Shared and Unique Functions of the DExD/H-Box Helic Innate Immunity

Journal of Immunology 175, 2851-2858 DOI: 10.4049/jimmunol.175.5.2851

Citation Report

#	Article	IF	CITATIONS
2	Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. Journal of Virology, 2006, 80, 5059-5064.	1.5	828
3	Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3722-3727.	3.3	90
4	Antiviral Signaling Through Pattern Recognition Receptors. Journal of Biochemistry, 2006, 141, 137-145.	0.9	398
5	Pathogenesis of West Nile Virus Infection: a Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion. Journal of Virology, 2006, 80, 9349-9360.	1.5	290
6	The role of Toll-like receptors in immune disorders. Expert Opinion on Biological Therapy, 2006, 6, 203-214.	1.4	42
7	Pattern recognition receptors: an update. Expert Review of Clinical Immunology, 2006, 2, 569-583.	1.3	7
9	RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5'-Phosphates. Science, 2006, 314, 997-1001.	6.0	1,965
10	The Kinase Complex Responsible for IRF-3–Mediated IFN-β Production in Myeloid Dendritic Cells (mDC). Journal of Biochemistry, 2006, 139, 171-175.	0.9	17
11	Pathogen Recognition and Innate Immunity. Cell, 2006, 124, 783-801.	13.5	9,878
12	Toll-Like Receptors and RNA Helicases: Two Parallel Ways to Trigger Antiviral Responses. Molecular Cell, 2006, 22, 561-569.	4.5	343
13	Receptors and ligands involved in viral induction of type I interferon production by plasmacytoid dendritic cells. Immunobiology, 2006, 211, 525-535.	0.8	20
13 14		0.8 6.6	20 885
	dendritic cells. Immunobiology, 2006, 211, 525-535. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24,		
14	dendritic cells. Immunobiology, 2006, 211, 525-535. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24, 93-103. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors.	6.6	885
14 15	dendritic cells. Immunobiology, 2006, 211, 525-535. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24, 93-103. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity, 2006, 25, 349-360.	6.6 6.6	885 1,197
14 15 16	 dendritic cells. Immunobiology, 2006, 211, 525-535. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24, 93-103. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity, 2006, 25, 349-360. CARD games between virus and host get a new player. Trends in Immunology, 2006, 27, 1-4. The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 	6.6 6.6 2.9	885 1,197 121
14 15 16 17	 dendritic cells. Immunobiology, 2006, 211, 525-535. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24, 93-103. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity, 2006, 25, 349-360. CARD games between virus and host get a new player. Trends in Immunology, 2006, 27, 1-4. The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300, 349-365. Viral targeting of interferon regulatory factor-3 and type I interferon gene transcription. Future 	6.6 6.6 2.9 0.9	885 1,197 121 513

#	Article	IF	CITATIONS
24	Promoters of type I interferon genes from Atlantic salmon contain two main regulatory regions. FEBS Journal, 2006, 273, 3893-3906.	2.2	68
25	Pin-ning down immune responses to RNA viruses. Nature Immunology, 2006, 7, 555-557.	7.0	11
26	TGF-β, a 'double agent' in the immune pathology war. Nature Immunology, 2006, 7, 557-559.	7.0	79
27	A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nature Immunology, 2006, 7, 40-48.	7.0	704
28	Innate immune recognition of viral infection. Nature Immunology, 2006, 7, 131-137.	7.0	1,654
29	IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Reviews Immunology, 2006, 6, 644-658.	10.6	1,441
30	Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441, 101-105.	13.7	3,292
31	Intracellular pattern recognition receptors in the host response. Nature, 2006, 442, 39-44.	13.7	1,051
32	TLR signaling. Cell Death and Differentiation, 2006, 13, 816-825.	5.0	1,724
33	TIR, CARD and PYRIN: three domains for an antimicrobial triad. Cell Death and Differentiation, 2006, 13, 798-815.	5.0	134
34	IRF family proteins and type I interferon induction in dendritic cells. Cell Research, 2006, 16, 134-140.	5.7	153
35	Antiviral innate immunity pathways. Cell Research, 2006, 16, 141-147.	5.7	401
36	Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO Journal, 2006, 25, 3257-3263.	3.5	375
37	NF-κB and the immune response. Oncogene, 2006, 25, 6758-6780.	2.6	1,050
38	The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes and Infection, 2006, 8, 2138-2144.	1.0	86
39	PRRs in pathogen recognition. Open Life Sciences, 2006, 1, 299-313.	0.6	3
40	Aspects of Genetic Susceptibility to Human Infectious Diseases. Annual Review of Genetics, 2006, 40, 469-486.	3.2	244
41	Toll-like receptors and innate immunity. Journal of Molecular Medicine, 2006, 84, 712-725.	1.7	377

#	Article	IF	CITATIONS
42	Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes and Infection, 2006, 8, 2013-2020.	1.0	80
43	The interferon response circuit: Induction and suppression by pathogenic viruses. Virology, 2006, 344, 119-130.	1.1	597
44	A target on the move: Innate and adaptive immune escape strategies of hepatitis C virus. Antiviral Research, 2006, 69, 129-141.	1.9	109
45	Induction of interferon-α by immune complexes or liposomes containing systemic lupus erythematosus autoantigen– and Sjögren's syndrome autoantigen–associated RNA. Arthritis and Rheumatism, 2006, 54, 1917-1927.	6.7	218
46	Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. European Journal of Immunology, 2006, 36, 3256-3267.	1.6	242
47	Discovering innate immunity genes using differential display: A story of RNA helicases. Journal of Cellular Physiology, 2006, 209, 636-644.	2.0	10
48	Genomic response to interferon-α in chimpanzees: Implications of rapid downregulation for hepatitis C kinetics. Hepatology, 2006, 43, 961-972.	3.6	111
49	The protein kinase IKKε can inhibit HCV expression independently of IFN and its own expression is downregulated in HCV-infected livers. Hepatology, 2006, 44, 1635-1647.	3.6	21
50	Human Polynucleotide Phosphorylase (hPNPaseold-35): An RNA Degradation Enzyme with Pleiotrophic Biological Effects. Cell Cycle, 2006, 5, 1080-1084.	1.3	17
51	The Innate Antiviral Response: New Insights Into A Continuing Story. Advances in Virus Research, 2006, 69, 1-66.	0.9	22
52	The interferon response to bacterial and viral infections. Journal of Endotoxin Research, 2006, 12, 246-250.	2.5	37
53	TLR Signaling Pathways: Opportunities for Activation and Blockade in Pursuit of Therapy. Current Pharmaceutical Design, 2006, 12, 4123-4134.	0.9	56
54	Essential role of IPS-1 in innate immune responses against RNA viruses. Journal of Experimental Medicine, 2006, 203, 1795-1803.	4.2	438
55	West Nile Virus Evades Activation of Interferon Regulatory Factor 3 through RIG-I-Dependent and -Independent Pathways without Antagonizing Host Defense Signaling. Journal of Virology, 2006, 80, 2913-2923.	1.5	164
56	RNA- and Virus-Independent Inhibition of Antiviral Signaling by RNA Helicase LGP2. Journal of Virology, 2006, 80, 12332-12342.	1.5	257
57	Role of the Alpha/Beta Interferon Response in the Acquisition of Susceptibility to Poliovirus by Kidney Cells in Culture. Journal of Virology, 2006, 80, 4313-4325.	1.5	28
58	Cutting Edge: Role of TANK-Binding Kinase 1 and Inducible lκB Kinase in IFN Responses against Viruses in Innate Immune Cells. Journal of Immunology, 2006, 177, 5785-5789.	0.4	79
59	Anti-HIV State but Not Apoptosis Depends on IFN Signature in CD4+ T Cells. Journal of Immunology, 2006, 177, 6227-6237.	0.4	32

	CITATION REPORT		
Article		IF	Citations
Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid encephalomyocarditis picornavirus. Proceedings of the National Academy of Sciences States of America, 2006, 103, 8459-8464.		3.3	1,013
Cutting Edge: Roles of Caspase-8 and Caspase-10 in Innate Immune Responses to Dou Journal of Immunology, 2006, 176, 4520-4524.	ıble-Stranded RNA.	0.4	161
Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits Alpha/Beta Interferc Induced by RIG-I Signaling. Journal of Virology, 2006, 80, 5168-5178.	n Production	1.5	405
Genetic Analysis of Innate Immunity. Advances in Immunology, 2006, 91, 175-226.		1.1	31
The NPro Product of Bovine Viral Diarrhea Virus Inhibits DNA Binding by Interferon Reg 3 and Targets It for Proteasomal Degradation. Journal of Virology, 2006, 80, 11723-11	gulatory Factor .732.	1.5	222
NAK-Associated Protein 1 Participates in Both the TLR3 and the Cytoplasmic Pathways Induction. Journal of Immunology, 2006, 177, 8676-8683.	s in Type I IFN	0.4	124
The IFN-Independent Response to Virus Particle Entry Provides a First Line of Antiviral I Independent of TLRs and Retinoic Acid-Inducible Gene I. Journal of Immunology, 2006,		0.4	92
Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C viru Proceedings of the National Academy of Sciences of the United States of America, 200	s infection. 06, 103, 6001-6006.	3.3	394
Toll-like Receptor-dependent and -independent Viperin Gene Expression and Counter-r PRDI-binding Factor-1/BLIMP1. Journal of Biological Chemistry, 2006, 281, 26188-261	egulation by 95.	1.6	111
TRAF3: A New Regulator of Type I Interferons. Cell Cycle, 2006, 5, 804-807.		1.3	43
Characterization of Conserved Viral Leader RNA Sequences That Stimulate Innate Imm TLRs. Oligonucleotides, 2007, 17, 405-418.	unity through	2.7	35
Triggering the Innate Antiviral Response through IRF-3 Activation. Journal of Biological 2007, 282, 15325-15329.	Chemistry,	1.6	407
Cytokine-Independent Upregulation of MDA5 in Viral Infection. Journal of Virology, 20	07, 81, 7316-7319.	1.5	45
Protein Kinase Cα Is Involved in Interferon Regulatory Factor 3 Activation and Type I Ir Synthesis. Journal of Biological Chemistry, 2007, 282, 15022-15032.	nterferon-β	1.6	27
Loss of DExD/H Box RNA Helicase LGP2 Manifests Disparate Antiviral Responses. Journ Immunology, 2007, 178, 6444-6455.	al of	0.4	341

75	Function of RIG-I-like Receptors in Antiviral Innate Immunity. Journal of Biological Chemistry, 2007, 282, 15315-15318.	1.6	258
76	Activation of Innate Immune Defense Mechanisms by Signaling through RIG-I/IPS-1 in Intestinal Epithelial Cells. Journal of Immunology, 2007, 179, 5425-5432.	0.4	84
	Functional and Theraneutic Analysis of Henatitis C Virus NS3 â.44 Protease Control of Antiviral Immune		

77 Functional and Therapeutic Analysis of Hepatitis C Virus NS3A-4A Protease Control of Antiviral Immune Defense. Journal of Biological Chemistry, 2007, 282, 10792-10803.

#

60

62

64

66

68

70

72

#	Article	IF	CITATIONS
78	The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. Journal of General Virology, 2007, 88, 3002-3006.	1.3	85
79	Fas-Associated Death Domain-Containing Protein-Mediated Antiviral Innate Immune Signaling Involves the Regulation of <i>Irf7</i> . Journal of Immunology, 2007, 178, 2429-2439.	0.4	49
80	Early Innate Immune Responses to Sin Nombre Hantavirus Occur Independently of IFN Regulatory Factor 3, Characterized Pattern Recognition Receptors, and Viral Entry. Journal of Immunology, 2007, 179, 1796-1802.	0.4	44
81	Upregulation of a Small Subset of Genes Drives Type I Interferon-Induced Antiviral Memory. Journal of Interferon and Cytokine Research, 2007, 27, 653-664.	0.5	33
82	Viral Infections Activate Types I and III Interferon Genes through a Common Mechanism. Journal of Biological Chemistry, 2007, 282, 7576-7581.	1.6	300
83	The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation. Annual Review of Immunology, 2007, 25, 561-586.	9.5	450
84	Current Topics in Innate Immunity. Advances in Experimental Medicine and Biology, 2007, , .	0.8	3
85	NS1 Protein of Influenza A Virus Inhibits the Function of Intracytoplasmic Pathogen Sensor, RIG-I. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 263-269.	1.4	258
86	DNA Binding Suppresses Human AIF-M2 Activity and Provides a Connection between Redox Chemistry, Reactive Oxygen Species, and Apoptosis. Journal of Biological Chemistry, 2007, 282, 30331-30340.	1.6	36
87	The VP35 Protein of Ebola Virus Inhibits the Antiviral Effect Mediated by Double-Stranded RNA-Dependent Protein Kinase PKR. Journal of Virology, 2007, 81, 182-192.	1.5	156
88	TBK1 Protects Vacuolar Integrity during Intracellular Bacterial Infection. PLoS Pathogens, 2007, 3, e29.	2.1	66
89	Suppression of Iodide Uptake and Thyroid Hormone Synthesis with Stimulation of the Type I Interferon System by Double-Stranded Ribonucleic Acid in Cultured Human Thyroid Follicles. Endocrinology, 2007, 148, 3226-3235.	1.4	41
90	Regulation of Interferon Production by RIG-I and LGP2: A Lesson in Self-Control. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe20.	4.1	34
91	The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14050-14055.	3.3	517
92	Murine Dendritic Cell Type I IFN Production Induced by Human IgG-RNA Immune Complexes Is IFN Regulatory Factor (IRF)5 and IRF7 Dependent and Is Required for IL-6 Production. Journal of Immunology, 2007, 178, 6876-6885.	0.4	157
93	Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 582-587.	3.3	667
94	Tissue-Specific and Inducer-Specific Differential Induction of ISG56 and ISG54 in Mice. Journal of Virology, 2007, 81, 8656-8665.	1.5	62
95	Genomic Polymorphism at the Interferon-Induced Helicase (IFIH1) Locus Contributes to Graves' Disease Susceptibility. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3338-3341.	1.8	104

#	Article	IF	CITATIONS
96	IFN-Îμ Mediates TNF-α-Induced STAT1 Phosphorylation and Induction of Retinoic Acid-Inducible Gene-I in Human Cervical Cancer Cells. Journal of Immunology, 2007, 179, 4542-4549.	0.4	41
97	Hepatitis C Virus Nonstructural Protein 5A Modulates the Toll-Like Receptor-MyD88-Dependent Signaling Pathway in Macrophage Cell Lines. Journal of Virology, 2007, 81, 8953-8966.	1.5	151
98	Pregnancy and interferon tau regulate RSAD2 and IFIH1 expression in the ovine uterus. Reproduction, 2007, 133, 285-295.	1.1	77
99	Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9035-9040.	3.3	146
100	Hepatitis C Virus Infection Induces the Beta Interferon Signaling Pathway in Immortalized Human Hepatocytes. Journal of Virology, 2007, 81, 12375-12381.	1.5	46
101	Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response. Journal of General Virology, 2007, 88, 3323-3333.	1.3	34
102	Building an immune system from nine domains. Biochemical Society Transactions, 2007, 35, 1437-1444.	1.6	111
103	Small Molecule Immunopotentiators as Vaccine Adjuvants. , 0, , 175-189.		1
105	Innate control of adaptive immunity: Dendritic cells and beyond. Seminars in Immunology, 2007, 19, 48-55.	2.7	148
106	Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncology, 2007, 3, 655-664.	1.1	30
107	Subversion of innate host antiviral strategies by the hepatitis C virus. Archives of Biochemistry and Biophysics, 2007, 462, 254-265.	1.4	36
108	Innate immune evasion by hepatitis C virus and West Nile virus. Cytokine and Growth Factor Reviews, 2007, 18, 535-544.	3.2	25
109	RIG-I family RNA helicases: Cytoplasmic sensor for antiviral innate immunity. Cytokine and Growth Factor Reviews, 2007, 18, 545-551.	3.2	126
110	Triggering antiviral response by RIG-I-related RNA helicases. Biochimie, 2007, 89, 754-760.	1.3	67
111	The Feedback Phase of Type I Interferon Induction in Dendritic Cells Requires Interferon Regulatory Factor 8. Immunity, 2007, 27, 228-239.	6.6	154
112	Innate Recognition of Viruses. Immunity, 2007, 27, 370-383.	6.6	614
113	RIG-I: tri-ing to discriminate between self and non-self RNA. Trends in Immunology, 2007, 28, 147-150.	2.9	53
114	Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus. Molecular Immunology, 2007, 44, 2195-2204.	1.0	59

#	Article	IF	CITATIONS
115	C-terminal LRRs of human Toll-like receptor 3 control receptor dimerization and signal transmission. Molecular Immunology, 2007, 44, 3633-3640.	1.0	29
116	Innate immunogenetics: a tool for exploring new frontiers of host defence. Lancet Infectious Diseases, The, 2007, 7, 531-542.	4.6	76
117	Regulation of innate immunity against hepatitis C virus infection. Hepatology Research, 2008, 38, 115-122.	1.8	46
118	Immunologically Active Autoantigens: The Role of Toll-Like Receptors in the Development of Chronic Inflammatory Disease. Annual Review of Immunology, 2007, 25, 419-441.	9.5	357
119	The interferon induced with helicase domain 1 A946T polymorphism is not associated with rheumatoid arthritis. Arthritis Research and Therapy, 2007, 9, R40.	1.6	26
120	Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11706-11711.	3.3	113
121	Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7253-7258.	3.3	290
122	Mouse Hepatitis Virus Does Not Induce Beta Interferon Synthesis and Does Not Inhibit Its Induction by Double-Stranded RNA. Journal of Virology, 2007, 81, 568-574.	1.5	106
123	Use of Functional Genomics to Understand Influenza–Host Interactions. Advances in Virus Research, 2007, 70, 81-100.	0.9	22
124	Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream. Journal of Translational Medicine, 2007, 5, 7.	1.8	45
125	Interferon: The 50th Anniversary. Current Topics in Microbiology and Immunology, 2007, , .	0.7	11
127	The interferon inducing pathways and the hepatitis C virus. World Journal of Gastroenterology, 2007, 13, 2446.	1.4	40
129	Extracellular nucleic acids. BioEssays, 2007, 29, 654-667.	1.2	153
130	TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. Journal of Cellular Biochemistry, 2007, 100, 1301-1312.	1.2	75
131	TLR agonists induce the differentiation of human bone marrow CD34 ⁺ progenitors into CD11c ⁺ CD80/86 ⁺ DC capable of inducing a Th1â€ŧype response. European Journal of Immunology, 2007, 37, 2834-2846.	1.6	78
132	Altered innate immunity in chronic hepatitis C infection: Cause or effect?. Hepatology, 2007, 46, 1279-1290.	3.6	38
133	Signal transduction in the type I interferon system and viral countermeasures. Signal Transduction, 2007, 7, 5-19.	0.7	6
134	Translational Mini-Review Series on Toll-like Receptors:†Recent advances in understanding the role of Toll-like receptors in anti-viral immunity. Clinical and Experimental Immunology, 2007, 147, 217-226.	1.1	38

#	Article	IF	CITATIONS
135	TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Medicine, 2007, 13, 543-551.	15.2	413
136	Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nature Reviews Immunology, 2007, 7, 279-291.	10.6	226
137	Genetic analysis of resistance to viral infection. Nature Reviews Immunology, 2007, 7, 753-766.	10.6	172
138	RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death and Differentiation, 2007, 14, 400-410.	5.0	432
139	The role of type I interferons in TLR responses. Immunology and Cell Biology, 2007, 85, 446-457.	1.0	112
140	Tollâ€like receptors, RIGâ€lâ€like RNA helicases and the antiviral innate immune response. Immunology and Cell Biology, 2007, 85, 435-445.	1.0	209
141	Rig-lâ^'/â^' mice develop colitis associated with downregulation of Gαi2. Cell Research, 2007, 17, 858-868.	5.7	113
142	Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 2007, 448, 816-819.	13.7	536
143	Innate immunity to respiratory viruses. Cellular Microbiology, 2007, 9, 1641-1646.	1.1	44
144	Dicerâ€related <i>drhâ€3</i> gene functions in germâ€line development by maintenance of chromosomal integrity in <i> Caenorhabditis elegans</i> . Genes To Cells, 2007, 12, 997-1010.	0.5	32
145	Recognition of viruses by innate immunity. Immunological Reviews, 2007, 220, 214-224.	2.8	305
146	Neoâ€ligands for innate immune receptors and the etiology of sterile inflammatory disease. Immunological Reviews, 2007, 220, 113-128.	2.8	60
147	Toll-like receptors and their role in periodontal health and disease. Periodontology 2000, 2007, 43, 41-55.	6.3	150
148	Limited suppression of the interferonâ€Î² production by hepatitis C virus serine protease in cultured human hepatocytes. FEBS Journal, 2007, 274, 4161-4176.	2.2	42
149	Functional genomic delineation of TLR-induced transcriptional networks. BMC Genomics, 2007, 8, 394.	1.2	28
150	Signaling pathways activated by microorganisms. Current Opinion in Cell Biology, 2007, 19, 185-191.	2.6	76
151	Opposing roles of RNA receptors TLR3 and RIG-I in the inflammatory response to double-stranded RNA in a Kaposi's sarcoma cell line. Cellular Immunology, 2007, 249, 55-62.	1.4	16
152	Paramyxovirus Sendai virus V protein counteracts innate virus clearance through IRF-3 activation, but not via interferon, in mice. Virology, 2007, 359, 82-91.	1.1	29

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
153	mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology, 2007, 359, 190-200.	1.1	269
154	Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology, 2007, 362, 304-313.	1.1	168
155	RNA helicases — one fold for many functions. Current Opinion in Structural Biology, 2007, 17, 316-324.	2.6	224
156	Toll or Toll-Free Adjuvant Path Toward the Optimal Vaccine Development. Journal of Clinical Immunology, 2007, 27, 363-371.	2.0	146
157	The A946T polymorphism in the interferon induced helicase gene does not confer susceptibility to Graves' disease in Chinese population. Endocrine, 2007, 32, 143-147.	1.1	19
158	Principles of intracellular viral recognition. Current Opinion in Immunology, 2007, 19, 17-23.	2.4	136
159	Bovine parainfluenza virus type 3 accessory proteins that suppress beta interferon production. Microbes and Infection, 2007, 9, 954-962.	1.0	43
160	Signalling pathways mediating type I interferon gene expression. Microbes and Infection, 2007, 9, 1245-1251.	1.0	21
161	MDA5/RIG-I and virus recognition. Current Opinion in Immunology, 2008, 20, 17-22.	2.4	501
162	Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Structural Biology, 2008, 8, 11.	2.3	86
163	Viral 5′â€ŧriphosphate RNA and nonâ€CpG DNA aggravate autoimmunity and lupus nephritis <i>via</i> distinct TLRâ€independent immune responses. European Journal of Immunology, 2008, 38, 3487-3498.	1.6	55
164	Tollâ€like receptors and adaptor molecules in liver disease: Update. Hepatology, 2008, 48, 322-335.	3.6	614
165	Autophagy and antiviral immunity. Current Opinion in Immunology, 2008, 20, 23-29.	2.4	95
166	Potential link between the immune system and metabolism of nucleic acids. Current Opinion in Immunology, 2008, 20, 524-529.	2.4	28
167	TLR3: Interferon induction by double-stranded RNA including poly(I:C)â~†. Advanced Drug Delivery Reviews, 2008, 60, 805-812.	6.6	557
168	Ligation of Toll-Like Receptor 3 Differentially Regulates M2 and M3 Muscarinic Receptor Expression and Function in Human Airway Smooth Muscle Cells. International Archives of Allergy and Immunology, 2008, 145, 163-174.	0.9	16
169	Tollâ€like Receptor and RIGâ€1â€like Receptor Signaling. Annals of the New York Academy of Sciences, 2008, 1143, 1-20.	' 1.8	842
170	Toll-like receptors regulation of viral infection and diseaseâ~†. Advanced Drug Delivery Reviews, 2008, 60, 786-794.	6.6	73

