Epicardial adipose tissue: anatomic, biomolecular and c

Nature Clinical Practice Cardiovascular Medicine 2, 536-543 DOI: 10.1038/ncpcardio0319

Citation Report

#	Article	IF	CITATIONS
1	The Obese Patient with Diabetes Mellitus: From Research Targets to Treatment Options. American Journal of Medicine, 2006, 119, S17-S23.	0.6	37
2	Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovascular Diabetology, 2006, 5, 1.	2.7	564
3	Different "Weight―of Cardiac and General Adiposity in Predicting Left Ventricle Morphology. Obesity, 2006, 14, 1679-1684.	1.5	52
5	Perivascular Fat: Innocent Bystander or Active Player in Vascular Disease?. Journal of the Cardiometabolic Syndrome, 2006, 1, 115-120.	1.7	15
6	Myocardial Triglyceride Content and Epicardial Fat Mass in Human Obesity: Relationship to Left Ventricular Function and Serum Free Fatty Acid Levels. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4689-4695.	1.8	296
7	Cardiac Adiposity and Cardiovascular Risk: Potential Role of Epicardial Adipose Tissue. Current Cardiology Reviews, 2007, 3, 11-14.	0.6	6
8	Epicardial Adipose Tissue is Related to Carotid Intima-Media Thickness and Visceral Adiposity in HIV-Infected Patients with Highly Active Antiretroviral Therapy-Associated Metabolic Syndrome. Current HIV Research, 2007, 5, 275-279.	0.2	51
9	Homo obesus: A Metabotrophin-Deficient Species. Pharmacology and Nutrition Insight. Current Pharmaceutical Design, 2007, 13, 2176-2179.	0.9	59
10	Insulin Resistance, Insulin Response, and Obesity as Indicators of Metabolic Risk. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2885-2892.	1.8	149
11	Characterization of ScAP-23, a new cell line from murine subcutaneous adipose tissue, identifies genes for the molecular definition of preadipocytes. Physiological Genomics, 2007, 31, 328-342.	1.0	12
12	Mechanisms of the components of the metabolic syndrome that predispose to diabetes and atherosclerotic CVD. Proceedings of the Nutrition Society, 2007, 66, 82-95.	0.4	44
13	Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. International Journal of Cardiology, 2007, 115, 272-273.	0.8	195
14	Hypertension in lean and obese individuals: An evenly or unevenly dangerous condition. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 243-246.	1.1	0
15	Sonographic Assessment of Regional Adiposity. American Journal of Roentgenology, 2007, 189, 1545-1553.	1.0	72
16	Gender-specific effects of HIV protease inhibitors on body mass in mice. AIDS Research and Therapy, 2007, 4, 8.	0.7	4
17	Volumetric Assessment of Epicardial Adipose Tissue With Cardiovascular Magnetic Resonance Imaging. Obesity, 2007, 15, 870-878.	1.5	163
18	Obesity and the heart: redefinition of the relationship. Obesity Reviews, 2007, 8, 35-39.	3.1	26
19	Introduction: The inflammation orchestra in adipose tissue. Journal of Internal Medicine, 2007, 262, 404-407.	2.7	15

#	Article	IF	CITATIONS
20	Effects of Phosphatidylethanol on Mouse Adipocyte Differentiation and Expression of Stearoyl-CoA Desaturase 1. Alcoholism: Clinical and Experimental Research, 2007, 31, 376-382.	1.4	4
21	Effects of Weight Loss After Bariatric Surgery on Epicardial Fat Measured Using Echocardiography. American Journal of Cardiology, 2007, 99, 1242-1245.	0.7	133
22	Relation of Subepicardial Adipose Tissue to Carotid Intima-Media Thickness in Patients With Human Immunodeficiency Virus. American Journal of Cardiology, 2007, 99, 1470-1472.	0.7	93
24	Role of Exercise and Metabolism in Heart Failure with Normal Ejection fraction. Progress in Cardiovascular Diseases, 2007, 49, 263-274.	1.6	13
25	Epicardial Fat from Guinea Pig: A Model to Study the Paracrine Network of Interactions between Epicardial Fat and Myocardium?. Cardiovascular Drugs and Therapy, 2008, 22, 107-114.	1.3	19
26	Do cardiac and perivascular adipose tissue play a role in atherosclerosis?. Current Diabetes Reports, 2008, 8, 20-24.	1.7	75
27	Obesity and cardiovascular risk. Current Cardiovascular Risk Reports, 2008, 2, 113-119.	0.8	3
28	Epicardial adipose tissue expression of adiponectin is lower in patients with hypertension. Journal of Human Hypertension, 2008, 22, 856-863.	1.0	70
29	Relation of Epicardial Fat and Alanine Aminotransferase in Subjects With Increased Visceral Fat. Obesity, 2008, 16, 179-183.	1.5	51
30	Substantial Changes in Epicardial Fat Thickness After Weight Loss in Severely Obese Subjects. Obesity, 2008, 16, 1693-1697.	1.5	199
31	Epicardial Adipose Tissue Extent: Relationship With Age, Body Fat Distribution, and Coronaropathy. Obesity, 2008, 16, 2424-2430.	1.5	134
32	Threshold Values of Highâ€risk Echocardiographic Epicardial Fat Thickness. Obesity, 2008, 16, 887-892.	1.5	223
33	Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. International Journal of Obesity, 2008, 32, 268-274.	1.6	300
34	Impact of Obesity on Cardiovascular Disease. Endocrinology and Metabolism Clinics of North America, 2008, 37, 663-684.	1.2	108
35	Obesidad abdominal: un estandarte del riesgo cardiometabólico. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2008, 55, 420-432.	0.8	8
36	Biology and Mechanics of Blood Flows. , 2008, , .		10
37	Relationship of epicardial fat thickness and fasting glucose. International Journal of Cardiology, 2008, 128, 424-426.	0.8	93
38	Epicardial fat thickness: Relationship with plasma visfatin and plasminogen activator inhibitor-1 levels in visceral obesity. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 523-530.	1.1	65

#	Article	IF	CITATIONS
39	Echocardiographic epicardial fat: A new tool in the white coat pocket. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 519-522.	1.1	10
40	Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovascular Pathology, 2008, 17, 392-398.	0.7	75
41	Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine, 2008, 43, 174-180.	1.4	107
42	Biology and Mechanics of Blood Flows. , 2008, , .		12
43	Effects of Bariatric Surgery on Cardiovascular Function. Circulation, 2008, 118, 2091-2102.	1.6	211
44	Abdominal Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1039-1049.	1.1	1,245
45	Automated Quantitation of Pericardiac Fat From Noncontrast CT. Investigative Radiology, 2008, 43, 145-153.	3.5	90
46	Cardiovascular Disease and Obesity. , 0, , 287-320.		0
47	Substrate Utilization by the Failing Human Heart by Direct Quantification Using Arterio-Venous Blood Sampling. PLoS ONE, 2009, 4, e7533.	1.1	48
48	Pathogenesis and Management of the Dyslipidemia of the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2009, 7, 83-88.	0.5	44
49	Viewpoints on the Way to the Consensus Session: Where does insulin resistance start? The adipose tissue. Diabetes Care, 2009, 32, S168-S173.	4.3	50
50	Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. European Journal of Echocardiography, 2009, 10, 549-555.	2.3	166
51	Uncoupling Protein-1 and Related Messenger Ribonucleic Acids in Human Epicardial and Other Adipose Tissues: Epicardial Fat Functioning as Brown Fat. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3611-3615.	1.8	258
52	Pericardial Fat, Intrathoracic Fat, and Measures of Left Ventricular Structure and Function. Circulation, 2009, 119, 1586-1591.	1.6	220
53	Obesity and hypertension have differing oxidant handling molecular pathways in age-related chronic kidney disease. Mechanisms of Ageing and Development, 2009, 130, 129-138.	2.2	41
54	Relation of Epicardial Fat Thickness to Right Ventricular Cavity Size in Obese Subjects. American Journal of Cardiology, 2009, 104, 1601-1602.	0.7	38
55	Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 15.	1.6	105
56	Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clinical Endocrinology, 2009, 70, 876-882.	1.2	191

#	Article	IF	CITATIONS
57	Threshold value of subepicardial adipose tissue to detect insulin resistance in obese children. International Journal of Obesity, 2009, 33, 440-446.	1.6	25
58	Epicardial and Pericardial Fat: Close, but Very Different. Obesity, 2009, 17, 625-625.	1.5	156
59	Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 211-217.	1.1	198
60	Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 760-766.	1.1	59
61	Adiponectin is released from the heart in patients with heart failure. International Journal of Cardiology, 2009, 132, 221-226.	0.8	56
62	Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis, 2009, 204, 580-585.	0.4	131
64	Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. Journal of the American Society of Echocardiography, 2009, 22, 1311-1319.	1.2	535
65	Total and high molecular weight adiponectin in patients with coronary artery disease. Journal of Cardiovascular Medicine, 2009, 10, 310-315.	0.6	14
66	Obesity and diabetes: lipids, $\hat{a} \in \hat{a}$ nowhere to run to'. Clinical Science, 2009, 116, 113-123.	1.8	55
67	Cardiac Adiposity and Global Cardiometabolic Risk New Concept and Clinical Implication. Circulation Journal, 2009, 73, 27-34.	0.7	92
68	Aerobic exercise training reduces epicardial fat in obese men. Journal of Applied Physiology, 2009, 106, 5-11.	1.2	164
69	Epicardial adipose tissue as a cardiovascular risk marker. Clinical Lipidology, 2009, 4, 55-62.	0.4	19
70	Epicardial Fat Tissue. Medicine and Science in Sports and Exercise, 2010, 42, 463-469.	0.2	21
71	Increased epicardial adipose tissue volume in HIV-infected men and relationships to body composition and metabolic parameters. Aids, 2010, 24, 2127-2130.	1.0	51
73	Echocardiographic Measurement of Epicardial Adipose Tissue in Obese Children. Pediatric Cardiology, 2010, 31, 853-860.	0.6	33
75	Relation of Echocardiographic Epicardial Fat Thickness and Myocardial Fat. American Journal of Cardiology, 2010, 105, 1831-1835.	0.7	124
76	Effects of treatment strategy on endothelial function. Autoimmunity Reviews, 2010, 9, 840-844.	2.5	22
77	The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. Journal of Cellular and Molecular Medicine. 2010. 14, 2223-2234.	1.6	192

#	Article	IF	CITATIONS
78	Epicardial adipose tissue in patients with heart failure. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 40.	1.6	93
79	Correlative Anatomy for the Electrophysiologist, Part I: The Pericardial Space, Oblique Sinus, Transverse Sinus. Journal of Cardiovascular Electrophysiology, 2010, 21, 1421-1426.	0.8	33
80	The Relationship of Ectopic Lipid Accumulation to Cardiac and Vascular Function in Obesity and Metabolic Syndrome. Obesity, 2010, 18, 1116-1121.	1.5	35
81	Bioimpedance Analysis Parameters and Epicardial Adipose Tissue Assessed by Cardiac Magnetic Resonance Imaging in Patients With Heart Failure. Obesity, 2010, 18, 2326-2332.	1.5	38
82	Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: relationship to visceral and subcutaneous fat. Journal of Applied Physiology, 2010, 109, 1904-1912.	1.2	49
83	Adipose Tissue, Inflammation and Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2010, 17, 332-341.	0.9	387
84	Diastolic function is strongly and independently associated with cardiorespiratory fitness in central obesity. Journal of Applied Physiology, 2010, 108, 1568-1574.	1.2	11
85	Pericardial Fat Is Associated With Prevalent Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 345-350.	2.1	364
86	Epicardial Adipokines in Obesity and Coronary Artery Disease Induce Atherogenic Changes in Monocytes and Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1340-1346.	1.1	151
87	Effects of Statins on the Epicardial Fat Thickness in Patients with Coronary Artery Stenosis Underwent Percutaneous Coronary Intervention: Comparison of Atorvastatin with Simvastatin/Ezetimibe. Journal of Cardiovascular Imaging, 2010, 18, 121.	0.8	82
88	Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H202-H209.	1.5	133
89	Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H746-H753.	1.5	95
90	Pericardial Adipose Tissue, Atherosclerosis, and Cardiovascular Disease Risk Factors: The Jackson Heart Study. Diabetes Care, 2010, 33, e127-e127.	4.3	16
91	Pioglitazone Compared with Metformin Increases Pericardial Fat Volume in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 456-460.	1.8	84
92	Subepicardial adipose tissue thickness and its relation with anthropometric and clinical parameters in pubertal obese children. Journal of Endocrinological Investigation, 2010, 33, 715-719.	1.8	2
93	Intracoronary adiponectin levels rapidly and significantly increase after coronary revascularization. International Journal of Cardiology, 2010, 144, 160-163.	0.8	9
94	Predictors of diastolic dysfunction among minority patients with newly diagnosed type 2 diabetes. Diabetes Research and Clinical Practice, 2010, 88, 189-195.	1.1	13
95	Ectopic fat and cardiovascular disease: What is the link?. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 20, 481-490.	1.1	139

#	Article	IF	CITATIONS
96	Quantification of Epicardial Adipose Tissue. Academic Radiology, 2011, 18, 977-983.	1.3	13
97	Pericardial Rather Than Epicardial Fat is a Cardiometabolic Risk Marker: An MRI vs Echo Study. Journal of the American Society of Echocardiography, 2011, 24, 1156-1162.	1.2	105
98	Medición ecocardiográfica de la grasa epicárdica. Imagen Diagnóstica, 2011, 2, 23-26.	0.1	7
99	Idiopathic deep venous thrombosis and epicardial fat thickness: The age, gender and obesity connection. Biomedicine and Aging Pathology, 2011, 1, 175-178.	0.8	0
100	Favorable Changes in Cardiac Geometry and Function Following Gastric Bypass Surgery. Journal of the American College of Cardiology, 2011, 57, 732-739.	1.2	131
101	Epicardial adipose tissue and its association to plasma adrenomedullin levels in patients with metabolic syndrome. EndocrinologÃa Y Nutrición (English Edition), 2011, 58, 401-408.	0.5	14
103	Grasa epicárdica: una nueva herramienta para la evaluación del riesgo cardiometabólico. Hipertension Y Riesgo Vascular, 2011, 28, 63-68.	0.3	12
104	Epicardial Adipose Tissue and Coronary Artery Calcification in Diabetic and Nondiabetic End-Stage Renal Disease Patients. Renal Failure, 2011, 33, 770-775.	0.8	28
105	Body fat distribution and organ weights of 14 common strains and a 22-strain consomic panel of rats. Physiology and Behavior, 2011, 103, 523-529.	1.0	27
106	Impact of Obesity on Cardiovascular Disease. Medical Clinics of North America, 2011, 95, 919-937.	1.1	160
107	Epicardial fat thickness and coronary artery disease correlate independently of obesity. International Journal of Cardiology, 2011, 146, 452-454.	0.8	101
108	Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends in Endocrinology and Metabolism, 2011, 22, 450-457.	3.1	426
109	The Starving Cell: Metabolic Syndrome as an Adaptive Process. Nature Precedings, 2011, , .	0.1	4
110	The Association of Epicardial Fat Thickness with Blunted Heart Rate Recovery in Patients with Metabolic Syndrome. Tohoku Journal of Experimental Medicine, 2011, 224, 257-262.	0.5	26
111	Angiotensin II Upregulation of Cardiomyocyte Adiponectin Production Is Nitric Oxide/Cyclic GMP Dependent. American Journal of the Medical Sciences, 2011, 341, 350-355.	0.4	10
112	Total and Interatrial Epicardial Adipose Tissues Are Independently Associated With Left Atrial Remodeling in Patients With Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2011, 22, 647-655.	0.8	111
113	Echocardiographic Epicardial Fat Thickness Is Associated with Carotid Intima-Media Thickness in Patients with Metabolic Syndrome. Echocardiography, 2011, 28, 853-858.	0.3	56
114	Pericardial Fat and Atrial Conduction Abnormalities in the Multiethnic Study of Atherosclerosis (MESA). Obesity, 2011, 19, 179-184.	1.5	23

