Orthogonal arrangement of rhythm-generating microci

Proceedings of the National Academy of Sciences of the Unite 102, 13295-13300

DOI: 10.1073/pnas.0506259102

Citation Report

#	Article	IF	Citations
2	Oscillations and waves in the models of interactive neural populations. BioSystems, 2006, 86, 53-62.	2.0	7
3	The development of hippocampal interneurons in rodents. Hippocampus, 2006, 16, 1032-1060.	1.9	136
4	Lag synchrony measures dynamical processes underlying progression of seizure states. Physical Review E, 2006, 73, 021910.	2.1	5
5	Synaptic Currents in Anatomically Identified CA3 Neurons during Hippocampal Gamma Oscillations In Vitro. Journal of Neuroscience, 2006, 26, 9923-9934.	3.6	129
6	Neurotech for Neuroscience: Unifying Concepts, Organizing Principles, and Emerging Tools. Journal of Neuroscience, 2007, 27, 11807-11819.	3.6	84
7	Toward an Integrative Perspective on Hippocampal Function: From the Rapid Encoding of Experience to Adaptive Behavior. Reviews in the Neurosciences, 2007, 18, 253-81.	2.9	125
8	Frequency Domain Analyses of Neonatal Flash VEP. Pediatric Research, 2007, 62, 581-585.	2.3	5
9	The Source of Afterdischarge Activity in Neocortical Tonic–Clonic Epilepsy. Journal of Neuroscience, 2007, 27, 13513-13519.	3.6	57
10	On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13490-13495.	7.1	178
11	Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proceedings of the United States of America, 2007, 104, 17530-17535.	7.1	111
12	Local Generation of Theta-Frequency EEG Activity in the Parasubiculum. Journal of Neurophysiology, 2007, 97, 3868-3879.	1.8	43
13	Beta Rhythms (15–20 Hz) Generated by Nonreciprocal Communication in Hippocampus. Journal of Neurophysiology, 2007, 97, 2812-2823.	1.8	51
14	Effects of the GABAAreceptor antagonists bicuculline and gabazine on stimulus-induced sharp wave-ripple complexes in adult rat hippocampusin vitro. European Journal of Neuroscience, 2007, 25, 2170-2181.	2.6	82
15	Cholinergic Dysfunction in Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 126-130.	5.1	74
16	Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency oscillations in the MK-801 model of acute psychosis. Neurobiology of Disease, 2007, 25, 545-552.	4.4	24
17	Switching between gamma and theta: Dynamic network control using subthreshold electric fields. Neurocomputing, 2007, 70, 2091-2095.	5.9	15
18	The GABAA receptor-mediated recurrent inhibition in ventral compared with dorsal CA1 hippocampal region is weaker, decays faster and lasts less. Experimental Brain Research, 2007, 177, 370-383.	1.5	27
19	The rodent hippocampus and spatial memory: from synapses to systems. Cellular and Molecular Life Sciences, 2007, 64, 401-431.	5.4	143

