Steady mixed convection flow of a micropolar fluid nea vertical surface

International Journal of Numerical Methods for Heat and Fluid 15, 654-670

DOI: 10.1108/09615530510613861

Citation Report

#	Article	IF	CITATIONS
1	Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. International Journal of Thermal Sciences, 2006, 45, 1149-1157.	2.6	50
2	Mixed convection near a non-orthogonal stagnation point flow on a vertical plate with uniform surface heat flux. Acta Mechanica, 2006, 186, 99-112.	1.1	12
3	Dual Solutions in Magnetohydrodynamic Mixed Convection Flow Near a Stagnation-Point on a Vertical Surface. Journal of Heat Transfer, 2007, 129, 1212-1216.	1.2	30
4	Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica, 2008, 43, 411-418.	1.2	79
5	Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Computers and Mathematics With Applications, 2008, 56, 3188-3194.	1.4	82
6	Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate. International Journal of Thermal Sciences, 2008, 47, 417-422.	2.6	72
7	Stagnation flow of a micropolar fluid towards a vertical permeable surface. International Communications in Heat and Mass Transfer, 2008, 35, 276-281.	2.9	16
8	Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid. International Journal of Heat and Mass Transfer, 2008, 51, 3200-3206.	2.5	43
9	Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium. International Journal of Heat and Mass Transfer, 2008, 51, 3693-3695.	2.5	46
10	Dual solutions in mixed convection boundary layer flow of micropolar fluids. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1324-1333.	1.7	29
11	MHD convective flow adjacent to a vertical surface with prescribed wall heat flux. International Communications in Heat and Mass Transfer, 2009, 36, 554-557.	2.9	15
12	MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux. Chinese Physics Letters, 2009, 26, 014702.	1.3	8
13	Effects of injection (suction) on a steady mixed convection boundary layer flow over a vertical cone. International Journal of Numerical Methods for Heat and Fluid Flow, 2009, 19, 432-444.	1.6	47
14	Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 195501.	0.7	26
15	Heat transfer—A review of 2005 literature. International Journal of Heat and Mass Transfer, 2010, 53, 4397-4447.	2.5	85
16	MHD mixed convection flow adjacent to a vertical plate with prescribed surface temperature. International Journal of Heat and Mass Transfer, 2010, 53, 4506-4510.	2.5	22
17	MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 40-46.	1.2	79
18	MHD Mixed Convection Boundary Layer Flow Toward a Stagnation Point on a Vertical Surface With Induced Magnetic Field. Journal of Heat Transfer, 2011, 133, .	1.2	34

#	Article	IF	Citations
	MHD flow of a micropolar fluid towards a vertical permeable plate with prescribed surface heat flux.		
19	Chemical Engineering Research and Design, 2011, 89, 2291-2297.	2.7	14
20	Mixed convection flow of a viscoelastic fluid near the orthogonal stagnation-point on a vertical surface. International Journal of Thermal Sciences, 2011, 50, 1698-1705.	2.6	10
21	Mixed Convection Boundary Layer Flow towards a Vertical Plate with a Convective Surface Boundary Condition. Mathematical Problems in Engineering, 2012, 2012, 1-11.	0.6	16
22	Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation. Chinese Physics B, 2012, 21, 054701.	0.7	30
23	Dual solutions in a double-diffusive convection near stagnation point region over a stretching vertical surface. International Journal of Heat and Mass Transfer, 2012, 55, 2524-2530.	2.5	13
24	Hydromagnetic stagnation point flow of a viscous fluid overÂaÂstretching or shrinking sheet. Meccanica, 2012, 47, 31-50.	1.2	37
25	THERMODYNAMIC AND MAGNETOHYDRODYNAMIC ANALYSIS OF BLOOD FLOW CONSIDERING ROTATION OF MICRO-PARTICLES OF BLOOD. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350013.	0.3	12
26	Melting effect on steady laminar flow of a micropolar fluid over a stagnation point on a vertical surface. Journal of Engineering Physics and Thermophysics, 2013, 86, 1210-1216.	0.2	3
27	Dual solutions in a double-diffusive MHD mixed convection flow adjacent to a vertical plate with prescribed surface temperature. International Journal of Heat and Mass Transfer, 2013, 56, 724-731.	2.5	19
28	Effect of Induced Magnetic Field on Magnetohydrodynamic Stagnation Point Flow and Heat Transfer on a Stretching Sheet. Journal of Heat Transfer, 2014, 136, .	1.2	16
29	Unsteady mixed convection flow of a nanofluid near orthogonal stagnation point on a vertical permeable surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2014, 228, 226-237.	1.4	30
30	MHD mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface: a comprehensive report of dual solutions. Heat and Mass Transfer, 2014, 50, 639-650.	1.2	33
31	Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid. AIP Conference Proceedings, 2015, , .	0.3	0
32	Conjugate transfer of heat and mass in unsteady flow of a micropolar fluid with wall couple stress. AIP Advances, 2015, 5, .	0.6	9
33	Mixed Convection In The Stagnation-Point Flow Over A Vertical Stretching Sheet In The Presence Of Thermal Radiation. International Journal of Applied Mechanics and Engineering, 2015, 20, 871-888.	0.3	1
34	Buongiorno's model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid. Advanced Powder Technology, 2015, 26, 1423-1434.	2.0	51
35	Magnetohydrodynamic (MHD) mixed convection stagnation point flow of a nanofluid over a vertical plate with viscous dissipation. Canadian Journal of Physics, 2015, 93, 1365-1374.	0.4	22
36	Slip Effect on an Unsteady MHD Stagnation-Point Flow of a Micropolar Fluid towards a Shrinking Sheet with Thermophoresis Effect. International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 285-291.	1.4	8