#	Article	IF	CITATIONS
115	Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. Journal of Cellular and Molecular Medicine, 2011, 15, 2399-2410.	1.6	53
116	Cardiac 64-Multislice Computed Tomography Reveals Increased Epicardial Fat Volume in Patients With Acute Coronary Syndrome. American Journal of Cardiology, 2011, 108, 1119-1123.	0.7	57
117	Epicardial adipose tissue and relationship with coronary artery disease. Open Medicine (Poland), 2011, 6, 251-262.	0.6	4
118	Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovascular Diabetology, 2011, 10, 2.	2.7	68
119	Association of chemerin mRNA expression in human epicardial adipose tissue with coronary atherosclerosis. Cardiovascular Diabetology, 2011, 10, 87.	2.7	69
120	Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Journal of Translational Medicine, 2011, 9, 129.	1.8	96
121	Epicardial Adipose Tissue and Metabolic Syndrome in Hypertensive Patients With Normal Body Weight and Waist Circumference. American Journal of Hypertension, 2011, 24, 1245-1249.	1.0	23
122	Bariatric Surgery and Cardiovascular Risk Factors. Circulation, 2011, 123, 1683-1701.	1.6	279
123	Assessing Adiposity. Circulation, 2011, 124, 1996-2019.	1.6	701
124	The Relationship between Epicardial Adipose Tissue and Malnutrition, Inflammation, Atherosclerosis/Calcification Syndrome in ESRD Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1920-1925.	2.2	60
125	Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovascular Research, 2011, 92, 10-18.	1.8	171
126	Eicosapentaenoic acid prevents atrial fibrillation associated with heart failure in a rabbit model. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1814-H1821.	1.5	47
127	Echocardiographic epicardial fat thickness is related to altered blood pressure responses to exercise stress testing. Blood Pressure, 2011, 20, 303-308.	0.7	16
128	Increased echocardiographic epicardial fat thickness is related to impaired diurnal blood pressure profiles. Blood Pressure, 2012, 21, 202-208.	0.7	19
129	Secretory Products From Epicardial Adipose Tissue of Patients With Type 2 Diabetes Mellitus Induce Cardiomyocyte Dysfunction. Circulation, 2012, 126, 2324-2334.	1.6	155
130	Feasibility of epicardial adipose tissue quantification in non-ECC-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT. Acta Radiologica, 2012, 53, 536-540.	0.5	9
131	Adipose Tissue Biology and Cardiomyopathy. Circulation Research, 2012, 111, 1565-1577.	2.0	70
132	Independent determinants of ascending aortic dilatation in hypertensive patients. Blood Pressure Monitoring, 2012, 17, 223-230.	0.4	12

#	Article	IF	CITATIONS
133	Epicardial Fat Thickness Is Associated with Non-Dipper Blood Pressure Pattern in Patients with Essential Hypertension. Clinical and Experimental Hypertension, 2012, 34, 165-170.	0.5	34
134	Constitutively Active TRPC Channels of Adipocytes Confer a Mechanism for Sensing Dietary Fatty Acids and Regulating Adiponectin. Circulation Research, 2012, 111, 191-200.	2.0	90
135	Epicardial Fat Tissue Thickness in Preeclamptic and Normal Pregnancies. ISRN Obstetrics & Gynecology, 2012, 2012, 1-5.	1.2	11
136	Increased Epicardial Adipose Tissue in Patients with Isolated Coronary Artery Ectasia. Internal Medicine, 2012, 51, 833-838.	0.3	12
137	Increased Epicardial Adipose Tissue Thickness Is Correlated with Ascending Aortic Diameter. Tohoku Journal of Experimental Medicine, 2012, 226, 183-190.	0.5	11
138	Increased Epicardial Fat Thickness Is Associated with Cardiac Functional Changes in Healthy Women. Tohoku Journal of Experimental Medicine, 2012, 228, 119-124.	0.5	9
139	Impact of Functional, Morphological and Clinical Parameters on Epicardial Adipose Tissue in Patients With Coronary Artery Disease. Circulation Journal, 2012, 76, 2426-2434.	0.7	20
140	Visceral obesity and cardiometabolic risks: lessons from the VACTION.J study. Clinical Lipidology, 2012, 7, 579-586.	0.4	3
141	Adipose tissue: friend or foe?. Nature Reviews Cardiology, 2012, 9, 689-702.	6.1	108
142	Adipokines and the cardiovascular system: mechanisms mediating health and disease. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1029-1059.	0.7	61
143	Influence of the Gly1057Asp variant of the insulin receptor substrate 2 (IRS2) on insulin resistance and relationship with epicardial fat thickness in the elderly. Experimental Gerontology, 2012, 47, 988-993.	1.2	8
144	MRI Measured Epicardial Adipose Tissue Thickness at the Right AV Groove Differentiates Inflammatory Status in Obese Men With Metabolic Syndrome. Obesity, 2012, 20, 525-532.	1.5	33
145	Epicardial adipose tissue and idiopathic deep venous thrombosis: An association study. Atherosclerosis, 2012, 223, 378-383.	0.4	14
147	Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. International Journal of Cardiology, 2012, 158, 26-32.	0.8	149
148	Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie, 2012, 94, 1660-1667.	1.3	41
149	Age-related changes of epicardial fat thickness. Biomedicine and Preventive Nutrition, 2012, 2, 38-41.	0.9	7
150	Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects. Cardiovascular Diabetology, 2012, 11, 106.	2.7	51
151	Epicardial adipose tissue thickness is an indicator for coronary artery stenosis in asymptomatic type 2 diabetic patients: its assessment by cardiac magnetic resonance. Cardiovascular Diabetology, 2012, 11, 83	2.7	50

		CITATION RE	EPORT	
#	Article		IF	Citations
152	Adiponectin in the Heart and Vascular System. Vitamins and Hormones, 2012, 90, 289	-319.	0.7	14
153	Risk stratification of non-contrast CT beyond the coronary calcium scan. Journal of Car Computed Tomography, 2012, 6, 301-307.	diovascular	0.7	22
154	CT Quantification of Epicardial Fat: Implications for Cardiovascular Risk Assessment. C Cardiovascular Imaging Reports, 2012, 5, 352-359.	urrent	0.4	6
155	The Relationship between the Severity of Coronary Artery Disease and Epicardial Adipo Depends on The Left Ventricular Function. PLoS ONE, 2012, 7, e48330.	se Tissue	1.1	9
156	Epicardial Fat Reflects Arterial Stiffness: Assessment Using 256-Slice Multidetector Con Computed Tomography and Cardio-Ankle Vascular Index. Journal of Atherosclerosis and 2012, 19, 570-576.	onary d Thrombosis,	0.9	53
157	The Relationship between Epicardial Adipose Tissue and Coronary Artery Calcification i Dialysis Patients. CardioRenal Medicine, 2012, 2, 43-51.	n Peritoneal	0.7	30
158	Correlation Between Epicardial Fat Thickness by Echocardiography and Other Paramete Adolescents. Korean Circulation Journal, 2012, 42, 471.	ers in Obese	0.7	26
159	11β-hydroxysteroid dehydrogenase type 1 gene expression is increased in ascending a metabolic syndrome patients with coronary artery disease. Genetics and Molecular Res 3122-3132.	orta tissue of earch, 2012, 11,	0.3	11
160	Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovasc American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1231-F	cular disease. 11240.	1.5	101
161	Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipo hypercholesterolemic swine. Experimental and Molecular Pathology, 2012, 93, 82-90.	se tissue in	0.9	65
162	Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diaber 2012, 29, 622-627.	tic Medicine,	1.2	85
163	Associations of epicardial fat with coronary calcification, insulin resistance, inflammatic fibroblast growth factor-23 in stage 3-5 chronic kidney disease. BMC Nephrology, 2013		0.8	48
164	Epicardial fat thickness and left ventricular mass in subjects with adrenal incidentaloms 2013, 44, 532-536.	a. Endocrine,	1.1	36
165	Epicardial adipose tissue thickness as a predictor of impaired microvascular function in non-obstructive coronary artery disease. Journal of Nuclear Cardiology, 2013, 20, 804-4		1.4	36
166	Prediction of carotid plaques in hypertensive patients by risk factors, left ventricular hy and epicardial adipose tissue thickness. Heart and Vessels, 2013, 28, 277-283.	pertrophy,	0.5	13
167	Epicardial adipose tissue thickness is a predictor for plaque vulnerability inÂpatients wi coronary artery disease. Atherosclerosis, 2013, 226, 134-139.	th significant	0.4	40
168	Could Epicardial Adipose Tissue Thickness by Echocardiography Be Correlated with Acu Syndrome Risk Scores. Echocardiography, 2013, 30, 1130-1134.	ite Coronary	0.3	13
169	Accumulation of epicardial fat rather than visceral fat is an independent risk factor for ventricular diastolic dysfunction in patients undergoing peritoneal dialysis. Cardiovasce Diabetology, 2013, 12, 127.		2.7	36

#	Article	IF	CITATIONS
170	Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue: a validation study and development of a 3 dimensional pericardial adipose tissue model. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 73.	1.6	37
171	Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2013, 29, 1401-1407.	0.7	15
172	Ectopic fat and cardiometabolic and vascular risk. International Journal of Cardiology, 2013, 169, 166-176.	0.8	142
173	Usefulness of Screening Left Atrioventricular Groove Epicardial Adipose Tissue Thickness. American Journal of Cardiology, 2013, 112, 1054-1055.	0.7	1
174	Epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure due to dilated cardiomyopathy. Obesity, 2013, 21, E253-61.	1.5	47
175	Beneficial Effects of Grape Resveratrol on Serum Adiponectin and Inflammation: Clinical Trial in Patients with Stable Coronary Artery Disease. Cardiovascular Drugs and Therapy, 2013, 27, 1-4.	1.3	4
177	Effect of epicardial adipose tissue on diastolic functions and left atrial dimension in untreated hypertensive patients with normal systolic function. Journal of Cardiology, 2013, 61, 359-364.	0.8	31
178	Increased epicardial fat tissue is a marker of metabolic syndrome in adult patients. International Journal of Cardiology, 2013, 165, 308-313.	0.8	51
179	Echocardiographic epicardial fat thickness is associated with arterial stiffness. International Journal of Cardiology, 2013, 167, 2234-2238.	0.8	50
180	Cut-off point of epicardial adipose tissue thickness for predicting metabolic syndrome in Venezuelan population. EndocrinologÃa Y Nutrición (English Edition), 2013, 60, 570-576.	0.5	19
181	Relation of vascular stiffness with epicardial and pericardial adipose tissues, and coronary atherosclerosis. Atherosclerosis, 2013, 229, 118-123.	0.4	34
182	Effects of weight loss on epicardial adipose tissue thickness and its relationship between serum soluble CD40 ligand levels in obese men. Clinica Chimica Acta, 2013, 421, 98-103.	0.5	33
183	Relation of epicardial fat thickness and brachial flow-mediated vasodilation with coronary artery disease. Journal of Cardiology, 2013, 62, 343-347.	0.8	13
184	Epicardial fat thickness significantly decreases after short-term growth hormone (GH) replacement therapy in adults with GH deficiency. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 459-465.	1.1	12
185	Epicardial adipose tissue: More than a simple fat deposit?. EndocrinologÃa Y Nutrición (English) Tj ETQqO O O rgI	3T/Qverlo 0.5	ck 10 Tf 50 1
186	OP-018 INCREASED EPICARDIAL FAT THICKNESS IS ASSOCIATED WITH LOW GRADE SYSTEMIC INFLAMMATION IN METABOLIC SYNDROME. International Journal of Cardiology, 2013, 163, S8.	0.8	2
187	Quantification of epicardial fat by computed tomography: Why, when and how?. Journal of Cardiovascular Computed Tomography, 2013, 7, 3-10.	0.7	65
189	Heart Wall. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2013, , 271-348.	0.1	Ο

#	Article	IF	CITATIONS
190	Cell Death and Serum Markers of Collagen Metabolism during Cardiac Remodeling in Cavia porcellus Experimentally Infected with Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2013, 7, e1996.	1.3	13
191	Characterization of Anatomic Ventricular Tachycardia Isthmus Pathology After Surgical Repair of Tetralogy of Fallot. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 905-911.	2.1	49
192	Relation of Epicardial Fat Thickness with Carotid Intima-Media Thickness in Patients with Type 2 Diabetes Mellitus. International Journal of Endocrinology, 2013, 2013, 1-6.	0.6	43
193	Epicardial adipose tissue is independently associated with increased left ventricular mass in untreated hypertensive patients: an observational study. Anatolian Journal of Cardiology, 2013, 13, 320-7.	0.4	6
194	Relationship of Epicardial Adipose Tissue Thickness with Early Indicators of Atherosclerosis and Cardiac Functional Changes in Obese Adolescents with Metabolic Syndrome. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2013, 5, 156-163.	0.4	30
195	Healthy obese persons. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 369-376.	1.2	17
196	Association Between Epicardial Fat Thickness and Weight Homeostasis Hormones in Patients With Noncachectic Heart Failure. Angiology, 2013, 64, 173-180.	0.8	21
197	Relationship between epicardial adipose tissue volume measured using coronary computed tomography angiography and atherosclerotic plaque characteristics in patients with severe coronary artery stenosis. Journal of International Medical Research, 2013, 41, 1520-1531.	0.4	10
198	Echocardiographically measured epicardial fat predicts restenosis after coronary stenting. Scandinavian Cardiovascular Journal, 2013, 47, 297-302.	0.4	19
199	Peri-Aortic Fat Tissue Thickness in Peritoneal Dialysis Patients. Peritoneal Dialysis International, 2013, 33, 316-324.	1.1	10
200	Epicardial Adipose Tissue Increased in Patients with Newly Diagnosed Subclinical Hypothyroidism. Medical Principles and Practice, 2013, 22, 42-46.	1.1	27
201	Relationship between Epicardial Fat Measured by Echocardiography and Coronary Atherosclerosis: A Singleâ€Blind Historical Cohort Study. Echocardiography, 2013, 30, 505-511.	0.3	38
202	Pericardial Disease: Value of CT and MR Imaging. Radiology, 2013, 267, 340-356.	3.6	185
203	Relation of Epicardial Fat Thickness and Cardio-Ankle Vascular Index to Complexity of Coronary Artery Disease in Nondiabetic Patients. Cardiology, 2013, 124, 41-48.	0.6	21
204	Human mediastinal adipose tissue displays certain characteristics of brown fat. Nutrition and Diabetes, 2013, 3, e66-e66.	1.5	32
205	A Prospective Study of Epicardial Adipose Tissue and Incident Metabolic Syndrome: The ARIRANG Study. Journal of Korean Medical Science, 2013, 28, 1762.	1.1	8
206	Epicardial Adipose Tissue Is Associated With Prevalent Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy. International Heart Journal, 2013, 54, 297-303.	0.5	25
207	Epicardial adipose tissue and insulin resistance in patients with coronary artery disease with or without left ventricular dysfunction. Monaldi Archives for Chest Disease, 2013, 80, 170-6.	0.3	9