LATION REDO

#	Article	IF	CITATIONS
20	Electric field modulation of theta and gamma rhythms: probe into network connectivity. BMC Neuroscience, 2008, 9, .	1.9	0
21	Cross-frequency phase coupling of brain rhythms during the orienting response. Brain Research, 2008, 1232, 163-172.	2.2	41
22	Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex. PLoS Computational Biology, 2008, 4, e1000169.	3.2	116
23	Neural-Activity-Dependent Release of S100B from Astrocytes Enhances Kainate-Induced Gamma Oscillations <i>In Vivo</i> . Journal of Neuroscience, 2008, 28, 10928-10936.	3.6	96
24	Cerebrovascular Disease and Hippocampal Atrophy Are Differently Linked to Functional Coupling of Brain Areas: An EEG Coherence Study in MCI Subjects. Journal of Alzheimer's Disease, 2008, 14, 285-299.	2.6	57
25	Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Frontiers in Molecular Neuroscience, 2008, 1, 6.	2.9	249
26	From Rapid Place Learning to Behavioral Performance: A Key Role for the Intermediate Hippocampus. PLoS Biology, 2009, 7, e1000089.	5.6	151
27	Statistical mechanics of the neocortex. Progress in Biophysics and Molecular Biology, 2009, 99, 53-86.	2.9	76
28	Effects of XE991, retigabine, losigamone and ZD7288 on kainate-induced theta-like and gamma network oscillations in the rat hippocampus in vitro. Brain Research, 2009, 1295, 44-58.	2.2	9
29	Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. Journal of Comparative Neurology, 2009, 515, 677-695.	1.6	33
30	Comparison between spontaneous and kainateâ€induced gamma oscillations in the mouse hippocampus <i>in vitro</i> . European Journal of Neuroscience, 2009, 29, 2145-2156.	2.6	26
31	Two forms of feedback inhibition determine the dynamical state of a small hippocampal network. Neural Networks, 2009, 22, 1139-1158.	5.9	7
32	C-type natriuretic peptide decreases hippocampal network oscillations in adult rats in vitro. Neuroscience, 2009, 164, 1764-1775.	2.3	17
33	Increase of theta/gamma ratio is associated with memory impairment. Clinical Neurophysiology, 2009, 120, 295-303.	1.5	87
35	Using "Hard―Real-Time Dynamic Clamp to Study Cellular and Network Mechanisms of Synchronization in the Hippocampal Formation. , 2009, , 199-215.		1
36	Theta and Gamma Coherence Along the Septotemporal Axis of the Hippocampus. Journal of Neurophysiology, 2009, 101, 1192-1200.	1.8	34
37	Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3561-3566.	7.1	368
38	Functional role of gamma and theta oscillations in episodic memory. Neuroscience and Biobehavioral Reviews, 2010, 34, 1023-1035.	6.1	418

ARTICLE IF CITATIONS Morphology of Hippocampal Neurons., 2010, , 27-67. 39 18 Spike timing-dependent plasticity is affected by the interplay of intrinsic and network oscillations. 2.1 Journal of Physiology (Paris), 2010, 104, 91-98. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic 41 1.9 19 pathologies predict a personalized therapeutics strategy. BMC Neuroscience, 2010, 11, 96. Computational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons. Frontiers in Human Neuroscience, 2010, 4, 198. 2.0 Synchronized Activity between the Ventral Hippocampus and the Medial Prefrontal Cortex during 43 8.1 599 Ánxiety. Neuron, 2010, 65, 257-269. NMDA Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, SpatialÂRepresentations, and Working Memory. Neuron, 2010, 68, 557-569. 8.1 Nicotine induction of theta frequency oscillations in rodent hippocampus in vitro. Neuroscience, 45 2.3 34 2010, 166, 84-93. Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. 4.1 46 24 Experimental Neurology, 2010, 221, 296-306. Anatomical Substrate and Scalp EEG Markers are Correlated in Subjects with Cognitive Impairment and 47 2.6 33 Alzheimer's Disease. Frontiers in Psychiatry, 2011, 1, 152. Robust Transient Dynamics and Brain Functions. Frontiers in Computational Neuroscience, 2011, 5, 24. 2.1 GenNet: A Platform for Hybrid Network Experiments. Frontiers in Neuroinformatics, 2011, 5, 11. 49 2.5 14 Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian 69 suprachiasmatic nucleus. Éuropean Journal of Neuroscience, 2011, 33, 1851-1865. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro. 51 5.1 25 Epilepsia, 2011, 52, 1590-1600. The hippocampal learning-behavior translation and the functional significance of hippocampal 4.2 dysfunction in schizophrenia. Current Opinion in Neurobiology, 2011, 21, 492-501 Kalman filter tracking of intracellular neuronal voltage and current., 2011,,. 53 11 Fast and Slow Gamma Rhythms Are Intrinsically and Independently Generated in the Subiculum. Journal of Neuroscience, 2011, 31, 12104-12117. Terminal Field and Firing Selectivity of Cholecystokinin-Expressing Interneurons in the Hippocampal 55 3.6 70 CA3 Area. Journal of Neuroscience, 2011, 31, 18073-18093. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO 74 Journal, 2011, 30, 4955-4969.