#	Article	IF	CITATIONS
171	Recognition of viral single-stranded RNA by Toll-like receptorsâ~†. Advanced Drug Delivery Reviews, 2008, 60, 813-823.	6.6	105
172	Cytoplasmic recognition of RNAâ ⁻ †. Advanced Drug Delivery Reviews, 2008, 60, 841-846.	6.6	47
173	Intracellular pattern-recognition receptorsâ~†. Advanced Drug Delivery Reviews, 2008, 60, 830-840.	6.6	41
174	Toll-like receptor and pattern sensing for evoking immune responseâ~†. Advanced Drug Delivery Reviews, 2008, 60, 779-781.	6.6	0
175	Hantavirusâ€induced immunity in rodent reservoirs and humans. Immunological Reviews, 2008, 225, 163-189.	2.8	145
176	Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Research, 2008, 18, 1096-1104.	5.7	127
177	The tumour suppressor CYLD is a negative regulator of RIGâ€lâ€mediated antiviral response. EMBO Reports, 2008, 9, 930-936.	2.0	296
178	Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Reviews Immunology, 2008, 8, 594-606.	10.6	1,025
179	Viral evasion and subversion of pattern-recognition receptor signalling. Nature Reviews Immunology, 2008, 8, 911-922.	10.6	616
180	Attenuation of the type I interferon response in cells infected with human rhinovirus. Virology, 2008, 374, 399-410.	1.1	37
181	The interplay between viruses and innate immune signaling: Recent insights and therapeutic opportunities. Biochemical Pharmacology, 2008, 75, 589-602.	2.0	109
182	Virus entry inhibition by chlorite-oxidized oxyamylose versus induction of antiviral interferon by poly(I:C). Biochemical Pharmacology, 2008, 76, 831-840.	2.0	10
183	Human monocytes represent a competitive source of interferon-α in peripheral blood. Clinical Immunology, 2008, 127, 252-264.	1.4	36
184	The IRF Family Transcription Factors in Immunity and Oncogenesis. Annual Review of Immunology, 2008, 26, 535-584.	9.5	1,054
185	Nucleic Acid Recognition Receptors in Autoimmunity. Handbook of Experimental Pharmacology, 2008, , 129-151.	0.9	33
186	Potential Relevance of Cytoplasmic Viral Sensors and Related Regulators Involving Innate Immunity in Antiviral Response. Gastroenterology, 2008, 134, 1396-1405.	0.6	39
187	Innate recognition of non-self nucleic acids. Genome Biology, 2008, 9, 211.	13.9	36
188	Hepatitis C and Innate Immunity: Recent Advances. Clinics in Liver Disease, 2008, 12, 675-692.	1.0	49

#	Article	IF	CITATIONS
189	Differential recognition of double-stranded RNA by RIG-l–like receptors in antiviral immunity. Journal of Experimental Medicine, 2008, 205, 1523-1527.	4.2	129
190	Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. Journal of Experimental Medicine, 2008, 205, 1601-1610.	4.2	1,327
192	The C-Terminal Regulatory Domain Is the RNA 5′-Triphosphate Sensor of RIG-I. Molecular Cell, 2008, 29, 169-179.	4.5	458
193	Nonself RNA-Sensing Mechanism of RIG-I Helicase and Activation of Antiviral Immune Responses. Molecular Cell, 2008, 29, 428-440.	4.5	416
194	The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends in Molecular Medicine, 2008, 14, 268-275.	3.5	94
195	The role of viral nucleic acid recognition in dendritic cells for innate and adaptive antiviral immunity. Immunobiology, 2008, 212, 701-714.	0.8	43
196	Responsiveness of fibrocytes to toll-like receptor danger signals. Immunobiology, 2008, 212, 693-699.	0.8	41
197	Structural Mechanism of RNA Recognition by the RIG-I-like Receptors. Immunity, 2008, 29, 178-181.	6.6	226
198	The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity, 2008, 29, 538-550.	6.6	1,209
199	Engagement of TLR signaling as adjuvant: Towards smarter vaccine and beyond. Vaccine, 2008, 26, 6777-6783.	1.7	115
200	Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. Virus Research, 2008, 137, 49-55.	1.1	59
201	Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine, 2008, 43, 350-358.	1.4	116
202	Interferon and cytokine responses to SARS-coronavirus infection. Cytokine and Growth Factor Reviews, 2008, 19, 121-132.	3.2	138
203	Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC). Developmental and Comparative Immunology, 2008, 32, 916-931.	1.0	90
204	Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology, 2008, 89, 1-47.	1.3	1,364
205	Innate Immunity and Host Defense Peptides in Veterinary Medicine. Journal of Veterinary Internal Medicine, 2008, 22, 247-265.	0.6	82
206	Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. Journal of Virology, 2008, 82, 335-345.	1.5	897
207	Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Review of Vaccines, 2008, 7, 373-381.	2.0	47

#	Article	IF	CITATIONS
208	Essential Role of the N-terminal Domain in the Regulation of RIG-I ATPase Activity. Journal of Biological Chemistry, 2008, 283, 9488-9496.	1.6	59
209	Hepatitis C virus (HCV) employs multiple strategies to subvert the host innate antiviral response. Biological Chemistry, 2008, 389, 1283-98.	1.2	37
210	Double-Stranded RNA Induces an Antiviral Defense Status in Epidermal Keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-Mediated Differential Signaling. Journal of Immunology, 2008, 181, 2694-2704.	0.4	161
211	Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2008, 67, 137-138.	0.5	40
212	Feeding Our Immune System: Impact on Metabolism. Clinical and Developmental Immunology, 2008, 2008, 2008, 1-19.	3.3	207
213	Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves both RIC-I and MDA5 Signaling through IPS-1. Journal of Virology, 2008, 82, 609-616.	1.5	286
214	Role of bacterial infections in allograft rejection. Expert Review of Clinical Immunology, 2008, 4, 281-293.	1.3	15
215	Murine Coronavirus Mouse Hepatitis Virus Is Recognized by MDA5 and Induces Type I Interferon in Brain Macrophages/Microglia. Journal of Virology, 2008, 82, 9829-9838.	1.5	202
216	Cellular La Protein Shields Nonsegmented Negative-Strand RNA Viral Leader RNA from RIG-I and Enhances Virus Growth by Diverse Mechanisms. Journal of Virology, 2008, 82, 7977-7987.	1.5	53
217	Functional Characterization of Murine Interferon Regulatory Factor 5 (IRF-5) and Its Role in the Innate Antiviral Response. Journal of Biological Chemistry, 2008, 283, 14295-14308.	1.6	110
218	Retinoic Acid-Inducible Gene-I Mediates Late Phase Induction of TNF-α by Lipopolysaccharide. Journal of Immunology, 2008, 180, 8011-8019.	0.4	34
219	MDA5 Participates in the Detection of Paramyxovirus Infection and Is Essential for the Early Activation of Dendritic Cells in Response to Sendai Virus Defective Interfering Particles. Journal of Immunology, 2008, 180, 4910-4918.	0.4	105
220	TRAF6 and MEKK1 Play a Pivotal Role in the RIG-I-like Helicase Antiviral Pathway. Journal of Biological Chemistry, 2008, 283, 36211-36220.	1.6	89
221	Structure and Function of LGP2, a DEX(D/H) Helicase That Regulates the Innate Immunity Response. Journal of Biological Chemistry, 2008, 283, 15825-15833.	1.6	76
222	Evolution of MDA-5/RIG-I-dependent innate immunity: Independent evolution by domain grafting. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17040-17045.	3.3	71
223	Negative Feedback Regulation of RIG-I-Mediated Antiviral Signaling by Interferon-Induced ISG15 Conjugation. Journal of Virology, 2008, 82, 1474-1483.	1.5	204
224	Activation of an Immunoregulatory and Antiviral Gene Expression Program in Poly(I:C)-Transfected Human Neutrophils. Journal of Immunology, 2008, 181, 6563-6573.	0.4	99
225	MDA-5 Recognition of a Murine Norovirus. PLoS Pathogens, 2008, 4, e1000108.	2.1	193

#	Article	IF	CITATIONS
226	Key Role of Splenic Myeloid DCs in the IFN-αβ Response to Adenoviruses In Vivo. PLoS Pathogens, 2008, 4, e1000208.	2.1	89
227	Negative Regulation of Virus-triggered IFN-β Signaling Pathway by Alternative Splicing of TBK1. Journal of Biological Chemistry, 2008, 283, 35590-35597.	1.6	53
228	Phagocytosis of Picornavirus-Infected Cells Induces an RNA-Dependent Antiviral State in Human Dendritic Cells. Journal of Virology, 2008, 82, 2930-2937.	1.5	23
229	Novel Characteristics of the Function and Induction of Murine p56 Family Proteins. Journal of Virology, 2008, 82, 11045-11053.	1.5	49
230	Lymphocytoid Choriomeningitis Virus Activates Plasmacytoid Dendritic Cells and Induces a Cytotoxic T-Cell Response via MyD88. Journal of Virology, 2008, 82, 196-206.	1.5	110
231	HLA-B27 and ankylosing spondylitis geographic distribution versus malaria endemic: casual or causal liaison?. Annals of the Rheumatic Diseases, 2008, 67, 138-140.	0.5	16
232	Active Caspase-1-Mediated Secretion of Retinoic Acid Inducible Gene-I. Journal of Immunology, 2008, 181, 7324-7331.	0.4	17
233	The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy, 2008, 4, 67-69.	4.3	54
234	Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5477-5482.	3.3	273
235	Studies on the paramyxovirus accessory genes by reverse genetics in the Sendai virus-mouse system. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2008, 84, 439-451.	1.6	11
236	Estrogen inhibits dendritic cell maturation to RNA viruses. Blood, 2008, 112, 4574-4584.	0.6	56
237	Identification of New Susceptibility Genes for Type 1 Diabetes: An Update. Current Immunology Reviews, 2008, 4, 116-133.	1.2	1
238	Pathogen-Related Signal Transduction Pathways of Dendritic Cells: Perspectives for Cancer Immunotherapy. Current Signal Transduction Therapy, 2008, 3, 133-137.	0.3	1
239	The Clathrin-Mediated Endocytic Pathway Participates in dsRNA-Induced IFN-β Production. Journal of Immunology, 2008, 181, 5522-5529.	0.4	73
240	Differential Effects of the Type I Interferons α4, β, and Îμ on Antiviral Activity and Vaccine Efficacy. Journal of Immunology, 2008, 180, 7158-7166.	0.4	47
241	Synthetic double-stranded RNA induces retinoic acid-inducible gene-l in mouse osteoblastic cells. Molecular Medicine Reports, 2008, 1, 833-6.	1.1	2
243	The Role of Plasmacytoid Dendritic Cell-Derived IFNα in Antiviral Immunity. Critical Reviews in Immunology, 2008, 28, 61-94.	1.0	31
245	Regulation of viral recognition signaling by ubiquitin modification. Uirusu, 2008, 58, 47-54.	0.1	Ο

	Сіт	ATION REPORT	
#	Article	IF	CITATIONS
246	Antiviral Strategies: The Present and Beyond. Current Molecular Pharmacology, 2009, 2, 32-39.	0.7	23
247	Activation of Innate Immune System During Viral Infection: Role of Pattern-recognition Receptors (PRRs) in Viral Infection. Journal of Bacteriology and Virology, 2009, 39, 145.	0.0	6
248	MAVS-Mediated Apoptosis and Its Inhibition by Viral Proteins. PLoS ONE, 2009, 4, e5466.	1.1	177
249	The Regulation of Type I Interferon Production by Paramyxoviruses. Journal of Interferon and Cytokine Research, 2009, 29, 539-548.	0.5	76
250	Activation of Pattern Recognition Receptor-Mediated Innate Immunity Inhibits the Replication of Hepatitis B Virus in Human Hepatocyte-Derived Cells. Journal of Virology, 2009, 83, 847-858.	1.5	108
251	The Tyrosine Kinase c-Src Enhances RIG-I (Retinoic Acid-inducible Gene I)-elicited Antiviral Signaling. Journal of Biological Chemistry, 2009, 284, 19122-19131.	1.6	32
252	Baculovirus Induces Type I Interferon Production through Toll-Like Receptor-Dependent and -Independent Pathways in a Cell-Type-Specific Manner. Journal of Virology, 2009, 83, 7629-7640.	1.5	79
253	Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opinion on Biological Therapy, 2009, 9, 1163-1176.	1.4	101
254	The RIG-I-like Receptor LGP2 Recognizes the Termini of Double-stranded RNA. Journal of Biological Chemistry, 2009, 284, 13881-13891.	1.6	128
255	Identification of Loss of Function Mutations in Human Genes Encoding RIG-I and MDA5. Journal of Biological Chemistry, 2009, 284, 13348-13354.	1.6	130
256	RIG-I-mediated Activation of p38 MAPK Is Essential for Viral Induction of Interferon and Activation of Dendritic Cells. Journal of Biological Chemistry, 2009, 284, 10774-10782.	1.6	104
257	Association studies of theSAS-ZFAT,IL-23R,IFIH1andFOXP3genes in autoimmune thyroid disease. Exper Review of Endocrinology and Metabolism, 2009, 4, 325-331.	t 1.2	3
258	Respiratory Syncytial Virus Nonstructural Proteins Decrease Levels of Multiple Members of the Cellular Interferon Pathways. Journal of Virology, 2009, 83, 9682-9693.	1.5	108
259	Mitochondrial Antiviral Signaling Protein Plays a Major Role in Induction of the Fish Innate Immune Response against RNA and DNA Viruses. Journal of Virology, 2009, 83, 7815-7827.	1.5	233
260	5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12067-12072.	3.3	348
261	The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Research, 2009, 37, 2014-2025.	6.5	131
262	Differential Regulation of Human Interferon A Gene Expression by Interferon Regulatory Factors 3 and 7. Molecular and Cellular Biology, 2009, 29, 3435-3450.	1.1	73
263	NOD2/CARD15 on bone marrow CD34+ hematopoietic cells mediates induction of cytokines and cell differentiation. Journal of Leukocyte Biology, 2009, 85, 939-946.	1.5	35

#	Article	IF	CITATIONS
264	Expression of RIG-I, IRF3, IFN-Î ² and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. International Journal of Oncology, 2009, 34, 971-82.	1.4	50
265	Unraveling the complexities of the interferon response during SARS-CoV infection. Future Virology, 2009, 4, 71-78.	0.9	15
266	Ebola Virus Protein VP35 Impairs the Function of Interferon Regulatory Factor-Activating Kinases IKKε and TBK-1. Journal of Virology, 2009, 83, 3069-3077.	1.5	212
267	Antagonism of Innate Immunity by Paramyxovirus Accessory Proteins. Viruses, 2009, 1, 574-593.	1.5	17
268	The E3 Ubiquitin Ligase Triad3A Negatively Regulates the RIG-I/MAVS Signaling Pathway by Targeting TRAF3 for Degradation. PLoS Pathogens, 2009, 5, e1000650.	2.1	159
269	An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A. PLoS Pathogens, 2009, 5, e1000311.	2.1	54
270	Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proceedings of the United States of America, 2009, 106, 1530-1535.	3.3	121
271	The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis. Journal of Virology, 2009, 83, 9329-9338.	1.5	141
272	Mechanism of mda-5 Inhibition by Paramyxovirus V Proteins. Journal of Virology, 2009, 83, 1465-1473.	1.5	115
273	Solution Structures of Cytosolic RNA Sensor MDA5 and LGP2 C-terminal Domains. Journal of Biological Chemistry, 2009, 284, 17465-17474.	1.6	170
274	ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8653-8658.	3.3	702
275	A Shared Interface Mediates Paramyxovirus Interference with Antiviral RNA Helicases MDA5 and LGP2. Journal of Virology, 2009, 83, 7252-7260.	1.5	102
276	Riplet/RNF135, a RING Finger Protein, Ubiquitinates RIG-I to Promote Interferon-β Induction during the Early Phase of Viral Infection. Journal of Biological Chemistry, 2009, 284, 807-817.	1.6	308
277	TRIM21 Is Essential to Sustain IFN Regulatory Factor 3 Activation during Antiviral Response. Journal of Immunology, 2009, 182, 3782-3792.	0.4	145
278	Regulation of Signal Transduction by Enzymatically Inactive Antiviral RNA Helicase Proteins MDA5, RIG-1, and LGP2. Journal of Biological Chemistry, 2009, 284, 9700-9712.	1.6	147
279	TANK-Binding Kinase-1 Plays an Important Role during In Vitro and In Vivo Type I IFN Responses to DNA Virus Infections. Journal of Immunology, 2009, 182, 2248-2257.	0.4	42
280	Viral Myocarditis. Circulation, 2009, 119, 2615-2624.	1.6	232
281	Poly I:C-Induced Activation of NK Cells by CD8α+ Dendritic Cells via the IPS-1 and TRIF-Dependent Pathways. Journal of Immunology, 2009, 183, 2522-2528.	0.4	100

#	Article	IF	CITATIONS
282	Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity. , 2009, 124, 219-234.		156
283	Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evolutionary Biology, 2009, 9, 85.	3.2	217
284	Identification and functional characterization of regions that can be crosslinked to RNA in the helicase-like domain of BaMV replicase. Virology, 2009, 389, 34-44.	1.1	10
285	Antiviral activity and host gene induction by tamarin and marmoset interferon-α and interferon-Î ³ in the GBV-B primary hepatocyte culture model. Virology, 2009, 390, 186-196.	1.1	7
286	The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology, 2009, 393, 311-318.	1.1	73
287	Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1768-1775.	1.9	18
288	Gene expression profiling by microarray analysis reveals an important role for caspaseâ€1 in dengue virusâ€induced p53â€mediated apoptosis. Journal of Medical Virology, 2009, 81, 1069-1081.	2.5	43
289	RNA helicase encoded by melanoma differentiation–associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: Association with rapidly progressive interstitial lung disease. Arthritis and Rheumatism, 2009, 60, 2193-2200.	6.7	511
290	Double-stranded RNA-induced interferon-beta and inflammatory cytokine production modulated by hepatitis C virus serine proteases derived from patients with hepatic diseases. Archives of Virology, 2009, 154, 801-810.	0.9	19
291	Differences in distribution of single nucleotide polymorphisms among intracellular pattern recognition receptors in pigs. Immunogenetics, 2009, 61, 153-160.	1.2	18
292	The extrinsic RNA-sensing pathway for adjuvant immunotherapy of cancer. Cancer Immunology, Immunotherapy, 2009, 58, 1175-1184.	2.0	54
293	Crystallization and preliminary crystallographic studies of human RIG-I in complex with double-stranded RNA. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 648-650.	0.7	1
294	The rs1990760 polymorphism within the IFIH1 locus is not associated with Graves' disease, Hashimoto's thyroiditis and Addison's disease. BMC Medical Genetics, 2009, 10, 126.	2.1	16
295	Polyinosinicâ€polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the upâ€regulation of RIGâ€i like receptors. Cancer Science, 2009, 100, 529-536.	1.7	45
296	Approaching the RNA ligand for RIGâ€ŀ?. Immunological Reviews, 2009, 227, 66-74.	2.8	73
297	RNA recognition and signal transduction by RIGâ€lâ€like receptors. Immunological Reviews, 2009, 227, 54-65.	2.8	525
298	Crosstalk between components of the innate immune system: promoting antiâ€microbial defenses and avoiding immunopathologies. Immunological Reviews, 2009, 227, 129-149.	2.8	64
299	Innate immunity to virus infection. Immunological Reviews, 2009, 227, 75-86.	2.8	1,053

ARTICLE IF CITATIONS # Coâ€ordinating innate and adaptive immunity to viral infection: mobility is the key. Apmis, 2009, 117, 300 0.9 37 338-355. Innate recognition of intracellular pathogens: detection and activation of the first line of defense. Apmis, 2009, 117, 323-337. 83 Evasion and disruption of innate immune signalling by hepatitis C and West Nile viruses. Cellular 302 1.1 20 Microbiology, 2009, 11, 880-888. Regulation of the cytosolic DNA-sensing system in innate immunity: a current view. Current Opinion in 2.4 Immunology, 2009, 21, 17-22. Interferons: Signaling, antiviral and viral evasion. Immunology Letters, 2009, 122, 1-11. 304 1.1 169 Activation of Dendritic Cells by Toll-Like Receptors and C-Type Lectins. Handbook of Experimental Pharmacology, 2009, , 3-30. RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs. 306 0.9 47 Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 571-583. RIG-I-like receptors: Sensing and responding to RNA virus infection. Seminars in Immunology, 2009, 21, 2.7 203 215-222. Microarray analysis reveals distinct signaling pathways transcriptionally activated by infection with 308 20 1.1 bovine virál diarrhea virus in different cell types. Virus Research, 2009, 142, 188-199. 309 Cytoplasmic nucleic acid sensors in antiviral immunity. Trends in Molecular Medicine, 2009, 15, 359-368. 3.5 Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Archives of 310 1.4 90 Biochemistry and Biophysics, 2009, 488, 23-33. siRNA and Innate Immunity. Oligonucleotides, 2009, 19, 89-102. 311 Paramyxovirus Disruption of Interferon Signal Transduction: STATus Report. Journal of Interferon 312 0.5 65 and Cytokine Research, 2009, 29, 531-537. Targeting Toll-Like Receptor for the Induction of Immune and Antitumor Responses., 2009, , 301-318. Intracellular detection and immune signaling pathways of DNA vaccines. Expert Review of Vaccines, 314 2.0 21 2009, 8, 1161-1170. Rhabdovirus Evasion of the Interferon System. Journal of Interferon and Cytokine Research, 2009, 29, 499-510. Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. 316 6.5 38 Nucleic Acids Research, 2009, 37, 6587-6599. Intracellular Innate Immune Cascades and Interferon Defenses That Control Hepatitis C Virus. Journal of Interferon and Cytokine Research, 2009, 29, 489-498.

	CHAHON K	LFORT	
#	Article	IF	CITATIONS
318	Cleavage of IPS-1 in Cells Infected with Human Rhinovirus. Journal of Virology, 2009, 83, 11581-11587.	1.5	75
319	The Interferon System and Vaccinia Virus Evasion Mechanisms. Journal of Interferon and Cytokine Research, 2009, 29, 581-598.	0.5	141
320	Interferon Regulatory Factors in Hematopoietic Cell Differentiation and Immune Regulation. Journal of Interferon and Cytokine Research, 2009, 29, 765-780.	0.5	65
321	Innate Immune Recognition of Viruses and Viral Vectors. Human Gene Therapy, 2009, 20, 293-301.	1.4	76
322	Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clinical Microbiology Reviews, 2009, 22, 240-273.	5.7	2,488
323	Susceptibility of Atlantic cod Gadus morhua juveniles to different routes of experimental challenge with infectious pancreatic necrosis virus (IPNV). Diseases of Aquatic Organisms, 2009, 85, 105-113.	0.5	39
324	Host Innate Immune Responses Induced by Baculovirus in Mammals. Current Gene Therapy, 2010, 10, 226-231.	0.9	47
325	Function and Regulation of Retinoic Acid-Inducible Gene-I. Critical Reviews in Immunology, 2010, 30, 489-513.	1.0	111
326	Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunology, Immunotherapy, 2010, 59, 489-510.	2.0	265
327	Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-Î ³ dependent manners. Cancer Immunology, Immunotherapy, 2010, 59, 1401-1409.	2.0	83
328	Recognition of viruses by cytoplasmic sensors. Current Opinion in Immunology, 2010, 22, 41-47.	2.4	378
329	Innate Immune Responses of the Airway Epithelium. Molecules and Cells, 2010, 30, 173-184.	1.0	47
330	Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids, 2010, 38, 1283-1299.	1.2	118
331	SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein and Cell, 2010, 1, 275-283.	4.8	59
332	Regulation of virus-triggered type I interferon signaling by cellular and viral proteins. Frontiers in Biology, 2010, 5, 12-31.	0.7	6
333	Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase. BMC Systems Biology, 2010, 4, 137.	3.0	33
334	Innate immune response and viral interference strategies developed by Human Herpesviruses. Biochemical Pharmacology, 2010, 80, 1955-1972.	2.0	41
335	TLR3-dependent upregulation of RIG-I leads to enhanced cytokine production from cells infected with the parainfluenza virus SV5. Virology, 2010, 397, 231-241.	1.1	16

#	Article	IF	CITATIONS
336	Human parainfluenza virus type 2 V protein inhibits interferon production and signaling and is required for replication in non-human primates. Virology, 2010, 397, 285-298.	1.1	16
337	Differential gene expression in bovine cells infected with wild type and leaderless foot-and-mouth disease virus. Virology, 2010, 404, 32-40.	1.1	37
338	Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagy pathways. Virology, 2010, 405, 383-389.	1.1	42
339	Recognition of viral nucleic acids in innate immunity. Reviews in Medical Virology, 2010, 20, 4-22.	3.9	265
340	The innate immune system in the intestine. Microbiology and Immunology, 2010, 54, 645-657.	0.7	29
341	Endocrine autoimmune disease: genetics become complex. European Journal of Clinical Investigation, 2010, 40, 1144-1155.	1.7	23
342	Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Research, 2010, 20, 994-1011.	5.7	133
343	Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nature Immunology, 2010, 11, 912-919.	7.0	85
344	Hepatitis C Virus Evasion from RIG-I-Dependent Hepatic Innate Immunity. Gastroenterology Research and Practice, 2010, 2010, 1-8.	0.7	34
345	Study of Transcriptional Effects in Cis at the IFIH1 Locus. PLoS ONE, 2010, 5, e11564.	1.1	21
346	Hepatitis C Virus Core Protein Abrogates the DDX3 Function That Enhances IPS-1-Mediated IFN–Beta Induction. PLoS ONE, 2010, 5, e14258.	1.1	80
347	Pattern Recognition Receptor-Dependent Mechanisms of Acute Lung Injury. Molecular Medicine, 2010, 16, 69-82.	1.9	90
348	Activation of the Interferon Response by Human Cytomegalovirus Occurs via Cytoplasmic Double-Stranded DNA but Not Glycoprotein B. Journal of Virology, 2010, 84, 8913-8925.	1.5	41
349	Both RIG-I and MDA5 RNA Helicases Contribute to the Induction of Alpha/Beta Interferon in Measles Virus-Infected Human Cells. Journal of Virology, 2010, 84, 372-379.	1.5	93
350	Inflammation in Atherosclerosis: Transition From Theory to Practice. Circulation Journal, 2010, 74, 213-220.	0.7	623
351	Early Innate Recognition of Herpes Simplex Virus in Human Primary Macrophages Is Mediated via the MDA5/MAVS-Dependent and MDA5/MAVS/RNA Polymerase III-Independent Pathways. Journal of Virology, 2010, 84, 11350-11358.	1.5	114
352	Complete sequence of Great Island virus and comparison with the T2 and outer-capsid proteins of Kemerovo, Lipovnik and Tribec viruses (genus Orbivirus, family Reoviridae). Journal of General Virology, 2010, 91, 2985-2993.	1.3	54
353	LGP2: Positive about viral sensing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1261-1262.	3.3	33

