WOLVES INFLUENCE ELK MOVEMENTS: BEHAVIOR SI YELLOWSTONE NATIONAL PARK

Ecology 86, 1320-1330 DOI: 10.1890/04-0953

Citation Report

#	Article	IF	CITATION
1	Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecology Letters, 2005, 9, 051109031307002.	3.0	167
2	HABITAT SELECTION BY ELK BEFORE AND AFTER WOLF REINTRODUCTION IN YELLOWSTONE NATIONAL PARK. Journal of Wildlife Management, 2005, 69, 1691-1707.	0.7	198
3	Elk winter foraging at fine scale in Yellowstone National Park. Oecologia, 2005, 145, 334-342.	0.9	64
4	Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landscape Ecology, 2005, 20, 257-271.	1.9	125
5	Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landscape Ecology, 2005, 20, 273-287.	1.9	224
6	Yellowstone's ungulates after wolves – expectations, realizations, and predictions. Biological Conservation, 2005, 125, 141-152.	1.9	108
7	Prey Risk Allocation In A Grazing Ecosystem. , 2006, 16, 285-298.		87
8	Modelling adaptive, spatially aware, and mobile agents: Elk migration in Yellowstone. International Journal of Geographical Information Science, 2006, 20, 1039-1066.	2.2	122
9	What carnivore biologists can learn from bugs, birds, and beavers: a review of spatial theories. Canadian Journal of Zoology, 2006, 84, 1703-1711.	0.4	13
10	Corridors for Conservation: Integrating Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 317-342.	3.8	313
11	Understanding Ungulate Herbivory–Episodic Disturbance Effects on Vegetation Dynamics: Knowledge Gaps and Management Needs. Wildlife Society Bulletin, 2006, 34, 283-292.	1.6	81
12	Linking wolves to willows via risk-sensitive foraging by ungulates in the northern Yellowstone ecosystem. Forest Ecology and Management, 2006, 230, 96-106.	1.4	119
13	Tracking the Rapid Pace of GIS-Related Capabilities and Their Accessibility. Wildlife Society Bulletin, 2006, 34, 1446-1454.	1.6	5
14	Landscape Models and Explanation in Landscape Ecology—A Space for Generative Landscape Science?. Professional Geographer, 2006, 58, 369-382.	1.0	44
15	Validation of a randomization procedure to assess animal habitat preferences: microhabitat use of tiger sharks in a seagrass ecosystem. Journal of Animal Ecology, 2006, 75, 666-676.	1.3	75
16	Scale for resource selection functions. Diversity and Distributions, 2006, 12, 269-276.	1.9	366
17	Adaptive management for reintroductions: Updating a wolf recovery model for Yellowstone National Park. Ecological Modelling, 2006, 193, 315-339.	1.2	62
18	STATE–SPACE MODELS LINK ELK MOVEMENT PATTERNS TO LANDSCAPE CHARACTERISTICS IN YELLOWSTONE NATIONAL PARK. Ecological Monographs, 2007, 77, 285-299.	2.4	148

#	Article	IF	CITATIONS
19	Acoustic monitoring of sixgill shark movements in Puget Sound: evidence for localized movement. Canadian Journal of Zoology, 2007, 85, 1136-1143.	0.4	37
20	Activity Patterns of Red Deer in BiaÅ,owieża National Park, Poland. Journal of Mammalogy, 2007, 88, 508-514.	0.6	47
21	Behavioural biology: an effective and relevant conservation tool. Trends in Ecology and Evolution, 2007, 22, 401-407.	4.2	145
22	Biodiversity, exotic plant species, and herbivory: The good, the bad, and the ungulate. Forest Ecology and Management, 2007, 246, 66-72.	1.4	153
23	Do high-density patches of coarse wood and regenerating saplings create browsing refugia for aspen (Populus tremuloides Michx.) in Yellowstone National Park (USA)?. Forest Ecology and Management, 2007, 253, 211-219.	1.4	21
24	Savanna herbivore dynamics in a livestock-dominated landscape. II: Ecological, conservation, and management implications of predator restoration. Biological Conservation, 2007, 137, 473-483.	1.9	50
25	Restoring Yellowstone's aspen with wolves. Biological Conservation, 2007, 138, 514-519.	1.9	240
26	Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behavioral Ecology, 2007, 18, 725-729.	1.0	104
27	COVARIATES AFFECTING SPATIAL VARIABILITY IN BISON TRAVEL BEHAVIOR IN YELLOWSTONE NATIONAL PARK. , 2007, 17, 1411-1423.		48
28	WILLOW ON YELLOWSTONE'S NORTHERN RANGE: EVIDENCE FOR A TROPHIC CASCADE?. Ecological Applications, 2007, 17, 1563-1571.	1.8	124
29	Interactions between cougars (Puma concolor) and gray wolves (Canis lupus) in Banff National Park, Alberta. Ecoscience, 2007, 14, 214-222.	0.6	59
30	Sequential decision-making in a variable environment: Modeling elk movement in Yellowstone National Park as a dynamic game. Theoretical Population Biology, 2007, 71, 182-195.	0.5	11
31	Landscape heterogeneity shapes predation in a newly restored predator?prey system. Ecology Letters, 2007, 10, 690-700.	3.0	266
32	Carnivore Repatriation and Holarctic Prey: Narrowing the Deficit in Ecological Effectiveness. Conservation Biology, 2007, 21, 1105-1116.	2.4	49
33	Comparative Patterns of Predation by Cougars and Recolonizing Wolves in Montana's Madison Range. Journal of Wildlife Management, 2007, 71, 1098-1106.	0.7	58
34	Factors affecting daily ranges of red deerCervus elaphus in BiaÅ,owieża Primeval Forest, Poland. Acta Theriologica, 2007, 52, 113-118.	1.1	22
35	The predatory behavior of wintering Accipiter hawks: temporal patterns in activity of predators and prey. Oecologia, 2007, 152, 169-178.	0.9	49
36	Multiscale wolf predation risk for elk: does migration reduce risk?. Oecologia, 2007, 152, 377-387.	0.9	182

#	Article	IF	CITATIONS
37	Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture. Oecologia, 2007, 154, 467-478.	0.9	26
38	Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landscape Ecology, 2008, 23, 603-614.	1.9	108
39	Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis. Journal of Mathematical Biology, 2008, 57, 139-159.	0.8	36
40	Relationship between resource selection, distribution, and abundance: a test with implications to theory and conservation. Population Ecology, 2008, 50, 145-157.	0.7	32
41	Fine-scale predation risk on elk after wolf reintroduction in Yellowstone National Park, USA. Oecologia, 2008, 155, 869-877.	0.9	57
42	The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates. Oecologia, 2008, 157, 163-175.	0.9	96
43	Evidence for top predator control of a grazing ecosystem. Oikos, 2008, 117, 1718-1724.	1.2	58
44	Search and navigation in dynamic environments – from individual behaviors to population distributions. Oikos, 2008, 117, 654-664.	1.2	315
45	Evaluating the role of the Dingo as a trophic regulator: Additional practical suggestions. Ecological Management and Restoration, 2008, 9, 116-119.	0.7	24
46	Diet shift of a facultative scavenger, the wolverine, following recolonization of wolves. Journal of Animal Ecology, 2008, 77, 1183-1190.	1.3	78
47	Thresholds in landscape connectivity and mortality risks in response to growing road networks. Journal of Applied Ecology, 2008, 45, 1504-1513.	1.9	128
48	Winter selection of landscapes by woodland caribou: behavioural response to geographical gradients in habitat attributes. Journal of Applied Ecology, 2008, 45, 1392-1400.	1.9	67
49	Behavioral Adaptations of Moose to Roadside Salt Pools. Journal of Wildlife Management, 2008, 72, 1094-1100.	0.7	25
50	Hunting increases vigilance levels in roe deer and modifies feeding site selection. Animal Behaviour, 2008, 76, 611-618.	0.8	144
51	Time and space in general models of antipredator response: tests with wolves and elk. Animal Behaviour, 2008, 76, 1139-1146.	0.8	154
52	Coupled and complex: Human–environment interaction in the Greater Yellowstone Ecosystem, USA. Geoforum, 2008, 39, 833-845.	1.4	47
53	Sensitivity of species-distribution models to error, bias, and model design: An application to resource selection functions for woodland caribou. Ecological Modelling, 2008, 213, 143-155.	1.2	77
54	Importance of movement constraints in habitat selection studies. Ecological Modelling, 2008, 213, 257-262.	1.2	39

ARTICLE IF CITATIONS # AN UNUSUAL TROPHIC SUBSIDY AND SPECIES DOMINANCE IN A TROPICAL STREAM. Ecology, 2008, 89, 1.5 16 55 2325-2334. Chapter 22 Elk Nutrition after Wolf Recolonization of Central Yellowstone. Journal of Nano 0.3 Education (Print), 2008, 3, 477-488. Relationships between direct predation and risk effects. Trends in Ecology and Evolution, 2008, 23, 57 4.2 850 194-201. Aspen snag dynamics, cavity-nesting birds, and trophic cascades in Yellowstone's northern range. 58 Forest Ecology and Management, 2008, 255, 1095-1103. Recoupling fire and aspen recruitment after wolf reintroduction in Yellowstone National Park, USA. 59 1.4 24 Forest Ecology and Management, 2008, 256, 1004-1008. Do shark declines create fearâ€released systems?. Oikos, 2008, 117, 191-201. 1.2 INDIRECT EFFECTS AND TRADITIONAL TROPHIC CASCADES: A TEST INVOLVING WOLVES, COYOTES, AND 61 1.5 151 PRONGHORN. Ecology, 2008, 89, 818-828. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Canadian Journal of Zoology, 2008, 0.4 86, 983-991. When to Slow Down: Elk Residency Rates on a Heterogeneous Landscape. Journal of Mammalogy, 2008, 63 0.6 17 89, 105-114. Chapter 1 Integrated Science in the Central Yellowstone Ecosystem. Journal of Nano Education 64 (Print), 2008, , 3-13. Chapter 18 Spatial Responses of Elk to Wolf Predation Risk. Journal of Nano Education (Print), 2008, , 65 0.3 6 373-399. Spatial Patterns and Dynamic Responses of Arctic Food Webs Corroborate the Exploitation 1.0 Ecosystems Hypothesis (EEH). American Naturalist, 2008, 171, 249-262. Chapter 20 Elk Foraging Behavior. Journal of Nano Education (Print), 2008, 3, 423-450. 67 0.3 3 FROM INDIVIDUALS TO ECOSYSTEM FUNCTION: TOWARD AN INTEGRATION OF EVOLUTIONARY AND 1.5 ECOSYSTEM ECOLOGY. Ecology, 2008, 89, 2436-2445. Linkages between wolf presence and aspen recruitment in the Gallatin elk winter range of 69 1.2 29 southwestern Montana, USA. Forestry, 2008, 81, 195-207. Chapter 6 Modeling Spatial Snow Pack Dynamics. Journal of Nano Education (Print), 2008, 3, 85-112. Chapter 8 Elk Winter Resource Selection in a Severe Snow Pack Environment. Journal of Nano 0.3 71 3 Education (Print), 2008, , 137-156. Chapter 28 Effects of Snow and Landscape Attributes on Bison Winter Travel Patterns and Habitat Use. Journal of Nano Education (Print), 2008, 3, 623-647.

#	Article	IF	CITATIONS
73	Risk effects in elk: sex-specific responses in grazing and browsing due to predation risk from wolves. Behavioral Ecology, 2008, 19, 1258-1266.	1.0	50
74	WATER TABLES CONSTRAIN HEIGHT RECOVERY OF WILLOW ON YELLOWSTONE'S NORTHERN RANGE. , 2008, 18, 80-92.		61
75	Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proceedings of the United States of America, 2009, 106, 12388-12393.	3.3	197
76	Estimating habitat selection when GPS fix success is less than 100%. Ecology, 2009, 90, 2956-2962.	1.5	55
77	Contrasting Effects of Wolves and Human Hunters on Elk Behavioral Responses to Predation Risk. Journal of Wildlife Management, 2009, 73, 345-356.	0.7	125
78	Spatial Partitioning of Predation Risk in a Multiple Predatorâ€Multiple Prey System. Journal of Wildlife Management, 2009, 73, 876-884.	0.7	78
79	Cognitive abilities of a central place forager interact with prey spatial aggregation in their effect on intake rate. Animal Behaviour, 2009, 78, 505-514.	0.8	20
80	Invasive species shifts ontogenetic resource partitioning and microhabitat use of a threatened native amphibian. Aquatic Conservation: Marine and Freshwater Ecosystems, 2009, 19, 534-541.	0.9	34
81	Landscape management for woodland caribou: the protection of forest blocks influences wolf-caribou co-occurrence. Landscape Ecology, 2009, 24, 1375-1388.	1.9	77
82	Generalized estimating equations and generalized linear mixedâ€effects models for modelling resource selection. Journal of Applied Ecology, 2009, 46, 590-599.	1.9	97
83	Behavioral Indicators for Conserving Mammal Diversity. Annals of the New York Academy of Sciences, 2009, 1162, 334-356.	1.8	53
84	Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades. Ecology, 2009, 90, 2454-2466.	1.5	68
85	Predatorâ€specific landscapes of fear and resource distribution: effects on spatial range use. Ecology, 2009, 90, 546-555.	1.5	225
86	Restoring landscapes of fear with wolves in the Scottish Highlands. Biological Conservation, 2009, 142, 2314-2321.	1.9	56
87	Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biological Conservation, 2009, 142, 2401-2414.	1.9	322
88	Satellite tracking of wild dogs in south-eastern mainland Australian forests: Implications for management of a problematic top-order carnivore. Forest Ecology and Management, 2009, 258, 814-822.	1.4	43
89	Hierarchical movement decisions in predators: effects of foraging experience at more than one spatial and temporal scale. Ecology, 2009, 90, 3536-3545.	1.5	30
90	Responding to spatial and temporal variations in predation risk: space use of a game species in a changing landscape of fear. Canadian Journal of Zoology, 2009, 87, 1129-1137.	0.4	145

#	Article	IF	CITATIONS
91	Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. Ecology, 2009, 90, 3554-3565.	1.5	295
92	Spatial Ecology of Northern Map Turtles (Graptemys geographica) in a Lotic and a Lentic Habitat. Journal of Herpetology, 2009, 43, 597-604.	0.2	20
93	Groupâ€sizeâ€mediated habitat selection and group fusion–fission dynamics of bison under predation risk. Ecology, 2009, 90, 2480-2490.	1.5	197
94	The Importance of Sex and Spatial Scale When Evaluating Sexual Segregation by Elk in Yellowstone. Journal of Mammalogy, 2009, 90, 971-979.	0.6	8
95	Landscapeâ€scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology, 2010, 91, 1519-1529.	1.5	116
96	Responses to alternative rainfall regimes and antipoaching in a migratory system. Ecological Applications, 2010, 20, 381-397.	1.8	24
97	A nutritionally mediated risk effect of wolves on elk. Ecology, 2010, 91, 1184-1191.	1.5	96
98	Changes in vigilance, grazing behaviour and spatial distribution of bighorn sheep due to cattle presence in Sheep River Provincial Park, Alberta. Agriculture, Ecosystems and Environment, 2010, 135, 226-231.	2.5	28
99	Linkages among traitâ€mediated indirect effects: a new framework for the indirect interaction web. Population Ecology, 2010, 52, 485-497.	0.7	70
100	Intra-specific niche partitioning obscures the importance of fine-scale habitat data in species distribution models. Biodiversity and Conservation, 2010, 19, 2455-2467.	1.2	9
101	Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape Ecology, 2010, 25, 419-433.	1.9	122
102	How key habitat features influence large terrestrial carnivore movements: waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landscape Ecology, 2010, 25, 337-351.	1.9	155
103	Measuring habitat availability for dispersing animals. Landscape Ecology, 2010, 25, 331-335.	1.9	5
104	Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecology, 2010, 25, 1547-1560.	1.9	81
105	Movement behavior explains genetic differentiation in American black bears. Landscape Ecology, 2010, 25, 1613-1625.	1.9	180
106	Behavioral games involving a clever prey avoiding a clever predator: An individual-based model of dusky dolphins and killer whales. Ecological Modelling, 2010, 221, 2687-2698.	1.2	21
108	Differential risk effects of wolves on wild versus domestic prey have consequences for conservation. Oikos, 2010, 119, 1243-1254.	1.2	33
109	Fluctuating ungulate density shapes tree recruitment in natural stands of the BiaÅ,owieża Primeval Forest, Poland. Journal of Vegetation Science, 2010, 21, 1082-1098.	1.1	110

