The transport barrier in intraperitoneal therapy

American Journal of Physiology - Renal Physiology 288, F433-F442

DOI: 10.1152/ajprenal.00313.2004

Citation Report

#	Article	IF	CITATIONS
2	Human eNOS gene delivery attenuates cold-induced elevation of blood pressure in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1161-H1168.	3.2	28
3	Peritoneal Ultrafiltration: Mechanisms and Measures. , 2006, 150, 28-36.		16
4	Molecular chaperone α-crystallin prevents detrimental effects of neuroinflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 284-293.	3.8	64
5	The Peritoneal Cavity Is a Distinct Compartment of Angiogenic Molecular Mediators. Journal of Surgical Research, 2006, 134, 28-35.	1.6	15
6	Distributed model of peritoneal fluid absorption. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1862-H1874.	3.2	45
7	Is Intraperitoneal Pressure Important?. Peritoneal Dialysis International, 2006, 26, 317-319.	2.3	14
8	Peritoneal dialysis, membranes and beyond. Current Opinion in Nephrology and Hypertension, 2006, 15, 571-576.	2.0	8
9	Effects of chronic cold exposure on the endothelin system. Journal of Applied Physiology, 2006, 100, 1719-1726.	2.5	36
10	Intraperitoneal fluid therapy: an alternative to intravenous treatment in a patient with limited vascular access. Anaesthesia, 2006, 61, 502-504.	3.8	6
11	Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney International, 2006, 69, 1518-1525.	5.2	147
12	In vivo determination of diffusive transport parameters in a superfused tissue. American Journal of Physiology - Renal Physiology, 2006, 291, F1096-F1103.	2.7	17
13	Correlating structure with solute and water transport in a chronic model of peritoneal inflammation. American Journal of Physiology - Renal Physiology, 2006, 290, F232-F240.	2.7	29
14	Genetic AVP deficiency abolishes cold-induced diuresis but does not attenuate cold-induced hypertension. American Journal of Physiology - Renal Physiology, 2006, 290, F1472-F1477.	2.7	26
15	Lymphatic Endothelial Cells, Lymphangiogenesis, and Extracellular Matrix. Lymphatic Research and Biology, 2006, 4, 83-100.	1.1	106
16	Mean Transit Time and Mean Residence Time for Linear Diffusion–Convection–Reaction Transport System. Computational and Mathematical Methods in Medicine, 2007, 8, 37-49.	1.3	6
17	Clostridium sordellii Lethal Toxin Kills Mice by Inducing a Major Increase in Lung Vascular Permeability. American Journal of Pathology, 2007, 170, 1003-1017.	3.8	56
18	Ultrafiltration and Absorption in Evaluating Aquaporin Function from Peritoneal Transport of Sodium. Peritoneal Dialysis International, 2007, 27, 687-690.	2.3	8
19	Feasibility of Mesothelial Transplantation during Experimental Peritoneal Dialysis and Peritonitis. International Journal of Artificial Organs, 2007, 30, 513-519.	1.4	6