#	Article	IF	CITATIONS
354	Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Research, 2010, 38, 1-16.	6.5	485
355	Evolutional Conservation of Molecular Structure and Antiviral Function of a Viral RNA Receptor, LGP2, in Japanese Flounder, <i>Paralichthys olivaceus</i> . Journal of Immunology, 2010, 185, 7507-7517.	0.4	90
356	Recognition of Virus Infection and Innate Host Responses to Viral Gene Therapy Vectors. Molecular Therapy, 2010, 18, 1422-1429.	3.7	53
357	Human Neuronal Cells Possess Functional Cytoplasmic and TLR-Mediated Innate Immune Pathways Influenced by Phosphatidylinositol-3 Kinase Signaling. Journal of Immunology, 2010, 184, 7010-7021.	0.4	73
358	Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity, 2010, 43, 172-178.	1.2	34
359	Interferon Induced with Helicase C Domain 1 (IFIH1) and Virus-Induced Autoimmunity: A Review. Viral Immunology, 2010, 23, 3-15.	0.6	44
360	Type I interferons: crucial participants in disease amplification in autoimmunity. Nature Reviews Rheumatology, 2010, 6, 40-49.	3.5	217
361	Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16303-16308.	3.3	357
362	LGP2 is a positive regulator of RIC-l– and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1512-1517.	3.3	540
363	Murine Coronavirus Induces Type I Interferon in Oligodendrocytes through Recognition by RIG-I and MDA5. Journal of Virology, 2010, 84, 6472-6482.	1.5	118
364	Interferon-induced helicase (<i>IFIH1</i>) polymorphism with systemic lupus erythematosus and dermatomyositis/polymyositis. Modern Rheumatology, 2010, 20, 466-470.	0.9	22
365	Viral Induction of the Zinc Finger Antiviral Protein Is IRF3-dependent but NF-κB-independent. Journal of Biological Chemistry, 2010, 285, 6080-6090.	1.6	57
366	Induction of type I interferon by adenovirus-encoded small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17286-17291.	3.3	58
367	Human Cytomegalovirus Induces the Interferon Response via the DNA Sensor ZBP1. Journal of Virology, 2010, 84, 585-598.	1.5	178
368	Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1. PLoS Pathogens, 2010, 6, e1001012.	2.1	150
369	Immunomodulatory Effects of dsRNA and Its Potential as Vaccine Adjuvant. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-17.	3.0	41
370	Inhibition of the Type I Interferon Antiviral Response During Arenavirus Infection. Viruses, 2010, 2, 2443-2480.	1.5	78
371	Virus Infection Recognition and Early Innate Responses to Non-Enveloped Viral Vectors. Viruses, 2010, 2, 244-261.	1.5	10

		Citation Report		
#	Article		IF	Citations
372	How Flaviviruses Activate and Suppress the Interferon Response. Viruses, 2010, 2, 676	-691.	1.5	49
373	Dissociation of Paramyxovirus Interferon Evasion Activities: Universal and Virus-Specific Requirements for Conserved V Protein Amino Acids in MDA5 Interference. Journal of Vi 84, 11152-11163.		1.5	58
374	Evasion of the Interferon-Mediated Antiviral Response by Filoviruses. Viruses, 2010, 2, 2	262-282.	1.5	8
375	IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity. PLoS Patho e1000757.	gens, 2010, 6,	2.1	199
376	Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bro Epithelium. PLoS Pathogens, 2010, 6, e1001178.	nchial	2.1	286
377	Buying Time—The Immune System Determinants of the Incubation Period to Respirat Viruses, 2010, 2, 2541-2558.	ory Viruses.	1.5	26
378	Cross-Talk between Human Dendritic Cell Subsets Influences Expression of RNA Sensor Picornavirus Infection. Journal of Innate Immunity, 2010, 2, 360-370.	's and Inhibits	1.8	21
379	Genomic Polymorphism in the Interferon-induced Helicase (IFIH1) Gene does not Confe to Autoimmune Thyroid Disease in the Japanese Population. Hormone and Metabolic R 70-72.	rr Susceptibility esearch, 2010, 42,	0.7	7
380	Hepatitis A and Hepatitis C Viruses: Divergent Infection Outcomes Marked by Similariti and Evasion of Interferon Responses. Seminars in Liver Disease, 2010, 30, 319-332.	es in Induction	1.8	37
381	NF-κB and Innate Immunity. Current Topics in Microbiology and Immunology, 2010, 34	9, 115-143.	0.7	114
382	Innate Immunity and Rheumatoid Arthritis. Rheumatic Disease Clinics of North America 271-296.	ı, 2010, 36,	0.8	102
383	Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Natu Endocrinology, 2010, 6, 279-289.	re Reviews	4.3	230
384	Melanoma Differentiation-Associated Gene 5 (MDA5) Is Involved in the Innate Immune Paramyxoviridae Infection In Vivo. PLoS Pathogens, 2010, 6, e1000734.	Response to	2.1	112
385	Proteomic Profiling of Lipopolysaccharide-Activated Macrophages by Isotope Coded Af Journal of Proteome Research, 2010, 9, 2412-2421.	finity Tagging.	1.8	21
386	Positive Regulation of Interferon Regulatory Factor 3 Activation by Herc5 via ISG15 Mo Molecular and Cellular Biology, 2010, 30, 2424-2436.	dification.	1.1	218
387	The fight between the teleost fish immune response and aquatic viruses. Molecular Imr 47, 2525-2536.	nunology, 2010,	1.0	126
388	Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(l: interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patier Immunology, 2010, 71, 1128-1134.		1.2	35
389	Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhib Journal of Molecular Biology, 2010, 399, 347-357.	itory Domain.	2.0	61

	Сітатіс	on Report	
# 390	ARTICLE Molecular cloning and immune responsive expression of MDA5 gene, a pivotal member of the RLR gene family from grass carp Ctenopharyngodon idella. Fish and Shellfish Immunology, 2010, 28, 712-718.	lF 1.6	CITATIONS 94
391	Identification and expression profiling analysis of grass carp Ctenopharyngodon idella LGP2 cDNA. Fish and Shellfish Immunology, 2010, 29, 349-355.	1.6	60
392	Molecular cloning and antiviral activity of IFN-β promoter stimulator-1 (IPS-1) gene in Japanese flounder, Paralichthys olivaceus. Fish and Shellfish Immunology, 2010, 29, 979-986.	1.6	60
393	Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING). Developmental and Comparative Immunology, 2010, 34, 847-854.	1.0	17
394	Pattern Recognition Receptors and Inflammation. Cell, 2010, 140, 805-820.	13.5	6,978
395	Protein Kinase R Contributes to Immunity against Specific Viruses by Regulating Interferon mRNA Integrity. Cell Host and Microbe, 2010, 7, 354-361.	5.1	137
396	The Chase for the RIG-I Ligand—Recent Advances. Molecular Therapy, 2010, 18, 1254-1262.	3.7	84
397	Strategies to Prevent siRNA-Triggered Cellular Toxicity. , 2010, , 93-106.		0
398	Ubiquitin-Mediated Regulation of Protein Kinases in NFκB Signaling. , 2010, , 633-644.		0
399	Type I Interferon Production Induced by RIG-I-Like Receptors. Journal of Interferon and Cytokine Research, 2010, 30, 875-881.	0.5	30
400	Genomics and the Management of Hepatitis. , 2010, , 774-785.		0
401	The selective footprints of viral pressures at the human RIC-I-like receptor family. Human Molecular Genetics, 2011, 20, 4462-4474.	1.4	44
402	Cytosolic surveillance and antiviral immunity. Current Opinion in Virology, 2011, 1, 455-462.	2.6	80
403	Retinoic Acid-Inducible Gene-I-Like Receptors. Journal of Interferon and Cytokine Research, 2011, 31, 27-31.	0.5	79
404	Intrinsic and Extrinsic Regulation of Innate Immune Receptors. Yonsei Medical Journal, 2011, 52, 379.	0.9	89
405	Interferon in Rabies Virus Infection. Advances in Virus Research, 2011, 79, 91-114.	0.9	35
407	Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11542-11547.	3.3	59
408	Mitochondrion: an emerging platform critical for host antiviral signaling. Expert Opinion on Therapeutic Targets, 2011, 15, 647-665.	1.5	20

#	Article	IF	CITATIONS
409	Structural Insights into RNA Recognition by RIG-I. Cell, 2011, 147, 409-422.	13.5	337
410	Characterization and antiviral function of a cytosolic sensor gene, MDA5, in Japanese flounder, Paralichthys olivaceus. Developmental and Comparative Immunology, 2011, 35, 554-562.	1.0	74
411	Sensing disease and danger: A survey of vertebrate PRRs and their origins. Developmental and Comparative Immunology, 2011, 35, 886-897.	1.0	176
412	Teleost fish interferons and their role in immunity. Developmental and Comparative Immunology, 2011, 35, 1376-1387.	1.0	334
413	Molecular cloning, characterization and expression analysis of interferon-Î ² promoter stimulator 1 (IPS-1) gene from grass carp Ctenopharyngodon idella. Fish and Shellfish Immunology, 2011, 30, 317-323.	1.6	39
414	A protein-kinase, IFN-inducible double-stranded RNA dependent inhibitor and repressor of p58 (PRKRIR) enhances type I IFN-mediated antiviral response through the stability control of RIG-I protein. Biochemical and Biophysical Research Communications, 2011, 413, 487-493.	1.0	4
415	55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation. Biochemical and Biophysical Research Communications, 2011, 415, 75-81.	1.0	24
416	Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 2011, 216, 322-333.	0.8	198
417	TLRs, NLRs and RLRs: Innate sensors and their impact on allergic diseases – A current view. Immunology Letters, 2011, 139, 14-24.	1.1	24
418	Molecular Mechanisms of Viral and Host Cell Substrate Recognition by Hepatitis C Virus NS3/4A Protease. Journal of Virology, 2011, 85, 6106-6116.	1.5	45
419	RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Current Opinion in Virology, 2011, 1, 167-176.	2.6	180
420	Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 2011, 30, 16-34.	1.5	1,780
421	Importance of innate mucosal immunity and the promises it holds. International Journal of General Medicine, 2011, 4, 299.	0.8	18
425	Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses. Pharmaceutics, 2011, 3, 338-353.	2.0	30
426	RSV Induced Changes in miRNA Expression in Lung. , 2011, , .		1
427	The Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling. PLoS Pathogens, 2011, 7, e1001311.	2.1	249
429	Analysis of interaction of Sendai virus V protein and melanoma differentiation-associated gene 5. Microbiology and Immunology, 2011, 55, 760-767.	0.7	14
430	2011 ESCI Award for Excellence in Basic / Translational Research: innate regulation of adaptive immunity by dendritic cells. European Journal of Clinical Investigation, 2011, 41, 907-916.	1.7	7

#	Article	IF	CITATIONS
431	Essential role of high-mobility group box proteins in nucleic acid-mediated innate immune responses. Journal of Internal Medicine, 2011, 270, 301-308.	2.7	36
432	Immunogenomics and systems biology of vaccines. Immunological Reviews, 2011, 239, 197-208.	2.8	65
433	dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunological Reviews, 2011, 243, 74-90.	2.8	44
434	RIGâ€lâ€like receptors: cytoplasmic sensors for nonâ€self RNA. Immunological Reviews, 2011, 243, 91-98.	2.8	288
435	Innate antiviral immunity of periodontal tissue. Periodontology 2000, 2011, 56, 143-153.	6.3	10
436	ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIC-I during antiviral responses. Nature Immunology, 2011, 12, 37-44.	7.0	178
437	Interferon-stimulated gene ISG12b2 is localized to the inner mitochondrial membrane and mediates virus-induced cell death. Cell Death and Differentiation, 2011, 18, 925-936.	5.0	27
438	Strain-to-strain difference of V protein of measles virus affects MDA5-mediated IFN-β-inducing potential. Molecular Immunology, 2011, 48, 497-504.	1.0	30
439	Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L. Molecular Immunology, 2011, 49, 163-174.	1.0	74
440	IRF3 polymorphisms induce different innate anti-Theiler's virus immune responses in RAW264.7 macrophages. Virology, 2011, 418, 40-48.	1.1	16
441	Reduced inflammation and altered innate response in neonates during paramyxoviral infection. Virology Journal, 2011, 8, 549.	1.4	5
442	Nucleic Acid Recognition by the Innate Immune System. Annual Review of Immunology, 2011, 29, 185-214.	9.5	493
443	Caspase work model during pathogen infection. Virologica Sinica, 2011, 26, 366-375.	1.2	6
444	Retinoic acid inducible gene-I, more than a virus sensor. Protein and Cell, 2011, 2, 351-357.	4.8	52
445	Myositis-specific autoantibodies: detection and clinical associations. Autoimmunity Highlights, 2011, 2, 5-20.	3.9	11
446	Differential utilization of NF-kappaB RELA and RELB in response to extracellular versus intracellular polyIC stimulation in HT1080 cells. BMC Immunology, 2011, 12, 15.	0.9	9
447	Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery. BMC Immunology, 2011, 12, 8.	0.9	6
448	Antiviral responses induced by the TLR3 pathway. Reviews in Medical Virology, 2011, 21, 67-77.	3.9	132

#	Article	IF	CITATIONS
449	Pathological changes in the pancreas of fulminant type 1 diabetes and slowly progressive insulinâ€dependent diabetes mellitus (SPIDDM): innate immunity in fulminant type 1 diabetes and SPIDDM. Diabetes/Metabolism Research and Reviews, 2011, 27, 965-970.	1.7	20
450	DDX1, DDX21, and DHX36 Helicases Form a Complex with the Adaptor Molecule TRIF to Sense dsRNA in Dendritic Cells. Immunity, 2011, 34, 866-878.	6.6	317
451	Immune Signaling by RIG-I-like Receptors. Immunity, 2011, 34, 680-692.	6.6	1,570
452	Comparative and phylogenetic analyses of three TIR domain-containing adaptors in metazoans: Implications for evolution of TLR signaling pathways. Developmental and Comparative Immunology, 2011, 35, 764-773.	1.0	15
453	Mitochondria and viruses. Mitochondrion, 2011, 11, 1-12.	1.6	87
454	DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling. Molecular and Cellular Biology, 2011, 31, 3802-3819.	1.1	232
455	A Recombinant Measles Virus Unable To Antagonize STAT1 Function Cannot Control Inflammation and Is Attenuated in Rhesus Monkeys. Journal of Virology, 2011, 85, 348-356.	1.5	51
456	Retinoic Acid-induced Gene-I (RIG-I) Associates with Nucleotide-binding Oligomerization Domain-2 (NOD2) to Negatively Regulate Inflammatory Signaling. Journal of Biological Chemistry, 2011, 286, 28574-28583.	1.6	42
457	The C Proteins of Human Parainfluenza Virus Type 1 Limit Double-Stranded RNA Accumulation That Would Otherwise Trigger Activation of MDA5 and Protein Kinase R. Journal of Virology, 2011, 85, 1495-1506.	1.5	46
458	Provision of Continuous Maturation Signaling to Dendritic Cells by RIG-l–Stimulating Cytosolic RNA Synthesis of Sendai Virus. Journal of Immunology, 2011, 186, 1828-1839.	0.4	17
459	Crystal structure of RIC-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Research, 2011, 39, 1565-1575.	6.5	63
460	RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. Journal of General Virology, 2011, 92, 2191-2200.	1.3	38
461	Expression and Functional Characterization of the RIG-I-Like Receptors MDA5 and LGP2 in Rainbow Trout (Oncorhynchus mykiss). Journal of Virology, 2011, 85, 8403-8412.	1.5	206
462	Fish MITA Serves as a Mediator for Distinct Fish IFN Gene Activation Dependent on IRF3 or IRF7. Journal of Immunology, 2011, 187, 2531-2539.	0.4	245
463	Identification of Human Parainfluenza Virus Type 2 (HPIV-2) V Protein Amino Acid Residues That Reduce Binding of V to MDA5 and Attenuate HPIV-2 Replication in Nonhuman Primates. Journal of Virology, 2011, 85, 4007-4019.	1.5	15
464	Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiology, 2011, 6, 551-566.	1.0	67
465	Multiple Functional Domains and Complexes of the Two Nonstructural Proteins of Human Respiratory Syncytial Virus Contribute to Interferon Suppression and Cellular Location. Journal of Virology, 2011, 85, 10090-10100.	1.5	75
466	MIP-T3 Is a Negative Regulator of Innate Type I IFN Response. Journal of Immunology, 2011, 187, 6473-6482.	0.4	42

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
467	Protection from RNA and DNA Viruses by IL-32. Journal of Immunology, 2011, 186, 4110-4118.	0.4	42
468	Natural Killer Cell Activation Secondary to Innate Pattern Sensing. Journal of Innate Immunity, 2011, 3, 264-273.	1.8	19
469	Cross-protective immunity against influenza virus infections induced by intranasal vaccination together with a TLR3-mucosal adjuvant. Hum Vaccin, 2011, 7, 174-182.	2.4	5
470	Human rhinovirus recognition in non-immune cells is mediated byToll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence, 2011, 2, 22-29.	1.8	108
471	Molecular Mechanism of Signal Perception and Integration by the Innate Immune Sensor Retinoic Acid-inducible Gene-I (RIG-I). Journal of Biological Chemistry, 2011, 286, 27278-27287.	1.6	112
472	ARF-like Protein 16 (ARL16) Inhibits RIG-I by Binding with Its C-terminal Domain in a GTP-dependent Manner. Journal of Biological Chemistry, 2011, 286, 10568-10580.	1.6	24
473	STAT3 Negatively Regulates Type I IFN-Mediated Antiviral Response. Journal of Immunology, 2011, 187, 2578-2585.	0.4	156
474	Raftlin Is Involved in the Nucleocapture Complex to Induce Poly(I:C)-mediated TLR3 Activation. Journal of Biological Chemistry, 2011, 286, 10702-10711.	1.6	75
475	Retinoic Acid-inducible Gene I-inducible miR-23b Inhibits Infections by Minor Group Rhinoviruses through Down-regulation of the Very Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2011, 286, 26210-26219.	1.6	45
476	TLR7/9 versus TLR3/MDA5 signaling during virus infections and diabetes. Journal of Leukocyte Biology, 2011, 90, 691-701.	1.5	31
477	Absence of MyD88 Results in Enhanced TLR3-Dependent Phosphorylation of IRF3 and Increased IFN-β and RANTES Production. Journal of Immunology, 2011, 186, 2514-2522.	0.4	68
478	Chikungunya Virus Induces IPS-1-Dependent Innate Immune Activation and Protein Kinase R-Independent Translational Shutoff. Journal of Virology, 2011, 85, 606-620.	1.5	113
479	RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection. PLoS Neglected Tropical Diseases, 2011, 5, e926.	1.3	258
480	Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus. PLoS Genetics, 201 7, e1002341.	1, 1.5	252
481	The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection. PLoS Pathogens, 2011, 7, e1002341.	2.1	75
482	The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection. Journal of Immunology, 2011, 187, 5320-5327.	0.4	80
483	RIG-I/MDA5/MAVS Are Required To Signal a Protective IFN Response in Rotavirus-Infected Intestinal Epithelium. Journal of Immunology, 2011, 186, 1618-1626.	0.4	198
484	Innate Antiviral Response: Role in HIV-1 Infection. Viruses, 2011, 3, 1179-1203.	1.5	28

#	Article	IF	CITATIONS
485	IFNÎ ³ Inhibits the Cytosolic Replication of Shigella flexneri via the Cytoplasmic RNA Sensor RIG-I. PLoS Pathogens, 2012, 8, e1002809.	2.1	29
486	Unique <i>O</i> -Methoxyethyl Ribose-DNA Chimeric Oligonucleotide Induces an Atypical Melanoma Differentiation-Associated Gene 5-Dependent Induction of Type I Interferon Response. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 150-162.	1.3	30
487	MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO Journal, 2012, 31, 1714-1726.	3.5	160
488	Uridine Composition of the Poly-U/UC Tract of HCV RNA Defines Non-Self Recognition by RIG-I. PLoS Pathogens, 2012, 8, e1002839.	2.1	87
489	A Role for microRNA-155 Modulation in the Anti-HIV-1 Effects of Toll-Like Receptor 3 Stimulation in Macrophages. PLoS Pathogens, 2012, 8, e1002937.	2.1	107
490	Role of Microglia in Oxidative Toxicity Associated with Encephalomycarditis Virus Infection in the Central Nervous System. International Journal of Molecular Sciences, 2012, 13, 7365-7374.	1.8	6
491	Recent Progress in Studies of Arterivirus- and Coronavirus-Host Interactions. Viruses, 2012, 4, 980-1010.	1.5	45
492	The Innate Immune-Related Genes in Catfish. International Journal of Molecular Sciences, 2012, 13, 14172-14202.	1.8	31
493	The Double-Stranded RNA Bluetongue Virus Induces Type I Interferon in Plasmacytoid Dendritic Cells via a MYD88-Dependent TLR7/8-Independent Signaling Pathway. Journal of Virology, 2012, 86, 5817-5828.	1.5	45
494	Inhibition of Interferon Regulatory Factor 3 Activation by Paramyxovirus V Protein. Journal of Virology, 2012, 86, 7136-7145.	1.5	56
495	Viral CNS infections: role of glial pattern recognition receptors in neuroinflammation. Frontiers in Microbiology, 2012, 3, 201.	1.5	59
496	Genetic Factors of Autoimmune Thyroid Diseases in Japanese. Autoimmune Diseases, 2012, 2012, 1-9.	2.7	16
497	Trim Proteins as Ring Finger E3 Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2012, 770, 27-37.	0.8	79
498	A Novel Dermato-Pulmonary Syndrome Associated With MDA-5 Antibodies. Medicine (United States), 2012, 91, 220-228.	0.4	74
499	Expression of melanoma differentiation associated gene 5 is increased in human gastric mucosa infected with <i>Helicobacter pylori</i> . Journal of Clinical Pathology, 2012, 65, 839-843.	1.0	15
500	Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy. Kidney International, 2012, 81, 100-111.	2.6	32
501	Recognition of viruses in the cytoplasm by RLRs and other helicases—how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses. International Immunology, 2012, 24, 739-749.	1.8	16
502	Paramyxovirus V Proteins Interact with the RNA Helicase LGP2 To Inhibit RIG-I-Dependent Interferon Induction. Journal of Virology, 2012, 86, 3411-3421.	1.5	112

