CHR11, a chromatin-remodeling factor essential for nuc gametogenesis in Arabidopsis thaliana

Proceedings of the National Academy of Sciences of the Unite 102, 17231-17236

DOI: 10.1073/pnas.0508186102

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	AGL80 Is Required for Central Cell and Endosperm Development in Arabidopsis Â. Plant Cell, 2006, 18, 1862-1872.	6.6	205
2	Involvement of the Arabidopsis SWI2/SNF2 Chromatin Remodeling Gene Family in DNA Damage Response and Recombination. Genetics, 2006, 173, 985-994.	2.9	143
3	Impact of Core Histone Modifications on Transcriptional Regulation and Plant Growth. Critical Reviews in Plant Sciences, 2007, 26, 243-263.	5.7	32
4	ISWI chromatin remodeling in ovarian somatic and germ cells: revenge of the NURFs. Trends in Endocrinology and Metabolism, 2007, 18, 215-224.	7.1	28
5	Complex life cycles of multicellular eukaryotes: New approaches based on the use of model organisms. Gene, 2007, 406, 152-170.	2.2	127
6	Identification of genes expressed in the Arabidopsis female gametophyte. Plant Journal, 2007, 51, 281-292.	5.7	250
7	Gamete formation without meiosis in Arabidopsis. Nature, 2008, 451, 1121-1124.	27.8	192
8	<i>AGL23</i> , a type I MADSâ€box gene that controls female gametophyte and embryo development in Arabidopsis. Plant Journal, 2008, 54, 1037-1048.	5.7	130
9	Snf2 proteins in plants: gene silencing and beyond. Trends in Plant Science, 2008, 13, 557-565.	8.8	104
10	Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling. BMC Plant Biology, 2009, 9, 4.	3.6	10
11	Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biological Reviews, 2009, 84, 589-615.	10.4	39
12	Chapter 5 Nuclear Actin-Related Proteins in Epigenetic Control. International Review of Cell and Molecular Biology, 2009, 277, 157-215.	3.2	26
13	The infective cycle of Cabbage leaf curl virus (CaLCuV) is affected by CRUMPLED LEAF (CRL) gene in Arabidopsis thaliana. Virology Journal, 2009, 6, 169.	3.4	7
14	Behaviors of ATPâ€dependent chromatin remodeling factors during maturation of bovine oocytes in vitro. Molecular Reproduction and Development, 2010, 77, 126-135.	2.0	7
15	The MIDASIN and NOTCHLESS genes are essential for female gametophyte development in Arabidopsis thaliana. Physiology and Molecular Biology of Plants, 2010, 16, 3-18.	3.1	32
16	Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte. BMC Plant Biology, 2010, 10, 110.	3.6	60
17	Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature, 2010, 464, 628-632.	27.8	574
18	Embryo and Endosperm Inherit Distinct Chromatin and Transcriptional States from the Female Gametes in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 307-320.	6.6	160

#	Article	IF	CITATIONS
19	Inactivation of a DNA Methylation Pathway in Maize Reproductive Organs Results in Apomixis-Like Phenotypes Â. Plant Cell, 2010, 22, 3249-3267.	6.6	188
20	Development and Function of the Female Gametophyte. , 2010, , 209-224.		3
21	Fertilization in Angiosperms. , 2010, , 283-300.		1
22	Female Gametophyte Development in Flowering Plants. Annual Review of Plant Biology, 2010, 61, 89-108.	18.7	159
23	The Female Gametophyte. The Arabidopsis Book, 2011, 9, e0155.	0.5	145
24	Sexual reproduction is the default mode in apomictic <i>Hieracium</i> subgenus <i>Pilosella</i> , in which two dominant loci function to enable apomixis. Plant Journal, 2011, 66, 890-902.	5.7	117
25	The Nucleosome Remodeling Factor. FEBS Letters, 2011, 585, 3197-3207.	2.8	70
26	CYP85A1is required for the initiation of female gametogenesis inArabidopsis thaliana. Plant Signaling and Behavior, 2011, 6, 321-326.	2.4	37
27	Identification of genes expressed in the angiosperm female gametophyte. Journal of Experimental Botany, 2011, 62, 1593-1599.	4.8	17
28	RPL1, a Gene Involved in Epigenetic Processes Regulates Phenotypic Plasticity in Rice. Molecular Plant, 2012, 5, 482-493.	8.3	32
29	lmitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis. Plant Journal, 2012, 72, 261-270.	5.7	69
30	Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomictic plants. Plant Cell Reports, 2012, 31, 403-416.	5.6	28
31	Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance. Journal of Genetics, 2013, 92, 369-394.	0.7	7
32	<scp>SLIDE</scp> , The Protein Interacting Domain of Imitation Switch Remodelers, Binds <scp>DDT</scp> â€ <scp>D</scp> omain Proteins of Different Subfamilies in Chromatin Remodeling Complexes. Journal of Integrative Plant Biology, 2013, 55, 928-937.	8.5	22
33	Ribosomal Protein RPL27a Promotes Female Gametophyte Development in a Dose-Dependent Manner Â. Plant Physiology, 2014, 165, 1133-1143.	4.8	34
34	Remodelling chromatin to shape development of plants. Experimental Cell Research, 2014, 321, 40-46.	2.6	50
35	ISWI proteins participate in the genomeâ€wide nucleosome distribution in Arabidopsis. Plant Journal, 2014, 78, 706-714.	5.7	89
36	Epigenetic role for the conserved Fe-S cluster biogenesis protein AtDRE2 inArabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13565-13570.	7.1	32