#	Article	IF	CITATIONS
20	Should intraperitoneal chemotherapy be considered as standard first-line treatment in advanced stage ovarian cancer?. Critical Reviews in Oncology/Hematology, 2007, 62, 137-147.	4.4	18
21	Pathogenesis and treatment of peritoneal membrane failure. Pediatric Nephrology, 2008, 23, 695-703.	1.7	44
22	Peritoneal membrane recruitment in rats: a micro-computerized tomography (μCT) study. Pediatric Nephrology, 2008, 23, 2179-2184.	1.7	4
23	Clinical application of aquaporin research: aquaporin-1 in the peritoneal membrane. Pflugers Archiv European Journal of Physiology, 2008, 456, 721-727.	2.8	14
24	Feasibility of complementary spatial modulation of magnetization tagging in the rat heart after manganese injection. NMR in Biomedicine, 2008, 21, 15-21.	2.8	12
25	Safety and Efficacy of Hyperthermic Intraperitoneal Chemoperfusion with High-Dose Oxaliplatin in Patients with Peritoneal Carcinomatosis. Annals of Surgical Oncology, 2008, 15, 535-541.	1.5	74
26	Association Between Arterial Stiffness and Peritoneal Small Solute Transport Rate. Artificial Organs, 2008, 32, 416-419.	1.9	11
27	Pharmacokinetics of intraperitoneally instilled aminophylline, terbutaline and tobramycin in pigs. Acta Anaesthesiologica Scandinavica, 2008, 52, 243-248.	1.6	5
28	Association between Arterial Stiffness and Peritoneal Fluid Kinetics. American Journal of Nephrology, 2008, 28, 128-132.	3.1	13
29	RNAi inhibition of mineralocorticoid receptors prevents the development of cold-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1880-H1887.	3.2	33
30	Water and solute transport in peritoneal dialysis: models and clinical applications. Nephrology Dialysis Transplantation, 2008, 23, 2120-2123.	0.7	18
31	Peritoneal morphological and functional changes associated with platelet-derived growth factor B. Nephrology Dialysis Transplantation, 2008, 24, 448-457.	0.7	11
32	Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. American Journal of Physiology - Renal Physiology, 2008, 294, F1084-F1093.	2.7	45
33	Endothelial Glycocalyx and the Peritoneal Barrier. Peritoneal Dialysis International, 2008, 28, 6-12.	2.3	51
34	In Vivo Peritoneal Surface Area Measurement in Rats by Micro-Computed Tomography (μCT). Peritoneal Dialysis International, 2008, 28, 188-194.	2.3	9
35	Water and Solute Transport through Different Types of Pores in Peritoneal Membrane in Capd Patients with Ultrafiltration Failure. Peritoneal Dialysis International, 2009, 29, 664-669.	2.3	14
36	Inflammatory ascites formation induced by macromolecules in mice and rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R218-R223.	1.8	6
37	Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1960-H1968.	3.2	30

# 39	ARTICLE Peritoneal dialysis prescription in children: bedside principles for optimal practice. Pediatric Nephrology, 2009, 24, 1633-1642.	IF 1.7	CITATIONS
40	Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Critical Reviews in Oncology/Hematology, 2009, 72, 1-9.	4.4	48
41	Phosphoinositide 3â€kinase inhibitor (wortmannin) inhibits pancreatic cancer cell motility and migration induced by hyaluronan <i>in vitro</i> and peritoneal metastasis <i>in vivo</i> . Cancer Science, 2009, 100, 770-777.	3.9	51
42	Multiscale Measurements Distinguish Cellular and Interstitial Hindrances to Diffusion In Vivo. Biophysical Journal, 2009, 97, 330-336.	0.5	71
43	Rationale for perioperative chemotherapy treatment in peritoneal carcinomatosis. CirugÃa Española (English Edition), 2009, 85, 3-13.	0.1	2
44	Pharmacokinetics and Pharmacodynamics of Perioperative Cancer Chemotherapy in Peritoneal Surface Malignancy. Cancer Journal (Sudbury, Mass), 2009, 15, 216-224.	2.0	81
45	Using Pharmacologic Data to Plan Clinical Treatments for Patients with Peritoneal Surface Malignancy. Current Drug Discovery Technologies, 2009, 6, 72-81.	1.2	36
46	Ascites Regression and Survival Increase in Mice Bearing Advanced-stage Human Ovarian Carcinomas and Repeatedly Treated Intraperitoneally With CpG-ODN. Journal of Immunotherapy, 2010, 33, 8-15.	2.4	26
47	Pharmacology of perioperative $5\hat{a}\in F$ luorouracil. Journal of Surgical Oncology, 2010, 102, 730-735.	1.7	34
48	Hyperthermic intraperitoneal chemotherapy: Rationale and technique. World Journal of Gastrointestinal Oncology, 2010, 2, 68.	2.0	211
49	Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. American Journal of Physiology - Renal Physiology, 2010, 298, F721-F733.	2.7	66
50	Strategies for Improving Long-Term Survival in Peritoneal Dialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1123-1131.	4.5	42
51	Autocrine Purinergic Receptor Signaling Is Essential for Macrophage Chemotaxis. Science Signaling, 2010, 3, ra55.	3.6	209
52	Abdominal Adhesion Prevention: Still a Sticky Subject. Digestive Surgery, 2010, 27, 347-358.	1.2	63
53	Competitive antagonism of fluorescent gentamicin uptake in the cochlea. Hearing Research, 2010, 268, 250-259.	2.0	23
54	Delivery of Molecular and Nanoscale Medicine to Tumors: Transport Barriers and Strategies. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 281-298.	6.8	491
55	Distributed Models of Peritoneal Transport. , 2011, , .		0
56	Docetaxel Distribution Following Intraperitoneal Administration in Mice. Journal of Pharmacy and Pharmaceutical Sciences, 2011, 14, 90.	2.1	12

