207
171	Pathobiology of the human prostate. Trends in Urology Gynaecology & Sexual Health, 2008, 13, 12-19.	0.1	3
172	New clinical and experimental approaches for studying tumor dormancy: does tumor dormancy offer a therapeutic target?. Apmis, 2008, 116, 552-568.	0.9	37
173	Molecular and prognostic markers in prostate cancer. Apmis, 2008, 116, 1-62.	0.9	0
174	Melanoma stem cells: targets for successful therapy?. JDDG - Journal of the German Society of Dermatology, 2008, 6, 541-546.	0.4	8
175	Melanomstammzellen: die Zielzellen einer erfolgreichen Therapie?. JDDG - Journal of the German Society of Dermatology, 2008, 6, no.	0.4	0
176	Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. International Journal of Clinical Practice, 2008, 62, 1212-1218.	0.8	199
177	Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Research, 2008, 18, 1037-1046.	5.7	101
178	Prostate cancer and metastasis initiating stem cells. Cell Research, 2008, 18, 528-537.	5.7	54
179	The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Laboratory Investigation, 2008, 88, 459-463.	1.7	203
180	Cancer stem cells – old concepts, new insights. Cell Death and Differentiation, 2008, 15, 947-958.	5.0	320
181	CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 2008, 27, 1749-1758.	2.6	720
182	Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells: an involvement of epidermal growth factor receptor signaling. Oncogene, 2008, 27, 7212-7222.	2.6	67
183	CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. British Journal of Cancer, 2008, 98, 1389-1397.	2.9	189
184	CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. British Journal of Cancer, 2008, 99, 100-109.	2.9	251
185	TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. British Journal of Cancer, 2008, 99, 1849-1858.	2.9	75

#	Article	IF	CITATIONS
186	Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer, 2008, 8, 545-554.	12.8	766
187	Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 2008, 8, 755-768.	12.8	3,070
188	The CDK inhibitors: potential targets for therapeutic stem cell manipulations?. Gene Therapy, 2008, 15, 117-125.	2.3	27
189	Toward â€~SMART' stem cells. Gene Therapy, 2008, 15, 67-73.	2.3	25
190	Expression of CD133-1 and CD133-2 in ovarian cancer. International Journal of Gynecological Cancer, 2008, 18, 506-514.	1.2	195
191	Epithelial stem cells and malignancy. Journal of Anatomy, 2008, 213, 45-51.	0.9	5
192	Differentiation of CD24 ^{â°'} pancreatic ductal cellâ€derived cells into insulinâ€secreting cells. Development Growth and Differentiation, 2008, 50, 633-643.	0.6	8
193	The path toward identifying prostatic stem cells. Differentiation, 2008, 76, 671-681.	1.0	16
194	Does prostate cancer co-opt the developmental program?. Differentiation, 2008, 76, 736-744.	1.0	19
195	Immunohistochemical detection of CD133 expression in colorectal cancer: A clinicopathological study. Cancer Science, 2008, 99, 1578-1583.	1.7	120
196	Independent prognostic value of the basalâ€like phenotype of breast cancer and associations with EGFR and candidate stem cell marker BMIâ€1. Histopathology, 2008, 52, 370-380.	1.6	38
197	Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer, 2008, 8, 135.	1.1	60
198	Significance of CD90+ Cancer Stem Cells in Human Liver Cancer. Cancer Cell, 2008, 13, 153-166.	7.7	1,115
199	The Characterization of Epithelial and Stromal Subsets of Candidate Stem/Progenitor Cells in the Human Adult Prostate. European Urology, 2008, 53, 524-532.	0.9	25
200	Aging of the prostate epithelial stem/progenitor cell. Experimental Gerontology, 2008, 43, 981-985.	1.2	27
201	Cancer stem cells: implications for the progression and treatment of metastatic disease. Journal of Cellular and Molecular Medicine, 2008, 12, 374-390.	1.6	254
202	New hope for cancer treatment: Exploring the distinction between normal adult stem cells and cancer stem cells., 2008, 119, 74-82.		38
203	Mechanisms of Disease: cancer stem cellsâ€"targeting the evil twin. Nature Clinical Practice Oncology, 2008, 5, 337-347.	4.3	185

#	Article	IF	CITATIONS
204	Successful Cancer Treatment: Eradication of Cancer Stem Cells. , 2008, , 179-191.		0
205	Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours. PLoS ONE, 2008, 3, e3469.	1.1	246
206	Stem Cells in Colon Cancer. Clinical Colorectal Cancer, 2008, 7, 92-98.	1.0	16
207	Current Status and Issues in Cancer Stem Cell Study. Cancer Investigation, 2008, 26, 741-755.	0.6	61
208	Cancer Stem Cells and the Ontogeny of Lung Cancer. Journal of Clinical Oncology, 2008, 26, 2883-2889.	0.8	111
209	Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research, 2008, 10, R25.	2.2	902
210	Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biology, 2008, 9, R83.	13.9	191
211	Pathways to Tumorigenesisâ€"Modeling Mutation Acquisition in Stem Cells and Their Progeny. Neoplasia, 2008, 10, 1170-IN6.	2.3	78
213	Tumor Angiogenesis and the Cancer Stem Cell Model. , 2008, , 249-258.		1
214	Invincible, but Not Invisible: Imaging Approaches Toward In Vivo Detection of Cancer Stem Cells. Journal of Clinical Oncology, 2008, 26, 2901-2910.	0.8	64
217	Androgen receptor signalling in prostate: Effects of stromal factors on normal and cancer stem cells. Molecular and Cellular Endocrinology, 2008, 288, 30-37.	1.6	68
218	Cancer stem cell markers in common cancers – therapeutic implications. Trends in Molecular Medicine, 2008, 14, 450-460.	3.5	353
219	"Cancer stem cellsâ€â€"Lessons from Hercules to fight the Hydra. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 581-589.	0.8	34
220	Prostate cancer: A model of integration of genomic and non-genomic effects of the androgen receptor in cell lines model. Steroids, 2008, 73, 1030-1037.	0.8	30
221	Podoplanin, a novel marker of tumor-initiating cells in human squamous cell carcinoma A431. Biochemical and Biophysical Research Communications, 2008, 373, 36-41.	1.0	136
222	CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP. Biochemical and Biophysical Research Communications, 2008, 373, 567-571.	1.0	59
224	Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers. Journal of Anatomy, 2008, 213, 59-65.	0.9	28
225	Recent Advances on the Molecular Mechanisms Involved in the Drug Resistance of Cancer Cells and Novel Targeting Therapies. Clinical Pharmacology and Therapeutics, 2008, 83, 673-691.	2.3	157

#	Article	IF	CITATIONS
226	Prostate Cancer Stem Cells: A New Target for Therapy. Journal of Clinical Oncology, 2008, 26, 2862-2870.	0.8	301
227	The Lymphovascular Embolus of Inflammatory Breast Cancer Expresses a Stem Cell-Like Phenotype. American Journal of Pathology, 2008, 173, 561-574.	1.9	113
228	Tumor Stem Cells: How to Define Them and How to Find Them?. , 2008, , 165-185.		2
229	Characterization of a Biphasic Neoplasm in a Madagascar Tree Boa (Sanzinia madagascariensis). Veterinary Pathology, 2008, 45, 259-263.	0.8	5
230	Breast Cancer Stem Cells and Tumor Suppressor Genes. Journal of the Formosan Medical Association, 2008, 107, 751-766.	0.8	14
231	SCA-1 Identifies the Tumor-Initiating Cells in Mammary Tumors of BALB-neuT Transgenic Mice. Neoplasia, 2008, 10, 1433-1443.	2.3	75
232	Human Pancreatic Cancer Stem Cells: Implications for How We Treat Pancreatic Cancer. Translational Oncology, 2008, 1, 14-18.	1.7	37
234	Gastric Cancer Stem Cells. Journal of Clinical Oncology, 2008, 26, 2876-2882.	0.8	182
235	Cancer Stem Cells in Head and Neck Squamous Cell Cancer. Journal of Clinical Oncology, 2008, 26, 2871-2875.	0.8	172
236	Bladder Cancer Initiating Cells (BCICs) Are Among EMA ^{â^'} CD44v6 ⁺ Subset: Novel Methods for Isolating Undetermined Cancer Stem (Initiating) Cells. Cancer Investigation, 2008, 26, 725-733.	0.6	107
237	Cancer, stem cells, and oncolytic viruses. Annals of Medicine, 2008, 40, 496-505.	1.5	40
238	Identification and Characterization of Ovarian Cancer-Initiating Cells from Primary Human Tumors. Cancer Research, 2008, 68, 4311-4320.	0.4	1,196
239	Abnormal DNA Methylation of <i>CD133 < /i>ii> in Colorectal and Glioblastoma Tumors. Cancer Research, 2008, 68, 8094-8103.</i>	0.4	153
240	The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. Journal of Endocrinological Investigation, 2008, 31, 809-819.	1.8	96
241	BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1680-1685.	3.3	417
242	Distinct populations of tumor-initiating cells derived from a tumor generated by rat mammary cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16940-16945.	3.3	31
243	The vitamin D receptor in cancer. Proceedings of the Nutrition Society, 2008, 67, 115-127.	0.4	124
244	Cancer stem cells. Annals of Oncology, 2008, 19, v40-v43.	0.6	8

#	ARTICLE	IF	Citations
245	Prowling wolves in sheep's clothing: the search for tumor stem cells. Biological Chemistry, 2008, 389, 799-811.	1.2	12
246	Integrins in prostate cancer progression. Endocrine-Related Cancer, 2008, 15, 657-664.	1.6	154
247	Cancer Stem Cells: On the Verge of Clinical Translation. Laboratory Medicine, 2008, 39, 679-686.	0.8	2
248	Pancreatic Cancer Stem Cells: Implications for the Treatment of Pancreatic Cancer. Clinical Cancer Research, 2008, 14, 5646-5648.	3.2	127
249	Tumor-initiating stem cells in liver cancer. Cancer Biology and Therapy, 2008, 7, 325-330.	1.5	22
250	Regulation of Prostatic Stem Cells by Stromal Niche in Health and Disease. Endocrinology, 2008, 149, 4303-4306.	1.4	26
251	Multispectral imaging and pathology: seeing and doing more. Expert Opinion on Medical Diagnostics, 2008, 2, 1067-1081.	1.6	40
252	Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle, 2008, 7, 242-249.	1.3	94
253	Targeting cancer stem cells with monoclonal antibodies: a new perspective in cancer therapy and diagnosis. Expert Review of Molecular Diagnostics, 2008, 8, 387-393.	1.5	23
254	CD44+CD24â^' prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 2008, 98, 756-765.	2.9	395
255	Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11667-11672.	3.3	147
256	The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer. Journal of Biological Chemistry, 2008, 283, 4283-4294.	1.6	412
257	Identification of a tumorâ€initiating stem cell population in human renal carcinomas. FASEB Journal, 2008, 22, 3696-3705.	0.2	304
258	CXCR6 Induces Prostate Cancer Progression by the AKT/Mammalian Target of Rapamycin Signaling Pathway. Cancer Research, 2008, 68, 10367-10377.	0.4	113
259	CD44 and EpCAM: Cancer-Initiating Cell Markers. Current Molecular Medicine, 2008, 8, 784-804.	0.6	175
260	Prostate cancer stem cell therapy: hype or hope?. Prostate Cancer and Prostatic Diseases, 2008, 11, 316-319.	2.0	11
261	$\hat{l}\pm2\hat{l}^21$ Integrin Regulates Lineage Commitment in Multipotent Human Colorectal Cancer Cells*. Journal of Biological Chemistry, 2008, 283, 27612-27619.	1.6	28
262	Is CD133 a marker of metastatic colon cancer stem cells?. Journal of Clinical Investigation, 2008, 118, 2021-4.	3.9	84

#	ARTICLE	IF	CITATIONS
263	Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells. PLoS ONE, 2008, 3, e2637.	1.1	444
264	Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition. PLoS ONE, 2008, 3, e2888.	1.1	1,389
265	Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer and Prostatic Diseases, 2008, 11, 32-39.	2.0	61
266	Functions of Normal and Malignant Prostatic Stem/Progenitor Cells in Tissue Regeneration and Cancer Progression and Novel Targeting Therapies. Endocrine Reviews, 2008, 29, 234-252.	8.9	54
267	CD44 is of Functional Importance for Colorectal Cancer Stem Cells. Clinical Cancer Research, 2008, 14, 6751-6760.	3.2	555
268	The Role of CD133 in Normal Human Prostate Stem Cells and Malignant Cancer-Initiating Cells. Cancer Research, 2008, 68, 9703-9711.	0.4	213
269	Cancer stem cell patents. Expert Opinion on Therapeutic Patents, 2008, 18, 1405-1416.	2.4	0
270	Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 139-152.	1.8	67
271	Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20882-20887.	3.3	304
272	Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients. Clinical Cancer Research, 2008, 14, 123-129.	3.2	540
273	Prognostic Significance of CD55 Expression in Breast Cancer. Clinical Cancer Research, 2008, 14, 4780-4786.	3.2	55
274	Identification of side population cells from bladder cancer cells by DyeCycle Violet staining. Cancer Biology and Therapy, 2008, 7, 1663-1668.	1.5	65
275	Characterization of a side population of astrocytoma cells in response to temozolomide. Journal of Neurosurgery, 2008, 109, 856-866.	0.9	71
276	Cancer stem cells: Models, mechanisms and implications for improved treatment. Cell Cycle, 2008, 7, 1360-1370.	1.3	84
277	IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 2008, 7, 309-313.	1.3	125
279	Virotherapy as An Approach Against Cancer Stem Cells. Current Gene Therapy, 2008, 8, 88-96.	0.9	28
282	Chemokines and chemokine receptors in stem cell circulation. Frontiers in Bioscience - Landmark, 2008, Volume, 6820.	3.0	23
283	Hyaluronan and hyaluronidase in genitourinary tumors. Frontiers in Bioscience - Landmark, 2008, Volume, 5664.	3.0	66

#	Article	IF	CITATIONS
284	Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy. PLoS ONE, 2008, 3, e2428.	1.1	509
285	A Role for the PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in Cancer Therapy. PPAR Research, 2008, 2008, 1-17.</mml:math 	1.1	32
286	Prostate Cancer Stem Cells., 0,, 111-134.		0
287	Are Stem-Like Cells Responsible for Resistance to Therapy in Breast Cancer?. Breast Disease, 2008, 29, 83-89.	0.4	11
288	Multimodal Imaging of Neural Progenitor Cell Fate in Rodents. Molecular Imaging, 2008, 7, 7290.2008.0010.	0.7	49
289	The Cancer Stem Cell Concept in Progression of Head and Neck Cancer. Journal of Oncology, 2009, 2009, 1-8.	0.6	36
290	Hyaluronan Synthesis and Turnover in Prostate Cancer., 2009,, 309-327.		0
291	Célula tronco tumoral: novo conceito em carcinogênese colorretal. Revista Brasileira De Coloproctologia, 2009, 29, 120-124.	0.2	1
292	Purification and characterization of cancer stem cells., 0,, 1-14.		0
293	Cancer Stem Cells. , 2009, , 467-483.		1
294	Cancer stem cells - from initiation to elimination, how far have we reached? (Review). International Journal of Oncology, 2009, 34, 1491-503.	1.4	9
295	Accumulating Progenitor Cells in the Luminal Epithelial Cell Layer Are Candidate Tumor Initiating Cells in a Pten Knockout Mouse Prostate Cancer Model. PLoS ONE, 2009, 4, e5662.	1.1	68
296	Prostate cancer stem cells., 0,, 15-30.		0
297	Isolation and Enrichment of Stem Cells. , 2009, 114, 23-72.		17
298	The future of targeted therapy approaches in melanoma. Expert Opinion on Drug Discovery, 2009, 4, 445-456.	2.5	1
299	Review Paper: Implications of the "Cancer Stem Cell―Hypothesis on Murine Models of Colon Cancer and Colitis-associated Cancer. Veterinary Pathology, 2009, 46, 819-835.	0.8	10
300	In Vivo Imaging, Tracking, and Targeting of Cancer Stem Cells. Journal of the National Cancer Institute, 2009, 101, 350-359.	3.0	247
301	Preclinical development of cancer stem cell drugs. Expert Opinion on Drug Discovery, 2009, 4, 741-752.	2.5	7

#	Article	IF	CITATIONS
302	Hoechst 33342 Side Population Identification Is a Conserved and Unified Mechanism in Urological Cancers. Stem Cells and Development, 2009, 18, 1515-1522.	1.1	67
303	Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. British Journal of Cancer, 2009, 101, 1425-1432.	2.9	122
304	Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression. Cell Cycle, 2009, 8, 843-852.	1.3	386
305	Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle, 2009, 8, 158-166.	1.3	460
306	Conjunctival Melanomas: Can the Cancer Stem Cell Hypothesis be Applied?. Seminars in Ophthalmology, 2009, 24, 161-165.	0.8	2
307	The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochimica Et Biophysica Sinica, 2009, 41, 341-351.	0.9	111
308	APC and Its Modifiers in Colon Cancer. Advances in Experimental Medicine and Biology, 2009, 656, 85-106.	0.8	214
309	The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancerâ^†â^†â^†. European Journal of Cardio-thoracic Surgery, 2009, 36, 446-453.	0.6	183
310	Molecular Profiles of Finasteride Effects on Prostate Carcinogenesis. Cancer Prevention Research, 2009, 2, 518-524.	0.7	9
311	Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncology Reports, 2009, 22, 1129-34.	1.2	91
312	Antibodies targeting cancer stem cells: A new paradigm in immunotherapy?. MAbs, 2009, 1, 12-25.	2.6	130
313	Targeting Prostate Cancer Stem Cells. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 1105-1113.	0.9	21
314	Identification and Metastatic Potential of Tumor-Initiating Cells in Malignant Rhabdoid Tumor of the Kidney. Clinical Cancer Research, 2009, 15, 3014-3022.	3.2	26
315	Cancer Stem Cells and Aneuploid Populations within Developing Tumors Are the Major Determinants of Tumor Dormancy. Cancer Research, 2009, 69, 9245-9253.	0.4	162
316	Evidence for Cancer Stem Cells in Human Endometrial Carcinoma. Cancer Research, 2009, 69, 8241-8248.	0.4	111
317	Cells with Characteristics of Cancer Stem/Progenitor Cells Express the CD133 Antigen in Human Endometrial Tumors. Clinical Cancer Research, 2009, 15, 4299-4311.	3.2	153
318	Linâ^'Sca-1+CD49fhigh Stem/Progenitors Are Tumor-Initiating Cells in the <i>Pten</i> -Null Prostate Cancer Model. Cancer Research, 2009, 69, 8555-8562.	0.4	175
319	Stem Cells in Drug Discovery, Tissue Engineering, and Regenerative Medicine: Emerging Opportunities and Challenges. Journal of Biomolecular Screening, 2009, 14, 755-768.	2.6	61

#	Article	IF	CITATIONS
320	Oncolytic adenoviruses targeted to cancer stem cells. Molecular Cancer Therapeutics, 2009, 8, 2096-2102.	1.9	52
321	Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncology, 2009, 45, 633-639.	0.8	150
322	Chemokines in neuroectodermal development and their potential implication in cancer stem cell-driven metastasis. Seminars in Cancer Biology, 2009, 19, 68-75.	4.3	10
323	Cancer stem cells and angiogenesis. Seminars in Cancer Biology, 2009, 19, 279-284.	4.3	44
324	Therapeutic Implications of the Cancer Stem Cell Hypothesis. Seminars in Radiation Oncology, 2009, 19, 78-86.	1.0	130
325	Molecular pathological approaches to human tumor immunology. Pathology International, 2009, 59, 205-217.	0.6	34
326	CD133-positive hepatocellular carcinoma in an area endemic for hepatitis B virus infection. BMC Cancer, 2009, 9, 324.	1.1	38
327	High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. Journal of Cellular and Molecular Medicine, 2009, 13, 2236-2252.	1.6	451
328	Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population. Journal of Cellular and Molecular Medicine, 2009, 13, 1792-1808.	1.6	78
329	Side population of a murine mantle cell lymphoma model contains tumourâ€nitiating cells responsible for lymphoma maintenance and dissemination. Journal of Cellular and Molecular Medicine, 2010, 14, 1532-1545.	1.6	19
330	Expression of gastrin precursors by CD133-positive colorectal cancer cells is crucial for tumour growth. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 477-488.	1.9	30
331	Therapeutic options for triple-negative breast cancers with defective homologous recombination. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 266-280.	3.3	28
332	Targeting cancer stem cells for more effective therapies: Taking out cancer's locomotive engine. Biochemical Pharmacology, 2009, 78, 326-334.	2.0	49
333	Steroid Hormone Receptors in Prostate Cancer: A Hard Habit to Break?. Cancer Cell, 2009, 16, 458-462.	7.7	203
335	In vivo investigation of CD133 as a putative marker of cancer stem cells in Hepâ€2 cell line. Head and Neck, 2009, 31, 94-101.	0.9	87
336	Integrating tumorâ€initiating cells into the paradigm for melanoma targeted therapy. International Journal of Cancer, 2009, 124, 1245-1250.	2.3	15
337	Cancer stem/progenitor cells are highly enriched in CD133 ⁺ CD44 ⁺ population in hepatocellular carcinoma. International Journal of Cancer, 2010, 126, 2067-2078.	2.3	348
338	Die hard: Are cancer stem cells the Bruce Willises of tumor biology?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 67-74.	1.1	82

#	Article	IF	CITATIONS
339	Prostate cancer regulatory networks. Journal of Cellular Biochemistry, 2009, 107, 845-852.	1.2	32
340	Radiation responses of cancer stem cells. Journal of Cellular Biochemistry, 2009, 108, 339-342.	1.2	75
341	Future use of mitocans against tumourâ€initiating cells?. Molecular Nutrition and Food Research, 2009, 53, 147-153.	1.5	7
342	Oct4, a novel marker for human gastric cancer. Journal of Surgical Oncology, 2009, 99, 414-419.	0.8	84
343	Characterisation of normal and cancer stem cells: One experimental paradigm for two kinds of stem cells. BioEssays, 2009, 31, 993-1001.	1.2	11
344	Biology of Glioma Cancer Stem Cells. Molecules and Cells, 2009, 28, 7-12.	1.0	124
345	Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathologica, 2009, 117, 445-456.	3.9	88
346	Cancer stem cells in breast cancer and metastasis. Breast Cancer Research and Treatment, 2009, 118, 241-254.	1.1	113
347	Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical and Experimental Metastasis, 2009, 26, 433-446.	1.7	192
348	Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clinical and Experimental Metastasis, 2009, 26, 611-623.	1.7	233
349	Resistance to Endocrine Therapy: Are Breast Cancer Stem Cells the Culprits?. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 45-54.	1.0	54
350	Cancer Stem Cells: Lessons From Melanoma. Stem Cell Reviews and Reports, 2009, 5, 61-65.	5.6	53
351	Cancer Stem Cell Hierarchy. Stem Cell Reviews and Reports, 2009, 5, 174-174.	5.6	1
352	New therapeutics targeting colon cancer stem cells. Current Colorectal Cancer Reports, 2009, 5, 209-216.	1.0	44
353	Breast cancer cells expressing stem cell markers CD44+ CD24lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunology, Immunotherapy, 2009, 58, 1185-1194.	2.0	56
354	CD133 Expression Defines a Tumor Initiating Cell Population in Primary Human Ovarian Cancer. Stem Cells, 2009, 27, 2875-2883.	1.4	386
355	Identification of Vitronectin as an Extrinsic Inducer of Cancer Stem Cell Differentiation and Tumor Formation. Stem Cells, 2010, 28, 390-398.	1.4	65
356	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	1.4	307

#	Article	lF	Citations
357	Identification of Gastric Cancer Stem Cells Using the Cell Surface Marker CD44. Stem Cells, 2009, 27, 1006-1020.	1.4	890
358	Epidermal stem cells: location, potential and contribution to cancer. Journal of Pathology, 2009, 217, 206-216.	2.1	54
359	Prostate cancer stem cells. Journal of Pathology, 2009, 217, 299-306.	2.1	121
360	Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate, 2009, 69, 401-410.	1.2	78
361	Dysplasia of human prostate CD133 ^{hi} subâ€population in NODâ€SCIDS is blocked by câ€myc antiâ€sense. Prostate, 2009, 69, 689-698.	1.2	17
362	Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate, 2009, 69, 787-798.	1.2	106
363	Temporal expression profiling of the effects of secreted factors from prostate stromal cells on embryonal carcinoma stem cells. Prostate, 2009, 69, 1353-1365.	1.2	15
364	Morphological transition of proliferative inflammatory atrophy to highâ€grade intraepithelial neoplasia and cancer in human prostate. Prostate, 2009, 69, 1378-1386.	1.2	88
365	A novel, spontaneously immortalized, human prostate cancer cell line, Bob, offers a unique model for preâ€clinical prostate cancer studies. Prostate, 2009, 69, 1507-1520.	1.2	9
366	In vitro propagation and characterization of neoplastic stem/progenitorâ€like cells from human prostate cancer tissue. Prostate, 2009, 69, 1683-1693.	1.2	85
367	Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. Journal of Biomedical Science, 2009, 16, 100.	2.6	27
368	Regulation of microRNA biosynthesis and expression in 2102Ep embryonal carcinoma stem cells is mirrored in ovarian serous adenocarcinoma patients. Journal of Ovarian Research, 2009, 2, 19.	1.3	20
369	Identification of potential therapeutic targets in human head & Squamous cell carcinoma. Head & Neck Oncology, 2009, 1, 27.	2.3	47
370	Cancer stem cell marker CD133+ tumour cells and clinical outcome in rectal cancer. Histopathology, 2009, 55, 284-293.	1.6	69
371	Both CD133 ⁺ and CD133 ^{â°'} subpopulations of A549 and H446 cells contain cancerâ€initiating cells. Cancer Science, 2009, 100, 1040-1046.	1.7	135
372	Cancer stem cells and their niche. Cancer Science, 2009, 100, 1166-1172.	1.7	125
373	Characterization of brain cancer stem cells: a mathematical approach. Cell Proliferation, 2009, 42, 529-540.	2.4	30
374	Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Proliferation, 2009, 42, 788-798.	2.4	40

#	Article	IF	CITATIONS
375	WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Research, 2009, 19, 683-697.	5.7	274
376	Identification of a prostate cancer susceptibility gene on chromosome 5p13q12 associated with risk of both familial and sporadic disease. European Journal of Human Genetics, 2009, 17, 368-377.	1.4	26
377	Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO Journal, 2009, 28, 8-20.	3.5	125
378	Molecular markers in prostate cancer. Part I: predicting lethality. Asian Journal of Andrology, 2009, 11, 14-21.	0.8	7
379	Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene, 2009, 28, 209-218.	2.6	394
380	Isolation of tumour stem-like cells from benign tumours. British Journal of Cancer, 2009, 101, 303-311.	2.9	113
381	Tumour formation by single fibroblast growth factor receptor 3-positive rhabdomyosarcoma-initiating cells. British Journal of Cancer, 2009, 101, 2030-2037.	2.9	37
382	CD133: A MARKER OF TRANSIT AMPLIFICATION RATHER THAN STEM CELL PHENOTYPE IN THE PROSTATE?. BJU International, 2009, 103, 856-858.	1.3	8
383	Spontaneous <i>In Vitro</i> Transformation of Adult Neural Precursors into Stemâ€Like Cancer Cells. Brain Pathology, 2009, 19, 399-408.	2.1	38
384	Liver cancer stem cells: implications for a new therapeutic target. Liver International, 2009, 29, 955-965.	1.9	75
385	How the study of Helicobacter infection can contribute to the understanding of carcinoma development. Clinical Microbiology and Infection, 2009, 15, 813-822.	2.8	6
386	Identifying tumor stem-like cells in mouse melanoma cell lines by analyzing the characteristics of side population cells. Cell Biology International, 2009, 33, 807-815.	1.4	33
387	Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1216-1225.	0.4	38
388	Cancer Stem Cells: A New Theory Regarding a Timeless Disease. Chemical Reviews, 2009, 109, 3200-3208.	23.0	45
389	CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of nonâ€small cell lung cancer patients. International Journal of Cancer, 2010, 126, 950-958.	2.3	141
390	MicroRNA Regulation of Cancer Stem Cells and Therapeutic Implications. AAPS Journal, 2009, 11, 682-92.	2.2	140
391	Cryopreservation of Neurospheres Derived from Human Glioblastoma Multiforme. Stem Cells, 2009, 27, 29-39.	1.4	56
392	CD133-Expressing Stem Cells Associated with Ovarian Metastases Establish an Endothelial Hierarchy and Contribute to Tumor Vasculature. Stem Cells, 2009, 27, 498-508.	1.4	89

#	Article	IF	CITATIONS
393	Tumor Stem Cells and Metastasis. , 2009, , 47-63.		0
394	Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nature Reviews Gastroenterology and Hepatology, 2009, 6, 297-305.	8.2	246
395	Subpopulations of Stem-like Cells in Side Population Cells from the Human Bladder Transitional Cell Cancer Cell Line T24. Journal of International Medical Research, 2009, 37, 621-630.	0.4	46
396	Confocal Images of Circulating Tumor Cells Obtained Using a Methodology and Technology That Removes Normal Cells. Molecular Pharmaceutics, 2009, 6, 1402-1408.	2.3	49
397	Stem Cells and Female Reproduction. Reproductive Sciences, 2009, 16, 126-139.	1.1	74
398	Pharmaceutical Perspectives of Cancer Therapeutics., 2009,,.		15
399	How powerful is CD133 as a cancer stem cell marker in brain tumors?. Cancer Treatment Reviews, 2009, 35, 403-408.	3.4	107
400	Transcription factors, chromatin and cancer. International Journal of Biochemistry and Cell Biology, 2009, 41, 164-175.	1.2	40
401	Osteotropic cancers: From primary tumor to bone. Cancer Letters, 2009, 273, 177-193.	3.2	141
402	Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Letters, 2009, 275, 185-193.	3.2	72
403	A novel approach to the identification and enrichment of cancer stem cells from a cultured human glioma cell line. Cancer Letters, 2009, 281, 92-99.	3.2	31
404	Cellular immortality in brain tumours: An integration of the cancer stem cell paradigm. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 280-288.	1.8	13
405	Prostate tumor-initiating cells: A new target for telomerase inhibition therapy?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 289-296.	1.8	28
406	Identification, characterization, and biological relevance of prostate cancer stem cells from clinical specimens. Urologic Oncology: Seminars and Original Investigations, 2009, 27, 301-303.	0.8	38
407	CD44 expression is a feature of prostatic small cell Carcinoma and Distinguishes it from its Mimickers. Human Pathology, 2009, 40, 252-258.	1.1	71
408	Cancer stem cell genomics: the quest for early markers of malignant progression. Expert Review of Molecular Diagnostics, 2009, 9, 545-554.	1.5	19
409	Cancer stem cell: Implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer, 2009, 66, 275-281.	0.9	88
410	Redox Regulation of Multidrug Resistance in Cancer Chemotherapy: Molecular Mechanisms and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2009, 11, 99-133.	2.5	116

#	Article	IF	CITATIONS
411	Are Stem-Like Cells Responsible for Resistance to Therapy in Breast Cancer?., 2009, , 97-110.		1
412	Cancer Stem Cell–Directed Therapies: Recent Data From the Laboratory and Clinic. Molecular Therapy, 2009, 17, 219-230.	3.7	161
413	Cancer, Stem Cells and the Neoplastic Niche. , 2009, , 63-78.		0
414	Isolation and Identification of Cancer Stem-Like Cells in Esophageal Carcinoma Cell Lines. Stem Cells and Development, 2009, 18, 465-474.	1.1	143
415	Tissue-Specific Targeting Based on Markers Expressed Outside Endothelial Cells. Advances in Genetics, 2009, 67, 61-102.	0.8	9
416	The Cancer Stem Cell Hypothesis. , 2009, , 3-14.		6
417	More than 45% of A549 and H446 cells are cancer initiating cells: Evidence from cloning and tumorigenic analyses. Oncology Reports, 2009, 21, 995-1000.	1.2	17
418	Targeting CD133 antigen in cancer. Expert Opinion on Therapeutic Targets, 2009, 13, 823-837.	1.5	95
419	Apoptotic Signaling Pathway and Resistance to Apoptosis in Breast Cancer Stem Cells., 2009, , 1-23.		3
420	The Stem Cell Marker CD133 (Prominin-1) is Phosphorylated on Cytoplasmic Tyrosine-828 and Tyrosine-852 by Src and Fyn Tyrosine Kinases. Biochemistry, 2009, 48, 3998-4007.	1.2	78
421	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.4	34
422	Cancer Stem Cells. Methods in Molecular Biology, 2009, , .	0.4	6
423	Anchorage-Independent Growth of Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 151-160.	0.4	11
424	Twist Modulates Breast Cancer Stem Cells by Transcriptional Regulation of CD24 Expression. Neoplasia, 2009, 11, 1318-1328.	2.3	195
425	Cancer stem cells and the cell cycle: targeting the drive behind breast cancer. Expert Review of Anticancer Therapy, 2009, 9, 275-279.	1.1	13
426	CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiotherapy and Oncology, 2009, 92, 353-361.	0.3	49
427	Bone Marrow-Derived Cells Are Not the Origin of the Cancer Stem Cells in Ultraviolet-Induced Skin Cancer. American Journal of Pathology, 2009, 174, 595-601.	1.9	13
428	Tumorigenic Role of Orphan Nuclear Receptor NROB1 in Lung Adenocarcinoma. American Journal of Pathology, 2009, 175, 1235-1245.	1.9	29

#	Article	IF	Citations
429	Isolation and characterization of cancer stem-like cells from MHCC97H Cell Lines. Journal of Nanjing Medical University, 2009, 23, 194-198.	0.1	1
430	Recent advances and hurdles in melanoma immunotherapy. Pigment Cell and Melanoma Research, 2009, 22, 711-723.	1.5	43
431	Highly tumorigenic lung cancer CD133 ⁺ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16281-16286.	3.3	733
432	Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 2009, 21, 41-46.	1.1	37
433	Expression of neural stem cell markers in malignant rhabdoid tumor cell lines. Oncology Reports, 2009, 23, .	1,2	8
434	Epigenetic signatures in stem cells and cancer stem cells. Epigenomics, 2009, 1, 261-280.	1.0	19
435	Identification of Cancer Stem-like Side Population Cells in Ovarian Cancer Cell Line OVCAR-3. Ultrastructural Pathology, 2009, 33, 175-181.	0.4	42
436	Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. International Journal of Oncology, 2009, , .	1.4	60
437	Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24â° phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncology Reports, 2009, 21,	1,2	31
438	Notch Inhibitors as a New Tool in the War on Cancer: A Pathway to Watch. Current Pharmaceutical Biotechnology, 2009, 10, 154-160.	0.9	29
439	Targeting Cancer Stem Cells: How to Switch Off Immortality. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2009, 3, 225-232.	0.7	0
440	CD133 antigen expression in ovarian cancer. BMC Cancer, 2009, 9, 221.	1.1	77
441	Colorectal Cancer Stem Cells. Diseases of the Colon and Rectum, 2009, 52, 1788-1796.	0.7	11
442	EGFR(s) in Aging and Carcinogenesis of the Gastrointestinal Tract. Current Protein and Peptide Science, 2010, 11, 436-450.	0.7	11
443	Merlin, a & Description of the Extracellular Cues and Intracellular Signaling Pathways that Regulate Cell Motility, Proliferation, and Survival. Current Protein and Peptide Science, 2010, 11, 471-484.	0.7	141
444	Targeting Cancer Stem Cell Lines as a New Treatment of Human Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2010, 5, 205-218.	0.8	16
445	Bone Morphogenetic Proteins and its Receptors; Therapeutic Targets in Cancer Progression and Bone Metastasis?. Current Pharmaceutical Design, 2010, 16, 1291-1300.	0.9	32
446	Characterization of Molecular and Functional Alterations of Tumor Endothelial Cells to Design Anti-Angiogenic Strategies. Current Vascular Pharmacology, 2010, 8, 220-232.	0.8	34

#	Article	IF	Citations
447	Expression of CD133 correlates with differentiation of human colon cancer cells Cancer Biology and Therapy, 2010, 9, 216-223.	1.5	33
448	Reduction of the putative CD44+CD24â^ breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anti-Cancer Drugs, 2010, 21, 897-906.	0.7	20
449	Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. International Journal of Oncology, 2010, 37, 1121-31.	1.4	52
450	Frequency and pattern of expression of the stem cell marker CD133 have strong prognostic effect on the surgical outcome of colorectal cancer patients. Oncology Reports, 2010, 24, 1201-12.	1.2	34
451	Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncology Reports, 2010, 24, 1355-62.	1.2	20
452	Overlapping Genes May Control Reprogramming of Mouse Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) and Breast Cancer Stem Cells. In Silico Biology, 2010, 10, 207-221.	0.4	6
453	Characterization of primary ovarian cancer cells in different culture systems. Oncology Reports, 2010, 23, 1277-84.	1.2	50
454	Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: Characterization of resistant cells. International Journal of Oncology, 2010, 37, 307-15.	1.4	58
455	Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncology Reports, 2010, 24, 501-5.	1.2	118
456	CD24, a Novel Cancer Biomarker, Predicting Disease-Free Survival of Non-small Cell Lung Carcinomas: A Retrospective Study of Prognostic Factor Analysis from the Viewpoint of Forthcoming (Seventh) New TNM Classification. Journal of Thoracic Oncology, 2010, 5, 649-657.	0.5	74
457	Quantitative Analyses of CD133 Expression Facilitate Researches on Tumor Stem Cells. Biological and Pharmaceutical Bulletin, 2010, 33, 738-742.	0.6	22
458	Isolation and Propagation of a Human CD133 ⁻ Colon Tumor-Derived Cell Line with Tumorigenic and Angiogenic Properties. Cell Transplantation, 2010, 19, 865-877.	1.2	30
459	Characterizing the HER2/neu Status and Metastatic Potential of Breast Cancer Stem/Progenitor Cells. Annals of Surgical Oncology, 2010, 17, 613-623.	0.7	21
460	Tumorigenic Role of Podoplanin in Esophageal Squamous-Cell Carcinoma. Annals of Surgical Oncology, 2010, 17, 1311-1323.	0.7	63
461	Properties and identification of cancer stem cells: A changing insight into intractable cancer. Surgery Today, 2010, 40, 608-613.	0.7	10
462	Signal Transduction Pathways Involved in Hepatocarcinogenesis and Metastasis of Hepatoma. Cancer Metastasis - Biology and Treatment, 2010, , 265-282.	0.1	0
463	Transgelin Promotes Migration and Invasion of Cancer Stem Cells. Journal of Proteome Research, 2010, 9, 5108-5117.	1.8	73
464	New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells. Molecular Cancer, 2010, 9, 192.	7.9	62