#	Article	IF	CITATIONS
110	Grizzly bear movements relative to roads: application of step selection functions. Ecography, 2010, 33, 1113-1122.	2.1	77
111	Bottomâ€up versus topâ€down control of tree regeneration in the BiaÅ,owieża Primeval Forest, Poland. Journal of Ecology, 2010, 98, 888-899.	1.9	124
112	Considering ecological dynamics in resource selection functions. Journal of Animal Ecology, 2010, 79, 4-12.	1.3	218
113	Mixed conditional logistic regression for habitat selection studies. Journal of Animal Ecology, 2010, 79, 548-555.	1.3	156
114	Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology, 2010, 79, 1226-1240.	1.3	177
115	Inference from habitatâ€selection analysis depends on foraging strategies. Journal of Animal Ecology, 2010, 79, 1157-1163.	1.3	29
116	Cost distance modelling of landscape connectivity and gap-crossing ability using radio-tracking data. Journal of Applied Ecology, 2010, 47, 603-610.	1.9	89
117	What drives fineâ€scale movements of large herbivores? A case study using moose. Ecography, 2010, 33, 1102-1112.	2.1	60
118	Elk Distributions Relative to Spring Normalized Difference Vegetation Index Values. International Journal of Ecology, 2010, 2010, 1-10.	0.3	6
119	Effects of Wolves on Elk and Cattle Behaviors: Implications for Livestock Production and Wolf Conservation. PLoS ONE, 2010, 5, e11954.	1.1	72
121	Correlation and studies of habitat selection: problem, red herring or opportunity?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2233-2244.	1.8	228
122	Foraging theory upscaled: the behavioural ecology of herbivore movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2267-2278.	1.8	271
123	The Localized and Scaled Discourse of Conservation for Wind Power in Kittitas County, Washington. Society and Natural Resources, 2010, 23, 969-985.	0.9	18
124	Changes in Elk Resource Selection and Distributions Associated With a Lateâ€Season Elk Hunt. Journal of Wildlife Management, 2010, 74, 210-218.	0.7	39
125	Multiscale Postfledging Habitat Associations of Juvenile Songbirds in a Managed Landscape. Auk, 2010, 127, 354-363.	0.7	20
126	The interpretation of habitat preference metrics under use–availability designs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2245-2254.	1.8	297
127	Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2303-2312.	1.8	470
128	Migration of northern Yellowstone elk: implications of spatial structuring. Journal of Mammalogy, 2010, 91, 827-837.	0.6	76

#	Article	IF	CITATIONS
129	Bottom-Up Factors Influencing Riparian Willow Recovery in Yellowstone National Park. Western North American Naturalist, 2010, 70, 387-399.	0.2	18
130	Fine-scale disturbances shape space-use patterns of a boreal forest herbivore. Journal of Mammalogy, 2010, 91, 607-619.	0.6	41
131	Aspen Recovery Since Wolf Reintroduction on the Northern Yellowstone Winter Range. Rangeland Ecology and Management, 2011, 64, 119-130.	1.1	21
132	Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects. Ecology, 2011, 92, 2258-2266.	1.5	108
133	Factors affecting roe deer occurrence in a Mediterranean landscape, Northeastern Portugal. Mammalian Biology, 2011, 76, 491-497.	0.8	16
134	A comparison of shark and wolf research reveals similar behavioral responses by prey. Frontiers in Ecology and the Environment, 2011, 9, 335-341.	1.9	90
135	Mechanisms of functional connectivity: the case of free-ranging bison in a forest landscape. , 2011, 21, 1871-1885.		39
136	Fine-scale movement decisions of tropical forest birds in a fragmented landscape. , 2011, 21, 944-954.		65
137	Human Activity Differentially Redistributes Large Mammals in the Canadian Rockies National Parks. Ecology and Society, 2011, 16, .	1.0	118
138	Climate change and implications for the future distribution and management of ungulates in Europe. , 2011, , 349-375.		17
139	Should I Stay or Should I Go? A Habitat-Dependent Dispersal Kernel Improves Prediction of Movement. PLoS ONE, 2011, 6, e21115.	1.1	24
140	Identifying and Prioritizing Greater Sage-Grouse Nesting and Brood-Rearing Habitat for Conservation in Human-Modified Landscapes. PLoS ONE, 2011, 6, e26273.	1.1	68
141	Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. , 2011, 21, 2854-2865.		194
142	A survey of the effects of wolf predation risk on pregnancy rates and calf recruitment in elk. , 2011, 21, 2847-2853.		46
143	Body condition and pregnancy in northern Yellowstone elk: Evidence for predation risk effects?. , 2011, 21, 3-8.		43
144	Predator-driven component Allee effects in a wild ungulate. Ecology Letters, 2011, 14, 358-363.	3.0	40
145	Does a top predator suppress the abundance of an invasive mesopredator at a continental scale?. Global Ecology and Biogeography, 2011, 20, 343-353.	2.7	85
146	One size does not fit all: flexible models are required to understand animal movement across scales. Journal of Animal Ecology, 2011, 80, 1088-1096.	1.3	23

#	Article	IF	CITATIONS
147	Does a top predator reduce the predatory impact of an invasive mesopredator on an endangered rodent?. Ecography, 2011, 34, 827-835.	2.1	55
148	Genetics and wolf conservation in the American West: lessons and challenges. Heredity, 2011, 107, 16-19.	1.2	19
149	Levels of emergence in individual based models: Coping with scarcity of data and pattern redundancy. Ecological Modelling, 2011, 222, 1557-1568.	1.2	34
150	Effects of black bear relocation on elk calf recruitment at Great Smoky Mountains National Park. Journal of Wildlife Management, 2011, 75, 1145-1154.	0.7	28
151	Implications of ignoring telemetry error on inference in wildlife resource use models. Journal of Wildlife Management, 2011, 75, 702-708.	0.7	41
152	Summer movements, predation and habitat use of wolves in human modified boreal forests. Oecologia, 2011, 165, 891-903.	0.9	60
153	Predation, individual variability and vertebrate population dynamics. Oecologia, 2011, 167, 305-314.	0.9	96
154	Survival and causeâ€specific mortality of female Rocky Mountain elk exposed to human activity. Population Ecology, 2011, 53, 483-493.	0.7	34
155	Lack of natural control mechanisms increases wildlife–forestry conflict in managed temperate European forest systems. European Journal of Forest Research, 2011, 130, 895-909.	1.1	58
156	Analyses of least cost paths for determining effects of habitat types on landscape permeability: wolves in Poland. Acta Theriologica, 2011, 56, 91-101.	1.1	50
157	Moose Alces alces habitat use at multiple temporal scales in a humanâ€altered landscape. Wildlife Biology, 2011, 17, 44-54.	0.6	114
158	Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem. Ecology, 2012, 93, 2600-2614.	1.5	61
159	Simulating carnivore movements: An occupancy–abundance relationship for surveying wolves. Wildlife Society Bulletin, 2012, 36, 240-247.	1.6	11
160	Habitat selection by mule deer during migration: effects of landscape structure and naturalâ€gas development. Ecosphere, 2012, 3, 1-19.	1.0	73
161	Macro-habitat preferences by the African manatee and crocodiles – ecological and conservation implications. Web Ecology, 2012, 12, 39-48.	0.4	8
162	Species functional traits, trophic control and the ecosystem consequences of adaptive foraging in the middle of food chains. , 2012, , 324-338.		16
163	Spatial and temporal changes in group dynamics and range use enable antiâ€predator responses in African buffalo. Ecology, 2012, 93, 1297-1304.	1.5	38
164	Howling About Trophic Cascades. Australian Journal of Environmental Education, 2012, 28, 17-26.	1.4	1

#	Article	IF	CITATIONS
165	From migration to nomadism: movement variability in a northern ungulate across its latitudinal range. Ecological Applications, 2012, 22, 2007-2020.	1.8	178
166	Online Identification of Dwell Regions for Moving Objects. , 2012, , .		1
167	Postcapture movement rates can inform data-censoring protocols for GPS-collared animals. Journal of Mammalogy, 2012, 93, 456-463.	0.6	39
168	Human selection of elk behavioural traits in a landscape of fear. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4407-4416.	1.2	193
169	Top predators as biodiversity regulators: the dingo <i>Canis lupus dingo</i> as a case study. Biological Reviews, 2012, 87, 390-413.	4.7	250
170	Trophic cascades in Yellowstone: The first 15years after wolf reintroduction. Biological Conservation, 2012, 145, 205-213.	1.9	590
171	Is science in danger of sanctifying the wolf?. Biological Conservation, 2012, 150, 143-149.	1.9	130
172	LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate. Remote Sensing of Environment, 2012, 127, 98-105.	4.6	115
173	Temperature-mediated habitat use and selection by a heat-sensitive northern ungulate. Animal Behaviour, 2012, 84, 723-735.	0.8	141
174	Search efficiency of free-ranging plains bison for optimal food items. Animal Behaviour, 2012, 84, 1039-1049.	0.8	11
175	High-use movement pathways and habitat selection by ungulates. Mammalian Biology, 2012, 77, 293-298.	0.8	13
176	Habitat selection predicts genetic relatedness in an alpine ungulate. Ecology, 2012, 93, 1317-1329.	1.5	71
177	Linking Elk movement and resource selection to hunting pressure in a heterogeneous landscape. Wildlife Society Bulletin, 2012, 36, 658-668.	1.6	45
178	â€ [~] Natural experiment' Demonstrates Top-Down Control of Spiders by Birds on a Landscape Level. PLoS ONE, 2012, 7, e43446.	1.1	62
179	Prey Selection by an Apex Predator: The Importance of Sampling Uncertainty. PLoS ONE, 2012, 7, e47894.	1.1	26
180	Competition favors elk over beaver in a riparian willow ecosystem. Ecosphere, 2012, 3, 1-15.	1.0	10
181	Modeling multiple nonconsumptive effects in simple food webs: a modified Lotka-Volterra approach. Behavioral Ecology, 2012, 23, 1115-1125.	1.0	7
182	Combining fishing and acoustic monitoring data to evaluate the distribution and movements of spotted ratfish Hydrolagus colliei. Marine Biology, 2012, 159, 769-782.	0.7	15

# 183	ARTICLE Habitat use at fine spatial scale: how does patch clustering criteria explain the use of meadows by red deer?. European Journal of Wildlife Research, 2012, 58, 645-654.	IF 0.7	CITATIONS 2
184	Habitat heterogeneity and mammalian predator–prey interactions. Mammal Review, 2012, 42, 55-77.	2.2	126
185	Rotifer population spread in relation to food, density and predation risk in an experimental system. Journal of Animal Ecology, 2012, 81, 323-329.	1.3	32
186	Mutualistic cleaner fish initiate traitâ€mediated indirect interactions by influencing the behaviour of coral predators. Journal of Animal Ecology, 2012, 81, 692-700.	1.3	4
187	Predator reduction results in compensatory shifts in losses of avian ground nests. Journal of Applied Ecology, 2012, 49, 661-669.	1.9	35
188	Vehicle traffic shapes grizzly bear behaviour on a multipleâ€use landscape. Journal of Applied Ecology, 2012, 49, 1159-1167.	1.9	134
189	Timeâ€ŧoâ€kill: measuring attack rates in a heterogenous landscape with multiple prey types. Oikos, 2012, 121, 711-720.	1.2	24
190	Focusing Ecological Research for Conservation. Ambio, 2013, 42, 805-815.	2.8	15
191	Patterns of topâ€down control in a seagrass ecosystem: could a roving apex predator induce a behaviourâ€mediated trophic cascade?. Journal of Animal Ecology, 2013, 82, 1192-1202.	1.3	153
192	Factors driving variation in movement rate and seasonality of sympatric ungulates. Journal of Mammalogy, 2013, 94, 691-701.	0.6	32
193	Wolf, elk, and aspen food web relationships: Context and complexity. Forest Ecology and Management, 2013, 299, 70-80.	1.4	26
194	Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Molecular Ecology, 2013, 22, 3888-3903.	2.0	86
195	Interspecific Variation in the Distribution of Ungulates Relative to Human Infrastructure Surrounding Amboseli National Park. African Zoology, 2013, 48, 159-166.	0.2	6
196	Temporal variation in site fidelity: scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia, 2013, 173, 409-420.	0.9	41
197	Characterizing wild ass pathways using a non-invasive approach: applying least-cost path modelling to guide field surveys and a model selection analysis. Landscape Ecology, 2013, 28, 1465-1478.	1.9	12
198	Synchronicity of movement paths of barren-ground caribou and tundra wolves. Polar Biology, 2013, 36, 1363-1371.	0.5	15
199	Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd. Ecology, 2013, 94, 1245-1256.	1.5	192
200	Resting site selection by large herbivores – The case of European bison (Bison bonasus) in BiaÅ,owieża Primeval Forest. Mammalian Biology, 2013, 78, 438-445.	0.8	17

#	Article	IF	CITATIONS
201	Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores. Ecology, 2013, 94, 2619-2631.	1.5	226
202	How landscape scale changes affect ecological processes in conservation areas: external factors influence land use by zebra (<i><scp>E</scp>quus burchelli</i>) in the <scp>O</scp> kavango <scp>D</scp> elta. Ecology and Evolution, 2013, 3, 2795-2805.	0.8	15
203	Foraging Response of Erethizon dorsatum and Lepus americanus to Specialized and Generalized Predator Scents. American Midland Naturalist, 2013, 169, 66-73.	0.2	7
204	The effectiveness of Bayesian stateâ€space models for estimating behavioural states from movement paths. Methods in Ecology and Evolution, 2013, 4, 433-441.	2.2	47
205	Spatial capture–recapture models for jointly estimating population density and landscape connectivity. Ecology, 2013, 94, 287-294.	1.5	91
206	Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biological Conservation, 2013, 157, 187-195.	1.9	104
207	Major roadwork impacts the space use behaviour of gray wolf. Landscape and Urban Planning, 2013, 112, 18-25.	3.4	26
208	Linking antiâ€predator behaviour to prey demography reveals limited risk effects of an actively hunting large carnivore. Ecology Letters, 2013, 16, 1023-1030.	3.0	136
209	Risk avoidance in sympatric large carnivores: reactive or predictive?. Journal of Animal Ecology, 2013, 82, 1098-1105.	1.3	139
210	Trophic cascades: linking ungulates to shrubâ€dependent birds and butterflies. Journal of Animal Ecology, 2013, 82, 1288-1299.	1.3	19
211	Multiâ€ŧrophic resource selection function enlightens the behavioural game between wolves and their prey. Journal of Animal Ecology, 2013, 82, 1062-1071.	1.3	45
212	Inferring spatial memory and spatiotemporal scaling from <scp>GPS</scp> data: comparing red deer <i>Cervus elaphus</i> movements with simulation models. Journal of Animal Ecology, 2013, 82, 572-586.	1.3	30
213	Are wolves saving Yellowstone's aspen? A landscapeâ€level test of a behaviorally mediated trophic cascade: comment. Ecology, 2013, 94, 1420-1425.	1.5	43
214	Spatial memory and animal movement. Ecology Letters, 2013, 16, 1316-1329.	3.0	402
215	Regional and seasonal patterns of nutritional condition and reproduction in elk. Wildlife Monographs, 2013, 184, 1-45.	2.0	104
216	Landscape of fear in Europe: wolves affect spatial patterns of ungulate browsing in BiaÅ,owieża Primeval Forest, Poland. Ecography, 2013, 36, 1263-1275.	2.1	181
217	Inferring behavioural mechanisms in habitat selection studies getting the nullâ€hypothesis right for functional and familiarity responses. Ecography, 2013, 36, 323-330.	2.1	35
218	Estimating resource selection with count data. Ecology and Evolution, 2013, 3, 2233-2240.	0.8	45