CITATION REPORT

#	Article	IF	CITATIONS
37	Plastidial NAD-Dependent Malate Dehydrogenase Is Critical for Embryo Development and Heterotrophic Metabolism in Arabidopsis. Plant Physiology, 2014, 164, 1175-1190.	4.8	78
38	Roles and activities of chromatin remodeling <scp>ATP</scp> ases in plants. Plant Journal, 2015, 83, 62-77.	5.7	126
39	The chromatinâ€remodeling factor At <scp>INO</scp> 80 plays crucial roles in genome stability maintenance and in plant development. Plant Journal, 2015, 82, 655-668.	5.7	57
40	Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. Plant Journal, 2015, 83, 160-176.	5.7	43
41	The ISWI remodeler in plants: protein complexes, biochemical functions, and developmental roles. Chromosoma, 2017, 126, 365-373.	2.2	18
42	Epigenetic Reprogramming During Plant Reproduction. RNA Technologies, 2017, , 405-425.	0.3	1
44	Chromatin Remodeling and Plant Immunity. Advances in Protein Chemistry and Structural Biology, 2017, 106, 243-260.	2.3	13
45	Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice <i>fsv1</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3621-3635.	1.8	13
46	Chromatinâ€remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development. Journal of Integrative Plant Biology, 2018, 60, 144-159.	8.5	30
48	Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nature Communications, 2018, 9, 5290.	12.8	73
49	Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. Plant Physiology, 2018, 178, 258-282.	4.8	23
50	Novel Insights Into the Early Stages of Ratoon Stunting Disease of Sugarcane Inferred from Transcript and Protein Analysis. Phytopathology, 2018, 108, 1455-1466.	2.2	25
51	The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. International Journal of Molecular Sciences, 2019, 20, 4065.	4.1	67
52	REM34 and REM35 Control Female and Male Gametophyte Development in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1351.	3.6	19
53	Epigenetic Mechanisms of Abiotic Stress Response and Memory in Plants. , 2019, , 1-64.		24
54	Did apomixis evolve from sex or was it the other way around?. Journal of Experimental Botany, 2019, 70, 2951-2964.	4.8	61
55	Organellar carbon metabolism is coordinated with distinct developmental phases of secondary xylem. New Phytologist, 2019, 222, 1832-1845.	7.3	11
56	Development and function of the flowering plant female gametophyte. Current Topics in Developmental Biology, 2019, 131, 401-434.	2.2	38