#	Article	IF	Citations
465	Quantitative Phosphoproteomic Analysis of the STAT3/IL-6/HIF1 $\hat{l}\pm$ Signaling Network: An Initial Study in GSC11 Glioblastoma Stem Cells. Journal of Proteome Research, 2010, 9, 430-443.	1.8	99
466	Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cellular and Molecular Life Sciences, 2010, 67, 3915-3925.	2.4	85
467	Isolation of cancer stem cells from transformed human mesenchymal stem cell line F6. Journal of Molecular Medicine, 2010, 88, 1181-1190.	1.7	11
468	Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells. Child's Nervous System, 2010, 26, 1605-1612.	0.6	40
469	Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbeck's Archives of Surgery, 2010, 395, 1-10.	0.8	45
470	Gastric carcinogenesis and the cancer stem cell hypothesis. Gastric Cancer, 2010, 13, 11-24.	2.7	61
472	Cancer Stem Cells and Microenvironment in Prostate Cancer Progression. Hormones and Cancer, 2010, 1, 297-305.	4.9	18
473	Emerging strategies for the identification and targeting of cancer stem cells. Tumor Biology, 2010, 31, 243-253.	0.8	71
474	Identification of cancer stem cells: from leukemia to solid cancers. Frontiers in Biology, 2010, 5, 407-416.	0.7	1
475	Immune therapeutic targeting of glioma cancer stem cells. Targeted Oncology, 2010, 5, 217-227.	1.7	31
476	Isolation and identification of cancer stem cells from human osteosarcom by serum-free three-dimensional culture combined with anticancer drugs. Journal of Huazhong University of Science and Technology [Medical Sciences], 2010, 30, 81-84.	1.0	14
477	Proliferation characteristics of CD133+ cell population in colorectal cancer. Journal of Huazhong University of Science and Technology [Medical Sciences], 2010, 30, 751-756.	1.0	0
478	Whole Genome Expression Profiling Reveals a Significant Role for the Cell Junction and Apoptosis Pathways in Breast Cancer Stem Cells. Molecular Biotechnology, 2010, 45, 39-48.	1.3	7
479	Influence on biological behavior of colon cancer stem cells after RNA interfering CD133. Clinical Oncology and Cancer Research, 2010, 7, 359-365.	0.1	0
480	Expression of embryonic stem cell marker Oct-4 and its prognostic significance in rectal adenocarcinoma. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2010, 22, 106-111.	0.7	4
481	Identification and characterization of side population cells in human lung adenocarcinoma SPC-A1 cells. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2010, 22, 211-217.	0.7	0
482	CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification. Breast Cancer Research and Treatment, 2010, 120, 95-109.	1.1	53
483	Study on The Proliferation and Drug-resistance of Human Brain Tumor Stem-like Cells. Cellular and Molecular Neurobiology, 2010, 30, 955-960.	1.7	10

#	Article	IF	CITATIONS
484	CD133+ single cell-derived progenies of colorectal cancer cell line SW480 with different invasive and metastatic potential. Clinical and Experimental Metastasis, 2010, 27, 517-527.	1.7	29
485	Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Molecular and Cellular Biochemistry, 2010, 340, 265-273.	1.4	114
486	Stem Cell Origins and Animal Models of Hepatocellular Carcinoma. Digestive Diseases and Sciences, 2010, 55, 1241-1250.	1.1	13
487	Uptake of synthetic Low Density Lipoprotein by leukemic stem cells — a potential stem cell targeted drug delivery strategy. Journal of Controlled Release, 2010, 148, 380-387.	4.8	30
488	Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer. Oral Oncology, 2010, 46, e29-e33.	0.8	25
489	Cancer stem cells in solid tumors. Seminars in Cancer Biology, 2010, 20, 77-84.	4.3	170
490	CD133 expression in chemo-resistant Ewing sarcoma cells. BMC Cancer, 2010, 10, 116.	1.1	67
491	Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer, 2010, 10, 166.	1.1	99
492	Stem Cell Characteristics in Prostate Cancer Cell Lines. European Urology, 2010, 57, 246-255.	0.9	104
493	Editorial Comment on: Stem Cell Characteristics in Prostate Cancer Cell Lines. European Urology, 2010, 57, 255.	0.9	0
494	Reply to Tomasz Drewa's Letter to the Editor re: Minja J. Pfeiffer, Jack A. Schalken. Stem Cell Characteristics in Prostate Cancer Cell Lines. Eur Urol 2010;57:246–55. European Urology, 2010, 57, e27.	0.9	0
495	Oxidative stress, inflammation, and cancer: How are they linked?. Free Radical Biology and Medicine, 2010, 49, 1603-1616.	1.3	3,991
496	Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Experimental Cell Research, 2010, 316, 3161-3171.	1.2	23
497	Udpâ€glucose dehydrogenase as a novel fieldâ€specific candidate biomarker of prostate cancer. International Journal of Cancer, 2010, 126, 315-327.	2.3	33
498	The effects of telomerase inhibition on prostate tumorâ€initiating cells. International Journal of Cancer, 2010, 127, 321-331.	2.3	64
499	Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Cytometry Part B - Clinical Cytometry, 2010, 78B, 287-301.	0.7	59
500	Cancer stem cells: A stride towards cancer cure?. Journal of Cellular Physiology, 2010, 225, 7-14.	2.0	57
501	Promising tumorâ€associated antigens for future prostate cancer therapy. Medicinal Research Reviews, 2010, 30, 67-101.	5.0	25

#	Article	IF	CITATIONS
502	Neoplastic stem cells: Current concepts and clinical perspectives. Critical Reviews in Oncology/Hematology, 2010, 76, 79-98.	2.0	29
503	The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. Journal of Molecular Signaling, 2010, 5, 14.	0.5	177
504	From pathogenesis to prevention of castration resistant prostate cancer. Prostate, 2010, 70, 100-112.	1.2	68
505	Cellâ€autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells. Prostate, 2010, 70, 90-99.	1.2	43
506	Human prostate sphereâ€forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate, 2010, 70, 491-501.	1.2	130
507	Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate, 2010, 70, 875-882.	1.2	65
508	A novel in vitro assay of tumorâ€initiating cells in xenograft prostate tumors. Prostate, 2010, 70, 1379-1387.	1.2	4
509	Radiation Resistance of Cancer Stem Cells: The 4 R's of Radiobiology Revisited. Stem Cells, 2010, 28, 639-648.	1.4	328
510	Complex Display of Putative Tumor Stem Cell Markers in the NCI60 Tumor Cell Line Panel. Stem Cells, 2010, 28, 649-660.	1.4	85
511	Current and emerging concepts in tumour metastasis. Journal of Pathology, 2010, 222, 1-15.	2.1	232
512	Identification and characterization of cancer stem cells in ovarian yolk sac tumors. Cancer Science, 2010, 101, 2179-2185.	1.7	18
513	Mouse sarcoma L1 cell line holoclones have a stemness signature. Cell Proliferation, 2010, 43, 229-234.	2.4	8
514	CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene, 2010, 29, 2672-2680.	2.6	358
515	Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. British Journal of Cancer, 2010, 102, 1636-1644.	2.9	140
516	Understanding the cancer stem cell. British Journal of Cancer, 2010, 103, 439-445.	2.9	181
517	Investigations of prostate epithelial stem cells and prostate cancer stem cells. International Journal of Urology, 2010, 17, 139-147.	0.5	12
518	Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett's esophagus and esophageal adenocarcinoma. Ecological Management and Restoration, 2010, 23, 168-174.	0.2	72
519	Antibodies targeting Cancer stem cells, A novel pattern in Immunotherapy. Nature Precedings, 2010, , .	0.1	0

#	Article	IF	CITATIONS
520	Progress in stem cell-derived technologies for hepatocellular carcinoma. Stem Cells and Cloning: Advances and Applications, 2010, 3, 81.	2.3	2
521	Nestin expression in human tumors and tumor cell lines Neoplasma, 2010, 57, 291-298.	0.7	93
522	Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications. PLoS ONE, 2010, 5, e10035.	1.1	59
523	26S Proteasome Activity Is Down-Regulated in Lung Cancer Stem-Like Cells Propagated In Vitro. PLoS ONE, 2010, 5, e13298.	1.1	65
524	Characterization of a Cancer Stem Cell-Like Side Population Derived from Human Pancreatic Adenocarcinoma Cells. Tumori, 2010, 96, 985-992.	0.6	31
525	Cancer stem cell and niche. Frontiers in Bioscience - Scholar, 2010, S2, 184-193.	0.8	19
526	Early Bone Metastasis-Associated Molecular and Cellular Events. , 2010, , 41-45.		2
527	New hope in the horizon: cancer stems cells. Acta Biochimica Et Biophysica Sinica, 2010, 42, 237-242.	0.9	17
528	Regulation of Breast Cancer Stem Cell Activity by Signaling through the Notch4 Receptor. Cancer Research, 2010, 70, 709-718.	0.4	468
530	Prostate-Regenerating Capacity of Cultured Human Adult Prostate Epithelial Cells. Cells Tissues Organs, 2010, 191, 203-212.	1.3	7
531	Celecoxib Inhibits CD133-Positive Cell Migration via Reduction of CCR2 in Helicobacter pylori-Infected Mongolian Gerbils. Digestion, 2010, 81, 193-203.	1.2	7
532	An open-label, randomized phase II study of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy in patients with metastatic breast cancer. Annals of Oncology, 2010, 21, 275-282.	0.6	108
533	Modeling the Prostate Stem Cell Niche: An Evaluation of Stem Cell Survival and Expansion In Vitro. Stem Cells and Development, 2010, 19, 537-546.	1.1	33
534	Gene Transfer Vectors Targeted to Human Prostate Cancer: Do We Need Better Preclinical Testing Systems?. Human Gene Therapy, 2010, 21, 815-827.	1.4	11
535	Do stem-like cells play a role in drug resistance of sarcomas?. Expert Review of Anticancer Therapy, 2010, 10, 261-270.	1.1	30
536	Redefining hormone resistance in prostate cancer. Therapeutic Advances in Medical Oncology, 2010, 2, 107-123.	1.4	41
537	Cytotoxic Effects Induced by Docetaxel, Gefitinib, and Cyclopamine on Side Population and Nonside Population Cell Fractions from Human Invasive Prostate Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 617-630.	1.9	58
538	Stem-like Cancer Cells Are Inducible by Increasing Genomic Instability in Cancer Cells. Journal of Biological Chemistry, 2010, 285, 4931-4940.	1.6	104

#	Article	IF	CITATIONS
539	Cancer-Associated Fibroblasts Enhance the Gland-Forming Capability of Prostate Cancer Stem Cells. Cancer Research, 2010, 70, 7294-7303.	0.4	108
540	Human ovarian cancer stem cells. Reproduction, 2010, 140, 33-41.	1.1	90
541	A cancer stem cell origin for human endometrial carcinoma?. Reproduction, 2010, 140, 23-32.	1.1	48
542	Estrogen receptor–β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3123-3128.	3.3	178
543	Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis, 2010, 31, 1376-1380.	1.3	103
544	Two Novel Monoclonal Antibodies Against Human CD133-2: Distinct Epitopes and Agonist Activity to Enhance Growth of CD133 Expression CellsIn Vitro. Hybridoma, 2010, 29, 241-249.	0.5	4
545	Stem cells in prostate cancer: treating the root of the problem. Endocrine-Related Cancer, 2010, 17, R273-R285.	1.6	60
546	A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo. Cancers, 2010, 2, 2011-2025.	1.7	9
547	Biologic and experimental variation of measured cancer stem cells. Cell Cycle, 2010, 9, 909-912.	1.3	5
548	Patents Related to Cancer Stem Cell Research. Recent Patents on DNA & Gene Sequences, 2010, 4, 40-45.	0.7	5
549	CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Modern Pathology, 2010, 23, 450-457.	2.9	147
550	CD44 ⁺ CD133 ⁺ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma. Cancer Biology and Therapy, 2010, 10, 1182-1190.	1.5	72
551	High Aldehyde Dehydrogenase Activity Identifies Tumor-Initiating and Metastasis-Initiating Cells in Human Prostate Cancer. Cancer Research, 2010, 70, 5163-5173.	0.4	351
552	Novel Therapies Against Aggressive and Recurrent Epithelial Cancers by Molecular Targeting Tumorand Metastasis-Initiating Cells and Their Progenies. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 137-151.	0.9	11
553	Dlk-1, a cell surface antigen on foetal hepatic stem/progenitor cells, is expressed in hepatocellular, colon, pancreas and breast carcinomas at a high frequency. Journal of Biochemistry, 2010, 148, 85-92.	0.9	79
554	Blood and Tissue Biomarkers in Prostate Cancer: State of the Art. Urologic Clinics of North America, 2010, 37, 131-141.	0.8	32
555	Glioma Stem Cell Research for the Development of Immunotherapy. Neurosurgery Clinics of North America, 2010, 21, 159-166.	0.8	35
556	Stem Cells in Normal Development and Cancer. Progress in Molecular Biology and Translational Science, 2010, 95, 113-158.	0.9	57

#	Article	IF	Citations
557	Polyploidy, Aneuploidy and the Evolution of Cancer. Advances in Experimental Medicine and Biology, $2010,676,1-13.$	0.8	22
558	TGF- \hat{I}^2 signalling and immunity in prostate tumourigenesis. Expert Opinion on Therapeutic Targets, 2010, 14, 179-192.	1.5	20
560	Expression of Pluripotent Stem Cell Reprogramming Factors by Prostate Tumor Initiating Cells. Journal of Urology, 2010, 183, 2045-2053.	0.2	112
561	Cancer-Initiating Cells in Colorectal Cancer. Cancer Metastasis - Biology and Treatment, 2010, , 127-146.	0.1	1
562	Primitive origins of prostate cancer: <i>In vivo</i> evidence for prostateâ€regenerating cells and prostate cancerâ€initiating cells. Molecular Oncology, 2010, 4, 385-396.	2.1	71
563	Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells. Cancers, 2010, 2, 859-884.	1.7	185
564	PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MFI2low/LEF1low increase tumor angiogenesis. Molecular Cancer, 2010, 9, 319.	7.9	50
565	Analysis of an alternative human CD133 promoter reveals the implication of Ras/ERK pathway in tumor stem-like hallmarks. Molecular Cancer, 2010, 9, 39.	7.9	62
566	Modulation of tumorigenesis and oestrogen receptorâ€î± expression by cell culture conditions in a stem cellâ€derived breast epithelial cell line. Biology of the Cell, 2010, 102, 159-172.	0.7	17
567	Molecular genetics of prostate cancer: new prospects for old challenges. Genes and Development, 2010, 24, 1967-2000.	2.7	811
568	Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18115-18120.	3.3	408
569	Notch Signaling in Solid Tumors. Current Topics in Developmental Biology, 2010, 92, 411-455.	1.0	98
570	Stem cells in cancer: instigators and propagators?. Journal of Cell Science, 2010, 123, 2357-2368.	1.2	86
571	Cancer Stem Cells and Self-renewal. Clinical Cancer Research, 2010, 16, 3113-3120.	3.2	406
572	Overexpression of CD133 promotes the phosphorylation of Erk in U87MG human glioblastoma cells. Neuroscience Letters, 2010, 484, 210-214.	1.0	23
573	Focal adhesion kinase: A prominent determinant in breast cancer initiation, progression and metastasis. Cancer Letters, 2010, 289, 127-139.	3.2	251
574	Alpha-fetoprotein producing cells act as cancer progenitor cells in human cholangiocarcinoma. Cancer Letters, 2010, 294, 25-34.	3.2	33
575	Molecular cytogenetic characterization of stem-like cancer cells isolated from established cell lines. Cancer Letters, 2010, 296, 206-215.	3.2	13

#	ARTICLE	IF	CITATIONS
576	Cancer stem cells as the relevant biomass for drug discovery. Current Opinion in Pharmacology, 2010, 10, 385-390.	1.7	34
577	Gene-expression profiles, tumor microenvironment, and cancer stem cells in breast cancer: Latest advances towards an integrated approach. Cancer Treatment Reviews, 2010, 36, 477-484.	3.4	23
578	Wnt \hat{l}^2 -catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochemical and Biophysical Research Communications, 2010, 392, 373-379.	1.0	218
579	High expression of large-conductance Ca2+-activated K+ channel in the CD133+ subpopulation of SH-SY5Y neuroblastoma cells. Biochemical and Biophysical Research Communications, 2010, 396, 637-642.	1.0	35
580	Copper-64-diacetyl-bis (N4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nuclear Medicine and Biology, 2010, 37, 395-404.	0.3	42
581	Cancer stem cells in urologic cancers. Urologic Oncology: Seminars and Original Investigations, 2010, 28, 585-590.	0.8	7
582	Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010, 138, 2151-2162.	0.6	411
583	Distribution of hepatic stem cell markers in human liver with massive hepatic necrosis. Basic and Applied Pathology, 2010, 3, 39-45.	0.2	0
584	Molecular Mapping of Tumor Heterogeneity on Clinical Tissue Specimens with Multiplexed Quantum Dots. ACS Nano, 2010, 4, 2755-2765.	7.3	143
585	CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116. Radiotherapy and Oncology, 2010, 94, 375-383.	0.3	32
586	Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells. Reproductive Biology and Endocrinology, 2010, 8, 147.	1.4	48
587	Methods of Cancer Diagnosis, Therapy, and Prognosis. , 2010, , .		1
588	The Telomerase Inhibitor Imetelstat Depletes Cancer Stem Cells in Breast and Pancreatic Cancer Cell Lines. Cancer Research, 2010, 70, 9494-9504.	0.4	121
589	Targeting Notch to Target Cancer Stem Cells. Clinical Cancer Research, 2010, 16, 3141-3152.	3.2	410
592	Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma. Journal of Experimental and Clinical Cancer Research, 2010, 29, 141.	3.5	29
593	Comment on basal epithelial stem cells as efficient targets for prostate cancer initiation. Stem Cell Research and Therapy, 2010, 1, 16.	2.4	1
595	Evidence for a stem-cell lineage in corneal squamous cell carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy and multivariate analysis. Analyst, The, 2010, 135, 3120.	1.7	33
596	Tumor-Initiating Function of Nucleostemin-Enriched Mammary Tumor Cells. Cancer Research, 2010, 70, 9444-9452.	0.4	48

#	Article	IF	Citations
597	Association of Stem Cell-Related Markers and Survival in Astrocytic Gliomas. Biomarkers, 2011, 16, 136-143.	0.9	46
598	Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis, 2011, 32, 650-658.	1.3	120
599	microRNAs, an active and versatile group in cancers. International Journal of Oral Science, 2011, 3, 165-175.	3.6	62
600	Application of Stem Cell Assays for the Characterization of Cancer Stem Cells. , 2011, , 259-282.		1
601	Cancer Stem Cell Radioresistance and Enrichment: Where Frontline Radiation Therapy May Fail in Lung and Esophageal Cancers. Cancers, 2011, 3, 1232-1252.	1.7	52
602	Human primary bone sarcomas contain CD133 ⁺ cancer stem cells displaying high tumorigenicity <i>in vivo</i> . FASEB Journal, 2011, 25, 2022-2030.	0.2	190
603	The clinical and therapeutic implications of cancer stem cell biology. Expert Review of Anticancer Therapy, $2011, 11, 1133-1145$.	1.1	24
604	Therapeutic Approaches to Target Cancer Stem Cells. Cancers, 2011, 3, 3331-3352.	1.7	24
605	Cancer epigenetics: linking basic biology to clinical medicine. Cell Research, 2011, 21, 502-517.	5.7	260
606	Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Molecular Pharmaceutics, 2011, 8, 12-28.	2.3	106
607	Stem cells and their implications for colorectal cancer. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 90-100.	8.2	131
608	Panzem. , 2011, , 2781-2781.		0
609	Stem Cells & Stem	0.1	6
610	Gene Expression Profiling. Methods in Molecular Biology, 2011, , .	0.4	3
611	Cancer stem cells in osteosarcoma: Recent progress and perspective. Acta $Oncol\tilde{A}^3$ gica, 2011, 50, 1142-1150.	0.8	43
612	Cancer Stem Cells: Characteristics and Their Potential Role for New Therapeutic Strategies. Onkologie, 2011, 34, 269-274.	1.1	14
613	Cancer Stem Cells in Solid Tumors. , 2011, , .		7
614	Phage Display. , 2011, , 2836-2839.		0

#	Article	IF	CITATIONS
615	Platelet-Derived Growth Factor., 2011,, 2908-2910.		0
616	Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar. American Journal of Pathology, 2011, 178, 2357-2366.	1.9	21
617	Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas. American Journal of Pathology, 2011, 178, 1953-1964.	1.9	63
618	Integrin $\hat{l}\pm v$ Expression Is Required for the Acquisition of a Metastatic Stem/Progenitor Cell Phenotype in Human Prostate Cancer. American Journal of Pathology, 2011, 179, 2559-2568.	1.9	64
619	MicroRNAs, cancer and cancer stem cells. Cancer Letters, 2011, 300, 10-19.	3.2	161
620	Human DNAJ in cancer and stem cells. Cancer Letters, 2011, 312, 129-142.	3.2	89
621	Proteomic analysis of cancer stem cells in human prostate cancer cells. Biochemical and Biophysical Research Communications, 2011, 412, 279-285.	1.0	25
622	Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells. Biochemical and Biophysical Research Communications, 2011, 414, 801-807.	1.0	34
623	Pancreatic Cancer Stem Cells as New Targets for Diagnostics and Therapy. Else-Kröner-Fresenius-Symposia, 2011, , 116-134.	0.1	1
624	Mechanisms of Radioresistance in Cancer Stem Cells. , 2011, , 345-360.		0
625	Chemoattractant receptors as pharmacological targets for elimination of glioma stem-like cells. International Immunopharmacology, 2011, 11, 1961-1966.	1.7	10
626	Small molecules with big effects: The role of the microRNAome in cancer and carcinogenesis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 722, 94-105.	0.9	110
627	Cancer Stem Cells, Models of Study and Implications of Therapy Resistance Mechanisms. Advances in Experimental Medicine and Biology, 2011, 720, 105-118.	0.8	44
628	CD44 is associated with proliferation, rather than a specific cancer stem cell population, in cultured canine cancer cells. Veterinary Immunology and Immunopathology, 2011, 141, 46-57.	0.5	29
629	CD24+ Liver Tumor-Initiating Cells Drive Self-Renewal and Tumor Initiation through STAT3-Mediated NANOG Regulation. Cell Stem Cell, 2011, 9, 50-63.	5.2	545
630	Clinicopathologic correlation of cancer stem cell markers CD44, CD24, VEGF and HIF- $1\hat{l}\pm$ in ductal carcinoma in situ and invasive ductal carcinoma of breast: An immunohistochemistry-based pilot study. Pathology Research and Practice, 2011, 207, 505-513.	1.0	37
631	Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nuclear Medicine and Biology, 2011, 38, 151-157.	0.3	54
632	Experimental models for the development of new medical treatments in prostate cancer. European Journal of Cancer, 2011, 47, S200-S214.	1.3	6

#	Article	IF	CITATIONS
633	Expression of CD44, CD24 and ESA in pancreatic adenocarcinoma cell lines varies with local microenvironment. Hepatobiliary and Pancreatic Diseases International, 2011, 10, 428-434.	0.6	42
634	The Potential Role of CD133 in Immune Surveillance and Apoptosis: A Mitochondrial Connection?. Antioxidants and Redox Signaling, 2011, 15, 2989-3002.	2.5	8
635	The three M's: melanoma, microphthalmiaâ€associated transcription factor and microRNA. Pigment Cell and Melanoma Research, 2011, 24, 1088-1106.	1.5	60
636	Thyroid cancer stem cells. Nature Reviews Endocrinology, 2011, 7, 609-616.	4.3	7 3
637	Migratory Strategies of Normal and Malignant Stem Cells. Methods in Molecular Biology, 2011, 750, 25-44.	0.4	12
638	Cancer Stem Cells in Solid Tumors. Pancreatic Islet Biology, 2011, , 59-76.	0.1	3
639	Distinct Epigenetic Profiling in Head and Neck Squamous Cell Carcinoma Stem Cells. Otolaryngology - Head and Neck Surgery, 2011, 144, 900-909.	1.1	12
640	Steroidogenic Enzymes and Stem Cell Markers Are Upregulated during Androgen Deprivation in Prostate Cancer. Molecular Medicine, 2011, 17, 657-664.	1.9	102
641	Frequent Gene Products and Molecular Pathways Altered in Prostate Cancer- and Metastasis-Initiating Cells and Their Progenies and Novel Promising Multitargeted Therapies. Molecular Medicine, 2011, 17, 949-964.	1.9	52
642	Upregulated CD133 expression in tumorigenesis of colon cancer cells. World Journal of Gastroenterology, 2011, 17, 932.	1.4	45
643	Characterisation of human prostate epithelial progenitor differentiation in response to androgens. Annals of the Royal College of Surgeons of England, 2011, 93, 424-428.	0.3	5
644	The Rocky Road from Cancer Stem Cell Discovery to Diagnostic Applicability. , 2011, , .		0
645	Drugs that Kill Cancer Stem-like Cells. , 2011, , .		2
646	Importance of Stromal Stem Cells in Prostate Carcinogenesis Process. , 2011, , .		2
647	Cancer Stem Cells Promote Tumor Neovascularization. , 2011, , .		0
648	Cancer Stem Cells in Lung Cancer: Distinct Differences between Small Cell and Non-Small Cell Lung Carcinomas. , $2011, \ldots$		1
649	Floating cells with stem cell properties in gastric cell line SGC-7901. Tumori, 2011, 97, 393-399.	0.6	3
651	Glioblastoma Multiforme Stem Cells. Scientific World Journal, The, 2011, 11, 930-958.	0.8	27

#	Article	IF	CITATIONS
652	The Role of CD44 in the Pathogenesis, Diagnosis, and Therapy of Gastric Cancer. Gut and Liver, 2011, 5, 397-405.	1.4	62
653	Stem cells within established cancer cell lines: an impact on in vitro experiments. Stem Cell Studies, 2011, 1, 7.	0.2	4
654	Targeting Signal Pathways Active in Leukemic Stem Cells to Overcome Drug Resistance. , 2011, , .		0
655	Novel & Novel	0.7	22
656	Ovarian Epithelial Cancer Stem Cells. Scientific World Journal, The, 2011, 11, 1243-1269.	0.8	17
657	Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells. OncoTargets and Therapy, 2011, 4, 71.	1.0	69
658	Engineering Transcription Factors in Breast Cancer Stem Cells. , 2011, , .		0
659	Multidrug Resistance Transporters – Roles in maintaining Cancer Stem-Like Cells. , 2011, , .		1
660	Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. Journal of Oncology, 2011, 2011, 1-8.	0.6	38
661	CD133 Expression and Identification of CD133/nestin Positive Cells in Rhabdomyosarcomas and Rhabdomyosarcoma Cell Lines. Analytical Cellular Pathology, 2011, 34, 303-318.	0.7	22
662	Targeting the Mechanisms of Resistance to Chemotherapy and Radiotherapy with the Cancer Stem Cell Hypothesis. Journal of Oncology, 2011, 2011, 1-13.	0.6	191
663	Quiescent, Slow-Cycling Stem Cell Populations in Cancer: A Review of the Evidence and Discussion of Significance. Journal of Oncology, 2011, 2011, 1-11.	0.6	306
664	Evidence for cancer stem cells contributing to the pathogenesis of ovarian cancer. Frontiers in Bioscience - Landmark, 2011, 16, 368.	3.0	49
665	Is CD133 a Biomarker for Cancer Stem Cells of Colorectal Cancer and Brain Tumors? A Meta-Analysis. International Journal of Biological Markers, 2011, 26, 173-180.	0.7	19
666	DNA methyltransferase inhibitor CDA-2 synergizes with high-dose thiotepa and paclitaxel in killing breast cancer stem cells. Frontiers in Bioscience - Elite, 2011, E3, 240-249.	0.9	11
667	Resveratrol Inhibits Pancreatic Cancer Stem Cell Characteristics in Human and KrasG12D Transgenic Mice by Inhibiting Pluripotency Maintaining Factors and Epithelial-Mesenchymal Transition. PLoS ONE, 2011, 6, e16530.	1.1	257
668	Isolation and Characterization of a Metastatic Hybrid Cell Line Generated by ER Negative and ER Positive Breast Cancer Cells in Mouse Bone Marrow. PLoS ONE, 2011, 6, e20473.	1.1	14
669	Tumor Initiating Cells in Esophageal Squamous Cell Carcinomas Express High Levels of CD44. PLoS ONE, 2011, 6, e21419.	1.1	102

#	Article	IF	Citations
670	Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells. PLoS ONE, 2011, 6, e23383.	1.1	43
671	Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms. PLoS ONE, 2011, 6, e24397.	1.1	47
672	Activation of c-MET Induces a Stem-Like Phenotype in Human Prostate Cancer. PLoS ONE, 2011, 6, e26753.	1.1	66
673	An Off-Target Nucleostemin RNAi Inhibits Growth in Human Glioblastoma-Derived Cancer Stem Cells. PLoS ONE, 2011, 6, e28753.	1.1	15
674	Prostate Cancer Cell Lines under Hypoxia Exhibit Greater Stem-Like Properties. PLoS ONE, 2011, 6, e29170.	1.1	88
675	Advances in pancreatic cancer. Current Opinion in Gastroenterology, 2011, 27, 460-466.	1.0	29
676	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545.	0.6	119
677	An Overview of Concepts for Cancer Stem Cells. Cell Transplantation, 2011, 20, 113-120.	1.2	39
678	Mammary Development and Breast Cancer: The Role of Stem Cells. Current Molecular Medicine, 2011, 11, 270-285.	0.6	38
679	Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Current Pharmaceutical Design, 2011, 17, 2370-2385.	0.9	2
680	Differentially Expressed MicroRNAs in Pancreatic Cancer Stem Cells. Pancreas, 2011, 40, 1180-1187.	0.5	55
681	A gene signature distinguishing CD133hi from CD133- colorectal cancer cells: essential role for EGR1 and downstream factors. Pathology, 2011, 43, 220-227.	0.3	16
682	CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer. Oncology Reports, 2011, 25, 701-8.	1.2	40
683	The androgen receptor and stem cell pathways in prostate and bladder cancers (Review). International Journal of Oncology, 2012, 40, 5-12.	1.4	15
684	Arachidonate 12-lipoxygenase may serve as a potential marker and therapeutic target for prostate cancer stem cells. International Journal of Oncology, 2011, 38, 1041-6.	1.4	14
685	Cancer stem cells and markers: New model of tumorigenesis with therapeutic implications. Cancer Biomarkers, 2011, 9, 65-99.	0.8	13
686	microRNA-145 suppresses lung adenocarcinoma-initiating cell proliferation by targeting OCT4. Oncology Reports, 2011, 25, 1747-54.	1.2	51
687	Galiellalactone Inhibits Stem Cell-Like ALDH-Positive Prostate Cancer Cells. PLoS ONE, 2011, 6, e22118.	1.1	81

#	Article	IF	CITATIONS
688	Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid adenocarcinoma and its clinical implications. Cancer Science, 2011, 102, 903-908.	1.7	71
689	CD133 expression is associated with small round blue cell tumour morphology in human central nervous system neoplasms. Histopathology, 2011, 58, 739-749.	1.6	5
690	Cancer stem cell immunophenotypes in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2011, 40, 135-142.	1.4	43
691	The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 2011, 17, 211-215.	15.2	1,276
692	CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene, 2011, 30, 97-105.	2.6	108
693	Revisiting the concept of cancer stem cells in prostate cancer. Oncogene, 2011, 30, 1261-1271.	2.6	100
694	NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011, 30, 3833-3845.	2.6	340
695	Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPα. Oncogene, 2011, 30, 3328-3335.	2.6	77
696	The complexities of identifying a cell of origin for human prostate cancer. Asian Journal of Andrology, 2011, 13, 118-119.	0.8	4
697	An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. British Journal of Cancer, 2011, 104, 1730-1738.	2.9	172
698	Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncology, 2011, 47, 83-91.	0.8	98
699	Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer. Experimental Cell Research, 2011, 317, 262-275.	1.2	25
700	Invasion and EMT-associated genes are up-regulated in B viral hepatocellular carcinoma with high expression of CD133-human and cell culture study. Experimental and Molecular Pathology, 2011, 90, 66-73.	0.9	42
701	Computational analysis of expression of human embryonic stem cell-associated signatures in tumors. BMC Research Notes, 2011, 4, 471.	0.6	8
702	The Role of Abiraterone Acetate in the Management of Prostate Cancer: A Critical Analysis of the Literature. European Urology, 2011, 60, 270-278.	0.9	53
703	Identification of Cancer Stem-like CD44+ Cells in Human Nasopharyngeal Carcinoma Cell Line. Archives of Medical Research, 2011, 42, 15-21.	1.5	66
704	Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 683-694.	1.9	97
705	Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 25-37.	3.3	14

#	Article	IF	CITATIONS
706	Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochemical Pharmacology, 2011, 81, 1124-1135.	2.0	37
707	CD44 Variant Regulates Redox Status in Cancer Cells by Stabilizing the xCT Subunit of System xcâ° and Thereby Promotes Tumor Growth. Cancer Cell, 2011, 19, 387-400.	7.7	1,020
708	Cell Fusion Hypothesis of the Cancer Stem Cell. Advances in Experimental Medicine and Biology, 2011, 714, 129-140.	0.8	35
709	Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: confirmation of OCT3/4 specificity for germ cell tumours. British Journal of Cancer, 2011, 105, 854-863.	2.9	52
710	The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clinical and Experimental Metastasis, 2011, 28, 615-625.	1.7	90
711	Long-term cultures of stem/progenitor cells from lobular and ductal breast carcinomas under non-adherent conditions. Cytotechnology, 2011, 63, 67-80.	0.7	11
712	CD133+CD44+ subgroups may be human small intestinal stem cells. Molecular Biology Reports, 2011, 38, 997-1004.	1.0	19
713	Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. Journal of Neuro-Oncology, 2011, 103, 397-408.	1.4	23
714	Isolation and characterization of tumor stem-like cells from human meningiomas. Journal of Neuro-Oncology, 2011, 104, 45-53.	1.4	78
715	Identification of CD44+CD24+ gastric cancer stem cells. Journal of Cancer Research and Clinical Oncology, 2011, 137, 1679-1686.	1.2	180
716	Over-Expression of Oct4 in Human Esophageal Squamous Cell Carcinoma. Molecules and Cells, 2011, 32, 39-46.	1.0	37
717	Cancer stem cells: a new framework for the design of tumor therapies. Journal of Molecular Medicine, 2011, 89, 95-107.	1.7	65
718	Immunotherapy of prostate cancer: should we be targeting stem cells and EMT?. Cancer Immunology, Immunotherapy, 2011, 60, 1181-1193.	2.0	24
719	Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cellular and Molecular Life Sciences, 2011, 68, 3589-3605.	2.4	122
720	The Role of Human Aldehyde Dehydrogenase in Normal and Cancer Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 292-306.	5.6	442
721	TGF- \hat{I}^2 in the Bone Microenvironment: Role in Breast Cancer Metastases. Cancer Microenvironment, 2011, 4, 261-281.	3.1	65
722	Prostate Cancer Stem Cells: Do They Have a Basal or Luminal Phenotype?. Hormones and Cancer, 2011, 2, 47-61.	4.9	82
723	Breast Cancer Stem Cells and Their Role in Resistance to Endocrine Therapy. Hormones and Cancer, 2011, 2, 91-103.	4.9	54

#	ARTICLE	IF	CITATIONS
724	Molecular marks for epigenetic identification of developmental and cancer stem cells. Clinical Epigenetics, 2011, 2, 27-53.	1.8	34
725	Cancer stem cells and cancer therapy. Tumor Biology, 2011, 32, 425-440.	0.8	124
726	Androgen receptor roles in benign and malignant prostate disease. Clinical Oncology and Cancer Research, 2011, 8, 85-91.	0.1	2
727	CD133, Stem Cells, and Cancer Stem Cells: Myth or Reality?. Current Colorectal Cancer Reports, 2011, 7, 253-259.	1.0	33
728	CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma. BMC Cancer, 2011, 11, 320.	1.1	54
729	Side population rather than CD133+ cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells. Molecular Cancer, 2011, 10, 112.	7.9	29
730	Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer, 2011, 10, 12.	7.9	770
731	Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer. Molecular Cancer, 2011, 10, 94.	7.9	36
732	A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions. Journal of Translational Medicine, 2011, 9, 185.	1.8	34
733	Cancer stem cell subsets and their relationships. Journal of Translational Medicine, 2011, 9, 50.	1.8	27
734	Lineage relationship of prostate cancer cell types based on gene expression. BMC Medical Genomics, 2011, 4, 46.	0.7	22
735	MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. Journal of Ovarian Research, 2011, 4, 7.	1.3	44
736	Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. Journal of Biomedical Science, 2011, 18, 6.	2.6	60
737	Cancer stem cells: problems for therapy?. Journal of Pathology, 2011, 223, 148-162.	2.1	259
738	<i>In situ</i> lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. Journal of Pathology, 2011, 225, 181-188.	2.1	62
739	The proteomics of cancer stem cells. Potential clinical applications for innovative research in oncology. Proteomics - Clinical Applications, 2011, 5, 590-602.	0.8	9
740	Expression analysis of putative stem cell markers in human benign and malignant prostate. Prostate, 2011, 71, 18-25.	1.2	57
741	Promininâ€1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate, 2011, 71, 254-267.	1.2	44

#	Article	IF	Citations
742	Expression of nodal and nodal receptors in prostate stem cells and prostate cancer cells: Autocrine effects on cell proliferation and migration. Prostate, 2011, 71, 1084-1096.	1.2	40
743	Prostate tumor cells with cancer progenitor properties have high telomerase activity and are rapidly killed by telomerase interference. Prostate, 2011, 71, 1390-1400.	1.2	20
744	Prostate cancer stem cells and their potential roles in metastasis. Journal of Surgical Oncology, 2011, 103, 558-562.	0.8	61
745	Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magnetic Resonance in Medicine, 2011, 65, 756-763.	1.9	39
746	Immunoregulatory properties of CD44+ cancer stemâ€like cells in squamous cell carcinoma of the head and Neck, 2011, 33, 208-215.	0.9	97
747	Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology, 2011, 53, 160-170.	3.6	91
748	Isolation and characterization of tumorigenic extrahepatic cholangiocarcinoma cells with stem cellâ€like properties. International Journal of Cancer, 2011, 128, 72-81.	2.3	49
749	Gammaâ€tocotrienol as an effective agent in targeting prostate cancer stem cellâ€like population. International Journal of Cancer, 2011, 128, 2182-2191.	2.3	76
750	Insight into the complex regulation of CD133 in glioma. International Journal of Cancer, 2011, 128, 501-510.	2.3	56
751	Stem-like and non-stem human pancreatic cancer cells distinguished by morphology and metastatic behavior. Journal of Cellular Biochemistry, 2011, 112, 3549-3554.	1.2	12
752	Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain, 2011, 134, 1331-1343.	3.7	151
753	The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biology and Therapy, 2011, 11, 950-958.	1.5	80
755	The Power and the Promise of Liver Cancer Stem Cell Markers. Stem Cells and Development, 2011, 20, 2023-2030.	1.1	83
756	Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6468-6473.	3.3	188
757	Identification of Cancer Stem Cells Derived From a Canine Lung Adenocarcinoma Cell Line. Veterinary Pathology, 2011, 48, 1029-1034.	0.8	25
758	SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. Journal of Molecular Cell Biology, 2011, 3, 230-238.	1.5	166
759	Epstein-Barr Virus Latent Membrane Protein 1 Induces Cancer Stem/Progenitor-Like Cells in Nasopharyngeal Epithelial Cell Lines. Journal of Virology, 2011, 85, 11255-11264.	1.5	98
760	Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF- \hat{l}^{ϱ} B signalling. Nature Communications, 2011, 2, 162.	5.8	239

#	Article	IF	Citations
761	MicroRNA reins in embryonic and cancer stem cells. RNA Biology, 2011, 8, 415-426.	1.5	15
762	Breast cancer stem cells, cytokine networks, and the tumor microenvironment. Journal of Clinical Investigation, 2011, 121, 3804-3809.	3.9	517
763	Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?. Cancers, 2011, 3, 716-729.	1.7	299
764	Interleukin-1α Mediates the Antiproliferative Effects of 1,25-Dihydroxyvitamin D3 in Prostate Progenitor/Stem Cells. Cancer Research, 2011, 71, 5276-5286.	0.4	57
765	Identification of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile. Neuro-Oncology, 2011, 13, 1178-1191.	0.6	75
766	Cancer Stem Cells in Head and Neck Cancer. Cancers, 2011, 3, 415-427.	1.7	14
767	Visualization of CD44 and CD133 in Normal Pancreas and Pancreatic Ductal Adenocarcinomas. Journal of Histochemistry and Cytochemistry, 2011, 59, 441-455.	1.3	39
768	Resident Stem Cells and Renal Carcinoma. International Journal of Nephrology, 2011, 2011, 1-6.	0.7	23
769	Phytochemicals in Cancer Prevention. , 2011, , 2882-2885.		0
770	CD133 Protein N-Glycosylation Processing Contributes to Cell Surface Recognition of the Primitive Cell Marker AC133 Epitope. Journal of Biological Chemistry, 2011, 286, 41046-41056.	1.6	78
771	Differentiation Therapy: Targeting Human Renal Cancer Stem Cells with Interleukin 15. Journal of the National Cancer Institute, 2011, 103, 1884-1898.	3.0	70
772	Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture from human retinoblastoma. Oncology Reports, 2011, 26, 135-43.	1.2	25
773	A Novel Gemini Vitamin D Analog Represses the Expression of a Stem Cell Marker CD44 in Breast Cancer. Molecular Pharmacology, 2011, 79, 360-367.	1.0	81
774	Stem cells, quiescence and rectal carcinoma: an unexplored relationship and potential therapeutic target. British Journal of Cancer, 2011, 105, 1253-1259.	2.9	37
775	MicroRNA Regulation of Cancer Stem Cells. Cancer Research, 2011, 71, 5950-5954.	0.4	231
776	EphA2 Induces Metastatic Growth Regulating Amoeboid Motility and Clonogenic Potential in Prostate Carcinoma Cells. Molecular Cancer Research, 2011, 9, 149-160.	1.5	63
777	The Colorectal Cancer Initiating Cell: Markers and Their Role in Liver Metastasis. Cancer Metastasis - Biology and Treatment, 2011, , 89-127.	0.1	2
778	Canine Mammary Cancer Stem Cells are Radio- and Chemo- Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype. Cancers, 2011, 3, 1744-1762.	1.7	43