#	Article	IF	Citations
219	Decomposing risk: Landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates. Ecological Applications, 2013, 23, 1722-1734.	1.8	75
220	Movement Responses of Caribou to Human-Induced Habitat Edges Lead to Their Aggregation near Anthropogenic Features. American Naturalist, 2013, 181, 827-836.	1.0	49
221	Top-Down and Bottom-up Control of Large Herbivore Populations: A Review of Natural and Human-Induced Influences. Tropical Conservation Science, 2013, 6, 493-505.	0.6	34
222	Will central Wyoming elk stop migrating to Yellowstone, and should we care?. Ecology, 2013, 94, 1271-1274.	1.5	6
223	Habitat Selection and Risk of Predation: Re-colonization by Lynx had Limited Impact on Habitat Selection by Roe Deer. PLoS ONE, 2013, 8, e75469.	1.1	22
224	Disentangling Woodland Caribou Movements in Response to Clearcuts and Roads across Temporal Scales. PLoS ONE, 2013, 8, e77514.	1.1	28
225	A Flexible Approach for Assessing Functional Landscape Connectivity, with Application to Greater Sage-Grouse (Centrocercus urophasianus). PLoS ONE, 2013, 8, e82271.	1.1	16
226	Short-Term Behavioural Responses of Impalas in Simulated Antipredator and Social Contexts. PLoS ONE, 2013, 8, e84970.	1.1	16
227	Uniting Statistical and Individual-Based Approaches for Animal Movement Modelling. PLoS ONE, 2014, 9, e99938.	1.1	22
228	Examining the Prey Mass of Terrestrial and Aquatic Carnivorous Mammals: Minimum, Maximum and Range. PLoS ONE, 2014, 9, e106402.	1.1	17
229	GPS Based Daily Activity Patterns in European Red Deer and North American Elk (Cervus elaphus): Indication for a Weak Circadian Clock in Ungulates. PLoS ONE, 2014, 9, e106997.	1.1	94
230	LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer. Forests, 2014, 5, 1374-1390.	0.9	53
231	Seascape-scale trophic links for fish on inshore coral reefs. Coral Reefs, 2014, 33, 897-907.	0.9	39
232	A unifying framework for quantifying the nature of animal interactions. Journal of the Royal Society Interface, 2014, 11, 20140333.	1.5	57
233	Yellowstone Wolves and the Forces That Structure Natural Systems. PLoS Biology, 2014, 12, e1002025.	2.6	31
234	Short-term effects of hunting on naÃ⁻ve black-tailed deer (Odocoileus hemionus sitkensis): behavioural response and consequences on vegetation growth. Canadian Journal of Zoology, 2014, 92, 915-925.	0.4	14
235	Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds. Ecology and Evolution, 2014, 4, 4578-4588.	0.8	31
236	Behavioral responses of wolves to roads: scale-dependent ambivalence. Behavioral Ecology, 2014, 25, 1353-1364.	1.0	110

#	Article	IF	CITATIONS
237	Herbivory strains resilience in droughtâ€prone aspen landscapes of the western <scp>U</scp> nited <scp>S</scp> tates. Journal of Vegetation Science, 2014, 25, 457-469.	1.1	36
238	Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos, 2014, 123, 829-836.	1.2	98
239	Detecting effects of spatial memory and dynamic information on animal movement decisions. Methods in Ecology and Evolution, 2014, 5, 1236-1246.	2.2	41
240	Competitive interactions and resource partitioning between northern spotted owls and barred owls in western Oregon. Wildlife Monographs, 2014, 185, 1-50.	2.0	103
241	Hide or die: use of cover decreases predation risk in juvenile North Axmerican porcupines. Journal of Mammalogy, 2014, 95, 992-1003.	0.6	12
242	A Mathematical Approach to Territorial Pattern Formation. American Mathematical Monthly, 2014, 121, 754-770.	0.2	4
243	The hegemony of the â€~despots': the control of avifaunas over vast continental areas. Diversity and Distributions, 2014, 20, 1071-1083.	1.9	14
244	Inland flights of young redâ€eyed vireos <i>Vireo olivaceus</i> in relation to survival and habitat in a coastal stopover landscape. Journal of Avian Biology, 2014, 45, 387-395.	0.6	22
245	Prey state shapes the effects of temporal variation in predation risk. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141952.	1.2	56
247	A generalized residual technique for analysing complex movement models using earth mover's distance. Methods in Ecology and Evolution, 2014, 5, 1012-1022.	2.2	17
248	Effects of animal movement strategies and costs on the distribution of active subsidies across simple landscapes. Ecological Modelling, 2014, 283, 45-52.	1.2	15
249	Spatioâ€ŧemporal dynamics in the response of woodland caribou and moose to the passage of grey wolf. Journal of Animal Ecology, 2014, 83, 185-198.	1.3	93
250	Activities, motivations and disturbance: An agent-based model of bottlenose dolphin behavioral dynamics and interactions with tourism in Doubtful Sound, New Zealand. Ecological Modelling, 2014, 282, 44-58.	1.2	33
251	Applications of step-selection functions in ecology and conservation. Movement Ecology, 2014, 2, 4.	1.3	404
252	A statistical framework for inferring the influence of conspecifics on movement behaviour. Methods in Ecology and Evolution, 2014, 5, 183-189.	2.2	26
253	A memoryâ€based foraging tactic reveals an adaptive mechanism for restricted space use. Ecology Letters, 2014, 17, 924-931.	3.0	143
254	How do animal territories form and change? Lessons from 20 years of mechanistic modelling. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140231.	1.2	90
255	Context dependence of elk (<i>Cervus elaphus</i>) vigilance and wolf (<i>Canis lupus</i>) predation risk. Canadian Journal of Zoology, 2014, 92, 727-736.	0.4	16

#	Article	IF	CITATIONS
256	Functional connectivity experiments reflect routine movement behavior of a tropical hummingbird species. Ecological Applications, 2014, 24, 2122-2131.	1.8	41
257	Using dynamic <scp>B</scp> rownian bridge movement modelling to measure temporal patterns of habitat selection. Journal of Animal Ecology, 2014, 83, 1234-1243.	1.3	63
258	Infusing considerations of trophic dependencies into species distribution modelling. Ecology Letters, 2014, 17, 1507-1517.	3.0	34
259	After long-term decline, are aspen recovering in northern Yellowstone?. Forest Ecology and Management, 2014, 329, 108-117.	1.4	28
260	Estimating landscape resistance to dispersal. Landscape Ecology, 2014, 29, 1201-1211.	1.9	103
261	Habitat selection during ungulate dispersal and exploratory movement at broad and fine scale with implications for conservation management. Movement Ecology, 2014, 2, 15.	1.3	44
262	Loggingâ€induced changes in habitat network connectivity shape behavioral interactions in the wolf–caribou–moose system. Ecological Monographs, 2014, 84, 265-285.	2.4	58
263	Bias in the use of broadscale vegetation data in the analysis of habitat selection. Journal of Mammalogy, 2014, 95, 369-381.	0.6	24
264	Testing the risk of predation hypothesis: the influence of recolonizing wolves on habitat use by moose. Oecologia, 2014, 176, 69-80.	0.9	39
265	Forage patch use by grazing herbivores in a South African grazing ecosystem. Acta Theriologica, 2014, 59, 457-466.	1.1	13
266	A review on the temporal pattern of deer–vehicle accidents: Impact of seasonal, diurnal and lunar effects in cervids. Accident Analysis and Prevention, 2014, 66, 168-181.	3.0	91
267	Predicting local and nonâ€local effects of resources on animal space use using a mechanistic step selection model. Methods in Ecology and Evolution, 2014, 5, 253-262.	2.2	75
268	Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic. Ecosphere, 2014, 5, 1-24.	1.0	72
269	Predation risk, elk, and aspen: comment. Ecology, 2014, 95, 2669-2671.	1.5	10
270	Spatial interactions between sympatric carnivores: asymmetric avoidance of an intraguild predator. Ecology and Evolution, 2015, 5, 2762-2773.	0.8	32
271	Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer. Global Change Biology, 2015, 21, 3961-3970.	4.2	65
272	Wolves, people, and brown bears influence the expansion of the recolonizing wolf population in Scandinavia. Ecosphere, 2015, 6, 1-14.	1.0	67
273	Behavioral and physiological responses of American black bears to landscape features within an agricultural region. Ecosphere, 2015, 6, 1-21.	1.0	71

#	Article	IF	CITATIONS
274	Bottom-up and top-down forces shaping wooded ecosystems: lessons from a cross-biome comparison. , 2015, , 107-133.		3
275	Predicting the effects of human developments on individual dolphins to understand potential long-term population consequences. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152109.	1.2	31
276	Connectivity among subpopulations of louisiana black bears as estimated by a step selection function. Journal of Wildlife Management, 2015, 79, 1347-1360.	0.7	55
277	Quaking Aspen in the Residential-Wildland Interface: Elk Herbivory Hinders Forest Conservation. Natural Areas Journal, 2015, 35, 416-427.	0.2	6
278	Managing more than the mean: using quantile regression to identify factors related to large elk groups. Journal of Applied Ecology, 2015, 52, 1656-1664.	1.9	26
279	Structure and Dynamics of Minke Whale Surfacing Patterns in the Gulf of St. Lawrence, Canada. PLoS ONE, 2015, 10, e0126396.	1.1	9
280	Diet Overlap and Foraging Activity between Feral Pigs and Native Peccaries in the Pantanal. PLoS ONE, 2015, 10, e0141459.	1.1	45
281	Space-use, movement and dispersal of sub-adult cougars in a geographically isolated population. PeerJ, 2015, 3, e1118.	0.9	25
282	Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest. Oecologia, 2015, 177, 571-579.	0.9	29
283	Animal's Functional Role in the Landscape. , 2015, , 15-203.		0
284	Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Movement Ecology, 2015, 3, 8.	1.3	69
285	Differential barrier and corridor effects of power lines, roads and rivers on moose (<i>Alces) Tj ETQq1 1 0.784314</i>	∙rgBT /Ov	erlock 10 Tfl
286	Selection for forage and avoidance of risk by woodland caribou (<i>Rangifer tarandus caribou</i>) at coarse and local scales. Ecosphere, 2015, 6, 1-11.	1.0	20
287	Behavioural responses of ungulates to indirect cues of an ambush predator. Behaviour, 2015, 152, 1019-1040.	0.4	55
288	Coupling scale-specific habitat selection and activity reveals sex-specific food/cover trade-offs in a large herbivore. Animal Behaviour, 2015, 102, 169-187.	0.8	42
289	The Lion King and the Hyaena Queen: large carnivore interactions and coexistence. Biological Reviews, 2015, 90, 1197-1214.	4.7	138
290	Analysis of phenotypic change in relation to climatic drivers in a population of Soay sheep <i>Ovis aries</i> . Oikos, 2015, 124, 543-552.	1.2	14
291	Bison distribution under conflicting foraging strategies: site fidelity vs. energy maximization. Ecology, 2015, 96, 1793-1801.	1.5	47

#	Article	IF	CITATIONS
292	Spaceâ€use behaviour of woodland caribou based on a cognitive movement model. Journal of Animal Ecology, 2015, 84, 1059-1070.	1.3	91
293	Intrinsic and extrinsic factors influencing large African herbivore movements. Ecological Informatics, 2015, 30, 257-262.	2.3	10
294	Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150124.	1.2	22
295	Mid-day temperature variation influences seasonal habitat selection by moose. Journal of Wildlife Management, 2015, 79, 505-512.	0.7	53
296	Plastic response of fearful prey to the spatiotemporal dynamics of predator distribution. Ecology, 2015, 96, 2622-2631.	1.5	64
297	Trophic cascades from wolves to alders in Yellowstone. Forest Ecology and Management, 2015, 354, 254-260.	1.4	27
298	Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behavioral Ecology, 2015, 26, 1520-1527.	1.0	60
300	Cell phone-generated radio frequency electromagnetic field effects on the locomotor behaviors of the fishes <i>Poecilia reticulata</i> and <i>Danio rerio</i> . International Journal of Radiation Biology, 2015, 91, 843-850.	1.0	5
301	A "death trap―in the landscape of fear. Mammal Research, 2015, 60, 275-284.	0.6	55
302	Patch-use dynamics by a large herbivore. Movement Ecology, 2015, 3, 7.	1.3	28
303	Equivalence between Step Selection Functions and Biased Correlated Random Walks for Statistical Inference on Animal Movement. PLoS ONE, 2015, 10, e0122947.	1.1	68
304	Effects of predation risk on elk (Cervus elaphus) landscape use in a wolf (Canis lupus) dominated system. Canadian Journal of Zoology, 2015, 93, 99-111.	0.4	7
305	Sex-specific adjustments in habitat selection contribute to buffer mouflon against summer conditions. Behavioral Ecology, 2015, 26, 472-482.	1.0	35
306	Early post-release movement of reintroduced lions (Panthera leo) in Dinokeng Game Reserve, Gauteng, South Africa. European Journal of Wildlife Research, 2015, 61, 861-870.	0.7	13
307	Niche and movement models identify corridors of introduced feral cats infringing ecologically sensitive areas in New Zealand. Biological Conservation, 2015, 192, 48-56.	1.9	16
308	Unveiling tradeâ€offs in resource selection of migratory caribou using a mechanistic movement model of availability. Ecography, 2015, 38, 1049-1059.	2.1	45
309	Movement Patterns of Prairie Rattlesnakes (<i>Crotalus v. viridis</i>) across a Mountainous Landscape in a Designated Wilderness Area. Journal of Herpetology, 2015, 49, 377-387.	0.2	7
310	An experimental study on risk effects in a dwarf antelope, <i>Madoqua guentheri</i> . Journal of Mammalogy, 2015, 96, 918-926.	0.6	14

#		IF	CITATIONS
#	Spatio-temporal separation between lions and leopards in the Kruger National Park and the Timbavati	11	CHATIONS
311	Private Nature Reserve, South Africa. Global Ecology and Conservation, 2015, 3, 693-706.	1.0	13
312	Adjustments in habitat selection to changing availability induce fitness costs for a threatened ungulate. Journal of Applied Ecology, 2015, 52, 496-504.	1.9	50
313	To follow or not? How animals in fusion–fission societies handle conflicting information during group decisionâ€making. Ecology Letters, 2015, 18, 799-806.	3.0	50
314	Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots. Ecological Applications, 2015, 25, 1911-1921.	1.8	63
315	Cancer Ecology: Niche Construction, Keystone Species, Ecological Succession, and Ergodic Theory. Biological Theory, 2015, 10, 283-288.	0.8	20
316	Predator evasion in zooplankton is suppressed by polyunsaturated fatty acid limitation. Oecologia, 2015, 179, 687-697.	0.9	27
317	Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151545.	1.2	34
318	Predicting multiple behaviors from GPS radiocollar cluster data. Behavioral Ecology, 2015, 26, 452-464.	1.0	22
319	Climate and the landscape of fear in an <scp>A</scp> frican savanna. Journal of Animal Ecology, 2015, 84, 124-133.	1.3	106
320	Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs. Conservation Biology, 2015, 29, 418-429.	2.4	51
321	Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species. PLoS ONE, 2016, 11, e0167513.	1.1	30
322	Acceleration Data Reveal Highly Individually Structured Energetic Landscapes in Free-Ranging Fishers (Pekania pennanti). PLoS ONE, 2016, 11, e0145732.	1.1	13
323	Anthropogenic food resources foster the coexistence of distinct life history strategies: yearâ€round sedentary and migratory brown bears. Journal of Zoology, 2016, 300, 142-150.	0.8	69
324	Resource type influences the effects of reserves and connectivity on ecological functions. Journal of Animal Ecology, 2016, 85, 437-444.	1.3	14
325	Space use analyses suggest avoidance of a ski area by mountain goats. Journal of Wildlife Management, 2016, 80, 387-395.	0.7	26
326	Incorporating animal spatial memory in step selection functions. Journal of Animal Ecology, 2016, 85, 516-524.	1.3	45
327	Extracting spatioâ€ŧemporal patterns in animal trajectories: an ecological application of sequence analysis methods. Methods in Ecology and Evolution, 2016, 7, 369-379.	2.2	35
328	Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 2016, 7, 619-630.	2.2	316