#	Article	IF	CITATIONS
57	Spike Resonance Properties in Hippocampal O-LM Cells Are Dependent on Refractory Dynamics. Journal of Neuroscience, 2012, 32, 3637-3651.	3.6	59
58	Cross-Frequency Phase–Phase Coupling between Theta and Gamma Oscillations in the Hippocampus. Journal of Neuroscience, 2012, 32, 423-435.	3.6	700
59	In Vitro and In Vivo Recording of Local Field Potential Oscillations in Mouse Hippocampus. Current Protocols in Mouse Biology, 2012, 2, 273-294.	1.2	3
60	Cellular-based modeling of oscillatory dynamics in brain networks. Current Opinion in Neurobiology, 2012, 22, 660-669.	4.2	26
61	Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab on A Chip, 2012, 12, 2103.	6.0	120
62	OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nature Neuroscience, 2012, 15, 1524-1530.	14.8	306
63	Directional spike propagation in a recurrent network: Dynamical firewall as anisotropic recurrent inhibition. Neural Networks, 2012, 33, 236-246.	5.9	12
64	Updating the Lamellar Hypothesis of Hippocampal Organization. Frontiers in Neural Circuits, 2012, 6, 102.	2.8	60
65	Modeling rhythmic patterns in the hippocampus. Physical Review E, 2012, 85, 041922.	2.1	3
66	The role of inhibition in oscillatory wave dynamics in the cortex. European Journal of Neuroscience, 2012, 36, 2201-2212.	2.6	13
67	The ventral hippocampus is necessary for expressing a spatial memory. Brain Structure and Function, 2012, 217, 93-106.	2.3	55
68	Modulation of hippocampal rhythms by subthreshold electric fields and network topology. Journal of Computational Neuroscience, 2013, 34, 369-389.	1.0	50
69	Propagation of epileptiform activity in the hippocampus can be driven by non-synaptic mechanisms. , 2013, , .		1
70	Phase resetting reduces theta–gamma rhythmic interaction to a one-dimensional map. Journal of Mathematical Biology, 2013, 66, 1361-1386.	1.9	15
71	Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition. Neural Networks, 2013, 40, 1-17.	5.9	6
72	Long-Lasting Increase of Corticosterone After Fear Memory Reactivation: Anxiolytic Effects and Network Activity Modulation in the Ventral Hippocampus. Neuropsychopharmacology, 2013, 38, 386-394.	5.4	45
73	The Role of Extracellular Conductivity Profiles in Compartmental Models for Neurons: Particulars for Layer 5 Pyramidal Cells. Neural Computation, 2013, 25, 1807-1852.	2.2	3
74	Rhythmic cortical neurons increase their oscillations and sculpt basal ganglia signaling during motor learning. Developmental Neurobiology, 2013, 73, 754-768.	3.0	3

#	Article	IF	CITATIONS
75	Effects of the GABAâ€uptake blocker NNCâ€711 on spontaneous sharp wave–ripple complexes in mouse hippocampal slices. Hippocampus, 2013, 23, 323-329.	1.9	17
76	The Theta-Gamma Neural Code. Neuron, 2013, 77, 1002-1016.	8.1	1,236
77	GABA _B autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15073-15078.	7.1	44
78	Synconset Waves and Chains: Spiking Onsets in Synchronous Populations Predict and Are Predicted by Network Structure. PLoS ONE, 2013, 8, e74910.	2.5	1
79	Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Frontiers in Cellular Neuroscience, 2013, 7, 117.	3.7	40
80	Beta2 oscillations (23–30ÂHz) in the mouse hippocampus during novel object recognition. European Journal of Neuroscience, 2014, 40, 3693-3703.	2.6	34
81	Seizure Suppression by High Frequency Optogenetic Stimulation Using InÂVitro and InÂVivo Animal Models of Epilepsy. Brain Stimulation, 2014, 7, 890-899.	1.6	51
82	Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission. Journal of Neuroscience, 2014, 34, 1409-1419.	3.6	67
83	Beyond the Connectome: The Dynome. Neuron, 2014, 83, 1319-1328.	8.1	315
84	Membrane potentialâ€dependent integration of synaptic inputs in entorhinal stellate neurons. Hippocampus, 2014, 24, 1493-1505.	1.9	11
85	Network models provide insight into how oriens-lacunosum-moleculare (OLM) and bistratified cell (BSC) interactions influence local CA1 theta rhythms. BMC Neuroscience, 2014, 15, .	1.9	0
86	Neural Activity Propagation in an Unfolded Hippocampal Preparation with a Penetrating Micro-electrode Array. Journal of Visualized Experiments, 2015, , .	0.3	1
87	Axonal activity in vivo: technical considerations and implications for the exploration of neural circuits in freely moving animals. Frontiers in Neuroscience, 2015, 9, 153.	2.8	32
88	Electrographic Waveform Structure Predicts Laminar Focus Location in a Model of Temporal Lobe Seizures In Vitro. PLoS ONE, 2015, 10, e0121676.	2.5	3
89	Cell Type-Specific Separation of Subicular Principal Neurons during Network Activities. PLoS ONE, 2015, 10, e0123636.	2.5	18
90	Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency. Neuron, 2015, 86, 1277-1289.	8.1	203
91	Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions. Trends in Neurosciences, 2015, 38, 725-740.	8.6	321
92	Impaired dendritic inhibition leads to epileptic activity in a computer model of CA3. Hippocampus, 2015, 25, 1336-1350.	1.9	8