CITATION REPORT

	CITATION	REPORT	
#	ARTICLE	IF	Citations
57	Identification and characterization of a female gametophyte defect in <i>sdk1-7 +/- abi3-6 +/-</i> heterozygotes of <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2020, 15, 1780038.	2.4	1
58	Asynchrony of ovule primordia initiation in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	2.5	25
59	Dual Recognition of H3K4me3 and DNA by the ISWI Component ARID5 Regulates the Floral Transition in Arabidopsis. Plant Cell, 2020, 32, 2178-2195.	6.6	34
60	FHA2 is a plantâ€specific ISWI subunit responsible for stamen development and plant fertility. Journal of Integrative Plant Biology, 2020, 62, 1703-1716.	8.5	9
61	A plantâ€specific SWR1 chromatinâ€remodeling complex couples histone H2A.Z deposition with nucleosome sliding. EMBO Journal, 2020, 39, e102008.	7.8	57
62	Occurrence of Apomixis in Eleusine coracana. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 265, 151575.	1.2	0
63	Gene Function Rather than Reproductive Mode Drives the Evolution of RNA Helicases in Sexual and Apomictic Boechera. Genome Biology and Evolution, 2020, 12, 656-673.	2.5	7
64	CHR721, interacting with OsRPA1a, is essential for both male and female reproductive development in rice. Plant Molecular Biology, 2020, 103, 473-487.	3.9	5
65	Heat memory in plants: histone modifications, nucleosome positioning and miRNA accumulation alter heat memory gene expression. Genes and Genetic Systems, 2021, 96, 229-235.	0.7	10
66	The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. Journal of Genetics and Genomics, 2021, 48, 123-133.	3.9	11
67	Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathogens, 2021, 17, e1009572.	4.7	10
68	One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. Current Opinion in Plant Biology, 2021, 61, 102009.	7.1	33
69	Deciphering the role of helicases and translocases: A multifunctional gene family safeguarding plants from diverse environmental adversities. Current Plant Biology, 2021, 26, 100204.	4.7	9
70	The Ins and Outs of Ovule Development. , 0, , 70-106.		3
71	The Maize Megagametophyte. , 2009, , 79-104.		15
73	The Autonomous Pathways for Floral Inhibition and Induction. , 2007, , 35-42.		1
74	Do Pollinators Discriminate between Different Floral Forms?. , 2007, , 181-191.		2
75	The Vernalization Pathway of Floral Induction and the Role of Gibberellin. , 2007, , 52-58.		0

#	Article	IF	Citations
76	Historical Interpretations of Flower Induction and Flower Development. , 2007, , 10-20.		0
77	Enhancing Flower Colour. , 2007, , 158-168.		0
78	Changes at the Shoot Apical Meristem in Response to Floral Induction. , 2007, , 71-82.		0
79	Flower Induction in Arabidopsis thaliana. , 2007, , 25-34.		0
80	The Photoperiodic Pathway of Floral Induction. , 2007, , 43-51.		0
81	Are Flowers under Selective Pressure to Increase Pollinator Attention?. , 2007, , 171-180.		0
82	Integrating the <i>Arabidopsis thaliana</i> Flower Induction Pathways and Assessing the Extent to Which the Model Is Ubiquitous. , 2007, , 59-68.		0
84	Preventing Self-fertilization. , 2007, , 111-122.		0
85	Function and Development of Gametophytes. , 2007, , 103-110.		0
86	Colouring the Flower. , 2007, , 147-157.		0
87	Why Are Flowers Different? Pollination Syndromes—The Theory. , 2007, , 127-137.		0
88	The ABC Model in Evolution. , 2007, , 95-102.		0
89	Pollination Syndromes—The Evidence. , 2007, , 192-200.		0
90	Development of the Floral Organs. , 2007, , 83-94.		0
91	The Evolution of Flowers. , 2007, , 3-9.		0
92	Changing Floral Shape and Structure. , 2007, , 138-146.		0
93	ISWI chromatin remodeling factors repress PAD4-mediated plant immune responses in Arabidopsis. Biochemical and Biophysical Research Communications, 2021, 583, 63-70.	2.1	5
94	RNAi Technology: a Tool for Functional Validation of Novel Genes. , 2007, , 133-144.		1

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
95	Epigenetic Modifications in Plant Development and Reproduction. Epigenomes, 2021, 5,	25.	1.8	11
96	The MSI1 member OsRBAP1 gene, identiï¬ed by a modiï¬ed MutMap method, is required spikelet fertility. Plant Science, 2022, 320, 111201.	for rice height and	3.6	1
97	Chromatinâ€remodeling complexes: Conserved and plantâ€specific subunits in <i>Arabic of Integrative Plant Biology, 2022, 64, 499-515.</i>	opsis. Journal	8.5	36
102	Spatiotemporal formation of the large vacuole regulated by the BIN2-VLG module is requ female gametophyte development in Arabidopsis. Plant Cell, 2023, 35, 1241-1258.	red for	6.6	5
103	Molecular mapping of genomic regions and identification of possible candidate genes as gynoecious sex expression in bitter gourd. Frontiers in Plant Science, 0, 14, .	ociated with	3.6	2
105	Resistant cumin cultivar, GC-4 counters Fusarium oxysporum f. sp. cumini infection throu up-regulation of steroid biosynthesis, limonene and pinene degradation and butanoate m pathways. Frontiers in Plant Science, 0, 14, .	gh etabolism	3.6	0
106	Genome-wide association analysis to identify genomic regions and predict candidate gen traits in grapes (Vitis vinifera L.). Scientia Horticulturae, 2024, 328, 112882.	es for bunch	3.6	0
107	Differential expression and evolutionary diversification of RNA helicases in <i>Boechera</i>	i> sexual	4.8	0