#	Δρτιςι ε	IF	CITATIONS
#	Lessons from integrating behaviour and resource selection: activityâ€specific responses of	IF	CHAHONS
329	<scp>A</scp> frican wild dogs to roads. Animal Conservation, 2016, 19, 247-255.	1.5	80
330	Fire frequency drives habitat selection by a diverse herbivore guild impacting top–down control of plant communities in an African savanna. Oikos, 2016, 125, 1636-1646.	1.2	32
331	Landscape connectivity predicts chronic wasting disease risk in Canada. Journal of Applied Ecology, 2016, 53, 1450-1459.	1.9	33
332	Reactive responses of zebras to lion encounters shape their predator–prey space game at large scale. Oikos, 2016, 125, 829-838.	1.2	72
333	Mobility of moose—comparing the effects of wolf predation risk, reproductive status, and seasonality. Ecology and Evolution, 2016, 6, 8870-8880.	0.8	19
334	Behavior-based management: using behavioral knowledge to improve conservation and management efforts. , 2016, , 147-148.		0
335	Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere, 2016, 7, e01548.	1.0	25
336	Behavior-based contributions to reserve design and management. , 0, , 176-211.		1
337	Using step and path selection functions for estimating resistance to movement: pumas as a case study. Landscape Ecology, 2016, 31, 1319-1335.	1.9	81
338	Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution. Advances in Experimental Medicine and Biology, 2016, 915, 347-360.	0.8	0
339	Flexible habitat selection paves the way for a recovery of otter populations in the European Alps. Biological Conservation, 2016, 199, 88-95.	1.9	30
340	Overcoming challenges of sparse telemetry data to estimate caribou movement. Ecological Modelling, 2016, 335, 24-34.	1.2	14
341	Movement is the glue connecting home ranges and habitat selection. Journal of Animal Ecology, 2016, 85, 21-31.	1.3	116
342	EDITORIAL: Stuck in motion? Reconnecting questions and tools in movement ecology. Journal of Animal Ecology, 2016, 85, 5-10.	1.3	17
343	Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biological Conservation, 2016, 198, 93-103.	1.9	112
344	Protected areas preserve natural behaviour of a targeted fish species on coral reefs. Biological Conservation, 2016, 198, 202-209.	1.9	25
345	Habitat selectivity influences the reactive responses of African ungulates to encounters with lions. Animal Behaviour, 2016, 116, 163-170.	0.8	24
346	A bird pollinator shows positive frequency dependence and constancy of species choice in natural plant communities. Ecology, 2016, 97, 3110-3118.	1.5	13

#	Article	IF	CITATIONS
347	Bonobo nest site selection and the importance of predictor scales in primate ecology. American Journal of Primatology, 2016, 78, 1326-1343.	0.8	12
348	Movement reveals scale dependence in habitat selection of a large ungulate. Ecological Applications, 2016, 26, 2746-2757.	1.8	24
349	Disentangling the effects of habitat, food, and intraspecific competition on resource selection by the spiny rat, <i>Thrichomys fosteri</i> . Journal of Mammalogy, 2016, 97, 1738-1744.	0.6	10
350	Animal water balance drives top-down effects in a riparian forest—implications for terrestrial trophic cascades. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160881.	1.2	14
351	Fear of large carnivores causes a trophic cascade. Nature Communications, 2016, 7, 10698.	5.8	315
352	Space use of a dominant Arctic vertebrate: Effects of prey, sea ice, and land on Pacific walrus resource selection. Biological Conservation, 2016, 203, 25-32.	1.9	27
353	Spatial and Temporal Habitat-Use Patterns of Wood Turtles at the Western Edge of Their Distribution. Journal of Herpetology, 2016, 50, 347-356.	0.2	6
354	Limited spatial response to direct predation risk by African herbivores following predator reintroduction. Ecology and Evolution, 2016, 6, 5728-5748.	0.8	19
355	Nonlethal predator effects on the turn-over of wild bird flocks. Scientific Reports, 2016, 6, 33476.	1.6	23
356	Livestock guardian dogs as surrogate top predators? How Maremma sheepdogs affect a wildlife community. Ecology and Evolution, 2016, 6, 6702-6711.	0.8	21
358	Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecology, 2016, 31, 1863-1882.	1.9	47
359	Do coyotes <i>Canis latrans</i> influence occupancy of prey in suburban forest fragments?. Environmental Epigenetics, 2016, 62, 1-6.	0.9	36
360	Large herbivores surf waves of green-up during spring. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160456.	1.2	225
361	Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?. Journal of Mathematical Biology, 2016, 73, 1691-1726.	0.8	11
362	Caribou, water, and ice – fine-scale movements of a migratory arctic ungulate in the context of climate change. Movement Ecology, 2016, 4, 14.	1.3	52
363	From the Field: Human–Environment Interaction in Greater Yellowstone: Trophic Cascades and Hotspots and Bears, Oh My (Part Two). Geography Teacher, 2016, 13, 37-42.	0.1	0
364	Population viability of recolonizing cougars in midwestern North America. Ecological Modelling, 2016, 321, 121-129.	1.2	25
365	Multi-scale prediction of landscape resistance for tiger dispersal in central India. Landscape Ecology, 2016, 31, 1355-1368.	1.9	45

	Article	IF	CITATIONS
366	Fear, fire, and behaviorally mediated trophic cascades in a frequently burned savanna. Forest Ecology and Management, 2016, 368, 133-139.	1.4	29
367	The "edge effect―phenomenon: deriving population abundance patterns from individual animal movement decisions. Theoretical Ecology, 2016, 9, 233-247.	0.4	21
368	Model of pathogen transmission between livestock and white-tailed deer in fragmented agricultural and forest landscapes. Environmental Modelling and Software, 2016, 80, 185-200.	1.9	6
369	A potential role for interference competition with lions in den selection and attendance by spotted hyaenas. Mammalian Biology, 2016, 81, 227-234.	0.8	10
370	Linking predation risk, ungulate antipredator responses, and patterns of vegetation in the high Andes. Journal of Mammalogy, 2016, 97, 966-977.	0.6	46
371	The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds. Hydrobiologia, 2016, 773, 225-240.	1.0	13
372	Natural and experimental tests of trophic cascades: gray wolves and white-tailed deer in a Great Lakes forest. Oecologia, 2016, 180, 1183-1194.	0.9	38
373	The scaling of geographic ranges: implications for species distribution models. Landscape Ecology, 2016, 31, 1195-1208.	1.9	21
374	Predicting the <i>continuum</i> between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. Journal of Animal Ecology, 2016, 85, 32-42.	1.3	100
375	Large carnivore impacts are context-dependent. Food Webs. 2017, 12, 3-13.	0.5	50
		0.5	39
376	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451.	1.2	8
376 377	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451. Does wildlife resource selection accurately inform corridor conservation?. Journal of Applied Ecology, 2017, 54, 412-422.	0.5 1.2 1.9	8 8 88
376 377 378	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451. Does wildlife resource selection accurately inform corridor conservation?. Journal of Applied Ecology, 2017, 54, 412-422. Energy benefits and emergent space use patterns of an empirically parameterized model of memoryâ€based patch selection. Oikos, 2017, 126, .	0.5 1.2 1.9 1.2	8 88 38
376 377 378 379	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451. Does wildlife resource selection accurately inform corridor conservation?. Journal of Applied Ecology, 2017, 54, 412-422. Energy benefits and emergent space use patterns of an empirically parameterized model of memoryâ€based patch selection. Oikos, 2017, 126, . Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2628-2633.	0.5 1.2 1.9 1.2 3.3	8 88 38 80
376 377 378 379 380	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451. Does wildlife resource selection accurately inform corridor conservation?. Journal of Applied Ecology, 2017, 54, 412-422. Energy benefits and emergent space use patterns of an empirically parameterized model of memoryâ&based patch selection. Oikos, 2017, 126, . Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2628-2633. A landscape of coexistence for a large predator in a human dominated landscape. Oikos, 2017, 126, 1389-1399.	0.5 1.2 1.9 1.2 3.3 1.2	8 88 38 80 48
376 377 378 379 380 381	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451. Does wildlife resource selection accurately inform corridor conservation?. Journal of Applied Ecology, 2017, 54, 412-422. Energy benefits and emergent space use patterns of an empirically parameterized model of memoryâ&based patch selection. Oikos, 2017, 126, . Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2628-2633. A landscape of coexistence for a large predator in a human dominated landscape. Oikos, 2017, 126, 1389-1399. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. European Journal of Wildlife Research, 2017, 63, 1.	0.3 1.2 1.9 1.2 3.3 1.2 0.7	39 8 88 38 80 48 45
376 377 378 379 380 381	Bordering Ecosystems: The Rhetorical Function of Characterization in Gray Wolf Management. Environmental Communication, 2017, 11, 435-451. Does wildlife resource selection accurately inform corridor conservation?. Journal of Applied Ecology, 2017, 54, 412-422. Energy benefits and emergent space use patterns of an empirically parameterized model of memoryâ€based patch selection. Oikos, 2017, 126, . Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2628-2633. A landscape of coexistence for a large predator in a human dominated landscape. Oikos, 2017, 126, 1389-1399. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. European Journal of Wildlife Research, 2017, 63, 1. Uncertainties in the identification of potential dispersal corridors: The importance of behaviour, sex, and algorithm. Basic and Applied Ecology, 2017, 21, 66-75.	0.3 1.2 1.9 1.2 3.3 1.2 0.7 1.2	39 8 88 38 80 48 45 55

#	Article	IF	CITATIONS
384	Anthropogenic environmental traps: Where do wolves kill their prey in a commercial forest?. Forest Ecology and Management, 2017, 397, 117-125.	1.4	17
385	Lions influence the decline and habitat shift of hartebeest in a semiarid savanna. Journal of Mammalogy, 2017, 98, 1078-1087.	0.6	19
386	Costs are key when reintroducing threatened species to multiple release sites. Animal Conservation, 2017, 20, 331-340.	1.5	14
387	Complex variation in habitat selection strategies among individuals driven by extrinsic factors. Ecology and Evolution, 2017, 7, 1802-1822.	0.8	19
388	A quantitative synthesis of the movement concepts used within species distribution modelling. Ecological Modelling, 2017, 356, 91-103.	1.2	28
389	Functional responses in animal movement explain spatial heterogeneity in animal–habitat relationships. Journal of Animal Ecology, 2017, 86, 960-971.	1.3	29
390	Predation risk influences feeding rates but competition structures space use for a common Pacific parrotfish. Oecologia, 2017, 184, 139-149.	0.9	25
391	Periodic continuousâ€ŧime movement models uncover behavioral changes of wild canids along anthropization gradients. Ecological Monographs, 2017, 87, 442-456.	2.4	23
392	Resource selection and landscape change reveal mechanisms suppressing population recovery for the world's most endangered antelope. Journal of Applied Ecology, 2017, 54, 1720-1729.	1.9	17
393	What does the wild boar mean to the wolf?. European Journal of Wildlife Research, 2017, 63, 1.	0.7	37
394	Partial differential equation techniques for analysing animal movement: A comparison of different methods. Journal of Theoretical Biology, 2017, 416, 52-67.	0.8	6
395	Habitat availability and connectivity for jaguars (Panthera onca) in the Southern Mayan Forest: Conservation priorities for a fragmented landscape. Biological Conservation, 2017, 206, 270-282.	1.9	37
396	Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a nonâ€ŧerritorial large herbivore. Journal of Animal Ecology, 2017, 86, 371-383.	1.3	25
397	Human-modified habitats facilitate forest-dwelling populations of an invasive predator, Vulpes vulpes. Scientific Reports, 2017, 7, 12291.	1.6	35
398	A multi-state conditional logistic regression model for the analysis of animal movement. Annals of Applied Statistics, 2017, 11, .	0.5	17
399	Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports, 2017, 7, 11624.	1.6	43
400	Canopy structure drives orangutan habitat selection in disturbed Bornean forests. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8307-8312.	3.3	32
401	Modeling large-scale winter recreation terrain selection with implications for recreation management and wildlife. Applied Geography, 2017, 86, 66-91.	1.7	23

#	Article	IF	CITATIONS
402	Relative Selection Strength: Quantifying effect size in habitat―and stepâ€selection inference. Ecology and Evolution, 2017, 7, 5322-5330.	0.8	137
403	Effects of control on the dynamics of an adjacent protected wolf population in interior Alaska. Wildlife Monographs, 2017, 198, 1-30.	2.0	11
404	Behavioral plasticity in a variable environment: snow depth and habitat interactions drive deer movement in winter. Journal of Mammalogy, 2017, 98, 246-259.	0.6	49
406	Physiological stress responses to natural variation in predation risk: evidence from white sharks and seals. Ecology, 2017, 98, 3199-3210.	1.5	35
407	Diet reveals links between morphology and foraging in a cryptic temperate reef fish. Ecology and Evolution, 2017, 7, 11124-11134.	0.8	11
408	Trophic cascades and the transient keystone concept. Biological Conservation, 2017, 212, 191-195.	1.9	15
409	Energy Landscapes and the Landscape of Fear. Trends in Ecology and Evolution, 2017, 32, 88-96.	4.2	161
410	Detecting the influence of environmental covariates on animal movement: a semivariance approach. Methods in Ecology and Evolution, 2017, 8, 561-570.	2.2	5
411	Refuge quality impacts the strength of nonconsumptive effects on prey. Ecology, 2017, 98, 403-411.	1.5	29
412	Channelâ€planform evolution in four rivers of Olympic National Park, Washington, USA: the roles of physical drivers and trophic cascades. Earth Surface Processes and Landforms, 2017, 42, 1011-1032.	1.2	27
413	Avoiding the scale sampling problem: A consilient solution. Journal of Wildlife Management, 2017, 81, 192-205.	0.7	16
414	Space use and social ecology of coyotes (Canis latrans) in a high-elevation ecosystem: relative stability in a changing environment. Journal of Ethology, 2017, 35, 37-49.	0.4	11
415	Characterizing wildlife behavioural responses to roads using integrated step selection analysis. Journal of Applied Ecology, 2017, 54, 470-479.	1.9	104
416	Habitat selection by a large herbivore at multiple spatial and temporal scales is primarily governed by food resources. Ecography, 2017, 40, 1014-1027.	2.1	60
417	Temporal variation in habitat selection breaks the catchâ€⊋2 of spatially contrasting predation risk from multiple predators. Oikos, 2017, 126, 624-632.	1.2	32
418	Are wolves just wasps with teeth? What invertebrates can teach us about mammal top predators. Food Webs, 2017, 12, 40-48.	0.5	11
419	Predictive modelling of ecological patterns along linearâ€feature networks. Methods in Ecology and Evolution, 2017, 8, 329-338.	2.2	10
420	Trophic cascades and dingoes in Australia: Does the Yellowstone wolf–elk–willow model apply?. Food Webs, 2017, 12, 76-87.	0.5	17