#	Article	IF	Citations
779	Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO Journal, 2011, 30, 3186-3199.	3. 5	155
780	Colon Cancer Stem Cells: Bench-to-Bedside—New Therapeutical Approaches in Clinical Oncology for Disease Breakdown. Cancers, 2011, 3, 1957-1974.	1.7	9
781	Cancer Stem Cells in Breast Cancer. Cancers, 2011, 3, 1311-1328.	1.7	18
782	Colorectal Cancer Stem Cells and Cell Death. Cancers, 2011, 3, 1929-1946.	1.7	15
783	Wnt/ \hat{l}^2 -catenin Signaling in Normal and Cancer Stem Cells. Cancers, 2011, 3, 2050-2079.	1.7	107
784	Cancer Stem Cells and Pediatric Solid Tumors. Cancers, 2011, 3, 298-318.	1.7	41
785	Two Domains of Vimentin Are Expressed on the Surface of Lymph Node, Bone and Brain Metastatic Prostate Cancer Lines along with the Putative Stem Cell Marker Proteins CD44 and CD133. Cancers, 2011, 3, 2870-2885.	1.7	36
786	Effects of Surgery and Chemotherapy on Metastatic Progression of Prostate Cancer: Evidence from the Natural History of the Disease Reconstructed through Mathematical Modeling. Cancers, 2011, 3, 3632-3660.	1.7	20
787	Factors Implicated in Radiation Therapy Failure and Radiosensitization of Prostate Cancer. Prostate Cancer, 2012, 2012, 1-12.	0.4	38
788	DLK1 as a Potential Target against Cancer Stem/Progenitor Cells of Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2012, 11, 629-638.	1.9	77
789	Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	385
790	Cell cycle analysis of the CD133 ⁺ and CD133 ⁻ cells isolated from human colorectal cancer. Journal of Cancer Research and Therapeutics, 2012, 8, 399.	0.3	16
791	Cancer stem cells in head and neck cancer. OncoTargets and Therapy, 2012, 5, 375.	1.0	36
792	Patient-Derived Xenografts of Non Small Cell Lung Cancer: Resurgence of an Old Model for Investigation of Modern Concepts of Tailored Therapy and Cancer Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	76
793	The Stemness Phenotype Model. ISRN Oncology, 2012, 2012, 1-10.	2.1	34
794	Detection of cancer stem cells in ovarian malignant surface epithelial tumors by immunohistochemical expression of CD133. Egyptian Journal of Pathology, 2012, 32, 192-197.	0.0	1
795	New Gene-Immunotherapy Combining TRAIL-Lymphocytes and EpCAMxCD3 Bispecific Antibody for Tumor Targeting. Clinical Cancer Research, 2012, 18, 1028-1038.	3.2	17
796	Progress and Pitfalls in the Identification of Cancer Stem Cell-Targeting Therapies in Head and Neck Squamous Cell Carcinoma. Current Medicinal Chemistry, 2012, 19, 6056-6064.	1.2	5

#	Article	IF	CITATIONS
797	Promises and challenges of exhausting pediatric neural cancer stem cells. Pediatric Research, 2012, 71, 523-528.	1.1	6
798	Distinct microRNA Expression Profiles in Prostate Cancer Stem/Progenitor Cells and Tumor-Suppressive Functions of let-7. Cancer Research, 2012, 72, 3393-3404.	0.4	172
799	The Role of microRNAs in the Pathogenesis and Treatment of Hematopoietic Malignancies. Current Pharmaceutical Design, 2012, 19, 1201-1210.	0.9	4
800	Stem-Like Cells and Therapy Resistance in Squamous Cell Carcinomas. Advances in Pharmacology, 2012, 65, 235-265.	1.2	34
801	The malignant social network. Cell Adhesion and Migration, 2012, 6, 346-355.	1.1	43
802	NGF/ \hat{I}^3 -IFN Inhibits Androgen-Independent Prostate Cancer and Reverses Androgen Receptor Function Through Downregulation of FGFR2 and Decrease in Cancer Stem Cells. Stem Cells and Development, 2012, 21, 3372-3380.	1.1	10
803	CD133 as a target for colon cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 259-267.	1.5	30
804	Advances in Cancer Stem Cell Biology. , 2012, , .		3
805	CD133+ colon cancer cells are more interactive with the tumor microenvironment than CD133â^ cells. Laboratory Investigation, 2012, 92, 420-436.	1.7	42
806	Advanced prostate cancer—a case for adjuvant differentiation therapy. Nature Reviews Urology, 2012, 9, 595-602.	1.9	32
807	A Mathematical Model of Cancer Stem Cell Lineage Population Dynamics with Mutation Accumulation and Telomere Length Hierarchies. Mathematical Modelling of Natural Phenomena, 2012, 7, 136-165.	0.9	14
808	Elisa Detection of Salivary Levels of Cd44sol as a Diagnostic Test for Laryngeal Carcinomas. Journal of Cancer Science & Therapy, 2012, 04, .	1.7	10
809	Emerging Putative Biomarkers: The Role of Alpha 2 and 6 Integrins in Susceptibility, Treatment, and Prognosis. Prostate Cancer, 2012, 2012, 1-9.	0.4	15
810	Role of CD44 as a marker of cancer stem cells in head and neck cancer. Biologics: Targets and Therapy, 2012, 6, 379.	3.0	44
811	Oncolytic virotherapy for ovarian cancer. Oncolytic Virotherapy, 2012, 1, 1.	6.0	11
812	Cancer Targeting Gene–Viro–Therapy and its Promising Future. , 2012, , 33-83.		5
813	Overcoming Drug Resistance and Treating Advanced Prostate Cancer. Current Drug Targets, 2012, 13, 1308-1323.	1.0	94
814	Analysis of immunoexpression of common cancer stem cell markers in ameloblastoma. Experimental and Therapeutic Medicine, 2012, 3, 397-402.	0.8	23

#	Article	IF	Citations
815	Expression of CD133 in SW620 colorectal cancer cells is modulated by the microenvironment. Oncology Letters, 2012, 4, 75-79.	0.8	15
816	Cancer stem-like side population cells in the human nasopharyngeal carcinoma cell line cne-2 possess epithelial mesenchymal transition properties in association with metastasis. Oncology Reports, 2012, 28, 241-7.	1.2	20
817	Bladder Cancer and Stem Cells. Current Signal Transduction Therapy, 2012, 7, 209-219.	0.3	O
818	Non-Coding RNAs as Therapeutic Targets in Hepatocellular Cancer. Current Cancer Drug Targets, 2012, 12, 1073-1080.	0.8	5
819	Zoledronate Sensitizes Neuroblastoma-derived Tumor-initiating Cells to Cytolysis Mediated by Human $\hat{l}^3\hat{l}'$ T Cells. Journal of Immunotherapy, 2012, 35, 598-606.	1.2	50
820	Gene expression profiling of cancer stem cells in the Du145 prostate cancer cell line. Oncology Letters, 2012, 3, 791-796.	0.8	5
821	The Cancer Stem-Cell Hypothesis: Its Emerging Role in Lung Cancer Biology and Its Relevance for Future Therapy. Journal of Thoracic Oncology, 2012, 7, 1880-1890.	0.5	124
822	Anticancer Effects of Cinnamic Acid in Lung Adenocarcinoma Cell Line H1299-Derived Stem-Like Cells. Oncology Research, 2012, 20, 499-507.	0.6	12
823	Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncology Reports, 2012, 28, 2247-2254.	1.2	54
824	Hemangioblastoma Stromal Cells Show Committed Stem Cell Phenotype. Canadian Journal of Neurological Sciences, 2012, 39, 821-827.	0.3	7
826	Parallel induction of cell proliferation and inhibition of cell differentiation in hepatic progenitor cells by hepatitis B virus X gene. International Journal of Molecular Medicine, 2012, 30, 842-848.	1.8	10
827	A CD44high/EGFRlow Subpopulation within Head and Neck Cancer Cell Lines Shows an Epithelial-Mesenchymal Transition Phenotype and Resistance to Treatment. PLoS ONE, 2012, 7, e44071.	1.1	60
828	Regulation of selfâ€renewal in normal and cancer stem cells. FEBS Journal, 2012, 279, 3559-3572.	2.2	44
829	<scp>EGF</scp> signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Proliferation, 2012, 45, 413-419.	2.4	66
830	A Simple Mathematical Model Based on the Cancer Stem Cell Hypothesis Suggests Kinetic Commonalities in Solid Tumor Growth. PLoS ONE, 2012, 7, e26233.	1.1	52
831	Selective killing of cancer stem cells by a novel dual-targeting strategy. Medical Hypotheses, 2012, 79, 430-432.	0.8	7
832	Targeting the Unique Methylation Pattern of Androgen Receptor (AR) Promoter in Prostate Stem/Progenitor Cells with 5-Aza-2′-deoxycytidine (5-AZA) Leads to Suppressed Prostate Tumorigenesis. Journal of Biological Chemistry, 2012, 287, 39954-39966.	1.6	58
833	Reactive Oxygen Species in Cancer Stem Cells. Antioxidants and Redox Signaling, 2012, 16, 1215-1228.	2.5	275

#	Article	IF	CITATIONS
834	Stem Cells and Cancer Stem Cells: New Insights. , 2012, , 17-31.		0
835	A gene expression profile of stem cell pluripotentiality and differentiation is conserved across diverse solid and hematopoietic cancers. Genome Biology, 2012, 13, R71.	13.9	69
836	Epithelial-to-Mesenchymal Transition Leads to Docetaxel Resistance in Prostate Cancer and Is Mediated by Reduced Expression of miR-200c and miR-205. American Journal of Pathology, 2012, 181, 2188-2201.	1.9	225
837	A novel concept of identifying precancerous cells to enhance anti ancer therapies. Journal of Hepato-Biliary-Pancreatic Sciences, 2012, 19, 621-625.	1.4	7
838	Gene Expression Profiles of Prostate Cancer Stem Cells Isolated by Aldehyde Dehydrogenase Activity Assay. Journal of Urology, 2012, 188, 294-299.	0.2	30
839	Will identification of a prostate cancer stem cell lead to its cure?. Urologic Oncology: Seminars and Original Investigations, 2012, 30, 351-352.	0.8	2
840	Prognostic value of CD44 expression in penile squamous cell carcinoma: a pilot study. Cellular Oncology (Dordrecht), 2012, 35, 377-384.	2.1	3
841	Biology of Castration-Recurrent Prostate Cancer. Urologic Clinics of North America, 2012, 39, 435-452.	0.8	28
842	Chemotherapy sorting can be used to identify cancer stem cell populations. Molecular Biology Reports, 2012, 39, 9955-9963.	1.0	13
843	Coexpression of Stemness Factors Oct4 and Nanog Predict Liver Resection. Annals of Surgical Oncology, 2012, 19, 2877-2887.	0.7	52
844	CD133 Negatively Regulates Tumorigenicity <i>via</i> AKT Pathway in Synovial Sarcoma. Cancer Investigation, 2012, 30, 390-397.	0.6	3
845	Characterization of cancer stem-like cells in chordoma. Journal of Neurosurgery, 2012, 116, 810-820.	0.9	60
846	The PSAâ^'/lo Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration. Cell Stem Cell, 2012, 10, 556-569.	5.2	281
847	Establishment of human ovarian serous carcinomas cell lines in serum free media. Methods, 2012, 56, 432-439.	1.9	13
848	Effective enrichment of prostate cancer stem cells from spheres in a suspension culture system. Urologic Oncology: Seminars and Original Investigations, 2012, 30, 314-318.	0.8	63
849	Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models. Veterinary and Comparative Oncology, 2012, 10, 252-273.	0.8	14
850	Stem Cell Characters in Primary and Metastatic Tumour Establishment., 2012,, 533-580.		1
851	Cancer Stem Cell Vaccination Confers Significant Antitumor Immunity. Cancer Research, 2012, 72, 1853-1864.	0.4	200

#	Article	IF	CITATIONS
852	$TGF\hat{l}^2$ induces the formation of tumour-initiating cells in claudinlow breast cancer. Nature Communications, 2012, 3, 1055.	5.8	95
853	Epithelial-Mesenchymal Transition: A Hallmark in Metastasis Formation Linking Circulating Tumor Cells and Cancer Stem Cells. Pathobiology, 2012, 79, 195-208.	1.9	168
854	CD133(\hat{a}°) Cells, Derived From a Single Human Colon Cancer Cell Line, Are More Resistant to 5-Fluorouracil (FU) Than CD133(+) Cells, Dependent on the \hat{l}^2 1-Integrin Signaling. Journal of Surgical Research, 2012, 175, 278-288.	0.8	29
855	Contribution of Epithelial-to-Mesenchymal Transition and Cancer Stem Cells to Pancreatic Cancer Progression. Journal of Surgical Research, 2012, 173, 105-112.	0.8	80
856	How do tumor stem cells actively escape from host immunosurveillance?. Biochemical and Biophysical Research Communications, 2012, 420, 699-703.	1.0	22
857	CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Letters, 2012, 315, 129-137.	3.2	178
858	Ovarian cancer stem cell markers: Prognostic and therapeutic implications. Cancer Letters, 2012, 322, 1-7.	3.2	148
859	Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Letters, 2012, 323, 161-170.	3.2	83
860	Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treatment Reviews, 2012, 38, 515-539.	3.4	64
861	Telomere and Microtubule Targeting in Treatment-Sensitive and Treatment-Resistant Human Prostate Cancer Cells. Molecular Pharmacology, 2012, 82, 310-321.	1.0	16
862	Prognostic role of CD133 expression in colorectal cancer: a meta-analysis. BMC Cancer, 2012, 12, 573.	1,1	52
863	CD133+CXCR4+ colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Medicine, 2012, 10, 85.	2.3	139
864	MicroRNAs in breast cancer initiation and progression. Cellular and Molecular Life Sciences, 2012, 69, 3587-3599.	2.4	70
865	Immunotherapy targeting glioma stem cells – insights and perspectives. Expert Opinion on Biological Therapy, 2012, 12, 165-178.	1.4	14
866	Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab on A Chip, 2012, 12, 182-189.	3.1	108
867	Detection of Putative Cancer Stem Cells of the Side Population Phenotype in Human Tumor Cell Cultures. Methods in Molecular Biology, 2012, 878, 201-215.	0.4	18
868	Notch Signaling and Breast Cancer. Advances in Experimental Medicine and Biology, 2012, 727, 241-257.	0.8	71
869	Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene, 2012, 31, 671-682.	2.6	103

#	Article	IF	CITATIONS
870	Sulforaphane as New Therapeutic Agent for Targeting of Cancer Stem Cells with Focus to Prostate and Pancreatic Cancer. Stem Cells and Cancer Stem Cells, 2012, , 27-32.	0.1	0
871	Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/promininâ€1 expression. Cell Biology International, 2012, 36, 29-38.	1.4	23
872	Study of chemoresistant CD133+ cancer stem cells from human glioblastoma cell line U138MG using multiple assays. Cell Biology International, 2012, 36, 1137-1143.	1.4	25
873	All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. European Journal of Cancer, 2012, 48, 3310-3318.	1.3	94
874	Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer, 2012, 77, 162-167.	0.9	86
875	Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiotherapy and Oncology, 2012, 105, 250-257.	0.3	15
876	Clinical Implication of Targeting of Cancer Stem Cells. European Surgical Research, 2012, 49, 8-15.	0.6	4
877	CD133 as a Marker for Regulation and Potential for Targeted Therapies in Glioblastoma Multiforme. Neurosurgery Clinics of North America, 2012, 23, 391-405.	0.8	28
878	Development of New Technologies for Stem Cell Research. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-7.	3.0	6
879	Epigenetics of Solid Cancer Stem Cells. Methods in Molecular Biology, 2012, 863, 15-31.	0.4	17
880	Overcoming Challenges of Ovarian Cancer Stem Cells: Novel Therapeutic Approaches. Stem Cell Reviews and Reports, 2012, 8, 994-1010.	5.6	51
881	Immunohistochemical detection of CD133 is associated with tumor regression grade after chemoradiotherapy in rectal cancer. Medical Oncology, 2012, 29, 2849-2857.	1.2	28
882	Pancreatic Carcinoma Cell Lines Reflect Frequency and Variability of Cancer Stem Cell Markers in Clinical Tissue. European Surgical Research, 2012, 49, 88-98.	0.6	19
886	Neurofibromatosis Type 1., 2012, , .		23
887	Somatic Stem Cells. Methods in Molecular Biology, 2012, , .	0.4	6
888	The BMP2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene, 2012, 31, 2164-2174.	2.6	109
889	Circulating Tumor Cells in Hepatocellular Carcinoma: Detection Techniques, Clinical Implications, and Future Perspectives. Seminars in Oncology, 2012, 39, 449-460.	0.8	70
890	Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nature Communications, 2012, 3, 883.	5.8	324

#	Article	IF	CITATIONS
891	Cancer stem cells and the bone marrow microenvironment. BoneKEy Reports, 2012, 1, .	2.7	10
893	Metastasis Research Protocols. Methods in Molecular Biology, 2012, , .	0.4	3
895	Benign prostate hyperplasia and stem cells: a new therapeutic opportunity. Cell Biology and Toxicology, 2012, 28, 435-442.	2.4	9
896	Notch Signaling in Cancer Stem Cells. Advances in Experimental Medicine and Biology, 2012, 727, 174-185.	0.8	93
897	Cancer Stem Cell. , 2012, , 173-196.		1
898	Label-free quantitative proteomics of CD133-positive liver cancer stem cells. Proteome Science, 2012, 10, 69.	0.7	9
899	Anti-Tumor Effect against Human Cancer Xenografts by a Fully Human Monoclonal Antibody to a Variant 8-Epitope of CD44R1 Expressed on Cancer Stem Cells. PLoS ONE, 2012, 7, e29728.	1.1	33
900	Cell-to-Cell Signaling Influences the Fate of Prostate Cancer Stem Cells and Their Potential to Generate More Aggressive Tumors. PLoS ONE, 2012, 7, e31467.	1.1	32
901	Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking. PLoS ONE, 2012, 7, e38403.	1.1	17
902	Chemoresistance in Prostate Cancer Cells Is Regulated by miRNAs and Hedgehog Pathway. PLoS ONE, 2012, 7, e40021.	1.1	99
903	RhoC Impacts the Metastatic Potential and Abundance of Breast Cancer Stem Cells. PLoS ONE, 2012, 7, e40979.	1.1	60
904	CD133 Is a Useful Surrogate Marker for Predicting Chemosensitivity to Neoadjuvant Chemotherapy in Breast Cancer. PLoS ONE, 2012, 7, e45865.	1.1	44
905	CD49f Is an Efficient Marker of Monolayer- and Spheroid Colony-Forming Cells of the Benign and Malignant Human Prostate. PLoS ONE, 2012, 7, e46979.	1.1	36
906	Human $\hat{l}\pm2\hat{l}^21HI$ CD133+VE Epithelial Prostate Stem Cells Express Low Levels of Active Androgen Receptor. PLoS ONE, 2012, 7, e48944.	1.1	14
907	On the Nature of the Tumor-Initiating Cell. Current Stem Cell Research and Therapy, 2012, 7, 26-35.	0.6	15
908	CD133 ⁺ EpCAM ⁺ Phenotype Possesses More Characteristics of Tumor Initiating Cells in Hepatocellular Carcinoma Huh7 Cells. International Journal of Biological Sciences, 2012, 8, 992-1004.	2.6	89
909	Current Strategies for Identification of Glioma Stem Cells: Adequate or Unsatisfactory?. Journal of Oncology, 2012, 2012, 1-10.	0.6	75
910	Cancer Stem Cell as a Potential Therapeutic Target in Hepatocellular Carcinoma. Current Cancer Drug Targets, 2012, 12, 1081-1094.	0.8	28

#	Article	IF	Citations
911	Prostate Cancer and Parasitism of the Bone Hematopoietic Stem Cell Niche. Critical Reviews in Eukaryotic Gene Expression, 2012, 22, 131-148.	0.4	25
912	Cancer Stem Cells in the Mechanism of Metal Carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, 2012, 31, 245-263.	0.6	9
913	Stem Cells and Mesothelioma. , 0, , .		0
914	Identification and Characterization of Cancer Stem Cells Using Flow Cytometry. , 0, , .		O
915	8.2 Targeting the tumor microenvironment in cancer progression. , 0, , .		1
916	8.9 Delivery systems targeting cancer at the level of ECM., 0, , .		O
917	Defining heterogeneity of human non-metastatic breast cancer tumor by identifying individual cell types using cellular and molecular markers. Stem Cell Studies, 2012, 2, 4.	0.2	1
918	Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biological Research, 2012, 45, 297-305.	1.5	35
919	Fibroblast-dependent regulation of the stem cell properties of cancer cells. Neoplasma, 2012, 59, 719-727.	0.7	15
920	Cultivation and identification of colon cancer stem cell-derived spheres from the Colo205 cell line. Brazilian Journal of Medical and Biological Research, 2012, 45, 197-204.	0.7	21
921	Embryonic Retinal Tumors in SV40 T-Ag Transgenic Mice Contain CD133+ Tumor-Initiating Cells. , 2012, 53, 3454.		6
922	Neuroblastoma stem cells – mechanisms of chemoresistance and histonedeacetylase inhibitors. Neoplasma, 2012, 59, 737-746.	0.7	21
923	Concise Review: Cancer Stem Cells and Minimal Residual Disease. Stem Cells, 2012, 30, 89-93.	1.4	71
924	Protein crossâ€ŧalk in <scp>CD</scp> 133+ colon cancer cells indicates activation of the <scp>W</scp> nt pathway and upregulation of <scp>SR</scp> p20 that is potentially involved in tumorigenicity. Proteomics, 2012, 12, 2045-2059.	1.3	52
925	Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate, 2012, 72, 713-720.	1.2	54
926	Human prostate cancer initiating cells isolated directly from localized cancer do not form prostaspheres in primary culture. Prostate, 2012, 72, 1478-1489.	1.2	18
927	Longâ€term recovery of irradiated prostate cancer increases cancer stem cells. Prostate, 2012, 72, 1746-1756.	1.2	24
928	Stem-Like Cells with Luminal Progenitor Phenotype Survive Castration in Human Prostate Cancer. Stem Cells, 2012, 30, 1076-1086.	1.4	98

#	Article	IF	Citations
929	Human Epithelial Basal Cells Are Cells of Origin of Prostate Cancer, Independent of CD133 Status. Stem Cells, 2012, 30, 1087-1096.	1.4	73
930	Implication of expression of Nanog in prostate cancer cells and their stem cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 242-246.	1.0	12
931	Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 2012, 22, 457-472.	5.7	473
932	Methods for Cancer Stem Cell Detection and Isolation. Methods in Molecular Biology, 2012, 879, 513-529.	0.4	56
933	miRNA-708 Control of CD44+ Prostate Cancer–Initiating Cells. Cancer Research, 2012, 72, 3618-3630.	0.4	117
934	Exploring the cancer stem cell phenotype with high-throughput screening applications. Future Medicinal Chemistry, 2012, 4, 1229-1241.	1.1	9
935	Resistance to apoptosisâ€inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head and Neck, 2012, 34, 336-343.	0.9	54
936	Cancer stem cells in head and neck squamous cell carcinoma: A review of current knowledge and future applications. Head and Neck, 2012, 34, 894-899.	0.9	50
937	Aberrant expression of CD133 and musashiâ€l in preneoplastic and neoplastic human oral squamous epithelium and their correlation with clinicopathological factors. Head and Neck, 2012, 34, 1129-1135.	0.9	43
938	Promotion of epithelial–mesenchymal transition and tumor growth by 17 <i>β</i> à€estradiol in an ER ⁺ /HER2 ⁺ cell line derived from human breast epithelial stem cells. Biotechnology and Applied Biochemistry, 2012, 59, 262-267.	1.4	20
939	Flow cytometry in cancer stem cell analysis and separation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 284-293.	1.1	131
940	Cytometric and biochemical characterization of human breast cancer cells reveals heterogeneous myoepithelial phenotypes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 960-972.	1.1	36
941	Cancer Stem Cells in Solid Tumors, Markers and Therapy. , 2012, , 117-148.		1
942	The role of epigenetic regulation in stem cell and cancer biology. Journal of Molecular Medicine, 2012, 90, 791-801.	1.7	24
943	Gastroenteropancreatic neuroendocrine tumor cancer stem cells: do they exist?. Cancer and Metastasis Reviews, 2012, 31, 47-53.	2.7	17
944	Isolation and characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology, 2012, 64, 477-484.	0.7	24
945	Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Investigational New Drugs, 2012, 30, 1279-1288.	1.2	81
946	Overactivation of Ras signaling pathway in CD133+ÂMPNST cells. Journal of Neuro-Oncology, 2012, 108, 423-434.	1.4	18

#	Article	IF	CITATIONS
947	Cancer-Initiating Enriched Cell Lines from Human Glioblastoma: Preparing for Drug Discovery Assays. Stem Cell Reviews and Reports, 2012, 8, 288-298.	5.6	10
948	Aldehyde dehydrogenase-1 is a specific marker for stem cells in human lung adenocarcinoma. Medical Oncology, 2012, 29, 633-639.	1.2	64
949	Screening of Peptides Bound to Breast Cancer Stem Cell Specific Surface Marker CD44 by Phage Display. Molecular Biotechnology, 2012, 51, 212-220.	1.3	39
950	Differential expression of ZFX gene in gastric cancer. Journal of Biosciences, 2012, 37, 85-90.	0.5	31
951	Hexokinase II in CD133+ and CD133- Hepatoma BEL-7402 Cells. Pathology and Oncology Research, 2012, 18, 377-381.	0.9	5
952	The construction of an oxalate-degrading intestinal stem cell population in mice: a potential new treatment option for patients with calcium oxalate calculus. Urological Research, 2012, 40, 131-141.	1.5	3
953	Cancer stem cells: an evolving concept. Nature Reviews Cancer, 2012, 12, 133-143.	12.8	1,055
954	Prostate Cancer Stem Cells. Clinical Genitourinary Cancer, 2012, 10, 69-76.	0.9	33
955	Novel Molecular Targets for the Therapy of Castration-Resistant Prostate Cancer. European Urology, 2012, 61, 950-960.	0.9	69
956	Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials, 2012, 33, 1863-1872.	5.7	61
957	Nuclear localization signal-enhanced RNA interference of EZH2 and Oct4 in the eradication of head and neck squamous Cell carcinoma-derived cancer stem cells. Biomaterials, 2012, 33, 3693-3709.	5.7	37
958	Cancer Vaccines Targeting the Epithelial-Mesenchymal Transition: Tissue Distribution of Brachyury and Other Drivers of the Mesenchymal-Like Phenotype of Carcinomas. Seminars in Oncology, 2012, 39, 358-366.	0.8	48
959	Human skin cancer stem cells: a tale of mice and men. Experimental Dermatology, 2012, 21, 576-580.	1.4	22
960	Cancer Stem Cells as a Predictive Factor in Radiotherapy. Seminars in Radiation Oncology, 2012, 22, 151-174.	1.0	83
961	Multispecies model of cell lineages and feedback control in solid tumors. Journal of Theoretical Biology, 2012, 304, 39-59.	0.8	55
962	Recent developments in antiandrogens and selective androgen receptor modulators. Molecular and Cellular Endocrinology, 2012, 352, 79-91.	1.6	60
963	Prostate cancer stem cells: Are they androgen-responsive?. Molecular and Cellular Endocrinology, 2012, 360, 14-24.	1.6	37
964	The biology of head and neck cancer stem cells. Oral Oncology, 2012, 48, 1-9.	0.8	139

#	Article	IF	CITATIONS
965	Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential. Experimental Cell Research, 2012, 318, 847-860.	1.2	25
966	Cellular characteristics of head and neck cancer stem cells in type IV collagen-coated adherent cultures. Experimental Cell Research, 2012, 318, 1104-1111.	1.2	14
967	Interferonâ€alpha modulates the chemosensitivity of <scp>CD</scp> 133â€expressing pancreatic cancer cells to gemcitabine. Cancer Science, 2012, 103, 889-896.	1.7	16
968	Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathology International, 2012, 62, 112-119.	0.6	158
969	Testosterone in prostate cancer: the Bethesda consensus. BJU International, 2012, 110, 344-352.	1.3	17
970	Isolation and characterization of stromal progenitor cells from ascites of patients with epithelial ovarian adenocarcinoma. Journal of Biomedical Science, 2012, 19, 23.	2.6	47
971	Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer, 2012, 12, 48.	1.1	168
972	Recent updates on the role of microRNAs in prostate cancer. Journal of Hematology and Oncology, 2012, 5, 9.	6.9	63
973	Octâ€3/4 promotes migration and invasion of glioblastoma cells. Journal of Cellular Biochemistry, 2012, 113, 508-517.	1.2	41
974	CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers. Genes Chromosomes and Cancer, 2012, 51, 186-195.	1.5	17
975	Targeting of pancreatic and prostate cancer stem cell characteristics by <i>Crambe crambe</i> marine sponge extract. International Journal of Cancer, 2012, 130, 1671-1681.	2.3	28
976	CD133 and CD44 Cell surface markers do not identify cancer stem cells in primary human gastric tumors. Journal of Cellular Physiology, 2012, 227, 2686-2693.	2.0	59
977	A novel mouse CD133 binding-peptide screened by phage display inhibits cancer cell motility in vitro. Clinical and Experimental Metastasis, 2012, 29, 185-196.	1.7	42
978	Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and Cellular Biochemistry, 2012, 363, 257-268.	1.4	78
979	Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. Pharmacogenomics Journal, 2013, 13, 173-180.	0.9	34
980	Significance of CD133 expression in esophageal squamous cell carcinoma. World Journal of Surgical Oncology, 2013, 11, 51.	0.8	41
981	Cancer stem cells and therapeutic targets: an emerging field for cancer treatment. Drug Delivery and Translational Research, 2013, 3, 113-120.	3.0	21
982	Tumor-initiating stem-like cells and drug resistance: carcinogenesis through Toll-like receptors, environmental factors, and virus. Drug Delivery and Translational Research, 2013, 3, 152-164.	3.0	6

#	Article	IF	CITATIONS
983	Endometrial Cancer Stem Cells: Are They a Possible Therapeutic Target?. Current Obstetrics and Gynecology Reports, 2013, 2, 1-10.	0.3	8
984	Cancer Stem Cells: Potential Target For Anti-Cancer Nanomedicines. ACS Symposium Series, 2013, , 127-149.	0.5	2
986	Lung cancer stem cells: a biological and clinical perspective. Cellular Oncology (Dordrecht), 2013, 36, 265-275.	2.1	36
987	CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. Journal of Controlled Release, 2013, 171, 280-287.	4.8	168
990	Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Human Pathology, 2013, 44, 2373-2384.	1,1	50
991	Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer, 2013, 13, 61.	1.1	86
992	Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, 2013, 779, v-vi.	0.8	1
993	A link between two tumorigenic proteins, CD44 and p21 ^{WAF1} : CD44 increases phorbol esterâ€induced expression of p21 ^{WAF1} by stabilizing its mRNA and extending protein halfâ€life. FEBS Letters, 2013, 587, 2698-2704.	1.3	2
994	microRNA in the control of stem-like phenotype of cancer cells. Open Life Sciences, 2013, 8, 931-942.	0.6	3
995	Expression Patterns of Thymosin \hat{l}^24 and Cancer Stem Cell Marker CD133 in Ovarian Cancers. Pathology and Oncology Research, 2013, 19, 237-245.	0.9	15
996	In vitro and in vivo properties of CD133 expressing cells from human lung cancer cell lines. Experimental Hematology and Oncology, 2013, 2, 16.	2.0	8
997	Flow cytometric characterization of tumor subpopulations in three sublines of the dunning R3327 rat prostate tumor model. Prostate, 2013, 73, 1710-1720.	1.2	5
998	Stem Cells and Cancer Stem Cells, Volume 10. , 2013, , .		0
999	Lung cancer-initiating cells: a novel target for cancer therapy. Targeted Oncology, 2013, 8, 159-172.	1.7	25
1000	Mechanisms of chemoresistance in cancer stem cells. Clinical and Translational Medicine, 2013, 2, 3.	1.7	608
1001	Breast Cancer Metastasis and Drug Resistance. , 2013, , .		12
1002	Cancer Biology: Some Causes for a Variety of Different Diseases. , 2013, , 121-159.		1
1003	Detection of CD133 (promininâ€1) in a human hepatoblastoma cell line (HuHâ€6 clone 5). Microscopy Research and Technique, 2013, 76, 844-852.	1.2	15

#	ARTICLE	IF	CITATIONS
1004	Discovery of the cancer stem cell related determinants of radioresistance. Radiotherapy and Oncology, 2013, 108, 378-387.	0.3	159
1005	Adaptation and clonal selection models of castrationâ€resistant prostate cancer: Current perspective. International Journal of Urology, 2013, 20, 362-371.	0.5	40
1006	Bisphenol A at environmentally relevant doses induces cyclooxygenase-2 expression and promotes invasion of human mesenchymal stem cells derived from uterine myoma tissue. Taiwanese Journal of Obstetrics and Gynecology, 2013, 52, 246-252.	0.5	39
1007	Characterisations of human prostate stem cells reveal deficiency in class I UGT enzymes as a novel mechanism for castration-resistant prostate cancer. British Journal of Cancer, 2013, 109, 950-956.	2.9	12
1008	CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. British Journal of Cancer, 2013, 109, 379-386.	2.9	111
1009	Ovarian tumor initiating cell populations persist following paclitaxel and carboplatin chemotherapy treatment in vivo. Cancer Letters, 2013, 339, 237-246.	3.2	23
1010	Atorvastatin inhibited Rho-associated kinase 1 (ROCK1) and focal adhesion kinase (FAK) mediated adhesion and differentiation of CD133+CD44+ prostate cancer stem cells. Biochemical and Biophysical Research Communications, 2013, 441, 586-592.	1.0	25
1011	Maintenance of stem cell self-renewal in head and neck cancers requires actions of $GSK3\hat{I}^2$ influenced by CD44 and RHAMM. Stem Cells, 2013, 31, 2073-2083.	1.4	60
1012	The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis, 2013, 16, 405-416.	3.7	42
1013	HDAC inhibitor confers radiosensitivity to prostate stem-like cells. British Journal of Cancer, 2013, 109, 3023-3033.	2.9	54
1015	Sheep, wolf, or werewolf: Cancer stem cells and the epithelial-to-mesenchymal transition. Cancer Letters, 2013, 341, 16-23.	3.2	23
1016	Nrf2 is a potential therapeutic target in radioresistance in human cancer. Critical Reviews in Oncology/Hematology, 2013, 88, 706-715.	2.0	88
1017	CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Experimental Biology and Medicine, 2013, 238, 324-338.	1.1	172
1018	Prostate Cancer: Shifting from Morphology to Biology. , 2013, , .		1
1020	The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncology, 2013, 49, 738-746.	0.8	48
1021	Integrin alpha 2 beta 1 ($\hat{l}\pm2\hat{l}^21$) promotes prostate cancer skeletal metastasis. Clinical and Experimental Metastasis, 2013, 30, 569-578.	1.7	88
1022	Cancer Stem Cells Biomarkers in Gastric Carcinogenesis. Journal of Gastrointestinal Cancer, 2013, 44, 428-435.	0.6	13
1023	Clinical perspectives of cancer stem cell research in radiation oncology. Radiotherapy and Oncology, 2013, 108, 388-396.	0.3	93

#	Article	IF	Citations
1024	Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, 2013, , .	0.8	9
1025	Unravelling cancer stem cell potential. Nature Reviews Cancer, 2013, 13, 727-738.	12.8	723
1026	Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013, 34, 3489-3502.	5.7	314
1027	Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nature Communications, 2013, 4, 1623.	5.8	49
1028	HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects. Journal of Controlled Release, 2013, 172, 946-953.	4.8	50
1029	CXC Chemokine Receptor 4 is Essential for Maintenance of Renal cell Carcinoma-Initiating Cells and Predicts Metastasis. Stem Cells, 2013, 31, 1467-1476.	1.4	106
1030	Aldehyde dehydrogenase 1, a functional marker for identifying cancer stem cells in human nasopharyngeal carcinoma. Cancer Letters, 2013, 330, 181-189.	3.2	70
1031	Stem Cell Signaling Pathways in Colorectal Cancer. Current Colorectal Cancer Reports, 2013, 9, 341-349.	1.0	O
1032	Expression of Stem Cell Markers, CD133 and CD44, in Pediatric Solid Tumors: A Study Using Tissue Microarray. Fetal and Pediatric Pathology, 2013, 32, 192-204.	0.4	39
1033	Enrichment of putative prostate cancer stem cells after androgen deprivation: Upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines. Prostate, 2013, 73, 1378-1390.	1.2	31
1034	Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro-Oncology, 2013, 15, 904-920.	0.6	44
1035	Prominin-1 (CD133) Expression in the Prostate and Prostate Cancer: A Marker for Quiescent Stem Cells. Advances in Experimental Medicine and Biology, 2013, 777, 167-184.	0.8	25
1036	Cancer stem cells niche: A target for novel cancer therapeutics. Cancer Treatment Reviews, 2013, 39, 290-296.	3.4	70
1037	An Infernal Trio: The chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Annals of Anatomy, 2013, 195, 103-110.	1.0	101
1038	Adaptation or selectionâ€"mechanisms of castration-resistant prostate cancer. Nature Reviews Urology, 2013, 10, 90-98.	1.9	103
1039	Growth kinetics of CD133â€positive prostate cancer cells. Prostate, 2013, 73, 724-733.	1.2	13
1040	Developmental signaling pathways in cancer stem cells of solid tumors. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2481-2495.	1.1	159
1041	Prominin-1 (CD133): Molecular and Cellular Features Across Species. Advances in Experimental Medicine and Biology, 2013, 777, 3-24.	0.8	39