#	Article	IF	CITATIONS
37	Flow past a stretching sheet. , 2016, , 7-45.		9
38	Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects. Chinese Physics B, 2016, 25, 114701.	0.7	15
39	Steady laminar mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface in the presence of a magnetic field. Journal of Applied Mechanics and Technical Physics, 2016, 57, 1031-1041.	0.1	6
40	Effects of Second-Order Slip and Magnetic Field on Mixed Convection Stagnation-Point Flow of a Maxwellian Fluid: Multiple Solutions. Journal of Heat Transfer, 2016, 138, .	1.2	5
41	Hydromagnetic Hiemenz flow of micropolar fluid over a nonlinearly stretching/shrinking sheet: Dual solutions by using Chebyshev Spectral Newton Iterative Scheme. Journal of Magnetism and Magnetic Materials, 2016, 416, 329-334.	1.0	41
42	Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 40-62.	1.6	50
43	Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction. Journal of King Saud University, Engineering Sciences, 2017, 29, 75-83.	1.2	23
44	Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technology, 2017, 311, 147-156.	2.1	58
45	Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chinese Journal of Physics, 2018, 56, 2465-2478.	2.0	195
46	Exploring the heat transfer performance of nanofluid as a coolant for power battery pack. Heat Transfer - Asian Research, 2019, 48, 2974-2988.	2.8	7
47	Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink. Energies, 2019, 12, 788.	1.6	46
48	Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno's two-component nonhomogeneous nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 448-466.	1.6	19
49	Mathematical approach of demarcation of dual solutions for a flow over a shrinking surface. Chinese Journal of Physics, 2020, 68, 514-532.	2.0	8
50	MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 2020, 66, 630-644.	2.0	101
51	Novel Microstructural Features on Heat and Mass Transfer in Peristaltic Flow Through a Curved Channel. Frontiers in Physics, 2020, 8, .	1.0	14
52	Numerical simulations for mixed convective hydromagnetic peristaltic flow in a curved channel with joule heating features. AIP Advances, 2020, 10, 075303.	0.6	19
53	Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid. AEJ - Alexandria Engineering Journal, 2020, 59, 1881-1891.	3.4	77
54	Analysis of the impact of physical parameters on a waterâ€based Al 2 O 3 nanofluid using the KKL model. Heat Transfer, 2021, 50, 1287-1307.	1.7	2