#	Article	IF	CITATIONS
421	Extent-dependent habitat selection in a migratory large herbivore: road avoidance across scales. Landscape Ecology, 2017, 32, 313-325.	1.9	46
422	Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss. Global Change Biology, 2017, 23, 1821-1831.	4.2	27
423	Potential paths for maleâ€mediated gene flow to and from an isolated grizzly bear population. Ecosphere, 2017, 8, e01969.	1.0	57
424	Winter hunting behavior and habitat selection of wolves in a lowâ€density prey system. Wildlife Biology, 2017, 2017, 1-9.	0.6	5
425	Territory surveillance and prey management: Wolves keep track of space and time. Ecology and Evolution, 2017, 7, 8388-8405.	0.8	37
426	Elephants respond to resource trade-offs in an aseasonal system through daily and annual variability in resource selection. Koedoe, 2017, 59, .	0.3	3
427	Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. ELife, 2017, 6, .	2.8	125
428	Food Webs and Multiple Biotic Interactions in Plant–Herbivore Models. Advances in Botanical Research, 2017, , 111-137.	0.5	4
429	Robust Inference from Conditional Logistic Regression Applied to Movement and Habitat Selection Analysis. PLoS ONE, 2017, 12, e0169779.	1.1	37
430	Breeding chronology and social interactions affect ungulate foraging behavior at a concentrated food resource. PLoS ONE, 2017, 12, e0178477.	1.1	8
431	Leopards provide public health benefits in Mumbai, India. Frontiers in Ecology and the Environment, 2018, 16, 176-182.	1.9	71
432	Raptor migration in an oceanic flyway: wind and geography shape the migratory route of grey-faced buzzards in East Asia. Royal Society Open Science, 2018, 5, 171555.	1.1	28
433	Combining network theory and reaction–advection–diffusion modelling for predicting animal distribution in dynamic environments. Methods in Ecology and Evolution, 2018, 9, 1221-1231.	2.2	9
434	Interplay between contact risk, conspecific density, and landscape connectivity: An individual-based modeling framework. Ecological Modelling, 2018, 373, 25-38.	1.2	21
435	Statistically testing the role of individual learning and decision-making in trapline foraging. Behavioral Ecology, 2018, 29, 885-893.	1.0	5
436	Behavioral adaptations of a large carnivore to human activity in an extremely arid landscape. Animal Conservation, 2018, 21, 433-443.	1.5	11
437	Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behavioral Ecology, 2018, 29, 724-735.	1.0	26
438	Temporal shifts in landscape connectivity for an ecosystem engineer, the roe deer, across a multiple-use landscape. Landscape Ecology, 2018, 33, 937-954.	1.9	30

#	Article	IF	CITATIONS
439	Huntingâ€mediated predator facilitation and superadditive mortality in a European ungulate. Ecology and Evolution, 2018, 8, 109-119.	0.8	19
440	Trophic cascades at multiple spatial scales shape recovery of young aspen in Yellowstone. Forest Ecology and Management, 2018, 413, 62-69.	1.4	32
441	Does wolf presence reduce moose browsing intensity in young forest plantations?. Ecography, 2018, 41, 1776-1787.	2.1	29
442	Socially informed dispersal in a territorial cooperative breeder. Journal of Animal Ecology, 2018, 87, 838-849.	1.3	33
443	Why did the elephant cross the road? The complex response of wild elephants to a major road in Peninsular Malaysia. Biological Conservation, 2018, 218, 91-98.	1.9	55
444	Wildlife biology, big data, and reproducible research. Wildlife Society Bulletin, 2018, 42, 172-179.	1.6	36
445	Predators mediate above―vs. belowground herbivory in a salt marsh crab. Ecosphere, 2018, 9, e02107.	1.0	10
446	The political ecology of university-based social entrepreneurship ecosystems. Journal of Enterprising Communities, 2018, 12, 199-219.	1.6	24
447	Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Movement Ecology, 2018, 6, 1.	1.3	68
448	Multi-level, multi-scale habitat selection by a wide-ranging, federally threatened snake. Landscape Ecology, 2018, 33, 743-763.	1.9	25
449	Spatial scales of habitat selection decisions: implications for telemetryâ€based movement modelling. Ecography, 2018, 41, 437-443.	2.1	27
450	Usedâ€habitat calibration plots: a new procedure for validating species distribution, resource selection, and stepâ€selection models. Ecography, 2018, 41, 737-752.	2.1	36
451	Largeâ€scale movement behavior in a reintroduced predator population. Ecography, 2018, 41, 126-139.	2.1	13
452	Linking spring phenology with mechanistic models of host movement to predict disease transmission risk. Journal of Applied Ecology, 2018, 55, 810-819.	1.9	29
453	An evolutionary framework outlining the integration of individual social and spatial ecology. Journal of Animal Ecology, 2018, 87, 113-127.	1.3	77
454	Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges. Journal of Animal Ecology, 2018, 87, 559-580.	1.3	56
455	Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. Journal of Animal Ecology, 2018, 87, 274-284.	1.3	102
456	What to eat in a warming world: do increased temperatures necessitate hazardous duty pay?. Oecologia, 2018, 186, 73-84.	0.9	6

#	Article	IF	CITATIONS
457	Resource depletion versus landscape complementation: habitat selection by a multiple central place forager. Landscape Ecology, 2018, 33, 127-140.	1.9	12
458	Space Use and Resource Selection. , 2018, , 271-320.		2
459	No place like home? A test of the natal habitat-biased dispersal hypothesis in Scandinavian wolves. Royal Society Open Science, 2018, 5, 181379.	1.1	51
460	Biodiversity: Individual Species. , 0, , 193-210.		0
461	Land Use, anthropogenic disturbance, and riverine features drive patterns of habitat selection by a wintering waterbird in a semi-arid environment. PLoS ONE, 2018, 13, e0206222.	1.1	18
462	Simulating Movement-Related Resource Dynamics to Improve Species Distribution Models: A Case Study with Oilbirds in Northern South America. Professional Geographer, 2018, 70, 528-540.	1.0	6
463	Time-varying predatory behavior is primary predictor of fine-scale movement of wildland-urban cougars. Movement Ecology, 2018, 6, 22.	1.3	14
464	Wolves for Yellowstone: dynamics in time and space. Journal of Mammalogy, 2018, 99, 1021-1031.	0.6	42
465	Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE, 2018, 13, e0195480.	1.1	33
466	Moose movement rates are altered by wolf presence in two ecosystems. Ecology and Evolution, 2018, 8, 9017-9033.	0.8	19
467	Population responses of common ravens to reintroduced gray wolves. Ecology and Evolution, 2018, 8, 11158-11168.	0.8	7
468	Habitat suitability does not capture the essence of animal-defined corridors. Movement Ecology, 2018, 6, 18.	1.3	28
469	Resource selection and movement of male moose in response to varying levels of offâ€road vehicle access. Ecosphere, 2018, 9, e02405.	1.0	11
470	Aspen recruitment in the Yellowstone region linked to reducedÂherbivory after large carnivore restoration. Ecosphere, 2018, 9, e02376.	1.0	21
471	Effects of forest roads on oak trees via cervid habitat use and browsing. Forest Ecology and Management, 2018, 424, 378-386.	1.4	18
472	Effects of air temperature on habitat selection and activity patterns of two tropical imperfect homeotherms. Animal Behaviour, 2018, 140, 129-140.	0.8	36
473	Finding turningâ€points in ultraâ€highâ€resolution animal movement data. Methods in Ecology and Evolution, 2018, 9, 2091-2101.	2.2	29
474	Diel predator activity drives a dynamic landscape of fear. Ecological Monographs, 2018, 88, 638-652.	2.4	169

ARTICLE IF CITATIONS # Analysis and Modeling of Movement., 2018, , 162-180. 3 475 How Big Data Fast Tracked Human Mobility Research and the Lessons for Animal Movement Ecology. 476 1.2 44 Frontiers in Marine Science, 2018, 5, . The control of risk hypothesis: reactive vs. proactive antipredator responses and stressâ€mediated vs. 477 3.0 104 foodâ€mediated costs of response. Ecology Letters, 2018, 21, 947-956. Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity. 1.9 Landscape Ecology, 2018, 33, 879-893. Examining speed versus selection in connectivity models using elk migration as an example. Landscape 479 1.9 15 Ecology, 2018, 33, 955-968. African Lion (Panthera leo) Space Use in the Greater Mapungubwe Transfrontier Conservation Area. African Journal of Wildlife Research, 2018, 48, 023001. 480 0.2 Navigating snowscapes: scaleâ€dependent responses of mountain sheep to snowpack properties. 481 1.8 30 Ecological Applications, 2018, 28, 1715-1729. Woodland caribou habitat selection patterns in relation to predation risk and forage abundance 0.8 depend on reproductive state. Ecology and Evolution, 2018, 8, 5863-5872. Informing network management using fuzzy cognitive maps. Biological Conservation, 2018, 224, 483 1.9 29 122-128. Wolves and Tree Logs: Landscape-Scale and Fine-Scale Risk Factors Interactively Influence Tree 484 1.6 Regeneration. Ecosystems, 2019, 22, 202-212. Linking resource selection and step selection models for habitat preferences in animals. Ecology, 2019, 485 1.5 35 100, e02452. The Langevin diffusion as a continuousâ€time model of animal movement and habitat selection. Methods 2.2 486 in Ecology and Evolution, 2019, 10, 1894-1907. The effect of step size on straight-line orientation. Journal of the Royal Society Interface, 2019, 16, 487 1.5 13 20190181. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecology Letters, 2019, 22, 1797-1805. Do prey select for vacant hunting domains to minimize a multiâ€predator threat?. Ecology Letters, 2019, 489 3.0 50 22, 1724-1733. Black bears alter movements in response to anthropogenic features with time of day and season. Movement Ecology, 2019, 7, 19. Quantifying landscape connectivity for wild Asian elephant populations among fragmented habitats in 491 1.0 8 Thailand. Global Ecology and Conservation, 2019, 19, e00685. Continuous time resource selection analysis for moving animals. Methods in Ecology and Evolution, 492 2.2 2019, 10, 1664-1678.

		CITATION REPORT		
#	ARTICLE	07.044.070	IF	Citations
493	Moose, caribou, and fire: have we got it right yet?. Canadian Journal of Zoology, 2019,	97, 866-879.	0.4	22
494	Defining a mountain landscape characterized by grazing using actor perception, govern strategy, and environmental monitoring data. Journal of Mountain Science, 2019, 16, 1	nmental 1691-1701.	0.8	1
495	Winter predation patterns of wolves in Northwestern Wyoming. Journal of Wildlife Ma 2019, 83, 1352-1367.	nagement,	0.7	5
496	Corridors best facilitate functional connectivity across a protected area network. Scien 2019, 9, 10852.	tific Reports,	1.6	24
497	Modelling animal movement as Brownian bridges with covariates. Movement Ecology,	2019, 7, 22.	1.3	7
498	Social, behavioural and temporal components of wolf (<i>Canis lupus</i>) responses to anthropogenic landscape features in the central Apennines, Italy. Journal of Zoology, 20	o 019, 309, 114-124.	0.8	26
499	High frequency GPS bursts and path-level analysis reveal linear feature tracking by red t Scientific Reports, 2019, 9, 8849.	foxes.	1.6	18
500	Inter-specific competition influences apex predator–prey populations. Wildlife Resea	rch, 2019, 46, 628.	0.7	3
501	Burrow usage patterns and decision-making in meerkat groups. Behavioral Ecology, 20	19,,.	1.0	3
502	Sex, Mass, and Monitoring Effort: Keys to Understanding Spatial Ecology of Timber Rat (Crotalus horridus). Herpetologica, 2019, 75, 162.	tlesnakes	0.2	9
504	Functional response of wolves to human development across boreal North America. Ec Evolution, 2019, 9, 10801-10815.	ology and	0.8	48
505	Longest terrestrial migrations and movements around the world. Scientific Reports, 20	19, 9, 15333.	1.6	91
506	Carnivore community response to anthropogenic landscape change: species-specificity generalizations. Landscape Ecology, 2019, 34, 2493-2507.	/ foils	1.9	21
507	Predators and pastoralists: how anthropogenic pressures inside wildlife areas influence space use and movement behaviour. Animal Conservation, 2019, 22, 404-416.	carnivore	1.5	17
508	Behaviorâ€specific habitat selection by African lions may promote their persistence in a humanâ€dominated landscape. Ecology, 2019, 100, e02644.	3	1.5	74
509	Leveraging multidimensional heterogeneity in resource selection to define movement t animals. Ecology Letters, 2019, 22, 1417-1427.	tactics of	3.0	38
510	They might be right, but give no strong evidence that "trophic cascades shape reco in Yellowstone National Park― A fundamental critique of methods. Forest Ecology and 2019, 454, 117283.	very of young aspen d Management,	1.4	8
511	Estimating interactions between individuals from concurrent animal movements. Meth and Evolution, 2019, 10, 1234-1245.	ods in Ecology	2.2	41

#	Article	IF	Citations
512	Negative frequencyâ€dependent foraging behaviour in a generalist herbivore (<i>Alces alces</i>) and its stabilizing influence on food web dynamics. Journal of Animal Ecology, 2019, 88, 1291-1304.	1.3	12
513	Does animal charisma influence conservation funding for vertebrate species under the US Endangered Species Act?. Environmental Economics and Policy Studies, 2019, 21, 399-411.	0.8	18
514	Sexual differences in the behavioural response to a variation in predation risk. Ethology, 2019, 125, 603-612.	0.5	12
515	Activity patterns and temporal predator avoidance of white-tailed deer (Odocoileus virginianus) during the fawning season. Journal of Ethology, 2019, 37, 283-290.	0.4	33
516	Across scales, pronghorn select sagebrush, avoid fences, and show negative responses to anthropogenic features in winter. Ecosphere, 2019, 10, e02722.	1.0	20
517	Grizzly bear response to fine spatial and temporal scale spring snow cover in Western Alberta. PLoS ONE, 2019, 14, e0215243.	1.1	18
518	Complex tactics in a dynamic large herbivore–carnivore spatiotemporal game. Oikos, 2019, 128, 1318-1328.	1.2	11
519	Implications of slow pace-of-life for nesting behavior in an armored ectotherm. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	3
520	Cascading impacts of large-carnivore extirpation in an African ecosystem. Science, 2019, 364, 173-177.	6.0	113
521	Forest fragmentation affects step choices, but not homing paths of fragmentation-sensitive birds in multiple behavioral states. Landscape Ecology, 2019, 34, 373-388.	1.9	4
522	Determinants of elephant foraging behaviour in a coupled humanâ€natural system: Is brown the new green?. Journal of Animal Ecology, 2019, 88, 780-792.	1.3	61
523	Reciprocity in restoration ecology: When might large carnivore reintroduction restore ecosystems?. Biological Conservation, 2019, 234, 82-89.	1.9	25
524	Response of wildebeest (Connochaetes taurinus) movements to spatial variation in long term risks from a complete predator guild. Biological Conservation, 2019, 233, 139-151.	1.9	10
525	Parsimonious test of dynamic interaction. Ecology and Evolution, 2019, 9, 1654-1664.	0.8	4
526	Antipredator response diminishes during periods of resource deficit for a large herbivore. Ecology, 2019, 100, e02618.	1.5	18
527	SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias. Movement Ecology, 2019, 7, 11.	1.3	17
528	Mountain lions on the prairie: habitat selection by recolonizing mountain lions at the edge of their range. Restoration Ecology, 2019, 27, 1032-1040.	1.4	7
529	Non-consumptive effects of predation in large terrestrial mammals: Mapping our knowledge and revealing the tip of the iceberg. Biological Conservation, 2019, 235, 36-52.	1.9	51