#	Article	IF	Citations
1042	Cancer stem cells: the †heartbeat' of gastric cancer. Journal of Gastroenterology, 2013, 48, 781-797.	2.3	56
1043	Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Child's Nervous System, 2013, 29, 217-229.	0.6	51
1044	A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. Journal of Cancer Research and Clinical Oncology, 2013, 139, 211-222.	1.2	46
1045	miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Letters, 2013, 334, 211-220.	3.2	83
1046	The isolation and characterization of renal cancer initiating cells from human Wilms' tumour xenografts unveils new therapeutic targets. EMBO Molecular Medicine, 2013, 5, 18-37.	3.3	82
1047	Complexity of cancer stem cells. International Journal of Cancer, 2013, 132, 1249-1259.	2.3	109
1048	Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy. Journal of Biophotonics, 2013, 6, 60-72.	1.1	35
1049	CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. Journal of Pathology, 2013, 229, 355-378.	2.1	252
1050	Detection and isolation of circulating tumor cells: Principles and methods. Biotechnology Advances, 2013, 31, 1063-1084.	6.0	157
1051	A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochemical and Biophysical Research Communications, 2013, 430, 1329-1333.	1.0	22
1052	Pathological niche environment transforms dermal stem cells to keloid stem cells: A hypothesis of keloid formation and development. Medical Hypotheses, 2013, 81, 807-812.	0.8	26
1053	Hyaluronic acid receptor-targetable imidazolized nanovectors for induction of gastric cancer cell death by RNA interference. Biomaterials, 2013, 34, 4327-4338.	5.7	36
1054	Colon cancer stem cells – From basic to clinical application. Cancer Letters, 2013, 338, 127-140.	3.2	51
1055	Human renal cancer stem cells. Cancer Letters, 2013, 338, 141-146.	3.2	56
1056	Perivascular stem cell niche in head and neck cancer. Cancer Letters, 2013, 338, 41-46.	3.2	47
1057	Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells. European Journal of Cancer, 2013, 49, 955-963.	1.3	43
1058	Melanocytes, melanocyte stem cells, and melanoma stem cells. Clinics in Dermatology, 2013, 31, 166-178.	0.8	60
1059	Convergent mechanisms in pluripotent stem cells and cancer: Implications for stem cell engineering. Biotechnology Journal, 2013, 8, 408-419.	1.8	4

#	Article	IF	Citations
1060	Subpopulation of smallâ€eell lung cancer cells expressing <scp>CD</scp> 133 and <scp>CD</scp> 87 show resistance to chemotherapy. Cancer Science, 2013, 104, 78-84.	1.7	51
1061	Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene, 2013, 32, 5191-5198.	2.6	237
1062	Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Delivery and Translational Research, 2013, 3, 121-142.	3.0	15
1063	Isolation of Side Population Cells in B-Cell Non-HodgkinÂ's Lymphomas. Acta Haematologica, 2013, 129, 10-17.	0.7	18
1064	Distinct Radiosensitivity of Lung Carcinoma Stem-Like Side Population and Main Population Cells. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 471-478.	0.7	15
1065	Therapeutic strategies targeting cancer stem cells. Cancer Biology and Therapy, 2013, 14, 295-303.	1.5	65
1066	Strategies for Isolating and Enriching Cancer Stem Cells: Well Begun Is Half Done. Stem Cells and Development, 2013, 22, 2221-2239.	1.1	74
1067	Impact of Genetic Targets on Prostate Cancer Therapy. Advances in Experimental Medicine and Biology, 2013, 779, 359-383.	0.8	2
1068	Therapeutic gene modified cell based cancer vaccines. Gene, 2013, 525, 200-207.	1.0	46
1069	Isolation and Characterization of Cancer Stem Cells In Vitro. Methods in Molecular Biology, 2013, 946, 181-204.	0.4	13
1070	Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies. Expert Review of Neurotherapeutics, 2013, 13, 545-555.	1.4	75
1071	New insights into prostate cancer stem cells. Cell Cycle, 2013, 12, 579-586.	1.3	65
1072	Cancer stem cells: A shifting subpopulation of cells with stemness?. Medical Hypotheses, 2013, 80, 649-655.	0.8	10
1073	CD133 Affects the Invasive Ability of HCT116 Cells by Regulating TIMP-2. American Journal of Pathology, 2013, 182, 565-576.	1.9	32
1074	Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis, 2013, 2, e45-e45.	2.1	46
1075	<scp>CD</scp> 24 and <scp>CD</scp> 44 in salivary gland pleomorphic adenoma and in human salivary gland morphogenesis: differential markers of glandular structure or stem cell indicators?. Histopathology, 2013, 62, 1075-1082.	1.6	11
1076	Cancer stem cells and their role in metastasis. , 2013, 138, 285-293.		203
1077	Dysregulation of signaling pathways and putative biomarkers in liver cancer stem cells (Review). Oncology Reports, 2013, 29, 3-12.	1.2	30

#	Article	IF	CITATIONS
1078	Differential Cytotoxic Activity of a Novel Palladium-Based Compound on Prostate Cell Lines, Primary Prostate Epithelial Cells and Prostate Stem Cells. PLoS ONE, 2013, 8, e64278.	1.1	35
1079	Biology and Clinical Relevance of Estrogen Receptors in Prostate Cancer. , 2013, , 383-419.		0
1080	A preclinical xenograft model of prostate cancer using human tumors. Nature Protocols, 2013, 8, 836-848.	5.5	90
1081	Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacologica Sinica, 2013, 34, 732-740.	2.8	506
1083	Searching for Prostate Cancer Stem Cells: Markers and Methods. Stem Cell Reviews and Reports, 2013, 9, 721-730.	5.6	54
1084	Cancer stem cell theory: therapeutic implications for nanomedicine. International Journal of Nanomedicine, 2013, 8, 899.	3.3	35
1085	Evaluating stem and cancerous biomarkers in CD15+CD44+ KYSE30 cells. Tumor Biology, 2013, 34, 2909-2920.	0.8	18
1086	GPCRs in Stem Cell Function. Progress in Molecular Biology and Translational Science, 2013, 115, 175-216.	0.9	24
1087	The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomedicine and Pharmacotherapy, 2013, 67, 669-680.	2.5	164
1088	Decoding the cancer stem cell hypothesis in glioblastoma. CNS Oncology, 2013, 2, 319-330.	1.2	20
1089	Basic Cell Culture Protocols. Methods in Molecular Biology, 2013, , .	0.4	13
1090	Cancer Stem Cells. , 2013, , 163-188.		0
1091	Stem Cells in Carcinogenesis of the Prostate. , 2013, , 73-79.		0
1092	Breast Cancer Stem Cells and miRNAs. , 2013, , 367-383.		0
1093	Role of Stem Cell Niche in the Development of Bone Metastases (An Update)., 2013,, 229-238.		0
1094	Human Prostate Epithelial Cell Cultures. Methods in Molecular Biology, 2013, 946, 383-393.	0.4	5
1095	Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. International Journal of Oncology, 2013, 42, 453-459.	1.4	98
1096	CD44-negative cells in head and neck squamous carcinoma also have stem-cell like traits. European Journal of Cancer, 2013, 49, 272-280.	1.3	29

#	Article	IF	CITATIONS
1097	In vitro Evaluation of Sialyl Lewis X Relationship with Head and Neck Cancer Stem Cells. Otolaryngology - Head and Neck Surgery, 2013, 149, 97-104.	1.1	13
1098	Prominin-1 (CD133): New Insights on Stem & Defense Stem Cell Biology. Advances in Experimental Medicine and Biology, 2013, , .	0.8	10
1099	All-trans retinoic acid potentiates the chemotherapeutic effect of cisplatin by inducing differentiation of tumor initiating cells in liver cancer. Journal of Hepatology, 2013, 59, 1255-1263.	1.8	81
1100	Isolation and in Vitro Culture of Rare Cancer Stem Cells from Patient-Derived Xenografts of Pancreatic Ductal Adenocarcinoma. Analytical Chemistry, 2013, 85, 7271-7278.	3.2	10
1101	Hepatitis B virus X (HBx) play an anti-apoptosis role in hepatic progenitor cells by activating Wnt/ſ²-catenin pathway. Molecular and Cellular Biochemistry, 2013, 383, 213-222.	1.4	30
1102	Expression of aldehyde dehydrogenase 1 as a marker of mammary stem cells in benign and malignant breast lesions of Ghanaian women. Cancer, 2013, 119, 488-494.	2.0	33
1103	The hitchhikers guide to cancer stem cell theory: Markers, pathways and therapy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 62-71.	1.1	40
1104	Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB Journal, 2013, 27, 13-24.	0.2	338
1105	Issues of banking breast cancer cells to generate mammospheres. Cell and Tissue Banking, 2013, 14, 153-158.	0.5	2
1106	MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacologica Sinica, 2013, 34, 1374-1380.	2.8	22
1107	Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors. Stem Cells Translational Medicine, 2013, 2, 678-689.	1.6	20
1108	Understanding myeloma cancer stem cells. Immunotherapy, 2013, 5, 1291-1294.	1.0	1
1109	PSCA and Oct-4 Expression in the Benign and Malignant Lesions of Gallbladder: Implication for Carcinogenesis, Progression, and Prognosis of Gallbladder Adenocarcinoma. BioMed Research International, 2013, 2013, 1-9.	0.9	15
1110	Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncology Reports, 2013, 30, 2733-2740.	1.2	69
1111	The prognostic significance of aldehyde dehydrogenase 1A1 (ALDH1A1) and CD133 expression in early stage non-small cell lung cancer. Thorax, 2013, 68, 1095-1104.	2.7	60
1112	Cancer Stem Cells in Pediatric Sarcomas. Frontiers in Oncology, 2013, 3, 168.	1.3	45
1113	A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review). Oncology Letters, 2013, 6, 1174-1180.	0.8	117
1114	Role of EZH2 in the Growth of Prostate Cancer Stem Cells Isolated from LNCaP Cells. International Journal of Molecular Sciences, 2013, 14, 11981-11993.	1.8	46

#	Article	IF	CITATIONS
1115	Current mouse and cell models in prostate cancer research. Endocrine-Related Cancer, 2013, 20, R155-R170.	1.6	91
1116	The Changing Natural History of Metastatic Prostate Cancer. Cancer Journal (Sudbury, Mass), 2013, 19, 19-24.	1.0	37
1117	JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells. Cancer Research, 2013, 73, 5288-5298.	0.4	152
1118	The stem cell marker CD133 is highly expressed in sessile serrated adenoma and its borderline variant compared with hyperplastic polyp. Journal of Clinical Pathology, 2013, 66, 403-408.	1.0	8
1119	Introduction to Stem Cells. , 2013, , 1-27.		1
1120	xCT Inhibition Depletes CD44v-Expressing Tumor Cells That Are Resistant to EGFR-Targeted Therapy in Head and Neck Squamous Cell Carcinoma. Cancer Research, 2013, 73, 1855-1866.	0.4	163
1121	CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition. PLoS ONE, 2013, 8, e57314.	1.1	83
1122	Seeing the Invisible: How Mathematical Models Uncover Tumor Dormancy, Reconstruct the Natural History of Cancer, and Assess the Effects of Treatment. Advances in Experimental Medicine and Biology, 2013, 734, 261-282.	0.8	17
1123	Characterization and Clinical Relevance of ALDHbright Populations in Prostate Cancer. Clinical Cancer Research, 2013, 19, 5361-5371.	3.2	67
1124	Prostate Stem Cells in the Development of Benign Prostate Hyperplasia and Prostate Cancer: Emerging Role and Concepts. BioMed Research International, 2013, 2013, 1-10.	0.9	33
1125	Cancer Stem Cell Markers in Head and Neck Squamous Cell Carcinoma. Stem Cells International, 2013, 2013, 1-13.	1.2	88
1126	Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma. Gastroenterology Research and Practice, 2013, 2013, 1-12.	0.7	62
1127	Detection of the Hematopoietic Stem and Progenitor Cell Marker CD133 during Angiogenesis in Three-Dimensional Collagen Gel Culture. Stem Cells International, 2013, 2013, 1-10.	1.2	11
1128	Clinicopathologic Significance of Putative Stem Cell Marker, CD44 and CD133, in Human Gastric Carcinoma. Journal of Surgical Oncology, 2013, 107, 799-806.	0.8	43
1129	Urinary <i>a</i> HGF, IGFBP3 and OPN as diagnostic and prognostic biomarkers for prostate cancer. Biomarkers in Medicine, 2013, 7, 831-841.	0.6	12
1130	Cancerâ€initiating cell markerâ€positive cells generate metastatic tumors that recapitulate the histology of the primary tumors. Pathology International, 2013, 63, 94-101.	0.6	2
1131	Alteration of cancer stem cellâ€ike phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck. Cancer Science, 2013, 104, 1468-1475.	1.7	53
1132	The effects of <scp>CD</scp> 44 downâ€regulation on stem cell properties of head and neck cancer cell lines. Journal of Oral Pathology and Medicine, 2013, 42, 682-690.	1.4	17

#	Article	IF	Citations
1133	<scp>ADAM</scp> 17â€mediated <scp>CD</scp> 44 cleavage promotes orasphere formation or stemness and tumorigenesis in <scp>HNSCC</scp> . Cancer Medicine, 2013, 2, 793-802.	1.3	25
1134	Surface CD24 distinguishes between low differentiated and transitâ€amplifying cells in the basal layer of human prostate. Prostate, 2013, 73, 1576-1590.	1.2	22
1135	Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20111-20116.	3.3	144
1136	Increased Chemosensitivity via Targeting Testicular Nuclear Receptor 4 (TR4)-Oct4-Interleukin 1 Receptor Antagonist (IL1Ra) Axis in Prostate Cancer CD133+ Stem/Progenitor Cells to Battle Prostate Cancer. Journal of Biological Chemistry, 2013, 288, 16476-16483.	1.6	49
1137	Functional OCT4-specific CD4 ⁺ and CD8 ⁺ T cells in healthy controls and ovarian cancer patients. Oncolmmunology, 2013, 2, e24271.	2.1	11
1138	Advanced technologies for studying circulating tumor cells at the protein level. Expert Review of Proteomics, 2013, 10, 579-589.	1.3	3
1140	The significance of galectin-3 as a new basal cell marker in prostate cancer. Cell Death and Disease, 2013, 4, e753-e753.	2.7	32
1141	Cancer Stem Cells. , 2013, , 387-412.		0
1142	Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncolmmunology, 2013, 2, e24520.	2.1	38
1143	Cancer Stem Cells. , 2013, , 1-22.		1
1144	Isolation and enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free medium. Oncology Letters, 2013, 5, 787-792.	0.8	27
1146	Biological characteristics of Rh123high stem-like cells in a side population of 786-O renal carcinoma cells. Oncology Letters, 2013, 5, 1903-1908.	0.8	25
1147	Characterization of side population cells isolated from the gastric cancer cell line SGC-7901. Oncology Letters, 2013, 5, 877-883.	0.8	25
1148	CD44+ gastric cancer cells with stemness properties are chemoradioresistant and highly invasive. Oncology Letters, 2013, 5, 1793-1798.	0.8	30
1150	CD133 expression in osteosarcoma and derivation of CD133+ cells. Molecular Medicine Reports, 2013, 7, 577-584.	1.1	52
1151	CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. International Journal of Molecular Medicine, 2013, 31, 315-324.	1.8	51
1152	CD133+ subpopulation of the HT1080 human fibrosarcoma cell line exhibits cancer stem-like characteristics. Oncology Reports, 2013, 30, 815-823.	1.2	16
1153	Etoposide induces apoptosis via the mitochondrial- and caspase-dependent pathways and in non-cancer stem cells in Panc-1 pancreatic cancer cells. Oncology Reports, 2013, 30, 2765-2770.	1.2	10

#	Article	IF	CITATIONS
1154	On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences and Engineering, 2013, 10, 263-278.	1.0	11
1155	Biological characteristics of CD133+ cells in nasopharyngeal carcinoma. Oncology Reports, 2013, 30, 57-63.	1.2	24
1156	Enrichment of Prostate Cancer Stem-Like Cells from Human Prostate Cancer Cell Lines by Culture in Serum-Free Medium and Chemoradiotherapy. International Journal of Biological Sciences, 2013, 9, 472-479.	2.6	64
1157	Molecular Culprits Generating Brain Tumor Stem Cells. Brain Tumor Research and Treatment, 2013, 1, 9.	0.4	5
1158	Role of CEACAM1 and CEACAM20 in an In Vitro Model of Prostate Morphogenesis. PLoS ONE, 2013, 8, e53359.	1.1	15
1159	Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer. PLoS ONE, 2013, 8, e53701.	1.1	129
1160	CD133 Expression and the Prognosis of Colorectal Cancer: A Systematic Review and Meta-Analysis. PLoS ONE, 2013, 8, e56380.	1.1	112
1161	A Small Molecule (Pluripotin) as a Tool for Studying Cancer Stem Cell Biology: Proof of Concept. PLoS ONE, 2013, 8, e57099.	1.1	9
1162	Cancer Stem Cell-Like Side Population Cells in Clear Cell Renal Cell Carcinoma Cell Line 769P. PLoS ONE, 2013, 8, e68293.	1.1	41
1163	Ectopically Expressed Variant Form of Sperm Mitochondria-Associated Cysteine-Rich Protein Augments Tumorigenicity of the Stem Cell Population of Lung Adenocarcinoma Cells. PLoS ONE, 2013, 8, e69095.	1.1	13
1164	Early Human Prostate Adenocarcinomas Harbor Androgen-Independent Cancer Cells. PLoS ONE, 2013, 8, e74438.	1.1	26
1165	Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines. PLoS ONE, 2013, 8, e57020.	1.1	109
1166	Immune suppression and evasion in patients with head and neck cancer. Advances in Cellular and Molecular Otolaryngology, 2013, 1, 21809.	0.4	3
1167	CXCR4 in Central and Peripheral Lymphoid Niches – Physiology, Pathology and Therapeutic Perspectives in Immune Deficiencies and Malignancies. , 2014, , .		1
1168	Investigating Molecular Profiles of Ovarian Cancer: An Update on Cancer Stem Cells. Journal of Cancer, 2014, 5, 301-310.	1.2	39
1169	Expression of stem cell marker CD44 in prostate cancer biopsies predicts cancer grade in radical prostatectomy specimens. Polish Journal of Pathology, 2014, 4, 291-295.	0.1	19
1170	Selective Lentiviral Gene Delivery to CD133-Expressing Human Glioblastoma Stem Cells. PLoS ONE, 2014, 9, e116114.	1.1	23
1171	Global Gene Expression Analysis of Canine Osteosarcoma Stem Cells Reveals a Novel Role for COX-2 in Tumour Initiation. PLoS ONE, 2014, 9, e83144.	1.1	40

#	Article	IF	Citations
1172	Ovarian Cancer Spheroid Cells with Stem Cell-Like Properties Contribute to Tumor Generation, Metastasis and Chemotherapy Resistance through Hypoxia-Resistant Metabolism. PLoS ONE, 2014, 9, e84941.	1.1	279
1173	Parathyroid Hormone Related-Protein Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer. PLoS ONE, 2014, 9, e85803.	1.1	36
1174	Cervical Cancer Cells with Positive Sox2 Expression Exhibit the Properties of Cancer Stem Cells. PLoS ONE, 2014, 9, e87092.	1.1	87
1175	Identification of CD24 as a Cancer Stem Cell Marker in Human Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e99412.	1.1	49
1176	Metastasis-Initiating Cells in Renal Cancer. Current Signal Transduction Therapy, 2014, 8, 240-246.	0.3	17
1177	Multidrug-resistant hepatocellular carcinoma cells are enriched for CD133+ subpopulation through activation of TGF-1/Smad3 pathway. African Journal of Biotechnology, 2014, 13, 3538-3546.	0.3	0
1178	Chemoresistance in Cancer Stem Cells and Strategies to Overcome Resistance. Chemotherapy, 2014, 03,	0.0	9
1179	Casein Kinase 2: A Novel Player in Glioblastoma Therapy and Cancer Stem Cells. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 08, .	0.1	14
1180	The Role of the "Cancer Stem Cell Niche―in Cancer Initiation and Progression. , 2014, , .		2
1183	New perspectives for prostate cancer treatment: <i>in vitro</i> inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media. Aging Male, 2014, 17, 94-101.	0.9	26
1185	Cancer stem cells: are they responsible for treatment failure?. Future Oncology, 2014, 10, 2033-2044.	1.1	13
1186	Targeting the <scp>N</scp> otch signaling pathway in cancer therapeutics. Thoracic Cancer, 2014, 5, 473-486.	0.8	37
1187	The long-acting COX-2 inhibitor mavacoxib (Trocoxilâ,,¢) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Veterinary Research, 2014, 10, 184.	0.7	23
1188	Cancer stem cells as a target population for drug discovery. Future Medicinal Chemistry, 2014, 6, 1567-1585.	1.1	10
1189	Role of mesenchymal cells in the natural history of ovarian cancer: a review. Journal of Translational Medicine, 2014, 12, 271.	1.8	23
1190	Brain Metastasis-Initiating Cells: Survival of the Fittest. International Journal of Molecular Sciences, 2014, 15, 9117-9133.	1.8	22
1191	MC3 Mucoepidermoid carcinoma cell line enriched cancer stem-like cells following chemotherapy. Oncology Letters, 2014, 7, 1569-1575.	0.8	5
1192	Expressions of ABCG2, CD133, and Podoplanin in Salivary Adenoid Cystic Carcinoma. BioMed Research International, 2014, 2014, 1-11.	0.9	7

#	Article	IF	CITATIONS
1193	Clinical significance of putative cancer stem cell marker CD44 in different histological subtypes of lung cancer. Cancer Biomarkers, 2014, 14, 457-467.	0.8	43
1194	Expression profiling of stem cell signaling alters with spheroid formation in CD133high/CD44high prostate cancer stem cells. Oncology Letters, 2014, 7, 2103-2109.	0.8	42
1195	Development of In Vitro Method for Assaying Anti-Angiogenic Effect of Drugs., 2014,, 63-111.		1
1196	Cancer stem cell: A rogue responsible for tumor development and metastasis. Indian Journal of Cancer, 2014, 51, 282.	0.2	17
1197	Expression and prognostic value of tumor stem cell markers ALDH1 and CD133 in colorectal carcinoma. Oncology Letters, 2014, 7, 507-512.	0.8	43
1198	Dynamic Changes in Numbers and Properties of Circulating Tumor Cells and Their Potential Applications. Cancers, 2014, 6, 2369-2386.	1.7	23
1199	Cancer stem cells: emerging actors in both basic and clinical cancer research. Turkish Journal of Biology, 2014, 38, 829-838.	2.1	7
1200	The Low Chamber Pancreatic Cancer Cells Had Stem-Like Characteristics in Modified Transwell System: Is It a Novel Method to Identify and Enrich Cancer Stem-Like Cells?. BioMed Research International, 2014, 2014, 1-10.	0.9	7
1201	Cancer stem cells – important players in tumor therapy resistance. FEBS Journal, 2014, 281, 4779-4791.	2.2	225
1202	The role of cancer stem cells in glioblastoma. Neurosurgical Focus, 2014, 37, E6.	1.0	97
1203	Targeting SIM2-s Decreases Glioma Cells Invasion through Mesenchymal-Epithlial Transition. Journal of Cellular Biochemistry, 2014, 115, n/a-n/a.	1.2	9
1204	Tailoring Peptidomimetics for Targeting Protein–Protein Interactions. Molecular Cancer Research, 2014, 12, 967-978.	1.5	41
1205	Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules. Biomaterials, 2014, 35, 7762-7773.	5.7	82
1207	Differential expression of stem cell markers and ABCG2 in recurrent prostate cancer. Prostate, 2014, 74, 1498-1505.	1.2	46
1208	On the probability of cure for heavy-ion radiotherapy. Physics in Medicine and Biology, 2014, 59, 3829-3842.	1.6	5
1209	Cancer Stem Cells and Regulatory RNAs Crosstalk: Fostering Possibilities for Cancer Therapies. BioScience, 2014, 64, 1138-1149.	2.2	3
1210	microRNAs in cancer stem cells: current status and future directions. Tumor Biology, 2014, 35, 8395-8405.	0.8	43
1211	CD133 as Biomarker in Breast Cancer. , 2014, , 1-14.		0

#	Article	IF	CITATIONS
1212	Cancer stem cells – the current status of an old concept: literature review and clinical approaches. Biological Research, 2014, 47, 66.	1.5	60
1213	Developing ovarian cancer stem cell models: laying the pipeline from discovery to clinical intervention. Molecular Cancer, 2014, 13, 262.	7.9	43
1214	Immunohistochemical expression of stem cell markers CD133 and Oct4 in colorectal adenocarcinoma. Egyptian Journal of Pathology, 2014, 34, 44-51.	0.0	8
1215	Regulators of prostate cancer stem cells. Current Opinion in Oncology, 2014, 26, 328-333.	1.1	21
1216	Cancer stem cells. Anti-Cancer Drugs, 2014, 25, 353-367.	0.7	33
1217	Matrix Regulation of Tumor-Initiating Cells. Progress in Molecular Biology and Translational Science, 2014, 126, 243-256.	0.9	5
1218	miRNA-128 Suppresses Prostate Cancer by Inhibiting BMI-1 to Inhibit Tumor-Initiating Cells. Cancer Research, 2014, 74, 4183-4195.	0.4	128
1219	TRIB1 Supports Prostate Tumorigenesis and Tumor-Propagating Cell Survival by Regulation of Endoplasmic Reticulum Chaperone Expression. Cancer Research, 2014, 74, 4888-4897.	0.4	53
1220	Prospective study on the relationship between clinical efficacy of secondary hormone therapy with flutamide and neuroendocrine differentiation in patients with relapsed prostate cancer after first line hormone therapy. Scandinavian Journal of Urology, 2014, 48, 436-444.	0.6	4
1221	Biological and clinical significance of cancer stem cell plasticity. Clinical and Translational Medicine, 2014, 3, 32.	1.7	40
1222	Preliminary Study on the Expression and the Clinical Significance of CD133 in Peripheral Blood of Patients with Gastric Adenocarcinoma. ISRN Gastroenterology, 2014, 2014, 1-11.	1.5	3
1223	Comparison of nucleostemin gene expression in CD133+ and CD133â^' cell population in colon cancer cell line HT29. Journal of Cancer Research and Therapeutics, 2014, 10, 68.	0.3	2
1224	Immunohistochemical Detection of Cancer Stem Cell Related Markers CD44 and CD133 in Metastatic Colorectal Cancer Patients. BioMed Research International, 2014, 2014, 1-7.	0.9	27
1225	Traceable clonal culture and chemodrug assay of heterogeneous prostate carcinoma PC3 cells in microfluidic single cell array chips. Biomicrofluidics, 2014, 8, 064103.	1.2	16
1226	Identification and validation of PROM1 and CRTC2 mutations in lung cancer patients. Molecular Cancer, 2014, 13, 19.	7.9	15
1227	Admixture mapping of prostate cancer in African Americans participating in the North Carolina‣ouisiana Prostate Cancer Project (PCaP). Prostate, 2014, 74, 1-9.	1.2	24
1228	Conserved Two-Step Regulatory Mechanism of Human Epithelial Differentiation. Stem Cell Reports, 2014, 2, 180-188.	2.3	18
1229	c-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral Oncology, 2014, 50, 633-639.	0.8	54

#	Article	IF	CITATIONS
1230	Colorectal cancer defeating? Challenge accepted!. Molecular Aspects of Medicine, 2014, 39, 61-81.	2.7	17
1231	Targeted therapy aimed at cancer stem cells: Wilms' tumor as an example. Pediatric Nephrology, 2014, 29, 815-823.	0.9	28
1232	Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer and Metastasis Reviews, 2014, 33, 469-496.	2.7	100
1233	Normoxic or hypoxic CD44/CD41 a 2 B 1 integrin-positive prostate PC3 cell side fractions and cancer stem cells. Medical Oncology, 2014, 31, 779.	1.2	3
1234	Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer, 2014, 17, 97-106.	2.7	69
1235	"The development tumor model―to study and monitor the entire progression of both primary and metastatic tumors. Tumor Biology, 2014, 35, 2219-2230.	0.8	6
1236	DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death and Differentiation, 2014, 21, 761-773.	5.0	27
1237	Evolution of the Cancer Stem Cell Model. Cell Stem Cell, 2014, 14, 275-291.	5.2	1,825
1238	Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer, 2014, 14, 90.	1.1	46
1239	Embryonic stem cell-specific signature in cervical cancer. Tumor Biology, 2014, 35, 1727-1738.	0.8	19
1240	The role of vitamin D in reducing cancer risk and progression. Nature Reviews Cancer, 2014, 14, 342-357.	12.8	1,019
1241	SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene, 2014, 33, 5491-5500.	2.6	105
1242	Cancer Stem Cell-Specific Scavenger Receptor CD36 Drives Glioblastoma Progression. Stem Cells, 2014, 32, 1746-1758.	1.4	182
1243	Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation. Carcinogenesis, 2014, 35, 1003-1011.	1.3	74
1244	Prognostic role of salivary <scp>CD</scp> 44sol levels in the followâ€up of laryngeal carcinomas. Journal of Oral Pathology and Medicine, 2014, 43, 276-281.	1.4	10
1245	Immunology of cancer stem cells in solid tumours. A review. European Journal of Cancer, 2014, 50, 649-655.	1.3	93
1246	Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene, 2014, 33, 4451-4463.	2.6	213
1247	Cancer stem cells: A contentious hypothesis now moving forward. Cancer Letters, 2014, 344, 180-187.	3.2	217

#	Article	IF	CITATIONS
1248	The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biology, 2014, 35, 3945-3951.	0.8	181
1249	High placenta-specific 1/low prostate-specific antigen expression pattern in high-grade prostate adenocarcinoma. Cancer Immunology, Immunotherapy, 2014, 63, 1319-1327.	2.0	32
1250	The CD133 ⁺ CD44 ⁺ Precancerous Subpopulation of Oval Cells Is a Therapeutic Target for Hepatocellular Carcinoma. Stem Cells and Development, 2014, 23, 2237-2249.	1.1	27
1251	Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate, 2014, 74, 187-200.	1.2	48
1252	Novel Tumor Antigen-Specific Monoclonal Antibody-Based Immunotherapy to Eradicate Both Differentiated Cancer Cells and Cancer-Initiating Cells in Solid Tumors. Seminars in Oncology, 2014, 41, 685-699.	0.8	10
1253	Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis. British Journal of Cancer, 2014, 110, 2593-2603.	2.9	65
1254	Loss of Androgen Receptor Expression Promotes a Stem-like Cell Phenotype in Prostate Cancer through STAT3 Signaling. Cancer Research, 2014, 74, 1227-1237.	0.4	169
1255	Roles of Wnt/ \hat{l}^2 -catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death and Disease, 2014, 5, e1039-e1039.	2.7	206
1256	Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 737-745.	2.0	36
1257	Low Temperature Plasma Causes Double-Strand Break DNA Damage in Primary Epithelial Cells Cultured From a Human Prostate Tumor. IEEE Transactions on Plasma Science, 2014, 42, 2740-2741.	0.6	14
1258	Side population cell fractions from hepatocellular carcinoma cell lines increased with tumor dedifferentiation, but lack characteristic features of cancer stem cells. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1092-1101.	1.4	8
1259	Combined Genome and Transcriptome Analysis of Single Disseminated Cancer Cells from Bone Marrow of Prostate Cancer Patients Reveals Unexpected Transcriptomes. Cancer Research, 2014, 74, 7383-7394.	0.4	44
1260	Regulation of alternative splicing of CD44 in cancer. Cellular Signalling, 2014, 26, 2234-2239.	1.7	157
1261	Cancer stem cell detection and isolation. Medical Oncology, 2014, 31, 69.	1.2	64
1262	CD133+ Cancer Stem-like Cells in Small Cell Lung Cancer Are Highly Tumorigenic and Chemoresistant but Sensitive to a Novel Neuropeptide Antagonist. Cancer Research, 2014, 74, 1554-1565.	0.4	166
1263	Application of <scp>iPS</scp> cell technology to cancer epigenome study: Uncovering the mechanism of cell status conversion for drug resistance in tumor. Pathology International, 2014, 64, 299-308.	0.6	4
1264	Combination of Sasa quelpaertensis Nakai Leaf Extract and Cisplatin Suppresses the Cancer Stemness and Invasion of Human Lung Cancer Cells. Integrative Cancer Therapies, 2014, 13, 529-540.	0.8	12
1265	Antibody approaches to prepare clinically transplantable cells from human embryonic stem cells: Identification of human embryonic stem cell surface markers by monoclonal antibodies. Biotechnology Journal, 2014, 9, 915-920.	1.8	11

#	Article	IF	CITATIONS
1266	CD44 targets Na+/H+ exchanger 1 to mediate MDA-MB-231 cells' metastasis via the regulation of ERK1/2. British Journal of Cancer, 2014, 110, 916-927.	2.9	31
1267	Distinct expression of cytokeratin, N-cadherin and CD133 in circulating tumor cells of metastatic breast cancer patients. Future Oncology, 2014, 10, 1751-1765.	1.1	22
1268	Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death and Differentiation, 2014, 21, 1936-1949.	5.0	46
1269	The Cancer Stem Cell Hypothesis: A Guide to Potential Molecular Targets. Cancer Investigation, 2014, 32, 470-495.	0.6	77
1270	The Clinical Potential of Targeted Nanomedicine: Delivering to Cancer Stem-like Cells. Molecular Therapy, 2014, 22, 278-291.	3.7	50
1271	Novel role of pancreatic differentiation 2 in facilitating self-renewal and drug resistance of pancreatic cancer stem cells. British Journal of Cancer, 2014, 111, 486-496.	2.9	37
1272	CD133 expression: a potential prognostic marker for non-small cell lung cancers. International Journal of Clinical Oncology, 2014, 19, 254-259.	1.0	57
1273	NOTCH1 signaling promotes chemoresistance via regulating ABCC1 expression in prostate cancer stem cells. Molecular and Cellular Biochemistry, 2014, 393, 265-270.	1.4	50
1274	Human placenta-derived neurospheres are susceptible to transformation after extensive in vitro expansion. Stem Cell Research and Therapy, 2014, 5, 55.	2.4	5
1275	Stem Cells in Cancer: Should We Believe or Not?. , 2014, , .		2
1276	Immunotherapy of cancer stem cells in solid tumors: initial findings and future prospective. Expert Opinion on Biological Therapy, 2014, 14, 1259-1270.	1.4	18
1277	Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity. Hepatology International, 2014, 8, 330-338.	1.9	8
1278	Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Molecular Cancer, 2014, 13, 55.	7.9	133
1279	Tackling the cancer stem cells — what challenges do they pose?. Nature Reviews Drug Discovery, 2014, 13, 497-512.	21.5	831
1280	CRTC2 and PROM1 expression in non-small cell lung cancer: analysis by Western blot and immunohistochemistry. Tumor Biology, 2014, 35, 11719-11726.	0.8	5
1281	Reconstruction of the natural history of metastatic cancer and assessment of the effects of surgery: Gompertzian growth of the primary tumor. Mathematical Biosciences, 2014, 247, 47-58.	0.9	21
1282	DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers. Biochemical and Biophysical Research Communications, 2014, 447, 315-322.	1.0	28
1283	Validation of stem cell markers in clinical prostate cancer: \hat{l} ±6-Integrin is predictive for non-aggressive disease. Prostate, 2014, 74, 488-496.	1.2	37

#	Article	IF	CITATIONS
1284	Prostate cancer relevant antigens and enzymes for targeted drug delivery. Journal of Controlled Release, 2014, 187, 118-132.	4.8	86
1285	KIN enhances stem cell-like properties to promote chemoresistance in colorectal carcinoma. Biochemical and Biophysical Research Communications, 2014, 448, 63-69.	1.0	4
1286	Roles of microRNAs during prostatic tumorigenesis and tumor progression. Oncogene, 2014, 33, 135-147.	2.6	108
1287	The role of microRNAs in the regulation of cancer stem cells. Frontiers in Genetics, 2014, 4, 295.	1.1	128
1288	Isolation of Cancer Stem Cells From Human Prostate Cancer Samples. Journal of Visualized Experiments, 2014, , .	0.2	4
1289	OCT3/4 expression is correlated with the invasion of gastric carcinoma. Oncology Letters, 2014, 8, 12-16.	0.8	1
1290	XAV939 inhibits the stemness and migration of neuroblastoma cancer stem cells via repression of tankyrase 1. International Journal of Oncology, 2014, 45, 121-128.	1.4	21
1291	Immunohistochemical expression of four different stem cell markers in prostate cancer: High expression of NANOG in conjunction with hypoxia-inducible factor- $1\hat{l}_{\pm}$ expression is involved in prostate epithelial malignancy. Oncology Letters, 2014, 8, 985-992.	0.8	39
1297	Noninvasive Nanodiagnostics for Cancer. , 2014, , 109-118.		0
1298	BIOINSPIRED ENGINEERED MATRIX TO REGULATE CANCER STEM CELL NICHE. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 1257-1274.	0.1	0
1299	Cells susceptible to epithelial-mesenchymal transition are enriched in stem-like side population cells from prostate cancer. Oncology Reports, 2014, 31, 874-884.	1.2	20
1300	OCT3 and SOX2 promote the transformation of Barrett's esophagus to adenocarcinoma by regulating the formation of tumor stem cells. Oncology Reports, 2014, 31, 1745-1753.	1.2	6
1301	The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Reviews in Molecular Medicine, 2015, 17, e14.	1.6	75
1302	Combination Treatment with All-Trans Retinoic Acid Prevents Cisplatin-Induced Enrichment of CD133+ Tumor-Initiating Cells and Reveals Heterogeneity of Cancer Stem Cell Compartment in Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1027-1036.	0.5	42
1303	Clinicopathological characterisation of duodenal adenocarcinoma with high CD44 variant 9 expression. Pathology, 2015, 47, 647-652.	0.3	1
1304	Advanced research on vasculogenic mimicry in cancer. Journal of Cellular and Molecular Medicine, 2015, 19, 315-326.	1.6	200
1306	Short hairpin RNA targeting AKT1 and PI3K/p85 suppresses the proliferation and self-renewal of lung cancer stem cells. Molecular Medicine Reports, 2015, 12, 363-370.	1,1	6
1307	Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer. Molecular Medicine Reports, 2015, 12, 3531-3536.	1.1	10

#	Article	IF	CITATIONS
1310	Present, Emerging and Possible Future Biomarkers in Castration Resistant Prostate Cancer (CRPC). Current Cancer Drug Targets, 2015, 15, 243-255.	0.8	15
1311	Aberrant Wnt/ \hat{I}^2 -catenin signaling and elevated expression of stem cell proteins are associated with osteosarcoma side population cells of high tumorigenicity. Molecular Medicine Reports, 2015, 12, 5042-5048.	1.1	23
1312	Wound Healing and Cancer Stem Cells: Inflammation as a Driver of Treatment Resistance in Breast Cancer. Cancer Growth and Metastasis, 2015, 8, CGM.S11286.	3.5	94
1313	Formation of spherical cancer stem-like cell colonies with resistance to chemotherapy drugs in the human malignant fibrous histiocytoma NMFH-1 cell line. Oncology Letters, 2015, 10, 3323-3331.	0.8	17
1314	Slug contributes to cancer progression by direct regulation of ERα signaling pathway. International Journal of Oncology, 2015, 46, 1461-1472.	1.4	42
1315	Regulation of the <i>ITGA2</i> gene by epigenetic mechanisms in prostate cancer. Prostate, 2015, 75, 723-734.	1.2	24
1316	ILâ€17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44â€VCAMâ€1 interaction. Prostate, 2015, 75, 883-895.	1.2	32
1317	Cervical cancer stem cells. Cell Proliferation, 2015, 48, 611-625.	2.4	21
1318	A selfâ€enforcing <scp>CD</scp> 44s/ <scp>ZEB</scp> 1 feedback loop maintains <scp>EMT</scp> and stemness properties in cancer cells. International Journal of Cancer, 2015, 137, 2566-2577.	2.3	152
1319	Targeting CD133high Colorectal Cancer Cells In Vitro and In Vivo With an Asymmetric Bispecific Antibody. Journal of Immunotherapy, 2015, 38, 217-228.	1.2	44
1320	Prostate Cancer Stem Cells: Research Advances. International Journal of Molecular Sciences, 2015, 16, 27433-27449.	1.8	52
1321	Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells International, 2015, 2015, 1-19.	1.2	127
1322	Cellular Plasticity in Prostate Cancer Bone Metastasis. Prostate Cancer, 2015, 2015, 1-12.	0.4	21
1323	CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget, 2015, 6, 22361-22374.	0.8	86
1324	Key Roles of Hyaluronan and Its CD44 Receptor in the Stemness and Survival of Cancer Stem Cells. Frontiers in Oncology, 2015, 5, 180.	1.3	149
1325	Stem cell technology and engineering for cancer treatment. Biomedical Research and Therapy, 2015, 2, .	0.3	2
1326	Hedgehog signaling in cancer stem cells: a focus on hematological cancers. Stem Cells and Cloning: Advances and Applications, 2015, 8, 27.	2.3	41
1327	Role of autophagy in the maintenance and function of cancer stem cells. International Journal of Developmental Biology, 2015, 59, 95-108.	0.3	35