#	Article	IF	CITATIONS
208	Cardiometabolic Risk Factors in Patients with Erectile Dysfunction. Scientific World Journal, The, 2014, 2014, 1-4.	0.8	6
209	Nonalcoholic fatty liver disease and vascular disease: State-of-the-art. World Journal of Gastroenterology, 2014, 20, 13306.	1.4	171
210	Epicardial adipose tissue thickness and its association with adiponectin in metabolic syndrome patients from Mérida, Venezuela. Arquivos Brasileiros De Endocrinologia E Metabologia, 2014, 58, 352-361.	1.3	10
211	Ectopic Cardiac Depots, Inflammation and Cardiovascular Disease. General Medicine (Los Angeles, Calif) Tj ETQq1	1,0,7843 0.2	14 rgBT /Ove
212	Evaluation of epicardial adipose tissue, carotid intima-media thickness and ventricular functions in obese children and adolescents. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 827-35.	0.4	19
213	An association study between epicardial fat thickness and cognitive impairment in the elderly. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1269-H1276.	1.5	19
214	Correlation between reduction of superior interventricular groove epicardial fat thickness and improvement of insulin resistance after weight loss in obese men. Diabetology and Metabolic Syndrome, 2014, 6, 115.	1.2	10
215	Periaortic fat and cardiovascular risk: a comparison of high-risk older adults and age-matched healthy controls. International Journal of Obesity, 2014, 38, 1397-1402.	1.6	21
216	Epicardial and Perivascular Adipose Tissues and Their Influence on Cardiovascular Disease: Basic Mechanisms and Clinical Associations. Journal of the American Heart Association, 2014, 3, e000582.	1.6	243
217	Epicardial Fat in Atrial Fibrillation and Heart Failure. Hormone and Metabolic Research, 2014, 46, 587-590.	0.7	46
218	An Update on Coronary Artery Disease and Chronic Kidney Disease. International Journal of Nephrology, 2014, 2014, 1-9.	0.7	59
219	Epicardial fat thickness and nonalcoholic fatty liver disease in obese subjects. Obesity, 2014, 22, 332-336.	1.5	69
220	Perivascular Adipose Tissue and Coronary Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1643-1649.	1.1	39
221	A new look at epicardial adipose tissue from the perspective of Iranian traditional medicine. Journal of Integrative Medicine, 2014, 12, 529-530.	1.4	1
222	Epicardial Fat Thickness Is Independently Associated with Psoriasis. Dermatology, 2014, 228, 55-59.	0.9	22
223	Epicardial fat thickness is associated with impaired coronary flow reserve in hemodialysis patients. Hemodialysis International, 2014, 18, 62-69.	0.4	13
224	Epicardial adipose tissue and atrial fibrillation. Cardiovascular Research, 2014, 102, 205-213.	1.8	176
225	Reply. Dermatology, 2014, 228, 134-135.	0.9	0

ARTICLE IF CITATIONS # Pericardial Fat is Associated With Atrial Conduction: The Framingham Heart Study. Journal of the 226 68 1.6 American Heart Association, 2014, 3, e000477. The relationship between epicardial fat thickness and gestational diabetes mellitus. Diabetology and 1.2 Metabolic Syndrome, 2014, 6, 120. 228 Is There a Paradox in Obesity?. Cardiology in Review, 2014, 22, 163-170. 0.6 85 Effects of bariatric surgery on right ventricular structure and function. Journal of Cardiovascular Medicine, 2014, 15, 731-737. Epicardial fat thickness in stable coronary artery disease. Coronary Artery Disease, 2014, 25, 685-690. 230 0.3 11 Effects of Bariatric Surgery on Cardiac Structure and Function: A Systematic Review and 1.0 Meta-Analysis. American Journal of Hypertension, 2014, 27, 146-156. Ankle Brachial Index Intensifies the Diagnostic Accuracy of Epicardial Fat Thickness for the Prediction 232 0.2 13 of Coronary Artery Disease Complexity. Heart Lung and Circulation, 2014, 23, 764-771. Increased epicardial fat and plasma leptin in type 1 diabetes independently of obesity. Nutrition, 1.1 Metabolism and Cardiovascular Diseases, 2014, 24, 725-729. Association of epicardial fat with left ventricular diastolic function in subjects with metabolic 234 syndrome: assessment using 2-dimensional echocardiography. BMC Cardiovascular Disorders, 2014, 14, 0.7 37 Ś. Automated Quantification of Epicardial Adipose Tissue Using CT Angiography: Evaluation of a 2.3 Prototype Software. European Radiology, 2014, 24, 519-526. Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine, 2014, 46, 8-15. 236 1.1 64 Epicardial adipose tissue thickness and NGAL levels in women with polycystic ovary syndrome. Journal 1.3 of Ovarian Research, 2014, 7, 24. Perivascular Fat and its Role in Vascular Disease, Insulin Resistance and Diabetes. Current 238 0.8 0 Cardiovascular Risk Reports, 2014, 8, 1. Ceramides are associated with inflammatory processes in human mediastinal adipose tissue. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 124-131. 1.1 Influence of Epicardial and Visceral Fat on Left Ventricular Diastolic and Systolic Functions in 240 0.7 84 Patients After Myocardial Infarction. American Journal of Cardiology, 2014, 114, 1663-1669. Impact of abdominal and epicardial fat on the association between plasma adipocytokine levels and 241 coronary atherosclerosis in non-obese patients. Atherosclerosis, 2014, 237, 671-676. Secretion of adipocytes and macrophages under conditions of inflammation and/or insulin resistance 242 and effect of adipocytes on preadipocytes under these conditions. Biochemistry (Moscow), 2014, 79, 0.7 3 663-671. 243 Risk Factors and Genetics of Atrial Fibrillation. Cardiology Clinics, 2014, 32, 485-494.

ARTICLE IF CITATIONS Pericardial fat is strongly associated with atrial fibrillation after coronary artery bypass graft 244 0.6 32 surgeryâ€. European Journal of Cardio-thoracic Surgery, 2014, 46, 1014-1020. Is epicardial adipose tissue an epiphenomenon or a new player in the pathophysiology of atrial fibrillation?. Archives of Cardiovascular Diseases, 2014, 107, 349-352. 245 9 Hypotensive effects of omentin-1 related to increased adiponectin and decreased interleukin-6 in 246 1.5 31 intra-thoracic pericardial adipose tissue. Pharmacological Reports, 2014, 66, 991-995. New inflammatory predictors for non-valvular atrial fibrillation: echocardiographic epicardial fat thickness and neutrophil to lymphocyte ratio. International Journal of Cardiovascular Imaging, 2014, 247 49 30, 81-89. Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease. International Journal of Cardiovascular 248 0.7 15 İmaging, 2014, 30, 1393-1398. Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome. Diabetology and 1.2 Metabolic Syndrome, 2014, 6, 47. Effects of testosterone undecanoate replacement and withdrawal on cardio-metabolic, hormonal 250 and body composition outcomes in severely obese hypogonadal men: a pilot study. Journal of 1.8 64 Endocrinological Investigation, 2014, 37, 401-411. The relation of location-specific epicardial adipose tissue thickness and obstructive coronary artery disease: systemic review and meta-analysis of observational studies. BMC Cardiovascular Disorders, 2014, 14, 62. The influence of pericardial fat upon left ventricular function in obese females: evidence of a 252 1.6 26 site-specific effect. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 37. Orosomucoid secretion levels by epicardial adipose tissue as possible indicator of endothelial dysfunction in diabetes mellitus or inflammation in coronary artery disease. Atherosclerosis, 2014, 0.4 235, 281-288. Epicardial fat tissue thickness is correlated with diminished levels of co-enzyme Q10, a major 254 0.8 10 antioxidant molecule among hemodialysis patients. Clinical Biochemistry, 2014, 47, 1231-1234. Left ventricular dysfunction in obese children and adolescents with nonalcoholic fatty liver disease. 3.6 Hepatology, 2014, 59, 461-470. Echocardiographic Epicardial Fat Thickness Is Associated With Coronary Artery Calcification – 256 0.7 24 Results From the CAESAR Study â€". Circulation Journal, 2015, 79, 818-824. The Association between Subclinical Hypothyroidism and Epicardial Adipose Tissue Thickness. Korean Circulation Journal, 2015, 45, 210. Association between the Epicardial Adipose Tissue Thickness and the Presence of Multivessel Disease in Patients with Acute Myocardial Infarction. Journal of Atherosclerosis and Thrombosis, 2015, 22, 258 0.9 5 144-151. Analyzing Correlation between Epicardial Fat Area and Metabolic Syndrome Risk Factor by Using Low-dose Lung CT. Pakistan Journal of Medical Sciences, 2015, 31, 1207-12. Cardiometabolic Risk Factors in Patients With Ankylosing Spondylitis. Archives of Rheumatology, 2015, 260 0.3 0 30, 221-225. Adiponectin as a potential biomarker of vascular disease. Vascular Health and Risk Management, 2015, 11, 55.

#	Article	IF	CITATIONS
262	Successful Weight Reduction Improves Left Ventricular Diastolic Function and Physical Performance in Severe Obesity. International Heart Journal, 2015, 56, 196-202.	0.5	38
263	Increased Epicardial Adipose Tissue Thickness in Type 2 Diabetes Mellitus and Obesity. Diabetes and Metabolism Journal, 2015, 39, 405.	1.8	53
264	Impact of Gender on the Association of Epicardial Fat Thickness, Obesity, and Circadian Blood Pressure Pattern in Hypertensive Patients. Journal of Diabetes Research, 2015, 2015, 1-10.	1.0	24
265	Transcriptome and Molecular Endocrinology Aspects of Epicardial Adipose Tissue in Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Observational Studies. BioMed Research International, 2015, 2015, 1-12.	0.9	17
266	Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue. International Journal of Endocrinology, 2015, 2015, 1-6.	0.6	1
267	Association of Nonalcoholic Fatty Liver Disease with Subclinical Cardiovascular Changes: A Systematic Review and Meta-Analysis. BioMed Research International, 2015, 2015, 1-11.	0.9	70
268	Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity, 2015, 23, 1267-1278.	1.5	86
269	Epicardial Fat Tissue Predicts Increased Long-Term Major Adverse Cardiac Event in Patients With Moderate Cardiovascular Risk. Angiology, 2015, 66, 619-624.	0.8	12
270	Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis. Archives of Medical Research, 2015, 46, 392-407.	1.5	82
271	Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal, 2015, 36, 795-805.	1.0	423
272	Mitochondria: a new therapeutic target in chronic kidney disease. Nutrition and Metabolism, 2015, 12, 49.	1.3	96
273	Cardiac adipose tissue: Distinction between epicardial and pericardial fat remains important!. International Journal of Cardiology, 2015, 201, 274-275.	0.8	15
274	Previous gestational diabetes history is associated with impaired coronary flow reserve. Annals of Medicine, 2015, 47, 615-623.	1.5	19
275	Epicardial fat accumulation, cardiometabolic profile and cardiovascular events in patients with stages 3–5 chronic kidney disease. Journal of Internal Medicine, 2015, 278, 77-87.	2.7	31
276	Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetologica, 2015, 52, 727-732.	1.2	69
277	Increased Regional Epicardial Fat Volume Associated with Reversible Myocardial Ischemia in Patients with Suspected Coronary Artery Disease. Journal of Nuclear Cardiology, 2015, 22, 325-333.	1.4	21
279	Association of systemic inflammation with epicardial fat and coronary artery calcification. Inflammation Research, 2015, 64, 313-319.	1.6	30
280	Correlation between pericardial, mediastinal, and intrathoracic fat volumes with the presence and severity of coronary artery disease, metabolic syndrome, and cardiac risk factors. European Heart Journal Cardiovascular Imaging, 2015, 16, 37-46.	0.5	25

#	Article	IF	CITATIONS
281	How do we measure epicardial adipose tissue thickness by transthoracic echocardiography?. Anatolian Journal of Cardiology, 2015, 15, 416-419.	0.5	35
282	Serum paraoxonase activity is associated with epicardial fat tissue in renal transplant recipients. International Urology and Nephrology, 2015, 47, 1409-1414.	0.6	3
283	Epicardial fat volume quantification by noncontrast CT: Trimming away the fat from the meat. Journal of Cardiovascular Computed Tomography, 2015, 9, 310-312.	0.7	2
284	Atrial Fibrillation and Obesity. Journal of the American College of Cardiology, 2015, 66, 12-13.	1.2	12
285	Epicardial adipose tissue has an increased thickness and is a source of inflammatory mediators in patients with calcific aortic stenosis. International Journal of Cardiology, 2015, 186, 167-169.	0.8	50
286	Effects of restoration of the euthyroid state on epicardial adipose tissue and carotid intima media thickness in subclinical hypothyroid patients. Endocrine, 2015, 48, 909-915.	1.1	16
287	The correlation of epicardial adipose tissue on postmortem CT with coronary artery stenosis as determined by autopsy. Forensic Science, Medicine, and Pathology, 2015, 11, 186-192.	0.6	11
288	Myocardial fat as a part of cardiac visceral adipose tissue: physiological and pathophysiological view. Journal of Endocrinological Investigation, 2015, 38, 933-939.	1.8	15
289	Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nature Reviews Endocrinology, 2015, 11, 363-371.	4.3	443
290	Brown adipocytes, cardiac protection and a common adipo- and myogenic stem precursor in aged human hearts. Medical Hypotheses, 2015, 85, 212-214.	0.8	2
291	Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis, 2015, 241, 27-35.	0.4	81
292	Reply to Chhabra et al European Journal of Cardio-thoracic Surgery, 2015, 47, 585-585.	0.6	0
293	Transcardial gradient of adiponectin, interleukin-6 and tumor necrosis factor-α in overweight coronary artery disease patients. Cytokine, 2015, 76, 321-327.	1.4	7
294	Interatrial septal thickness is associated with the extent of left atrial complex fractionated atrial electrograms and acute procedural outcome in patients with persistent atrial fibrillation. Europace, 2015, 17, 1700-7.	0.7	13
295	Cardiac CT for Quantification of Epicardial Fat: Where to Measure and Why?. Current Cardiovascular Imaging Reports, 2015, 8, 1.	0.4	0
296	Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research, 2015, 108, 62-73.	1.8	155
297	Relation of Epicardial Fat Thickness to the Severity of Heart Failure in Patients with Nonischemic Dilated Cardiomyopathy. Echocardiography, 2015, 32, 740-748.	0.3	21
298	Epicardial fat thickness: threshold values and lifestyle association in male adolescents. Pediatric Obesity, 2015, 10, 105-111.	1.4	11