#	Article	IF	CITATIONS
93	No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro. Neuroscience, 2015, 284, 459-469.	2.3	6
94	A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior. Frontiers in Systems Neuroscience, 2016, 10, 18.	2.5	82
95	Deconstructing Circadian Rhythmicity with Models and Manipulations. Trends in Neurosciences, 2016, 39, 405-419.	8.6	39
96	Ordering Information in Working Memory and Modulation of Gamma by Theta Oscillations in Humans. Cerebral Cortex, 2017, 27, bhv326.	2.9	44
97	Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. Journal of Neuroscience Methods, 2016, 260, 221-232.	2.5	50
98	Disharmony in neural oscillations. Journal of Neurophysiology, 2017, 118, 1-3.	1.8	17
99	Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex. Journal of Neuroscience, 2017, 37, 4717-4734.	3.6	45
100	The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience, 2017, 42, 133-166.	1.0	31
101	Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus. Nature Communications, 2017, 8, 758.	12.8	30
102	Tuning in the Hippocampal Theta Band In Vitro : Methodologies for Recording from the Isolated Rodent Septohippocampal Circuit. Journal of Visualized Experiments, 2017, , .	0.3	2
103	Shaping spiking patterns through synaptic parameters revealed by wavelet bifurcation analysis. , 2017, ,		0
104	An integrative model of the intrinsic hippocampal theta rhythm. PLoS ONE, 2017, 12, e0182648.	2.5	17
105	ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing. PLoS Computational Biology, 2017, 13, e1005467.	3.2	16
106	A gradient of frequency-dependent synaptic properties along the longitudinal hippocampal axis. BMC Neuroscience, 2017, 18, 79.	1.9	17
107	Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons. Neuroscience, 2018, 376, 80-93.	2.3	15
108	Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice. Neuron, 2018, 97, 1253-1260.e7.	8.1	112
109	Morphology of Hippocampal Neurons. Springer Series in Computational Neuroscience, 2018, , 29-90.	0.3	1
110	Modelling Epileptic Activity in Hippocampal CA3. Springer Series in Computational Neuroscience, 2018, , 757-777.	0.3	1