#	Article	IF	CITATIONS
503	RNA helicases in infection and disease. RNA Biology, 2012, 9, 751-771.	1.5	86
504	Molecular Mechanics of RNA Translocases. Methods in Enzymology, 2012, 511, 131-147.	0.4	8
505	LGP2 Downregulates Interferon Production during Infection with Seasonal Human Influenza A Viruses That Activate Interferon Regulatory Factor 3. Journal of Virology, 2012, 86, 10733-10738.	1.5	31
506	Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2066-2071.	3.3	195
507	Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion. Journal of Virology, 2012, 86, 2900-2910.	1.5	506
508	Melanoma Differentiation-Associated Gene 5 Is Critical for Protection against Theiler's Virus-Induced Demyelinating Disease. Journal of Virology, 2012, 86, 1531-1543.	1.5	36
509	Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish. Advances in Hematology, 2012, 2012, 1-19.	0.6	157
510	Systematic identification of type I and type II interferon-induced antiviral factors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4239-4244.	3.3	394
511	TRAIL and Noxa Are Selectively Upregulated in Prostate Cancer Cells Downstream of the RIG-I/MAVS Signaling Pathway by Nonreplicating Sendai Virus Particles. Clinical Cancer Research, 2012, 18, 6271-6283.	3.2	82
512	Modulation of Pathogen Recognition by Autophagy. Frontiers in Immunology, 2012, 3, 44.	2.2	24
513	Sequence analysis of a putative goose RIG-I gene. Canadian Journal of Animal Science, 2012, 92, 143-151.	0.7	1
514	Melanoma Differentiation-Associated Gene 5 Regulates the Expression of a Chemokine CXCL10 in Human Mesangial Cells: Implications for Chronic Inflammatory Renal Diseases. Tohoku Journal of Experimental Medicine, 2012, 228, 17-26.	0.5	35
515	Oncolytic Sindbis Virus Targets Tumors Defective in the Interferon Response and Induces Significant Bystander Antitumor Immunity In Vivo. Molecular Therapy, 2012, 20, 298-305.	3.7	42
516	A structure-based model of RIG-I activation. Rna, 2012, 18, 2118-2127.	1.6	127
517	Immunobiology of Dendritic Cells and the Influence of HIV Infection. Advances in Experimental Medicine and Biology, 2012, 762, 1-44.	0.8	13
518	Antiviral Immune Responses by Human Langerhans Cells and Dendritic Cells in HIV-1 Infection. Advances in Experimental Medicine and Biology, 2012, 762, 45-70.	0.8	20
519	Molecular regulation of interferon antiviral response in fish. Developmental and Comparative Immunology, 2012, 38, 193-202.	1.0	255
520	HIV-1, interferon and the interferon regulatory factor system: An interplay between induction, antiviral responses and viral evasion. Cytokine and Growth Factor Reviews, 2012, 23, 255-270.	3.2	38

#	Article	IF	CITATIONS
521	The RIG-I-like Receptor LGP2 Controls CD8+ T Cell Survival and Fitness. Immunity, 2012, 37, 235-248.	6.6	110
522	IFIH1 gene polymorphisms in type 1 diabetes: genetic association analysis and genotype-phenotype correlation in Chinese Han population. Autoimmunity, 2012, 45, 226-232.	1.2	20
523	Notch system in the linkage of innate and adaptive immunity. Journal of Leukocyte Biology, 2012, 92, 59-65.	1.5	30
524	Novel Antiviral Therapeutics to Control Foot-and-Mouth Disease. Journal of Interferon and Cytokine Research, 2012, 32, 462-473.	0.5	35
525	Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends in Microbiology, 2012, 20, 139-146.	3.5	39
526	Pattern recognition receptors for respiratory syncytial virus infection and design of vaccines. Virus Research, 2012, 167, 138-145.	1.1	34
527	Type-I IFN signaling is required for the induction of antigen-specific CD8+ T cell responses by adenovirus vector vaccine in the gut-mucosa. Biochemical and Biophysical Research Communications, 2012, 425, 89-93.	1.0	7
528	Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Developmental and Comparative Immunology, 2012, 36, 657-664.	1.0	51
529	Pathogen recognition receptors in channel catfish: II. Identification, phylogeny and expression of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Developmental and Comparative Immunology, 2012, 37, 381-389.	1.0	86
530	Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24. Developmental and Comparative Immunology, 2012, 37, 414-420.	1.0	25
531	Ontogeny of anti-viral hemorrhagic septicemia virus (VHSV) immunity in developing Japanese flounder. Developmental and Comparative Immunology, 2012, 37, 313-322.	1.0	10
532	The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics, 2012, 13, 261.	1.2	104
533	Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner. BMC Genomics, 2012, 13, 411.	1.2	50
534	Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. Virology Journal, 2012, 9, 114.	1.4	53
535	Innate immunity and hepatitis C virus infection: a microarray's view. Infectious Agents and Cancer, 2012, 7, 7.	1.2	11
536	Molecular Cloning and Functional Characterization of Tibetan Porcine STING. International Journal of Molecular Sciences, 2012, 13, 506-515.	1.8	8
537	Induction of type I IFNs by intracellular DNAâ€sensing pathways. Immunology and Cell Biology, 2012, 90, 474-482.	1.0	74
538	Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature, 2012, 491, 125-128.	13.7	289

#	Article	IF	CITATIONS
539	SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Current Opinion in Virology, 2012, 2, 264-275.	2.6	374
540	Anti-SAE antibodies in autoimmune myositis: Identification by unlabelled protein immunoprecipitation in an Italian patient cohort. Journal of Immunological Methods, 2012, 384, 128-134.	0.6	90
541	NLRs, inflammasomes, and viral infection. Journal of Leukocyte Biology, 2012, 92, 469-477.	1.5	77
542	Activation of RIG-I-like receptor signal transduction. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 194-206.	2.3	75
543	Activation and Inhibition of JAK-STAT Signal Transduction by RNA Viruses. , 2012, , 371-385.		0
544	Highlights of the advances in basic immunology in 2011. Cellular and Molecular Immunology, 2012, 9, 197-207.	4.8	13
545	Manipulating intestinal immunity and microflora: an alternative solution to viral myocarditis?. Future Microbiology, 2012, 7, 1207-1216.	1.0	8
546	Identification of Drel as an Antiviral Factor Regulated by RLR Signaling Pathway. PLoS ONE, 2012, 7, e32427.	1.1	27
547	Trappin-2/Elafin Modulate Innate Immune Responses of Human Endometrial Epithelial Cells to Polylâ^¶C. PLoS ONE, 2012, 7, e35866.	1.1	14
548	Both STING and MAVS Fish Orthologs Contribute to the Induction of Interferon Mediated by RIG-I. PLoS ONE, 2012, 7, e47737.	1.1	92
549	Virus Immune Evasion: New Mechanism and Implications in Disease Outcome. Advances in Virology, 2012, 2012, 1-1.	0.5	3
550	Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response. Advances in Virology, 2012, 2012, 1-11.	0.5	7
551	Pathogen Strategies to Evade Innate Immune Response: A Signaling Point of View. , 2012, , .		3
552	The role of innate immune signals in immunity to Brucella abortus. Frontiers in Cellular and Infection Microbiology, 2012, 2, 130.	1.8	49
553	Autophagy in Innate Recognition of Pathogens and Adaptive Immunity. Yonsei Medical Journal, 2012, 53, 241.	0.9	14
554	Intracellular Inflammatory Sensors for Foreign Invaders and Substances of Self-Origin. Advances in Experimental Medicine and Biology, 2012, 738, 60-78.	0.8	4
555	Targeting pattern recognition receptors in cancer immunotherapy. Targeted Oncology, 2012, 7, 29-54.	1.7	117
556	Enterovirus 71 Disrupts Interferon Signaling by Reducing the Level of Interferon Receptor 1. Journal of Virology, 2012, 86, 3767-3776.	1.5	132

#	Article	IF	CITATIONS
557	Molecular cloning and expression analysis of IFN-Î ² promoter stimulator 1 in Tibetan pigs. Molecular Biology Reports, 2012, 39, 7011-7017.	1.0	2
558	Oligodeoxynucleotides inhibit Tollâ€like receptor 3 mediated cytotoxicity and CXCL8 release in keratinocytes. Experimental Dermatology, 2012, 21, 7-12.	1.4	13
559	Regulation of RLR-mediated innate immune signaling – It is all about keeping the balance. European Journal of Cell Biology, 2012, 91, 36-47.	1.6	100
560	Sensing of viral nucleic acids by RIG-I: From translocation to translation. European Journal of Cell Biology, 2012, 91, 78-85.	1.6	35
561	Structural insights into RNA recognition and activation of RIG-I-like receptors. Current Opinion in Structural Biology, 2012, 22, 297-303.	2.6	47
562	Genomic organization, promoter activity of grass carp MDA5 and the association of its polymorphisms with susceptibility/resistance to grass carp reovirus. Molecular Immunology, 2012, 50, 236-243.	1.0	27
563	Age exacerbates sickness behavior following exposure to a viral mimetic. Physiology and Behavior, 2012, 105, 1219-1225.	1.0	41
564	Association of gene expression involving innate immunity and genetic variation in interleukin 28B with antiviral response. Hepatology, 2012, 55, 20-29.	3.6	54
565	Structural and biochemical studies of RIG-I antiviral signaling. Protein and Cell, 2013, 4, 142-154.	4.8	22
566	BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals, 2013, 41, 39-51.	0.5	72
567	dsRNA Sensing During Viral Infection: Lessons from Plants, Worms, Insects, and Mammals. Journal of Interferon and Cytokine Research, 2013, 33, 239-253.	0.5	21
568	TLR3 activation evokes IL-6 secretion, autocrine regulation of Stat3 signaling and TLR2 expression in human bronchial epithelial cells. Journal of Cell Communication and Signaling, 2013, 7, 109-118.	1.8	25
569	Association between hepatic steatosis and hepatic expression of genes involved in innate immunity in patients with chronic hepatitis C. Cytokine, 2013, 63, 145-150.	1.4	6
570	Anti–Melanoma Differentiation–Associated Protein 5–Associated Dermatomyositis: Expanding the Clinical Spectrum. Arthritis Care and Research, 2013, 65, 1307-1315.	1.5	241
571	The role of human rhinovirus in immunology, COPD, and corresponding treatments. Frontiers in Biology, 2013, 8, 377-386.	0.7	1
572	Innate immunity of finfish: Primordial conservation and function of viral RNA sensors in teleosts. Fish and Shellfish Immunology, 2013, 35, 1689-1702.	1.6	85
573	Structural basis of innate immune recognition of viral RNA. Cellular Microbiology, 2013, 15, 386-394.	1.1	54
574	Toll-like receptor 3 and RIG-I-like receptor activation induces innate antiviral responses in mouse ovarian granulosa cells. Molecular and Cellular Endocrinology, 2013, 372, 73-85.	1.6	22

#	Article	IF	Citations
π 575	Molecular characterization, expression patterns, and subcellular localization of RIG-I in the Jinding	1.0	14
373	Duck (Anas platyrhynchos domesticus). Developmental and Comparative Immunology, 2013, 41, 766-771.	1.0	14
576	5′-Triphosphate-siRNA activates RIG-I-dependent type I interferon production and enhances inhibition of hepatitis B virus replication in HepG2.2.15 cells. European Journal of Pharmacology, 2013, 721, 86-95.	1.7	40
577	Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit. Antiviral Research, 2013, 100, 615-635.	1.9	77
578	TLR3 impairment in human newborns. Journal of Leukocyte Biology, 2013, 94, 1003-1011.	1.5	16
579	Mechanisms of MAVS Regulation at the Mitochondrial Membrane. Journal of Molecular Biology, 2013, 425, 5009-5019.	2.0	149
580	Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination. Vaccines, 2013, 1, 278-292.	2.1	43
581	Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in Microbiology and Immunology, 2013, , .	0.7	8
582	DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 854-865.	0.9	154
583	Association Study of IFIH1 rs1990760 Polymorphism with Systemic Lupus Erythematosus in a Chinese Population. Inflammation, 2013, 36, 444-448.	1.7	19
584	Structural Basis for dsRNA Recognition, Filament Formation, and Antiviral Signal Activation by MDA5. Cell, 2013, 152, 276-289.	13.5	447
585	West Nile virus infection and immunity. Nature Reviews Microbiology, 2013, 11, 115-128.	13.6	349
586	Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Developmental and Comparative Immunology, 2013, 39, 39-62.	1.0	411
587	Polymorphisms in the interferonâ€induced helicase (<i><scp>IFIH</scp>1</i>) locus and susceptibility to <scp>A</scp> ddison's disease. Clinical Endocrinology, 2013, 78, 191-196.	1.2	2
588	Pathogen Recognition in the Human Female Reproductive Tract: Expression of Intracellular Cytosolic Sensors <scp>NOD</scp> 1, <scp>NOD</scp> 2, <scp>RIG</scp> â€1, and <scp>MDA</scp> 5 and response to <scp>HIV</scp> â€1 and <i><scp>N</scp>eisseria gonorrhea</i> American Journal of Reproductive Immunology, 2013, 69, 41-51.	1.2	40
589	Innate immune responses in hepatitis C virus infection. Seminars in Immunopathology, 2013, 35, 53-72.	2.8	71
590	Correlation between grass carp (Ctenopharyngodon idella) resistance to grass carp reovirus and the genetic insert-deletion polymorphisms in promoter and intron of RIG-I gene. Gene, 2013, 516, 320-327.	1.0	9
591	MDA5 and ISG56 mediate CXCL10 expression induced by Toll-like receptor 4 activation in U373MG human astrocytoma cells. Neuroscience Research, 2013, 76, 195-206.	1.0	23
592	Master sensors of pathogenic RNA – RIG-I like receptors. Immunobiology, 2013, 218, 1322-1335.	0.8	192

#	Article	IF	Citations
593	Virus-induced expression of retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 in the cochlear sensory epithelium. Microbes and Infection, 2013, 15, 592-598.	1.0	10
594	Trunk kidney of grass carp (Ctenopharyngodon idella) mediates immune responses against GCRV and viral/bacterial PAMPs inÂvivo and inÂvitro. Fish and Shellfish Immunology, 2013, 34, 909-919.	1.6	52
595	Innate Immune Responses to Hepatitis C Virus. Current Topics in Microbiology and Immunology, 2013, 369, 219-242.	0.7	38
596	The Ataxia Telangiectasia Mutated Kinase Pathway Regulates IL-23 Expression by Human Dendritic Cells. Journal of Immunology, 2013, 190, 3246-3255.	0.4	20
597	Structure of the C-terminal half of human XPB helicase and the impact of the disease-causing mutation XP11BE. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 237-246.	2.5	23
598	Pattern recognition receptors—Molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine and Growth Factor Reviews, 2013, 24, 91-104.	3.2	106
599	Pathogen Recognition Receptors: Ligands and Signaling Pathways by Toll-Like Receptors. International Reviews of Immunology, 2013, 32, 116-133.	1.5	156
600	Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Molecular Immunology, 2013, 53, 321-327.	1.0	60
601	Genetic structure, polymorphism identification of LGP2 gene and their relationship with the resistance/susceptibility to GCRV in grass carp, Ctenopharyngodon idella. Gene, 2013, 521, 166-175.	1.0	15
602	Intracellular Pathogen Detection by RIG-I-Like Receptors. Advances in Immunology, 2013, 117, 99-125.	1.1	147
603	The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nature Immunology, 2013, 14, 172-178.	7.0	190
604	RIG-I-like receptors and intracellular Toll-like receptors in antiviral immunity. Future Virology, 2013, 8, 183-194.	0.9	2
605	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869.	6.6	686
606	Mitochondrially localised MUL1 is a novel modulator of antiviral signaling. Immunology and Cell Biology, 2013, 91, 321-330.	1.0	35
607	Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation. Cell, 2013, 152, 467-478.	13.5	228
608	Identification and expression profiling analysis of goose melanoma differentiation associated gene 5 (MDA5) gene. Poultry Science, 2013, 92, 2618-2624.	1.5	12
609	Multi-level regulation of cellular recognition of viral dsRNA. Cellular and Molecular Life Sciences, 2013, 70, 1949-1963.	2.4	30
610	Expression and Functional Characterization of Retinoic Acid-Inducible Gene-I-Like Receptors of Mast Cells in Response to Viral Infection. Journal of Innate Immunity, 2013, 5, 163-173.	1.8	30

#	Article	IF	CITATIONS
611	Duplex RNA activated ATPases (DRAs). RNA Biology, 2013, 10, 111-120.	1.5	59
612	Interaction between Interferon-Stimulated Gene 56 and Melanoma Differentiation-Associated Gene 5 in Toll-Like Receptor 3 Signaling in Normal Human Mesangial Cells. American Journal of Nephrology, 2013, 37, 118-125.	1.4	11
613	Amino Acid Requirements for MDA5 and LGP2 Recognition by Paramyxovirus V Proteins: a Single Arginine Distinguishes MDA5 from RIG-I. Journal of Virology, 2013, 87, 2974-2978.	1.5	28
614	Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology. Frontiers in Immunology, 2013, 4, 248.	2.2	179
615	Reprogramming of Murine Macrophages through TLR2 Confers Viral Resistance via TRAF3-Mediated, Enhanced Interferon Production. PLoS Pathogens, 2013, 9, e1003479.	2.1	42
616	Genome-wide RNAi Screen Reveals a New Role of a WNT/CTNNB1 Signaling Pathway as Negative Regulator of Virus-induced Innate Immune Responses. PLoS Pathogens, 2013, 9, e1003416.	2.1	60
617	RIG-I and MDA-5 Detection of Viral RNA-dependent RNA Polymerase Activity Restricts Positive-Strand RNA Virus Replication. PLoS Pathogens, 2013, 9, e1003610.	2.1	66
618	Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity — Clues for Treatments and Vaccines. Viruses, 2013, 5, 470-527.	1.5	42
619	Expression Pattern of Genes of RLR-Mediated Antiviral Pathway in Different-Breed Chicken Response to Marek's Disease Virus Infection. BioMed Research International, 2013, 2013, 1-9.	0.9	7
620	Negative Regulation of RIG-I-Mediated Innate Antiviral Signaling by SEC14L1. Journal of Virology, 2013, 87, 10037-10046.	1.5	43
621	Homologous RIG-l–like helicase proteins direct RNAi-mediated antiviral immunity in <i>C. elegans</i> by distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16085-16090.	3.3	72
622	TLR7 Triggering with Polyuridylic Acid Promotes Cross-Presentation in CD8α+ Conventional Dendritic Cells by Enhancing Antigen Preservation and MHC Class I Antigen Permanence on the Dendritic Cell Surface. Journal of Immunology, 2013, 190, 948-960.	0.4	37
623	MDA5 Localizes to Stress Granules, but This Localization Is Not Required for the Induction of Type I Interferon. Journal of Virology, 2013, 87, 6314-6325.	1.5	86
624	Hemoglobin Subunit Beta Interacts with the Capsid Protein and Antagonizes the Growth of Classical Swine Fever Virus. Journal of Virology, 2013, 87, 5707-5717.	1.5	40
625	The IRF Family Transcription Factors at the Interface of Innate and Adaptive Immune Responses. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 105-116.	2.0	210
626	Biphasic RLR–IFN-β Response Controls the Balance between Antiviral Immunity and Cell Damage. Journal of Immunology, 2013, 190, 1192-1200.	0.4	27
627	Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 533-544.	1.5	24
628	Pattern recognition receptors in innate immunity, host defense, and immunopathology. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 284-291.	0.8	158

ARTICLE IF CITATIONS # Human Parainfluenza Virus Type 2 V Protein Inhibits TRAF6-Mediated Ubiguitination of IRF7 To Prevent 629 1.5 45 TLR7- and TLR9-Dependent Interferon Induction. Journal of Virology, 2013, 87, 7966-7976. RAVER1 is a coactivator of MDA5-mediated cellular antiviral response. Journal of Molecular Cell 1.5 Biology, 2013, 5, 111-119. Melanoma Differentiation–Associated Gene 5 Senses Hepatitis B Virus and Activates Innate Immune 631 0.4 64 Signaling To Suppress Virus Replication. Journal of Immunology, 2013, 191, 3264-3276. Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: A 1.2 meta-analysis. Autoimmunity, 2013, 46, 455-462. ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune Sensor, Laboratory of Genetics and Physiology 2 (LGP2). Journal of Biological Chemistry, 2013, 288, 633 1.6 74 938-946. LGP2 Plays a Critical Role in Sensitizing mda-5 to Activation by Double-Stranded RNA. PLoS ONE, 2013, 8, 1.1 e64202 636 Positive Evolutionary Selection On the RIG-I-Like Receptor Genes in Mammals. PLoS ONE, 2013, 8, e81864. 1.1 28 Pathophysiological mechanisms involving aggressive islet cell destruction in fulminant type 1 diabetes 34 [Review]. Endocrine Journal, 2013, 60, 837-845. 638 Autophagy as an Innate Immune Modulator. Immune Network, 2013, 13, 1. 1.6 19 West Nile Virus: Basic Principles, Replication Mechanism, Immune Response and Important Genetic Determinants of Virulence., 0, , . Alix Serves as an Adaptor That Allows Human Parainfluenza Virus Type 1 to Interact with the Host Cell 641 1.1 14 ESCRT System. PLoS ONE, 2013, 8, e59462. Human Metapneumovirus Glycoprotein G Disrupts Mitochondrial Signaling in Airway Epithelial Cells. 1.1 PLoS ONE, 2013, 8, e62568. Clustered Basic Amino Acids of the Small Sendai Virus C Protein Y1 Are Critical to Its Ran 643 1.1 9 GTPase-Mediated Nuclear Localization. PLoS ONE, 2013, 8, e73740. Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus 644 1.2 36 Infections. Pathogens, 2013, 2, 232-263. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation 645 136 1.8 and vaccination. Frontiers in Cellular and Infection Microbiology, 2012, 2, 168. An Overview of the Immune Evasion Strategies Adopted by Different Viruses with Special Reference to 646 Classical Swine Fever Virus., 0, , . Toll-Like Receptor-3 Is Dispensable for the Innate MicroRNA Response to West Nile Virus (WNV). PLoS 647 1.1 13 ONE, 2014, 9, e104770. The Laboratory of Genetics and Physiology 2: Emerging Insights into the Controversial Functions of 648 This RIG-I-Like Receptor. BioMed Research International, 2014, 2014, 1-7.

#	Article	IF	CITATIONS
649	Receptors in Antiviral Immunity. , 2014, , .		0
650	Immunostimulatory Effects of Triggering TLR3 Signaling Pathway — Implication for Cancer Immunotherapy. , 2014, , .		0
651	Innate Immunity Induced by Fungal β-Glucans via Dectin-1 Signaling Pathway. International Journal of Medicinal Mushrooms, 2014, 16, 1-16.	0.9	56
652	RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production. Journal of Virology, 2014, 88, 7987-7997.	1.5	46
653	Recent insights into the evolution of innate viral sensing in animals. Current Opinion in Microbiology, 2014, 20, 170-175.	2.3	12
654	Dicer-2-Dependent Activation of Culex Vago Occurs via the TRAF-Rel2 Signaling Pathway. PLoS Neglected Tropical Diseases, 2014, 8, e2823.	1.3	98
655	A Novel Function of Human Pumilio Proteins in Cytoplasmic Sensing of Viral Infection. PLoS Pathogens, 2014, 10, e1004417.	2.1	51
656	Functional characterization of the Thr946Ala SNP at the type 1 diabetesIFIH1locus. Autoimmunity, 2014, 47, 40-45.	1.2	10
657	Anti-MDA5 Antibodies in a Large Mediterranean Population of Adults with Dermatomyositis. Journal of Immunology Research, 2014, 2014, 1-8.	0.9	145
658	Ancient Origins of Vertebrate-Specific Innate Antiviral Immunity. Molecular Biology and Evolution, 2014, 31, 140-153.	3.5	55
659	The DEAH-Box RNA Helicase DHX15 Activates NF-κB and MAPK Signaling Downstream of MAVS During Antiviral Responses. Science Signaling, 2014, 7, ra40.	1.6	77
660	Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens. Viruses, 2014, 6, 4999-5027.	1.5	54
661	Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Frontiers in Immunology, 2014, 5, 342.	2.2	325
662	Tumor suppressor activity of RIG-I. Molecular and Cellular Oncology, 2014, 1, e968016.	0.3	4
663	The Innate Immune Sensor LGP2 Activates Antiviral Signaling by Regulating MDA5-RNA Interaction and Filament Assembly. Molecular Cell, 2014, 55, 771-781.	4.5	208
664	Autoimmunity caused by constitutive activation of cytoplasmic viral RNA sensors. Cytokine and Growth Factor Reviews, 2014, 25, 739-743.	3.2	17
665	Interferons, Signal Transduction Pathways, and the Central Nervous System. Journal of Interferon and Cytokine Research, 2014, 34, 559-576.	0.5	33
666	Sustained Activation of Interferon Regulatory Factor 3 during Infection by Paramyxoviruses Requires MDA5. Journal of Innate Immunity, 2014, 6, 650-662.	1.8	21