#	Article	IF	CITATIONS
530	Tracking cryptic animals using acoustic multilateration: A system for long-range wolf detection. Journal of the Acoustical Society of America, 2019, 145, 1619-1628.	0.5	16
531	Multiâ€scale habitat selection of elk in response to beetleâ€killed forest. Journal of Wildlife Management, 2019, 83, 679-693.	0.7	16
532	Landscapes of Fear: Spatial Patterns of Risk Perception and Response. Trends in Ecology and Evolution, 2019, 34, 355-368.	4.2	349
533	Top-down control of ecosystems and the case for rewilding: does it all add up?. , 2019, , 325-354.		6
534	Seasonal home ranges and habitat selection of three elk (Cervus elaphus) herds in North Dakota. PLoS ONE, 2019, 14, e0211650.	1.1	6
535	Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecology and Evolution, 2019, 9, 880-890.	0.8	326
536	A palaeontological perspective on the proposal to reintroduce Tasmanian devils to mainland Australia to suppress invasive predators. Biological Conservation, 2019, 232, 187-193.	1.9	6
537	Asian water monitors (Varanus salvator) remain common in Peninsular Malaysia, despite intense harvesting. Wildlife Research, 2019, 46, 265.	0.7	4
538	Integrating Behavior and Physiology Into Strategies for Amphibian Conservation. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	20
539	Behavioral response of naÃ⁻ve and non-naÃ⁻ve deer to wolf urine. PLoS ONE, 2019, 14, e0223248.	1.1	5
540	Deer movement and resource selection during Hurricane Irma: implications for extreme climatic events and wildlife. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192230.	1.2	25
541	Simulating animal movements to predict wildlife-vehicle collisions: illustrating an application of the novel R package SiMRiv. European Journal of Wildlife Research, 2019, 65, 1.	0.7	6
542	Seeking snow and breathing hard – Behavioral tactics in high elevation mammals to combat warming temperatures. PLoS ONE, 2019, 14, e0225456.	1.1	14
543	Making sense of ultrahighâ€resolution movement data: A new algorithm for inferring sites of interest. Ecology and Evolution, 2019, 9, 265-274.	0.8	7
544	Grizzly bear response to spatioâ€ŧemporal variability in human recreational activity. Journal of Applied Ecology, 2019, 56, 375-386.	1.9	63
545	Space Use and Leadership Modify Dilution Effects on Optimal Vigilance under Food-Safety Trade-Offs. American Naturalist, 2019, 193, E15-E28.	1.0	5
546	Experimental determination of tissue turnover rates and trophic discrimination factors for stable carbon and nitrogen isotopes of Arctic Sculpin (Myoxocephalus scorpioides): A common Arctic nearshore fish. Journal of Experimental Marine Biology and Ecology, 2019, 511, 60-67.	0.7	18
547	Temporal variation in resource selection of African elephants follows longâ€ŧerm variability in resource availability. Ecological Monographs, 2019, 89, e01348.	2.4	47

	Сіт	ation Report	
#	ARTICLE	IF	CITATIONS
548	insights of the Movements of the Jaguar in the fropical Porests of Southern Mexico. , 2019, , 217-241.		7
549	Can large carnivores change streams via a trophic cascade?. Ecohydrology, 2019, 12, e2048.	1.1	25
550	Habitat use of sympatric prey suggests divergent anti-predator responses to recolonizing gray wolves. Oecologia, 2019, 189, 487-500.	0.9	22
551	Resource selection by GPS-tagged California spotted owls in mixed-ownership forests. Forest Ecology and Management, 2019, 433, 295-304.	1.4	20
552	Hourly movement decisions indicate how a large carnivore inhabits developed landscapes. Oecologia, 2019, 190, 11-23.	0.9	13
553	Moving through the matrix: Promoting permeability for large carnivores in a human-dominated landscape. Landscape and Urban Planning, 2019, 183, 50-58.	3.4	39
554	Movement responses of roe deer to hunting risk. Journal of Wildlife Management, 2019, 83, 43-51.	0.7	17
555	Aggregating the conceptualization of movement data better captures real world and simulated animal–environment relationships. International Journal of Geographical Information Science, 2020, 34, 1585-1606.	2.2	2
556	Weak spatiotemporal response of prey to predation risk in a freely interacting system. Journal of Animal Ecology, 2020, 89, 120-131.	1.3	35
557	Optimizing the use of biologgers for movement ecology research. Journal of Animal Ecology, 2020, 89, 186-206.	1.3	178
558	Accounting for individualâ€specific variation in habitatâ€selection studies: Efficient estimation of mixedâ€effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 2020, 8 80-92.	9, 1.3	200
559	Strategies for the existence of spatial patterns in predator–prey communities generated by cross-diffusion. Nonlinear Analysis: Real World Applications, 2020, 51, 103018.	0.9	18
560	Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. Journal of Zoology, 2020, 310, 232-245.	0.8	51
561	Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. Journal of Animal Ecology, 2020, 89, 623-634.	1.3	94
562	Landscapeâ€scale habitat response of African elephants shows strong selection for foraging opportunities in a human dominated ecosystem. Ecography, 2020, 43, 149-160.	2.1	22
563	Navigating through the <scp>r</scp> packages for movement. Journal of Animal Ecology, 2020, 89, 248-267.	1.3	83
564	Inference in MCMC step selection models. Biometrics, 2020, 76, 438-447.	0.8	10
565	Predation risk and mountain goat reproduction: Evidence for stressâ€induced breeding suppression in wild ungulate. Functional Ecology, 2020, 34, 1003-1014.	a 1.7	43

#	Article	IF	CITATIONS
566	Oceanographic drivers of winter habitat use in Cassin's Auklets. Ecological Applications, 2020, 30, e02068.	1.8	7
567	Fear of the dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across Europe. Journal of Animal Ecology, 2020, 89, 132-145.	1.3	45
568	Ocean warming increases availability of crustacean prey via riskier behavior. Behavioral Ecology, 2020, 31, 287-291.	1.0	11
569	Reinstating trophic cascades as an applied conservation tool to protect forest ecosystems from invasive grey squirrels (Sciurus carolinensis). Food Webs, 2020, 25, e00164.	0.5	10
570	Multi-source data fusion of optical satellite imagery to characterize habitat selection from wildlife tracking data. Ecological Informatics, 2020, 60, 101149.	2.3	7
571	Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. Journal of Animal Ecology, 2020, 89, 2567-2583.	1.3	10
572	Does dispersal make the heart grow bolder? Avoidance of anthropogenic habitat elements across wolf life history. Animal Behaviour, 2020, 166, 219-231.	0.8	24
573	Largeâ€scale patterns of seed removal by small mammals differ between areas of low―versus highâ€wolf occupancy. Ecology and Evolution, 2020, 10, 7145-7156.	0.8	5
574	Annual Pronghorn Survival of a Partially Migratory Population. Journal of Wildlife Management, 2020, 84, 1114-1126.	0.7	10
575	Direct and Indirect Effects of Fire on Eastern Box Turtles. Journal of Wildlife Management, 2020, 84, 1384-1395.	0.7	13
576	The economics of territory selection. Ecological Modelling, 2020, 438, 109329.	1.2	13
577	A specialized forest carnivore navigates landscape-level disturbance: Canada lynx in spruce-beetle impacted forests. Forest Ecology and Management, 2020, 475, 118400.	1.4	9
578	Caribou Distribution and Movements in a Northern Alaska Oilfield. Journal of Wildlife Management, 2020, 84, 1483-1499.	0.7	5
579	Temperature shapes movement and habitat selection by a heat-sensitive ungulate. Landscape Ecology, 2020, 35, 1961-1973.	1.9	25
580	Fish predation on a landscape scale. Ecosphere, 2020, 11, e03168.	1.0	21
581	Functional diversity of microbial ecologies estimated from ancient human coprolites and dental calculus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190586.	1.8	14
582	Modelling the abundance and productivity distribution to understand the habitat–species relationship: the guanaco (Lama guanicoe) case study. Wildlife Research, 2020, 47, 448.	0.7	6
583	Spatial Ecology and Resource Selection of Eastern Box Turtles. Journal of Wildlife Management, 2020, 84, 1590-1600.	0.7	2

#	Article	IF	CITATIONS
584	Density-Dependent Foraging Behaviors on Sympatric Winter Ranges in a Partially Migratory Elk Population. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	10
585	Using movement to inform conservation corridor design for Mojave desert tortoise. Movement Ecology, 2020, 8, 38.	1.3	11
586	Behavioral modifications by a large-northern herbivore to mitigate warming conditions. Movement Ecology, 2020, 8, 39.	1.3	8
587	Space use and habitat selection of an invasive mesopredator and sympatric, native apex predator. Movement Ecology, 2020, 8, 18.	1.3	19
588	Parametrizing diffusionâ€ŧaxis equations from animal movement trajectories using step selection analysis. Methods in Ecology and Evolution, 2020, 11, 1092-1105.	2.2	29
589	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	2.1	397
590	Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nature Communications, 2020, 11, 2770.	5.8	46
591	Human–wildlife coexistence in a changing world. Conservation Biology, 2020, 34, 786-794.	2.4	199
592	Movement barriers, habitat heterogeneity or both? Testing hypothesized effects of landscape features on home range sizes in eastern indigo snakes. Journal of Zoology, 2020, 311, 204-216.	0.8	7
593	Territoriality drives preemptive habitat selection in recovering wolves: Implications for carnivore conservation. Journal of Animal Ecology, 2020, 89, 1433-1447.	1.3	21
594	The ecological importance of crocodylians: towards evidenceâ€based justification for their conservation. Biological Reviews, 2020, 95, 936-959.	4.7	63
595	Causal Structure Learning in Continuous Systems. Frontiers in Psychology, 2020, 11, 244.	1.1	8
596	Animal movement models for multiple individuals. Wiley Interdisciplinary Reviews: Computational Statistics, 2020, 12, e1506.	2.1	8
597	Killer whale presence drives bowhead whale selection for sea ice in Arctic seascapes of fear. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6590-6598.	3.3	53
598	What wild dogs want: habitat selection differs across life stages and orders of selection in a wide-ranging carnivore. BMC Zoology, 2020, 5, .	0.3	18
599	Evaluating trade-offs between forage, biting flies, and footing on habitat selection by wood bison (<i>Bison bison athabascae</i>). Canadian Journal of Zoology, 2020, 98, 254-261.	0.4	7
600	Migratory Disturbance Thresholds with Mule Deer and Energy Development. Journal of Wildlife Management, 2020, 84, 930-937.	0.7	26
601	White-tailed deer use of overstory hardwoods in longleaf pine woodlands. Forest Ecology and Management, 2020, 464, 118046.	1.4	12

#	Article	IF	CITATIONS
602	Gray wolf habitat use in response to visitor activity along roadways in Yellowstone National Park. Ecosphere, 2020, 11, e03164.	1.0	11
603	Animal movement models with mechanistic selection functions. Spatial Statistics, 2020, 37, 100406.	0.9	8
604	Evaluating Indirect Effects of Hunting on Mule Deer Spatial Behavior. Journal of Wildlife Management, 2020, 84, 1246-1255.	0.7	13
605	Oh, What a Tangled Web â \in ¦ Complex Networks in Ecology. Landscape Series, 2020, , 73-96.	0.1	0
606	Conservation trade-offs: Island introduction of a threatened predator suppresses invasive mesopredators but eliminates a seabird colony. Biological Conservation, 2020, 248, 108635.	1.9	17
607	So close and yet so different: The importance of considering temporal dynamics to understand habitat selection. Basic and Applied Ecology, 2020, 43, 99-109.	1.2	25
608	What are the benefits of delisting endangered species and who receives them?: Lessons from the gray wolf recovery in Greater Yellowstone. Ecological Economics, 2020, 174, 106656.	2.9	5
609	Poaching impedes the selection of optimal post-fire forage in three large grazing herbivores. Biological Conservation, 2020, 241, 108393.	1.9	4
610	Longâ€ŧerm reevaluation of spatially explicit models as a means for adaptive wildlife management. Ecological Applications, 2020, 30, e02088.	1.8	3
611	Bison limit ecosystem recovery in northern Yellowstone. Food Webs, 2020, 23, e00142.	0.5	26
612	Within Reach? Habitat Availability as a Function of Individual Mobility and Spatial Structuring. American Naturalist, 2020, 195, 1009-1026.	1.0	13
613	Active acoustic telemetry tracking and tri-axial accelerometers reveal fine-scale movement strategies of a non-obligate ram ventilator. Movement Ecology, 2020, 8, 8.	1.3	19
614	Reduced movement of wildlife in Mediterranean landscapes: a case study of brown bears in Greece. Journal of Zoology, 2020, 311, 126-136.	0.8	42
615	A decision framework to identify populations that are most vulnerable to the population level effects of disturbance. Conservation Science and Practice, 2020, 2, e149.	0.9	3
616	Crop raiders in an ecological trap: optimal foraging individualâ€based modeling quantifies the effect of alternate crops. Ecological Applications, 2020, 30, e02111.	1.8	10
617	Deer, wolves, and people: costs, benefits and challenges of living together. Biological Reviews, 2020, 95, 782-801.	4.7	37
618	Biologging Special Feature. Journal of Animal Ecology, 2020, 89, 6-15.	1.3	30
619	Capitalizing on an ecological process to aid coral reef ecosystem restoration: Can gastropod trophodynamics enhance coral survival?. Coral Reefs, 2020, 39, 319-330.	0.9	7

#	Article	IF	CITATIONS
620	Lichen cover mapping for caribou ranges in interior Alaska and Yukon. Environmental Research Letters, 2020, 15, 055001.	2.2	26
621	Ungulate management in European national parks: Why a more integrated European policy is needed. Journal of Environmental Management, 2020, 260, 110068.	3.8	33
622	Individual heterogeneity in resource selection has implications for mortality risk in whiteâ€ŧailed deer. Ecosphere, 2020, 11, e03064.	1.0	7
623	Black Bear Movement and Food Conditioning in an Exurban Landscape. Journal of Wildlife Management, 2020, 84, 1038-1050.	0.7	12
624	Cloudy with a chance of mesopredator release: Turbidity alleviates topâ€down control on intermediate predators through sensory disruption. Limnology and Oceanography, 2020, 65, 2278-2290.	1.6	6
625	Functional responses in habitat use explain changes in animal–habitat interactions during forest succession. Canadian Journal of Forest Research, 2020, 50, 549-556.	0.8	4
626	Cumulative metaâ€analysis identifies declining but negative impacts of invasive species on richness after 20Âyr. Ecology, 2020, 101, e03082.	1.5	30
627	Effects of linear features on resource selection and movement rates of wood bison (<i>Bison bison) Tj ETQq1 1 (</i>	0.784314 r 0.4	gBJT /Overloo
628	The diet of coyotes and red foxes in Southern New York. Urban Ecosystems, 2021, 24, 1-10.	1.1	10
629	Multiâ€level movement response of invasive wild pigs (<scp><i>Sus scrofa</i></scp>) to removal. Pest Management Science, 2021, 77, 85-95.	1.7	9
630	How do forest management and wolf space-use affect diet composition of the wolf's main prey, the red deer versus a non-prey species, the European bison?. Forest Ecology and Management, 2021, 479, 118620.	1.4	8
631	Red deer allocate vigilance differently in response to spatio-temporal patterns of risk from human hunters and wolves. Wildlife Research, 2021, 48, 163.	0.7	9
632	California spotted owl habitat selection in a fire-managed landscape suggests conservation benefit of restoring historical fire regimes. Forest Ecology and Management, 2021, 479, 118576.	1.4	39
633	Recolonizing wolves and opportunistic foxes: interference or facilitation?. Biological Journal of the Linnean Society, 2021, 132, 196-210.	0.7	20
634	Multistate Ornstein–Uhlenbeck approach for practical estimation of movement and resource selection around central places. Methods in Ecology and Evolution, 2021, 12, 507-519.	2.2	1
635	Factors affecting deer pressure on forest regeneration: The roles of forest roads, visibility and forage availability. Pest Management Science, 2021, 77, 628-634.	1.7	14
636	Road-crossings, vegetative cover, land use and poisons interact to influence corridor effectiveness. Biological Conservation, 2021, 253, 108930.	1.9	16
637	Run rabbit run: spotted-tailed quoll diet reveals invasive prey is top of the menu. Australian Mammalogy, 2021, 43, 221.	0.7	2

#ARTICLEIFCITATIONS638Behaviorally-mediated trophic cascade attenuated by prey use of risky places at safe times. Oecologia,
0.91, 195, 235-248.0.912639Extensive daily movement rates measured in territorial arctic foxes. Ecology and Ec

CITATION REPORT

641 Controversial approach to wolf management in the Czech Republic. Agricultural Economics (Czech) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

