Key Science Questions from the Second Conference on and Climatic Evolution and the Implications for Life

Astrobiology 5, 663-689 DOI: 10.1089/ast.2005.5.663

Citation Report

#	Article	IF	CITATIONS
1	Algae and Cyanobacteria in Extreme Environments. Cellular Origin and Life in Extreme Habitats, 2007, , .	0.3	116
2	Glacial, periglacial and glacio-volcanic structures on the Echus Plateau, upper Kasei Valles. Planetary and Space Science, 2009, 57, 699-710.	1.7	13
3	An alkaline spring system within the Del Puerto Ophiolite (California, USA): A Mars analog site. Planetary and Space Science, 2009, 57, 533-540.	1.7	73
4	Searching for lakes on Mars. , 2010, , 1-29.		14
5	A volcanic origin for the outflow channels of Mars: Key evidence and major implications. Geomorphology, 2011, 132, 51-75.	2.6	133
6	Sulfur-Oxidizing Chemolithotrophic Proteobacteria Dominate the Microbiota in High Arctic Thermal Springs on Svalbard. Astrobiology, 2011, 11, 665-678.	3.0	36
7	Continental evaporites and the search for evidence of life on Mars. Geological Journal, 2011, 46, 513-524.	1.3	30
8	Lava Cave Microbial Communities Within Mats and Secondary Mineral Deposits: Implications for Life Detection on Other Planets. Astrobiology, 2011, 11, 601-618.	3.0	135
9	The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile. Planetary and Space Science, 2012, 72, 102-110.	1.7	35
10	Halophiles, Continental Evaporites and the Search for Biosignatures in Environmental Analogues for Mars. Cellular Origin and Life in Extreme Habitats, 2012, , 13-26.	0.3	6
11	Microbial Ecology: Caves as an Extreme Habitat. SpringerBriefs in Microbiology, 2013, , 85-108.	0.1	33
12	Habitability of Other Planets and Satellites. Cellular Origin and Life in Extreme Habitats, 2013, , .	0.3	1
15	On the Response of Halophilic Archaea to Space Conditions. Life, 2014, 4, 66-76.	2.4	15
16	Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the Wet Chemistry Laboratory data. Geochimica Et Cosmochimica Acta, 2014, 136, 142-168.	3.9	51
17	Introduction to the Early Mars III Special Section and Key Questions from the Third International Conference on Early Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1892-1894.	3.6	0
18	Eridania Basin: An ancient paleolake floor as the next landing site for the Mars 2020 rover. Icarus, 2016, 275, 163-182.	2.5	21
19	100ÂkGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions. Extremophiles, 2017, 21, 1057-1067.	2.3	32
20	The Early Mars Climate System. , 2017, , 526-568.		9

ITATION REDOL

		CITATION R	n Report		
#	Article		IF	CITATIONS	
21	Is Kasei Valles (Mars) the largest volcanic channel in the solar system?. Icarus, 2018, 301, 3	7-57.	2.5	13	
22	Effect of Gamma Radiation on Viability of a Soil Microbial Community under Conditions of N Paleontological Journal, 2018, 52, 1217-1223.	Nars.	0.5	3	
23	Formation of Ares Vallis (Mars) by effusions of low-viscosity lava within multiple regions of o terrain. Geomorphology, 2019, 345, 106828.	haotic	2.6	7	
24	Quantitative Highâ€Resolution Reexamination of a Hypothesized Ocean Shoreline in Cydor Mars. Journal of Geophysical Research E: Planets, 2019, 124, 316-336.	ia Mensae on	3.6	18	
25	Constraints on the nature of the effusive volcanic eruptions that incised Ravi Vallis, Mars. Pl and Space Science, 2019, 167, 54-70.	anetary	1.7	7	
26	Dry megafloods on Mars: formation of the outflow channels by voluminous effusions of low viscosity lava. , 2021, , 61-93.			0	
27	Chroococcidiopsis from Desert to Mars. Cellular Origin and Life in Extreme Habitats, 2007,	553-568.	0.3	19	
28	Microbial activity in Martian analog soils after ionizing radiation: implications for the preser of subsurface life on Mars. AIMS Microbiology, 2018, 4, 541-562.	vation	2.2	12	
29	Dynamics of declining lake habitat in changing climate. , 2010, , 347-369.			2	
30	Why explore Mars?. , 2008, , 1-11.			0	