#	Article	IF	CITATIONS
667	Paramyxovirus V Protein Interaction with the Antiviral Sensor LGP2 Disrupts MDA5 Signaling Enhancement but Is Not Relevant to LGP2-Mediated RLR Signaling Inhibition. Journal of Virology, 2014, 88, 8180-8188.	1.5	35
668	The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain. Nucleic Acids Research, 2014, 42, 11601-11611.	6.5	23
669	Interferon regulatory factor 7- (IRF7-) mediated immune response affects Newcastle disease virus replication in chicken embryo fibroblasts. Acta Veterinaria Hungarica, 2014, 62, 500-511.	0.2	27
670	Dietary vitamin D supplementation attenuates immune responses of pigs challenged with rotavirus potentially through the retinoic acid-inducible gene I signalling pathway. British Journal of Nutrition, 2014, 112, 381-389.	1.2	44
671	Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Veterinary Research, 2014, 45, 66.	1.1	86
672	Cloning and Expression of Retinoic Acid–Induced Gene-I and Its Effect on Hepatitis C Virus Replication. Laboratory Medicine, 2014, 45, 103-110.	0.8	2
673	Expression, purification, crystallization and preliminary X-ray analysis of full-length human RIG-I. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 248-251.	0.4	0
674	Chicken MDA5 Senses Short Double-Stranded RNA with Implications for Antiviral Response against Avian Influenza Viruses in Chicken. Journal of Innate Immunity, 2014, 6, 58-71.	1.8	61
675	Parts, assembly and operation of the RIG-I family of motors. Current Opinion in Structural Biology, 2014, 25, 25-33.	2.6	43
676	The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. Journal of Molecular Medicine, 2014, 92, 239-254.	1.7	158
677	Enterovirus 2A ^{pro} Targets MDA5 and MAVS in Infected Cells. Journal of Virology, 2014, 88, 3369-3378.	1.5	182
678	NF-κB activation induced by hepatitis A virus and Newcastle disease virus occurs by different pathways depending on the structural pattern of viral nucleic acids. Archives of Virology, 2014, 159, 1723-1733.	0.9	4
679	Melanoma differentiationâ€associated gene 5 in zebrafish provoking higher interferonâ€promoter activity through signalling enhancing of its shorter splicing variant. Immunology, 2014, 141, 192-202.	2.0	61
680	Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Current Opinion in Immunology, 2014, 26, 14-20.	2.4	28
681	Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. Journal of Antimicrobial Chemotherapy, 2014, 69, 1298-1310.	1.3	100
682	Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 2014, 32, 461-488.	9.5	957
683	RIG-l–like receptor LGP2 protects tumor cells from ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E484-91.	3.3	70
684	Innate Antiviral Immune Signaling, Viral Evasion and Modulation by HIV-1. Journal of Molecular Biology, 2014, 426, 1161-1177.	2.0	64

#	ARTICLE	IF	CITATIONS
685	<i>Fusobacterium nucleatum</i> Activates the Immune Response through Retinoic Acid–Inducible Gene I. Journal of Dental Research, 2014, 93, 162-168.	2.5	20
686	GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nature Immunology, 2014, 15, 63-71.	7.0	36
687	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13
689	Activation and regulation of pathogen sensor RIG-I. Cytokine and Growth Factor Reviews, 2014, 25, 513-523.	3.2	42
690	The regulation role of interferon regulatory factor-1 gene and clinical relevance. Human Immunology, 2014, 75, 1110-1114.	1.2	53
691	Antiviral RNA recognition and assembly by RLR family innate immune sensors. Cytokine and Growth Factor Reviews, 2014, 25, 507-512.	3.2	63
692	Enhancement of Interferon Induction by ORF3 Product of Hepatitis E Virus. Journal of Virology, 2014, 88, 8696-8705.	1.5	59
693	Antiviral innate immunity and stress granule responses. Trends in Immunology, 2014, 35, 420-428.	2.9	192
694	Innate immunity networks during infection withBorrelia burgdorferi. Critical Reviews in Microbiology, 2014, 42, 1-12.	2.7	42
695	The first invertebrate RIG-I-like receptor (RLR) homolog gene in the pacific oyster Crassostrea gigas. Fish and Shellfish Immunology, 2014, 40, 466-471.	1.6	36
696	Sensing viral invasion by RIG-I like receptors. Current Opinion in Microbiology, 2014, 20, 131-138.	2.3	90
697	Functional characterization of the evolutionarily preserved mitochondrial antiviral signaling protein (MAVS) from rock bream, Oplegnathus fasciatus. Fish and Shellfish Immunology, 2014, 40, 399-406.	1.6	22
698	CpG methylation in the 5′-flanking region of LGP2 gene lacks association with resistance/susceptibility to GCRV but contributes to the differential expression between muscle and spleen tissues in grass carp, Ctenopharyngodon idella. Fish and Shellfish Immunology, 2014, 40, 154-163.	1.6	13
699	Hepatitis E Virus Inhibits Type I Interferon Induction by ORF1 Products. Journal of Virology, 2014, 88, 11924-11932.	1.5	105
700	RacGTPase-activating protein 1 interacts with hepatitis C virus polymerase NS5B to regulate viral replication. Biochemical and Biophysical Research Communications, 2014, 454, 19-24.	1.0	8
701	Testicular defense systems: immune privilege and innate immunity. Cellular and Molecular Immunology, 2014, 11, 428-437.	4.8	242
702	mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery, 2014, 13, 759-780.	21.5	1,501
704	Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Oryctolagus, Sylvilagus, and Lepus. Immunogenetics, 2014, 66, 43-52.	1.2	23

#	Article	IF	CITATIONS
705	MDA5 and LGP2: Accomplices and Antagonists of Antiviral Signal Transduction. Journal of Virology, 2014, 88, 8194-8200.	1.5	98
706	Tollâ€like receptors and liver disease. Liver International, 2014, 34, 184-196.	1.9	77
707	DHX15 Senses Double-Stranded RNA in Myeloid Dendritic Cells. Journal of Immunology, 2014, 193, 1364-1372.	0.4	57
708	Induction and control of the type I interferon pathway by Bluetongue virus. Virus Research, 2014, 182, 59-70.	1.1	31
709	Intrinsic Disorder in Proteins Involved in the Innate Antiviral Immunity: Another Flexible Side of a Molecular Arms Race. Journal of Molecular Biology, 2014, 426, 1322-1350.	2.0	37
710	Functional Analysis via Standardized Whole-Blood Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex Stimuli. Immunity, 2014, 40, 436-450.	6.6	192
711	ISG54 and ISG56 are induced by TLR3 signaling in U373MG human astrocytoma cells: Possible involvement in CXCL10 expression. Neuroscience Research, 2014, 84, 34-42.	1.0	24
712	An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses. Antiviral Research, 2014, 107, 56-65.	1.9	18
713	An evolving arsenal: viral RNA detection by RIG-I-like receptors. Current Opinion in Microbiology, 2014, 20, 76-81.	2.3	38
714	Human DExD/H RNA helicases: Emerging roles in stress survival regulation. Clinica Chimica Acta, 2014, 436, 45-58.	0.5	33
716	Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virusâ€specific neutralizing antibody response. EMBO Molecular Medicine, 2015, 7, 24-41.	3.3	81
717	The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages. Virology Journal, 2015, 12, 61.	1.4	11
718	The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. British Journal of Pharmacology, 2015, 172, 5457-5476.	2.7	34
719	Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV). Sensors, 2015, 15, 27160-27173.	2.1	14
720	Innate Immunity and Immune Evasion by Enterovirus 71. Viruses, 2015, 7, 6613-6630.	1.5	66
721	Engagement of Fas on Macrophages Modulates Poly I:C Induced Cytokine Production with Specific Enhancement of IP-10. PLoS ONE, 2015, 10, e0123635.	1.1	12
722	TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING. PLoS Pathogens, 2015, 11, e1005012.	2.1	141
723	Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus. PLoS Pathogens, 2015, 11, e1005264.	2.1	125

#	Article	IF	CITATIONS
724	Duck RIG-I CARD Domain Induces the Chicken IFN- <i>β</i> by Activating NF- <i>β</i> B. BioMed Research International, 2015, 2015, 1-6.	0.9	12
725	Insights into the Antiviral Immunity against Grass Carp (<i>Ctenopharyngodon idella</i>) Reovirus (GCRV) in Grass Carp. Journal of Immunology Research, 2015, 2015, 1-18.	0.9	176
726	Abortive Infection of Snakehead Fish Vesiculovirus in ZF4 Cells Was Associated with the RLRs Pathway Activation by Viral Replicative Intermediates. International Journal of Molecular Sciences, 2015, 16, 6235-6250.	1.8	25
727	Hepatitis C virus and antiviral innate immunity: Who wins at tug-of-war?. World Journal of Gastroenterology, 2015, 21, 3786.	1.4	24
728	International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease. Pharmacological Reviews, 2015, 67, 462-504.	7.1	41
729	Pulmonary Dendritic Cells. , 2015, , 651-664.		0
730	Signaling Mechanisms Regulating Innate Immune Responses. , 2015, , 605-622.		2
731	RIG-I-like receptors and autoimmune diseases. Current Opinion in Immunology, 2015, 37, 40-45.	2.4	73
732	ACTIVATION AND EVASION OF INNATE IMMUNE RESPONSE BY RHABDOVIRUSES. , 2015, , 353-385.		0
733	An Up-regulation of IRF-1 After a Spinal Cord Injury: Implications for Neuronal Apoptosis. Journal of Molecular Neuroscience, 2015, 57, 595-604.	1.1	11
734	RIOK3-Mediated Phosphorylation of MDA5 Interferes with Its Assembly and Attenuates the Innate Immune Response. Cell Reports, 2015, 11, 192-200.	2.9	63
735	Higher antiviral response of RIC-I through enhancing RIC-I/MAVS-mediated signaling by its long insertion variant in zebrafish. Fish and Shellfish Immunology, 2015, 43, 13-24.	1.6	65
736	Viral RNA detection by RIG-I-like receptors. Current Opinion in Immunology, 2015, 32, 48-53.	2.4	371
737	High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Research, 2015, 43, 1216-1230.	6.5	45
738	Molecular cloning, characterisation and expression analysis of melanoma differentiation associated gene 5 (MDA5) of green chromide, Etroplus suratensis. Gene, 2015, 557, 172-181.	1.0	19
739	Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections. Veterinary Immunology and Immunopathology, 2015, 163, 183-193.	0.5	34
740	RIG-I specifically mediates group II type I IFN activation in nervous necrosis virus infected zebrafish cells. Fish and Shellfish Immunology, 2015, 43, 427-435.	1.6	40
741	Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology, 2015, 33, 257-290.	9.5	1,133

#	Article	IF	CITATIONS
742	Desferrioxamine, an iron chelator, inhibits CXCL10 expression induced by polyinosinic–polycytidylic acid in U373MG human astrocytoma cells. Neuroscience Research, 2015, 94, 10-16.	1.0	9
743	Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling. Annual Review of Immunology, 2015, 33, 823-874.	9.5	230
744	Toll-like receptor ligands and their combinations as adjuvants - current research and its relevance in chickens. World's Poultry Science Journal, 2015, 71, 95-110.	1.4	3
745	Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiology, 2015, 10, 989-1008.	1.0	22
746	An autoinhibitory mechanism modulates MAVS activity in antiviral innate immune response. Nature Communications, 2015, 6, 7811.	5.8	42
747	Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus. Virus Research, 2015, 209, 39-44.	1.1	16
748	Association of Symptoms and Severity of Rift Valley Fever with Genetic Polymorphisms in Human Innate Immune Pathways. PLoS Neglected Tropical Diseases, 2015, 9, e0003584.	1.3	30
749	cGAS and Ifi204 Cooperate To Produce Type I IFNs in Response to <i>Francisella</i> Infection. Journal of Immunology, 2015, 194, 3236-3245.	0.4	162
750	Immunomics of the koala (Phascolarctos cinereus). Immunogenetics, 2015, 67, 305-321.	1.2	19
751	Roles of retinoic acid-inducible gene-I-like receptors (RLRs), Toll-like receptor (TLR) 3 and 2′-5′ oligoadenylate synthetase as viral recognition receptors on human mast cells in response to viral infection. Immunologic Research, 2015, 61, 240-249.	1.3	15
752	LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine, 2015, 74, 198-206.	1.4	96
753	Molecular cloning and immune responsive expression of LGP2 gene, a pivotal member of the RLR gene family from Muscovy duck Cairina moschata. Poultry Science, 2015, 94, 1170-1176.	1.5	15
754	Helicases in Antiviral Immunity: Dual Properties as Sensors and Effectors. Trends in Biochemical Sciences, 2015, 40, 576-585.	3.7	73
755	Cytosolic Low Molecular Weight FGF2 Orchestrates RIG-I–Mediated Innate Immune Response. Journal of Immunology, 2015, 195, 4943-4952.	0.4	13
756	Control of FoxO4 Activity and Cell Survival by TRIM22 Directs TLR3-Stimulated Cells Toward IFN Type I Gene Induction or Apoptosis. Journal of Interferon and Cytokine Research, 2015, 35, 859-874.	0.5	9
757	Identification and expression of the laboratory of genetics and physiology 2 gene in common carp <i>Cyprinus carpio</i> . Journal of Fish Biology, 2015, 86, 74-91.	0.7	8
758	Killing cancer cells using nanotechnology: novel poly(I:C) loaded liposome–silica hybrid nanoparticles. Journal of Materials Chemistry B, 2015, 3, 7408-7416.	2.9	30
759	RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Reviews in Medical Virology, 2015, 25, 286-299.	3.9	107

ARTICLE IF CITATIONS Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biology, 2015, 760 1.7 47 13, 54. Estrogen receptor alpha inhibits RLR-mediated immune response via ubiquitinating TRAF3. Cellular 761 1.7 Signalling, 2015, 27, 1977-1983. DDX60L Is an Interferon-Stimulated Gene Product Restricting Hepatitis C Virus Replication in Cell 762 1.5 50 Culture. Journal of Virology, 2015, 89, 10548-10568. The ORF61 Protein Encoded by Simian Varicella Virus and Varicella-Zoster Virus Inhibits NF-κB Signaling by Interfering with llºBl ± Degradation. Journal of Virology, 2015, 89, 8687-8700. Functions of MDA5 and its domains in response to GCRV or bacterial PAMPs. Fish and Shellfish 764 1.6 14 Immunology, 2015, 46, 693-702. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent 0.3 37 stem cells and hepatitis C virus infection. Stem Cell Research, 2015, 15, 354-364. Characterization and expression analysis of laboratory of genetics and physiology 2 gene in sea perch, 766 1.6 24 Lateolabrax japonicus. Fish and Shellfish Immunology, 2015, 47, 214-220. The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B 6.6 353 Virus. Immunity, 2015, 42, 123-132. Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harbor 768 2.3 288 Perspectives in Biológy, 2015, 7, a016246. LGP2 plays extensive roles in modulating innate immune responses in Ctenopharyngodon idella kidney 1.0 (CIK) cells. Developmental and Comparative Immunology, 2015, 49, 138-148. MAVS splicing variants contribute to the induction of interferon and interferon-stimulated genes 770 1.0 44 mediated by RIG-I-like receptors. Developmental and Comparative Immunology, 2015, 49, 19-30. Involvement of zebrafish RIG-I in NF-Î^oB and IFN signaling pathways: Insights into functional conservation of RIG-I in antiviral innate immunity. Developmental and Comparative Immunology, 2015, 1.0 48,95-101 CpA/CpG methylation of CiMDA5 possesses tight association with the resistance against GCRV and 772 negatively regulates mRNA expression in grass carp, Ctenopharyngodon idella. Developmental and 1.0 18 Comparative Immunology, 2015, 48, 86-94. Tumor necrosis factor- \hat{l}_{\pm} synergistically enhances polyinosinic-polycytidylic acid-induced toll-like receptor 3 signaling in cultured normal human mesangial cells: possible involvement in the pathogenesis of lupus nephritis. Clinical and Experimental Nephrology, 2015, 19, 75-81. Anti-MDA5 Antibody Dermatomyositis Overlap with Systemic Lupus Erythematosus: A Case Report and 774 0.1 5 Review of the Literature. Open Rheumatology Journal, 2016, 10, 122-128. Human Coronaviruses: A Review of Virus–Host Interactions. Diseases (Basel, Switzerland), 2016, 4, 26. 474 Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens. International 776 1.8 11 Journal of Molecular Sciences, 2016, 17, 1990. Epigenetic Regulation of Innate Immunity by microRNAs. Antibodies, 2016, 5, 8. 1.2 777

#	Article	IF	CITATIONS
778	Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget, 2016, 7, 26496-26515.	0.8	141
779	Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection?. Advances in Virology, 2016, 2016, 1-14.	0.5	18
780	Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses, 2016, 8, 166.	1.5	104
781	Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists. Vaccines, 2016, 4, 23.	2.1	107
782	Accessory Factors of Cytoplasmic Viral RNA Sensors Required for Antiviral Innate Immune Response. Frontiers in Immunology, 2016, 7, 200.	2.2	58
783	Critical Role of IRF-3 in the Direct Regulation of dsRNA-Induced Retinoic Acid-Inducible Gene-I (RIG-I) Expression. PLoS ONE, 2016, 11, e0163520.	1.1	17
784	Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response. PLoS Pathogens, 2016, 12, e1005772.	2.1	25
785	Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies. Molecules and Cells, 2016, 39, 777-782.	1.0	17
786	Molecular cloning, characterization and expression analysis of woodchuck retinoic acid-inducible gene I. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 335-343.	1.0	1
787	Links between recognition and degradation of cytoplasmic viral RNA in innate immune response. Reviews in Medical Virology, 2016, 26, 90-101.	3.9	19
788	Double-Stranded RNA Interacts With Toll-Like Receptor 3 in Driving the Acute Inflammatory Response Following Lung Contusion. Critical Care Medicine, 2016, 44, e1054-e1066.	0.4	24
789	Cytoplasmic Sensing in Innate Immunity. , 2016, , 710-726.		Ο
790	Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome. Scientific Reports, 2016, 6, 22002.	1.6	25
791	Identification and characterization of the melanoma differentiation – associated gene 5 in sea perch, Lateolabrax japonicus. Developmental and Comparative Immunology, 2016, 61, 161-168.	1.0	28
792	Innate Immune Receptors. Methods in Molecular Biology, 2016, 1417, 1-43.	0.4	23
793	Filament assemblies in foreign nucleic acid sensors. Current Opinion in Structural Biology, 2016, 37, 134-144.	2.6	54
794	The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection. Nucleic Acids Research, 2016, 44, 896-909.	6.5	32
795	Intracellular RIC-I Signaling Regulates TLR4-Independent Endothelial Inflammatory Responses to Endotoxin. Journal of Immunology, 2016, 196, 4681-4691.	0.4	41

#	Article	IF	CITATIONS
796	Significant role for IRF3 in both T cell and APC effector functions during T cell responses. Cellular Immunology, 2016, 310, 141-149.	1.4	19
797	The evolution and functional characterization of miiuy croaker cytosolic gene LGP2 involved in immune response. Fish and Shellfish Immunology, 2016, 58, 193-202.	1.6	18
798	Negative regulation of the antiviral response by grouper LGP2 against fish viruses. Fish and Shellfish Immunology, 2016, 56, 358-366.	1.6	36
799	Triggering Intracellular Receptors for Vaccine Adjuvantation. Trends in Immunology, 2016, 37, 573-587.	2.9	54
800	Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses. Journal of Molecular Biology, 2016, 428, 3467-3482.	2.0	24
801	Nucleic Acid Sensing and Innate Immunity: Signaling Pathways Controlling Viral Pathogenesis and Autoimmunity. Current Clinical Microbiology Reports, 2016, 3, 132-141.	1.8	14
802	Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proceedings of the United States of America, 2016, 113, 10950-10955.	3.3	93
803	Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding. Nucleic Acids Research, 2016, 45, gkw816.	6.5	15
804	Molecular characterization and expression analyses of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Larimichthys crocea. Fish and Shellfish Immunology, 2016, 55, 535-549.	1.6	28
805	The TAR-RNA binding protein is required for immunoresponses triggered by Cardiovirus infection. Biochemical and Biophysical Research Communications, 2016, 480, 187-193.	1.0	22
806	Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors. Scientific Reports, 2016, 6, 28497.	1.6	32
807	A functional polymorphism in IFNAR1 gene is associated with susceptibility and severity of HFMD with EV71 infection. Scientific Reports, 2016, 5, 18541.	1.6	21
808	Resurrecting ancestral structural dynamics of an antiviral immune receptor: adaptive binding pocket reorganization repeatedly shifts RNA preference. BMC Evolutionary Biology, 2016, 16, 241.	3.2	6
809	Promoter structures and differential responses to viral and non-viral inducers of chicken melanoma differentiation-associated gene 5. Molecular Immunology, 2016, 76, 1-6.	1.0	8
810	NOD2 in zebrafish functions in antibacterial and also antiviral responses via NF-κB, and also MDA5, RIG-I and MAVS. Fish and Shellfish Immunology, 2016, 55, 173-185.	1.6	54
811	Cloning, characterization, and expression analysis of LGP2 cDNA from goose, Anser cygnoides. Poultry Science, 2016, 95, 2290-2296.	1.5	9
812	<scp>HDAC</scp> 6 regulates cellular viral <scp>RNA</scp> sensing by deacetylation of <scp>RIG</scp> â€I. EMBO Journal, 2016, 35, 429-442.	3.5	101
813	RNF 123 has an E3 ligaseâ€independent function in RIG â€lâ€like receptorâ€mediated antiviral signaling. EMBO Reports, 2016, 17, 1155-1168.	2.0	17

#	Article	IF	CITATIONS
814	FAT10 Is Critical in Influenza A Virus Replication by Inhibiting Type I IFN. Journal of Immunology, 2016, 197, 824-833.	0.4	16
815	A molecular arms race between host innate antiviral response and emerging human coronaviruses. Virologica Sinica, 2016, 31, 12-23.	1.2	48
816	Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 596-601.	3.3	257
817	Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune responses. Virology, 2016, 488, 232-241.	1.1	49
818	Regulation of antiviral innate immune signaling by stress-induced RNA granules. Journal of Biochemistry, 2016, 159, mvv122.	0.9	43
819	MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-l–MAVS-Independent IFN Induction. Journal of Immunology, 2016, 196, 3877-3886.	0.4	60
820	Visual detection of Flavivirus RNA in living cells. Methods, 2016, 98, 82-90.	1.9	12
821	An overview of the lagomorph immune system and its genetic diversity. Immunogenetics, 2016, 68, 83-107.	1.2	32
822	Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1. Molecular Therapy, 2016, 24, 156-165.	3.7	35
823	Regulation of influenza virus infection by long non-coding RNAs. Virus Research, 2016, 212, 78-84.	1.1	39
824	Melanoma differentiation-associated gene 5 is involved in the induction of stress granules and autophagy by protonophore CCCP. Biological Chemistry, 2016, 397, 67-74.	1.2	3
825	DNA methylation of CiRIC-I gene notably relates to the resistance against GCRV and negatively-regulates mRNA expression in grass carp, Ctenopharyngodon idella. Immunobiology, 2016, 221, 23-30.	0.8	18
826	Identification, ontogeny and expression analysis of a novel laboratory of genetics and physiology 2 (LGP2) transcript in Asian seabass, Lates calcarifer. Fish and Shellfish Immunology, 2017, 62, 265-275.	1.6	13
827	Retinoic acidâ€inducible gene I (<scp>RIG</scp> â€l)â€like receptors (<scp>RLR</scp> s) in fish: current knowledge and future perspectives. Immunology, 2017, 151, 16-25.	2.0	124
828	Innate Immunity Signaling. , 2017, , 245-260.		1
829	Transcriptome profiling of spleen provides insights into the antiviral mechanism in Schizothorax prenanti after poly (I: C) challenge. Fish and Shellfish Immunology, 2017, 62, 13-23.	1.6	30
830	Laboratory of genetics and physiology 2 (LGP2) plays an essential role in hepatitis C virus infectionâ€induced interferon responses. Hepatology, 2017, 65, 1478-1491.	3.6	33
831	Respuesta inmune innata y sus implicaciones fisiopatológicas. Medicine, 2017, 12, 1388-1397.	0.0	Ο

#	Article	IF	CITATIONS
832	Type-l-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncolmmunology, 2017, 6, e1314424.	2.1	106
833	Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death and Disease, 2017, 8, e2747-e2747.	2.7	44
834	Molecular cloning of <scp>MDA</scp> 5, phylogenetic analysis of RIGâ€lâ€like receptors (<scp>RLR</scp> s) and differential gene expression of <scp>RLR</scp> s, interferons and proinflammatory cytokines after <i>inÂvitro</i> challenge with <scp>IPNV</scp> , <scp> ISAV</scp> and <scp>SAV</scp> in the salmonid cell line <scp>TO</scp> . Journal of Fish Diseases, 2017, 40, 1529-1544.	0.9	26
835	Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. Journal of Biological Chemistry, 2017, 292, 9000-9009.	1.6	68
836	Discrimination of Self and Non-Self Ribonucleic Acids. Journal of Interferon and Cytokine Research, 2017, 37, 184-197.	0.5	31
837	RIG-I-Like Receptors and Type I Interferonopathies. Journal of Interferon and Cytokine Research, 2017, 37, 207-213.	0.5	43
838	Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine and Growth Factor Reviews, 2017, 37, 1-16.	3.2	34
839	Modified <scp>mRNA</scp> as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1367.	6.6	32
840	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	13.1	63
841	The antiviral signaling mediated by black carp MDA5 is positively regulated by LGP2. Fish and Shellfish Immunology, 2017, 66, 360-371.	1.6	29
842	Pattern recognition receptors in grass carp Ctenopharyngodon idella: I. Organization and expression analysis of TLRs and RLRs. Developmental and Comparative Immunology, 2017, 76, 93-104.	1.0	56
843	Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunology, 2017, 30, 408-420.	0.6	47
844	Cytosolic nucleic acid sensors and innate immune regulation. International Reviews of Immunology, 2017, 36, 74-88.	1.5	68
845	Negative regulators of the RIGâ€lâ€like receptor signaling pathway. European Journal of Immunology, 2017, 47, 615-628.	1.6	85
846	Nucleic Acid Immunity. Advances in Immunology, 2017, 133, 121-169.	1.1	205
847	Protect this house: cytosolic sensing of viruses. Current Opinion in Virology, 2017, 22, 36-43.	2.6	49
848	The role of MDA5 in the development of autoimmune disease. Journal of Leukocyte Biology, 2018, 103, 185-192.	1.5	17
849	Characterization of the Mollusc RIG-I/MAVS Pathway Reveals an Archaic Antiviral Signalling Framework in Invertebrates. Scientific Reports, 2017, 7, 8217.	1.6	44