#	Article	IF	CITATIONS
299	Effects of Atorvastatin (80Âmg) Therapy on Quantity of Epicardial Adipose Tissue in Patients Undergoing Pulmonary Vein Isolation for Atrial Fibrillation. American Journal of Cardiology, 2015, 116, 1443-1446.	0.7	43
300	Non-Alcoholic Fatty Liver Disease (NAFLD): A New Cardiovascular Risk Factor. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2015, 22, 209-216.	0.3	0
301	The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1562-1573.	3.3	42
302	Relationship of epicardial fat volume from noncontrast CT with impaired myocardial flow reserve by positron emission tomography. Journal of Cardiovascular Computed Tomography, 2015, 9, 303-309.	0.7	23
303	Epicardial fat, body mass index, and triglyceride are independent contributors of serum fibroblast growth factor 21 level in obese premenopausal women. Journal of Endocrinological Investigation, 2015, 38, 361-366.	1.8	15
304	Markers of early atherosclerosis, oxidative stress and inflammation in patients with acromegaly. Pituitary, 2015, 18, 621-629.	1.6	26
305	Epicardial atrial fat: Not quite as idle as it looks. Heart Rhythm, 2015, 12, 266-267.	0.3	3
306	Relation of Epicardial Fat Thickness to Subclinical Right Ventricular Dysfunction Assessed by Strain and Strain Rate Imaging in Subjects with Metabolic Syndrome: A Twoâ€Dimensional Speckle Tracking Echocardiography Study. Echocardiography, 2015, 32, 248-256.	0.3	12
307	Arrhythmogenic Evidence for Epicardial Adipose Tissue: Heart Rate Variability and Turbulence are Influenced by Epicardial Fat Thickness. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 99-106.	0.5	50
308	Epicardial Fat Thickness and Neutrophil to Lymphocyte Ratio are Increased in Non-Dipper Hypertensive Patients. Journal of Cardiovascular Imaging, 2016, 24, 294.	0.8	6
309	Role of miRNAs in Epicardial Adipose Tissue in CAD Patients with T2DM. BioMed Research International, 2016, 2016, 1-7.	0.9	14
310	Epicardial fat tissue in patients with psoriasis:a systematic review and meta-analysis. Lipids in Health and Disease, 2016, 15, 103.	1.2	29
311	Epicardial Adipose Tissue (EAT) Thickness Is Associated with Cardiovascular and Liver Damage in Nonalcoholic Fatty Liver Disease. PLoS ONE, 2016, 11, e0162473.	1.1	41
312	Epicardial Adipose Tissue Is Associated with Plaque Burden and Composition and Provides Incremental Value for the Prediction of Cardiac Outcome. A Clinical Cardiac Computed Tomography Angiography Study. PLoS ONE, 2016, 11, e0155120.	1.1	24
313	State-of-the-Art CT Imaging of the Left Atrium. Current Radiology Reports, 2016, 4, 1.	0.4	1
314	Response to Comment on Patel et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016;65:85–95. Diabetes, 2016, 65, e3-e4.	0.3	10
315	Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovascular Diabetology, 2016, 15, 90.	2.7	91
316	Relationship of epicardial fat thickness and nonalcoholic fatty liver disease to coronary artery calcification: From the CAESAR study. Journal of Clinical Lipidology, 2016, 10, 619-626.e1.	0.6	26

#	Article	IF	CITATIONS
317	Epicardial fat thickness regression with continuous positive airway pressure therapy in patients with obstructive sleep apnea: assessment by two-dimensional echocardiography. Wiener Klinische Wochenschrift, 2016, 128, 187-192.	1.0	15
318	Inflammation of left atrial epicardial adipose tissue is associated with paroxysmal atrial fibrillation. Journal of Cardiology, 2016, 68, 406-411.	0.8	35
319	Epicardial adipose tissue—Truly at the heart of the coronaries?. Journal of Clinical Lipidology, 2016, 10, 469-471.	0.6	0
320	Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells. FASEB Journal, 2016, 30, 2849-2859.	0.2	15
321	Automated classification of optical coherence tomography images of human atrial tissue. Journal of Biomedical Optics, 2016, 21, 101407.	1.4	58
322	Cardiac Sympathetic Denervation in the Failing Heart. Circulation Research, 2016, 118, 1189-1191.	2.0	12
323	Epicardial fat tissue thickness is increased in patients with lichen planus and is linked to inflammation and dyslipidemia. Revista Portuguesa De Cardiologia, 2016, 35, 525-530.	0.2	11
324	Epicardial Fat Thickness as a Biomarker in Cardiovascular Disease. , 2016, , 1097-1107.		1
325	Chemerin processing in the myocardium: A mechanism in search of a function. Journal of Molecular and Cellular Cardiology, 2016, 100, 21-24.	0.9	1
326	Type 2 diabetes is associated with decreased PGC1α expression in epicardial adipose tissue of patients with coronary artery disease. Journal of Translational Medicine, 2016, 14, 243.	1.8	32
327	Overnutrition, Ectopic Lipid and the Metabolic Syndrome. Journal of Investigative Medicine, 2016, 64, 1082-1086.	0.7	62
328	Computed Topography/Magnetic Resonance Imaging of Pericardial Disease. , 2016, , 31-53.		0
329	Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement From the American Heart Association. Circulation, 2016, 134, e535-e578.	1.6	285
330	Epicardial fat tissue thickness is increased in patients with lichen planus and is linked to inflammation and dyslipidemia. Revista Portuguesa De Cardiologia (English Edition), 2016, 35, 525-530.	0.2	4
331	An observational study of the association among interatrial adiposity by computed tomography measure, insulin resistance, and left atrial electromechanical disturbances in heart failure. Medicine (United States), 2016, 95, e3912.	0.4	21
332	Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Research and Therapy, 2016, 7, 84.	2.4	38
333	Surgical resection of circumferential epicardial adipose tissue hypertrophy: Case report and systematic review of the literature. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, e27-e30.	0.4	18
334	Epicardial and paracardial adipose tissue volume and attenuation – Association with high-risk coronary plaque on computed tomographic angiography in the ROMICAT II trial. Atherosclerosis, 2016, 251, 47-54.	0.4	72

#	Article	IF	CITATIONS
335	The relation between total epicardial fat volume assessed by cardiac CT and the presence of atrial fibrillation. Egyptian Heart Journal, 2016, 68, 97-102.	0.4	4
336	Epiaortic fat pad area: A novel index for the dimensions of the ascending aorta. Vascular Medicine, 2016, 21, 191-198.	0.8	2
337	Efficacy study of olmesartan medoxomil on coronary atherosclerosis progression and epicardial adipose tissue volume reduction in patients with coronary atherosclerosis detected by coronary computed tomography angiography: study protocol for a randomized controlled trial. Trials, 2016, 17, 10.	0.7	6
338	ACE2/Ang 1-7 axis: A critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte, 2016, 5, 306-311.	1.3	90
339	Cardiac adipose tissue and atrial fibrillation: the perils of adiposity. Cardiovascular Research, 2016, 109, 502-509.	1.8	101
340	Subclinical atherosclerosis is associated with Epicardial Fat Thickness and hepatic steatosis in the general population. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 141-153.	1.1	42
341	Effect of iterative reconstruction on variability and reproducibility of epicardial fat volume quantification by cardiac CT. Journal of Cardiovascular Computed Tomography, 2016, 10, 150-155.	0.7	10
342	Epicardial fat thickness: A surrogate marker of coronary artery disease – Assessment by echocardiography. Indian Heart Journal, 2016, 68, 336-341.	0.2	38
343	Epicardial fat: a new cardiovascular therapeutic target. Current Opinion in Pharmacology, 2016, 27, 13-18.	1.7	72
344	Increased Epicardial Adipose Tissue Volume Correlates With Cardiac Sympathetic Denervation in Patients With Heart Failure. Circulation Research, 2016, 118, 1244-1253.	2.0	74
345	Risk Factors and Genetics of Atrial Fibrillation. Heart Failure Clinics, 2016, 12, 157-166.	1.0	27
346	The Role of Obesity in the Development of Left Ventricular Hypertrophy Among Children and Adolescents. Current Hypertension Reports, 2016, 18, 3.	1.5	65
347	Segmental peri-coronary epicardial adipose tissue volume and coronary plaque characteristics. European Heart Journal Cardiovascular Imaging, 2016, 17, 1169-1177.	0.5	29
348	3D-Dixon MRI based volumetry of peri- and epicardial fat. International Journal of Cardiovascular Imaging, 2016, 32, 291-299.	0.7	41
349	Body composition: Where and when. European Journal of Radiology, 2016, 85, 1456-1460.	1.2	34
350	Epicardial adipose tissue and signs of metabolic syndrome in children. Eating and Weight Disorders, 2016, 21, 269-276.	1.2	10
351	Role of adipose tissue in the pathogenesis of cardiac arrhythmias. Heart Rhythm, 2016, 13, 311-320.	0.3	83
352	Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine, 2016, 51, 448-455.	1.1	75

#	Article	IF	CITATIONS
353	CPAP therapy induces favorable short-term changes in epicardial fat thickness and vascular and metabolic markers in apparently healthy subjects with obstructive sleep apnea-hypopnea syndrome (OSAHS). Sleep and Breathing, 2016, 20, 483-493.	0.9	30
354	Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. European Heart Journal, 2017, 38, 53-61.	1.0	198
355	Atherosclerosis in chronic hepatitis C virus patients with and without liver cirrhosis. Egyptian Heart Journal, 2017, 69, 139-147.	0.4	11
356	Liraglutide causes large and rapid epicardial fat reduction. Obesity, 2017, 25, 311-316.	1.5	154
357	Epicardial Adipose Tissue Removal Potentiates Outward Remodeling and Arrests Coronary Atherogenesis. Annals of Thoracic Surgery, 2017, 103, 1622-1630.	0.7	36
358	Aberrant Epicardial Adipose Tissue Extracellular Matrix Remodeling in Patients with Severe Ischemic Cardiomyopathy: Insight from Comparative Quantitative Proteomics. Scientific Reports, 2017, 7, 43787.	1.6	25
359	Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials, 2017, 133, 132-143.	5.7	54
360	Adipose tissue depots and inflammation: effects on plasticity and resident mesenchymal stem cell function. Cardiovascular Research, 2017, 113, 1064-1073.	1.8	91
361	Association between echocardiographic epicardial fat thickness and circulating endothelial progenitor cell level in patients with stable angina pectoris. Clinical Cardiology, 2017, 40, 697-703.	0.7	6
362	Assessment of the relationship between serum paraoxonase activity and epicardial adipose tissue in hemodialysis patients. International Urology and Nephrology, 2017, 49, 329-335.	0.6	8
363	Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 739-750.	1.1	43
364	Epicardial Fat. Cardiology in Review, 2017, 25, 230-235.	0.6	17
365	Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat?. , 2017, 7, 1051-1082.		104
366	Reply to Letter to the Editor: Epicardial adipose tissue and cardiometabolic risk. Clinical Nutrition, 2017, 36, 1453.	2.3	0
368	Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation, 2017, 136, 6-19.	1.6	689
369	The Influence of Epicardial Fat and Nonalcoholic Fatty Liver Disease on Heart Rate Recovery in Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2017, 15, 226-232.	0.5	19
370	Epicardial Adipose Tissue in the General Middle-aged Population and Its Association With Metabolic Syndrome. Revista Espanola De Cardiologia (English Ed), 2017, 70, 254-260.	0.4	15
371	Epicardial adipose tissue and myocardial ischemia assessed by computed tomography perfusion imaging and invasive fractional flow reserve. Journal of Cardiovascular Computed Tomography, 2017, 11, 46-53.	0.7	19

#	Article	IF	CITATIONS
372	Epicardial adipose tissue is related to cardiac function in elderly women, but not in men. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 41-47.	1.1	30
373	CT Attenuation of Pericoronary Adipose Tissue in Normal Versus Atherosclerotic Coronary Segments as Defined by Intravascular Ultrasound. Journal of Computer Assisted Tomography, 2017, 41, 762-767.	0.5	45
374	Association Between C1q/TNF-Related Protein-1 Levels in Human Plasma and Epicardial Adipose Tissues and Congestive Heart Failure. Cellular Physiology and Biochemistry, 2017, 42, 2130-2143.	1.1	31
375	Increased Epicardial Fat Volume Is Independently Associated with the Presence and Severity of Systemic Sclerosis. Academic Radiology, 2017, 24, 1473-1481.	1.3	15
376	Epicardial fat thickness is associated with aortic intimaâ€media thickness in patients without clinical manifestation of atherosclerotic cardiovascular disease. Echocardiography, 2017, 34, 1146-1151.	0.3	7
377	Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Failure Reviews, 2017, 22, 889-902.	1.7	156
378	Influence of Sex on the Association Between Epicardial Adipose Tissue and Left Atrial Transport Function in Patients With Atrial Fibrillation: A Multislice Computed Tomography Study. Journal of the American Heart Association, 2017, 6, .	1.6	16
379	Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Scientific Reports, 2017, 7, 15566.	1.6	48
380	Epicardial Fat in the Maintenance of Cardiovascular Health. Methodist DeBakey Cardiovascular Journal, 2021, 13, 20.	0.5	86
381	Mouse P2Y ₄ Nucleotide Receptor Is a Negative Regulator of Cardiac Adipose-Derived Stem Cell Differentiation and Cardiac Fat Formation. Stem Cells and Development, 2017, 26, 363-373.	1.1	20
382	Assessment of epicardial adipose tissue and carotid/femoral intima media thickness in insulin resistance. Journal of Cardiology, 2017, 69, 843-850.	0.8	18
383	Frailty syndrome: Visceral adipose tissue and frailty in patients with symptomatic severe aortic stenosis. Journal of Nutrition, Health and Aging, 2017, 21, 120-128.	1.5	2
384	Differential expression of osteopontin, and osteoprotegerin mRNA in epicardial adipose tissue between patients with severe coronary artery disease and aortic valvular stenosis: association with HDL subclasses. Lipids in Health and Disease, 2017, 16, 156.	1.2	12
385	Original research. The Assessment of Epicardial Adipose Tissue in Acute Coronary Syndrome Patients. A Systematic Review. Journal of Cardiovascular Emergencies, 2017, 3, 18-29.	0.1	9
386	Neutrophil-to-lymphocyte ratio as a possible indicator of epicardial adipose tissue in patients undergoing hemodialysis. Archives of Medical Science, 2017, 1, 118-123.	0.4	21
387	Clinical importance of epicardial adipose tissue. Archives of Medical Science, 2017, 4, 864-874.	0.4	87
388	Expression of epicardial adipose tissue thermogenic genes in patients with reduced and preserved ejection fraction heart failure. International Journal of Medical Sciences, 2017, 14, 891-895.	1.1	28
389	Epicardial Adipose Tissue Contributes to the Development of Non-Calcified Coronary Plaque: A 5-Year Computed Tomography Follow-up Study. Journal of Atherosclerosis and Thrombosis, 2017, 24, 262-274.	0.9	32