642	Spatiotemporal patterns of wolf, mesocarnivores and prey in a Mediterranean area. Behavioral Ecology and Sociobiology, 2021, 75, 1.	0.6	24
643	Evaluating the use of marine protected areas by endangered species: A habitat selection approach. Ecological Solutions and Evidence, 2021, 2, e12035.	0.8	17
644	Ecological Interactions Involving Feral Horses and Predators: Review with Implications for Biodiversity Conservation. Journal of Wildlife Management, 2021, 85, 1091-1103.	0.7	4
646	Broadening the ecology of fear: non-lethal effects arise from diverse responses to predation and parasitism. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202966.	1.2	27
647	Establishing the integrated science of movement: bringing together concepts and methods from animal and human movement analysis. International Journal of Geographical Information Science, 2021, 35, 1273-1308.	2.2	22
648	Impacts of invasive plants on animal behaviour. Ecology Letters, 2021, 24, 891-907.	3.0	28
650	There will be conflict – agricultural landscapes are prime, rather than marginal, habitats for Asian elephants. Animal Conservation, 2021, 24, 720-732.	1.5	45
652	Human movement influenced by perceived risk of wildlife encounters at fine scales: Evidence from central India. Biological Conservation, 2021, 254, 108945.	1.9	1
653	Resource selection of a nomadic ungulate in a dynamic landscape. PLoS ONE, 2021, 16, e0246809.	1.1	5
654	Predation risk effects on intense and routine vigilance of Burchell's zebra and blue wildebeest. Animal Behaviour, 2021, 173, 159-168.	0.8	2
655	Diurnal Changes in Hypoxia Shape Predator-Prey Interaction in a Bird-Fish System. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	10
656	Why did the animal turn? Timeâ€varying step selection analysis for inference between observed turningâ€points in high frequency data. Methods in Ecology and Evolution, 2021, 12, 921-932.	2.2	18
657	Movement, space-use and resource preferences of European golden jackals in human-dominated landscapes: insights from a telemetry study. Mammalian Biology, 2021, 101, 619-630.	0.8	18
658	Communityâ€wide consequences of nonconsumptive predator effects on a foundation species. Journal of Animal Ecology, 2021, 90, 1307-1316.	1.3	12
659	Resource selection and movement by northern bobwhite broods varies with age and explains survival. Oecologia, 2021, 195, 937-948.	0.9	6

#	Article	IF	CITATIONS
660	A â€~How to' guide for interpreting parameters in habitatâ€selection analyses. Journal of Animal Ecology, 2021, 90, 1027-1043.	1.3	119
661	Behavioral state resource selection in invasive wild pigs in the Southeastern United States. Scientific Reports, 2021, 11, 6924.	1.6	23
663	Defining and quantifying effective connectivity of landscapes for species' movements. Ecography, 2021, 44, 870-884.	2.1	16
664	Prey and habitat distribution are not enough to explain predator habitat selection: addressing intraspecific interactions, behavioural state and time. Movement Ecology, 2021, 9, 12.	1.3	6
665	Animals connect plant species and resources in a meta-ecosystem. Landscape Ecology, 2021, 36, 1621-1629.	1.9	4
666	Are elephants attracted by deforested areas in miombo woodlands?. African Journal of Ecology, 2021, 59, 742-748.	0.4	3
667	Indirect predator effects influence behaviour but not morphology of juvenile coral reef A mbon damselfish Pomacentrus amboinensis. Journal of Fish Biology, 2021, 99, 679-683.	0.7	2
668	The role of environmental temperature on movement patterns of giant anteaters. Integrative Zoology, 2022, 17, 285-296.	1.3	9
669	Innovations in movement and behavioural ecology from camera traps: Day range as model parameter. Methods in Ecology and Evolution, 2021, 12, 1201-1212.	2.2	17
670	Evaluation of Connectivity Among American Black Bear Populations in Georgia. Journal of Wildlife Management, 2021, 85, 979-988.	0.7	7
671	Elevational gradients strongly mediate habitat selection patterns in a nocturnal predator. Ecosphere, 2021, 12, e03500.	1.0	11
672	Spatial and temporal variability in summer diet of gray wolves (<i>Canis lupus</i>) in the Greater Yellowstone Ecosystem. Journal of Mammalogy, 2021, 102, 1030-1041.	0.6	5
673	Bound within boundaries: Do protected areas cover movement corridors of their most mobile, protected species?. Journal of Applied Ecology, 2021, 58, 1133-1144.	1.9	11
674	Foraging behaviour and movements of an ambush predator reveal benthopelagic coupling on artificial reefs. Marine Ecology - Progress Series, 2021, 666, 171-182.	0.9	11
675	Wolves make roadways safer, generating large economic returns to predator conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
676	Managementâ€mediated predation rate in the caribou–moose–wolf system: spatial configuration of logging activities matters. Ecosphere, 2021, 12, e03550.	1.0	11
677	Spatial ecology of invasive Burmese pythons in southwestern Florida. Ecosphere, 2021, 12, e03564.	1.0	10
678	Variable strength of predatorâ€mediated effects on species occurrence in an arctic terrestrial vertebrate community. Ecography, 2021, 44, 1236-1248.	2.1	11

#	Article	IF	CITATIONS
679	A methodological roadmap to quantify animalâ€vectored spatial ecosystem subsidies. Journal of Animal Ecology, 2021, 90, 1605-1622.	1.3	23
681	Trophic cascade driven by behavioral fineâ€ŧuning as naÃ⁻ve prey rapidly adjust to a novel predator. Ecology, 2021, 102, e03363.	1.5	15
682	Individual and Temporal Variation in Use of Residential Areas by Urban Coyotes. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12
683	Stewardship of global collective behavior. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	129
684	From competition to facilitation and mutualism: a general theory of the niche. Ecological Monographs, 2021, 91, e01458.	2.4	49
686	Body size and digestive system shape resource selection by ungulates: A crossâ€ŧaxa test of the forage maturation hypothesis. Ecology Letters, 2021, 24, 2178-2191.	3.0	19
687	Ecosystem coupling: A unifying framework to understand the functioning and recovery of ecosystems. One Earth, 2021, 4, 951-966.	3.6	26
688	Consequences of migratory coupling of predators and prey when mediated by human actions. Diversity and Distributions, 2021, 27, 1848-1860.	1.9	11
689	Learning and Animal Movement. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	28
690	Past agricultural land use affects multiple facets of ungulate antipredator behavior. Behavioral Ecology, 2021, 32, 961-969.	1.0	6
691	Mothers' Movements: Shifts in Calving Area Selection by Partially Migratory Elk. Journal of Wildlife Management, 2021, 85, 1476-1489.	0.7	11
692		(
	Grazer behaviour can regulate largeâ€scale patterning of community states. Ecology Letters, 2021, 24, 1917-1929.	3.0	11
693	Grazer behaviour can regulate largeâ€scale patterning of community states. Ecology Letters, 2021, 24, 1917-1929. Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions. Frontiers in Ecology and Evolution, 2021, 9, .	3.0	11 6
693 694	 Grazer behaviour can regulate largeâ€scale patterning of community states. Ecology Letters, 2021, 24, 1917-1929. Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions. Frontiers in Ecology and Evolution, 2021, 9, . Movement syndromes of a Neotropical frugivorous bat inhabiting heterogeneous landscapes in Brazil. Movement Ecology, 2021, 9, 35. 	3.0 1.1 1.3	11 6 2
693 694 696	Grazer behaviour can regulate largeâ€scale patterning of community states. Ecology Letters, 2021, 24, 1917-1929. Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions. Frontiers in Ecology and Evolution, 2021, 9, . Movement syndromes of a Neotropical frugivorous bat inhabiting heterogeneous landscapes in Brazil. Movement Ecology, 2021, 9, 35. When carnivores collide: a review of studies exploring the competitive interactions between bobcats <i>Lynx rufus</i>	3.0 1.1 1.3 2.2	11 6 2 13
693 694 696 697	Grazer behaviour can regulate largeâ€scale patterning of community states. Ecology Letters, 2021, 24, 1917-1929. Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions. Frontiers in Ecology and Evolution, 2021, 9, . Movement syndromes of a Neotropical frugivorous bat inhabiting heterogeneous landscapes in Brazil. Movement Ecology, 2021, 9, 35. When carnivores collide: a review of studies exploring the competitive interactions between bobcats <i>Lynx rufus</i> and coyotes <i>Canis latrans</i> Mammal Review, 2022, 52, 52-66. Food availability and longâ€term predation risk interactively affect antipredator response. Ecology, 2021, 102, e03456.	3.0 1.1 1.3 2.2 1.5	11 6 2 13 9
 693 694 696 697 698 	Grazer behaviour can regulate largeâ€scale patterning of community states. Ecology Letters, 2021, 24, 1917-1929. Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions. Frontiers in Ecology and Evolution, 2021, 9, . Movement syndromes of a Neotropical frugivorous bat inhabiting heterogeneous landscapes in Brazil. Movement Ecology, 2021, 9, 35. When carnivores collide: a review of studies exploring the competitive interactions between bobcats <i>\cip\u00edynr rufus</i> and coyotes <i>Canis latrans</i> Mammal Review, 2022, 52, 52-66. Food availability and longâ€term predation risk interactively affect antipredator response. Ecology, 2021, 102, e03456. Context-aware movement analysis in ecology: a systematic review. International Journal of Geographical Information Science, 2022, 36, 405-427.	 3.0 1.1 1.3 2.2 1.5 2.2 	 11 6 2 13 9 9

#	Article	IF	CITATIONS
700	Wetland Selection by Female Ring-Necked Ducks (Aythya collaris) in the Southern Atlantic Flyway. Wetlands, 2021, 41, 1.	0.7	2
701	Aquatic habitat use in a semi-aquatic mammal: the Eurasian beaver. Animal Biotelemetry, 2021, 9, .	0.8	8
702	Variable strategies to solve risk–reward tradeoffs in carnivore communities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
703	Dynamic selection for forage quality and quantity in response to phenology and insects in an Arctic ungulate. Ecology and Evolution, 2021, 11, 11664-11688.	0.8	9
704	Solving the sample size problem for resource selection functions. Methods in Ecology and Evolution, 2021, 12, 2421-2431.	2.2	11
705	Linking personality and health to use of space in the gray partridge: perspectives for management. European Journal of Wildlife Research, 2021, 67, 1.	0.7	1
706	Behavioral effects of wolf presence on moose habitat selection: testing the landscape of fear hypothesis in an anthropogenic landscape. Oecologia, 2021, 197, 101-116.	0.9	9
707	Environmental and seasonal correlates of capercaillie movement traits in a Swedish wind farm. Ecology and Evolution, 2021, 11, 11762-11773.	0.8	0
709	Exploring the cascading effect of fear on the foraging activities of prey in a three species Agroecosystem. European Physical Journal Plus, 2021, 136, 1.	1.2	7
710	An integrated path for spatial capture–recapture and animal movement modeling. Ecology, 2022, 103, e03473.	1.5	24
711	The ecology of zoonotic parasites in the Carnivora. Trends in Parasitology, 2021, 37, 1096-1110.	1.5	12
712	The interplay of wind and uplift facilitates over-water flight in facultative soaring birds. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211603.	1.2	25
713	Quantifying effects of snow depth on caribou winter range selection and movement in Arctic Alaska. Movement Ecology, 2021, 9, 48.	1.3	14
714	COVID-19 suppression of human mobility releases mountain lions from a landscape of fear. Current Biology, 2021, 31, 3952-3955.e3.	1.8	21
715	Habitat selection of jaguars in a seasonally flooded landscape. Mammalian Biology, 2021, 101, 817-830.	0.8	4
716	Using movement ecology to evaluate the effectiveness of multiple human-wildlife conflict management practices. Biological Conservation, 2021, 262, 109306.	1.9	13
717	Dynamic interactions between apex predators reveal contrasting seasonal attraction patterns. Oecologia, 2021, 195, 51-63.	0.9	7
718	Acquisition of Adaptive Traits via Interspecific Association: Ecological Consequences and Applications. Ecologies, 2021, 2, 43-70.	0.7	4

		CITATION REPORT		
#	Article		IF	CITATIONS
719	A seascape approach for guiding effective habitat enhancement. Elementa, 2021, 9, .		1.1	4
720	Ecological Effects of Wolves in Anthropogenic Landscapes: The Potential for Trophic Ca Context-Dependent. Frontiers in Ecology and Evolution, 2021, 8, .	ascades Is	1.1	18
721	Behavioral and Demographic Responses of Mule Deer to Energy Development on Wint Wildlife Monographs, 2021, 208, 1-37.	er Range.	2.0	17
722	Sex‧pecific Behaviors of Hunted Mule Deer During Rifle Season. Journal of Wildlife № 85, 215-227.	lanagement, 2021,	0.7	6
723	Are Wolf-Mediated Trophic Cascades Boosting Biodiversity in the Great Lakes Region?.	, 2009, , 205-215.		5
724	Causes and Consequences of Herbivore Movement in Landscape Ecosystems. , 2008, ,	45-91.		6
725	Uncertainty Analysis of Step-Selection Functions: The Effect of Model Parameters on In the Relationship between Animal Movement and the Environment. Lecture Notes in Co 2014, , 48-63.	ferences about mputer Science,	1.0	5
726	Plant Traits, Browsing and Gazing Herbivores, and Vegetation Dynamics. Ecological Stu 217-261.	idies, 2008, ,	0.4	52
737	Spatial Heterogeneity in the Strength of Plant-Herbivore Interactions under Predation F of Bison Foraging in Wolf Country. PLoS ONE, 2013, 8, e73324.	≀isk: The Tale	1.1	24
738	What Cues Do Ungulates Use to Assess Predation Risk in Dense Temperate Forests?. P e84607.	LoS ONE, 2014, 9,	1.1	88
739	Influence of In-Situ Oil Sands Development on Caribou (Rangifer tarandus) Movement. 10, e0136933.	PLoS ONE, 2015,	1.1	20
740	Marine Habitat Selection by Marbled Murrelets (Brachyramphus marmoratus) during th Season. PLoS ONE, 2016, 11, e0162670.	e Breeding	1.1	7
741	Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors. PLoS ONE, 2016, 1	l, e0162989.	1.1	24
742	Multi-level, multi-scale resource selection functions and resistance surfaces for conserv planning: Pumas as a case study. PLoS ONE, 2017, 12, e0179570.	ation	1.1	78
743	Compensatory selection for roads over natural linear features by wolves in northern Or Implications for caribou conservation. PLoS ONE, 2017, 12, e0186525.	itario:	1.1	33
744	Multi-scale habitat assessment of pronghorn migration routes. PLoS ONE, 2020, 15, eC)241042.	1.1	15
745	The Coccidia (Apicomplexa) of the Archosauria (Crocodylia: Eusuchia) of the World. Jou Parasitology, 2020, 106, 90.	ırnal of	0.3	5
746	Spatial generality of predicted occurrence models of nesting habitat for the greater sag Ecosphere, 2013, 4, 1-20.	geâ€grouse.	1.0	7