#	Article	IF	Citations
1328	Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator \hat{l} "Np63 \hat{l} ±. PLoS ONE, 2015, 10, e0130118.	1.1	31
1329	Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells. PLoS ONE, 2015, 10, e0141090.	1.1	27
1330	ICAM1 Is a Potential Cancer Stem Cell Marker of Esophageal Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0142834.	1.1	47
1331	Association of CD133 polymorphisms and response to bevacizumab in patients with metastatic colorectal cancer. Cancer Biomarkers, 2015, 15, 843-850.	0.8	9
1332	A profile of enzalutamide for the treatment of advanced castration resistant prostate cancer. Cancer Management and Research, 2015, 7, 153.	0.9	7
1333	Targeting cancer stem cells by using the nanoparticles. International Journal of Nanomedicine, 2015, 10, 251.	3.3	45
1334	Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia. Stem Cells International, 2015, 2015, 1-13.	1.2	24
1335	Increased Oxidative Stress as a Selective Anticancer Therapy. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-12.	1.9	140
1336	DNA Methylation: A Possible Target for Current and Future Studies on Cancer?. Epigenetic Diagnosis & Therapy, 2015, 1, 5-13.	0.1	0
1337	Stem cells in gastric cancer. World Journal of Gastroenterology, 2015, 21, 112.	1.4	53
1338	Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells <i>in vitro</i> . Oncotarget, 2015, 6, 37758-37769.	0.8	57
1339	Stem Cells and the Side Population Theory: A Critical Review. Current Tissue Engineering, 2015, 4, 4-10.	0.2	1
1340	Nuclear localized Akt enhances breast cancer stem-like cells through counter-regulation of p21 ^{Waf1/Cip1} and p27 ^{kip1} . Cell Cycle, 2015, 14, 2109-2120.	1.3	49
1341	Cancer stem cell markers in lung cancer. Personalized Medicine Universe, 2015, 4, 40-45.	0.1	15
1342	Circulating CD133+/ESA+ cells in colorectal cancer patients. Journal of Surgical Research, 2015, 199, 362-370.	0.8	13
1343	Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines. Cellular Physiology and Biochemistry, 2015, 36, 784-798.	1.1	71
1344	Cervical Cancer Stem Cells and Their Association with Human Papillomavirus: Are They Ready as Anticancer Targets?., 2015,, 377-399.		2
1345	Breast Cancer Stem Cells: Current Advances and Clinical Implications. Methods in Molecular Biology, 2015, 1293, 1-49.	0.4	85

#	ARTICLE	IF	CITATIONS
1346	Mammary Stem Cells. Methods in Molecular Biology, 2015, 1293, v-vi.	0.4	7
1347	CD26 a cancer stem cell marker and therapeutic target. Biomedicine and Pharmacotherapy, 2015, 71, 135-138.	2.5	41
1349	EpCAM-Antibody-Labeled Noncytotoxic Polymer Vesicles for Cancer Stem Cells-Targeted Delivery of Anticancer Drug and siRNA. Biomacromolecules, 2015, 16, 1695-1705.	2.6	49
1350	Breast Cancer Stem Cells & Springer Briefs in Stem Cells, 2015, , .	0.1	4
1351	The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. Journal of Experimental and Clinical Cancer Research, 2015, 34, 124.	3.5	47
1352	Targeted Cancer Stem Cell Therapy. , 2015, , 123-131.		O
1353	A Concept of Cancer Stem Cells: Entity and Theories. , 2015, , 43-56.		0
1355	Cancer Stem Cell Markers: Classification and Their Significance in Cancer Stem Cells. , 2015, , 57-70.		1
1356	Different Approaches for Anticancer/Antitumor Therapy. , 2015, , 103-121.		0
1357	Tumor growth suppression after xenografting of human colorectal carcinoma cells. Cell and Tissue Biology, 2015, 9, 318-325.	0.2	0
1358	let-7a and its target, insulin-like growth factor 1 receptor, are differentially expressed in recurrent prostate cancer. International Journal of Molecular Medicine, 2015, 36, 1409-1416.	1.8	14
1359	Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes. Oncology Reports, 2015, 34, 2296-2304.	1.2	57
1360	Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells. Oncology Reports, 2015, 34, 2065-2071.	1.2	15
1361	Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs. Cellular Physiology and Biochemistry, 2015, 37, 253-268.	1.1	33
1362	Cancer Stem Cells: Biology and Potential Therapeutic Applications. , 2015, , 151-176.		1
1363	Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clinical Colorectal Cancer, 2015, 14, 133-145.	1.0	50
1364	Cancer stem cell targeting: Are we there yet?. Archives of Pharmacal Research, 2015, 38, 414-422.	2.7	23
1365	Leading causes of castration-resistant prostate cancer. Expert Review of Anticancer Therapy, 2015, 15, 425-432.	1.1	0

#	Article	IF	CITATIONS
1366	Cancer stem cell: Fundamental experimental pathological concepts and updates. Experimental and Molecular Pathology, 2015, 98, 184-191.	0.9	104
1367	Biomarkers and signaling pathways of colorectal cancer stem cells. Tumor Biology, 2015, 36, 1339-1353.	0.8	37
1368	Resistance to Targeted ABC Transporters in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2015, , .	0.1	3
1369	Aldehyde Dehydrogenase Is Regulated by \hat{l}^2 -Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells. Cancer Research, 2015, 75, 1482-1494.	0.4	195
1370	The metabolic state of cancer stem cellsâ€"a valid target for cancer therapy?. Free Radical Biology and Medicine, 2015, 79, 264-268.	1.3	27
1371	Spherical Cancer Models in Tumor Biology. Neoplasia, 2015, 17, 1-15.	2.3	882
1372	Clinical Implications of BMI-1 in Cancer Stem Cells of Laryngeal Carcinoma. Cell Biochemistry and Biophysics, 2015, 71, 261-269.	0.9	20
1373	Multi-Targeted Approach to Treatment of Cancer. , 2015, , .		1
1374	Cervical cancer stem cells: opportunities and challenges. Journal of Cancer Research and Clinical Oncology, 2015, 141, 1889-1897.	1.2	33
1375	Cancer Stem Cells and the Microenvironment. , 2015, , 157-164.e3.		1
1376	Cancer stem cells in representative bone tumors: osteosarcoma, Ewing sarcoma and metastases from breast and prostate carcinomas. , 2015, , 139-148.		0
1377	Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells. Nanomedicine, 2015, 10, 143-160.	1.7	30
1378	Mitochondria as therapeutic targets for cancer stem cells. World Journal of Stem Cells, 2015, 7, 418.	1.3	48
1379	Construction of therapeutically relevant human prostate epithelial fate map by utilising miRNA and mRNA microarray expression data. British Journal of Cancer, 2015, 113, 611-615.	2.9	8
1380	Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer and Prostatic Diseases, 2015, 18, 303-309.	2.0	65
1381	Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor–Initiating Cells. Clinical Cancer Research, 2015, 21, 5324-5337.	3.2	48
1382	Prostate cancer Lncap stem-like cells demonstrate resistance to the hydros-induced apoptosis during the formation of spheres. Biomedicine and Pharmacotherapy, 2015, 74, 1-8.	2.5	4
1383	Differential Expression of Cancer Stem Cell Markers ALDH1 and CD133 in Various Lung Cancer Subtypes. Cancer Investigation, 2015, 33, 294-302.	0.6	69

#	Article	IF	CITATIONS
1384	Expansion of prostate epithelial progenitor cells after inflammation of the mouse prostate. American Journal of Physiology - Renal Physiology, 2015, 308, F1421-F1430.	1.3	14
1385	Clinical and biological significance of stem-like CD133+CXCR4+ cells in esophageal squamous cell carcinoma. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 386-395.	0.4	36
1386	Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Experimental Cell Research, 2015, 336, 141-149.	1,2	38
1387	Existing drugs and their application in drug discovery targeting cancer stem cells. Archives of Pharmacal Research, 2015, 38, 1617-1626.	2.7	21
1388	Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 2015, 162, 184-197.	13.5	1,791
1389	Overlap of CD44 expression between prostatic small cell carcinoma and acinar adenocarcinoma. Human Pathology, 2015, 46, 554-557.	1.1	7
1390	TR4 Nuclear Receptor Alters the Prostate Cancer CD133+ Stem/Progenitor Cell Invasion via Modulating the EZH2-Related Metastasis Gene Expression. Molecular Cancer Therapeutics, 2015, 14, 1445-1453.	1.9	17
1391	Targeting cancer stem cells with an 131 I-labeled anti-AC133 monoclonal antibody in human colorectal cancer xenografts. Nuclear Medicine and Biology, 2015, 42, 505-512.	0.3	17
1392	Mitotic quiescence, but not unique "stemness,―marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB Journal, 2015, 29, 3141-3150.	0.2	48
1393	Increased expression of PHD3 represses the HIF-1 signaling pathway and contributes to poor neovascularization in pancreatic ductal adenocarcinoma. Journal of Gastroenterology, 2015, 50, 975-983.	2.3	14
1394	Autophagy in Cancer Stem Cells: A Potential Link Between Chemoresistance, Recurrence, and Metastasis. BioResearch Open Access, 2015, 4, 97-108.	2.6	130
1395	Synthetic Glycosylated Ether Glycerolipids as Anticancer Agents. RSC Drug Discovery Series, 2015, , 151-179.	0.2	2
1396	Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Experimental Cell Research, 2015, 335, 135-147.	1.2	109
1397	Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering. Journal of Biological Chemistry, 2015, 290, 6639-6652.	1.6	29
1398	DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. Oncogene, 2015, 34, 2741-2752.	2.6	55
1399	Differences in Stemness Properties Associated With the Heterogeneity of Luminal-Type Breast Cancer. Clinical Breast Cancer, 2015, 15, e93-e103.	1.1	12
1400	Antagomir-1290 suppresses CD133+ cells in non-small cell lung cancer by targeting fyn-related Src family tyrosine kinase. Tumor Biology, 2015, 36, 6223-6230.	0.8	16
1401	Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochemical and Photobiological Sciences, 2015, 14, 1433-1450.	1.6	33

#	Article	IF	CITATIONS
1402	miR-25 Modulates Invasiveness and Dissemination of Human Prostate Cancer Cells via Regulation of $\hat{l}\pm v$ and $\hat{l}\pm 6$ -Integrin Expression. Cancer Research, 2015, 75, 2326-2336.	0.4	91
1404	Evaluation of the prognostic value and functional roles of CD44v6 in gastric cancer. Journal of Cancer Research and Clinical Oncology, 2015, 141, 1809-1817.	1.2	24
1405	Keratin 19, a Cancer Stem Cell Marker in Human Hepatocellular Carcinoma. Clinical Cancer Research, 2015, 21, 3081-3091.	3.2	137
1406	Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. British Journal of Cancer, 2015, 112, 1536-1545.	2.9	147
1407	A multi-functional fluorescent scaffold as a multi-colour probe: design and application in targeted cell imaging. RSC Advances, 2015, 5, 83361-83367.	1.7	2
1408	CD44 as a drug delivery target in human cancers: where are we now?. Expert Opinion on Therapeutic Targets, 2015, 19, 1587-1591.	1.5	18
1409	Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. Journal of Controlled Release, 2015, 220, 275-286.	4.8	152
1410	Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocrine-Related Cancer, 2015, 22, R165-R182.	1.6	52
1411	Poly r(C) Binding Protein-1 is Central to Maintenance of Cancer Stem Cells in Prostate Cancer Cells. Cellular Physiology and Biochemistry, 2015, 35, 1052-1061.	1.1	31
1412	Endometrial Cancer Stem Cell as a Potential Therapeutic Target. Seminars in Reproductive Medicine, 2015, 33, 341-349.	0.5	13
1413	Functional significance of macrophages in pancreatic cancer biology. Tumor Biology, 2015, 36, 9119-9126.	0.8	15
1414	Cancer Stem Cells: Formidable Allies of Cancer. Indian Journal of Surgical Oncology, 2015, 6, 400-414.	0.3	5
1415	Therapy escape mechanisms in the malignant prostate. Seminars in Cancer Biology, 2015, 35, 133-144.	4.3	59
1416	miRNA therapy targeting cancer stem cells: a new paradigm for cancer treatment and prevention of tumor recurrence. Therapeutic Delivery, 2015, 6, 323-337.	1.2	47
1417	Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer. American Journal of Pathology, 2015, 185, 2505-2522.	1.9	54
1418	Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocrine-Related Cancer, 2015, 22, T209-T220.	1.6	48
1419	The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Reviews and Reports, 2015, 11, 919-943.	5.6	72
1420	Stimuli-responsive nanoparticles for targeting the tumor microenvironment. Journal of Controlled Release, 2015, 219, 205-214.	4.8	271

#	Article	IF	Citations
1421	Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell, 2015, 17, 260-271.	5.2	328
1422	2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential. European Journal of Medicinal Chemistry, 2015, 104, 1-10.	2.6	22
1423	Enhanced regulation of cell cycle and suppression of osteoblast differentiation molecular signatures by prostate cancer stem-like holoclones. Journal of Clinical Pathology, 2015, 68, 692-702.	1.0	5
1424	Stem Cells and Cancer Stem Cells. SpringerBriefs in Stem Cells, 2015, , 5-24.	0.1	3
1425	A subset of CD45+/CD19 \hat{a} cells in bone marrow may be associated with clinical outcomes of patients with mantle cell lymphoma. Leukemia and Lymphoma, 2015, 56, 3052-3057.	0.6	5
1426	Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology, 2015, 67, 749-759.	0.7	15
1427	BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nature Genetics, 2015, 47, 22-30.	9.4	141
1428	Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4. Gut, 2015, 64, 156-167.	6.1	115
1429	Targeting cancer stem cells in solid tumors by vitamin D. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 79-85.	1.2	48
1430	MicroRNA Expression Profile of Primary Prostate Cancer Stem Cells as a Source of Biomarkers and Therapeutic Targets. European Urology, 2015, 67, 7-10.	0.9	61
1431	Oct-3/4 promotes tumor angiogenesis through VEGF production in glioblastoma. Brain Tumor Pathology, 2015, 32, 31-40.	1.1	9
1432	Cancer Stem Cell-Like Phenotype and Survival Are Coordinately Regulated by Akt/FoxO/Bim Pathway. Stem Cells, 2015, 33, 646-660.	1.4	64
1433	Heterogeneity in cancer stem cells. Cancer Letters, 2015, 357, 63-68.	3.2	40
1434	Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule. Scientific Reports, 2014, 4, 5546.	1.6	38
1435	CD58, aÂnovel surface marker, promotes self-renewal of tumor-initiating cells in colorectal cancer. Oncogene, 2015, 34, 1520-1531.	2.6	40
1436	Functionalizing Liposomes with anti-CD44 Aptamer for Selective Targeting of Cancer Cells. Bioconjugate Chemistry, 2015, 26, 1307-1313.	1.8	145
1437	Cancer stem cells: small subpopulation or evolving fraction?. Integrative Biology (United Kingdom), 2015, 7, 14-23.	0.6	56
1438	Bioengineering., 2015,,.		5

#	Article	IF	CITATIONS
1439	Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. American Journal of Physiology - Cell Physiology, 2015, 308, C89-C100.	2.1	47
1440	The lowâ€affinity nerve growth factor receptor p75 NTR identifies a transient stem cellâ€like state in oral squamous cell carcinoma cells. Journal of Oral Pathology and Medicine, 2015, 44, 410-419.	1.4	4
1441	$HIF1\hat{l}\pm$ Regulates mTOR Signaling and Viability of Prostate Cancer Stem Cells. Molecular Cancer Research, 2015, 13, 556-564.	1.5	77
1442	Stemness markers of osteosarcoma. , 2015, , 205-211.		1
1443	On the Far Side of Telomeres: The Many Roles of Telomerase in the Acquisition and Retention of Cancer Stemness. , 0, , .		0
1444	Lung cancer stem cellsâ€"characteristics, phenotype. Translational Lung Cancer Research, 2016, 5, 272-279.	1.3	52
1445	Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells. International Journal of Biological Sciences, 2016, 12, 1052-1062.	2.6	13
1446	Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Annals of Translational Medicine, 2016, 4, 518-518.	0.7	148
1447	Silencing of ABCG2 by MicroRNA-3163 Inhibits Multidrug Resistance in Retinoblastoma Cancer Stem Cells. Journal of Korean Medical Science, 2016, 31, 836.	1.1	33
1448	Isolation of Breast Cancer Stem Cell from MDA-MB231 Cell Line Using Vincristine. International Journal of Morphology, 2016, 34, 1197-1202.	0.1	1
1449	MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line. International Journal of Biological Sciences, 2016, 12, 427-445.	2.6	77
1450	Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer. Oncotarget, 2016, 7, 58244-58260.	0.8	9
1451	Role of microRNA miR-34a in liver cancer stem cells. Bangladesh Journal of Pharmacology, 2016, 11, 333.	0.1	0
1452	MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget, 2016, 7, 67597-67611.	0.8	46
1453	Establishment and Characterization of a Human Small Cell Osteosarcoma Cancer Stem Cell Line: A New PossibleIn VitroModel for Discovering Small Cell Osteosarcoma Biology. Stem Cells International, 2016, 2016, 1-18.	1.2	5
1454	Glioma Stem Cells: Signaling, Microenvironment, and Therapy. Stem Cells International, 2016, 2016, 1-10.	1.2	140
1455	Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells International, 2016, 2016, 1-16.	1.2	288
1456	Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells International, 2016, 2016, 1-17.	1.2	131

#	Article	IF	Citations
1457	The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells. Stem Cells International, 2016, 2016, 1-10.	1.2	9
1458	Esophageal cancer stem cells and implications for future therapeutics. OncoTargets and Therapy, 2016, 9, 2247.	1.0	18
1459	Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells. Toxins, 2016, 8, 199.	1.5	48
1460	Anti-Cancer Stem-like Cell Compounds in Clinical Development $\hat{a} \in \text{``An Overview and Critical Appraisal.}$ Frontiers in Oncology, 2016, 6, 115.	1.3	42
1461	Profiling the Behavior of Distinct Populations of Head and Neck Cancer Stem Cells. Cancers, 2016, 8, 7.	1.7	25
1462	Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives. International Journal of Molecular Sciences, 2016, 17, 43.	1.8	42
1463	Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer. International Journal of Molecular Sciences, 2016, 17, 1163.	1.8	40
1464	Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. International Journal of Molecular Sciences, 2016, 17, 1552.	1.8	27
1465	LGR5 Is a Gastric Cancer Stem Cell Marker Associated with Stemness and the EMT Signature Genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1. PLoS ONE, 2016, 11, e0168904.	1.1	49
1466	Could Vitamin D Analogues Be Used to Target Leukemia Stem Cells?. International Journal of Molecular Sciences, 2016, 17, 889.	1.8	2
1467	Promising Druggable Target in Head and Neck Squamous Cell Carcinoma: Wnt Signaling. Frontiers in Pharmacology, 2016, 7, 244.	1.6	32
1468	Glioblastoma Multiforme Cancer Stem Cells Express Components of the Renin–Angiotensin System. Frontiers in Surgery, 2016, 3, 51.	0.6	40
1469	The NF-κB Pathway and Cancer Stem Cells. Cells, 2016, 5, 16.	1.8	198
1470	Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications. Theranostics, 2016, 6, 1160-1175.	4.6	75
1471	Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma‣ike by Reprogramming. Journal of Cellular Physiology, 2016, 231, 2040-2047.	2.0	14
1472	<i>AXIN2</i> expression predicts prostate cancer recurrence and regulates invasion and tumor growth. Prostate, 2016, 76, 597-608.	1.2	14
1473	Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. BMC Cancer, 2016, 16, 377.	1.1	28
1474	Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment. Experimental Biology and Medicine, 2016, 241, 1653-1662.	1.1	29

#	Article	IF	Citations
1475	The Role of the p53 Protein in Stem-Cell Biology and Epigenetic Regulation. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026153.	2.9	35
1476	A Nearâ€Infrared Laserâ€Activated "Nanobomb†for Breaking the Barriers to MicroRNA Delivery. Advanced Materials, 2016, 28, 347-355.	11.1	48
1477	High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors. Medical Physics, 2016, 43, 6632-6643.	1.6	3
1478	Identification and characterization of cancer stem cells in canine mammary tumors. Acta Veterinaria Scandinavica, 2016, 58, 86.	0.5	14
1479	Downregulation of microRNA-574 in cancer stem cells causes recurrence of prostate cancer via targeting REL. Oncology Reports, 2016, 36, 3651-3656.	1.2	6
1480	miR-148a inhibits self-renewal of thyroid cancer stem cells via repressing INO80 expression. Oncology Reports, 2016, 36, 3387-3396.	1.2	19
1481	Potential Role of CD133 Expression in the Susceptibility of Human Liver Cancer Stem-Like Cells to TRAIL. Oncology Research, 2016, 24, 495-509.	0.6	17
1482	AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Scientific Reports, 2016, 6, 28436.	1.6	25
1483	Cancer Stem Cells. , 2016, , 807-812.		1
1484	Isolation and Propagation of Glioma Stem Cells from Acutely Resected Tumors. Methods in Molecular Biology, 2016, 1516, 361-369.	0.4	11
1485	Reporter Systems to Study Cancer Stem Cells. Methods in Molecular Biology, 2016, 1516, 319-333.	0.4	9
1486	Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials, 2016, 99, 1-15.	5.7	102
1487	The ever-changing landscape of pancreatic cancer stem cells. Pancreatology, 2016, 16, 489-496.	0.5	27
1488	Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma. Tumor Biology, 2016, 37, 11843-11859.	0.8	19
1489	Viable Cancer Cells in the Remnant Stomach are a Potential Source of Peritoneal Metastasis after Curative Distal Gastrectomy for Gastric Cancer. Annals of Surgical Oncology, 2016, 23, 2920-2927.	0.7	14
1490	Defining a Population of Stem-like Human Prostate Cancer Cells That Can Generate and Propagate Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 4505-4516.	3.2	78
1491	Combination therapy induces unfolded protein response andÂcytoskeletal rearrangement leading to mitochondrial apoptosis in prostate cancer. Molecular Oncology, 2016, 10, 949-965.	2.1	9
1492	Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opinion on Drug Delivery, 2016, 13, 987-998.	2.4	11

#	Article	IF	Citations
1493	Modeling head and neck cancer stem cell-mediated tumorigenesis. Cellular and Molecular Life Sciences, 2016, 73, 3279-3289.	2.4	7
1494	Variant isoforms of CD44 expression in upper tract urothelial cancer as a predictive marker for recurrence and mortality. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 337.e19-337.e26.	0.8	20
1495	Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5592-5597.	3.3	81
1496	Mitochondrial dysfunction-mediated apoptosis resistance associates with defective heat shock protein response in African–American men with prostate cancer. British Journal of Cancer, 2016, 114, 1090-1100.	2.9	27
1497	Prognostic significance of stem cell marker CD133 determined by promoter methylation but not by immunohistochemical expression in malignant gliomas. Journal of Neuro-Oncology, 2016, 127, 221-232.	1.4	13
1498	Current evidence for cancer stem cells in gastrointestinal tumors and future research perspectives. Critical Reviews in Oncology/Hematology, 2016, 107, 54-71.	2.0	6
1499	The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges. Asian Journal of Urology, 2016, 3, 203-210.	0.5	16
1500	Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Therapeutics, 2016, 26, 335-347.	2.0	37
1501	Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncology Letters, 2016, 12, 2254-2260.	0.8	23
1502	The plant-derived triterpenoid tingenin B is a potent anticancer agent due to its cytotoxic activity on cancer stem cells of breast cancer inÂvitro. Chemico-Biological Interactions, 2016, 260, 248-255.	1.7	20
1503	Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating miRNAs. Journal of Hematology and Oncology, 2016, 9, 90.	6.9	53
1505	miR-34C Disrupts the Stemness of Purified CD133 + Prostatic Cancer Stem Cells. Urology, 2016, 96, 177.e1-177.e9.	0.5	6
1506	CD44 variantâ€dependent redox status regulation in liver flukeâ€associated cholangiocarcinoma: A target for cholangiocarcinoma treatment. Cancer Science, 2016, 107, 991-1000.	1.7	57
1507	Pluripotent Stem Cells From Livestock. , 2016, , 312-354.		0
1508	Metabolism in Cancer. Recent Results in Cancer Research, 2016, , .	1.8	5
1509	Metabolic Features of Cancer Treatment Resistance. Recent Results in Cancer Research, 2016, 207, 135-156.	1.8	34
1511	Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells. Experimental and Molecular Medicine, 2016, 48, e255-e255.	3.2	51
1512	Development of a Patient-Derived Xenograft Model Using Brain Tumor Stem Cell Systems to Study Cancer. Methods in Molecular Biology, 2016, 1458, 231-245.	0.4	4

#	Article	IF	CITATIONS
1514	Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells. Scientific Reports, 2016, 6, 23562.	1.6	47
1515	SOX9 is a novel cancer stem cell marker surrogated by osteopontin in human hepatocellular carcinoma. Scientific Reports, 2016, 6, 30489.	1.6	80
1516	Enrichment and Interrogation of Cancer Stem Cells. , 2016, , 59-98.		7
1517	Breast Cancer Stem Cells and the Move Toward High-Resolution Stem Cell Systems. , 2016, , 121-148.		2
1518	Circulating Tumor Cells, Cancer Stem Cells, and Emerging Microfluidic Detection Technologies With Clinical Applications., 2016,, 473-497.		2
1519	v-Src Oncogene Induces Trop2 Proteolytic Activation via Cyclin D1. Cancer Research, 2016, 76, 6723-6734.	0.4	22
1520	CD44: More than a mere stem cell marker. International Journal of Biochemistry and Cell Biology, 2016, 81, 166-173.	1.2	186
1521	Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumor Biology, 2016, 37, 14949-14960.	0.8	12
1522	Evaluation of the immunogenicity of ALDHhigh human head and neck squamous cell carcinoma cancer stem cells in vitro. Oral Oncology, 2016, 59, 30-42.	0.8	23
1523	Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. International Journal of Molecular Medicine, 2016, 38, 619-626.	1.8	90
1524	Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine, 2016, 11, 3261-3282.	1.7	36
1525	Association between cancer stem cell-like properties and epithelial-to-mesenchymal transition in primary and secondary cancer cells. International Journal of Oncology, 2016, 49, 991-1000.	1.4	11
1526	CD44v3+/CD24â^ cells possess cancer stem cell-like properties in human oral squamous cell carcinoma. International Journal of Oncology, 2016, 48, 99-109.	1.4	39
1527	Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Scientific Reports, 2016, 6, 19800.	1.6	45
1529	Biological characteristics of side population cells in a self-established human ovarian cancer cell line. Oncology Letters, 2016, 12, 41-48.	0.8	8
1530	Comparative Expression Analysis of Putative Cancer Stem Cell Markers CD44 and ALDH1A1 in Various Skin Cancer Subtypes. International Journal of Biological Markers, 2016, 31, 53-61.	0.7	38
1531	Isolation and Characterization of a Head and Neck Squamous Cell Carcinoma Subpopulation Having Stem Cell Characteristics. Journal of Visualized Experiments, 2016, , .	0.2	14
1532	Role of CD133+ cells in tongue squamous carcinomas: Characteristics of â€~stemness' in vivo and in vitro. Oncology Letters, 2016, 12, 863-870.	0.8	5

#	ARTICLE	IF	CITATIONS
1533	Molecular Radio-Oncology. Recent Results in Cancer Research, 2016, , .	1.8	1
1534	Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells. Methods in Molecular Biology, 2016, 1443, 181-201.	0.4	16
1535	Cancer Stem Cells. Recent Results in Cancer Research, 2016, 198, 25-44.	1.8	7
1536	The Interaction between Cancer Stem Cell Marker CD133 and Src Protein Promotes Focal Adhesion Kinase (FAK) Phosphorylation and Cell Migration. Journal of Biological Chemistry, 2016, 291, 15540-15550.	1.6	50
1537	The Nuclear Receptor Superfamily. Methods in Molecular Biology, 2016, , .	0.4	0
1538	Saikosaponin-d: A potential chemotherapeutics in castration resistant prostate cancer by suppressing cancer metastases and cancer stem cell phenotypes. Biochemical and Biophysical Research Communications, 2016, 474, 722-729.	1.0	27
1539	CD133 does not enrich for the stem cell activity in vivo in adult mouse prostates. Stem Cell Research, 2016, 16, 597-606.	0.3	10
1540	BMI-1 Targeting Interferes with Patient-Derived Tumor-Initiating Cell Survival and Tumor Growth in Prostate Cancer. Clinical Cancer Research, 2016, 22, 6176-6191.	3.2	49
1541	Role of Pericellular Matrix in the Regulation of Cancer Stemness. Stem Cell Reviews and Reports, 2016, 12, 464-475.	5.6	24
1542	Nucleostemin promotes the proliferation of human glioma via Wnt/βâ€Catenin pathway. Neuropathology, 2016, 36, 237-249.	0.7	12
1543	Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials, 2016, 104, 145-157.	5.7	39
1544	Modulatory roles of microRNAs in the regulation of different signalling pathways in large bowel cancer stem cells. Biology of the Cell, 2016, 108, 51-64.	0.7	32
1545	Cancer stem cells and personalized cancer nanomedicine. Nanomedicine, 2016, 11, 307-320.	1.7	27
1546	Plumbagin, a naphthaquinone derivative induces apoptosis in BRCA 1/2 defective castrate resistant prostate cancer cells as well as prostate cancer stem-like cells. Pharmacological Research, 2016, 105, 134-145.	3.1	23
1547	Wnt/ \hat{l}^2 -catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes and Diseases, 2016, 3, 11-40.	1.5	223
1548	Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis. Current Urology Reports, 2016, 17, 11.	1.0	30
1549	Numerical resolution of a model of tumour growth. Mathematical Medicine and Biology, 2016, 33, 57-85.	0.8	2
1550	New surprises from an old favourite: The emergence of telomerase as a key player in the regulation of cancer stemness. Biochimie, 2016, 121, 170-178.	1.3	22

#	Article	IF	CITATIONS
1551	Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells. Cancer Letters, 2016, 371, 326-333.	3.2	11
1552	Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cellular Immunology, 2016, 300, 41-45.	1.4	79
1553	Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Advanced Drug Delivery Reviews, 2016, 99, 206-211.	6.6	69
1554	Stem cell transcription factor NANOG in cancers – is eternal youth a curse?. Expert Opinion on Therapeutic Targets, 2016, 20, 407-417.	1.5	11
1555	Therapeutic strategies targeting cancer stem cells. Cancer Science, 2016, 107, 5-11.	1.7	182
1556	Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis. Cancer Medicine, 2016, 5, 61-73.	1.3	18
1557	Tumor-Initiating Cells: Emerging Biophysical Methods of Isolation. Current Stem Cell Reports, 2016, 2, 21-32.	0.7	5
1558	The epigenetics of tumour initiation: cancer stem cells and their chromatin. Current Opinion in Genetics and Development, 2016, 36, 8-15.	1.5	53
1559	Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too?. Cellular and Molecular Life Sciences, 2016, 73, 1803-1823.	2.4	15
1560	Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 217-223.	1.0	8
1561	Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene, 2016, 35, 5963-5976.	2.6	78
1562	CD133 Expression at the Metastatic Site Predicts Patients' Outcome in Colorectal Cancer with Synchronous Liver Metastasis. Annals of Surgical Oncology, 2016, 23, 1916-1923.	0.7	11
1563	Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumor Biology, 2016, 37, 7021-7031.	0.8	122
1564	The molecular and cellular origin of human prostate cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1238-1260.	1.9	92
1565	Cyclin A1 and P450 Aromatase Promote Metastatic Homing and Growth of Stem-like Prostate Cancer Cells in the Bone Marrow. Cancer Research, 2016, 76, 2453-2464.	0.4	47
1566	Enrichment of cancer stem cells by cotton fiber. RSC Advances, 2016, 6, 23345-23353.	1.7	3
1567	A comprehensive characterization of cell cultures and xenografts derived from a human verrucous penile carcinoma. Tumor Biology, 2016, 37, 11375-11384.	0.8	16
1568	Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion, 2016, 26, 86-93.	1.6	35

#	Article	IF	CITATIONS
1569	Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. , 2016, 158, 71-90.		166
1570	Hippo pathway and breast cancer stem cells. Critical Reviews in Oncology/Hematology, 2016, 99, 115-122.	2.0	48
1571	Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Molecular Aspects of Medicine, 2016, 47-48, 15-23.	2.7	62
1572	Malignant transformation of bone marrow stromal cells induced by the brain glioma niche in rats. Molecular and Cellular Biochemistry, 2016, 412, 1-10.	1.4	7
1573	Novel approach to target cancer stem cells for therapy. Medical Hypotheses, 2016, 88, 83-85.	0.8	5
1574	Uncovering the natural history of cancer from post-mortem cross-sectional diameters of hepatic metastases. Mathematical Medicine and Biology, 2016, 33, 397-416.	0.8	5
1575	Clonal evolution and tumor-initiating cells: New dimensions in cancer patient treatment. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 40-51.	2.7	19
1576	Gastric cancer stem cells: evidence, potential markers, and clinical implications. Journal of Gastroenterology, 2016, 51, 313-326.	2.3	109
1577	The biology and clinical implications of prostate cancer dormancy and metastasis. Journal of Molecular Medicine, 2016, 94, 259-265.	1.7	19
1578	A "universal―model of metastatic cancer, its parametric forms and their identification: what can be learned from site-specific volumes of metastases. Journal of Mathematical Biology, 2016, 72, 1633-1662.	0.8	21
1579	p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene, 2017, 36, 304-317.	2.6	73
1580	Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 68-83.	1.2	13
1581	Increased Expression of ALDH1A1 in Prostate Cancer is Correlated With Tumor Aggressiveness: A Tissue Microarray Study of Iranian Patients. Applied Immunohistochemistry and Molecular Morphology, 2017, 25, 592-598.	0.6	35
1582	A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Scientific Reports, 2017, 7, 40633.	1.6	35
1583	MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nature Communications, 2017, 8, 14270.	5.8	187
1584	Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa—Barrett's esophagus—early esophageal adenocarcinoma—advanced esophageal adenocarcinoma sequence. Pathology Research and Practice, 2017, 213, 205-209.	1.0	21
1585	Molecular and Functional Diagnostic Tools in Precision Oncology for Urological Malignancies. Indian Journal of Surgical Oncology, 2017, 8, 24-32.	0.3	1
1586	CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis, 2017, 6, e293-e293.	2.1	19

#	Article	IF	CITATIONS
1587	Epigenetics in cancer stem cells. Molecular Cancer, 2017, 16, 29.	7.9	296
1588	P-cadherin: a useful biomarker for axillary-based breast cancer decisions in the clinical practice. Modern Pathology, 2017, 30, 698-709.	2.9	18
1589	Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas. Pathology and Oncology Research, 2017, 23, 793-802.	0.9	36
1590	Isolation, Characterization, and Expansion of Cancer Stem Cells. Methods in Molecular Biology, 2017, 1553, 133-143.	0.4	7
1591	Catching moving targets: cancer stem cell hierarchies, therapy-resistance & Camp; considerations for clinical intervention. Molecular Cancer, 2017, 16, 43.	7.9	75
1592	Concise Review: An (Im)Penetrable Shield: How the Tumor Microenvironment Protects Cancer Stem Cells. Stem Cells, 2017, 35, 1123-1130.	1.4	41
1593	MicroRNA-141 inhibits tumor growth and minimizes therapy resistance in colorectal cancer. Molecular Medicine Reports, 2017, 15, 1037-1042.	1.1	20
1594	Androgen receptor in cancer-associated fibroblasts influences stemness in cancer cells. Endocrine-Related Cancer, 2017, 24, 157-170.	1.6	27
1595	CD117+CD44+ Stem T Cells Develop in the Thymus and Potently Suppress T-cell Proliferation by Modulating the CTLA-4 Pathway. Stem Cell Research and Therapy, 2017, 8, 56.	2.4	3
1596	Cancer stem cells: The root of tumor recurrence and metastases. Seminars in Cancer Biology, 2017, 44, 10-24.	4.3	295
1597	Understanding of leukemic stem cells and their clinical implications. Molecular Cancer, 2017, 16, 2.	7.9	60
1598	REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Scientific Reports, 2017, 7, 42795.	1.6	36
1599	Prostate cancer stem cells: from theory to practice. Scandinavian Journal of Urology, 2017, 51, 95-106.	0.6	14
1600	A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods in Cell Biology, 2017, 138, 471-496.	0.5	37
1601	Current Status and Perspectives in Stem Cell Research: The Concept of Normal Stem (NSC) and Cancer Stem Cell (CSC). , 2017, , 7-16.		0
1602	Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Molecular Cancer, 2017, 16, 65.	7.9	156
1603	Micellar Delivery of miR-34a Modulator Rubone and Paclitaxel in Resistant Prostate Cancer. Cancer Research, 2017, 77, 3244-3254.	0.4	60
1604	RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nature Reviews Cancer, 2017, 17, 381-392.	12.8	86

#	Article	IF	CITATIONS
1605	Associations between RNA splicing regulatory variants of stemnessâ€related genes and racial disparities in susceptibility to prostate cancer. International Journal of Cancer, 2017, 141, 731-743.	2.3	20
1606	MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumor Biology, 2017, 39, 101042831770165.	0.8	32
1607	Design, Synthesis and Biological Evaluation of novel Hedgehog Inhibitors for treating Pancreatic Cancer. Scientific Reports, 2017, 7, 1665.	1.6	31
1608	p75 neurotrophin receptor: A potential surface marker of tongue squamous cell carcinoma stem cells. Molecular Medicine Reports, 2017, 15, 2521-2529.	1.1	9
1609	The Notch-1 receptor in prostate tumorigenesis. Cancer Treatment Reviews, 2017, 56, 36-46.	3.4	25
1610	Oct4 induces EMT through LEF1/ \hat{l}^2 -catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncology Letters, 2017, 13, 2599-2606.	0.8	39
1611	Pseudogenes in gastric cancer pathogenesis: a review article. Briefings in Functional Genomics, 2017, 16, 348-360.	1.3	12
1612	Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Archives of Oral Biology, 2017, 74, 69-74.	0.8	40
1613	MicroRNA-383 located in frequently deleted chromosomal locus 8p22 regulates CD44 in prostate cancer. Oncogene, 2017, 36, 2667-2679.	2.6	38
1614	Dendriticâ€cellâ€based immunotherapy evokes potent antiâ€tumor immune responses in CD105+ human renal cancer stem cells. Molecular Carcinogenesis, 2017, 56, 2499-2511.	1.3	14
1615	Ultrasensitive Labelâ€free Electrochemical Immunosensors for Multiple Cell Surface Biomarkers on Liver Cancer Stem Cells. Electroanalysis, 2017, 29, 1994-2000.	1.5	10
1616	Immunomagnetic separation of tumor initiating cells by screening two surface markers. Scientific Reports, 2017, 7, 40632.	1.6	23
1617	Biophysical regulation of cancer stem/initiating cells: Implications for disease mechanisms and translation. Current Opinion in Biomedical Engineering, 2017, 1, 87-95.	1.8	15
1618	The meaning of PIWI proteins in cancer development. Oncology Letters, 2017, 13, 3354-3362.	0.8	36
1619	Modeling the process of human tumorigenesis. Nature Communications, 2017, 8, 15422.	5.8	55
1620	The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis, 2017, 6, e342-e342.	2.1	68
1621	Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Medical Hypotheses, 2017, 103, 10-20.	0.8	177
1622	Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4,) Tj ETQq1 1 0.78	84314 rgB ⁻	T <u>/Q</u> verlock 1