#	Article	IF	CITATIONS
390	Adiponectin promotes preadipocyte differentiation via the PPARÎ ³ pathway. Molecular Medicine Reports, 2018, 17, 428-435.	1.1	37
391	Epicardial Fat Thickness is Correlated with Vagal Hyperactivity in Patients with Neurally-Mediated Syncope. Journal of Cardiovascular Imaging, 2017, 25, 57.	0.8	0
392	Expression of Sterol Regulatory Element-Binding Proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: preliminary study. International Journal of Medical Sciences, 2017, 14, 268-274.	1.1	14
393	Arrhythmogenicity of fibro-fatty infiltrations. Scientific Reports, 2018, 8, 2050.	1.6	35
394	Relation of Increased Epicardial Fat After Fontan Palliation to Cardiac Output and Systemic Ventricular Ejection Fraction. American Journal of Cardiology, 2018, 121, 862-866.	0.7	3
395	Echocardiographic measurements of epicardial adipose tissue and comparative ability to predict adverse cardiovascular outcomes in patients with coronary artery disease. International Journal of Cardiovascular Imaging, 2018, 34, 1429-1437.	0.7	12
396	Epicardial Fat Thickness in Patients with Autosomal Dominant Polycystic Kidney Disease. CardioRenal Medicine, 2018, 8, 199-207.	0.7	7
397	Epicardial adipose tissue: new parameter for cardiovascular risk assessment in high risk populations. Journal of Nephrology, 2018, 31, 847-853.	0.9	17
398	Susceptibilities of epicardial and subcutaneous fat tissue for browning-gene expression and diet-induced volume reduction are different. Molecular Medicine Reports, 2018, 17, 6542-6550.	1.1	1
399	Removal of epicardial adipose tissue after myocardial infarction improves cardiac function. Herz, 2018, 43, 258-264.	0.4	19
400	The Comparison of Angiographic Scoring Systems With the Predictors of Atherosclerosis. Angiology, 2018, 69, 158-163.	0.8	9
401	Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovascular Research, 2018, 114, 336-346.	1.8	131
402	Mechanisms Involved in Premature Aging in the Heart—Is There an Implication for Cardiac Surgery?. Thoracic and Cardiovascular Surgeon, 2018, 66, 031-041.	0.4	4
403	Characterization of the Epicardial Adipose Tissue in Decellularized Human-Scaled Whole Hearts: Implications for the Whole-Heart Tissue Engineering. Tissue Engineering - Part A, 2018, 24, 682-693.	1.6	4
404	Sleep-disordered breathing and epicardial adipose tissue in patients with heart failure. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 126-132.	1.1	14
405	Association of non-alcoholic steatohepatitis with subclinical myocardial dysfunction in non-cirrhotic patients. Journal of Hepatology, 2018, 68, 764-772.	1.8	86
406	Serum adiponectin and TNFα concentrations are closely associated with epicardial adipose tissue fatty acid profiles in patients undergoing cardiovascular surgery. IJC Heart and Vasculature, 2018, 18, 86-95.	0.6	6
407	Pericardial Adipose Tissue Regulates Granulopoiesis, Fibrosis, and Cardiac Function After Myocardial Infarction. Circulation, 2018, 137, 948-960.	1.6	114

#	Article	IF	CITATIONS
408	Cardiovascular fat in women at midlife: effects of race, overall adiposity, and central adiposity. The SWAN Cardiovascular Fat Study. Menopause, 2018, 25, 38-45.	0.8	11
409	Association of epicardial adipose tissue with coronary spasm and coronary atherosclerosis in patients with chest pain: analysis of data collated by the KoRean wOmen'S chest pain rEgistry (koROSE). Heart and Vessels, 2018, 33, 17-24.	0.5	8
410	Effect of epicardial fat and metabolic syndrome on reverse atrial remodeling after ablation for atrial fibrillation. Journal of Arrhythmia, 2018, 34, 607-616.	0.5	10
411	Pericardial adipose tissue and cardiovascular diseases: New insights from basic research. European Journal of Clinical Investigation, 2018, 49, e13052.	1.7	2
412	The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Frontiers in Physiology, 2018, 9, 1518.	1.3	18
413	Association of Epicardial Adipose Tissue Volume and Total Coronary Plaque Burden in Patients with Coronary Artery Disease. International Heart Journal, 2018, 59, 1219-1226.	0.5	19
414	Linking Arrhythmias and Adipocytes: Insights, Mechanisms, and Future Directions. Frontiers in Physiology, 2018, 9, 1752.	1.3	38
415	Interplay between epicardial adipose tissue, metabolic and cardiovascular diseases. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 230-239.	0.1	1
416	Fatty Acid Composition in Various Types of Cardiac Adipose Tissues and Its Relation to the Fatty Acid Content of Atrial Tissue. Nutrients, 2018, 10, 1506.	1.7	6
417	Epicardial fat thickness: A new predictor of successful electrical cardioversion and atrial fibrillation recurrence. Echocardiography, 2018, 35, 1926-1931.	0.3	12
418	Electroanatomical Remodeling ofÂtheÂAtria in Obesity. JACC: Clinical Electrophysiology, 2018, 4, 1529-1540.	1.3	100
419	Cardiac Steatosis in HIV-A Marker or Mediator of Disease?. Frontiers in Endocrinology, 2018, 9, 529.	1.5	2
420	Localization of fat depots and cardiovascular risk. Lipids in Health and Disease, 2018, 17, 218.	1.2	104
421	Chest adipose tissue distribution in patients with morbid obesity. Polish Journal of Radiology, 2018, 83, 68-75.	0.5	3
422	Epicardial Fat Thickness and Bone Mineral Content: The Healthy Twin Study in Korea. Journal of Epidemiology, 2018, 28, 253-259.	1.1	0
423	Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know?. Inflammation, 2018, 41, 1142-1156.	1.7	4
424	The measurement of both carotid intima-media thickness and epicardial adipose tissue thickness in children with epilepsy receiving antiepileptic drug therapy. Epilepsy and Behavior, 2018, 85, 110-114.	0.9	10
425	Interplay between epicardial adipose tissue, metabolic and cardiovascular diseases. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 230-239.	0.4	11

ARTICLE IF CITATIONS # Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular 426 311 1.6 Disease: An Update. Progress in Cardiovascular Diseases, 2018, 61, 103-113. Obesity, ectopic fat and cardiac metabolism. Expert Review of Endocrinology and Metabolism, 2018, 13, 427 1.2 213-221. Epicardial Fat Thickness, Free Fatty Acid Can Predict Acute Ischemic Stroke in Patients with Atrial 428 0.2 0 Fibrillation?. Journal of Cardiovascular Imaging, 2018, 26, 63. Fatty Infiltration of the Myocardium and Arrhythmogenesis: Potential Cellular and Molecular 429 1.3 Mechanisms. Frontiers in Physiology, 2018, 9, 2. Evaluation of Epicardial Fat Thickness in Young Patients With Embolic Stroke of Undetermined 430 0.4 9 Source. Neurologist, 2018, 23, 113-117. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS ONE, 2018, 13, e0201499. 1.1 Association between epicardial adipose tissue, high-sensitivity C-reactive protein and myocardial 432 dysfunction in middle-aged men with suspected metabolic syndrome. Cardiovascular Diabetology, 2.7 42 2018, 17, 95. CD38 Deficiency Protects Heart from High Fat Diet-Induced Oxidative Stress Via Activating Sirt3/FOXO3 433 1.1 34 Pathway. Cellular Physiology and Biochemistry, 2018, 48, 2350-2363. 434 Mechanisms and Drug Development in Atrial Fibrillation. Pharmacological Reviews, 2018, 70, 505-525. 7.1 67 Epicardial adipose tissue feeding and overfeeding the heart. Nutrition, 2019, 59, 1-6. 1.1 Cardiopulmonary remodeling in fattened beef cattle: a naturally occurring large animal model of 436 0.8 14 obesityâ€associated pulmonary hypertension with left heart disease. Pulmonary Circulation, 2019, 9, 1-13. Imaging sequence for joint myocardial <scp>T</scp>₁ mapping and fat/water separation. Magnetic Resonance in Medicine, 2019, 81, 486-494. Epicardial adipocyte size does not correlate with body mass index. Cardiovascular Pathology, 2019, 43, 438 0.7 10 107144. Relationship between epicardial adipose tissue and coronary vascular function in patients with suspected coronary artery disease and normal myocardial perfusion imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 1379-1387. 26 Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed 440 0.2 41 type 2 diabetes patients. Revista Portuguesa De Cardiologia, 2019, 38, 419-423. Adipocytes Directly Affect Coronary Artery Disease Pathogenesis via Induction of Adipokine and 441 2.2 24 Cytokine Imbalances. Frontiers in Immunology, 2019, 10, 2163. Cardioprotective Heme Oxygenaseâ€1â€PGC1α Signaling in Epicardial Fat Attenuates Cardiovascular Risk in 442 1.5 31 Human's as in Obese Mice. Obesity, 2019, 27, 1634-1643. Comparative Proteome Analysis of Epicardial and Subcutaneous Adipose Tissues from Patients with or 443 without Coronary Artery Disease. International Journal of Endocrinology, 2019, 2019, 1-11.

#	Article	IF	CITATIONS
444	Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern. Journal of Translational Medicine, 2019, 17, 310.	1.8	29
445	Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Revista Portuguesa De Cardiologia (English Edition), 2019, 38, 419-423.	0.2	4
446	Echocardiographic measurement of epicardial adipose tissue thickness in patients with microvascular angina. Interventional Medicine & Applied Science, 2019, 11, 106-111.	0.2	0
447	Localization profiles of natriuretic peptides in hearts of pre-hibernating and hibernating Anatolian ground squirrels (Spermophilus xanthoprymnus). Veterinary Research Communications, 2019, 43, 45-65.	0.6	6

Quantification of epicardial fat with cardiac CT angiography and association with cardiovascular risk factors in symptomatic patients: from the ALTER-BIO (Alternative Cardiovascular Bio-Imaging) Tj ETQq0 0 0 rgB0.‡Overloc±610 Tf 50

449	Epicardial fat tissue in patients with diabetes mellitus: a systematic review and meta-analysis. Cardiovascular Diabetology, 2019, 18, 3.	2.7	66
450	The relation between echocardiographic epicardial fat thickness and mitral annular calcification. African Health Sciences, 2019, 19, 1657.	0.3	4
451	Epicardial Adipose Tissue in Cardiovascular Disease. Advances in Experimental Medicine and Biology, 2019, 1127, 131-143.	0.8	30
452	Dendritic Cells in Subcutaneous and Epicardial Adipose Tissue of Subjects with Type 2 Diabetes, Obesity, and Coronary Artery Disease. Mediators of Inflammation, 2019, 2019, 1-7.	1.4	20
453	Heart Failure With Preserved Ejection Fraction In Perspective. Circulation Research, 2019, 124, 1598-1617.	2.0	500
454	Impact of different ectopic fat depots on cardiovascular and metabolic diseases. Journal of Cellular Physiology, 2019, 234, 21630-21641.	2.0	128
455	In New-Onset Diabetes Mellitus, Metformin Reduces Fat Accumulation in the Liver, But Not in the Pancreas or Pericardium. Metabolic Syndrome and Related Disorders, 2019, 17, 289-295.	0.5	16
456	Epicardial adipose tissue thickness and type 2 diabetes risk according to the FINDRISC modified for Latin America. ClĀnica E Investigación En Arteriosclerosis (English Edition), 2019, 31, 15-22.	0.1	0
458	Cardiac Anatomy for Catheter Mapping and Ablation of Arrhythmias. , 2019, , 54-74.e4.		0
459	Racial Disparities in the Cardiac Computed Tomography Assessment of Coronary Artery Disease. Cardiology in Review, 2019, 27, 14-22.	0.6	2
460	Coronary Artery Disease Is Associated with an Increased Amount of T Lymphocytes in Human Epicardial Adipose Tissue. Mediators of Inflammation, 2019, 2019, 1-9.	1.4	14
461	Is epicardial fat attenuation a novel marker of coronary inflammation?. Atherosclerosis, 2019, 284, 212-213.	0.4	23
462	Impaired mitochondrial oxidative phosphorylation capacity in epicardial adipose tissue is associated with decreased concentration of adiponectin and severity of coronary atherosclerosis. Scientific Reports, 2019, 9, 3535.	1.6	19

#	Article	IF	CITATIONS
463	Epicardial fat volume measured on nongated chest CT is a predictor of coronary artery disease. European Radiology, 2019, 29, 3638-3646.	2.3	25
464	The Many Uses of Epicardial Fat Measurements. Contemporary Medical Imaging, 2019, , 285-294.	0.3	0
465	Deciphering White Adipose Tissue Heterogeneity. Biology, 2019, 8, 23.	1.3	69
466	Epicardial Adipose Tissue and Cardiovascular Disease. Current Hypertension Reports, 2019, 21, 36.	1.5	47
467	Epicardial adipose tissue volume is associated with adverse outcomes after transcatheter aortic valve replacement. International Journal of Cardiology, 2019, 286, 29-35.	0.8	14
468	Fatty acid composition of mesenteric, cardiac, abdominal, intermuscular, and subcutaneous adipose tissues from horses of three body condition scores. Livestock Science, 2019, 223, 116-123.	0.6	8
469	Interaction of obesity and atrial fibrillation: an overview of pathophysiology and clinical management. Expert Review of Cardiovascular Therapy, 2019, 17, 209-223.	0.6	36
471	Perivascular Adipose Tissue and Coronary Atherosclerosis: from Biology to Imaging Phenotyping. Current Atherosclerosis Reports, 2019, 21, 47.	2.0	67
472	Cardiac remodeling in obesity and after bariatric and metabolic surgery; is there a role for gastro-intestinal hormones?. Expert Review of Cardiovascular Therapy, 2019, 17, 771-790.	0.6	8
473	Assessment of Subclinical Atherosclerosis in Vitamin D Deficiency. Ultrasound Quarterly, 2019, 35, 142-146.	0.3	4
474	<p>Dynamics of Epicardiac Fat and Heart Function in Type 2 Diabetic Patients Initiated with SGLT-2 Inhibitors</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, Volume 12, 2559-2566.	1.1	21
475	Epicardial Adipose Tissue: Clinical Biomarker of Cardio-Metabolic Risk. International Journal of Molecular Sciences, 2019, 20, 5989.	1.8	108
476	Presence of fragmented QRS is associated with increased epicardial adipose tissue thickness in hypertensive patients. Journal of Clinical Ultrasound, 2019, 47, 345-350.	0.4	12
477	Association between epicardial adipose tissue thickness and parameters of target organ damage in patients undergoing coronary angiography. Hypertension Research, 2019, 42, 549-557.	1.5	7
478	Epicardial adipose tissue thickness and type 2 diabetes risk according to the FINDRISC modified for Latin America. ClÃnica E Investigación En Arteriosclerosis, 2019, 31, 15-22.	0.4	4
479	Epicardial adipose tissue volume in patients with coronary artery disease or non-ischaemic dilated cardiomyopathy: evaluation with cardiac magnetic resonance imaging. Clinical Radiology, 2019, 74, 81.e1-81.e7.	0.5	11
480	Expression of sex steroid receptors and aromatase in adipose tissue in different body regions in men with coronary artery disease with and without ischemic systolic heart failure. Aging Male, 2020, 23, 141-153.	0.9	9
481	Left ventricular remodeling and dysfunction in obstructive sleep apnea. Herz, 2020, 45, 726-738.	0.4	28