#	Article	IF	CITATIONS
747	Habitat Suitability Analysis for Mountain Lions (Puma Concolor) Recolonization/ Reintroduction in Minnesota. European Journal of Ecology, 2018, 4, 28-40.	0.1	2
750	INCREASING CONFLICT BETWEEN PREDATOR PROTECTION AND PASTORAL FARMING IN THE CZECH REPUBLIC. Trames, 2019, 23, 381.	0.3	3
751	Bowhead whale Balaena mysticetus seasonal selection of sea ice. Marine Ecology - Progress Series, 2010, 411, 285-297.	0.9	60
752	Using short-term measures of behaviour to estimate long-term fitness of southern elephant seals. Marine Ecology - Progress Series, 2014, 496, 99-108.	0.9	156
753	Parrotfish movement patterns vary with spatiotemporal scale. Marine Ecology - Progress Series, 2017, 577, 149-164.	0.9	18
754	Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16, 338-372.	1.0	45
755	Loss of anti-predator behaviors in cattle and the increased predation losses by wolves in the Northern Rocky Mountains. Open Journal of Animal Sciences, 2013, 03, 248-253.	0.2	14
756	Unifying Framework for Understanding Impacts of Human Developments on Wildlife. , 2011, , 27-54.		25
757	Effects of Energy Development on Ungulates. , 2011, , 71-94.		21
758	Towards evenly distributed grazing patterns: including social context in sheep management strategies. PeerJ, 2016, 4, e2152.	0.9	18
759	Movement and ranging patterns of the Common Chaffinch in heterogeneous forest landscapes. PeerJ, 2014, 2, e368.	0.9	3
760	Investigating the effects of management practice on mammalian co-occurrence along the West Coast of South Africa. PeerJ, 2020, 8, e8184.	0.9	2
761	How often should dead-reckoned animal movement paths be corrected for drift?. Animal Biotelemetry, 2021, 9, 43.	0.8	12
762	Landscapes shaped from the top down: predicting cascading predator effects on spatial biogeochemistry. Oikos, 2022, 2022, .	1.2	20
764	Conceptual and methodological advances in habitatâ€selection modeling: guidelines for ecology and evolution. Ecological Applications, 2022, 32, e02470.	1.8	63
766	Aspen Recruitment and Stand Structure in the Gallatin Elk Winter Range of Southwest Montana. Annual Report, 0, 28, 98-102.	0.0	0
767	Trophic Cascades and Historic Aspen Recruitment in the Gallatin Elk Winter Range of Southwest Montana. Annual Report, 0, 29, 89-95.	0.0	0
768	Mobile, Aware,Intelligent Agents (MAIA). , 2008, , 171-186.		0

ARTICLE IF CITATIONS Evidence for top predator control of a grazing ecosystem. Oikos, 2008, , . 769 1.2 0 Habitat and Movement Ecology of Grizzly Bears in the Mackenzie Delta, NWT. Arctic, 2009, 59, . 771 0.2 From Data Management to Advanced Analytical Approaches: Connecting R to the Database. , 2014, , 772 0 181-212. Direkte, indirekte und kombinierte Effekte von WA¶lfen auf die WaldverjA1⁄4ngung. Schweizerische 0.5 Zeitschrift Fur Forstwesen, 2016, 167, 3-12. Spatial Orientation and Time: Methods., 2019, , 518-528. 782 1 Temporal scale of habitat selection for large carnivores: Balancing energetics, risk and finding prey. Journal of Animal Ecology, 2022, 91, 182-195. 1.3 Detecting seasonal episodicâ€like spatioâ€temporal memory patterns using animal movement modelling. 789 2.2 7 Methods in Ecology and Evolution, 2022, 13, 105-120. Quantitative Spatial Ecology to Promote Human-Wildlife Coexistence: A Tool for Integrated Landscape Management. Frontiers in Sustainable Food Systems, 2020, 4, . 793 1.8 795 Responses of American black bears to spring resources. Ecosphere, 2021, 12, e03773. 1.0 5 Environmental perturbations and transitions between ecological and evolutionary equilibria: an 796 eco-evolutionary feedback framework., 0, 1, . Age- and sex-dependent vigilance behaviour modifies social structure of hunted wild boar 797 0.7 1 populations. Wildlife Research, 2022, 49, 303-313. A Quantitative Framework for Identifying Patterns of Route-Use in Animal Movement Data. Frontiers in 798 1.1 Ecology and Evolution, 2022, 9, . Northern boreal caribou conservation should focus on anthropogenic disturbance, not 799 1.9 6 disturbance-mediated apparent competition. Biological Conservation, 2022, 265, 109426. Black bear spatial responses to the Wallow Wildfire in Arizona. Journal of Wildlife Management, 0, , . The contribution of plant spatial arrangement to bumble bee flower constancy. Oecologia, 2022, 198, 802 0.9 6 471-481. Memory drives the formation of animal home ranges: Evidence from a reintroduction. Ecology 3.0 Letters, 2022, 25, 716-728. Why did the chicken not cross the road? Anthropogenic development influences the movement of a 804 1.8 7 grassland bird. Ecological Applications, 2022, 32, e2543. Behavioral responses to spatial variation in perceived predation risk and resource availability in an arboreal primate. Ecosphere, 2022, 13, .

#	ARTICLE	IF	CITATIONS
806	Circular–linear copulae for animal movement data. Methods in Ecology and Evolution, 2022, 13, 1001-1013.	2.2	10
807	The predator activity landscape predicts the antiâ€predator behavior and distribution of prey in a tundra community. Ecosphere, 2021, 12, .	1.0	10
809	Automatic selection of the number of clusters using Bayesian clustering and sparsityâ€inducing priors. Ecological Applications, 2022, 32, e2524.	1.8	4
810	Wild boar foraging and risk perception—variation among urban, natural, and agricultural areas. Journal of Mammalogy, 2022, 103, 945-955.	0.6	6
811	How do King Cobras move across a major highway? Unintentional wildlife crossing structures may facilitate movement. Ecology and Evolution, 2022, 12, e8691.	0.8	3
814	Ruppell's fox movement and spatial behavior are influenced by topography and human activity. Biodiversity and Conservation, 2022, 31, 1345-1357.	1.2	3
815	"Ecology of fear―in ungulates: Opportunities for improving conservation. Ecology and Evolution, 2022, 12, e8657.	0.8	5
816	Puma responses to unreliable human cues suggest an ecological trap in a fragmented landscape. Oikos, 2022, 2022, .	1.2	6
818	Spatial pattern formation and delay induced destabilization in predator–prey model with fear effect. Mathematical Methods in the Applied Sciences, 2022, 45, 6801-6823.	1.2	5
820	Nowhere to run: semiâ€permeable barriers affect pronghorn space use. Journal of Wildlife Management, 2022, 86, .	0.7	12
821	Towns and trails drive carnivore movement behaviour, resource selection, and connectivity. Movement Ecology, 2022, 10, 17.	1.3	22
822	Moose in our neighborhood: Does perceived hunting risk have cascading effects on tree performance in vicinity of roads and houses?. Ecology and Evolution, 2022, 12, e8795.	0.8	2
823	Using the VEMCO Positioning System (VPS) to explore fine-scale movements of aquatic species: applications, analytical approaches and future directions. Marine Ecology - Progress Series, 2022, 687, 195-216.	0.9	11
824	The nutritional condition of moose coâ€varies with climate, but not with density, predation risk or diet composition. Oikos, 2022, 2022, .	1.2	4
826	Using referential alarm signals to remotely quantify â€~landscapes of fear' in fragmented woodland. Bioacoustics, 0, , 1-17.	0.7	0
827	Consequences of migratory strategy on habitat selection by mule deer. Journal of Wildlife Management, 2022, 86, .	0.7	2
828	Spatial compartmentalization: A nonlethal predator mechanism to reduce parasite transmission between prey species. Science Advances, 2021, 7, eabj5944.	4.7	10
829	Time-dependent memory and individual variation in Arctic brown bears (Ursus arctos). Movement Ecology, 2022, 10, 18.	1.3	5

#	ARTICLE	IF	CITATIONS
837	An introduction to the concept of One Health. , 2022, , 1-31.		5
838	Ecological and Anthropogenic Spatial Gradients Shape Patterns of Dispersal of Foot-and-Mouth Disease Virus in Uganda. Pathogens, 2022, 11, 524.	1.2	0
839	Beyond resource selection: emergent spatio–temporal distributions from animal movements and stigmergent interactions. Oikos, 2022, 2022, .	1.2	5
840	Responses to natural gas development differ by season for two migratory ungulates. Ecological Applications, 2022, 32, e2652.	1.8	7
841	Risky business: How an herbivore navigates spatiotemporal aspects of risk from competitors and predators. Ecological Applications, 2022, 32, e2648.	1.8	7
842	Data-driven agent-based model building for animal movement through Exploratory Data Analysis. Ecological Modelling, 2022, 470, 110001.	1.2	4
844	Assessing the predictive power of step selection functions: How social and environmental interactions affect animal space use. Methods in Ecology and Evolution, 2022, 13, 1805-1818.	2.2	11
845	Remote tracking of Galápagos pink land iguana reveals large elevational shifts in habitat use. Journal for Nature Conservation, 2022, 68, 126210.	0.8	1
847	Differential seasonal avoidance of anthropogenic features and woody vegetation by Lesser Prairie-Chickens. Condor, 0, , .	0.7	1
848	Dwell Regions: Generalized Stay Regions for Streaming and Archival Trajectory Data. ACM Transactions on Spatial Algorithms and Systems, 2023, 9, 1-35.	1.1	1
849	Space use and site fidelity in the endangered Northern Bald Ibis <i>Geronticus eremita</i> : Effects of age, season, and sex. Bird Conservation International, 2023, 33, .	0.7	1
851	Dynamic landscapes of fear: understanding spatiotemporal risk. Trends in Ecology and Evolution, 2022, 37, 911-925.	4.2	46
852	A novel trophic cascade between cougars and feral donkeys shapes desert wetlands. Journal of Animal Ecology, 2022, 91, 2348-2357.	1.3	11
853	La ecologÃa de los parásitos zoonóticos en Carnivora. Magna Scientia UCEVA, 2022, 2, 30-47.	0.1	0
854	Symmetries and asymmetries in the topological roles of piscivorous fishes between occurrence networks and food webs. Journal of Animal Ecology, 2022, 91, 2061-2073.	1.3	1
856	Multi-mode movement decisions across widely ranging behavioral processes. PLoS ONE, 2022, 17, e0272538.	1.1	7
857	Habitat selection in a recovering bobcat (Lynx rufus) population. PLoS ONE, 2022, 17, e0269258.	1.1	5
858	Anthroponumbers.org: A quantitative database of human impacts on Planet Earth. Patterns, 2022, 3, 100552.	3.1	1

#	Article	IF	CITATIONS
861	Application of Conservation and Veterinary Tools in the Management of Stray Wildlife in Zambia. Veterinary Medicine and Science, 0, , .	0.0	0
863	Pace Layering as a Metaphor for Organizing in the Age of Intelligent Technologies: Considering the Future of Work by Theorizing the Future of Organizing. Journal of Management Studies, 0, , .	6.0	3
864	A longâ€ŧerm shift in the summer distribution of Hector's dolphins is correlated with an increase in cruise ship tourism. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 1660-1674.	0.9	7
865	Beluga (D. leucas), harbor porpoise (P. phocoena), and killer whale (O. orca) acoustic presence in kotzebue sound, alaska: Silence speaks volumes. Frontiers in Remote Sensing, 0, 3, .	1.3	2
867	Dynamic winter weather moderates movement and resource selection of wild turkeys at highâ€latitude range limits. Ecological Applications, 2023, 33, .	1.8	3
868	Considering behavioral state when predicting habitat use: Behavior-specific spatial models for the endangered Tasmanian wedge-tailed eagle. Biological Conservation, 2022, 274, 109743.	1.9	4
870	Same place, different time, head up: Multiple antipredator responses to a recolonizing apex predator. Environmental Epigenetics, 2023, 69, 703-717.	0.9	3
872	A seasonal pulse of ungulate neonates influences space use by carnivores in a multiâ€predator, multiâ€prey system. Ecology and Evolution, 2022, 12, .	0.8	2
873	How to scale up from animal movement decisions to spatiotemporal patterns: An approach via step selection. Journal of Animal Ecology, 2023, 92, 16-29.	1.3	14
874	Availability of lesser prairieâ€chicken nesting habitat impairs restoration success. Wildlife Society Bulletin, 2022, 46, .	0.4	2
875	Behavioural syndromes going wild: individual risk-taking behaviours of free-ranging wild boar. Animal Behaviour, 2022, 194, 79-88.	0.8	3
876	Movements and resource selection of wild pigs associated with growth stages of corn. Crop Protection, 2023, 163, 106119.	1.0	5
877	On random walk models as a baseline for animal movement in three-dimensional space. Ecological Modelling, 2023, 475, 110169.	1.2	0
878	Whiteâ€ŧailed deer movement in response to helicopter surveys. Wildlife Society Bulletin, 2022, 46, .	0.4	3
879	Hazai nagyragadozóktól való félelem lehetséges hatásai a zsÃįkmÃįnyaik viselkedésére. , 2021, 19,	1-12.	0
880	Mitigating pseudoreplication and bias in resource selection functions with autocorrelationâ€informed weighting. Methods in Ecology and Evolution, 2023, 14, 643-654.	2.2	5
881	LiDAR reveals a preference for intermediate visibility by a forestâ€dwelling ungulate species. Journal of Animal Ecology, 0, , .	1.3	2
882	Revisiting extinction debt through the lens of multitrophic networks and metaâ€ecosystems. Oikos, 2023, 2023, .	1.2	3

		CITATION REPORT		
#	Article		IF	Citations
883	What has biotelemetry ever done for avian translocations?. Movement Ecology, 2022,	10, .	1.3	3
885	Environmental and anthropogenic features mediate risk from human hunters and wolv Ecosphere, 2022, 13, .	es for moose.	1.0	9
886	WATLAS: high-throughput and real-time tracking of many small birds in the Dutch Wac Biotelemetry, 2022, 10, .	lden Sea. Animal	0.8	1
887	Biology of amphibian granulocytes - From evolutionary pressures to functional conseque Developmental and Comparative Immunology, 2023, 140, 104623.	iences.	1.0	3
888	Spatio-temporal behaviour of predators and prey in an arid environment of Central Asia Environmental Epigenetics, 0, , .	ı.	0.9	0
889	Experience does not change the importance of wind support for migratory route select soaring bird. Royal Society Open Science, 2022, 9, .	ion by a	1.1	3
891	Modeling broadâ \in scale patterns of elk summer resource selection in Montana using re populationâ \in specific models. Ecosphere, 2022, 13, .	gional and	1.0	0
892	Addressing a potential weakness in indices of predation, herbivory, and parasitism. Pop Ecology, 0, , .	ulation	0.7	0
894	Social Learning of Innovations in Dynamic Predator-Prey Systems. American Naturalist, 895-907.	2023, 201,	1.0	3
895	Movement Choices of Persecuted Caracals on Farmlands in South Africa. Rangeland Ec Management, 2023, 88, 77-84.	ology and	1.1	0
896	The Joint Evolution of Animal Movement and Competition Strategies. American Natura E65-E82.	list, 2023, 202,	1.0	3
897	Rapid behavioral responses of endangered tigers to major roads during COVID-19 lock Ecology and Conservation, 2023, 42, e02388.	down. Global	1.0	2
899	Seasonal variation in size and composition of elk (<i>Cervus canadensis</i>) home ran Appalachia. Canadian Journal of Zoology, 0, , .	ge in central	0.4	1
900	Grizzly bear movement models predict habitat use for nearby populations. Biological C 2023, 279, 109940.	onservation,	1.9	1
901	After the mammoths: The ecological legacy of late Pleistocene megafauna extinctions.	, 2023, 1, .		0
902	A three-step approach for assessing landscape connectivity via simulated dispersal: Afr case study. Landscape Ecology, 2023, 38, 981-998.	ican wild dog	1.9	10
903	Shifts in bowhead whale distribution, behavior, and condition following rapid sea ice ch Bering sea. Continental Shelf Research, 2023, 256, 104959.	ange in the	0.9	3
905	Habitat quality influences trade-offs in animal movement along the exploration–expl continuum. Scientific Reports, 2023, 13, .	oitation	1.6	4

#	Article	IF	CITATIONS
906	Global change risks a threatened species due to alteration of predator–prey dynamics. Ecosphere, 2023, 14, .	1.0	4
907	Looking for a magic island in the sea of agriculture: factors affecting forest patch attractiveness for wild boar in human-dominated landscape. Landscape Ecology, 2023, 38, 1591-1604.	1.9	2
908	Size-Mediated Trophic Interactions in Two Syntopic Forest Salamanders. Animals, 2023, 13, 1281.	1.0	1
930	Biotic Processes as Agents of Pattern. , 2023, , 29-53.		0
936	Implications of Pattern: Metapopulations. , 2023, , 153-189.		0
949	Functional Response to Cumulative Effects as an Effective Tool for Wildlife Management. Current Landscape Ecology Reports, 2024, 9, 1-12.	1.1	0
968	Wolf Canis lupus Linnaeus, 1758. Handbook of the Mammals of Europe, 2024, , 1-62.	0.1	0