#	Article	IF	CITATIONS
1623	Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumor Biology, 2017, 39, 101042831769222.	0.8	36
1624	Identifying drug resistant cancer cells using microbubble well arrays. Biomedical Microdevices, 2017, 19, 17.	1.4	3
1625	Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Scientific Reports, 2017, 7, 44447.	1.6	217
1626	Imaging to study solid tumour origin and progression: lessons from research and clinical oncology. Immunology and Cell Biology, 2017, 95, 531-537.	1.0	5
1627	Lung cancer and \hat{I}^2 -glucans: review of potential therapeutic applications. Investigational New Drugs, 2017, 35, 509-517.	1.2	25
1628	A CD44v+ subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death and Disease, 2017, 8, e2679-e2679.	2.7	79
1630	Isolation, identification, and characterization of cancer stem cells: A review. Journal of Cellular Physiology, 2017, 232, 2008-2018.	2.0	157
1631	Metronomic chemotherapy: A potent macerator of cancer by inducing angiogenesis suppression and antitumor immune activation. Cancer Letters, 2017, 400, 243-251.	3.2	26
1632	Prognostic impact of CD44-positive cancer stem-like cells at the invasive front of gastric cancer. British Journal of Cancer, 2017, 116, 186-194.	2.9	50
1633	Existence of cancer stem cells in hepatocellular carcinoma: myth or reality?. Hepatology International, 2017, 11, 143-147.	1.9	12
1634	Newly Diagnosed Metastatic Prostate Cancer: Has the Paradigm Changed?. Urologic Clinics of North America, 2017, 44, 611-621.	0.8	46
1635	Genetically engineered oncolytic Newcastle disease virus mediates cytolysis of prostate cancer stem like cells. Journal of Biotechnology, 2017, 260, 91-97.	1.9	4
1637	Cancer stem cells revisited. Nature Medicine, 2017, 23, 1124-1134.	15.2	1,895
1638	Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumor Biology, 2017, 39, 101042831773469.	0.8	78
1639	Placenta-specific1 (PLAC1) is a potential target for antibody-drug conjugate-based prostate cancer immunotherapy. Scientific Reports, 2017, 7, 13373.	1.6	22
1640	Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophysical Reviews, 2017, 9, 761-773.	1.5	45
1641	The Plasticity of Stem-Like States in Patient-Derived Tumor Xenografts. Molecular and Translational Medicine, 2017, , 71-91.	0.4	0
1642	Cancer stem cell research in Iran: potentials and challenges. Future Oncology, 2017, 13, 1809-1826.	1.1	1

#	ARTICLE	IF	CITATIONS
1643	Molecular machines open cell membranes. Nature, 2017, 548, 567-572.	13.7	257
1644	Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells. Scientific Reports, 2017, 7, 11501.	1.6	33
1645	Secreted Frizzled-related protein 4 (sFRP4) chemo-sensitizes cancer stem cells derived from human breast, prostate, and ovary tumor cell lines. Scientific Reports, 2017, 7, 2256.	1.6	38
1646	STAT3 activation by leptin receptor is essential for TNBC stem cell maintenance. Endocrine-Related Cancer, 2017, 24, 415-426.	1.6	36
1647	Integrin $\hat{l}\pm2\hat{l}^21$ in nonactivated conformation can induce focal adhesion kinase signaling. Scientific Reports, 2017, 7, 3414.	1.6	8
1648	Differential receptor dependencies. Anti-Cancer Drugs, 2017, 28, 75-87.	0.7	22
1649	MtDNA depletion influences the transition of CD44 subtypes in human prostate cancer DU145 cells. Tumor Biology, 2017, 39, 101042831771367.	0.8	1
1651	Establishment of a dog primary prostate cancer organoid using the urine cancer stem cells. Cancer Science, 2017, 108, 2383-2392.	1.7	43
1652	Isolation of Stem-Like Cancer Cells in Primary Endometrial Cancer Using Cell Surface Markers CD133 and CXCR4. Translational Oncology, 2017, 10, 976-987.	1.7	32
1653	Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution. Stem Cell Research, 2017, 23, 1-12.	0.3	42
1654	Revisiting epithelialâ€mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Molecular Oncology, 2017, 11, 792-804.	2.1	172
1655	CD44v8-10 as a potential theranostic biomarker for targeting disseminated cancer cells in advanced gastric cancer. Scientific Reports, 2017, 7, 4930.	1.6	16
1656	A Detailed Analysis of Gene Expression in Human Basal, Luminal, and Stromal Cell Populations from Benign Prostatic Hyperplasia Tissues and Comparisons with Cultured Basal Cells. European Urology, 2017, 72, 157-159.	0.9	4
1657	Targeting the Wnt Pathway in Cancer: A Review of Novel Therapeutics. Targeted Oncology, 2017, 12, 623-641.	1.7	47
1658	Mitochondrial biology in cancer stem cells. Seminars in Cancer Biology, 2017, 47, 18-28.	4.3	42
1660	Antagonizing miR-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Molecular Cancer, 2017, 16, 106.	7.9	69
1661	PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/l²-catenin signaling pathway. Journal of Experimental and Clinical Cancer Research, 2017, 36, 85.	3.5	18
1662	Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations. Stem Cell Research and Therapy, 2017, 8, 95.	2.4	14

#	Article	IF	Citations
1663	5T4-Targeted Therapy Ablates Cancer Stem Cells and Prevents Recurrence of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2017, 23, 2516-2527.	3.2	39
1664	Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Letters, 2017, 385, 215-224.	3.2	52
1665	At the crossroads of cancer stem cells and targeted therapy resistance. Cancer Letters, 2017, 385, 87-96.	3.2	24
1666	The Epithelialâ€toâ€Mesenchymal Transitionâ€Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Medicinal Research Reviews, 2017, 37, 271-313.	5.0	171
1667	Aptamers in Medical Diagnosis. , 2017, , 253-286.		0
1668	Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma. Clinical Cancer Research, 2017, 23, 1586-1597.	3.2	117
1669	CD90 promotes cell migration, viability and sphereâ€'forming ability of hepatocellular carcinoma cells. International Journal of Molecular Medicine, 2018, 41, 946-954.	1.8	26
1670	Cancer Stem Cells in Prostate Cancer: Implications for Targeted Therapy. Urologia Internationalis, 2017, 99, 125-136.	0.6	61
1671	Dietary flavonoid tangeretin induces reprogramming of epithelial to mesenchymal transition in prostate cancer cells by targeting the PI3K/Akt/mTOR signaling pathway. Oncology Letters, 2018, 15, 433-440.	0.8	32
1672	Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and IncRNA-ROR. Gene, 2017, 631, 29-38.	1.0	126
1673	"Researching the Research―in Prostate Cancer: A Comparative Bibliometric Analysis of the Top 100 Cited Articles in the Field of Prostate Cancer. Current Urology, 2017, 11, 26-35.	0.4	8
1674	Three- and Four-Dimensional Spheroid and FiSS Tumoroid Cultures: Platforms for Drug Discovery and Development and Translational Research. Critical Reviews in Therapeutic Drug Carrier Systems, 2017, 34, 185-208.	1.2	6
1675	Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Frontiers in Pharmacology, 2017, 8, 1.	1.6	429
1676	Prostate Cancer Stem Cells and Nanotechnology: A Focus on Wnt Signaling. Frontiers in Pharmacology, 2017, 8, 153.	1.6	23
1677	Liposomal Nanoparticles Carrying anti-IL6R Antibody to the Tumour Microenvironment Inhibit Metastasis in Two Molecular Subtypes of Breast Cancer Mouse Models. Theranostics, 2017, 7, 775-788.	4.6	58
1678	Expression of CD133 in endometrial cancer cells and its implications. Journal of Cancer, 2017, 8, 2142-2153.	1.2	20
1679	Cancer stem cell surface markers on normal stem cells. BMB Reports, 2017, 50, 285-298.	1.1	244
1680	In vitro characterization of spheres derived from colorectal cancer cell lines. International Journal of Oncology, 2017, 52, 599-612.	1.4	20

#	Article	IF	CITATIONS
1681	Roles of microRNAs and RNA-Binding Proteins in the Regulation of Colorectal Cancer Stem Cells. Cancers, 2017, 9, 143.	1.7	28
1682	Targeting Apoptotic Activity Against Prostate Cancer Stem Cells. International Journal of Molecular Sciences, 2017, 18, 1648.	1.8	17
1683	Overview of Autophagy., 2017,, 1-122.		1
1684	Will a mAb-Based Immunotherapy Directed against Cancer Stem Cells Be Feasible?. Frontiers in Immunology, 2017, 8, 1509.	2.2	23
1685	Targeting Lung Cancer Stem Cells: Research and Clinical Impacts. Frontiers in Oncology, 2017, 7, 80.	1.3	91
1686	Functional Assay of Cancer Cell Invasion Potential Based on Mechanotransduction of Focused Ultrasound. Frontiers in Oncology, 2017, 7, 161.	1.3	29
1687	Targeting Signaling Pathways in Cancer Stem Cells for Cancer Treatment. Stem Cells International, 2017, 2017, 1-10.	1.2	114
1688	Expression and Clinical Significance of Cancer Stem Cell Markers CD24, CD44, and CD133 in Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. Disease Markers, 2017, 2017, 1-7.	0.6	31
1689	An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells International, 2017, 2017, 1-17.	1.2	165
1690	Expression of Cancer Stem Cell Marker CD44 and Its Polymorphisms in Patients with Chronic Gastritis, Precancerous Gastric Lesion, and Gastric Cancer: A Cross-Sectional Multicenter Study in Thailand. BioMed Research International, 2017, 2017, 1-8.	0.9	16
1691	Current Approaches to Diagnosis and Treatment of Ductal Carcinoma In Situ and Future Directions. Progress in Molecular Biology and Translational Science, 2017, 151, 33-80.	0.9	6
1692	Prostate Cancer Stem Cell Markers Drive Progression, Therapeutic Resistance, and Bone Metastasis. Stem Cells International, 2017, 2017, 1-9.	1.2	80
1693	Mitochondrial dysfunction and prostate cancer racial disparities among American men. Frontiers in Bioscience - Scholar, 2017, 9, 154-164.	0.8	9
1694	Comparison of ⁶⁸ Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology. Theranostics, 2017, 7, 228-237.	4.6	135
1695	Molecular Pathogenesis of Radiation-Induced Cell Toxicity in Stem Cells. International Journal of Molecular Sciences, 2017, 18, 2749.	1.8	29
1696	Long intergenic non-protein-coding RNA 1567 (LINC01567) acts as a "sponge―against microRNA-93 in regulating the proliferation and tumorigenesis of human colon cancer stem cells. BMC Cancer, 2017, 17, 716.	1.1	39
1697	Screening of breast cancer stem cell inhibitors using a protein kinase inhibitor library. Cancer Cell International, 2017, 17, 25.	1.8	31
1698	CD44 variant 9 expression as a predictor for gastric cancer recurrence: immunohistochemical and metabolomic analysis of surgically resected tissues . Biomedical Research, 2017, 38, 41-52.	0.3	24

#	Article	IF	CITATIONS
1699	Exosomes in diagnosis and therapy of prostate cancer. Oncotarget, 2017, 8, 97693-97700.	0.8	73
1700	Cancer Stem Cell Gene Variants Predict Disease Recurrence in Patients Treated with Radical Prostatectomy for Prostate Cancer. International Journal of Medical Sciences, 2017, 14, 1301-1306.	1.1	10
1701	Characterization of prostate cancer cell progression in zebrafish xenograft model. International Journal of Oncology, 2018, 52, 252-260.	1.4	17
1702	Acetylation and deacetylation in cancer stem-like cells. Oncotarget, 2017, 8, 89315-89325.	0.8	62
1703	Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget, 2017, 8, 3724-3745.	0.8	95
1704	Inhibitory Effect of D-chiro-inositol on Both Growth and Recurrence of Breast Tumor from MDA-MB-231 Cancer Cells. Natural Product Sciences, 2017, 23, 35.	0.2	3
1705	Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway. International Journal of Nanomedicine, 2017, Volume 12, 2569-2579.	3.3	28
1706	Cell surface Thomsen-Friedenreich proteome profiling of metastatic prostate cancer cells reveals potential link with cancer stem cell-like phenotype. Oncotarget, 2017, 8, 98598-98608.	0.8	16
1707	Pim-3 Regulates Stemness of Pancreatic Cancer Cells via Activating STAT3 Signaling Pathway. Journal of Cancer, 2017, 8, 1530-1541.	1.2	9
1708	Phenotypic Plasticity in Uveal Melanoma Is Not Restricted to a Tumor Subpopulation and Is Unrelated to Cancer Stem Cell Characteristics. , 2017, 58, 5387.		10
1709	Evaluation of expression of cancer stem cell markers and fusion gene in synovial sarcoma: Insights into histogenesis and pathogenesis. Oncology Reports, 2017, 37, 3351-3360.	1.2	16
1710	Development of Anti-Cancer Stem Cells as Theranostic Agents in the Treatment of Different Cancer Types: An Update. Journal of Carcinogenesis & Mutagenesis, 2017, 08, .	0.3	1
1711	Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget, 2017, 8, 19323-19341.	0.8	33
1712	Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investigation, 2017, 4, 75-75.	1.3	54
1713	Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nature Reviews Urology, 2018, 15, 271-286.	1.9	273
1715	Castration-Resistant Prostate Cancer. Molecular Pathology Library, 2018, , 297-322.	0.1	0
1716	ALCAM+ stromal cells: role in giant cell tumor of bone progression. Cell Death and Disease, 2018, 9, 299.	2.7	10
1717	The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis. Prostate, 2018, 78, 583-594.	1.2	11

#	Article	IF	CITATIONS
1718	Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. Journal of Controlled Release, 2018, 277, 1-13.	4.8	214
1719	The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis, 2018, 7, 34.	2.1	82
1720	A Novel Oncolytic Herpes Capable of Cell-Specific Transcriptional Targeting of CD133± Cancer Cells Induces Significant Tumor Regression. Stem Cells, 2018, 36, 1154-1169.	1.4	17
1721	Receptorâ€Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. Advanced Biology, 2018, 2, 1800049.	3.0	14
1722	Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Central Science, 2018, 4, 567-581.	5. 3	49
1723	Molecular and cellular mechanisms of castration resistant prostate cancer (Review). Oncology Letters, 2018, 15, 6063-6076.	0.8	116
1724	Blockade of ACK1/TNK2 To Squelch the Survival of Prostate Cancer Stem-like Cells. Scientific Reports, 2018, 8, 1954.	1.6	23
1725	CD44 variant inhibits insulin secretion in pancreatic \hat{l}^2 cells by attenuating LAT1-mediated amino acid uptake. Scientific Reports, 2018, 8, 2785.	1.6	15
1726	Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. Radiation and Environmental Biophysics, 2018, 57, 133-142.	0.6	17
1727	Targeting cancer stem cells in the clinic: Current status and perspectives., 2018, 187, 13-30.		61
1728	Pixelated spatial gene expression analysis from tissue. Nature Communications, 2018, 9, 202.	5.8	24
1729	Biomarker discovery for renal cancer stem cells. Journal of Pathology: Clinical Research, 2018, 4, 3-18.	1.3	67
1730	Leukemia-propagating cells demonstrate distinctive gene expression profiles compared with other cell fractions from patients with de novo Philadelphia chromosome-positive ALL. Annals of Hematology, 2018, 97, 799-811.	0.8	0
1731	Prognostic and clinicopathological value of Nanog in hepatocellular carcinoma: A meta-analysis. Clinica Chimica Acta, 2018, 477, 24-31.	0.5	11
1732	Progress in melanoma modelling in vitro. Experimental Dermatology, 2018, 27, 578-586.	1.4	33
1733	Eradicating Cancer Stem Cells: Concepts, Issues, and Challenges. Current Treatment Options in Oncology, 2018, 19, 20.	1.3	33
1734	Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Archives of Pharmacal Research, 2018, 41, 384-408.	2.7	39
1735	Expression of the stem cell marker CD133 is related to tumor development in colorectal carcinogenesis. Asian Journal of Surgery, 2018, 41, 274-278.	0.2	37

#	Article	IF	Citations
1736	Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment. Protein and Cell, 2018, 9, 516-526.	4.8	46
1737	Prognostic implication of NOTCH1 in early stage oral squamous cell cancer with occult metastases. Clinical Oral Investigations, 2018, 22, 1131-1138.	1.4	19
1738	Surface Markers for the Identification of Cancer Stem Cells. Methods in Molecular Biology, 2018, 1692, 17-29.	0.4	26
1739	Isolation of Cancer Stem Cells by Side Population Method. Methods in Molecular Biology, 2018, 1692, 49-59.	0.4	40
1740	GOLPH2-regulated oncolytic adenovirus, GD55, exerts strong killing effect on human prostate cancer stem-like cells in vitro and in vivo. Acta Pharmacologica Sinica, 2018, 39, 405-414.	2.8	21
1741	Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging. Biosensors and Bioelectronics, 2018, 102, 372-382.	5.3	50
1742	Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell and Tissue Research, 2018, 372, 245-262.	1.5	85
1743	Pituitary adenomas, stem cells, and cancer stem cells: what's new?. Journal of Endocrinological Investigation, 2018, 41, 745-753.	1.8	17
1744	Interleukinâ€4 induces a CD44 _{high} /CD49b _{high} PC3 subpopulation with tumorâ€initiating characteristics. Journal of Cellular Biochemistry, 2018, 119, 4103-4112.	1.2	10
1745	Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. Journal of Cellular Physiology, 2018, 233, 5458-5467.	2.0	119
1746	DETECTION OF PROSTATE CANCER: A REVIEW. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 25.	0.3	1
1747	Identification of open chromosomal regions and key genes in prostate cancer via integrated analysis of DNaseâ€'seq and RNAâ€'seq data. Molecular Medicine Reports, 2018, 18, 2245-2252.	1.1	2
1748	Downregulation of hepatic lipase is associated with decreased CD133 expression and clone formation in HepG2 cells. International Journal of Molecular Medicine, 2018, 42, 2137-2144.	1.8	3
1749	Ovarian Cancer Genetics: Subtypes and Risk Factors. , 0, , .		17
1750	The Crosstalk between Cancer Stem Cells and Microenvironment Is Critical for Solid Tumor Progression: The Significant Contribution of Extracellular Vesicles. Stem Cells International, 2018, 2018, 1-11.	1.2	31
1751	Inhibiting xCT Improves 5-Fluorouracil Resistance of Gastric Cancer Induced by CD44 Variant 9 Expression. Anticancer Research, 2018, 38, 6163-6170.	0.5	43
1752	Cancer stem cell metabolism: target for cancer therapy. BMB Reports, 2018, 51, 319-326.	1.1	120
1753	CD44v9 is associated with epithelialâ€mesenchymal transition and poor outcomes in esophageal squamous cell carcinoma. Cancer Medicine, 2018, 7, 6258-6268.	1.3	22

#	Article	IF	Citations
1754	CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis. Cancer Management and Research, 2018, Volume 10, 5767-5784.	0.9	22
1755	Kinetic modeling of tumor regression incorporating the concept of cancer stem-like cells for patients with locally advanced lung cancer. Theoretical Biology and Medical Modelling, 2018, 15, 23.	2.1	4
1756	Mesenchymal stem cells recruited by castration-induced inflammation activation accelerate prostate cancer hormone resistance via chemokine ligand 5 secretion. Stem Cell Research and Therapy, 2018, 9, 242.	2.4	25
1757	Cancer signaling pathways with a therapeutic approach: An overview in epigenetic regulations of cancer stem cells. Biomedicine and Pharmacotherapy, 2018, 108, 590-599.	2.5	26
1758	A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. Nanomaterials, 2018, 8, 736.	1.9	54
1759	Development of a novel and economical agar-based non-adherent three-dimensional culture method for enrichment of cancer stem-like cells. Stem Cell Research and Therapy, 2018, 9, 243.	2.4	48
1760	Novel molecular insights and new therapeutic strategies in osteosarcoma. Cancer Cell International, 2018, 18, 158.	1.8	73
1761	Phenotype-independent DNA methylation changes in prostate cancer. British Journal of Cancer, 2018, 119, 1133-1143.	2.9	14
1762	Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau. Oncotarget, 2018, 9, 23289-23305.	0.8	20
1763	PanCD44 Immunohistochemical Evaluation in Prostatectomies from Patients with Adenocarcinoma. BioMed Research International, 2018, 2018, 1-7.	0.9	3
1764	Prognostic value of CD44 variant isoform expression in dogs with multicentric high-grade B-cell lymphoma. American Journal of Veterinary Research, 2018, 79, 961-969.	0.3	2
1765	Hyaluronan Reduces Cationic Liposome-Induced Toxicity and Enhances the Antitumor Effect of Targeted Gene Delivery in Mice. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32006-32016.	4.0	43
1766	Loss of MAOA in epithelia inhibits adenocarcinoma development, cell proliferation and cancer stem cells in prostate. Oncogene, 2018, 37, 5175-5190.	2.6	46
1767	Methodologies Applied to Establish Cell Cultures in Prostate Cancer. Methods in Molecular Biology, 2018, 1786, 55-66.	0.4	1
1768	Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Letters, 2018, 430, 25-33.	3.2	42
1769	let-7i-5p, miR-181a-2-3p and EGF/PI3K/SOX2 axis coordinate to maintain cancer stem cell population in cervical cancer. Scientific Reports, 2018, 8, 7840.	1.6	45
1770	Expression of cancer stem cell markers CD44, ALDH1 and p75NTR in actinic cheilitis and lip cancer. European Archives of Oto-Rhino-Laryngology, 2018, 275, 1877-1883.	0.8	9
1771	InÃ-Â;½vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model. Oncology Letters, 2018, 15, 8516-8526.	0.8	12

#	Article	IF	Citations
1772	Soft agar-based selection of spontaneously transformed rat prostate epithelial cells with highly tumorigenic characteristics. Experimental and Molecular Pathology, 2018, 105, 89-97.	0.9	0
1773	Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells, 2018, 36, 1457-1474.	1.4	90
1774	Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharmaceutica Sinica B, 2018, 8, 518-529.	5.7	53
1775	More than Just an Immunosuppressant: The Emerging Role of FTY720 as a Novel Inducer of ROS and Apoptosis. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	26
1776	Comparative proteomics of side population cells derived from human hepatocellular carcinoma cell lines with varying metastatic potentials. Oncology Letters, 2018, 16, 335-345.	0.8	8
1777	Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiotherapy and Oncology, 2018, 128, 283-300.	0.3	12
1778	Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells International, 2018, 2018, 1-16.	1.2	593
1779	Stem Cells and Cancer. , 2018, , 271-309.		0
1780	Role of autotaxin in cancer stem cells. Cancer and Metastasis Reviews, 2018, 37, 509-518.	2.7	27
1781	Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Seminars in Cancer Biology, 2018, 53, 168-177.	4.3	31
1782	Replication stress response in cancer stem cells as a target for chemotherapy. Seminars in Cancer Biology, 2018, 53, 31-41.	4.3	31
1783	Characterization of stemâ€like cancer cells in basal cell carcinoma and its surgical margins. Experimental Dermatology, 2018, 27, 1160-1165.	1.4	14
1784	Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation. Drug Resistance Updates, 2018, 39, 18-40.	6.5	28
1785	Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics. Cancers, 2018, 10, 14.	1.7	26
1786	Regulation of Cancer Stem Cell Metabolism by Secreted Frizzled-Related Protein 4 (sFRP4). Cancers, 2018, 10, 40.	1.7	29
1787	Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers, 2018, 10, 56.	1.7	33
1788	Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells. International Journal of Molecular Sciences, 2018, 19, 1423.	1.8	38
1789	The role of CD133 in cancer: a concise review. Clinical and Translational Medicine, 2018, 7, 18.	1.7	257

#	Article	IF	Citations
1790	Variant isoforms of CD44 involves acquisition of chemoresistance to cisplatin and has potential as a novel indicator for identifying a cisplatin-resistant population in urothelial cancer. BMC Cancer, 2018, 18, 113.	1.1	39
1791	Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice. Medical Oncology, 2018, 35, 84.	1.2	7
1792	The contributions of cancer cell metabolism to metastasis. DMM Disease Models and Mechanisms, $2018,11,.$	1.2	58
1793	Cdc42-dependent modulation of rigidity sensing and cell spreading in tumor repopulating cells. Biochemical and Biophysical Research Communications, 2018, 500, 557-563.	1.0	9
1794	p53-dependent CD51 expression contributes to characteristics of cancer stem cells in prostate cancer. Cell Death and Disease, 2018, 9, 523.	2.7	26
1795	Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival. Carcinogenesis, 2018, 39, 879-888.	1.3	9
1796	Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomedicine and Pharmacotherapy, 2018, 107, 793-805.	2.5	92
1797	Uncoupling Warburg effect and stemness in CD133+ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Molecular Biology Reports, 2018, 45, 1653-1662.	1.0	10
1798	Pancreatic cancer stem cells: A state or an entity?. Seminars in Cancer Biology, 2018, 53, 223-231.	4.3	71
1799	Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomarkers in Medicine, 2018, 12, 813-820.	0.6	95
1800	Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment. PLoS ONE, 2018, 13, e0191109.	1.1	100
1801	CD133 Is Associated with Increased Melanoma Cell Survival after Multikinase Inhibition. Journal of Oncology, 2019, 2019, 1-19.	0.6	15
1802	Application of Nanotechnology in Targeting of Cancer Stem Cells: A Review. International Journal of Stem Cells, 2019, 12, 227-239.	0.8	38
1803	Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. Medicines (Basel, Switzerland), 2019, 6, 82.	0.7	68
1804	Electron Microscopic Analysis of Stem Cells in Human Prostate Cancer, Including Inverted Capsule Embedding Methods for Archival Sections and Falcon Films for Prostate Cancer Cell Lines. Anticancer Research, 2019, 39, 4171-4177.	0.5	4
1805	Cancer Stem Cells and Targeting Strategies. Cells, 2019, 8, 926.	1.8	128
1806	A Tangeretin Derivative Inhibits the Growth of Human Prostate Cancer LNCaP Cells by Epigenetically Restoring p21 Gene Expression and Inhibiting Cancer Stem-like Cell Proliferation. AAPS Journal, 2019, 21, 86.	2.2	17
1807	Basic fibroblast growth factor signalling regulates cancer stem cells in lung cancer A549 cells. Journal of Pharmacy and Pharmacology, 2019, 71, 1412-1420.	1.2	10

#	Article	IF	CITATIONS
1808	The Central Contributions of Breast Cancer Stem Cells in Developing Resistance to Endocrine Therapy in Estrogen Receptor (ER)-Positive Breast Cancer. Cancers, 2019, 11, 1028.	1.7	54
1809	Effect of CD133 overexpression on bone metastasis in prostate cancer cell line LNCaP. Oncology Letters, 2019, 18, 1189-1198.	0.8	6
1810	Glioblastoma Unique Features Drive the Ways for Innovative Therapies in the Trunk-branch Era. Folia Medica, 2019, 61, 7-25.	0.2	2
1811	CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion and Metastasis. Cancers, 2019, 11, 1490.	1.7	23
1812	Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment. Chonnam Medical Journal, 2019, 55, 136.	0.5	18
1813	The Complexities of Metastasis. Cancers, 2019, 11, 1575.	1.7	28
1814	Balancing STAT Activity as a Therapeutic Strategy. Cancers, 2019, 11, 1716.	1.7	18
1815	Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment. Frontiers in Oncology, 2019, 9, 1104.	1.3	69
1816	Why don't students recognize creative learning opportunities in a biomedical science program?. Biochemistry and Molecular Biology Education, 2019, 47, 656-668.	0.5	9
1817	Cancer stem cells in prostate cancer radioresistance. Cancer Letters, 2019, 465, 94-104.	3.2	49
1818	TGF-Beta in the Natural History of Prostate Cancer. Acta Clinica Croatica, 2019, 58, 128-138.	0.1	19
1819	Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine, 2019, 14, 2487-2514.	1.7	19
1820	Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids, 2019, 152, 108497.	0.8	34
1822	Concurrent targeting of BMI1 and CDK4/6 abrogates tumor growth in vitro and in vivo. Scientific Reports, 2019, 9, 13696.	1.6	15
1823	Primitive Cancer Cell States: A Target for Drug Screening?. Trends in Pharmacological Sciences, 2019, 40, 161-171.	4.0	10
1824	The natural history of renal cell carcinoma with pulmonary metastases illuminated through mathematical modeling. Mathematical Biosciences, 2019, 309, 118-130.	0.9	3
1825	Serum erythropoietin levels, breast cancer and breast cancer-initiating cells. Breast Cancer Research, 2019, 21, 17.	2.2	14
1826	Epigenetic Control of Gene Expression in the Normal and Malignant Human Prostate: A Rapid Response Which Promotes Therapeutic Resistance. International Journal of Molecular Sciences, 2019, 20, 2437.	1.8	7

#	Article	IF	CITATIONS
1827	Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells. Acta Biomaterialia, 2019, 94, 320-329.	4.1	21
1828	Estrogen receptor α-NOTCH1 axis enhances basal stem-like cells and epithelial-mesenchymal transition phenotypes in prostate cancer. Cell Communication and Signaling, 2019, 17, 50.	2.7	24
1829	Therapeutic considerations of PARP in stem cell biology: Relevance in cancer and beyond. Biochemical Pharmacology, 2019, 167, 107-115.	2.0	32
1830	Cancer Stem Cells in Lung Cancer: Roots of Drug Resistance and Targets for Novel Therapeutic Strategies. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 51-92.	0.1	1
1831	Cancer stem cells in breast and prostate: Fact or fiction?. Advances in Cancer Research, 2019, 144, 315-341.	1.9	14
1832	Expression of cancer stem cell markers is prognostic in metastatic gastroesophageal adenocarcinoma. Pathology, 2019, 51, 474-480.	0.3	11
1833	Crosstalk Between Prostate Cancer Stem Cells and Immune Cells: Implications for Tumor Progression and Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 173-221.	0.1	3
1834	Cancer Stem Cells: From Birth to Death. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 1-30.	0.1	1
1835	Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein and Cell, 2019, 10, 787-807.	4.8	163
1836	Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes and Development, 2019, 33, 591-609.	2.7	303
1838	Head and neck cancer management and cancer stem cells implication. Saudi Dental Journal, 2019, 31, 395-416.	0.5	33
1839	The Anthrax Toxin Receptor 1 (ANTXR1) Is Enriched in Pancreatic Cancer Stem Cells Derived from Primary Tumor Cultures. Stem Cells International, 2019, 2019, 1-13.	1.2	16
1840	Role of the calcium toolkit in cancer stem cells. Cell Calcium, 2019, 80, 141-151.	1.1	29
1841	Therapeutic approach of Cancer stem cells (CSCs) in gastric adenocarcinoma; DNA methyltransferases enzymes in cancer targeted therapy. Biomedicine and Pharmacotherapy, 2019, 115, 108958.	2.5	20
1842	Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Frontiers in Oncology, 2019, 9, 385.	1.3	12
1843	The Role of MicroRNAs in the Regulation of Gastric Cancer Stem Cells: A Meta-Analysis of the Current Status. Journal of Clinical Medicine, 2019, 8, 639.	1.0	23
1844	New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. Journal of Cellular Physiology, 2019, 234, 21642-21661.	2.0	58
1845	Cell membrane protein functionalization of nanoparticles as a new tumorâ€targeting strategy. Clinical and Translational Medicine, 2019, 8, 8.	1.7	37

#	Article	IF	CITATIONS
1846	Role of MAML1 in targeted therapy against the esophageal cancer stem cells. Journal of Translational Medicine, 2019, 17, 126.	1.8	32
1847	Oncolytic Herpes Simplex Virus and PI3K Inhibitor BKM120 Synergize to Promote Killing of Prostate Cancer Stem-like Cells. Molecular Therapy - Oncolytics, 2019, 13, 58-66.	2.0	20
1848	Metformin Regulates the Expression of CD133 Through the AMPK-CEBP \hat{l}^2 Pathway in Hepatocellular Carcinoma Cell Lines. Neoplasia, 2019, 21, 545-556.	2.3	28
1849	Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of \hat{l}^2 -catenin in cancer stem-like cells. EBioMedicine, 2019, 42, 397-407.	2.7	63
1850	Regulation of Osteosclerosis by Inoculated Cd133 ⁺ PC3 Cells in Boneâ€marrow Microenvironmental Niches. JBMR Plus, 2019, 3, e10189.	1.3	6
1851	Impact of proteolysis on cancer stem cell functions. Biochimie, 2019, 166, 214-222.	1.3	6
1852	Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer: Targets and Therapy, 2019, Volume 11, 115-135.	1.0	33
1853	Meeting the Challenge of Targeting Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 16.	1.8	109
1854	Microfluidic Isolation of Circulating Tumor Cells and Cancer Stem-Like Cells from Patients with Pancreatic Ductal Adenocarcinoma. Theranostics, 2019, 9, 1417-1425.	4.6	58
1855	Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacological Research, 2019, 143, 151-165.	3.1	34
1856	Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation. Cancers, 2019, 11, 345.	1.7	136
1857	Complex Nâ€glycan promotes <scp>CD</scp> 133 monoâ€ubiquitination and secretion. FEBS Letters, 2019, 593, 719-731.	1.3	4
1858	The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers, 2019, 11, 434.	1.7	74
1859	Stem Cells: Concept, Properties, and Characterization. Essentials in Ophthalmology, 2019, , 41-55.	0.0	1
1860	Glycosylation of ascites-derived exosomal CD133: a potential prognostic biomarker in patients with advanced pancreatic cancer. Medical Molecular Morphology, 2019, 52, 198-208.	0.4	36
1861	Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 2019, 50, 185-192.	0.6	62
1862	Similarities Between Embryo Development and Cancer Process Suggest New Strategies for Research and Therapy of Tumors: A New Point of View. Frontiers in Cell and Developmental Biology, 2019, 7, 20.	1.8	80
1863	Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. International Journal of Molecular Sciences, 2019, 20, 774.	1.8	21

#	Article	IF	CITATIONS
1864	Current approaches in identification and isolation of cancer stem cells. Journal of Cellular Physiology, 2019, 234, 14759-14772.	2.0	65
1865	Dopamine receptor antagonists induce differentiation of PCâ€3 human prostate cancer cellâ€derived cancer stem cellâ€like cells. Prostate, 2019, 79, 720-731.	1.2	11
1866	Isolation of Stem-like Cells from 3-Dimensional Spheroid Cultures. Journal of Visualized Experiments, 2019, , .	0.2	5
1867	Endometrial Cancer Stem Cells: Role, Characterization and Therapeutic Implications. Cancers, 2019, 11, 1820.	1.7	57
1868	Isolation and Identification of Cancer Stem-Like Cells in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Pilot Study. Frontiers in Oncology, 2019, 9, 1394.	1.3	35
1869	Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Techniques in Orthopaedics, 2019, 34, 275-286.	0.1	1
1870	Organoids from the Human Fetal and Adult Pancreas. Current Diabetes Reports, 2019, 19, 160.	1.7	33
1871	Interactions with Muscle Cells Boost Fusion, Stemness, and Drug Resistance of Prostate Cancer Cells. Molecular Cancer Research, 2019, 17, 806-820.	1.5	30
1872	Analysis of radiosensitivity of cancer stemâ€like cells derived from canine cancer cell lines. Veterinary and Comparative Oncology, 2019, 17, 119-129.	0.8	4
1873	Reversibility of castration resistance status after Radium-223 dichloride treatment: clinical evidence and review of the literature. International Journal of Radiation Biology, 2019, 95, 554-561.	1.0	20
1874	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	3.1	53
1875	The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics and Proteomics, 2019, 16, 1-19.	1.0	28
1876	Gastric Carcinogenesis., 2019,, 51-62.		0
1877	Detection of CTC Clusters and a Dedifferentiated RNAâ€Expression Survival Signature in Prostate Cancer. Advanced Science, 2019, 6, 1801254.	5.6	30
1878	Potential role of cancer stem cells as biomarkers and therapeutic targets in cervical cancer. Cancer Reports, 2019, 2, e1144.	0.6	12
1879	Constant Degradation of the Androgen Receptor by MDM2 Conserves Prostate Cancer Stem Cell Integrity. Cancer Research, 2019, 79, 1124-1137.	0.4	32
1880	Silencing of MEOX1 Gene Inhibits Proliferation and Promotes Apoptosis of LNCaP Cells in Prostate Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2019, 34, 91-102.	0.7	2
1881	Biophysical Phenotyping and Modulation of ALDH+ Inflammatory Breast Cancer Stemâ€Like Cells. Small, 2019, 15, e1802891.	5.2	21

#	Article	IF	CITATIONS
1882	Combination therapy with androgen deprivation for hormone sensitive prostate cancer: A new frontier. Asian Journal of Urology, 2019, 6, 57-64.	0.5	15
1883	Role and mechanisms of a three-dimensional bioprinted microtissue model in promoting proliferation and invasion of growth-hormone-secreting pituitary adenoma cells. Biofabrication, 2019, 11, 025006.	3.7	16
1884	Enrichment of cancer stem cells by agarose multi-well dishes and 3D spheroid culture. Cell and Tissue Research, 2019, 375, 397-408.	1.5	22
1885	The molecular mechanisms of curcumin's inhibitory effects on cancer stem cells. Journal of Cellular Biochemistry, 2019, 120, 4739-4747.	1.2	27
1886	Metabolism and epigenetics of pancreatic cancer stem cells. Seminars in Cancer Biology, 2019, 57, 19-26.	4.3	45
1887	Prostate Stem Cells and Cancer Stem Cells. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030395.	2.9	56
1888	Metastases in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033688.	2.9	36
1889	Elucidation of the mechanism underlying CD44v6â€induced transformation of IECâ€6 normal intestinal epithelial cells. Journal of Cellular Physiology, 2020, 235, 194-209.	2.0	2
1890	Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer. Molecular Aspects of Medicine, 2020, 72, 100816.	2.7	62
1891	Notch signalling is a potential resistance mechanism of progenitor cells within patientâ€derived prostate cultures following ROSâ€inducing treatments. FEBS Letters, 2020, 594, 209-226.	1.3	11
1892	CytoMatrix for a reliable and simple characterization of lung cancer stem cells from malignant pleural effusions. Journal of Cellular Physiology, 2020, 235, 1877-1887.	2.0	29
1893	Cancer stem cells: A review from origin to therapeutic implications. Journal of Cellular Physiology, 2020, 235, 790-803.	2.0	178
1894	Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biology and Toxicology, 2020, 36, 115-130.	2.4	7
1895	Dormant disseminated tumor cells and cancer stem/progenitor-like cells: Similarities and opportunities. Seminars in Cancer Biology, 2020, 60, 157-165.	4.3	70
1896	Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. Journal of Cellular Physiology, 2020, 235, 4167-4182.	2.0	25
1897	Cancer stem cells as therapeutic targets of pancreatic cancer. Fundamental and Clinical Pharmacology, 2020, 34, 202-212.	1.0	17
1898	LETM1 is a potential biomarker that predicts poor prognosis in gastric adenocarcinoma. Experimental and Molecular Pathology, 2020, 112, 104333.	0.9	13
1899	Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45 ⁺ CD19 ⁻ cells but in the ALDH ^{high} Cells. Journal of Cancer, 2020, 11, 142-152.	1.2	8