#	Article	IF	CITATIONS
850	Stratified ubiquitination of RIG-I creates robust immune response and induces selective gene expression. Science Advances, 2017, 3, e1701764.	4.7	18
851	PACT is required for MDA5-mediated immunoresponses triggered by Cardiovirus infection via interaction with LGP2. Biochemical and Biophysical Research Communications, 2017, 494, 227-233.	1.0	17
852	Macrophages and Mitochondria. Advances in Immunology, 2017, 133, 1-36.	1.1	45
853	Tumour viruses and innate immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160267.	1.8	24
854	Promoter identification and effect on activation of NF-κB of porcine ISG58. Acta Agriculturae Scandinavica - Section A: Animal Science, 2017, 67, 40-45.	0.2	1
855	PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6902-E6911.	3.3	25
856	PACT Facilitates RNA-Induced Activation of MDA5 by Promoting MDA5 Oligomerization. Journal of Immunology, 2017, 199, 1846-1855.	0.4	40
857	Fungal Recognition and Host Defense Mechanisms. Microbiology Spectrum, 2017, 5, .	1.2	29
858	Nonencapsidated 5′ Copy-Back Defective Interfering Genomes Produced by Recombinant Measles Viruses Are Recognized by RIG-I and LGP2 but Not MDA5. Journal of Virology, 2017, 91, .	1.5	36
859	Synthetic agonists of NOD-like, RIG-l-like, and C-type lectin receptors for probing the inflammatory immune response. Future Medicinal Chemistry, 2017, 9, 1345-1360.	1.1	9
860	The RNA binding protein La/SS-B promotes RIG-I-mediated type I and type III IFN responses following Sendai viral infection. Scientific Reports, 2017, 7, 14537.	1.6	6
861	The E3ÂUbiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I. Cell Reports, 2017, 21, 1613-1623.	2.9	98
862	Caspases control antiviral innate immunity. Cellular and Molecular Immunology, 2017, 14, 736-747.	4.8	41
863	Filovirus Strategies to Escape Antiviral Responses. Current Topics in Microbiology and Immunology, 2017, 411, 293-322.	0.7	25
864	Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cellular and Molecular Immunology, 2017, 14, 80-89.	4.8	144
865	Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine, 2017, 98, 4-14.	1.4	33
866	The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Seminars in Immunopathology, 2017, 39, 215-223.	2.8	54
867	GRIM-19: A master regulator of cytokine induced tumor suppression, metastasis and energy metabolism. Cytokine and Growth Factor Reviews, 2017, 33, 1-18.	3.2	29

ARTICLE IF CITATIONS Pattern Recognition Receptors., 2017, , 175-216. 2 868 Marburg- and Ebolaviruses. Current Topics in Microbiology and Immunology, 2017, , . 870 Fungal Recognition and Host Defense Mechanisms., 2017, , 887-902. 1 Eupatorium fortunei and Its Components Increase Antiviral Immune Responses against RNA Viruses. 871 Frontiers in Pharmacology, 2017, 8, 511. Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses, 2017, 9, 2. 872 1.556 DEC1 negatively regulates the expression of CXCL10 and CCL5 induced by poly IC in normal human 0.3 mesangial cells . Biomedical Research, 2017, 38, 249-255. 874 RNA Editing, ADAR1, and the Innate Immune Response. Genes, 2017, 8, 41. 1.0 36 Extracellular Vesicles Deliver Host and Virus RNA and Regulate Innate Immune Response. International 1.8 Journal of Molecular Sciences, 2017, 18, 666. Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of 876 Immune Responses Against Pathogen Infection. International Journal of Molecular Sciences, 2017, 18, 1.8 51 1530. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent 877 Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases. Frontiers in Cellular and 1.8 Infection Microbiology, 2017, 7, 5. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with 878 19 1.8 CBP/p300. Frontiers in Cellular and Infection Microbiology, 2017, 7, 195. E. fischeriana Root Compound Dpo Activates Antiviral Innate Immunity. Frontiers in Cellular and 879 1.8 Infection Microbiology, 2017, 7, 456. RIG-I-Like Receptor Signaling in Singleton-Merten Syndrome. Frontiers in Genetics, 2017, 8, 118. 880 1.1 22 Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?. 2.2 Frontiers in Immunology, 2017, 8, 1246. Infection with Classical Swine Fever Virus Induces Expression of Type III Interferons and Activates 882 23 1.5 Innate Immune Signaling. Frontiers in Microbiology, 2017, 8, 2558. Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS. BMC Veterinary Research, 2017, 13, 332. Unusual varieties and duplication of Rig-I like receptors encoded in the marine mollusk, Crassostrea 884 0.2 0 gigas. IOP Conference Series: Earth and Environmental Science, 2017, 77, 012005. Viral Arthritis., 2017, , 1943-1955.e3.

	CITATION REF	ORT	
#	Article	IF	CITATIONS
886	Mitochondria-associated membranes (MAMs) and inflammation. Cell Death and Disease, 2018, 9, 329.	2.7	210
887	Vibrio vulnificus quorum-sensing molecule cyclo(Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity. Nature Communications, 2018, 9, 1606.	5.8	30
888	Expression profiles of host immune responseâ€related genes against <scp>HEV</scp> genotype 3 and genotype 1 infections in rhesus macaques. Journal of Viral Hepatitis, 2018, 25, 986-995.	1.0	16
889	RIC-I and Other RNA Sensors in Antiviral Immunity. Annual Review of Immunology, 2018, 36, 667-694.	9.5	343
890	Role of innate immunity in pathophysiology of classical swine fever virus infection. Microbial Pathogenesis, 2018, 119, 248-254.	1.3	16
891	<scp>RNA</scp> sensor <scp>LGP</scp> 2 inhibits <scp>TRAF</scp> ubiquitin ligase to negatively regulate innate immune signaling. EMBO Reports, 2018, 19, .	2.0	42
892	The RIGâ€lâ€like receptor LGP2 inhibits Dicerâ€dependent processing of long doubleâ€stranded <scp>RNA</scp> and blocks <scp>RNA</scp> interference in mammalian cells. EMBO Journal, 2018, 37, .	3.5	94
893	Early diagnosis using canonical discriminant analysis of innate immune receptor gene expression profiles in a murine infectious or sterile systemic inflammation model. Journal of Trauma and Acute Care Surgery, 2018, 84, 583-589.	1.1	0
894	Innate Immune Receptors in the Regulation of Tumor Immunity. , 2018, , 407-427.		0
895	Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling. Journal of Virology, 2018, 92, .	1.5	60
896	Activation of TLR3 and its adaptor TICAM-1 increases miR-21 levels in extracellular vesicles released from human cells. Biochemical and Biophysical Research Communications, 2018, 500, 744-750.	1.0	9
897	Transcriptome sequencing of the long-nosed bandicoot (Perameles nasuta) reveals conservation and innovation of immune genes in the marsupial order Peramelemorphia. Immunogenetics, 2018, 70, 327-336.	1.2	3
898	An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Research, 2018, 46, 5239-5249.	6.5	123
899	RIC-I: a multifunctional protein beyond a pattern recognition receptor. Protein and Cell, 2018, 9, 246-253.	4.8	59
900	The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028423.	2.3	251
901	The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acidâ€inducible geneâ€iâ€iike receptor signalling and is a potential prognostic biomarker for colon cancer. Journal of Pathology, 2018, 244, 36-48.	2.1	30
902	Human plasmacytoid dendritic cells acquire phagocytic capacity by TLR9 ligation in the presence of soluble factors produced by renal epithelial cells. Kidney International, 2018, 93, 355-364.	2.6	15
903	Alternative Splicing Transcripts of Zebrafish LGP2 Gene Differentially Contribute to IFN Antiviral Response. Journal of Immunology, 2018, 200, 688-703.	0.4	62

#	Article	IF	CITATIONS
904	Molecular characterization, ontogeny and expression profiling of mitochondrial antiviral signaling adapter, MAVS from Asian seabass Lates calcarifer, Bloch (1790). Developmental and Comparative Immunology, 2018, 79, 175-185.	1.0	7
905	Recurrence of anti-MDA5 antibody-positive clinically amyopathic dermatomyositis after long-term remission. Medicine (United States), 2018, 97, e11024.	0.4	12
906	Innate Immune Detection of Cardioviruses and Viral Disruption of Interferon Signaling. Frontiers in Microbiology, 2018, 9, 2448.	1.5	15
907	RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nature Communications, 2018, 9, 4841.	5.8	110
908	The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Frontiers in Microbiology, 2018, 9, 2644.	1.5	34
909	The core promoter controls basal and inducible expression of duck retinoic acid inducible gene-I (RIC-I). Molecular Immunology, 2018, 103, 156-165.	1.0	7
910	The Interplay between Human Cytomegalovirus and Pathogen Recognition Receptor Signaling. Viruses, 2018, 10, 514.	1.5	19
911	Innate immune sensor laboratory of genetics and physiology 2 suppresses tumor cell growth and functions as a prognostic marker in neuroblastoma. Cancer Science, 2018, 109, 3494-3502.	1.7	7
912	Expression of the OAS Gene Family Is Highly Modulated in Subjects Affected by Juvenile Dermatomyositis, Resembling an Immune Response to a dsRNA Virus Infection. International Journal of Molecular Sciences, 2018, 19, 2786.	1.8	25
913	Virus Sensor RIG-I Represses RNA Interference by Interacting with TRBP through LGP2 in Mammalian Cells. Genes, 2018, 9, 511.	1.0	16
914	Comprehensive assessment of the association between genes on JAK-STAT pathway (IFIH1, TYK2, IL-10) and systemic lupus erythematosus: a meta-analysis. Archives of Dermatological Research, 2018, 310, 711-728.	1.1	15
915	Antiviral Immunity in the Fruit Fly, Drosophila melanogaster. , 2018, , .		1
916	Recent advances in mRNA vaccine delivery. Nano Research, 2018, 11, 5338-5354.	5.8	52
917	LGP2 virus sensor regulates gene expression network mediated by TRBP-bound microRNAs. Nucleic Acids Research, 2018, 46, 9134-9147.	6.5	41
918	Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. Frontiers in Immunology, 2018, 9, 1541.	2.2	34
919	Identification of Goose PKR Gene: Structure, Expression Profiling, and Antiviral Activity Against Newcastle Disease Virus. Journal of Interferon and Cytokine Research, 2018, 38, 333-340.	0.5	7
920	"Super Gene Set―Causal Relationship Discovery from Functional Genomics Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1991-1998.	1.9	2
921	Seronegative dermatomyositis presenting with features of antiâ€MDA5 subtype. Journal of Cutaneous Pathology, 2018, 45, 851-854.	0.7	3

	CITATION RE	PORT	
#	Article	IF	CITATIONS
922	Regulation of RIG-I Activation by K63-Linked Polyubiquitination. Frontiers in Immunology, 2017, 8, 1942.	2.2	71
923	RIG-I-Like Receptors as Novel Targets for Pan-Antivirals and Vaccine Adjuvants Against Emerging and Re-Emerging Viral Infections. Frontiers in Immunology, 2018, 9, 1379.	2.2	44
924	Role of Pattern Recognition Receptors in KSHV Infection. Cancers, 2018, 10, 85.	1.7	14
925	Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses, 2018, 10, 43.	1.5	12
926	Virus Infection Triggers MAVS Polymers of Distinct Molecular Weight. Viruses, 2018, 10, 56.	1.5	16
927	In vitro–transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biology, 2018, 16, e2005840.	2.6	81
928	Differential interferon system gene expression profiles in susceptible and resistant gynogenetic clones of gibel carp challenged with herpesvirus CaHV. Developmental and Comparative Immunology, 2018, 86, 52-64.	1.0	35
929	Retinoic acidâ€inducible geneâ€i, melanoma differentiationâ€associated gene 5 and Câ€Xâ€C motif chemokine ligand 10 are induced by a Tollâ€ike receptor 3 agonist in human brain microvascular endothelial cells. Clinical and Experimental Neuroimmunology, 2018, 9, 189-197.	0.5	7
930	Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget, 2018, 9, 29007-29017.	0.8	73
931	Type I Interferon Induced and Antagonized by Foot-and-Mouth Disease Virus. Frontiers in Microbiology, 2018, 9, 1862.	1.5	16
932	Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification. Molecular Therapy - Nucleic Acids, 2018, 12, 530-542.	2.3	178
933	Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. Advanced Therapeutics, 2018, 1, 1800065.	1.6	52
934	Mitochondria in innate immune signaling. Translational Research, 2018, 202, 52-68.	2.2	241
935	Innate Immunity and Inflammation. , 2018, , 74-128.		0
936	USP7â€TRIM27 axis negatively modulates antiviral type I IFN signaling. FASEB Journal, 2018, 32, 5238-5249.	0.2	39
937	MiR-221 negatively regulates innate anti-viral response. PLoS ONE, 2018, 13, e0200385.	1.1	19
938	Molecular characterization and function analysis of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Oreochromis niloticus. Fish and Shellfish Immunology, 2018, 82, 101-114.	1.6	23
939	The Role of Flaviviral Proteins in the Induction of Innate Immunity. Sub-Cellular Biochemistry, 2018, 88, 407-442.	1.0	8

#	Article	IF	CITATIONS
940	The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses, 2019, 11, 758.	1.5	31
941	Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Frontiers in Immunology, 2019, 10, 1586.	2.2	247
942	Identification of a new autoinhibitory domain of interferon-beta promoter stimulator-1 (IPS-1) for the tight regulation of oligomerization-driven signal activation. Biochemical and Biophysical Research Communications, 2019, 517, 662-669.	1.0	3
943	ADAR1: "Editor-in-Chief―of Cytoplasmic Innate Immunity. Frontiers in Immunology, 2019, 10, 1763.	2.2	137
944	A Human Long Non-coding RNA LncATV Promotes Virus Replication Through Restricting RIG-l–Mediated Innate Immunity. Frontiers in Immunology, 2019, 10, 1711.	2.2	35
945	Structureâ€guided design of immunomodulatory RNA s specifically targeting the cytoplasmic viral RNA sensor RIG â€I. FEBS Letters, 2019, 593, 3003-3014.	1.3	6
946	The small GTPase RAB1B promotes antiviral innate immunity by interacting with TNF receptor–associated factor 3 (TRAF3). Journal of Biological Chemistry, 2019, 294, 14231-14240.	1.6	19
947	Cellular Therapy for Melanoma. , 2019, , 1-33.		Ο
948	RNA Helicase LGP2 Negatively Regulates RIC-I Signaling by Preventing TRIM25-Mediated Caspase Activation and Recruitment Domain Ubiquitination. Journal of Interferon and Cytokine Research, 2019, 39, 669-683.	0.5	28
949	Two DExD/H-box helicases, DDX3 and DHX9, identified in rainbow trout are able to bind dsRNA. Fish and Shellfish Immunology, 2019, 93, 1056-1066.	1.6	12
950	Epstein–Barr Virus and Innate Immunity: Friends or Foes?. Microorganisms, 2019, 7, 183.	1.6	48
951	Comparison of the Innate Immune Responses to Pathogenic and Nonpathogenic Clade B New World Arenaviruses. Journal of Virology, 2019, 93, .	1.5	18
952	Know Thyself: RIG-I-Like Receptor Sensing of DNA Virus Infection. Journal of Virology, 2019, 93, .	1.5	32
953	Structural Immunology. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
954	Basic molecular mechanism of vascular calcification. , 2019, , 47-82.		0
955	Real-time MRI-guided Prostate Stereotactic Body Radiation Therapy: Impact on Treatment Delivery and Implications. International Journal of Radiation Oncology Biology Physics, 2019, 105, E260.	0.4	2
956	Numerical Simulation of the Formation of a Large Lower Positive Charge Center in a Tibetan Plateau Thunderstorm. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9561-9593.	1.2	7
957	Investigating the Protective Effect of Gross Saponins of Tribulus terrestris Fruit against Ischemic Stroke in Rat Using Metabolomics and Network Pharmacology. Metabolites, 2019, 9, 240.	1.3	22

#	Article	IF	CITATIONS
958	Antiviral Adaptor MAVS Promotes Murine Lupus With a B Cell Autonomous Role. Frontiers in Immunology, 2019, 10, 2452.	2.2	9
959	Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology, 2019, , .	0.8	3
960	Identification of a novel RIG-I isoform and its truncating variant in Japanese eel, Anguilla japonica. Fish and Shellfish Immunology, 2019, 94, 373-380.	1.6	9
961	Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. Immuno-Oncology Technology, 2019, 3, 15-23.	0.2	14
962	Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells, 2019, 8, 963.	1.8	50
963	Melanoma Differentiation-Associated Gene 5 Positively Modulates TNF-α-Induced CXCL10 Expression in Cultured HuH-7 and HLE Cells. Inflammation, 2019, 42, 2095-2104.	1.7	4
964	RNA-Based Adjuvants: Immunoenhancing Effect on Antiviral Vaccines and Regulatory Considerations. Critical Reviews in Immunology, 2019, 39, 1-14.	1.0	2
965	LGP2 binds to PACT to regulate RIG-lâ \in and MDA5-mediated antiviral responses. Science Signaling, 2019, 12, .	1.6	51
966	Sequence and expression analysis of the cytoplasmic pattern recognition receptor melanoma differentiation-associated gene 5 from the barbel chub Squaliobarbus curriculus. Fish and Shellfish Immunology, 2019, 94, 485-496.	1.6	6
967	Differential role of the <scp>NLRP</scp> 3 inflammasome in infection and tumorigenesis. Immunology, 2019, 156, 329-338.	2.0	68
968	Duck RIG-I restricts duck enteritis virus infection. Veterinary Microbiology, 2019, 230, 78-85.	0.8	13
969	Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses, 2019, 11, 460.	1.5	67
970	Genomic analysis and adaptive evolution of the RIG-I-like and NOD-like receptors in reptiles. International Journal of Biological Macromolecules, 2019, 134, 1045-1051.	3.6	11
971	CircRNA-9119 suppresses poly I:C induced inflammation in Leydig and Sertoli cells via TLR3 and RIG-I signal pathways. Molecular Medicine, 2019, 25, 28.	1.9	26
972	Severe influenza pneumonitis in children with inherited TLR3 deficiency. Journal of Experimental Medicine, 2019, 216, 2038-2056.	4.2	134
973	Transcriptional analysis of host responses related to immunity in chicken spleen tissues infected with reticuloendotheliosis virus strain SNV. Infection, Genetics and Evolution, 2019, 74, 103932.	1.0	20
974	Human Hemoglobin Subunit Beta Functions as a Pleiotropic Regulator of RIG-I/MDA5-Mediated Antiviral Innate Immune Responses. Journal of Virology, 2019, 93, .	1.5	24
975	Porcine Deltacoronavirus Nucleocapsid Protein Suppressed IFN-β Production by Interfering Porcine RIG-I dsRNA-Binding and K63-Linked Polyubiquitination. Frontiers in Immunology, 2019, 10, 1024.	2.2	45

# 976	ARTICLE Improved translation efficiency of therapeutic mRNA. Gene, 2019, 707, 231-238.	IF 1.0	CITATIONS 37
977	Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses, 2019, 11, 448.	1.5	67
978	CHID1 positively regulates RLR antiviral signaling by targeting the RIGâ€I/VISA signalosome. Journal of Medical Virology, 2019, 91, 1668-1678.	2.5	2
979	Pattern Recognition by Melanoma Differentiation-Associated Gene 5 (Mda5) in Teleost Fish: A Review. Frontiers in Immunology, 2019, 10, 906.	2.2	18
980	DHX15 Is a Coreceptor for RLR Signaling That Promotes Antiviral Defense Against RNA Virus Infection. Journal of Interferon and Cytokine Research, 2019, 39, 331-346.	0.5	41
981	Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 1028.	2.2	42
982	E3 ubiquitin ligases, the powerful modulator of innate antiviral immunity. Cellular Immunology, 2019, 340, 103915.	1.4	32
983	Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. International Immunology, 2019, 31, 477-488.	1.8	25
984	Poly(I:C)-Mediated Death of Human Prostate Cancer Cell Lines Is Induced by Interleukin-27 Treatment. Journal of Interferon and Cytokine Research, 2019, 39, 483-494.	0.5	14
985	Fueling Type I Interferonopathies: Regulation and Function of Type I Interferon Antiviral Responses. Journal of Interferon and Cytokine Research, 2019, 39, 383-392.	0.5	18
986	HIPK2 is necessary for type I interferon–mediated antiviral immunity. Science Signaling, 2019, 12, .	1.6	16
987	Structural bioinformatics insights into the CARDâ€CARD interaction mediated by the mitochondrial antiviralâ€signaling protein of black carp. Journal of Cellular Biochemistry, 2019, 120, 12534-12543.	1.2	8
988	Extracellular miRNAs as activators of innate immune receptors. Cancer Letters, 2019, 452, 59-65.	3.2	16
989	Running interference: Interplay between Zika virus and the host interferon response. Cytokine, 2019, 119, 7-15.	1.4	13
990	Knockdown of IGF-1R Triggers Viral RNA Sensor MDA5- and RIG-I-Mediated Mitochondrial Apoptosis in Colonic Cancer Cells. Molecular Therapy - Nucleic Acids, 2019, 16, 105-117.	2.3	11
991	TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 437-446.	1.5	48
992	The Otubain YOD1 Suppresses Aggregation and Activation of the Signaling Adaptor MAVS through Lys63-Linked Deubiquitination. Journal of Immunology, 2019, 202, 2957-2970.	0.4	34
993	Crosstalk Between Mammalian Antiviral Pathways. Non-coding RNA, 2019, 5, 29.	1.3	11

#	Article	IF	CITATIONS
994	Cytosolic Nucleic Acid Sensors in Inflammatory and Autoimmune Disorders. International Review of Cell and Molecular Biology, 2019, 344, 215-253.	1.6	23
995	Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses, 2019, 11, 132.	1.5	64
996	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	3.9	90
997	Anti-MDA5 antibody-positive rapidly progressive interstitial pneumonia without cutaneous manifestations. Respiratory Medicine Case Reports, 2019, 26, 193-196.	0.2	8
998	Pattern Recognition Receptors in Autoinflammation. , 2019, , 61-87.		2
999	W protein expression by Newcastle disease virus. Virus Research, 2019, 263, 207-216.	1.1	25
1000	Singleton-Merten Syndrome–like Skeletal Abnormalities in Mice with Constitutively Activated MDA5. Journal of Immunology, 2019, 203, 1356-1368.	0.4	17
1001	Stimulation of Innate Immunity by Host and Viral RNAs. Trends in Immunology, 2019, 40, 1134-1148.	2.9	80
1002	Host Intrinsic and Innate Intracellular Immunity During Herpes Simplex Virus Type 1 (HSV-1) Infection. Frontiers in Microbiology, 2019, 10, 2611.	1.5	34
1003	Cytoplasmic RNA Sensor Pathways and Nitazoxanide Broadly Inhibit Intracellular Mycobacterium tuberculosis Growth. IScience, 2019, 22, 299-313.	1.9	24
1004	Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Frontiers in Microbiology, 2019, 10, 2647.	1.5	7
1005	G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell Death and Disease, 2019, 10, 946.	2.7	72
1006	Development of Drugs Based on High-Polymeric Double-Stranded RNA for Antiviral and Antitumor Therapy. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2019, 13, 308-323.	0.2	4
1007	MDA5 and LGP2 acts as a key regulator though activating NF-ήB and IRF3 in RLRs signaling of mandarinfish. Fish and Shellfish Immunology, 2019, 86, 1114-1122.	1.6	10
1008	Auto-Inflammatory Syndromes. , 2019, , .		8
1009	Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiological Reviews, 2019, 99, 893-948.	13.1	57
1010	Type I Interferonopathies: From Pathophysiology to Clinical Expression. , 2019, , 125-145.		1
1011	Nucleic Acid Induced Interferon and Inflammasome Responses in Regulating Host Defense to Gastrointestinal Viruses. International Review of Cell and Molecular Biology, 2019, 345, 137-171.	1.6	5