#	Article	IF	CITATIONS
111	Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro. Springer Series in Computational Neuroscience, 2018, , 327-364.	0.3	0
112	Integrated information in the EEG of preterm infants increases with family nurture intervention, age, and conscious state. PLoS ONE, 2018, 13, e0206237.	2.5	28
113	The evolving concept of the intrinsic hippocampal theta gamma oscillator. Frontiers in Bioscience - Scholar, 2018, 10, 143-165.	2.1	8
114	Oscillatory Activity and Cross-Frequency Interactions in the Hippocampus and Connected Brain Structures during Sensory Information Processing. Neuroscience and Behavioral Physiology, 2018, 48, 758-763.	0.4	Ο
115	Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields. Experimental Neurology, 2019, 317, 119-128.	4.1	27
116	Investigating A Hypothesis on The Mechanism of Long-Term Memory Storage. NeuroQuantology, 2019, 17, .	0.2	4
117	Direct Stimulation of Human Hippocampus During Verbal Associative Encoding Enhances Subsequent Memory Recollection. Frontiers in Human Neuroscience, 2019, 13, 23.	2.0	24
118	Theta-gamma cascades and running speed. Journal of Neurophysiology, 2019, 121, 444-458.	1.8	34
119	Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro. Hippocampus, 2020, 30, 101-113.	1.9	6
120	Integration of Within-Cell Experimental Data With Multi-Compartmental Modeling Predicts H-Channel Densities and Distributions in Hippocampal OLM Cells. Frontiers in Cellular Neuroscience, 2020, 14, 277.	3.7	10
121	Hippocampal Interneuronal α7 nAChRs Modulate Theta Oscillations in Freely Moving Mice. Cell Reports, 2020, 31, 107740.	6.4	23
122	Classifying cross-frequency coupling pattern in epileptogenic tissues by convolutional neural network*. , 2020, 2020, 3440-3443.		3
123	Alterations in Intrinsic and Synaptic Properties of Hippocampal CA1 VIP Interneurons During Aging. Frontiers in Cellular Neuroscience, 2020, 14, 554405.	3.7	10
124	Characterization of Oxytocin Receptor Expression Within Various Neuronal Populations of the Mouse Dorsal Hippocampus. Frontiers in Molecular Neuroscience, 2020, 13, 40.	2.9	26
125	Flexible Frequency Switching in Adult Mouse Visual Cortex Is Mediated by Competition Between Parvalbumin and Somatostatin Expressing Interneurons. Neural Computation, 2021, 33, 926-966.	2.2	7
127	The Continuity of Context: A Role for the Hippocampus. Trends in Cognitive Sciences, 2021, 25, 187-199.	7.8	44
129	A Hypothesis for Theta Rhythm Frequency Control in CA1 Microcircuits. Frontiers in Neural Circuits, 2021, 15, 643360.	2.8	3
130	Effects of Several Classes of Voltage-Gated Ion Channel Conductances on Gamma and Theta Oscillations in a Hippocampal Microcircuit Model. Frontiers in Computational Neuroscience, 2021, 15, 630271	2.1	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
131	Neural recruitment by ephaptic coupling in epilepsy. Epilepsia, 2021, 62, 1505-1517.		5.1	13
133	Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord male rats. Brain Research Bulletin, 2021, 172, 31-42.	l injury in	3.0	4
134	Theta-gamma coupling emerges from spatially heterogeneous cholinergic neuromodulat Computational Biology, 2021, 17, e1009235.	ion. PLoS	3.2	14
135	Phase Gradients and Anisotropy of the Suprachiasmatic Network: Discovery of Phaseoid 2021, 8, ENEURO.0078-21.2021.	s. ENeuro,	1.9	6
136	Single Neuron Models: Interneurons. , 2010, , 399-422.			6
137	Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits. , 2010, , 423	-457.		61
138	Neuronal Activity Patterns During Hippocampal Network Oscillations In Vitro. , 2010, , 2	47-276.		5
139	Hippocampal Theta, Gamma, and Theta/Gamma Network Models. , 2013, , 1-16.			2
140	Hippocampal Theta, Gamma, and Theta/Gamma Network Models. , 2018, , 1-14.			2
141	Hippocampus, Model Inhibitory Cells. , 2018, , 1-11.			5
144	Changes in neural network homeostasis trigger neuropsychiatric symptoms. Journal of C Investigation, 2014, 124, 696-711.	linical	8.2	81
145	Hippocampal CA1 Ripples as Inhibitory Transients. PLoS Computational Biology, 2016, 1	2, e1004880.	3.2	47
146	Ion Channel Gradients in the Apical Tuft Region of CA1 Pyramidal Neurons. PLoS ONE, 20)12, 7, e46652.	2.5	27
147	Methodological Considerations on the Use of Different Spectral Decomposition Algorith Hippocampal Rhythms. ENeuro, 2019, 6, ENEURO.0142-19.2019.	ms to Study	1.9	28
148	Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rod Hippocampal Formation by Axonal-Dendritic Overlap. Journal of Neuroscience, 2021, 41,		3.6	22
149	Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe E Frontiers in Computational Neuroscience, 2017, 11, 61.	bilepsy.	2.1	8
150	Are Different Rhythms Good for Different Functions?. Frontiers in Human Neuroscience,	2010, 4, 187.	2.0	119
151	Cell-specific synaptic plasticity induced by network oscillations. ELife, 2016, 5, .		6.0	35