#	Article	IF	CITATIONS
482	Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxidants and Redox Signaling, 2020, 32, 1045-1060.	2.5	19
483	Effects of valproic acid and levetiracetam monotherapy on carotid intima-media and epicardial adipose tissue thickness in non-obese children with epilepsy. Brain and Development, 2020, 42, 165-170.	0.6	8
484	Are cardiac sympathetic nerve activity and epicardial adipose tissue associated with atrial fibrillation recurrence after catheter ablation in patients without heart failure?. International Journal of Cardiology, 2020, 303, 41-48.	0.8	19
485	High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment. Atherosclerosis, 2020, 292, 60-69.	0.4	31
486	Novel imaging biomarkers: epicardial adipose tissue evaluation. British Journal of Radiology, 2020, 93, 20190770.	1.0	38
487	The role of inflammation and metabolic risk factors in the pathogenesis of calcific aortic valve stenosis. Aging Clinical and Experimental Research, 2021, 33, 1765-1770.	1.4	18
488	Holistic approach to psoriasis patient: What about epicardial fat tissue?. Medical Hypotheses, 2020, 143, 110123.	0.8	1
489	Study of correlation between epicardial fat thickness and severity of coronary artery disease. Indian Heart Journal, 2020, 72, 445-447.	0.2	6
490	The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants, 2020, 9, 1129.	2.2	7
491	Pregnancy-induced Cardiovascular Pathologies: Importance of Structural Components and Lipids. American Journal of the Medical Sciences, 2020, 360, 447-466.	0.4	7
492	The relation between epicardial fat tissue thickness and atrial fibrillation ın hemodialysis patients. Seminars in Dialysis, 2020, 33, 428-434.	0.7	2
493	No-reflow phenomenon and comparison to the normal-flow population postprimary percutaneous coronary intervention for ST elevation myocardial infarction: case–control study (NORM PPCI). Open Heart, 2020, 7, e001215.	0.9	9
494	Effects of metformin on epicardial adipose tissue and atrial electromechanical delay of obese children with insulin resistance. Cardiology in the Young, 2020, 30, 1429-1432.	0.4	11
495	Epicardial Fat Inflammation in Severe COVIDâ€19. Obesity, 2020, 28, 2260-2262.	1.5	42
496	Is there a relationship between epicardial fat tissue thickness and Tp-Te/QT ratio in healthy individuals?. Archives of Medical Sciences Atherosclerotic Diseases, 2020, 5, 127-139.	0.5	0
497	Relation between quantity and quality of peri-coronary epicardial adipose tissue and its underlying hemodynamically significant coronary stenosis. BMC Cardiovascular Disorders, 2020, 20, 226.	0.7	7
498	Increased epicardial fat tissue thickness predicts advanced interatrial block among hypertensive patients. Journal of Electrocardiology, 2020, 61, 18-22.	0.4	3
499	Metabolic and cardiovascular risk factors in Klinefelter syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 334-343.	0.7	25

#	Article	IF	CITATIONS
500	Epicardial adipose tissue: A cardiovascular risk marker to evaluate in chronic kidney disease. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2020, 32, 129-134.	0.1	1
501	Epicardial fat study-AC: relationship between echocardiographic epicardial fat and coronary artery disease in patients after invasive coronary artery angiography. Future Cardiology, 2020, 16, 635-643.	0.5	0
502	Resistin as a Biomarker for the Prediction of Left Atrial Substrate and Recurrence in Patients with Drug-Refractory Atrial Fibrillation Undergoing Catheter Ablation. International Heart Journal, 2020, 61, 517-523.	0.5	6
503	Association of Left Ventricular Hypertrophy with Hemoglobin Levels in Nonanemic and Anemic Populations. Cardiology, 2020, 145, 485-491.	0.6	6
504	Epicardial adipose tissue: an emerging biomarker of cardiovascular complications in type 2 diabetes?. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882092882.	1.4	38
505	Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography. Physics in Medicine and Biology, 2020, 65, 095012.	1.6	23
506	Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 22.	1.1	614
507	Epicardial adipose tissue is a predictor of ascending aortic dilatation in hypertensive patients, but not paracardial adipose tissue. BMC Cardiovascular Disorders, 2020, 20, 142.	0.7	7
508	Effects of Semaglutide Versus Dulaglutide on Epicardial Fat Thickness in Subjects with Type 2 Diabetes and Obesity. Journal of the Endocrine Society, 2020, 4, bvz042.	0.1	61
509	Physiology and Cardioprotection of the Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 9-17.	0.0	1
510	Echocardiographic Epicardial Adipose Tissue Thickness for Risk Stratification of Patients With Heart Failure. Frontiers in Physiology, 2020, 11, 43.	1.3	14
511	The roles of epicardial adipose tissue in heart failure. Heart Failure Reviews, 2022, 27, 369-377.	1.7	20
512	Thoracic Visceral Adipose Tissue Area and Pulmonary Hypertension in Lung Transplant Candidates. The Lung Transplant Body Composition Study. Annals of the American Thoracic Society, 2020, 17, 1393-1400.	1.5	9
513	Epicardial adipose tissue is tightly associated with exercise intolerance in patients with type 2 diabetes mellitus with asymptomatic left ventricular structural and functional abnormalities. Journal of Diabetes and Its Complications, 2020, 34, 107552.	1.2	10
514	Left ventricular myocardial deformation: a study on diastolic function in the Chinese male population and its relationship with fat distribution. Quantitative Imaging in Medicine and Surgery, 2020, 10, 634-645.	1.1	8
515	Pericardial adipose tissue, cardiac structures, and cardiovascular risk factors in school-age children. European Heart Journal Cardiovascular Imaging, 2021, 22, 307-313.	0.5	7
516	Increased epicardial adipose tissue thickness is associated with microalbuminuria in hypertensive patients with left ventricular hypertrophy. Clinical and Experimental Hypertension, 2021, 43, 18-25.	0.5	0
517	Vascular-specific epicardial adipose tissue in predicting functional myocardial ischemia for patients with stable chest pain. Journal of Thrombosis and Thrombolysis, 2021, 51, 915-923.	1.0	8

#	Article	IF	CITATIONS
518	Epicardial adipose tissue is associated with extent of pneumonia and adverse outcomes in patients with COVID-19. Metabolism: Clinical and Experimental, 2021, 115, 154436.	1.5	48
519	Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocrine Reviews, 2021, 42, 29-55.	8.9	108
520	Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines, 2021, 9, 40.	1.4	10
521	Assessing the Role of Pericardial Fat as a Biomarker Connected to Coronary Calcification—A Deep Learning Based Approach Using Fully Automated Body Composition Analysis. Journal of Clinical Medicine, 2021, 10, 356.	1.0	14
522	lncRNA expression profiles and associated ceRNA network analyses in epicardial adipose tissue of patients with coronary artery disease. Scientific Reports, 2021, 11, 1567.	1.6	16
523	Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Reviews and Reports, 2021, 17, 1137-1153.	1.7	4
524	Epicardial fat tissue can predict subclinical left ventricular dysfunction in patients with erectile dysfunction. Aging Male, 2021, 24, 42-49.	0.9	4
525	Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. Journal of Clinical Investigation, 2021, 131, .	3.9	11
526	Epicardial adipose tissue thickness predicts non-dipper statue in newly diagnosed hypertensive patients. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2021, 180, .	0.0	0
527	Epicardial fat and coronary artery disease: Role of cardiac imaging. Atherosclerosis, 2021, 321, 30-38.	0.4	54
528	Tejido graso epicárdico, calcificación arterial coronaria y mortalidad en pacientes con enfermedad renal crónica avanzada y hemodiálisis. Nefrologia, 2021, 41, 174-181.	0.2	5
529	Epicardial fat tissue, coronary arterial calcification and mortality in patients with advanced chronic kidney disease and hemodialysis. Nefrologia, 2021, 41, 174-181.	0.2	1
530	Dual role for angiotensinâ€converting enzyme 2 in Severe Acute Respiratory Syndrome Coronavirus 2 infection and cardiac fat. Obesity Reviews, 2021, 22, e13225.	3.1	7
531	Imaging of the Pericoronary Adipose Tissue (PCAT) Using Cardiac Computed Tomography. Journal of Thoracic Imaging, 2021, 36, 149-161.	0.8	24
532	A 3D high resolution MRI method for the visualization of cardiac fibro-fatty infiltrations. Scientific Reports, 2021, 11, 9266.	1.6	5
533	Review: Obesity and COVID-19: A Detrimental Intersection. Frontiers in Endocrinology, 2021, 12, 652639.	1.5	22
534	Noninvasive assessment of subclinical atherosclerosis in patients with rosacea. Italian Journal of Dermatology and Venereology, 2021, 156, .	0.1	6
535	Association of epicardial fat thickness with left ventricular diastolic function parameters in a community population. BMC Cardiovascular Disorders, 2021, 21, 262.	0.7	4

#	Article	IF	CITATIONS
536	Aging Effects on Epicardial Adipose Tissue. Frontiers in Aging, 2021, 2, .	1.2	24
537	Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology. Cardiovascular Research, 2022, 118, 1693-1702.	1.8	12
538	Automatic quantification of epicardial adipose tissue volume. Medical Physics, 2021, 48, 4279-4290.	1.6	12
539	Structural Cardiac Remodeling in AtrialÂFibrillation. JACC: Cardiovascular Imaging, 2021, 14, 2199-2208.	2.3	27
540	Alternative sites of echocardiographic epicardial fat assessment and coronary artery disease. Journal of Ultrasound, 2021, , 1.	0.7	2
541	Development of artificial intelligence in epicardial and pericoronary adipose tissue imaging: a systematic review. European Journal of Hybrid Imaging, 2021, 5, 14.	0.6	14
542	The role of adiposity in atrial fibrillation pathogenesis – An area of growing scientific and clinical interest. Heart Rhythm O2, 2021, 2, 324-325.	0.6	0
543	Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. European Journal of Radiology, 2021, 145, 109943.	1.2	39
544	The discrepancy of aromatase expression in epicardial adipose tissue between CHD and non-CHD patients. Cardiovascular Journal of Africa, 2021, 32, 32-35.	0.2	1
545	New method and electrophysiological characteristics of LA posterior wall isolation in persistent atrial fibrillation. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 1691-1700.	0.5	2
547	Adipocyte function and the development of cardiometabolic disease. Journal of Physiology, 2022, 600, 1189-1208.	1.3	17
548	Bariatric surgery decreases the number of future hospital admissions for diastolic heart failure in subjects with severe obesity: a retrospective analysis of the US National Inpatient Sample database. Surgery for Obesity and Related Diseases, 2022, 18, 1-8.	1.0	6
549	Association of Pericardiac Adipose Tissue With Coronary Artery Disease. Frontiers in Endocrinology, 2021, 12, 724859.	1.5	9
550	Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. , 2021, , 107975.		16
551	Right Heart Morphology and Its Association With Excessive and Deficient Cardiac Visceral Adipose Tissue. Clinical Medicine Insights: Cardiology, 2021, 15, 117954682110413.	0.6	1
552	White Adipose Tissue. , 2012, , 71-121.		2
553	Interactions of Adipose and Lymphoid Tissues. , 2007, , 133-150.		3
554	Adipose Tissue and Mast Cells. , 2007, , 151-158.		3

	CITATION	Report	
#	Article	IF	CITATIONS
555	Eat and Death: Chronic Over-Eating. Advances in Experimental Medicine and Biology, 2017, 960, 53-80.	0.8	16
556	The Evolution of Mammalian Adipose Tissues. , 2017, , 1-59.		11
557	White Adipose Tissue. , 2017, , 149-199.		4
558	A Study Ex Vivo of the Effect of Epicardial Fat on the HeartLander Robotic Crawler. IFMBE Proceedings, 2011, 37, 227-230.	0.2	4
559	Epicardial adipose tissue is associated with high-risk plaque feature progression in non-culprit lesions. International Journal of Cardiovascular Imaging, 2017, 33, 2029-2037.	0.7	11
560	Threshold Values of High-risk Echocardiographic Epicardial Fat Thickness. Obesity, 0, , .	1.5	1
561	Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clinical Science, 2020, 134, 827-851.	1.8	43
562	Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clinical Science, 2019, 133, 2329-2344.	1.8	45
563	Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal of Internal Medicine, 2018, 284, 492-504.	2.7	189
564	The Control of Diastolic Calcium in the Heart. Circulation Research, 2020, 126, 395-412.	2.0	94
565	UCP1 expression–associated gene signatures of human epicardial adipose tissue. JCI Insight, 2019, 4, .	2.3	26
566	Usefulness of the epicardial fat tissue thickness as a diagnostic criterion for geriatric patients with metabolic syndrome. Journal of Geriatric Cardiology, 2015, 12, 373-7.	0.2	7
567	Influence of increased epicardial adipose tissue volume on 1-year in-stent restenosis in patients who received coronary stent implantation. Journal of Geriatric Cardiology, 2016, 13, 768-775.	0.2	6
568	White and Brown Adipose Tissue Development. , 2014, , 237-246.		1
569	Relationship Between Epicardial Adipose Tissue and Body Composition as Determined by Multi-Frequency Bioelectrical Impedance Analysis in Patients with Stage 5 Chronic Kidney Disease. Medical Science Monitor, 2020, 26, e920233.	0.5	4
570	The Association of Left Ventricular Hypertrophy with Metabolic Syndrome is Dependent on Body Mass Index in Hypertensive Overweight or Obese Patients. PLoS ONE, 2011, 6, e16630.	1.1	44
571	The Transcriptome of Human Epicardial, Mediastinal and Subcutaneous Adipose Tissues in Men with Coronary Artery Disease. PLoS ONE, 2011, 6, e19908.	1.1	42
572	Adipokine Imbalance in the Pericardial Cavity of Cardiac and Vascular Disease Patients. PLoS ONE, 2016, 11, e0154693.	1.1	17