	Сітатіс	n Report	
#	Article	IF	Citations
57	Treatment of peritoneal carcinomatosis with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: State of the art and future developments. Surgical Oncology, 2011, 20, e38-e54.	1.6	90
58	Changes induced by surgical and clinical factors in the pharmacology of intraperitoneal mitomycin C in 145 patients with peritoneal carcinomatosis. Cancer Chemotherapy and Pharmacology, 2011, 68, 147-156.	2.3	52
59	Growing a peritoneal dialysis program: A singleâ€center experience. Dialysis and Transplantation, 2011, 40, 343-348.	0.2	3
60	Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients. Nephrology Dialysis Transplantation, 2011, 26, 2322-2332.	0.7	33
61	Encapsulating peritoneal sclerosis: the state of affairs. Nature Reviews Nephrology, 2011, 7, 528-538.	9.6	90
62	Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach. American Journal of Physiology - Renal Physiology, 2012, 302, F1331-F1341.	2.7	32
63	Adhesions during and after Surgical Procedures, their Prevention and Impact on Women'S Health. Women's Health, 2012, 8, 495-498.	1.5	15
64	Recent advances in drug delivery strategies for treatment of ovarian cancer. Expert Opinion on Drug Delivery, 2012, 9, 567-583.	5.0	39
65	Pharmacology of Perioperative Intraperitoneal and Intravenous Chemotherapy in Patients with Peritoneal Surface Malignancy. Surgical Oncology Clinics of North America, 2012, 21, 577-597.	1.5	39
66	Hyperthermic intraperitoneal chemotherapy in ovarian cancer: rationale and clinical data. Expert Review of Anticancer Therapy, 2012, 12, 895-911.	2.4	23
67	Suppression of ConA-induced inflammatory ascites by lipopolysaccharide (LPS) in mice. Acta Microbiologica Et Immunologica Hungarica, 2012, 59, 387-392.	0.8	1
68	An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels. Journal of Controlled Release, 2012, 158, 379-385.	9.9	29
69	Intraperitoneal delivery of nanoparticles for cancer gene therapy. Future Oncology, 2013, 9, 59-68.	2.4	32
70	Peritoneal Fluid Transport: Mechanisms, Pathways, Methods of Assessment. Archives of Medical Research, 2013, 44, 576-583.	3.3	19
71	Quercetin Liposome Sensitizes Colon Carcinoma to Thermotherapy and Thermochemotherapy in Mice Models. Integrative Cancer Therapies, 2013, 12, 264-270.	2.0	25
72	Brain-targeted polymeric nanoparticles: <i>in vivo</i> evidence of different routes of administration in rodents. Nanomedicine, 2013, 8, 1373-1383.	3.3	26
73	Quantitative X-ray Computed Tomography Peritoneography in Malignant Peritoneal Mesothelioma Patients Receiving Intraperitoneal Chemotherapy. Annals of Surgical Oncology, 2013, 20, 553-559.	1.5	9
74	Peritoneal Dialysis: Misperceptions and Reality. American Journal of the Medical Sciences, 2014, 348, 250-261.	1.1	9