#	Article	IF	Citations
152	Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions. ELife, 2017, 6, .	6.0	34
153	Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network. ELife, 2020, 9, .	6.0	26
154	Heteroassociative storage of hippocampal pattern sequences in the CA3 subregion. PeerJ, 2018, 6, e4203.	2.0	6
155	Gap Junctions and the Notion of Electrical Coupling Between Axons. , 2010, , 212-243.		0
156	Cerebellar Ataxia. , 2010, , 152-177.		0
158	Epileptiform Discharges In Vitro. , 2010, , 302-312.		0
160	Cortical Neurons and Their Models. , 2010, , 179-211.		0
162	Persistent Gamma Oscillations. , 2010, , 282-301.		0
163	Very Fast Oscillations. , 2010, , 245-268.		0
166	Historical Prelude. , 2010, , 16-30.		0
167	Beta-2 Oscillations. , 2010, , 269-281.		0
168	Overview of In Vivo Cortical Oscillations. , 2010, , 31-69.		0
169	Mild Cognitive Impairment and Quantitative EEG Markers: Degenerative Versus Vascular Brain Damage. , 0, , .		3
170	Hippocampus, Model Inhibitory Cells. , 2013, , 1-12.		0
171	Hippocampus, Model Excitatory Cells. , 2013, , 1-15.		0
172	Theta, Gamma, and Cross-Frequency Coupling in the Hippocampus. , 2013, , 1-13.		0
173	Hippocampus, Model Excitatory Cells. , 2015, , 1353-1365.		0
174	Hippocampal Theta, Gamma, and Theta/Gamma Network Models. , 2015, , 1340-1352.		3

		15	0
#	Article	IF	CITATIONS
175	Hippocampus, Model Inhibitory Cells. , 2015, , 1365-1374.		0
176	Discrete Modeling for a Minimal Circuit in the Hippocampus. , 2018, , 349-357.		0
177	Hippocampus, Theta, Gamma, and Cross-Frequency Coupling. , 2018, , 1-11.		0
179	Theta Rhythm in Hippocampus and Cognition. , 2020, , 45-70.		0
181	SWIMMY: Free Software for Teaching Neurophysiology of Neuronal Circuits. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2008, 7, A1-8.	0.0	6
182	General principles of brain electromagnetic rhythmic oscillations and implications for neuroplasticity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 221-237.	1.8	0
183	The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability. Biological Cybernetics, 2022, 116, 163-190.	1.3	4
192	Volume-Transmitted GABA Waves Paces Epileptiform Rhythms in the Hippocampal Network. SSRN Electronic Journal, 0, , .	0.4	Ο
193	Hippocampal Theta, Gamma, and Theta/Gamma Network Models. , 2022, , 1575-1588.		0
194	Hippocampus, Theta, Gamma, and Cross-Frequency Coupling. , 2022, , 1617-1627.		Ο
195	Hippocampus, Model Inhibitory Cells. , 2022, , 1602-1612.		0
196	Hippocampus, Model Excitatory Cells. , 2022, , 1590-1602.		Ο
201	Assessing Neural Circuit Interactions and Dynamics with Phase-Amplitude Coupling. Neuromethods, 2022, , 125-146.	0.3	1
202	Cell-Type Specific Inhibition Controls the High-Frequency Oscillations in the Medial Entorhinal Cortex. International Journal of Molecular Sciences, 2022, 23, 14087.	4.1	3
203	Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. , 2022, .		2
204	Shaping spiking patterns through synaptic parameters as revealed by conventional and wavelet-based bifurcation analysis. European Physical Journal: Special Topics, 0, , .	2.6	1
206	Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Current Biology, 2023, 33, 1249-1264.e7.	3.9	5
207	On the Biological Plausibility of Orthogonal Initialisation for Solving Gradient Instability in Deep Neural Networks. , 2022, , .		0

#	Article	IF	CITATIONS
208	Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit. PLoS Computational Biology, 2023, 19, e1010942.	3.2	4
210	The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in in inhibitory interneurons associated with principal cells. Pharmacological Research, 2023, 196, 106895.	7.1	0
211	Simulations predict differing phase responses to excitation vs. inhibition in theta-resonant pyramidal neurons. Journal of Neurophysiology, 2023, 130, 910-924.	1.8	1
212	Human NMDAR autoantibodies disrupt excitatory-inhibitory balance, leading to hippocampal network hypersynchrony. Cell Reports, 2023, 42, 113166.	6.4	3
214	Gamma oscillation plasticity is mediated via parvalbumin interneurons. Science Advances, 2024, 10, .	10.3	0
215	Theta and alpha oscillations in human hippocampus and medial parietal cortex support the formation of locationâ€based representations. Hippocampus, 0, , .	1.9	0