#	Article	IF	CITATIONS
1012	An update on enterovirus 71 infection and interferon type I response. Reviews in Medical Virology, 2019, 29, e2016.	3.9	28
1013	Insights into ZIKV-Mediated Innate Immune Responses in Human Dermal Fibroblasts and Epidermal Keratinocytes. Journal of Investigative Dermatology, 2019, 139, 391-399.	0.3	48
1014	Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. International Review of Cell and Molecular Biology, 2019, 345, 225-285.	1.6	25
1015	The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. International Review of Cell and Molecular Biology, 2019, 345, 35-136.	1.6	26
1016	Inflammasomes in the pathophysiology of autoinflammatory syndromes. Journal of Leukocyte Biology, 2020, 107, 379-391.	1.5	48
1017	Screening and pharmacodynamic evaluation of the antiâ€respiratory syncytial virus activity of butene lactones in vitro and in vivo. Journal of Medical Virology, 2020, 92, 17-25.	2.5	3
1018	Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. Rna, 2020, 26, 58-68.	1.6	11
1019	The Caenorhabditis elegans RIC-I Homolog DRH-1 Mediates the Intracellular Pathogen Response upon Viral Infection. Journal of Virology, 2020, 94, .	1.5	50
1020	Dual targeting of RIG-I and MAVS by MARCH5 mitochondria ubiquitin ligase in innate immunity. Cellular Signalling, 2020, 67, 109520.	1.7	27
1021	Innate Immunity at Mucosal Surfaces. , 2020, , 101-116.		0
1021 1022	Innate Immunity at Mucosal Surfaces. , 2020, , 101-116. The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology, 2020, 225, 151864.	0.8	0
	The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an	0.8	
1022	The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology, 2020, 225, 151864. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA		10
1022 1023	The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology, 2020, 225, 151864. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biology, 2020, 17, 366-380.	1.5	10
1022 1023 1024	The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology, 2020, 225, 151864. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biology, 2020, 17, 366-380. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nature Immunology, 2020, 21, 17-29.	1.5 7.0	10 10 219
1022 1023 1024 1025	The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology, 2020, 225, 151864. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biology, 2020, 17, 366-380. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nature Immunology, 2020, 21, 17-29. LGP2 virus sensor enhances apoptosis by upregulating apoptosis regulatory genes through TRBP-bound miRNAs during viral infection. Nucleic Acids Research, 2020, 48, 1494-1507. Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. International Journal of	1.5 7.0 6.5	10 10 219 15
1022 1023 1024 1025 1026	The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology, 2020, 225, 151864. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biology, 2020, 17, 366-380. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nature Immunology, 2020, 21, 17-29. LGP2 virus sensor enhances apoptosis by upregulating apoptosis regulatory genes through TRBP-bound miRNAs during viral infection. Nucleic Acids Research, 2020, 48, 1494-1507. Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. International Journal of Molecular Sciences, 2020, 21, 7289. The role of therapeutic plasma exchange in clinically amyopathic dermatomyositis with MDA â€5	1.5 7.0 6.5 1.8	10 10 219 15 13

#	Article	IF	CITATIONS
1030	Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduction and Targeted Therapy, 2020, 5, 270.	7.1	18
1031	Interplay between Hepatitis D Virus and the Interferon Response. Viruses, 2020, 12, 1334.	1.5	23
1032	Characterization of distinct molecular interactions responsible for IRF3 and IRF7 phosphorylation and subsequent dimerization. Nucleic Acids Research, 2020, 48, 11421-11433.	6.5	28
1033	The State of The Jak/Stat Pathway Affects the Sensitivity of Tumor Cells to Oncolytic Enteroviruses. Molecular Biology, 2020, 54, 570-577.	0.4	1
1034	Type I Interferons and Malaria: A Double-Edge Sword Against a Complex Parasitic Disease. Frontiers in Cellular and Infection Microbiology, 2020, 10, 594621.	1.8	29
1035	Tupaia OASL1 Promotes Cellular Antiviral Immune Responses by Recruiting MDA5 to MAVS. Journal of Immunology, 2020, 205, 3419-3428.	0.4	6
1036	Transcriptome analysis of senecavirus A-infected cells: Type I interferon is a critical anti-viral factor. Microbial Pathogenesis, 2020, 147, 104432.	1.3	14
1037	Self RNA Sensing by RIC-l–like Receptors in Viral Infection and Sterile Inflammation. Journal of Immunology, 2020, 205, 883-891.	0.4	21
1038	Emerging roles of Toll-like receptor 9 in cardiometabolic disorders. Inflammation and Regeneration, 2020, 40, 18.	1.5	25
1039	Innate immune evasion by <scp>SARSâ€CoV</scp> â€2: Comparison with <scp>SARSâ€CoV</scp> . Reviews in Medical Virology, 2020, 30, 1-9.	3.9	52
1040	Murine norovirus replicase augments RIG-I-like receptors-mediated antiviral interferon response. Antiviral Research, 2020, 182, 104877.	1.9	6
1041	Transcriptome analysis reveals temperature-dependent early immune response in flounder (Paralichthys olivaceus) after Hirame novirhabdovirus (HIRRV) infection. Fish and Shellfish Immunology, 2020, 107, 367-378.	1.6	17
1042	Human Antibodies to VP4 Inhibit Replication of Enteroviruses Across Subgenotypes and Serotypes, and Enhance Host Innate Immunity. Frontiers in Microbiology, 2020, 11, 562768.	1.5	14
1043	Immunogenicity and protective efficacy induced by an mRNA vaccine encoding gD antigen against pseudorabies virus infection. Veterinary Microbiology, 2020, 251, 108886.	0.8	12
1044	Zebrafish RBM47 Promotes Lysosome-Dependent Degradation of MAVS to Inhibit IFN Induction. Journal of Immunology, 2020, 205, 1819-1829.	0.4	13
1045	The Central Role and Possible Mechanisms of Bacterial DNAs in Sepsis Development. Mediators of Inflammation, 2020, 2020, 1-11.	1.4	6
1046	Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy, 2020, 5, 209.	7.1	669
1047	Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Theranostics, 2020, 10, 9407-9424.	4.6	39

1.0

24

#	Article	IF	CITATIONS
1048	Hereditary Disorders of Cardiovascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 35-47.	1.1	16
1049	How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Frontiers in Immunology, 2020, 11, 593891.	2.2	18
1050	Insight into the expression of RIG-I-like receptors in human third trimester placentas following ex vivo cytomegalovirus or vesicular stomatitis virus infection. Molecular Immunology, 2020, 126, 143-152.	1.0	5
1051	Small RNA Plays Important Roles in Virus–Host Interactions. Viruses, 2020, 12, 1271.	1.5	6
1052	Viral RNA recognition by LGP2 and MDA5, and activation of signaling through step-by-step conformational changes. Nucleic Acids Research, 2020, 48, 11664-11674.	6.5	51
1053	Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Frontiers in Immunology, 2020, 11, 1030.	2.2	116
1054	Cyclooxygenase-2 Facilitates Newcastle Disease Virus Proliferation and Is as a Target for Canthin-6-One Antiviral Activity. Frontiers in Microbiology, 2020, 11, 987.	1.5	9
1055	Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 209.	1.8	30
1056	Transcriptome analysis reveals seven key immune pathways of Japanese flounder (Paralichthys) Tj ETQq0 0 0 rgBT	/Overlock	2 10 Tf 50 42
1057	Cleavage of Desmosomal Cadherins Promotes γ-Catenin Degradation and Benefits Wnt Signaling in Coxsackievirus B3-Induced Destruction of Cardiomyocytes. Frontiers in Microbiology, 2020, 11, 767.	1.5	7
1058	Zebrafish ubiquitin-specific peptidase 5 (USP5) activates interferon resistance to the virus by increase the expression of RIG-I. Gene, 2020, 751, 144761.	1.0	10
1059	Evaluation of Innate Immune Mediators Related to Respiratory Viruses in the Lung of Stable COPD Patients. Journal of Clinical Medicine, 2020, 9, 1807.	1.0	5
1060	Spatiotemporal dynamics of innate immune signaling via RIC-l–like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15778-15788.	3.3	48
1061	Role of CARD Region of MDA5 Gene in Canine Influenza Virus Infection. Viruses, 2020, 12, 307.	1.5	7
1062	Transcriptomic Analysis of the Chicken MDA5 Response Genes. Genes, 2020, 11, 308.	1.0	17
1063	Fine-tuning of antiviral innate immunity by ubiquitination. Advances in Immunology, 2020, 145, 95-128.	1.1	23

1065 Molecular cloning, expression and mimicking antiviral activity analysis of retinoic acid-inducible 0.4 0 gene-l in duck (Anas platyrhynchos). Journal of Genetics, 2020, 99, 1.

1064 Hepatitis C Virus: Evading the Intracellular Innate Immunity. Journal of Clinical Medicine, 2020, 9, 790.

# 1066	ARTICLE Recent Advances and Contradictions in the Study of the Individual Roles of Ubiquitin Ligases That Regulate RIG-I-Like Receptor-Mediated Antiviral Innate Immune Responses. Frontiers in Immunology, 2020, 11, 1296.	IF 2.2	Citations 31
1067	Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity, 2020, 53, 26-42.	6.6	83
1068	Innate immune responses to duck Tembusu virus infection. Veterinary Research, 2020, 51, 87.	1.1	17
1069	Mutual Regulation of RNA Silencing and the IFN Response as an Antiviral Defense System in Mammalian Cells. International Journal of Molecular Sciences, 2020, 21, 1348.	1.8	13
1070	Role of Chemokine (C–X–C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediators of Inflammation, 2020, 2020, 1-16.	1.4	30
1071	Mitochondrial Interactome: A Focus on Antiviral Signaling Pathways. Frontiers in Cell and Developmental Biology, 2020, 8, 8.	1.8	74
1072	RIC-I aggravates interstitial fibrosis via c-Myc-mediated fibroblast activation in UUO mice. Journal of Molecular Medicine, 2020, 98, 527-540.	1.7	18
1073	Genome-wide identification, characterization of RLR genes in Yesso scallop (Patinopecten yessoensis) and functional regulations in responses to ocean acidification. Fish and Shellfish Immunology, 2020, 98, 488-498.	1.6	8
1074	Poly I:C stimulation in-vitro as a marker for an antiviral response in different cell types generated from Buffalo (Bubalus bubalis). Molecular Immunology, 2020, 121, 136-143.	1.0	8
1075	Molecular characterization and expressional quantification of lgp2 , a modulatory coâ€receptor of RLRâ€signalling pathway in the Indian major carp Labeo rohita following pathogenic challenges and PAMP stimulations. Journal of Fish Biology, 2020, 96, 1399-1410.	0.7	7
1076	2′, 5′-Oligoadenylate Synthetase 2 (OAS2) Inhibits Zika Virus Replication through Activation of Type Ι IFN Signaling Pathway. Viruses, 2020, 12, 418.	1.5	24
1077	NUDT21 Links Mitochondrial IPS-1 to RLR-Containing Stress Granules and Activates Host Antiviral Defense. Journal of Immunology, 2021, 206, 154-163.	0.4	4
1078	Porcine haemagglutinating encephalomyelitis virus deactivates transcription factor IRF3 and limits type I interferon production. Veterinary Microbiology, 2021, 252, 108918.	0.8	4
1079	Pharmacological targets and emerging treatments for respiratory syncytial virus bronchiolitis. , 2021, 220, 107712.		13
1080	Demalonylation of DDX3 by Sirtuin 5 promotes antiviral innate immune responses. Theranostics, 2021, 11, 7235-7246.	4.6	6
1081	Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. International Journal of Molecular Sciences, 2021, 22, 1301.	1.8	19
1082	Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses, 2021, 13, 170.	1.5	28
1083	Emerging Roles of the Innate Immune System Regulated by DNA Sensors in the Development of Vascular and Metabolic Diseases. Journal of Atherosclerosis and Thrombosis, 2022, 29, 297-307.	0.9	4

#	Article	IF	CITATIONS
1084	Transcriptome analysis of immune response against <i>Siniperca chuatsi</i> rhabdovirus infection in mandarin fish <i>Siniperca chuatsi</i> . Journal of Fish Diseases, 2021, 44, 675-687.	0.9	12
1085	Human Cancer Cells Sense Cytosolic Nucleic Acids Through the RIG-l–MAVS Pathway and cGAS–STING Pathway. Frontiers in Cell and Developmental Biology, 2020, 8, 606001.	1.8	24
1086	Epigenetic regulation of RNA sensors: Sentinels of immune response. Seminars in Cancer Biology, 2022, 83, 413-421.	4.3	4
1087	Role of MDA5 in regulating CXCL10 expression induced by TLR3 signaling in human rheumatoid fibroblast-like synoviocytes. Molecular Biology Reports, 2021, 48, 425-433.	1.0	3
1088	Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cellular and Molecular Immunology, 2021, 18, 539-555.	4.8	179
1089	Swine Acute Diarrhea Syndrome Coronavirus Nucleocapsid Protein Antagonizes Interferon-Î ² Production via Blocking the Interaction Between TRAF3 and TBK1. Frontiers in Immunology, 2021, 12, 573078.	2.2	13
1090	Tricks and threats of RNA viruses – towards understanding the fate of viral RNA. RNA Biology, 2021, 18, 669-687.	1.5	12
1091	The emerging roles of the MARCH ligases in antiviral innate immunity. International Journal of Biological Macromolecules, 2021, 171, 423-427.	3.6	13
1092	Human Herpesvirus 6B U26 Inhibits the Activation of the RLR/MAVS Signaling Pathway. MBio, 2021, 12, .	1.8	5
1093	Germline genetic contribution to the immune landscape of cancer. Immunity, 2021, 54, 367-386.e8.	6.6	95
1095	Type I interferons in pancreatic cancer and development of new therapeutic approaches. Critical Reviews in Oncology/Hematology, 2021, 159, 103204.	2.0	18
1096	Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Frontiers in Immunology, 2021, 12, 679242.	2.2	1
1097	Sensing of transposable elements by the antiviral innate immune system. Rna, 2021, 27, 735-752.	1.6	36
1098	Could Antigen Presenting Cells Represent a Protective Element during SARS-CoV-2 Infection in Children?. Pathogens, 2021, 10, 476.	1.2	8
1099	Robust microbe immune recognition in the intestinal mucosa. Genes and Immunity, 2021, 22, 268-275.	2.2	5
1100	Innate immune sensing of coronavirus and viral evasion strategies. Experimental and Molecular Medicine, 2021, 53, 723-736.	3.2	130
1101	Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nature Communications, 2021, 12, 2681.	5.8	45
1102	Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2. Frontiers in Immunology, 2021, 12, 609543.	2.2	7

#	Article	IF	CITATIONS
1103	Functional Characterization of the Cnidarian Antiviral Immune Response Reveals Ancestral Complexity. Molecular Biology and Evolution, 2021, 38, 4546-4561.	3.5	18
1104	RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms, 2021, 9, 1206.	1.6	21
1105	Zebrafish Uba1 Degrades IRF3 through K48-Linked Ubiquitination to Inhibit IFN Production. Journal of Immunology, 2021, 207, 512-522.	0.4	8
1106	The role of <scp>RNA</scp> editing enzyme ADAR1 in human disease. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1665.	3.2	61
1107	DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Reports, 2021, 35, 109205.	2.9	28
1108	Porcine RIG-I and MDA5 Signaling CARD Domains Exert Similar Antiviral Function Against Different Viruses. Frontiers in Microbiology, 2021, 12, 677634.	1.5	4
1109	Proteomics Investigation of the Time Course Responses of RAW264.7 Macrophages to Infections With the Wild-Type and Twin-Arginine Translocation Mutant Strains of Brucella melitensis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 679571.	1.8	2
1110	RIG-I-Like Receptor-Mediated Recognition of Viral Genomic RNA of Severe Acute Respiratory Syndrome Coronavirus-2 and Viral Escape From the Host Innate Immune Responses. Frontiers in Immunology, 2021, 12, 700926.	2.2	69
1111	Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Advanced Drug Delivery Reviews, 2021, 173, 427-438.	6.6	38
1112	Intra-Tumoral Activation of Endosomal TLR Pathways Reveals a Distinct Role for TLR3 Agonist Dependent Type-1 Interferons in Shaping the Tumor Immune Microenvironment. Frontiers in Oncology, 2021, 11, 711673.	1.3	10
1113	Ligase Pellino3 Regulates Macrophage Action and Survival in Response to VSV Infection in RIG-I-Dependent Path. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	4
1114	Molecular cloning, identification and expression analysis of MDA5/MAVS/TRAF3/TANK/TBK1, five pivotal molecules of RLR signalling pathway in turbot (<i>Scophthalmus maximus</i>). Aquaculture Research, 2021, 52, 5537-5550.	0.9	1
1115	Dual Effect of Organogermanium Compound THGP on RIG-I-Mediated Viral Sensing and Viral Replication during Influenza a Virus Infection. Viruses, 2021, 13, 1674.	1.5	8
1116	Retinoic Acid-Inducible Gene I-Like Receptors Activate Snail To Limit RNA Viral Infections. Journal of Virology, 2021, 95, e0121621.	1.5	8
1117	Insights into the structure and RNA-binding specificity of <i>Caenorhabditis elegans</i> Dicer-related helicase 3 (DRH-3). Nucleic Acids Research, 2021, 49, 9978-9991.	6.5	4
1118	SARS-CoV-2 suppresses IFNÎ ² production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathogens, 2021, 17, e1009800.	2.1	74
1119	Non-coding RNA regulatory networks in mesothelioma: a narrative review of their implication in in innate immune signaling pathways. Precision Cancer Medicine, 0, 4, 23-23.	1.8	0
1120	SERINC proteins potentiate antiviral type I IFN production and proinflammatory signaling pathways. Science Signaling, 2021, 14, eabc7611.	1.6	13

#	Article	IF	CITATIONS
1121	The role of TRIM proteins in PRR signaling pathways and immune-related diseases. International Immunopharmacology, 2021, 98, 107813.	1.7	6
1122	Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Non-coding RNA, 2021, 7, 57.	1.3	19
1124	Hepatic Macrophages Express Melanoma Differentiation-Associated Gene 5 in Nonalcoholic Steatohepatitis. Inflammation, 2022, 45, 343-355.	1.7	4
1125	The molecular mechanism of RIGâ€I activation and signaling. Immunological Reviews, 2021, 304, 154-168.	2.8	93
1127	A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS Journal, 2021, 288, 6365-6391.	2.2	33
1128	Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 625833.	2.2	58
1129	Immune Effects of Autoantigen-Associated RNA. , 2007, 598, 293-308.		1
1130	Happy Birthday: 30 Years of RNA Helicases. Methods in Molecular Biology, 2021, 2209, 17-34.	0.4	18
1131	Immune Signatures and Systems Biology of Vaccines. , 2011, , 141-167.		2
1132	Crystallization of Mouse RIG-I ATPase Domain: In Situ Proteolysis. Methods in Molecular Biology, 2014, 1169, 27-35.	0.4	1
1133	Host Immune Resistance and Dietary Lipids. , 2010, , 131-153.		3
1134	shRNA-Induced Interferon-Stimulated Gene Analysis. Methods in Molecular Biology, 2012, 820, 163-177.	0.4	6
1135	Regulation of Antiviral Innate Immune Responses by RIC-I Family of RNA Helicases. , 2007, 316, 193-205.		39
1136	Beyond Double-Stranded RNA-Type I IFN Induction by 3pRNA and Other Viral Nucleic Acids. Current Topics in Microbiology and Immunology, 2007, 316, 207-230.	0.7	27
1137	Autophagy and Innate Recognition Systems. Current Topics in Microbiology and Immunology, 2009, 335, 107-121.	0.7	26
1138	Respiratory Syncytial Virus Mechanisms to Interfere with Type 1 Interferons. Current Topics in Microbiology and Immunology, 2013, 372, 173-191.	0.7	55
1139	Structures of RIG-I-Like Receptors and Insights into Viral RNA Sensing. Advances in Experimental Medicine and Biology, 2019, 1172, 157-188.	0.8	20
1140	The Interplay Between Pattern Recognition Receptors and Autophagy in Inflammation. Advances in Experimental Medicine and Biology, 2019, 1209, 79-108.	0.8	39

#	Article	IF	CITATIONS
1141	Interferon-induced helicase (IFIH1) polymorphism with systemic lupus erythematosus and dermatomyositis/polymyositis. Modern Rheumatology, 2010, 20, 466-470.	0.9	12
1142	Diagnosis, Management and Disease Mechanisms of Hepatitis in the Era of Genomic Medicine. , 2009, , 1375-1389.		1
1143	Cytoplasmic Viral RNA Sensors: RIG-I-Like Receptors. , 2016, , 352-359.		3
1145	Mechanistic modeling explains the dsRNA length-dependent activation of the RIG-I mediated immune response. Journal of Theoretical Biology, 2020, 500, 110336.	0.8	5
1146	Nucleic Acid Innate Immune Receptors. RSC Drug Discovery Series, 2019, , 292-305.	0.2	1
1147	Chapter 1. An Introduction to RNA Helicases: Superfamilies, Families, and Major Themes. RSC Biomolecular Sciences, 2010, , 1-31.	0.4	7
1148	Contribution of the interaction between the rabies virus P protein and I-kappa B kinase ϵ to the inhibition of type I IFN induction signalling. Journal of General Virology, 2016, 97, 316-326.	1.3	24
1149	Spring viraemia of carp virus: recent advances. Journal of General Virology, 2016, 97, 1037-1051.	1.3	150
1150	Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli. Microbial Genomics, 2018, 4, .	1.0	57
1153	Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. Journal of Clinical Investigation, 2011, 121, 37-56.	3.9	290
1154	Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation. Journal of Clinical Investigation, 2014, 124, 1568-1581.	3.9	43
1155	Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. Journal of Clinical Investigation, 2016, 126, 4219-4236.	3.9	56
1157	Cytosolic 5′-Triphosphate Ended Viral Leader Transcript of Measles Virus as Activator of the RIG I-Mediated Interferon Response. PLoS ONE, 2007, 2, e279.	1.1	159
1158	Type I Interferons and Interferon Regulatory Factors Regulate TNF-Related Apoptosis-Inducing Ligand (TRAIL) in HIV-1-Infected Macrophages. PLoS ONE, 2009, 4, e5397.	1.1	39
1159	TRAF6 Establishes Innate Immune Responses by Activating NF-κB and IRF7 upon Sensing Cytosolic Viral RNA and DNA. PLoS ONE, 2009, 4, e5674.	1.1	102
1160	REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I. PLoS ONE, 2009, 4, e5760.	1.1	117
1161	Study of Human RIG-I Polymorphisms Identifies Two Variants with an Opposite Impact on the Antiviral Immune Response. PLoS ONE, 2009, 4, e7582.	1.1	48
1162	Reduced Expression of IFIH1 Is Protective for Type 1 Diabetes. PLoS ONE, 2010, 5, e12646.	1.1	82

#	Article	IF	CITATIONS
1163	Elimination of Hepatitis C Virus from Hepatocytes by a Selective Activation of Therapeutic Molecules. PLoS ONE, 2011, 6, e15967.	1.1	6
1164	Human Papillomavirus Deregulates the Response of a Cellular Network Comprising of Chemotactic and Proinflammatory Genes. PLoS ONE, 2011, 6, e17848.	1.1	145
1165	Impaired Cellular Responses to Cytosolic DNA or Infection with Listeria monocytogenes and Vaccinia Virus in the Absence of the Murine LGP2 Protein. PLoS ONE, 2011, 6, e18842.	1.1	33
1166	TRAF6 and IRF7 Control HIV Replication in Macrophages. PLoS ONE, 2011, 6, e28125.	1.1	41
1167	Functional Characterizations of RIG-I to GCRV and Viral/Bacterial PAMPs in Grass Carp Ctenopharyngodon idella. PLoS ONE, 2012, 7, e42182.	1.1	38
1168	Critical Role of an Antiviral Stress Granule Containing RIG-I and PKR in Viral Detection and Innate Immunity. PLoS ONE, 2012, 7, e43031.	1.1	294
1169	Functional Characterization of Domains of IPS-1 Using an Inducible Oligomerization System. PLoS ONE, 2013, 8, e53578.	1.1	22
1170	Characterization of Rotavirus RNAs That Activate Innate Immune Signaling through the RIG-I-Like Receptors. PLoS ONE, 2013, 8, e69825.	1.1	33
1171	Genetic Association Study of TNFAIP3, IFIH1, IRF5 Polymorphisms with Polymyositis/Dermatomyositis in Chinese Han Population. PLoS ONE, 2014, 9, e110044.	1.1	30
1172	Variation in the Ovine Abomasal Lymph Node Transcriptome between Breeds Known to Differ in Resistance to the Gastrointestinal Nematode. PLoS ONE, 2015, 10, e0124823.	1.1	16
1173	Differential Regulation of TLR Signaling on the Induction of Antiviral Interferons in Human Intestinal Epithelial Cells Infected with Enterovirus 71. PLoS ONE, 2016, 11, e0152177.	1.1	37
1174	Invertebrate Iridescent Virus 6, a DNA Virus, Stimulates a Mammalian Innate Immune Response through RIG-I-Like Receptors. PLoS ONE, 2016, 11, e0166088.	1.1	31
1175	Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?. PLoS ONE, 2018, 13, e0191652.	1.1	11
1176	PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLoS Pathogens, 2016, 12, e1005489.	2.1	91
1177	Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-l interferon signaling and VP1 E83K mutation results in virus attenuation. PLoS Pathogens, 2020, 16, e1009057.	2.1	18
1178	Whole-genome expression analyses of type 2 diabetes in human skin reveal altered immune function and burden of infection. Oncotarget, 2017, 8, 34601-34609.	0.8	25
1179	MDA5 complements TLR3 in suppression of neuroblastoma. Oncotarget, 2015, 6, 24935-24946.	0.8	15
1180	Role of type I- and type II-interferon in expression of melanoma differentiation-associated gene-5 in HSC-3 oral squamous carcinoma cells. Biomedical Research, 2014, 35, 9-16.	0.3	4