#	Article	IF	CITATIONS
55	Numerical Investigation of MHD Pulsatile Flow of Micropolar Fluid in a Channel with Symmetrically Constricted Walls. Mathematics, 2021, 9, 1000.	1.1	5
56	Effect of rotational slip on the physical parameter in a micropolar fluid flow past a stretching sheet. International Journal of Modern Physics B, 2021, 35, 2150169.	1.0	0
57	Characteristics of Darcy–Forchheimer drag coefficients and velocity slip on the flow of micropolar nanofluid. Heat Transfer, 2021, 50, 6529-6547.	1.7	15
58	A numerical simulation for the control of radiative heat energy and thermophoretic effects on MHD micropolar fluid with heat source. Journal of Ocean Engineering and Science, 2022, 7, 92-98.	1.7	16
59	Effect of non-linear thermal radiation on the stagnation point flow of double diffusive free convection due to movingvertical plate. Journal of Engineering, Design and Technology, 2023, 21, 150-166.	1.1	2
60	Stagnation-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of inertial and microstructure. Case Studies in Thermal Engineering, 2021, 26, 101150.	2.8	46
61	Flow towards a Stagnation Region of a Curved Surface in a Hybrid Nanofluid with Buoyancy Effects. Mathematics, 2021, 9, 2330.	1.1	13
62	Dual similarity solutions because of mixed convective flow of a double-nanoparticles hybrid nanofluid: critical points and stability analysis. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3319-3342.	1.6	4
63	Buoyancy effect on the stagnation point flow of a hybrid nanofluid toward a vertical plate in a saturated porous medium. Case Studies in Thermal Engineering, 2021, 27, 101342.	2.8	21
64	Hydromagnetic Stagnation Point Flow over a Porous Stretching Surface in the Presence of Radiation and Viscous Dissipation. Applied and Computational Mathematics, 2014, 3, 191.	0.2	4
65	MHD Stagnation-Point Flow over a Stretching/Shrinking Sheet in a Micropolar Fluid with a Slip Boundary. Sains Malaysiana, 2018, 47, 2907-2916.	0.3	39
66	Numerical Solution of MHD Flow of Micropolar Fluid with Heat and Mass Transfer towards a Stagnation Point on a Vertical Plate. American Journal of Computational Mathematics, 2015, 05, 158-174.	0.2	5
67	Stagnation point flow of a micropolar fluid filled with hybrid nanoparticles by considering various base fluids and nanoparticle shape factors. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 2320-2344.	1.6	15
68	Principles of Homotopy Analysis. , 2012, , 7-52.		1
71	Numerical Solutions for Convective Boundary Layer Flow of Micropolar Jeffrey Fluid with Prescribe Wall Temperature. Journal of the Indonesian Mathematical Society, 0, , 286-298.	0.1	2
72	Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point. Applied Mathematics and Mechanics (English Edition), 2022, 43, 547-556.	1.9	19
73	Unsteady micropolar hybrid nanofluid flow past a permeable stretching/shrinking vertical plate. AEJ - Alexandria Engineering Journal, 2022, 61, 11337-11349.	3.4	18
74	Computational analysis of the transient mixed convective flow of nanofluid in the plume regions. Waves in Random and Complex Media, 0, , 1-17.	1.6	3

#	Article	IF	CITATIONS
75	Comparative investigation of the mixed convective stagnated flow of TiO2â^'CuO/waterâ^'EG\$TiO_2-CuO/water-EG\$ hybrid nanofluids past an exponentially stretching sheet. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	0.9	2
76	Micropolar Nanofluid Flow in a Stagnation Region of a Shrinking Sheet with Fe3O4 Nanoparticles. Mathematics, 2022, 10, 3184.	1.1	1
77	Stability Analysis of Buoyancy Magneto Flow of Hybrid Nanofluid through a Stretchable/Shrinkable Vertical Sheet Induced by a Micropolar Fluid Subject to Nonlinear Heat Sink/Source. Magnetochemistry, 2022, 8, 188.	1.0	11
78	Double-diffusive stagnation point flow over a vertical surface with thermal radiation: Assisting and opposing flows. Science Progress, 2023, 106, 003685042211497.	1.0	14
79	Effects of higher order chemical reaction and slip conditions on mixed convection hybrid ferrofluid flow in a Darcy porous medium. AEJ - Alexandria Engineering Journal, 2023, 68, 111-126.	3.4	13