#	Article	IF	CITATIONS
1900	A NF-Ä,B-Activin A signaling axis enhances prostate cancer metastasis. Oncogene, 2020, 39, 1634-1651.	2.6	34
1901	Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/βâ€catenin pathway. Phytotherapy Research, 2020, 34, 817-824.	2.8	39
1902	Assessment of cancer stem cell marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase (ALDH1A1). European Journal of Pharmacology, 2020, 867, 172837.	1.7	14
1903	MDA-9/Syntenin (SDCBP) Is a Critical Regulator of Chemoresistance, Survival and Stemness in Prostate Cancer Stem Cells. Cancers, 2020, 12, 53.	1.7	27
1904	Cancer Stem Cells: New Horizons in Cancer Therapies. , 2020, , .		1
1905	<p>LncRNA MCM3AP-AS1 Promotes Cell Proliferation and Invasion Through Regulating miR-543-3p/SLC39A10/PTEN Axis in Prostate Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 9365-9376.	1.0	12
1906	Senescence and castration resistance in prostate cancer: A review of experimental evidence and clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188424.	3.3	8
1907	Material properties of disulfide-crosslinked hyaluronic acid hydrogels influence prostate cancer cell growth and metabolism. Journal of Materials Chemistry B, 2020, 8, 9718-9733.	2.9	8
1908	Cancer stem cells and strategies for targeted drug delivery. Drug Delivery and Translational Research, 2021, 11, 1779-1805.	3.0	6
1909	High PKCλ expression is required for ALDH1-positive cancer stem cell function and indicates a poor clinical outcome in late-stage breast cancer patients. PLoS ONE, 2020, 15, e0235747.	1.1	8
1910	Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness. Scientific Reports, 2020, 10, 11329.	1.6	10
1911	CXCL12γ induces human prostate and mammary gland development. Prostate, 2020, 80, 1145-1156.	1.2	4
1912	Metabolic regulation of prostate cancer heterogeneity and plasticity. Seminars in Cancer Biology, 2022, 82, 94-119.	4.3	20
1913	Cancer stem cell plasticity in glioblastoma multiforme: a perspective on future directions in oncolytic virotherapy. Future Oncology, 2020, 16, 2251-2264.	1.1	2
1914	Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 2020, 10, 8721-8743.	4.6	208
1915	Stem cells in cancer initiation and progression. Journal of Cell Biology, 2020, 219, .	2.3	69
1916	Bmi1 Severs as a Potential Tumor-Initiating Cell Marker and Therapeutic Target in Esophageal Squamous Cell Carcinoma. Stem Cells International, 2020, 2020, 1-9.	1.2	7
1917	Prognostic Significance of ALDH1, Bmi1, and OCT4 Expression in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Cancer Control, 2020, 27, 107327482090495.	0.7	13

#	Article	IF	CITATIONS
1918	Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Critical Reviews in Oncology/Hematology, 2020, 155, 103095.	2.0	73
1919	STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Scientific Reports, 2020, 10, 13958.	1.6	20
1920	A Mathematical Model of Average Dynamics in a Stem Cell Hierarchy Suggests the Combinatorial Targeting of Cancer Stem Cells and Progenitor Cells as a Potential Strategy against Tumor Growth. Cancers, 2020, 12, 2590.	1.7	6
1921	Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. International Journal of Molecular Sciences, 2020, 21, 6658.	1.8	18
1922	Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Frontiers in Molecular Biosciences, 2020, 7, 609172.	1.6	10
1923	Olfactomedin 4 mediation of prostate stem/progenitor-like cell proliferation and differentiation via MYC. Scientific Reports, 2020, 10, 21924.	1.6	7
1924	Identification of cancer stem cell-related biomarkers in intestinal-type and diffuse-type gastric cancer by stemness index and weighted correlation network analysis. Journal of Translational Medicine, 2020, 18, 418.	1.8	8
1925	Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Research, 2020, 49, 102063.	0.3	12
1926	Cancer Stem Cell Plasticity – A Deadly Deal. Frontiers in Molecular Biosciences, 2020, 7, 79.	1.6	106
1927	Development and characterization of cancer stem cellâ€based tumoroids as an osteosarcoma model. Biotechnology and Bioengineering, 2020, 117, 2527-2539.	1.7	9
1928	A Novel Function for KLF4 in Modulating the De-Differentiation of EpCAMâ^'/CD133â^' nonStem Cells into EpCAM+/CD133+ Liver Cancer Stem Cells in HCC Cell Line HuH7. Cells, 2020, 9, 1198.	1.8	35
1929	Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. Journal of Experimental and Clinical Cancer Research, 2020, 39, 100.	3.5	44
1930	Liver cancer stem cells as a hierarchical society: yes or no?. Acta Biochimica Et Biophysica Sinica, 2020, 52, 723-735.	0.9	11
1931	Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nature Reviews Urology, 2020, 17, 292-307.	1.9	59
1932	The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers, 2020, 12, 684.	1.7	34
1933	A nano-based thermotherapy for cancer stem cell-targeted therapy. Journal of Materials Chemistry B, 2020, 8, 3985-4001.	2.9	19
1934	CD133 suppression increases the sensitivity of prostate cancer cells to paclitaxel. Molecular Biology Reports, 2020, 47, 3691-3703.	1.0	18
1935	Effects of progesterone on the cell number of gliomaspheres derived from human glioblastoma cell lines. Life Sciences, 2020, 249, 117536.	2.0	3

#	Article	IF	CITATIONS
1936	Inhibition of Notch pathway enhances the anti-tumor effect of docetaxel in prostate cancer stem-like cells. Stem Cell Research and Therapy, 2020, 11, 258.	2.4	38
1937	Dynamics of Cellular Plasticity in Prostate Cancer Progression. Frontiers in Molecular Biosciences, 2020, 7, 130.	1.6	22
1938	Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 2020, 5, 8.	7.1	998
1939	Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death and Disease, 2020, 11, 105.	2.7	273
1940	<p>Foretinib Inhibits Cancer Stemness and Gastric Cancer Cell Proliferation by Decreasing CD44 and c-MET Signaling</p> . OncoTargets and Therapy, 2020, Volume 13, 1027-1035.	1.0	20
1941	The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). Gene Reports, 2020, 19, 100629.	0.4	12
1942	Combination Therapy with Vitamin C Could Eradicate Cancer Stem Cells. Biomolecules, 2020, 10, 79.	1.8	27
1943	Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Communications Biology, 2020, 3, 26.	2.0	20
1944	Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties. Nanoscale, 2020, 12, 5834-5847.	2.8	22
1945	Role of CD44 in tumorâ€initiating cells of salivary gland pleomorphic adenoma: More than a surface biomarker. Oral Diseases, 2020, 26, 547-557.	1.5	13
1946	Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surgery Today, 2020, 50, 1560-1577.	0.7	20
1947	Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Frontiers in Genetics, 2020, 11, 312.	1.1	27
1948	Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation. Nature Communications, 2020, 11, 1750.	5.8	67
1949	Cystine transporter expression is a marker to identify a subpopulation of canine adipose-derived stem cells. Journal of Veterinary Medical Science, 2020, 82, 713-720.	0.3	3
1950	The Multifactorial Role of PARP-1 in Tumor Microenvironment. Cancers, 2020, 12, 739.	1.7	31
1951	Zebrafish Microenvironment Elevates EMT and CSC-Like Phenotype of Engrafted Prostate Cancer Cells. Cells, 2020, 9, 797.	1.8	12
1952	A three dimensional in vivo model of breast cancer using a thermosensitive chitosanâ€based hydrogel and 4 T1 cell line in Balb/c. Journal of Biomedical Materials Research - Part A, 2021, 109, 1275-1285.	2.1	18
1953	Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coordination Chemistry Reviews, 2021, 426, 213529.	9.5	22

#	Article	IF	CITATIONS
1954	Activation of Wntſl²â€eatenin signalling and HIF1α stabilisation alters pluripotency and differentiation/proliferation properties of humanâ€induced pluripotent stem cells. Biology of the Cell, 2021, 113, 133-145.	0.7	1
1955	Impact of prostate cancer stem cell niches on prostate cancer tumorigenesis and progression. Advances in Stem Cells and Their Niches, 2021, 5, 177-204.	0.1	0
1956	HGF/c-Met Signalling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1270, 31-44.	0.8	20
1957	Association Between CD133 Expression and Prognosis in Human Lung Adenocarcinoma. Anticancer Research, 2021, 41, 905-910.	0.5	7
1958	The prostate cancer stem cell niche: Genetic drivers and therapeutic approaches. Advances in Stem Cells and Their Niches, 2021, , 137-175.	0.1	0
1959	Cancer Stem Cells and Advanced Novel Technologies in Oncotherapy. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 486-513.	0.1	0
1960	The role of peptidases and their endogenous inhibitors in the regulation of NK cell cytotoxicity. , 2021, , 83-100.		0
1961	Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resistance Updates, 2021, 54, 100742.	6.5	121
1962	The Effects of Lentivirus-Mediated Gene Silencing of $\langle i \rangle RAR\hat{l}^2 \langle i \rangle$ on the Stemness Capability of Non-Small Cell Lung Cancer. Journal of Cancer, 2021, 12, 3468-3485.	1.2	2
1963	Role of Runx2 in prostate development and stem cell function. Prostate, 2021, 81, 231-241.	1.2	7
1964	Understanding the Role of Plasticity in Glioblastoma. , 2021, , .		0
1965	Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced?. Cancers, 2021, 13, 327.	1.7	27
1966	NK cells in prostate cancer. , 2021, , 439-457.		0
1967	Roles of NANOGP8 in cancer metastasis and cancer stem cell invasion during development of castration-resistant prostate cancer. Annals of Translational Medicine, 2021, 9, 45-45.	0.7	1
1968	Preclinical Models in Prostate Cancer: Resistance to AR Targeting Therapies in Prostate Cancer. Cancers, 2021, 13, 915.	1.7	11
1969	Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nature Communications, 2021, 12, 741.	5.8	104
1970	Targeting stemness of cancer stem cells to fight colorectal cancers. Seminars in Cancer Biology, 2022, 82, 150-161.	4.3	23
1971	Thyroid Carcinoma: Phenotypic Features, Underlying Biology and Potential Relevance for Targeting Therapy. International Journal of Molecular Sciences, 2021, 22, 1950.	1.8	40

#	Article	IF	CITATIONS
1972	Pancreatic Cancer Stem-Like Cells With High Calreticulin Expression Associated With Immune Surveillance. Pancreas, 2021, 50, 405-413.	0.5	3
1973	Sulfasalazine modifies metabolic profiles and enhances cisplatin chemosensitivity on cholangiocarcinoma cells in in vitro and in vivo models. Cancer & Metabolism, 2021, 9, 11.	2.4	14
1974	Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Medical Oncology, 2021, 38, 43.	1.2	20
1975	CD44 modulates metabolic pathways and altered ROS-mediated Akt signal promoting cholangiocarcinoma progression. PLoS ONE, 2021, 16, e0245871.	1.1	9
1976	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Frontiers in Cell and Developmental Biology, 2021, 9, 640587.	1.8	67
1977	What are the molecular mechanisms driving the switch from MPNs to leukemia?. Best Practice and Research in Clinical Haematology, 2021, 34, 101254.	0.7	3
1978	Circadian Rhythm Gene PER3 Negatively Regulates Stemness of Prostate Cancer Stem Cells via WNT/ \hat{l}^2 -Catenin Signaling in Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 656981.	1.8	24
1979	Phage display screening identifies a prostate specific antigen (PSA)–/lo prostate cancer cell specific peptide to retard castration resistance of prostate cancer. Translational Oncology, 2021, 14, 101020.	1.7	6
1980	Stem cells as therapeutic targets in colorectal cancer. Personalized Medicine, 2021, 18, 171-183.	0.8	6
1981	A pan-cancer perspective analysis reveals the opposite prognostic significance of CD133 in lower grade glioma and papillary renal cell carcinoma. Science Progress, 2021, 104, 003685042110109.	1.0	0
1982	A CD44/Brg1 nuclear complex confers mesenchymal progenitor cells with enhanced fibrogenicity in idiopathic pulmonary fibrosis. JCI Insight, 2021, 6, .	2.3	13
1983	EpCAM expression in esophageal cancer and its correlation with immunotherapy of solitomab. Journal of Thoracic Disease, 2021, 13, 2404-2413.	0.6	2
1984	Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton, 2021, 78, 249-276.	1.0	28
1986	Expression of CD44 variant 9 induces chemoresistance of gastric cancer by controlling intracellular reactive oxygen spices accumulation. Gastric Cancer, 2021, 24, 1089-1099.	2.7	14
1987	Natural products targeting cancer stem cells: Implications for cancer chemoprevention and therapeutics. Journal of Food Biochemistry, 2021, 45, e13772.	1.2	13
1988	Myosin 1C isoform A is a novel candidate diagnostic marker for prostate cancer. PLoS ONE, 2021, 16, e0251961.	1.1	5
1989	A Cyclometalated Ir ^{III} Complex Conjugated to a Coumarin Derivative Is a Potent Photodynamic Agent against Prostate Differentiated and Tumorigenic Cancer Stem Cells. Chemistry - A European Journal, 2021, 27, 8547-8556.	1.7	16
1990	PAF enhances cancer stem cell properties via \hat{l}^2 -catenin signaling in hepatocellular carcinoma. Cell Cycle, 2021, 20, 1010-1020.	1.3	6

#	ARTICLE	IF	CITATIONS
1992	Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. Advanced Therapeutics, 2021, 4, 2100017.	1.6	3
1993	Effect of melanoma stem cells on melanoma metastasis (Review). Oncology Letters, 2021, 22, 566.	0.8	13
1994	Dissecting the multi-omics atlas of the exosomes released by human lung adenocarcinoma stem-like cells. Npj Genomic Medicine, 2021, 6, 48.	1.7	18
1995	Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 1185-1202.	0.9	16
1996	The mitochondrial fission factor FIS1 promotes stemness of human lung cancer stem cells via mitophagy. FEBS Open Bio, 2021, 11, 1997-2007.	1.0	13
1997	Transcriptomic analysis of castration, chemo-resistant and metastatic prostate cancer elucidates complex genetic crosstalk leading to disease progression. Functional and Integrative Genomics, 2021, 21, 451-472.	1.4	6
1998	HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene, 2021, 40, 4625-4651.	2.6	81
1999	Hampering Stromal Cells in the Tumor Microenvironment as a Therapeutic Strategy to Destem Cancer Stem Cells. Cancers, 2021, 13, 3191.	1.7	8
2000	Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Current Medicinal Chemistry, 2022, 29, 741-783.	1.2	12
2001	Molecular pathology underlying the robustness of cancer stem cells. Regenerative Therapy, 2021, 17, 38-50.	1.4	18
2002	Isolated cancer stem cells from human liver cancer: morphological and functional characteristics in primary culture. Clinical and Translational Oncology, 2021, , 1.	1.2	1
2003	New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. International Journal of Molecular Sciences, 2021, 22, 7838.	1.8	2
2004	miRâ€'367â€'3p downregulates Rab23 expression and inhibits Hedgehog signaling resulting in the inhibition of the proliferation, migration, and invasion of prostate cancer cells. Oncology Reports, 2021, 46, .	1.2	6
2005	Keratin Profiling by Single-Cell RNA-Sequencing Identifies Human Prostate Stem Cell Lineage Hierarchy and Cancer Stem-Like Cells. International Journal of Molecular Sciences, 2021, 22, 8109.	1.8	6
2006	LOC100996425 acts as a promoter in prostate cancer by mediating hepatocyte nuclear factor 4A and the AMPK/mTOR pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 8174-8186.	1.6	7
2007	Identification of Chemo and Radio-Resistant Sub-Population of Stem Cells in Human Cervical Cancer HeLa Cells. Cancer Investigation, 2021, 39, 661-674.	0.6	7
2008	Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Letters, 2021, 511, 56-67.	3.2	11
2009	Effect of HDAC9 inhibition on epithelial-mesenchymal transition in CD133+ prostate cancer cell lines. Journal of Chemotherapy, 2022, 34, 45-54.	0.7	3

#	Article	IF	CITATIONS
2010	Emerging Role of E2F Family in Cancer Stem Cells. Frontiers in Oncology, 2021, 11, 723137.	1.3	40
2011	Analysis of Several Pathways for Efficient Killing of Prostate Cancer Stem Cells: A Central Role of NF-ÎB RELA. International Journal of Molecular Sciences, 2021, 22, 8901.	1.8	10
2013	Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomaterialia, 2021, 132, 401-420.	4.1	9
2014	The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers, 2021, 13, 4703.	1.7	15
2015	Biguanides drugs: Past success stories and promising future for drug discovery. European Journal of Medicinal Chemistry, 2021, 224, 113726.	2.6	15
2016	CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomaterials Science, 2021, 9, 2020-2031.	2.6	15
2017	Cancer Stem Cell Metabolism. Advances in Experimental Medicine and Biology, 2021, 1311, 161-172.	0.8	3
2018	FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. International Journal of Molecular Sciences, 2021, 22, 753.	1.8	13
2019	The Great Escape: The Power of Cancer Stem Cells to Evade Programmed Cell Death. Cancers, 2021, 13, 328.	1.7	23
2020	The use of zebrafish model in prostate cancer therapeutic development and discovery. Cancer Chemotherapy and Pharmacology, 2021, 87, 311-325.	1.1	5
2021	Analyzing the Expression of Biomarkers in Prostate Cancer Cell Lines. In Vivo, 2021, 35, 1545-1548.	0.6	9
2022	Mathematical Modeling of Plasticity and Heterogeneity in EMT. Methods in Molecular Biology, 2021, 2179, 385-413.	0.4	12
2023	Tumor Antigens as Modulators of the Tumor Microenvironment. , 2008, , 91-119.		1
2024	Biomarkers of Cancer Stem Cells. , 2012, , 45-67.		3
2025	Resistance to Anthracyclines and Taxanes in Breast Cancer. , 2013, , 227-247.		3
2026	Gene Regulation of Prominin-1 (CD133) in Normal and Cancerous Tissues. Advances in Experimental Medicine and Biology, 2013, 777, 73-85.	0.8	6
2027	Cancer Stem Cells Provide New Insights into the Therapeutic Responses of Human Prostate Cancer. , 2013, , $51-75$.		1
2028	Stem Cells in the Normal and Malignant Prostate. , 2013, , 3-41.		2

#	Article	IF	Citations
2029	Characterization of Cancer Stem Cells. Methods in Molecular Biology, 2016, 1464, 49-62.	0.4	13
2030	Identification of Human Pancreatic Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 161-173.	0.4	199
2031	Solid Tumor Stem Cells – Implications for Cancer Therapy. , 2009, , 527-543.		1
2032	Tumor Dormancy, Metastasis, and Cancer Stem Cells. , 2009, , 141-153.		3
2034	Cancer Stem Cells: Current Concepts and Therapeutic Implications. , 2012, , 227-235.		2
2035	Tumor Dormancy and Slow-Cycling Cancer Cells. Advances in Experimental Medicine and Biology, 2019, 1164, 199-206.	0.8	41
2036	Resistance of Cancer Stem Cells to Cell-Mediated Immune Responses. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 3-29.	0.1	2
2037	The Role of Bone Microenvironment, Vitamin D and Calcium. Recent Results in Cancer Research, 2012, 192, 33-64.	1.8	12
2038	Cancer Stem Cells. , 2011, , 351-376.		1
2039	Analysis of Integrin Alpha2Beta1 ($\hat{l}\pm2\hat{l}^21$) Expression as a Biomarker of Skeletal Metastasis. Biomarkers in Disease, 2017, , 487-506.	0.0	3
2040	$\hat{l}\pm 1$ and \hat{l}^21 integrins enhance the homing and differentiation of cultured prostate cancer stem cells. Asian Journal of Andrology, 2010, 12, 548-555.	0.8	20
2041	Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells. Archives of Pathology and Laboratory Medicine, 2010, 134, 1740-9.	1.2	11
2044	New clinical and experimental approaches for studying tumor dormancy: does tumor dormancy offer a therapeutic target?. Apmis, 2008, 116, 552-568.	0.9	21
2045	The evolving biology and treatment of prostate cancer. Journal of Clinical Investigation, 2007, 117, 2351-2361.	3.9	119
2046	Stem cells in prostate cancer initiation and progression. Journal of Clinical Investigation, 2007, 117, 2044-2050.	3.9	154
2047	Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. Journal of Clinical Investigation, 2008, 118, 2592-9.	3.9	224
2048	CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 2008, 118, 2111-20.	3.9	736
2049	\hat{l}^24 Integrin signaling induces expansion of prostate tumor progenitors. Journal of Clinical Investigation, 2013, 123, 682-99.	3.9	74

#	Article	IF	CITATIONS
2050	Mouse Models for Cancer Stem Cell Research. Toxicologic Pathology, 2010, 38, 62-71.	0.9	32
2051	The long-acting COX-2 inhibitor mavacoxib (Trocoxil \hat{A}_{ℓ}) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells. BMC Veterinary Research, 2014, 10, 184.	0.7	19
2052	Cancer Stem Cells of Sarcoma. , 2013, , 23-78.		2
2053	Expression of microRNA-328 Functions as a Biomarker for Recurrence of Early Gastric Cancer (EGC) After Endoscopic Submucosal Dissection (ESD) by Modulating CD44. Medical Science Monitor, 2016, 22, 4779-4785.	0.5	22
2054	Stem cells in cancer therapy: From their role in pathogenesis to their use as therapeutic agents. Drug News and Perspectives, 2010, 23, 175.	1.9	7
2055	A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Computational Biology, 2020, 16, e1007619.	1.5	80
2056	Multiple Lineages of Human Breast Cancer Stem/Progenitor Cells Identified by Profiling with Stem Cell Markers. PLoS ONE, 2009, 4, e8377.	1.1	188
2057	Determination of Somatic and Cancer Stem Cell Self-Renewing Symmetric Division Rate Using Sphere Assays. PLoS ONE, 2011, 6, e15844.	1.1	52
2058	Analysis of Epithelial and Mesenchymal Markers in Ovarian Cancer Reveals Phenotypic Heterogeneity and Plasticity. PLoS ONE, 2011, 6, e16186.	1.1	153
2059	Rac1 Targeting Suppresses Human Non-Small Cell Lung Adenocarcinoma Cancer Stem Cell Activity. PLoS ONE, 2011, 6, e16951.	1.1	54
2060	Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population. PLoS ONE, 2011, 6, e19804.	1.1	40
2061	GLI1 Confers Profound Phenotypic Changes upon LNCaP Prostate Cancer Cells That Include the Acquisition of a Hormone Independent State. PLoS ONE, 2011, 6, e20271.	1.1	11
2062	Chemically-Induced Cancers Do Not Originate from Bone Marrow-Derived Cells. PLoS ONE, 2012, 7, e30493.	1.1	3
2063	Small Molecule Antagonists of the Wnt/Beta-Catenin Signaling Pathway Target Breast Tumor-Initiating Cells in a Her2/Neu Mouse Model of Breast Cancer. PLoS ONE, 2012, 7, e33976.	1.1	88
2064	$\hat{l}\pm 6$ Integrin and CD44 Enrich for a Primary Keratinocyte Population That Displays Resistance to UV-Induced Apoptosis. PLoS ONE, 2012, 7, e46968.	1.1	9
2065	Down-Regulation of Vitamin D Receptor in Mammospheres: Implications for Vitamin D Resistance in Breast Cancer and Potential for Combination Therapy. PLoS ONE, 2013, 8, e53287.	1.1	39
2066	Krý ppel-Like Factor 4 Acts as an Oncogene in Colon Cancer Stem Cell-Enriched Spheroid Cells. PLoS ONE, 2013, 8, e56082.	1.1	109
2067	Dissociated Primary Human Prostate Cancer Cells Coinjected with the Immortalized Hs5 Bone Marrow Stromal Cells Generate Undifferentiated Tumors in NOD/SCID-Î3 Mice. PLoS ONE, 2013, 8, e56903.	1.1	12

#	Article	IF	CITATIONS
2068	Phenotypic Characterization of Metastatic Anaplastic Thyroid Cancer Stem Cells. PLoS ONE, 2013, 8, e65095.	1.1	40
2069	Hypoxia-Inducible Factors Activate CD133 Promoter through ETS Family Transcription Factors. PLoS ONE, 2013, 8, e66255.	1.1	36
2070	CD49fhigh Cells Retain Sphere-Forming and Tumor-Initiating Activities in Human Gastric Tumors. PLoS ONE, 2013, 8, e72438.	1.1	31
2071	The Notch Pathway Is Important in Maintaining the Cancer Stem Cell Population in Pancreatic Cancer. PLoS ONE, 2014, 9, e91983.	1.1	138
2072	Establishment of Highly Tumorigenic Human Colorectal Cancer Cell Line (CR4) with Properties of Putative Cancer Stem Cells. PLoS ONE, 2014, 9, e99091.	1.1	28
2073	Increased Cycling Cell Numbers and Stem Cell Associated Proteins as Potential Biomarkers for High Grade Human Papillomavirus+ve Pre-Neoplastic Cervical Disease. PLoS ONE, 2014, 9, e115379.	1.1	12
2074	Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0136120.	1.1	20
2075	Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt $\hat{\mathbb{I}}^2$ -Catenin Signaling Pathway. PLoS ONE, 2016, 11, e0160836.	1.1	21
2076	Cancer stem cells and autophagy: Facts and Perspectives. Journal of Cancer Stem Cell Research, 2014, 2, 1.	1.1	12
2077	Modeling Physiologic Microenvironments in Three-Dimensional Microtumors Maintains Brain Tumor Initiating Cells. Journal of Cancer Stem Cell Research, 2017, 5, 1.	1.1	3
2078	Clinical significance of stem cell marker CD133 expression in colorectal cancer. Histology and Histopathology, 2016, 31, 299-306.	0.5	19
2079	Adult stem and transit-amplifying cell location. Histology and Histopathology, 2006, 21, 995-1027.	0.5	54
2080	Poly-lactic-co-glycolic acid Nanoformulation of Small Molecule Antagonist GANT61 for Cancer Annihilation by Modulating Hedgehog Pathway. NanoWorld Journal, 2017, 03, .	0.8	13
2081	miR-25, integrin and cancer invasiveness. Oncoscience, 2015, 2, 663-664.	0.9	3
2082	Low intensity focused ultrasound (LOFU) modulates unfolded protein response and sensitizes prostate cancer to 17AAG. Oncoscience, 2014, 1, 434-445.	0.9	21
2083	Molecular identification and targeting of colorectal cancer stem cells. Oncotarget, 2010, 1, 387-95.	0.8	79
2084	Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget, 2016, 7, 51965-51980.	0.8	35
2085	Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer. Oncotarget, 2016, 7, 53137-53152.	0.8	22

#	ARTICLE	IF	CITATIONS
2086	Rab27A mediated by NF- \hat{l}^{2} B promotes the stemness of colon cancer cells via up-regulation of cytokine secretion. Oncotarget, 2016, 7, 63342-63351.	0.8	22
2087	Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase. Oncotarget, 2019, 10, 424-436.	0.8	15
2088	FOXO4 expression is related to stem cell-like properties and resistance to treatment in diffuse large B-cell lymphoma. Oncotarget, 2017, 8, 2466-2476.	0.8	21
2089	Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells. Oncotarget, 2017, 8, 15593-15609.	0.8	6
2090	Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget, 2017, 8, 18949-18967.	0.8	47
2091	Glycogen synthase kinase- $3\hat{l}^2$ inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth. Oncotarget, 2014, 5, 8986-8994.	0.8	40
2092	High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget, 2013, 4, 2462-2475.	0.8	111
2093	Inhibiting G protein $\hat{l}^2\hat{l}^3$ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget, 2017, 8, 36067-36081.	0.8	10
2094	Involvement of Polo-like kinase 1 (Plk1) in quiescence regulation of cancer stem-like cells of the gastric cancer cell lines. Oncotarget, 2017, 8, 37633-37645.	0.8	11
2095	Molecular identification and targeting of colorectal cancer stem cells. Oncotarget, 2010, 1, 387-395.	0.8	118
2096	The network of DAB2IP-miR-138 in regulating drug resistance of renal cell carcinoma associated with stem-like phenotypes. Oncotarget, 2017, 8, 66975-66986.	0.8	18
2097	Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget, 2017, 8, 56698-56713.	0.8	95
2098	Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology?. Oncotarget, 2017, 8, 91734-91764.	0.8	37
2099	Androgen receptor/let-7a signaling regulates breast tumor-initiating cells. Oncotarget, 2018, 9, 3690-3703.	0.8	15
2100	TOP2Ahigh is the phenotype of recurrence and metastasis whereas TOP2Aneg cells represent cancer stem cells in prostate cancer. Oncotarget, 2014, 5, 9498-9513.	0.8	34
2101	Stem-like and highly invasive prostate cancer cells expressing CD44v8-10 marker originate from CD44-negative cells. Oncotarget, 2018, 9, 30905-30918.	0.8	11
2102	Increased fucosylation has a pivotal role in invasive and metastatic properties of head and neck cancer stem cells. Oncotarget, 2015, 6, 71-84.	0.8	66
2103	Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 2015, 6, 1900-1919.	0.8	80

#	Article	IF	CITATIONS
2104	Mechanistic rationale for MCL1 inhibition during androgen deprivation therapy. Oncotarget, 2015, 6, 6105-6122.	0.8	28
2105	Deciphering the cellular source of tumor relapse identifies CD44 as a major therapeutic target in pancreatic adenocarcinoma. Oncotarget, 2015, 6, 7408-7423.	0.8	28
2106	CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations. Oncotarget, 2015, 6, 19661-19670.	0.8	26
2107	Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget, 2015, 6, 20650-20660.	0.8	25
2108	Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget, 2015, 6, 23959-23986.	0.8	65
2109	Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget, 2015, 6, 25074-25092.	0.8	53
2110	STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget, 2015, 6, 27461-27477.	0.8	55
2111	A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget, 2015, 6, 31927-31943.	0.8	98
2112	Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget, 2015, 6, 39550-39563.	0.8	70
2113	Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget, 2016, 7, 193-208.	0.8	91
2114	Invasive oral cancer stem cells display resistance to ionising radiation. Oncotarget, 2015, 6, 43964-43977.	0.8	37
2115	Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSAâ^*/lo castration-resistant cells. Oncotarget, 2016, 7, 14220-14240.	0.8	17
2116	Tumor necrosis factor receptor 2-signaling in CD133-expressing cells in renal clear cell carcinoma. Oncotarget, 2016, 7, 24111-24124.	0.8	16
2117	Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells. Oncotarget, 2016, 7, 26567-26579.	0.8	6
2118	Sensitizing mucoepidermoid carcinomas to chemotherapy by targeted disruption of cancer stem cells. Oncotarget, 0, 7, 42447-42460.	0.8	30
2119	Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma. Electronic Physician, 2017, 9, 4708-4717.	0.2	13
2120	Drug resistance mechanisms of cancer stem-like cells and their therapeutic potential as drug targets. , 2019, 2, 457-470.		11
2121	MET: roles in epithelial-mesenchymal transition and cancer stemness. Annals of Translational Medicine, 2017, 5, 5-5.	0.7	69

#	Article	IF	Citations
2122	Histone Modifications, Stem Cells and Prostate Cancer. Current Pharmaceutical Design, 2014, 20, 1687-1697.	0.9	11
2123	Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Current Pharmaceutical Design, 2020, 26, 2038-2056.	0.9	6
2124	Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Current Pharmaceutical Design, 2020, 26, 1979-1993.	0.9	6
2125	Therapeutic Strategies to Target TGF-β in the Treatment of Bone Metastases. Current Pharmaceutical Biotechnology, 2011, 12, 2121-2137.	0.9	11
2126	Oncolytic Adenovirus: Preclinical and Clinical Studies in Patients with Human Malignant Gliomas. Current Gene Therapy, 2009, 9, 422-427.	0.9	99
2127	Liposomes for Enhanced Cellular Uptake of Anticancer Agents. Current Drug Delivery, 2020, 17, 861-873.	0.8	13
2128	Cancer Stem Cells in Prostate Cancer Chemoresistance. Current Cancer Drug Targets, 2014, 14, 225-240.	0.8	48
2129	Theranostic Platforms Proposed for Cancerous Stem Cells: A Review. Current Stem Cell Research and Therapy, 2019, 14, 137-145.	0.6	31
2130	Cancer T Cell Immunotherapy with Bispecific Antibodies and Chimeric Antigen Receptors. Recent Patents on Anti-Cancer Drug Discovery, 2013, 8, 239-254.	0.8	1
2131	Cancer Stem Cells and their Management in Cancer Therapy. Recent Patents on Anti-Cancer Drug Discovery, 2020, 15, 212-227.	0.8	4
2132	Lung Cancer Stem Cells as a Target for Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 164-171.	0.9	34
2133	Mouse Induced Glioma-Initiating Cell Models and Therapeutic Targets. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 471-480.	0.9	3
2134	Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix. The Open Virology Journal, 2012, 6, 232-240.	1.8	46
2135	CD44 and CD133 Expressions in Primary Tumor Cells Correlate to Survival of Pancreatic Cancer Patients. Open Surgical Oncology Journal (Online), 2009, 1, 1-7.	1.7	8
2136	Cancer Stem Cells, Models, Drugs and Future Prospective., 2015,, 135-156.		1
2137	Immunological and Clinical Impact of Cancer Stem Cells in Vulvar Cancer: Role of CD133/CD24/ABCG2-Expressing Cells. Anticancer Research, 2016, 36, 5109-5116.	0.5	11
2138	Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer Cells. Anticancer Research, 2016, 36, 6367-6380.	0.5	53
2139	CD44 Expression Is a Prognostic Factor in Patients with Intrahepatic Cholangiocarcinoma After Surgical Resection., 2017, 37, 5701-5705.		11

#	Article	IF	CITATIONS
2140	Suppressive Effect of Delta-Tocotrienol on Hypoxia Adaptation of Prostate Cancer Stem-like Cells. Anticancer Research, 2018, 38, 1391-1399.	0.5	19
2141	New directions in endocrine therapy: renewed interest in the androgen receptor. Therapy: Open Access in Clinical Medicine, 2008, 5, 47-56.	0.2	1
2142	Stem Cells of Adult Organisms in Biology and Medicine. Advances in Cell Biology, 2010, 2, 155-166.	1.5	1
2143	Endogenous anticancer mechanism differentiation. Frontiers in Bioscience - Scholar, 2012, S4, 1518-1538.	0.8	1
2144	Molecular diagnosis of pancreatic cancer where do we stand. Frontiers in Bioscience - Scholar, 2010, S2, 578-590.	0.8	2
2145	Comparison of Salivary and Serum Soluble CD44 Levels between Patients with Oral SCC and Healthy Controls. Asian Pacific Journal of Cancer Prevention, 2018, 19, 3059-3063.	0.5	11
2148	Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer. Cancers, 2015, 7, 2290-2308.	1.7	51
2149	Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World Journal of Gastroenterology, 2008, 14, 3903.	1.4	51
2150	Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World Journal of Gastroenterology, 2008, 14, 925.	1.4	107
2151	Characterization of CD133 ⁺ parenchymal cells in the liver: Histology and culture. World Journal of Gastroenterology, 2009, 15, 4896.	1.4	28
2152	Pancreas duodenal homeobox-1 expression and significance in pancreatic cancer. World Journal of Gastroenterology, 2007, 13, 2615.	1.4	37
2153	CD133 ⁺ gallbladder carcinoma cells exhibit self-renewal ability and tumorigenicity. World Journal of Gastroenterology, 2011, 17, 2965.	1.4	42
2154	Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics. World Journal of Gastroenterology, 2012, 18, 4610.	1.4	26
2155	Intestinal stem cell marker LGR5 expression during gastric carcinogenesis. World Journal of Gastroenterology, 2013, 19, 8714.	1.4	33
2156	Liver cancer stem cell markers: Progression and therapeutic implications. World Journal of Gastroenterology, 2016, 22, 3547.	1.4	141
2157	Special AT-rich sequence-binding protein 2 acts as a negative regulator of stemness in colorectal cancer cells. World Journal of Gastroenterology, 2016, 22, 8528.	1.4	13
2158	Targeting Signal Pathways active in Cancer Stem Cells to Overcome Drug Resistance. Chinese Journal of Lung Cancer, 2009, 12, 3-7.	0.7	2
2159	Immunologic targeting of the cancer stem cell. Stembook, 2008, , .	0.3	3

#	Article	IF	CITATIONS
2160	Somatic stem cells of the ovary and their relationship to human ovarian cancers. Stembook, 2009, , .	0.3	3
2161	Targeting cancer stem cells in cholangiocarcinoma (Review). International Journal of Oncology, 2020, 57, 397-408.	1.4	15
2162	Cancer stem cells in esophageal squamous cell cancer (Review). Oncology Letters, 2019, 18, 5022-5032.	0.8	12
2163	Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma. Oncology Reports, 2014, 32, 755-763.	1.2	27
2164	Glioblastoma Unique Features Drive the Ways for Innovative Therapies in the Trunk-branch Era. Folia Medica, 2019, 61, 7-22.	0.2	3
2165	Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGFâ^β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16, 7177-7194.	1.0	8
2166	Androgen receptor and prostate cancer. AIMS Molecular Science, 2016, 3, 280-299.	0.3	22
2167	LGR5 is a promising biomarker for patients with stage I and II gastric cancer. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2013, 25, 79-89.	0.7	24
2168	Circulating cancer stem cells: the importance to select. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2015, 27, 437-49.	0.7	58
2169	Cancer stem cells in prostate cancer. Translational Andrology and Urology, 2013, 2, 242-53.	0.6	35
2170	Hormonal therapy and chemotherapy in hormone-naive and castration resistant prostate cancer. Translational Andrology and Urology, 2015, 4, 355-64.	0.6	19
2171	Are hematopoietic stem cells involved in hepatocarcinogenesis?. Hepatobiliary Surgery and Nutrition, 2014, 3, 199-206.	0.7	12
2172	Cancer stem cells: progress and challenges in lung cancer. Stem Cell Investigation, 2014, 1, 9.	1.3	28
2173	Targeting cancer stem cells with oncolytic virus. Stem Cell Investigation, 2014, 1, 20.	1.3	7
2174	Cancer stem cells in hepatocellular carcinomas. Indian Journal of Medical Research, 2015, 142, 362.	0.4	2
2175	Culturing in serum-free culture medium on collagen type-l-coated plate increases expression of CD133 and retains original phenotype of HT-29 cancer stem cell. Advanced Biomedical Research, 2016, 5, 59.	0.2	8
2176	Radioresistance and Cancer Stem Cells: Survival of the Fittest. Journal of Carcinogenesis $\&$ Mutagenesis, 0, ${\rm s1}$, .	0.3	10
2177	Androgen Receptor Signaling in Prostate Cancer: New Twists for an Old Pathway. Journal of Steroids & Hormonal Science, 2012, 01, .	0.1	3

#	Article	IF	Citations
2178	Role of TGF-& amp; lt; l& gt; l^2& amp; lt; l& gt; in breast cancer bone metastases. Advances in Bioscience and Biotechnology (Print), 2013, 04, 15-30.	0.3	52
2179	Expression Compilation of Several Putative Cancer Stem Cell Markers by Primary Ovarian Carcinoma. Journal of Cancer Therapy, 2010, 01, 165-173.	0.1	8
2180	Establishment and molecular characterization of breast cancer mesenchymal stem cell line derived from human non-metastasis breast cancer tumor. Stem Cell Discovery, 2011, 01, 21-28.	0.5	7
2181	Cancer stem cell hypothesis and gastric carcinogenesis: Experimental evidence and unsolved questions. World Journal of Gastrointestinal Oncology, 2012, 4, 54.	0.8	31
2182	Cancer stem cell impact on clinical oncology. World Journal of Stem Cells, 2018, 10, 183-195.	1.3	47
2183	Targeting cancer stem cells in drug discovery: Current state and future perspectives. World Journal of Stem Cells, 2019, 11, 398-420.	1.3	67
2184	Aiming to immune elimination of ovarian cancer stem cells. World Journal of Stem Cells, 2013, 5, 149.	1.3	6
2185	Hepatic cancer stem cells and drug resistance: Relevance in targeted therapies for hepatocellular carcinoma. World Journal of Hepatology, 2010, 2, 114.	0.8	42
2186	The Biology of Cancer Stem Cells and Its Clinical Implication in Hepatocellular Carcinoma. Gut and Liver, 2012, 6, 29-40.	1.4	35
2187	REVIEW ARTICLES Prostate cancer stem cells. Central European Journal of Urology, 2011, 64, 196-200.	0.2	5
2188	IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World Journal of Clinical Oncology, 2011, 2, 384.	0.9	93
2189	IDENTIFICATION OF CD133+/NESTIN+ PUTATIVE CANCER STEM CELLS IN NON-SMALL CELL LUNG CANCER. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2010, 154, 321-326.	0.2	46
2190	Research progression of CD133 as a marker of cancer stem cells. Chinese Journal of Cancer, 2010, 29, 243-247.	4.9	12
2191	Molecular Pathogenesis of Sporadic Melanoma and Melanoma-Initiating Cells. Archives of Pathology and Laboratory Medicine, 2010, 134, 1740-1749.	1.2	30
2192	Cancer Stem Cell: The Seed of Tumors?. North American Journal of Medicine & Science, 2009, 2, 1.	3.8	2
2193	Cancer Stem Cells and Response to Therapy. Asian Pacific Journal of Cancer Prevention, 2012, 13, 5947-5954.	0.5	28
2194	Identification of a Cancer Stem-like Population in the Lewis Lung Cancer Cell Line. Asian Pacific Journal of Cancer Prevention, 2012, 13, 761-766.	0.5	9
2195	p63 Cytoplasmic Aberrance is Associated with High Prostate Cancer Stem Cell Expression. Asian Pacific Journal of Cancer Prevention, 2012, 13, 1943-1948.	0.5	16