#	Article	IF	CITATIONS
573	The Associations between Various Ectopic Visceral Adiposity and Body Surface Electrocardiographic Alterations: Potential Differences between Local and Remote Systemic Effects. PLoS ONE, 2016, 11, e0158300.	1.1	13
574	Adipokine-cytokine profile of adipocytes of epicardial adipose tissue in ischemic heart disease complicated by visceral obesity. Obesity and Metabolism, 2017, 14, 38-45.	0.4	5
575	Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness. Journal of Clinical Medicine Research, 2016, 8, 215-219.	0.6	8
576	Epicardial Adipose Tissue Thickness and Its Association With the Presence and Severity of Coronary Artery Disease in Clinical Setting: A Cross-Sectional Observational Study. Journal of Clinical Medicine Research, 2016, 8, 410-419.	0.6	53
577	Adipobiology of inflammation. Biomedical Reviews, 2014, 16, 83.	0.6	7
578	Adipobiology-based pharmacology. Biomedical Reviews, 2014, 17, 73.	0.6	4
579	Correlations Between Severity of Coronary Lesions and Epicardial Fat Volume in Patients with Coronary Artery Disease – a Multislice CT-based Study. Journal of Interdisciplinary Medicine, 2016, 1, 71-78.	0.1	5
580	Epicardial and Pericardial Fat Volume Correlate with the Severity of Coronary Artery Stenosis. Journal of Cardiovascular and Thoracic Research, 2014, 6, 235-239.	0.3	31
581	Obesity, Adipose Tissue, Inflammation and Update on Obesity Management. Obesity & Control Therapies: Open Access, 0, , .	0.3	4
582	Behind Traditional Semi-quantitative Scores of Myocardial Perfusion Imaging: An Eye on Niche Parameters. European Cardiology Review, 2019, 14, 13-17.	0.7	3
585	The Relation Between Echocardiographic Epicardial Fat Thickness and CHA2DS2-VASc Score in Patients with Sinus Rhythm. Brazilian Journal of Cardiovascular Surgery, 2019, 34, 41-47.	0.2	11
586	Association between Omentin-1 and Coronary Artery Disease: Pathogenesis and Clinical Research. Current Cardiology Reviews, 2020, 16, 198-201.	0.6	14
587	Noninvasive assessment of subclinical atherosclerosis in patients with rosacea. Italian Journal of Dermatology and Venereology, 2021, 156, 51-56.	0.1	5
588	Phenotypic classification and biochemical profile of obesity for cardiovascular prevention. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2020, 179, .	0.0	1
589	Inflammatory and Imaging-based Predictors of Atrial Fibrillation Recurrence after Pulmonary Vein Isolation Using Electroanatomical Mapping – the INFLAMAP Study. Journal of Interdisciplinary Medicine, 2018, 3, 10-15.	0.1	2
590	Epicardial Adipose Tissue Role as a Marker of Higher Vulnerability in Patients with Coronary Artery Disease. Journal of Interdisciplinary Medicine, 2018, 3, 77-83.	0.1	3
591	The Role of Epicardial Adipose Tissue in Heart Disease. Physiological Research, 2016, 65, 23-32.	0.4	51
592	Nonalcoholic fatty liver disease and the heart in children and adolescents. World Journal of Gastroenterology, 2014, 20, 9055-71.	1.4	35

#	Article	IF	CITATIONS
593	Epicardial and thoracic fat - Noninvasive measurement and clinical implications. Cardiovascular Diagnosis and Therapy, 2012, 2, 85-93.	0.7	68
594	Epicardial adipose tissue: far more than a fat depot. Cardiovascular Diagnosis and Therapy, 2014, 4, 416-29.	0.7	168
595	The Relationship Between Pericardial Fat and Atrial Fibrillation. Journal of Atrial Fibrillation, 2013, 5, 676.	0.5	2
596	Metabolic Crosstalk between the Heart and Fat. Korean Circulation Journal, 2020, 50, 379.	0.7	6
597	Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease. Indian Journal of Medical Research, 2020, 151, 554.	0.4	5
598	Cardiac adipose tissue and its relationship to diabetes mellitus and cardiovascular disease. World Journal of Diabetes, 2014, 5, 868.	1.3	37
599	Epicardial Fat Thickness in Children with Classic Congenital Adrenal Hyperplasia. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2019, 11, 61-69.	0.4	8
600	From the epicardial adipose tissue to vulnerable coronary plaques. World Journal of Cardiology, 2013, 5, 68.	0.5	10
601	Association of epicardial adipose tissue thickness by echocardiography and hypertension. Turk Kardiyoloji Dernegi Arsivi, 2013, 41, 115-122.	0.6	25
602	Relationship between epicardial fat and coronary microvascular dysfunction. Kardiologia Polska, 2014, 72, 417-424.	0.3	12
603	The Relationship Between Increased Epicardial Fat Thickness and Left Ventricular Hypertrophy and Carotid Intima-Media Thickness in Patients With Nonfunctional Adrenal Incidentaloma. International Journal of Endocrinology and Metabolism, 2016, 14, e37635.	0.3	9
604	Expressão gênica de adiponectina no tecido adiposo epicárdico apÃ3s intervenção coronária percutânea com implante de stent metálico. Brazilian Journal of Cardiovascular Surgery, 2011, 26, 427-432.	0.2	6
605	Evaluation of Electrocardiographic T-peak to T-end Interval in Subjects with Increased Epicardial Fat Tissue Thickness. Arquivos Brasileiros De Cardiologia, 2015, 105, 566-72.	0.3	14
606	Relationship Between Neck Circumference and Epicardial Fat Thickness in a Healthy Male Population. Arquivos Brasileiros De Cardiologia, 2016, 107, 266-270.	0.3	8
607	Epicardial Adiposity is Associated with Microalbuminuria in Patients with Essential Hypertension. Acta Cardiologica Sinica, 2017, 33, 74-80.	0.1	22
608	Adiposity of the Heart. Annals of Internal Medicine, 2006, 145, 554.	2.0	18
610	Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat. Journal of Endocrinological Investigation, 2022, 45, 489-495.	1.8	17
611	The Adipose Organ. Oxidative Stress and Disease, 2009, , 1-21.	0.3	0

#	Article	IF	CITATIONS
612	Spettroscopia RM. , 2010, , 203-210.		0
613	Tissue Specific-Metabolism of Lipids for Ectopic Deposition. The Korean Journal of Obesity, 2011, 20, 99.	0.2	2
614	Excessive Nutrients and Regional Energy Metabolism. , 2012, , 55-66.		0
615	Epicardial Adipose Tissue Measured by Multidetector Computed Tomography: Practical Tips and Clinical Implications. , 2012, , 955-972.		0
616	Adipokines and the Vascular System. , 2013, , 1-14.		0
617	Physiology of Ventilation. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 353-440.	0.1	Ο
618	Cardiovascular Physiology. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 157-352.	0.1	0
619	Anatomy of the Ventilatory Apparatus. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 73-155.	0.1	1
620	Anatomy of the Cardiovascular Apparatus. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 1-71.	0.1	0
622	Epicardial adipose tissue thickness in young Indian overweight and obese individuals. Annals of Medical and Health Sciences Research, 2014, 4, 56.	0.8	1
624	Tejido adiposo epicárdico: su relación con enfermedades cardiovasculares. Horizonte Sanitario, 2014, 12, 104-110.	0.1	0
625	Epicardial Fat Thickness as a Biomarker in Cardiovascular Disease. , 2015, , 1-11.		0
626	Correlation Between Epicardial Fat Thickness and Cardiovascular Risk in Hemodialysis Patients. American Journal of Internal Medicine, 2015, 3, 86.	0.1	0
627	Adipokines and the Vascular System. , 2015, , 4659-4669.		0
628	Adiponectin as Biomarker in Coronary Artery Disease. , 2015, , 1-17.		0
629	Epicardial Fat Thickness and its Association with Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus. Electronic Journal of General Medicine, 2015, 12, .	0.3	Ο
630	Morphological Nasal Changes Associated with Rapid Maxillary Expansion. Electronic Journal of General Medicine, 2015, 12, .	0.3	0
631	Relationship between metabolic syndrome and epicardial fat tissue thickness in patients with chronic obstructive pulmonary disease Anatolian Journal of Cardiology, 2016, 16, 405-411.	0.5	5

#	Article	IF	CITATIONS
632	Adiponectin as Biomarker in Coronary Artery Disease. , 2016, , 635-651.		1
633	Epicardial Fat as a Contributing Factor to Diastolic Dysfunction. Korean Journal of Family Practice, 2016, 6, 26-31.	0.1	1
634	Cardiac Systolic and Diastolic Function can be Improved and Epicardial Fat be can Decreased Over a Very Short Period of Time in Obese Patients without Heart Disease by the Very Low Calorie Diet. Advances in Obesity Weight Management & Control, 2016, 4, .	0.4	1
635	Risk Analysis of Factors for Metabolic Diseases according to the Epicaridal Adipose Tissue Thickness - which Focused on the Presented Subjects with Asymptomatic Screening Purposes. The Journal of the Korea Contents Association, 2016, 16, 476-483.	0.0	1
636	Epicardial fat thickness and carotid intima-media thickness in patients with type 2 diabetes mellitus. Asian Journal of Medical Sciences, 2016, 7, 1-5.	0.0	2
637	An Important Question That Needs to Be Proved: Is There Any Relationship between the Epicardial Fat Thickness and the Coronary Artery Complexity in Patients with Acute Non-ST Elevation Myocardial Infarction?. Erciyes Medical Journal, 2017, 39, 16-23.	0.0	0
638	Body fat distribution: the answer to the apparent paradox of obesity in cardiology?. Obesity and Metabolism, 2017, 14, 3-8.	0.4	9
639	A STUDY OF EPICARDIAL ADIPOSE TISSUE (EAT) AND CAROTID INTIMA-MEDIA THICKNESS (CIMT) IN PATIENTS WITH AND WITHOUT ISCHAEMIC HEART DISEASE. Journal of Evolution of Medical and Dental Sciences, 2017, 6, 5724-5728.	0.1	0
640	Epicardial Fat, Paracrine-mediated Inflammation and Atrial Fibrillation. Journal of Interdisciplinary Medicine, 2017, 2, 304-307.	0.1	1
641	The Relationship between Epicardial Fat Thickness and Dampness-Phlegm Pattern in the Patients with ischemic stroke. Journal of Korean Medicine, 2017, 38, 104-109.	0.1	0
642	The Relationship Between Epicardial Adipose Tissue and Diabetes Mellitus. Bangsaseon Gisul Gwahak, 2018, 41, 305-312.	0.1	0
643	Influence of visceral obesity on the secretion of adipokines with epicardial adipocytes in patients with coronary heart disease. Terapevticheskii Arkhiv, 2018, 90, 71-78.	0.2	1
644	Epicardial fat: a new cardiometabolic risk marker, a new therapeutic goal in obese patients. Systemic Hypertension, 2018, 15, 66-69.	0.1	1
645	The Intrusive nature of epicardial adipose tissue as revealed by cardiac magnetic resonance. Journal of Cardiovascular Echography, 2019, 29, 45.	0.1	11
646	The value of epicardial adipose tissue thickness for outcome prediction of patients undergoing coronary artery bypass grafting surgery. Journal of Research in Medical Sciences, 2019, 24, 93.	0.4	3
647	Classification of cardiac adipose tissue using spectral analysis of ultrasound radiofrequency backscatter. , 2019, , .		1
648	The Evaluation of Epicardial Fat Thickness and Carotid Intima-Media Thickness in the Patients with Subclinical and Overt Hypothyroidism. Journal of Contemporary Medicine, 0, , .	0.1	1
649	Effects of epicardial fat reduction on P-wave duration of morbidly obese patients submitted to bariatric surgery: an observational study. Journal of Cardiac Arrhythmias, 2019, 32, 82-88.	0.1	Ο

ARTICLE

Aort Kapak Kalsifikasyon Derecesi ile Epikardiyal Yağ Dokusu Kalınlığı İliÅŸkisi. Celal Bayar Üniversitesi ŞaÄŸlık o Bilimleri Enstitüsü Dergisi, 0, , .

651	Anatomy of the Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 1-8.	0.0	2
652	Investigation of the effect of epicardial adipose tissue thickness on cardiac conduction system in children with type 1 diabetes mellitus. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 713-720.	0.4	2
653	Tejido adiposo epicárdico: un marcador de riesgo cardiovascular a evaluar en la enfermedad renal crónica. ClÃnica E Investigación En Arteriosclerosis, 2020, 32, 129-134.	0.4	1
654	Pilot study on cardiogenic differentiation capability of rabbit mesenchymal stem cells. Ankara Universitesi Veteriner Fakultesi Dergisi, 0, , .	0.4	1
655	The Relationship Between Epicardial Adipose Tissue Thickness and Presence of Left Atrial Thrombus in Mitral Stenosis Patients. Brazilian Journal of Cardiovascular Surgery, 2020, 35, 471-476.	0.2	0
656	Magnetic Resonance Imaging of the Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 71-76.	0.0	0
657	Pathology and Cardiotoxicity of the Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 37-47.	0.0	1
658	Transcriptomic and Proteomic Analysis of the Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 19-36.	0.0	0
659	Echocardiographic Assessment of Epicardial Adipose Tissue - A Marker of Visceral Adiposity. McGill Journal of Medicine, 2007, 10, .	0.1	13
660	Efeitos da Redução da Gordura Epicárdica na Duração da Onda P de Obesos Mórbidos Submetidos Ã Cirurgia Bariátrica: um Estudo Observacional. Journal of Cardiac Arrhythmias, 2019, 32, 82-88.	0.1	0
661	Echocardiographically Measured Epicardial Fat Predicts New-onset Atrial Fibrillation after Cardiac Surgery. Brazilian Journal of Cardiovascular Surgery, 2020, 35, 339-345.	0.2	7
662	Atrial Fibrillation and Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 117-138.	0.0	0
663	Cardiometabolic Risk and Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 155-165.	0.0	0
664	Adrenal Secretome and Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 167-172.	0.0	0
666	Pathophysiological role of major adipokines in Atrial Fibrillation. International Journal of Arrhythmia, 2021, 22, .	0.3	0
667	Blood glucose and epicardial adipose tissue at the hospital admission as possible predictors for COVID-19 severity. Endocrine, 2022, 75, 10-18.	1.1	6
668	Association between single-slice and whole heart measurements of epicardial and pericardial fat in cardiac MRI. Acta Radiologica, 2023, 64, 2229-2237.	0.5	3