#	Article	IF	CITATIONS
1181	Type I interferon production by nucleic acid-stimulated dendritic cells. Frontiers in Bioscience - Landmark, 2008, Volume, 6034.	3.0	8
1182	Hepatitis C Virus' initial encounters: mechanisms of innate immunity. Frontiers in Bioscience - Landmark, 2012, 17, 281.	3.0	1
1183	Interaction of hepatitis C virus with the type I interferon system. World Journal of Gastroenterology, 2007, 13, 4818.	1.4	11
1184	Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surgery and Nutrition, 2014, 3, 386-406.	0.7	46
1185	The Interplay between Host Immunity and Respiratory Viral Infection in Asthma Exacerbation. Immune Network, 2019, 19, e31.	1.6	24
1186	Apoptosis Induction By Cytosolic RNA Helicases. , 2012, 02, .		3
1187	Paramyxovirus evasion of innate immunity: Diverse strategies for common targets. World Journal of Virology, 2013, 2, 57.	1.3	68
1188	Decoding the vital segments in human ATP-dependent RNA helicase. Bioinformation, 2020, 16, 160-170.	0.2	7
1189	Unified mechanisms for self-RNA recognition by RIG-I Singleton-Merten syndrome variants. ELife, 2018, 7, .	2.8	26
1190	The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity, 2008, 29, 538-550.	6.6	753
1191	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	1.1	12
1192	Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective. Viruses, 2021, 13, 2131.	1.5	9
1193	Host–Viral Interactions in the Pathogenesis of Ulcerative Colitis. International Journal of Molecular Sciences, 2021, 22, 10851.	1.8	2
1194	Cytosolic and nuclear recognition of virus and viral evasion. Molecular Biomedicine, 2021, 2, 30.	1.7	5
1195	Role of nucleic acid sensing in the pathogenesis of type 1 diabetes. World Journal of Diabetes, 2021, 12, 1655-1673.	1.3	2
1196	Induction and Evasion of Innate Immunity by hepatitis C virus. Acta Hepatologica Japonica, 2006, 47, 491-498.	0.0	1
1198	NFB in the Innate Immune System. , 2006, , 107-129.		0
1199	Dendritic Cells as Sensors for Foreign and Self Nucleic Acids. , 2008, , 59-73.		0

# 1200	ARTICLE Helicases at Frontline of RNA Virus Recognition. , 2008, , 241-272.	IF	Citations
1201	Recognition of Virus Invasion by Toll-Like Receptors and RIG-I-Like Helicases. , 2008, , 31-41.		0
1202	Activation of Innate Pattern Recognition Pathways by Single-Stranded Ribonucleic Acids. , 2008, , 189-205.		0
1203	Antiviral Signaling Through TLRs and RLHs. , 2008, , 17-29.		0
1204	Impacts of Nucleoside Modi.cation on RNAMediated Activation of Toll-Like Receptors. , 2008, , 171-188.		0
1205	Immunological Controls. , 2009, , 293-322.		0
1206	Chapter 5. RIG-I-Like RNA Helicases: Multidomain Proteins in Antiviral Innate Immunity and Processing of Small Regulatory RNAs. RSC Biomolecular Sciences, 2010, , 121-148.	0.4	0
1210	Cytoplasmic Sensing of Viral Double-Stranded RNA and Activation of Innate Immunity by RIG-I-Like Receptors. , 2012, , 51-60.		1
1211	Innate Immunity of Airway Epithelium and COPD. , 0, , .		0
1212	Regulation of Innate Immunity and Interferon Defenses by Hepatitis C Virus. , 2012, , 245-269.		0
1213	Polymorphism Near the Interleukin-28B Gene and Anti-Hepatitis C Viral Response. Journal of Clinical and Translational Hepatology, 2013, 1, 39-44.	0.7	4
1214	Seeing inflammation through the innate immune eye. OA Inflammation, 2013, 1, .	0.3	0
1215	Delivery Strategies for Developing siRNA-Based Vaginal Microbicides. , 2014, , 345-365.		0
1216	Interferon Regulatory Factors: Role in Transcriptional Regulation of Macrophage Plasticity and Activation. , 2014, , 463-486.		0
1218	Rhabdoviruses and Mechanisms of Type I Interferon Antagonism. , 0, , 211-227.		0
1219	Macrophages: Microbial Recognition and Response. , 0, , 27-50.		0
1220	Innate Immune Responses. , 0, , 285-302.		0
1221	Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections. , 0, , 29-38.		ο

#	Article	IF	Citations
1223	Role of Oxidative Stress and Inflammation in Nutrition–Infection Interactions and the Potential Therapeutic Strategy Using Antioxidants and Modulating Inflammation. , 2014, , 81-106.		0
1225	Aberrant Activation of RIC-l–Like Receptors and Autoimmune Diseases. , 2016, , 511-523.		0
1226	Components of the Immune System. , 2017, , 3-22.		1
1230	Molecular characterization and immune responsive expression of feline MDA5 gene. Journal of Veterinary Medical Science, 2018, 80, 1266-1270.	0.3	0
1233	Synthetic Agonists of Toll-like Receptors and Therapeutic Applications. RSC Drug Discovery Series, 2019, , 306-338.	0.2	0
1235	Modulation of arbovirus infection by mosquito saliva. Access Microbiology, 2019, 1, .	0.2	0
1236	Enterovirus 71 3C Protease Does Not Disrupt Interferon Type I Signaling Pathway. Jundishapur Journal of Microbiology, 2019, 12, .	0.2	0
1237	Immunocomposition of Gastrointestinal Tract of Gut. Diagnostics and Therapeutic Advances in Gl Malignancies, 2020, , 17-39.	0.2	1
1238	Dysregulation in nucleic acidâ€sensing pathway genes is associated with cancer patients' prognosis. Cancer Science, 2020, 111, 2212-2222.	1.7	7
1240	The crosstalk between viral RNA- and DNA-sensing mechanisms. Cellular and Molecular Life Sciences, 2021, 78, 7427-7434.	2.4	28
1242	Identification and comparative study of melanoma differentiation-associated gene 5 homologues of triploid hybrid fish and its parents. Developmental and Comparative Immunology, 2022, 127, 104294.	1.0	1
1243	A Dicer2 from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus. Developmental and Comparative Immunology, 2022, 127, 104267.	1.0	4
1244	Cellular Therapy for Melanoma. , 2020, , 1267-1299.		0
1245	The Uniqueness of Innate Immunity. , 2020, , 35-47.		0
1247	Characterization of RNA Sensing Pathways in Hepatoma Cell Lines and Primary Human Hepatocytes. Cells, 2021, 10, 3019.	1.8	10
1248	The parapoxvirus Orf virus inhibits IFN-β expression induced by dsRNA. Virus Research, 2021, 307, 198619.	1.1	2
1252	The role of immunostimulatory nucleic acids in septic shock. International Journal of Clinical and Experimental Medicine, 2012, 5, 1-23.	1.3	9
1254	Collaboration of Toll-like and RIG-I-like receptors in human dendritic cells: tRIGgering antiviral innate immune responses. American Journal of Clinical and Experimental Immunology, 2013, 2, 195-207.	0.2	38

	CHAHON K	LPORT	
#	Article	IF	CITATIONS
1255	RIG-I Deficiency Promotes Obesity-Induced Insulin Resistance. Pharmaceuticals, 2021, 14, 1178.	1.7	4
1256	Transcriptome Sequencing of the Spleen Reveals Antiviral Response Genes in Chickens Infected with CAstV. Viruses, 2021, 13, 2374.	1.5	3
1257	Foot-and-Mouth Disease Virus 3C Protease Antagonizes Interferon Signaling and C142T Substitution Attenuates the FMD Virus. Frontiers in Microbiology, 2021, 12, 737031.	1.5	7
1258	Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Experimental and Molecular Medicine, 2021, 53, 1647-1668.	3.2	35
1259	Modeling Innate Antiviral Immunity in Physiological Context. Journal of Molecular Biology, 2022, 434, 167374.	2.0	4
1260	Transcription from the proximal promoter of ELAC1, a gene for tRNA repair, is upregulated by interferons. Biochemical and Biophysical Research Communications, 2021, 585, 162-168.	1.0	2
1261	Regulation of MDA5-dependent anti-Tembusu virus innate immune responses by LGP2 in ducks. Veterinary Microbiology, 2021, 263, 109281.	0.8	3
1262	Autophagy and antiviral defense. IUBMB Life, 2022, 74, 317-338.	1.5	9
1263	Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chemical Reviews, 2022, 122, 3414-3458.	23.0	10
1264	Cytoplasmic Sensing in Innate Immunity. , 2022, , .		0
1265	Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases. In Silico Biology, 2022, 14, 115-133.	0.4	1
1266	Modulation of Ubiquitin Signaling in Innate Immune Response by Herpesviruses. International Journal of Molecular Sciences, 2022, 23, 492.	1.8	8
1267	Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Frontiers in Cell and Developmental Biology, 2022, 10, 796066.	1.8	14
1268	Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. Journal of Biomedical Science, 2022, 29, 11.	2.6	6
1269	Regulation of antiviral innate immunity by chemical modification of viral <scp>RNA</scp> . Wiley Interdisciplinary Reviews RNA, 2022, 13, e1720.	3.2	24
1270	Dendritic cells as vaccine targets. , 2022, , 57-94.		0
1271	Role of Hypoxia in the Interferon Response. Frontiers in Immunology, 2022, 13, 821816.	2.2	5
1272	Plasma Non-transferrin-Bound Iron Could Enter into Mice Duodenum and Negatively Affect Duodenal Defense Response to Virus and Immune Responses. Biological Trace Element Research, 2023, 201, 786-799.	1.9	1

ARTICLE IF CITATIONS Transcriptome Analyses of Senecavirus A-Infected PK-15 Cells: RIG-I and IRF7 Are the Important Factors 1273 1.5 6 in Inducing Type III Interferons. Frontiers in Microbiology, 2022, 13, 846343. Let's Get Physical: Flavivirus-Host Protein–Protein Interactions in Replication and Pathogenesis. 1274 1.5 Frontiers in Microbiology, 2022, 13, 847588. Divergences of the RLR Gene Families across Lophotrochozoans: Domain Grafting, Exon–Intron 1275 Structure, Expression, and Positive Selection. International Journal of Molecular Sciences, 2022, 23, 1.8 5 3415. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. International Journal of Molecular 1276 1.8 Sciences, 2022, 23, 3953. Signaling from the RNA sensor RIG-I is regulated by ufmylation. Proceedings of the National Academy 1277 3.3 11 of Sciences of the United States of America, 2022, 119, e2119531119. STUB1 activates antiviral response in zebrafish by promoting the expression of RIG-I. Fish and Shellfish 1.6 Immunology, 2022, 123, 182-193. Activation and Evasion of RLR Signaling by DNA Virus Infection. Frontiers in Microbiology, 2021, 12, 1279 1.57 804511. Immune regulator LGP2 targets Ubc13/UBE2N to mediate widespread interference with K63 polyubiquitination and NF- 1° B activation. Cell Reports, 2021, 37, 110175. 1280 2.9 Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics. ACS Infectious Diseases, 2022, 8, 1281 1.8 3 118-128. The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus 1.5 Infection. Antibiotics, 2022, 11, 542. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. Journal of 1283 6.9 11 Hematology and Oncology, 2022, 15, 43. Granulocyte-macrophage colony-stimulating factor suppresses induction of type I interferon in 1284 1.1 infants with severe pneumonia. Pediatric Research, 2022, , . The intrinsically disordered CARDsâ€Helicase linker in RIGâ€I is a molecular gate for RNA proofreading. 1285 3.5 9 EMBO Journal, 2022, 41, e109782. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Frontiers in Cell and Developmental Biology, 2022, 10, 903781. 1309 1.8 Host Restrictive Factors Are the Emerging Storm Troopers Against Enterovirus: A Mini-Review. 1310 2.2 2 Frontiers in Immunology, 2022, 13, . Scallop RIG-I-like receptor 1 responses to polyinosinic:polycytidylic acid challenge and its interactions with the mitochondrial antiviral signaling protein. Fish and Shellfish Immunology, 2022, 124, 490-496. Distinct Signature Type I Interferon Responses are Determined by the Infecting virus and the Target 1312 0.6 31 Cell. Antiviral Therapy, 2008, 13, 409-422. Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cellular and 2.4

CITATION REPORT

Molecular Life Sciences, 2022, 79, .

#

#	Article	IF	CITATIONS
1314	Immune Regulator Retinoic Acid-Inducible Gene I (RIG-I) in the Pathogenesis of Cardiovascular Disease. Frontiers in Immunology, 2022, 13, .	2.2	3
1315	Bat Employs a Conserved MDA5 Gene to Trigger Antiviral Innate Immune Responses. Frontiers in Immunology, 0, 13, .	2.2	4
1316	Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses, 2022, 14, 1107.	1.5	5
1318	Duck LGP2 Downregulates RIG-I Signaling Pathway-Mediated Innate Immunity Against Tembusu Virus. Frontiers in Immunology, 0, 13, .	2.2	1
1319	Clinical Values of the Identified Hub Genes in Systemic Lupus Erythematosus. Frontiers in Immunology, 0, 13, .	2.2	1
1320	LncNSPL facilitates influenza A viral immune escape by restricting TRIM25-mediated K63-linked RIG-I ubiquitination. IScience, 2022, 25, 104607.	1.9	6
1321	Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-Like Receptor MDA5. Viruses, 2022, 14, 1361.	1.5	6
1322	Grass Carp Mex3A Promotes Ubiquitination and Degradation of RIG-I to Inhibit Innate Immune Response. Frontiers in Immunology, 0, 13, .	2.2	3
1323	Calcium lons Signaling: Targets for Attack and Utilization by Viruses. Frontiers in Microbiology, 0, 13, .	1.5	13
1324	Apoptotic caspases suppress an MDA5-driven IFN response during productive replication of human papillomavirus type 31. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
1325	Rapidly Progressive Interstitial Lung Disease Associated with Melanoma Differentiation-Associated Gene 5 Antibody. Acta Medica (Hradec Kralove), 2022, 65, 37-40.	0.2	0
1326	TRIM18 is a critical regulator of viral myocarditis and organ inflammation. Journal of Biomedical Science, 2022, 29, .	2.6	17
1327	Transient upregulation of IRF1 during exit from naive pluripotency confers viral protection. EMBO Reports, 0, , .	2.0	6
1328	Human metapneumovirus M2-2 protein inhibits RIC-I signaling by preventing TRIM25-mediated RIG-I ubiquitination. Frontiers in Immunology, 0, 13, .	2.2	1
1329	PKR and TLR3 trigger distinct signals that coordinate the induction of antiviral apoptosis. Cell Death and Disease, 2022, 13, .	2.7	3
1330	LGP2 is essential for zebrafish survival through dual regulation of IFN antiviral response. IScience, 2022, 25, 104821.	1.9	14
1331	DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. Journal of General Virology, 2022, 103, .	1.3	20
1332	Association Among MIF, IFIH1, and IL6 Gene Polymorphisms and Non-Segmental Vitiligo in a Chinese Han Population. Clinical, Cosmetic and Investigational Dermatology, 0, Volume 15, 1597-1609.	0.8	1

#	Article	IF	CITATIONS
1333	Function conservation and disparities of zebrafish and human LGP2 genes in fish and mammalian cells responsive to poly(I:C). Frontiers in Immunology, 0, 13, .	2.2	5
1334	The protein arginine methyltransferase PRMT9 attenuates MAVS activation through arginine methylation. Nature Communications, 2022, 13, .	5.8	13
1335	Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Frontiers in Immunology, 0, 13, .	2.2	3
1336	The chromatin remodeling protein ATRX positively regulates IRF3-dependent type I interferon production and interferon-induced gene expression. PLoS Pathogens, 2022, 18, e1010748.	2.1	4
1337	ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7. Circulation Research, 2022, 131, 580-597.	2.0	10
1338	Evidence against the Human Metapneumovirus G, SH, and M2-2 Proteins as Bona Fide Interferon Antagonists. Journal of Virology, 2022, 96, .	1.5	2
1339	The first identified invertebrate LGP2-like homolog gene in the Pacific oyster Crassostrea gigas. Fish and Shellfish Immunology, 2022, 128, 238-245.	1.6	1
1340	Friend or foe: RIG- I like receptors and diseases. Autoimmunity Reviews, 2022, 21, 103161.	2.5	10
1341	Adjuvants, the Elephant in the Room for RNA Vaccines. RNA Technologies, 2022, , 257-276.	0.2	0
1342	Host-pathogen protein-nucleic acid interactions: A comprehensive review. Computational and Structural Biotechnology Journal, 2022, 20, 4415-4436.	1.9	9
1343	Unconventional functions of miRNAs. , 2022, , 181-214.		0
1344	Hospital-Based RNA Therapeutics. RNA Technologies, 2022, , 73-92.	0.2	Ο
1345	The intersection molecule MDA5 in Cancer and COVID-19. Frontiers in Immunology, 0, 13, .	2.2	1
1346	The N-Terminal α-Helix of Potato Virus X-Encoded RNA-Dependent RNA Polymerase Is Required for Membrane Association and Multimerization. Viruses, 2022, 14, 1907.	1.5	1
1347	Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Frontiers in Immunology, 0, 13, .	2.2	7
1348	Host Immune Responses to Arthritogenic Alphavirus Infection, with Emphasis on Type I IFN Responses. Zoonoses, 2022, 2, .	O.5	1
1349	Factors affecting RIG-I-Like receptors activation - New research direction for viral hemorrhagic fevers. Frontiers in Immunology, 0, 13, .	2.2	2
1350	RIOK3 and Its Alternatively Spliced Isoform Have Disparate Roles in the Innate Immune Response to Rift Valley Fever Virus (MP12) Infection. Viruses, 2022, 14, 2064.	1.5	8

#	Article	IF	CITATIONS
1351	Peste des Petits Ruminants Virus Upregulates STING to Activate ATF6-Mediated Autophagy. Journal of Virology, 2022, 96, .	1.5	4
1352	Singapore Grouper Iridovirus VP131 Drives Degradation of STING-TBK1 Pathway Proteins and Negatively Regulates Antiviral Innate Immunity. Journal of Virology, 2022, 96, .	1.5	10
1353	Association between Histological Changes and Clinical Manifestations of Fulminant Myocarditis. , 2022, , 127-148.		0
1354	Transcriptome analysis reveals the diverse response of pearl oyster Pinctada fucata martensii after different PAMP stimulation. Fish and Shellfish Immunology, 2022, 131, 881-890.	1.6	1
1355	DNA-PKcs restricts Zika virus spreading and is required for effective antiviral response. Frontiers in Immunology, 0, 13, .	2.2	3
1356	The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Molecular Cell, 2022, 82, 4131-4144.e6.	4.5	12
1357	Innate immune mechanisms of mRNA vaccines. Immunity, 2022, 55, 1993-2005.	6.6	81
1358	Study on the Mechanism of Arsenic-Induced Lung Injury Based on SWATH Proteomics Technology. Biological Trace Element Research, 2023, 201, 3882-3902.	1.9	6
1359	Filoviruses: Innate Immunity, Inflammatory Cell Death, and Cytokines. Pathogens, 2022, 11, 1400.	1.2	4
1360	cGAS in nucleus: The link between immune response and DNA damage repair. Frontiers in Immunology, 0, 13, .	2.2	7
1361	The role of O-GlcNAcylation in innate immunity and inflammation. Journal of Molecular Cell Biology, 2023, 14, .	1.5	4
1362	Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET. Viruses, 2023, 15, 3.	1.5	7
1363	Duck TRIM35 Promotes Tembusu Virus Replication by Interfering with RIG-I-Mediated Antiviral Signaling in Duck Embryo Fibroblasts. Microbiology Spectrum, 2022, 10, .	1.2	2
1364	<scp>K63</scp> â€linked polyubiquitination of <scp>LGP2</scp> by RipletÂregulates <scp>RIGâ€I</scp> â€dependent innate immuneÂresponse. EMBO Reports, 0, , .	2.0	2
1365	Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	27
1366	Lupus Nephritis: Current Perspectives and Moving Forward. Journal of Inflammation Research, 0, Volume 15, 6533-6552.	1.6	5
1367	Spring Viremia of Carp Virus N Protein Negatively Regulates IFN Induction through Autophagy-Lysosome–Dependent Degradation of STING. Journal of Immunology, 2023, 210, 72-81.	0.4	6
1368	LGP2 Promotes Type I Interferon Production To Inhibit PRRSV Infection via Enhancing MDA5-Mediated Signaling. Journal of Virology, 2023, 97, .	1.5	3

ARTICLE IF CITATIONS # The doubleâ€stranded <scp>RNA</scp>â€dependent protein kinase <scp>PKR</scp> negatively regulates the 1369 0.2 2 protein expression of <scp>IFN</scp>â€i² induced by <scp>RIGâ€i</scp> signaling. FASEB Journal, 2023, 37, . Genetic variants of IFIH1 and DHX58 affect the chronicity of hepatitis C in the Chinese Han population. 1370 PeerJ, 0, 11, e14740. Cellular Sensors and Viral Countermeasures: A Molecular Arms Race between Host and SARS-CoV-2. 1371 2 1.5 Viruses, 2023, 15, 352. Nucleic DHX9 cooperates with STAT1 to transcribe interferon-stimulated genes. Science Advances, 4.7 2023, 9, . Editorial: Updates on RIG-I-like receptor-mediated innate immune responses. Frontiers in Immunology, 1374 2.2 0 0,14,. Immune Recognition versus Immune Evasion Systems in Zika Virus Infection. Biomedicines, 2023, 11, 642. 1.4 Case series on anti-melanoma differentiation-associated gene 5+ dermatomyositis associated with 1376 0.0 0 interstitial lung disease. International Journal of Basic and Clinical Pharmacology, 2023, 12, 264-267. Cytosolic DNA sensors and glial responses to endogenous DNA. Frontiers in Immunology, 0, 14, . 1377 2.2 Poly(I:C), a double stranded RNA analog, activates the anti-viral DNA sensors in buffalo fibroblasts. , 1378 2 2023, 2, 100016. 1379 mRNA therapeutics: New vaccination and beyond. Fundamental Research, 2023, 3, 749-759. 1.6 Crosstalk between Autophagy and RLR Signaling. Cells, 2023, 12, 956. 1380 4 1.8 Porcine Epidemic Diarrhea Virus nsp7 Inhibits MDA5 Dephosphorylation to Antagonize Type I Interferon 1381 1.2 Production. Microbiology Spectrum, 2023, 11, . LncRNA LINC02574 Inhibits Influenza A Virus Replication by Positively Regulating the Innate Immune 1382 1.8 1 Response. International Journal of Molecular Sciences, 2023, 24, 7248. Prolonged Primary Rhinovirus Infection of Human Nasal Epithelial Cells Diminishes the Viral Load of Secondary Influenza H3N2 Infection via the Antiviral State Mediated by RIG-I and Interferon-Stimulated 1.8 Genes. Cells, 2023, 12, 1152. Mechanisms of length-dependent recognition of viral double-stranded RNA by RIG-I. Scientific Reports, 1384 7 1.6 2023, 13, . Differential regulation of ATP hydrolysis of RIG-I-like receptors by transactivation response 1.1 RNA-binding protein. Bioscience Reports, 2023, 43, . RIG-I-like receptors: Molecular mechanism of activation and signaling. Advances in Immunology, 2023, , 1387 1.1 3 1-74. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nature Reviews 1399 16.1 Molecular Cell Biology, 2023, 24, 749-769.

	C	ITATION REPORT	
#	Article	IF	CITATIONS
1418	Nano-Adjuvants. AAPS Advances in the Pharmaceutical Sciences Series, 2023, , 297-330.	0.2	0
1422	Viral Myocarditis. , 2023, , 475-491.		0
1424	Type I interferons in metabolic syndrome. , 2024, , 187-197.		0
1437	The Characteristics of EV-A71-CV-A16 Infection and Interaction with a Host. , 2024, , 95-116.		0