#	Article	IF	CITATIONS
2196	High Expression of Stem Cell Marker ALDH1 is Associated with Reduced BRCA1 in Invasive Breast Carcinomas. Asian Pacific Journal of Cancer Prevention, 2012, 13, 2973-2978.	0.5	29
2197	Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: A Review. Asian Pacific Journal of Cancer Prevention, 2013, 14, 5579-5587.	0.5	41
2198	Growth, Clonability, and Radiation Resistance of Esophageal Carcinoma-derived Stem-like Cells. Asian Pacific Journal of Cancer Prevention, 2013, 14, 4891-4896.	0.5	6
2199	Monitoring microRNAs Using a Molecular Beacon in CD133+/CD338+Human Lung Adenocarcinoma-initiating A549 Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 161-166.	0.5	12
2200	Co-Expression of Putative Cancer Stem Cell Markers, CD133 and Nestin, in Skin Tumors. Asian Pacific Journal of Cancer Prevention, 2014, 15, 8161-8169.	0.5	36
2201	Prognostic Significance of Expression of CD133 and Ki-67 in Gastric Cancer. Asian Pacific Journal of Cancer Prevention, 2014, 15, 8215-8219.	0.5	27
2202	Associations of Probiotics with Vitamin D and Leptin Receptors and their Effects on Colon Cancer. Asian Pacific Journal of Cancer Prevention, 2015, 16, 3621-3627.	0.5	12
2203	Label-Free Cancer Stem-like Cell Assay Conducted at a Single Cell Level Using Microfluidic Mechanotyping Devices. Analytical Chemistry, 2021, 93, 14409-14416.	3.2	10
2204	Cancer Stem Cell Markers, CD44 and ALDH1, for Assessment of Cancer Risk in OPMDs and Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Head and Neck Pathology, 2022, 16, 453-465.	1.3	7
2205	SNAIL2 contributes to tumorigenicity and chemotherapy resistance in pancreatic cancer by regulating IGFBP2. Cancer Science, 2021, 112, 4987-4999.	1.7	22
2206	The Molecular Pathogenesis and Pathophysiology of Prostate Cancer. Translational Medicine Series, 2006, , 1-25.	0.0	0
2207	Advances in intestinal stem cells and cancer stem cells of colorectal cancer. World Chinese Journal of Digestology, 2008, 16, 4075.	0.0	0
2209	Cancer Stem Cells and Radiation. , 2008, , 285-293.		0
2210	Tumorstammzell-gerichtete Therapie mit Rapamycin und Cyclopamin sensitiviert chemotherapieresistente Pankreaskarzinome gegenüber 5-Fluorouracil. Langenbecks Archiv Für Chirurgie Supplement, 2008, , 105-106.	0.0	0
2211	MCF7 Side Population (SP) cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. FASEB Journal, 2008, 22, 1079.2.	0.2	0
2212	Cancer Stem Cells and Oral Cavity Cancer Metastasis. , 2009, , 323-335.		0
2213	Pten-Deficient Mouse Models for High-Grade Astrocytomas. , 2009, , 77-92.		2
2214	Cancer Stem Cells in Solid Tumors. , 2009, , 295-326.		1

#	ARTICLE	IF	CITATIONS
2216	Critical Roles of Tumorigenic and Migrating Cancer Stem/Progenitor Cells in Cancer Progression and their Therapeutic Implications. , 2009, , 287-308.		0
2217	Prostate Cancer Stem Cells., 2009, , 137-165.		0
2218	"One for All―or "All for One� – The Necessity of Cancer Stem Cell Diversity in Metastasis Formation and Cancer Relapse. , 2009, , 327-356.		0
2219	A new target in future treatment of liver cancer - liver cancer stem cells. World Chinese Journal of Digestology, 2009, 17, 743.	0.0	0
2220	The Chronically Inflamed Microenvironment and Cancer Stem Cells., 2009,, 235-250.		0
2221	Prostate Cancer Stem/Progenitor Cells. , 2009, , 217-230.		O
2222	Cancer Stem Cells: Lung Cancer. , 2009, , 177-184.		0
2223	Implications of Cancer Stem Cells for Tumor Metastasis. , 2009, , 443-453.		0
2224	Role of Bone Marrowâ€"Derived Cells in Gastric Adenocarcinoma. , 2009, , 561-586.		0
2225	Prostate Cancer Stem Cells and Their Involvement in Metastasis. , 2009, , 455-461.		0
2226	Expresssion of CD133 in Clear cell renal cell carcinoma cells and the related drug resistances. Academic Journal of Second Military Medical University, 2009, 29, 252-255.	0.0	0
2227	p75 ^{NTR} in isolation and identification of cancer stem cells from human esophageal carcinoma. Academic Journal of Second Military Medical University, 2009, 29, 481-486.	0.0	0
2228	Cancer Stem Cells: An Overview. , 2010, , 173-181.		0
2229	Cancer Stem Cell Biology and Its Role in Radiotherapy. , 2010, , 1532-1543.		0
2230	Positive Relationship between CD133 Expression and Clinicopathologic Factors in Colorectal Cancer. The Showa University Journal of Medical Sciences, 2010, 22, 9-18.	0.1	0
2231	Translational Implications of Stromal–Epithelial Interactions in Prostate Cancer and the Potential Role of Prostate Cancer Stem/Progenitor Cells. , 2010, , 2773-2782.		1
2232	Regulation of Self-Renewing Divisions in Normal and Leukaemia Stem Cells. , 2010, , 109-125.		1
2233	Cancer Stem Cells and Liver Cancer. , 2010, , 279-299.		O

#	Article	IF	CITATIONS
2234	The Potential of Selectively Cultured Adult Stem Cells Re-implanted in Tissues. , 2011, , 79-117.		0
2235	Pre-malignant Disease in the Prostate. , 2011, , 467-491.		0
2236	Cancer Stem Cells in Ovarian Cancer. , 2011, , 151-176.		0
2238	Cancer Stem Cells. , 2011, , 151-168.		2
2239	Future Directions: Cancer Stem Cells as Therapeutic Targets. , 2011, , 403-429.		0
2240	Prostate Cancer Stem Cells., 2011,, 3057-3059.		0
2241	Cancer Stem Cells in Hepatocellular Cancer. , 2011, , 177-195.		О
2242	Cancer Stem Cells in Prostate Cancer. , 2011, , 99-116.		0
2243	Analysis of Gene Expression as Relevant to Cancer Cells and Circulating Tumour Cells. Methods in Molecular Biology, 2011, 784, 55-75.	0.4	0
2245	CÃ,NCER DE MAMA: DE PERFIS MOLECULARES A CÉLULAS TRONCO. Revista Da Universidade Vale Do Rio Verde, 2011, 9, 277-292.	0.1	0
2246	Molecular targeting of cancer stem cells. , 2011, , 202-216.		0
2248	Cancer Stem Cells: A Revisitation of the "Anaplasia―Concept. , 2012, , 1-16.		0
2249	Cancer Stem Cells and Renal Carcinoma. , 2012, , 211-220.		0
2250	Cancer Stem Cells and Glioblastoma Multiforme: Pathophysiological and Clinical Aspects. , 2012, , 123-140.		0
2251	Integrins as Determinants of Genetic Susceptibility, Tumour Behaviour and Their Potential as Therapeutic Targets. , 0, , .		0
2252	The Potential Target Therapy of Prostate Cancer Stem Cells. , 0, , .		0
2253	Cross Talks Among Notch, Wnt, and Hedgehog Signaling Pathways Regulate Stem Cell Characteristics. , 2012, , 593-606.		0
2257	Cancer Stem Cells of Hepatocellular Carcinoma. , 2012, , 217-231.		0

#	Article	IF	CITATIONS
2258	Gene Expression Profile, Androgen Independence and Prostate Cancer. Journal of Cancer Therapy, 2012, 03, 637-644.	0.1	3
2259	Identification of Glioma Stem Cells: What is Already Known and How Far do We Still Need to Go? The Biomarkers Dilemma. Journal of Carcinogenesis & Mutagenesis, 2012, s1, .	0.3	1
2260	Detection of Cancer Stem Cells Using AC133 Antibody. , 2012, , 37-43.		0
2261	Targeted Therapies and Vaccination. , 2012, , 261-275.		O
2262	Ras Signaling Pathway in Biology and Therapy of Malignant Peripheral Nerve Sheath Tumors. , 2012, , 589-609.		0
2263	Gene Expression of Cancer Stem Cell in Oral Squamous Cell Carcinoma. Dental Medicine Research, 2012, 32, 81-89.	0.1	0
2264	Clinical Flow Cytometry - Emerging Applications. , 2012, , .		10
2265	DNA Repair Mechanisms in Other Cancer Stem Cell Models. , 2013, , 125-139.		0
2266	Introduction to Cancer Stem Cells. , 2013, , 1-18.		0
2267	The role of Notch, Hh and Wnt in lung cancer development Revista Colombiana De Hematologi ì a Y Oncologiìa, 2012, 1, 51-62.	0.0	0
2268	Analysis of Expression Patterns of Thymosin \hat{l}^24 and CD133 in Normal Stomach. Journal of Life Science, 2012, 22, 1415-1419.	0.2	4
2269	Molecular Mechanisms of Tumor Metastasis. Molecular Pathology Library, 2013, , 213-228.	0.1	0
2270	Metastatic Dissemination. , 2013, , 111-125.		0
2271	Tumour Stroma Control of Human Prostate Cancer Stem Cells. , 2013, , 111-125.		0
2272	An Introduction to Proliferation and Migration of Stem and Cancer Cells. , 2013, , 3-12.		0
2273	Prostate Cancer Stem Cells: A Brief Review. , 2013, , 37-49.		0
2274	Stem Cell Models for Functional Validation of Prostate Cancer Genes., 2013,, 149-173.		0
2275	Mechanisms of Metastasis. , 2013, , 435-458.		5

#	Article	IF	CITATIONS
2276	Genetic and Signaling Pathway Regulations of Tumor-Initiating Cells of the Prostate., 2013,, 77-89.		0
2277	Stem Cells and Cancer. , 2013, , 413-433.		2
2278	Therapy Resistance in Prostate Cancer: A Stem Cell Perspective. Pancreatic Islet Biology, 2013, , 279-300.	0.1	0
2279	Dual Regimen with Stem Cell Antagonists and Differentiating Agents for Effective Chemotherapy. Journal of Stem Cell Research & Therapy, 2013, 01, .	0.3	0
2280	Promoter Hypermethylation. , 2013, , 41-70.		0
2281	Abstract 4889: Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck, 2013, , .		0
2282	Expression of CD133, CD44, CK7, and OCT4 in Animal Cancers. Korean Journal of Veterinary Research, 2013, 53, 109-115.	0.2	0
2283	A fusion at the root of prostate cancer. Asian Journal of Andrology, 2013, 15, 592-593.	0.8	0
2284	The Fundamental Role of Epigenetic Regulation in Normal and Disturbed Cell Growth, Differentiation, and Stemness., 2014, , 1-41.		0
2285	"To Be or Not to Be…―Cancer Stem Cells or Not Cancer Stem Cells… Postdoc Journal, 0, , .	0.4	0
2286	Cancer stem cells in nasopharyngeal carcinoma: current evidence. Journal of Nasopharyngeal Carcinoma, 2014, , .	0.0	0
2287	Cancer Stem Cells in Genitourinary Cancer. , 2014, , 149-165.		0
2288	Stem Cells of the Reproductive System: At a Glance. , 2014, , 235-257.		0
2289	Stem Cells in Colon Cancer. , 2014, , 127-147.		0
2290	Micro RNA Regulation of Cancer Stem Cell Phenotypes. International Journal of Genetic Science, 2014, 1, 1-8.	0.1	0
2291	Cancer Stem-Like Cells. , 2014, , 767-771.		0
2293	Cancer Stem-Like Cells. , 2014, , 1-5.		0
2294	Cancer Stem- Like Cells in Melanoma Progression, Resistance and Recurrence: Significance for Melanoma Treatment. International Journal of Stem Cell Research and Transplantation, 0, , 78-85.	0.0	0

#	Article	IF	CITATIONS
2297	A New Strategy of ALA-Photodynamic Cancer Therapy: Inhibition of ABC Transporter ABCG2. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 89-104.	0.1	0
2299	CD133 as Biomarker in Breast Cancer. Biomarkers in Disease, 2015, , 429-445.	0.0	0
2300	Prostate Cancer Stem Cells. , 2015, , 1-3.		0
2301	Cancer stem cells are new vistas for predicting the course of breast cancer. Opuholi Zenskoj Reproduktivnoj Sistemy, 2015, 11, 10-14.	0.1	1
2302	Therapeutic Implications of Cancer Stem Cell: Challenges and Opportunities in Translational Studies. , 2015, , 533-553.		0
2303	Image Guidance in Stem Cell Therapeutics: Unfolding the Blindfold. Current Drug Targets, 2015, 16, 658-671.	1.0	0
2304	Cancer Stem Cells: Concepts and Therapeutic Implications. Asian Journal of Animal and Veterinary Advances, 2015, 10, 509-517.	0.3	3
2305	Cancer stem cells - a brief overview. Annals of SBV, 2016, 5, 61-68.	0.0	0
2306	Associations between Markers of Colorectal Cancer Stem Cells, Mutations, Mirna, and Clinical Characteristics of Ulcerative Colitis. Translational Medicine (Sunnyvale, Calif), 2016, 06, .	0.4	0
2307	Prostate Cancer Stem Cells. , 2016, , 3786-3788.		0
2308	Glioma Stem Cells. , 2016, , 335-356.		1
2309	Analysis of Integrin Alpha2Beta1 ($\hat{l}\pm2\hat{l}^21$) Expression as a Biomarker of Skeletal Metastasis. Exposure and Health, 2016, , 1-20.	2.8	0
2310	Identification of Cancer Stem Cells in human pancreatic cancer, a small population with high tumorigenic activity and chemotherapy resistance. Journal of Stem Cell Research & Therapy, 2016, 6, .	0.3	0
2312	The Molecular Pathogenesis and Pathophysiology of Prostate Cancer. , 2016, , 19-44.		0
2313	DOWN-REGULATION OF ALDH1A1 INCREASED EXPRESSION OF CARCINOGENESIS-RELATED GENES IN NON-SMALL CELL LUNG CANCER CELL LINE OF A549. Jurnal Teknologi (Sciences and Engineering), 2016, 78,	0.3	0
2315	Thyroid Stem Cells: Concept and Clinical Implications. Journal of Surgical Academia, 2016, 6, 4-11.	0.0	1
2316	Role of Cancer Stem Cells in Oral Cancer. , 2017, , 487-529.		0
2317	Targeting Cancer Stem Cells—A Renewed Therapeutic Paradigm. Oncology & Hematology Review, 2017, 13, 45.	0.2	1

#	Article	IF	CITATIONS
2318	Stem Cell Therapy: Optimization, Regeneration, Reprogramming, Expansion, Tissue Engineering. , 2017, , 137-139.		0
2319	Cancer Stem Cell Concept. , 2017, , 93-97.		0
2320	Cancer Stem Cells—Biopathology with Reference to Head and Neck Cancers. , 2017, , 37-57.		1
2321	Stem Cells and Gastric Cancer. Translational Medicine Research, 2017, , 271-300.	0.0	0
2322	Cancer Stem Cells. Molecular Pathology Library, 2018, , 99-113.	0.1	1
2323	Flow Cytometric Analysis of Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 69-77.	0.4	2
2324	An Artificial Niche for Circulating Endothelial Cells During Tumor Angiogenesis Mediated by Prostate Cancer Stem Cells. Biomedical and Pharmacology Journal, 2018, 11, 1879-1883.	0.2	0
2325	Las oposiciones a la organistÃa de la catedral de Salamanca en el siglo XVII. Estabilidad y dinámica. Anuario Musical, 2018, , 81.	0.1	O
2326	Assessing the Advantages, Limitations and Potential of Human Primary Prostate Epithelial Cells as a Pre-clinical Model for Prostate Cancer Research. Advances in Experimental Medicine and Biology, 2019, 1164, 109-118.	0.8	3
2327	Effect of Interferon α-2b on Multicellular Tumor Spheroids of MCF-7 Cell Line Enriched with Cancer Stem Cells. Innovative Biosystems and Bioengineering, 2019, 3, 34-44.	0.2	2
2328	Acquisition of temozolomide resistance by the rat C6 glioma cell line increases cell migration and side population phenotype. Oncology Reports, 2019, 42, 2355-2362.	1.2	6
2330	CELL SURFACE MOLECULAR MARKERS FOR IDENTIFICATION OF CANCER STEM CELL POPULATIONS (SYSTEMATIC REVIEW). Voprosy Onkologii, 2020, 66, 336-345.	0.1	0
2331	Enrichment and Transcriptional Characterization of Stem Cells Isolated from Human Glioblastoma Cell Lines. Methods in Molecular Biology, 2021, 2174, 19-29.	0.4	0
2332	Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment. International Journal of Stem Cells, 2021, 14, 386-399.	0.8	3
2333	Visualising the cancer stemâ€like properties of canine tumour cells with low proteasome activity. Veterinary and Comparative Oncology, 2021, , .	0.8	1
2335	Mechanisms of Prostate Cancer Bone Metastasis. , 2020, , 315-323.		0
2336	Cancer Stem Cells. , 2020, , 15-34.		0
2337	Introduction to Stem Cells. , 2020, , 1-11.		0

#	Article	IF	CITATIONS
2338	Molecular mechanisms of docetaxel resistance in prostate cancer., 2020, 3, 676-685.		11
2339	Lung and Prostate Cancer Stem Cells. , 2020, , 69-85.		O
2340	Controversies in Isolation and Characterization of Cancer Stem Cells., 2020,, 257-272.		0
2341	Prognostic and Clinical Value of CD44 and CD133 in Esophageal Cancer: A Systematic Review and Meta-analysis. Iranian Journal of Allergy, Asthma and Immunology, 2020, 19, 105-116.	0.3	4
2342	Bacterial Lipopolysaccharide Augmented Malignant Transformation and Promoted the Stemness in Prostate Cancer Epithelial Cells. Journal of Inflammation Research, 2021, Volume 14, 5849-5862.	1.6	6
2343	Ferroptosis: Cancer Stem Cells Rely on Iron until "to Die for―lt. Cells, 2021, 10, 2981.	1.8	43
2345	The Role of RNA Interference in Targeting the Cancer Stem Cell and Clinical Trials for Cancer. , 2012, , 387-408.		0
2346	Characterisation of human prostate epithelial progenitor differentiation in response to androgens. Annals of the Royal College of Surgeons of England, 2011, 93, 424-428.	0.3	3
2347	Oncolytic virus as a cancer stem cell killer: progress and challenges. Stem Cell Investigation, 2014, 1, 22.	1.3	5
2348	Epithelial ovarian cancer stem cells-a review. International Journal of Clinical and Experimental Medicine, 2008, 1, 260-6.	1.3	13
2350	Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: a potential role for the canonical Wnt signaling pathway. Molecular Vision, 2010, 16, 36-45.	1.1	39
2351	No small matter: microRNAs - key regulators of cancer stem cells. International Journal of Clinical and Experimental Medicine, 2010, 3, 84-7.	1.3	5
2352	CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. American Journal of Translational Research (discontinued), 2010, 2, 135-44.	0.0	41
2356	Colon cancer stem cells. Gastrointestinal Cancer Research: GCR, 2010, , S16-23.	0.8	40
2357	Clinicopathologic significance of putative stem cell markers, CD44 and nestin, in gastric adenocarcinoma. International Journal of Clinical and Experimental Pathology, 2011, 4, 733-41.	0.5	17
2359	Prostate cancer stem cell biology. Minerva Urologica E Nefrologica = the Italian Journal of Urology and Nephrology, 2012, 64, 19-33.	3.9	29
2360	Side population cells from HXO-Rb44 retinoblastoma cell line have cancer-initiating property. International Journal of Ophthalmology, 2011, 4, 461-5.	0.5	3
2362	Targeting cancer stem cells: a new therapy to cure cancer patients. American Journal of Cancer Research, 2012, 2, 340-56.	1.4	84

#	Article	IF	CITATIONS
2363	Targeting prostate cancer stem cells for cancer therapy. Discovery Medicine, 2012, 13, 135-42.	0.5	20
2364	BRCA1 Protein Expression Level and CD44(+)Phenotype in Breast Cancer Patients. Cell Journal, 2011, 13, 155-62.	0.2	8
2366	Loss of imprinting of IGF2 and the epigenetic progenitor model of cancer. American Journal of Stem Cells, 2012, 1, 59-74.	0.4	30
2368	CD133: to be or not to be, is this the real question?. American Journal of Translational Research (discontinued), 2013, 5, 563-81.	0.0	83
2369	Targeting of cancer stem/progenitor cells plus stem cell-based therapies: the ultimate hope for treating and curing aggressive and recurrent cancers. Panminerva Medica, 2008, 50, 3-18.	0.2	28
2370	Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples. International Journal of Clinical and Experimental Pathology, 2014, 7, 184-93.	0.5	16
2372	α-blockade, apoptosis, and prostate shrinkage: how are they related?. Central European Journal of Urology, 2013, 66, 189-94.	0.2	5
2374	Metastatic cancer stem cells: from the concept to therapeutics. American Journal of Stem Cells, 2014, 3, 46-62.	0.4	55
2375	New insights in hepatocellular carcinoma: from bench to bedside. Annals of Translational Medicine, 2013, 1, 15.	0.7	12
2376	In vivo molecular imaging of cancer stem cells. American Journal of Nuclear Medicine and Molecular Imaging, 2015, 5, 14-26.	1.0	18
2377	Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri. International Journal of Clinical and Experimental Pathology, 2015, 8, 847-55.	0.5	7
2378	Role of ursolic acid chalcone, a synthetic analogue of ursolic acid, in inhibiting the properties of CD133(+) sphere-forming cells in liver stem cells. International Journal of Clinical and Experimental Pathology, 2015, 8, 1427-34.	0.5	2
2379	Chemotherapy targeting cancer stem cells. American Journal of Cancer Research, 2015, 5, 880-93.	1.4	27
2380	Pancreatic cancer stem cells. American Journal of Cancer Research, 2015, 5, 894-906.	1.4	10
2381	Overexpression of PROM1 (CD133) confers poor prognosis in non-small cell lung cancer. International Journal of Clinical and Experimental Pathology, 2015, 8, 6589-95.	0.5	14
2382	CANCER STEM CELLS IN OSTEOSARCOMA. Case Orthopaedic Journal, 2013, 10, 38-42.	0.0	4
2383	Study on like-stem characteristics of tumor sphere cells in human gastric cancer line HGC-27. International Journal of Clinical and Experimental Medicine, 2015, 8, 19717-24.	1.3	2
2385	Molecular analysis of CD133-positive circulating tumor cells from patients with metastatic castration-resistant prostate cancer. Journal of Translational Science, 2015, 1, .	0.2	10

#	Article	IF	Citations
2386	CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells. American Journal of Cancer Research, 2016, 6, 51-60.	1.4	5
2387	Cancer stem cells as a potential therapeutic target in breast cancer. Stem Cell Investigation, 2014, 1, 14.	1.3	7
2389	Targeting prostate cancer cell proliferation, stemness and metastatic potential using derived phytochemicals. American Journal of Translational Research (discontinued), 2019, 11, 2550-2569.	0.0	3
2391	Molecular imaging in tracking cancer stem cells: A review. Medical Journal of the Islamic Republic of Iran, 2020, 34, 90.	0.9	1
2392	SOX13 regulates cancer stem-like properties and tumorigenicity in hepatocellular carcinoma cells. American Journal of Cancer Research, 2021, 11, 760-772.	1.4	2
2393	Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology, 2022, 82, 68-93.	4.3	31
2394	Emerging roles of CD133 in the treatment of gastric cancer, a novel stem cell biomarker and beyond. Life Sciences, 2022, 293, 120050.	2.0	15
2395	Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomedicine and Pharmacotherapy, 2022, 147, 112616.	2.5	20
2396	Per- and polyfluoroalkyl substances target and alter human prostate stem-progenitor cells. Biochemical Pharmacology, 2022, 197, 114902.	2.0	10
2397	Exosomal prostate-specific G-protein-coupled receptor induces osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Translational Cancer Research, 2020, 9, 5857-5867.	0.4	2
2398	Selection of Cancer Stem Cell–Targeting Agents Using Bacteriophage Display. Methods in Molecular Biology, 2022, 2394, 787-810.	0.4	1
2399	Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies. Cancers, 2022, 14, 547.	1.7	18
2400	Development and preliminary evaluation of an integrin $\hat{l}\pm2\hat{l}^21$ -targeted PET probe as a supplement and alternative of PSMA imaging for prostate cancer. Bioorganic and Medicinal Chemistry, 2022, 54, 116583.	1.4	0
2402	<i>Karanahan</i> : A Potential New Treatment Option for Human Breast Cancer and Its Validation in a Clinical Setting. Breast Cancer: Basic and Clinical Research, 2022, 16, 117822342110599.	0.6	3
2403	Intrinsic and Extrinsic Factors Impacting Cancer Stemness and Tumor Progression. Cancers, 2022, 14, 970.	1.7	19
2404	Overexpression of CBS/H2S inhibits proliferation and metastasis of colon cancer cells through downregulation of CD44. Cancer Cell International, 2022, 22, 85.	1.8	14
2405	Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells. International Journal of Molecular Sciences, 2022, 23, 2333.	1.8	4
2406	Cellular plasticity upon proton irradiation determines tumor cell radiosensitivity. Cell Reports, 2022, 38, 110422.	2.9	10

#	Article	IF	Citations
2407	The Role of Tumor Stem Cell Exosomes in Cancer Invasion and Metastasis. Frontiers in Oncology, 2022, 12, 836548.	1.3	17
2408	Cancer Stem Cell Markers for Urinary Carcinoma. Stem Cells International, 2022, 2022, 1-7.	1.2	6
2409	Chick Chorioallantoic Membrane (CAM) Assays as a Model of Patient-Derived Xenografts from Circulating Cancer Stem Cells (cCSCs) in Breast Cancer Patients. Cancers, 2022, 14, 1476.	1.7	18
2410	Identification of Prognostic Genes in Hepatocellular Carcinoma. International Journal of General Medicine, 2022, Volume 15, 2895-2904.	0.8	2
2411	Forces in stem cells and cancer stem cells. Cells and Development, 2022, 170, 203776.	0.7	4
2412	Downregulation of MUC15 by miR-183-5p.1 promotes liver tumor-initiating cells properties and tumorigenesis via regulating c-MET/PI3K/AKT/SOX2 axis. Cell Death and Disease, 2022, 13, 200.	2.7	13
2413	A Platform for Integrating and Sharing Cancer Stem Cell Data. , 2021, 2021, 2320-2325.		2
2414	Versatile and Robust Method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency. Pharmaceutics, 2021, 13, 2153.	2.0	4
2415	Expression and Impact of C1GalT1 in Cancer Development and Progression. Cancers, 2021, 13, 6305.	1.7	9
2416	NK cell upraise in the dark world of cancer stem cells. Cancer Cell International, 2021, 21, 682.	1.8	9
2417	Generation of Cancer Stem/Initiating Cells by Cell–Cell Fusion. International Journal of Molecular Sciences, 2022, 23, 4514.	1.8	7
2418	Normal Breast Stem Cells, Malignant Breast Stem Cells, and the Perinatal Origin of Breast Cancer. Stem Cell Reviews and Reports, 2006, 2, 103-110.	5.6	0
2422	The role of cancer stem cells and the side population in epithelial ovarian cancer. Histology and Histopathology, 2010, 25, 113-20.	0.5	57
2423	Floating cells with stem cell properties in gastric cell line SGC-7901. Tumori, 2011, 97, 393-9.	0.6	4
2431	Cancer Stem Cells. , 2023, , 114-123.		1
2432	A hybrid modeling environment to describe aggregates of cells heterogeneous for genotype and behavior with possible phenotypic transitions. International Journal of Non-Linear Mechanics, 2022, 144, 104063.	1.4	4
2433	Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers, 2022, 14, 2296.	1.7	11
2434	Current aspects of systematics, diagnosis and treatment of breast cancer. Opuholi Zenskoj Reproduktivnoj Sistemy, 2022, 18, 25-39.	0.1	0

#	ARTICLE	IF	CITATIONS
2435	Drug-Tolerant Persister Cells in Cancer Therapy Resistance. Cancer Research, 2022, 82, 2503-2514.	0.4	34
2436	Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine, 2022, 156, 155916.	1.4	9
2438	Interaction between prostate cancer stem cells and bone microenvironment regulates prostate cancer bone metastasis and treatment resistance. Journal of Cancer, 2022, 13, 2757-2767.	1.2	1
2439	Role of prostate cancer stem-like cells in the development of antiandrogen resistance. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 459-471.	0.9	11
2440	Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nature Reviews Cancer, 2022, 22, 497-514.	12.8	40
2441	Insight into the molecular mechanisms of gastric cancer stem cell in drug resistance of gastric cancer. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 794-813.	0.9	2
2442	Correlation between Cancer Stem Cells, Inflammation and Malignant Transformation in a DEN-Induced Model of Hepatic Carcinogenesis. Current Issues in Molecular Biology, 2022, 44, 2879-2886.	1.0	2
2443	EWI2 prevents EGFR from clustering and endocytosis to reduce tumor cell movement and proliferation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	2
2444	Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Frontiers in Oncology, 0, 12, .	1.3	9
2445	Flavokawain A Reduces Tumor-Initiating Properties and Stemness of Prostate Cancer. Frontiers in Oncology, $0,12,.$	1.3	3
2446	Study of Cancer Stem Cell Subpopulations in Breast Cancer Models. Cytology and Genetics, 2022, 56, 331-342.	0.2	0
2447	Prostate cancer as a dedifferentiated organ: androgen receptor, cancer stem cells, and cancer stemness. Essays in Biochemistry, 2022, 66, 291-303.	2.1	8
2448	Advanced Cellular Models for Preclinical Drug Testing: From 2D Cultures to Organ-on-a-Chip Technology. Cancers, 2022, 14, 3692.	1.7	5
2449	Expression and Prognostic Significance of Stem Cell Marker CD133 in Survival Rate of Patients with Colon Cancer. Oncology and Therapy, 2022, 10, 451-461.	1.0	4
2450	Molecular subtypes of osteosarcoma classified by cancer stem cell related genes define immunological cell infiltration and patient survival. Frontiers in Immunology, 0, 13, .	2.2	2
2451	Stem Cells as Target for Prostate cancer Therapy: Opportunities and Challenges. Stem Cell Reviews and Reports, 2022, 18, 2833-2851.	1.7	6
2452	Potential Role of Cancer Stem Cells in Glioblastoma: A Therapeutic Aspect. , 0, , .		0
2453	Cancer stem cells in esophageal squamous cell carcinoma. Pathology Research and Practice, 2022, 237, 154043.	1.0	2

#	Article	IF	CITATIONS
2455	The role of fatty acids metabolism on cancer progression and the rapeutics development. , 2023, , 101-132.		0
2456	Cancer Stem Cell Oxidative Phosphorylation: Target for Cancer Therapy. , 2022, , 2003-2019.		0
2457	Metabolic Alterations of Hepatocellular Cancer Stem Cells., 2022,, 139-165.		0
2458	Role of O-GlcNAcylation on cancer stem cells: Connecting nutrient sensing to cell plasticity. Advances in Cancer Research, 2023, , 195-228.	1.9	2
2459	The lipid rafts in cancer stem cell: a target to eradicate cancer. Stem Cell Research and Therapy, 2022, 13, .	2.4	14
2461	Lessons to cancer from studies of leukemia and hematopoiesis. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	0
2462	Crosstalk between Ca2+ Signaling and Cancer Stemness: The Link to Cisplatin Resistance. International Journal of Molecular Sciences, 2022, 23, 10687.	1.8	5
2463	Hypothesis: can transfer of primary neoplasm-derived extracellular vesicles and mitochondria contribute to the development of donor cell–derived hematologic neoplasms after allogeneic hematopoietic cell transplantation?. Cytotherapy, 2022, 24, 1169-1180.	0.3	1
2466	CD44V3, an Alternatively Spliced Form of CD44, Promotes Pancreatic Cancer Progression. International Journal of Molecular Sciences, 2022, 23, 12061.	1.8	4
2468	Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. Life, 2022, 12, 1607.	1.1	2
2470	Reciprocal interplays between MicroRNAs and pluripotency transcription factors in dictating stemness features in human cancers. Seminars in Cancer Biology, 2022, 87, 1-16.	4.3	6
2471	Prostate Cancer Stem Cells: The Role of CD133. Cancers, 2022, 14, 5448.	1.7	11
2472	The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. International Journal of Molecular Sciences, 2022, 23, 13577.	1.8	8
2473	Hematopoietic and Chronic Myeloid Leukemia Stem Cells: Multi-Stability versus Lineage Restriction. International Journal of Molecular Sciences, 2022, 23, 13570.	1.8	8
2474	Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. International Journal of Molecular Sciences, 2022, 23, 14224.	1.8	10
2476	Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. European Journal of Pharmacology, 2023, 938, 175412.	1.7	1
2477	Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coordination Chemistry Reviews, 2023, 477, 214923.	9.5	2
2478	A Theoretical View of Ovarian Cancer Relapse. European Medical Journal (Chelmsford, England), 0, , 128-135.	3.0	4

#	Article	IF	CITATIONS
2479	JAG1 Intracellular Domain Enhances AR Expression and Signaling and Promotes Stem-like Properties in Prostate Cancer Cells. Cancers, 2022, 14, 5714.	1.7	1
2480	Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines, 2022, 10, 2988.	1.4	7
2481	Eradication of Heterogeneous Tumors by T Cells Targeted with Combination Bispecific Chemically Self-assembled Nanorings. Molecular Cancer Therapeutics, 2023, 22, 371-380.	1.9	0
2482	Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines, 2022, 10, 3249.	1.4	8
2483	Diallyl Trisulfide Suppresses the Renal Cancer Stem-like Cell Properties via Nanog. Nutrition and Cancer, 0, , 1-9.	0.9	0
2484	Cancer stem cells (CSCs): key player of radiotherapy resistance and its clinical significance. Biomarkers, 2023, 28, 139-151.	0.9	15
2485	Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes and Diseases, 2024, 11, 189-204.	1.5	10
2486	Biological effects of cancer stem cells irradiated by charged particle: a systematic review of in vitro studies. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
2488	Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers, 2023, 15, 757.	1.7	1
2489	Sulforaphane: An emergent anti-cancer stem cell agent. Frontiers in Oncology, 0, 13, .	1.3	4
2490	CD133 as Biomarker and Therapeutic Target in Gynecologic Malignancies. , 2023, , .		1
2491	Up-regulation of PUM1 by miR-218-5p promotes colorectal tumor-initiating cell properties and tumorigenesis by regulating the PI3K/AKT axis. Journal of Gastrointestinal Oncology, 2023, 14, 233-244.	0.6	1
2492	Paracrine secretion of IL8 by breast cancer stem cells promotes therapeutic resistance and metastasis of the bulk tumor cells. Cell Communication and Signaling, 2023, 21, .	2.7	2
2493	Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188887.	3.3	7
2494	Cancer stem cell-derived exosome-induced metastatic cancer: An orchestra within the tumor microenvironment. Biochimie, 2023, 212, 1-11.	1.3	5
2496	Genome-Wide Analysis of IncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers, 2023, 15, 1053.	1.7	2
2497	N6-Methyladenosine–Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells' Properties and Lenvatinib Resistance Through WNT/l²-Catenin and Hippo Signaling Pathways. Gastroenterology, 2023, 164, 990-1005.	0.6	47
2498	Targeting ovarian cancer stem cells: a new way out. Stem Cell Research and Therapy, 2023, 14, .	2.4	10

#	Article	IF	CITATIONS
2500	Current understanding of cancer stem cells: Immune evasion and targeted immunotherapy in gastrointestinal malignancies. Frontiers in Oncology, 0, 13 , .	1.3	2
2501	Anti-Cancer Stem-Cell-Targeted Therapies in Prostate Cancer. Cancers, 2023, 15, 1621.	1.7	8
2502	State-of-the-art therapeutic strategies for targeting cancer stem cells in prostate cancer. Frontiers in Oncology, $0,13,.$	1.3	2
2503	The Renin-Angiotensin System and Cancer. , 2023, , 277-339.		O
2504	Epitranscriptomics in the development, functions, and disorders of cancer stem cells. Frontiers in Oncology, 0, 13, .	1.3	0
2505	DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers, 2023, 15, 1897.	1.7	6
2506	Eradicating the tumor "seeds― nanomedicines-based therapies against cancer stem cells. DARU, Journal of Pharmaceutical Sciences, 0, , .	0.9	0
2507	A Self-Propagating c-Met–SOX2 Axis Drives Cancer-Derived IgG Signaling That Promotes Lung Cancer Cell Stemness. Cancer Research, 2023, 83, 1866-1882.	0.4	2
2508	Molecular Similarities and Differences between Canine Prostate Cancer and Human Prostate Cancer Variants. Biomedicines, 2023, 11, 1100.	1.4	0
2509	Ecological niches for colorectal cancer stem cell survival and thrival. Frontiers in Oncology, 0, 13, .	1.3	0
2510	The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. International Journal of Molecular Sciences, 2023, 24, 7482.	1.8	1
2514	Differentiation Potential of Cancer Stem Cells In Vitro. , 2023, , 145-154.		0
2516	Cancer stem cells in glioblastoma – an update. , 2023, , 539-552.		0
2521	CD44: Does CD44v6 Adversely Impact the Prognosis of Cancer Patients?. Biology of Extracellular Matrix, 2023, , 119-159.	0.3	O
2525	Metabolism of Cancer Stem Cell. , 2023, , 83-100.		0
2526	Biological Barriers for Drug Delivery to Cancer Stem Cells. , 2023, , 271-288.		O
2527	Origin and Development of Cancer Stem Cells. , 2023, , 17-43.		0
2528	Novel Therapeutics Targeting Cancer Stem Cell Surface Markers. , 2023, , 167-198.		O

#	Article	IF	CITATIONS
2529	Detection and Isolation of Cancer Stem Cells., 2023,, 45-69.		0
2530	Tumorsphere Formation Assay: A Cancer Stem-Like Cell Characterization in Pediatric Brain Cancer Medulloblastoma. Methods in Molecular Biology, 2023, , 253-259.	0.4	O
2540	Cancer stem cells, signalling pathways and chemopreventive effects of phytochemicals in androgen-regulated cancers., 2024,, 409-437.		0
2541	Prostate gland anatomy and hormonal factors contributing to cancer development. , 2024, , 1-26.		0
2545	Role of cancer stem cells in prostate cancer therapy resistance. , 2024, , 107-136.		0
2551	Cancer Metastasis, ROS/Redox Signaling, and PCD Resistance/Redox Metabolism., 2023, , 173-206.		O
2552	ROS and Redox Regulation/Signaling and Metabolism in Cancer Stem Cells. , 2023, , 49-90.		0
2557	Targeted nanostrategies eliminate pre-metastatic niche of cancer. Nano Research, 0, , .	5.8	O
2559	Surface Markers for the Identification of Cancer Stem Cells. Methods in Molecular Biology, 2024, , 51-69.	0.4	0
2560	Circulating tumor cells in lung cancer: Integrating stemness and heterogeneity to improve clinical utility. International Review of Cell and Molecular Biology, 2024, , .	1.6	O
2561	Cancer Stem Cells and Advanced Novel Technologies in Oncotherapy. , 2023, , 428-456.		0
2562	Isolating Cancer Stem Cells from Solid Tumors. Methods in Molecular Biology, 2024, , 35-49.	0.4	o