#	Article	IF	CITATIONS
669	Relationship Between Coronary Atheroma, Epicardial Adipose Tissue Inflammation, and Adipocyte Differentiation Across the Human Myocardial Bridge. Journal of the American Heart Association, 2021, 10, e021003.	1.6	15
670	Correlation between Epicardial Fat Thickness and Clinical and Anthropometric Variables in an Elderly Population. International Journal of Cardiovascular Sciences, 2020, , .	0.0	0
671	Echocardiographic assessment of epicardial adipose tissuea marker of visceral adiposity. McGill Journal of Medicine, 2007, 10, 26-30.	0.1	18
672	The association between epicardial fat thickness in echocardiography and coronary restenosis in drug eluting stents. ARYA Atherosclerosis, 2011, 7, 11-7.	0.4	3
673	Relation of coronary collateral circulation with epicardial fat volume in patients with stable coronary artery disease. Journal of Geriatric Cardiology, 2013, 10, 344-8.	0.2	1
674	Relationship between epicardial adipose tissue thickness and vitamin D in patients with metabolic syndrome. International Journal of Clinical and Experimental Medicine, 2015, 8, 5707-14.	1.3	6
675	Association of serum hepatocyte growth factor with pericardial fat volume in patients with coronary artery disease. International Journal of Clinical and Experimental Medicine, 2015, 8, 7914-21.	1.3	0
676	An indicator of subclinical cardiovascular disease in patients with primary osteoarthritis: epicardial fat thickness. International Journal of Clinical and Experimental Medicine, 2015, 8, 9491-7.	1.3	5
677	Epicardial Fat and Atrial Fibrillation: A Review. Journal of Atrial Fibrillation, 2012, 4, 483.	0.5	7
678	Epicardial Adipose Tissue Thickness and Carotid Intima-Media Thickness in Hemodialysis Patients. Acta Cardiologica Sinica, 2017, 33, 266-272.	0.1	11
679	Epicardial Adipose Tissue Predicts Carotid Intima-Media Thickness Independently of Body Mass Index and Waist Circumference. Acta Cardiologica Sinica, 2019, 35, 32-41.	0.1	8
680	The association between epicardial adipose tissue and non-alcoholic fatty liver disease: A systematic review of existing human studies. EXCLI Journal, 2021, 20, 1096-1105.	0.5	3
681	Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction-A Specific HFpEF Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 720690.	1.1	3
682	Imaging techniques for the assessment of adverse cardiac remodeling in metabolic syndrome. Heart Failure Reviews, 2022, 27, 1883-1897.	1.7	6
684	The Effect of Liraglutide on Epicardial Adipose Tissue in Type 2 Diabetes. Journal of Diabetes Research, 2021, 2021, 1-6.	1.0	7
685	Prognostic value of cardiac inflammation in ST-segment elevation myocardial infarction: A 18F-fluorodeoxyglucose PET/CT study. Journal of Nuclear Cardiology, 2022, 29, 3018-3027.	1.4	0
686	Spectral analysis of ultrasound radiofrequency backscatter for the identification of epicardial adipose tissue. Journal of Medical Imaging, 2022, 9, 017001.	0.8	1
687	Epicardial adipose tissue as a mediator of cardiac arrhythmias. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H129-H144.	1.5	26

	CITATION REP	ORT	
Article		IF	CITATIONS
Longitudinal pericardial adipose tissue changes in patients with breast cancer receiving anthracycline-based chemotherapy: a retrospective cohort study. Quantitative Imaging ir Surgery, 2022, 12, 2416-2426.	n Medicine and	1.1	1
Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preservec Fraction—A Specific HFpEF Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 7		1.1	25
Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target Failure with Preserved Ejection Fraction in Diabetes. Biomolecules, 2022, 12, 176.	of Heart	1.8	20
Expression Profiles of Long Noncoding and Messenger RNAs in Epicardial Adipose Tissue- Patients with Coronary Atherosclerosis. Current Vascular Pharmacology, 2022, 20, 189-2	Derived from 200.	0.8	0
Association of Epicardial Fat with Diastolic and Vascular Functions in Children with Type Pediatric Cardiology, 2022, , 1.	1 Diabetes.	0.6	1
Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure. C Cardiology Reports, 2022, 24, 327-335.	Current	1.3	3
Targeting Epicardial Fat in Obesity and Diabetes Pharmacotherapy. Handbook of Experim Pharmacology, 2022, , 93-108.	nental	0.9	3
Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. Biology, 2022, 11	, 355.	1.3	32
Browning Epicardial Adipose Tissue: Friend or Foe?. Cells, 2022, 11, 991.		1.8	14
Role of epicardial adipose tissue in the development of cardiovascular diseases. Russian J Cardiology, 2022, 27, 4872.	ournal of	0.4	5
Association between epicardial adipose tissue and left ventricular function in type 2 diab Assessment using two-dimensional speckle tracking echocardiography. Journal of Diabet Complications, 2022, 36, 108167.	etes mellitus: es and Its	1.2	6
Epicardial adipose tissue in contemporary cardiology. Nature Reviews Cardiology, 2022,	19, 593-606.	6.1	160
The NLRP3 inflammasome activation in subcutaneous, epicardial and pericardial adipose patients with coronary heart disease undergoing coronary by-pass surgery. Atheroscleros 2022, 48, 47-54.		0.3	2
Assessment of Myocardial Microstructure in a Murine Model of Obesity-Related Cardiac I by Diffusion Tensor Magnetic Resonance Imaging at 7T. Frontiers in Cardiovascular Medi 839714.		1.1	5
Possibilities of a new glucagon-like peptide-1 receptor agonist Semaglutide in improving ventricular diastolic function in a patient with arterial hypertension and type 2 diabetes r Systemic Hypertension, 2021, 18, 186-192.	left nellitu.	0.1	0
Epicardial Adipose Tissue Thickness is Higher in Right Ventricular Outflow Tract Tachycar of Cardiovascular Emergencies, 2021, 7, 123-128.	dia. Journal	0.1	Ο
Association of epicardial adipose tissue with the severity and adverse clinical outcomes c meta-analysis. International Journal of Infectious Diseases, 2022, 120, 33-40.	of COVID-19: A	1.5	9

707	Adipose tissue volume differences around the heart between subjects without coronary atherosclerosis and coronary heart disease patients. Acta Cardiologica, 2016, 71, 291-8.	0.3	1
-----	---	-----	---

#

#	Article	IF	CITATIONS
710	Epicardial fat thickness assessment by multi-slice computed tomography for predicting cardiac outcomes in patients undergoing transcatheter aortic valve implantation. Cardiovascular Journal of Africa, 2022, 33, 10-13.	0.2	1
713	Investigation of the relationship between non-alcoholic fatty liver disease and coronary artery disease. Clinica Terapeutica, 2014, 165, e46-51.	0.2	9
714	Macrophages in epicardial adipose tissue and serum NT-proBNP in patients with stable coronary artery disease. Medical Immunology (Russia), 2022, 24, 389-394.	0.1	1
715	ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. Journal of Clinical Medicine, 2022, 11, 2449.	1.0	8
716	Evaluation of Patients with Angiographically-Confirmed Coronary Artery Disease to Investigate the Association Between Epicardial Fat Thickness and Atrial Fibrillation. Medical Science Monitor, 0, 28, .	0.5	0
718	Epicardial adipose tissue: More than meets the eye. International Journal of Cardiology, 2022, 362, 174-175.	0.8	1
719	Protective Effect of Curcumin, Chrysin and Thymoquinone Injection on Trastuzumab-Induced Cardiotoxicity via Mitochondrial Protection. Cardiovascular Toxicology, 2022, 22, 663-675.	1.1	12
721	Epicardial adipose tissue in heart failure: risk factor or mediator?. European Journal of Heart Failure, 2022, 24, 1357-1358.	2.9	7
722	Measurement of epicardial adipose tissue using non-contrast routine chest-CT: a consideration of threshold adjustment for fatty attenuation. BMC Medical Imaging, 2022, 22, .	1.4	2
723	Putative protective effects of sodium-glucose cotransporter 2 inhibitors on atrial fibrillation through risk factor modulation and off-target actions: potential mechanisms and future directions. Cardiovascular Diabetology, 2022, 21, .	2.7	8
724	Effect of glucagon-like peptide-1 (GLP-1) analogues on epicardial adipose tissue: A meta-analysis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, 16, 102562.	1.8	7
725	Atrial Fibrillation after Coronary Bypass Surgery? Is Epicardial Fat a Risk Factor?. Thoracic and Cardiovascular Surgeon, 0, , .	0.4	0
726	Growth Hormone Secretory Capacity Is Associated with Cardiac Morphology and Function in Overweight and Obese Patients: A Controlled, Cross-Sectional Study. Cells, 2022, 11, 2420.	1.8	3
727	The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review. Nutrients, 2022, 14, 3493.	1.7	5
728	Epicardial adipose tissue volume and CT-attenuation as prognostic factors for pulmonary embolism and mortality in critically ill patients affected by COVID-19. European Journal of Clinical Nutrition, 2023, 77, 105-111.	1.3	5
729	The Role and Implications of Epicardial Fat in Coronary Atherosclerotic Disease. Journal of Clinical Medicine, 2022, 11, 4718.	1.0	9
730	Epicardial adipose tissue thickness is associated with reduced peak oxygen consumption and systolic reserve in patients with type 2 diabetes and normal heart function. Diabetes, Obesity and Metabolism, 2023, 25, 177-188.	2.2	18
731	Correlation analysis of epicardial adipose tissue and ventricular myocardial strain in Chinese amateur marathoners using cardiac magnetic resonance. PLoS ONE, 2022, 17, e0274533.	1.1	0

#	Article	IF	CITATIONS
732	Identification of key genes and mechanisms of epicardial adipose tissue in patients with diabetes through bioinformatic analysis. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
733	Biomarkers extracted by fully automated body composition analysis from chest CT correlate with SARS-CoV-2 outcome severity. Scientific Reports, 2022, 12, .	1.6	5
734	Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 9988.	1.8	4
735	Evaluation of epicardial fat tissue and echocardiographic parameters in patients with silent enemy subclinical hypothyroidism. Echocardiography, 0, , .	0.3	1
736	Cellular cross talk between epicardial fat and cardiovascular risk. Journal of Basic and Clinical Physiology and Pharmacology, 2022, .	0.7	0
737	Epicardial Adipose Tissue Thickness Is Related to Plaque Composition in Coronary Artery Disease. Diagnostics, 2022, 12, 2836.	1.3	6
739	Comparative evaluation new glucagon-like peptide 1 receptor agonist semaglutide and sodium-glucose cotransporter-2 inhibitors empagliflozin on left ventricular diastolic function in patients with arterial hypertension, obesity and type 2 diabetes mellitus. Systemic Hypertension, 2022, 19, 39-48.	0.1	0
740	Cardiac Hypertrophy and Related Dysfunctions in Cushing Syndrome Patients—Literature Review. Journal of Clinical Medicine, 2022, 11, 7035.	1.0	1
741	Prevalence, patterns and outcomes of cardiac involvement in Erdheim–Chester disease. European Heart Journal, 2023, 44, 2376-2385.	1.0	8
742	Interatrial septal thickness as a predictor of the presence and severity of coronary artery disease. Journal of the Indian Academy of Echocardiography & Cardiovascular Imaging, 2023, .	0.0	0
743	Evaluation of pericoronary adipose tissue attenuation on CT. British Journal of Radiology, 2023, 96, .	1.0	5
744	Human epicardial adipose tissue inflammation correlates with coronary artery disease. Cytokine, 2023, 162, 156119.	1.4	6
745	Beyond the Calcium Score: What Additional Information from a CT Scan Can Assist in Cardiovascular Risk Assessment?. Applied Sciences (Switzerland), 2023, 13, 241.	1.3	2
746	Treatment Resulting Changes in Volumes of High-18F-FDC-Uptake Adipose Tissues over Orbit and Epicardium Correlate with Treatment Response for Non-Hodgkin's Lymphoma. International Journal of Molecular Sciences, 2023, 24, 2158.	1.8	0
747	Epigenetic regulations in fat depots. , 2023, , 327-339.		0
748	Epicardial and pericoronary fat. , 2023, , 39-56.		0
749	Association of pericoronary adipose tissue with atrial fibrillation recurrence after ablation based on computed tomographic angiography. Japanese Journal of Radiology, 0, , .	1.0	0
750	The predictive value of left atrium epicardial adipose tissue on recurrence after catheter ablation in patients with different types of atrial fibrillation. International Journal of Cardiology, 2023, 379, 33-39.	0.8	2

#	Article	IF	CITATIONS
751	Pancreatic involvement in Erdheim-Chester disease: Rare presentation of a rare disease. Radiology Case Reports, 2023, 18, 1809-1820.	0.2	1
752	Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie, 2023, 212, 12-20.	1.3	2
753	Epicardial fat volume assessed with cardiac magnetic resonance imaging in patients with Takotsubo cardiomyopathy. European Journal of Radiology, 2023, 160, 110706.	1.2	5
754	Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies. European Journal of Preventive Cardiology, 2023, 30, 680-693.	0.8	9
755	T lymphocyte characteristics and immune repertoires in the epicardial adipose tissue of heart failure patients. Frontiers in Immunology, 0, 14, .	2.2	2
756	Epicardial Adipose Tissue: A Piece of The Puzzle in Pediatric Hypertension. Journal of Clinical Medicine, 2023, 12, 2192.	1.0	1
757	The relationship between epicardial adipose tissue thickness and arrhythmias in patients with hypertension: a 3.0T cardiac magnetic resonance study. British Journal of Radiology, 2023, 96, .	1.0	0
758	The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: A Narrative Review. Biology, 2023, 12, 498.	1.3	2
759	The relationship of epicardial fat and atrial high-rate edisodes in patients with permanent pacemaker. The European Research Journal, 0, , 1-7.	0.1	0
760	The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. International Journal of Molecular Sciences, 2023, 24, 6838.	1.8	4
761	Toraks BT'de mediastinal yağ dokusu ve aort ölçümleri: ateroskleroz ile ilişkisi var mı?. Journal of Medicine and Palliative Care:, 2023, 4, 79-83.	0.0	0
762	Recent assessment methods of epicardial adipose tissue. Sibirskij žurnal KliniÄeskoj I èksperimentalʹnoj Mediciny, 2023, 38, 46-57.	0.1	0
763	Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives. Journal of Cardiovascular Medicine, 2023, 24, e67-e76.	0.6	1
764	Association of epicardial fat with cardiac structure and function and cardiovascular outcomes: A protocol for systematic review and meta-analysis. PLoS ONE, 2023, 18, e0283482.	1.1	0
765	Impact of temperature and dietary replacement of fishmeal on cardiovascular remodelling and growth performance of adult Atlantic salmon (Salmo salar L.). Aquaculture, 2023, 573, 739590.	1.7	1
777	Excessive Nutrients and Regional Energy Metabolism. , 2023, , 45-56.		0
795	Validation of ultrasound detection of transmural myofiber orientation in excised human ventricular myocardium. , 2023, , .		0
805	FM-Net: A Fully Automatic Deep Learning Pipeline for Epicardial Adipose Tissue Segmentation. Lecture Notes in Computer Science, 2024, , 88-97.	1.0	0

ARTICLE

IF CITATIONS