#	Article	IF	CITATIONS
75	Is the Systemic Microvascular Endothelial Glycocalyx in Peritoneal Dialysis Patients Related to Peritoneal Transport?. Nephron Clinical Practice, 2014, 128, 159-165.	2.3	10
76	Multiscale Tumor Spatiokinetic Model for Intraperitoneal Therapy. AAPS Journal, 2014, 16, 424-439.	4.4	29
77	Single compartment drug delivery. Journal of Controlled Release, 2014, 190, 157-171.	9.9	46
78	The distinguishing cellular and molecular features of the endometriotic ovarian cyst: from pathophysiology to the potential endometrioma-mediated damage to the ovary. Human Reproduction Update, 2014, 20, 217-230.	10.8	243
79	A Model Based Analysis of IPEC Dosing of Paclitaxel in Rats. Pharmaceutical Research, 2014, 31, 2876-2886.	3.5	11
80	Metastatic Colorectal Cancer: Survival Comparison of Hepatic Resection Versus Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Annals of Surgical Oncology, 2014, 21, 2667-2674.	1.5	26
81	Enzymatic tumour tissue digestion coupled to SPE–UPLC–Tandem Mass Spectrometry as a tool to explore paclitaxel tumour penetration. Talanta, 2014, 129, 119-125.	5.5	4
82	Miscellaneous conditions of the peritoneal cavity—Peritoneal tumors, pseudomyxoma, mesothelioma, fibroblastic reaction, cocoon, cystic lymphatic malformations, blue-bleb, and chylous ascites. Seminars in Pediatric Surgery, 2014, 23, 363-368.	1.1	1
84	Modulation of ConA-induced inflammatory ascites by histamine — Short communication. Acta Microbiologica Et Immunologica Hungarica, 2015, 62, 87-91.	0.8	2
85	Role of Spironolactone Chalcone in the Prevention of Peritoneal Fibrosis in Patients with Peritoneal Dialysis. Tropical Journal of Pharmaceutical Research, 2015, 14, 1893.	0.3	0
86	Fluvastatin inhibits the expression of fibronectin in human peritoneal mesothelial cells induced by high-glucose peritoneal dialysis solution via SGK1 pathway. Clinical and Experimental Nephrology, 2015, 19, 336-342.	1.6	5
87	Effect of Irradiation on Tissue Penetration Depth of Doxorubicin after Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) in a Novel Ex-Vivo Model. Journal of Cancer, 2016, 7, 910-914.	2.5	26
88	Preoperative intraperitoneal oxaliplatin for unresectable peritoneal carcinomatosis of colorectal origin: a pilot study. Pleura and Peritoneum, 2016, 1, 209-215.	1.2	11
89	Pharmacokinetic problems in peritoneal drug administration: an update after 20 years. Pleura and Peritoneum, 2016, 1, 183-191.	1.2	12
90	Cytoreductive surgery with intraperitoneal chemotherapy in the management of peritoneal surface malignancy: a pharmacist's perspective. European Journal of Hospital Pharmacy, 2016, 23, 233-238.	1.1	3
91	Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 251-259.	4.3	35
92	Preventing recurrence of diffuse malignant peritoneal mesothelioma. Expert Review of Anticancer Therapy, 2016, 16, 989-995.	2.4	5
93	The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Translational Medicine, 2016, 5, 235-247.	3.3	29

#	Article	IF	CITATIONS
94	Distribution pattern and penetration depth of doxorubicin after pressurized intraperitoneal aerosol chemotherapy (PIPAC) in a postmortem swine model. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2275-2280.	2.5	65
95	Oxidative Stress and Nuclear Factor κB (NF-κB) Increase Peritoneal Filtration and Contribute to Ascites Formation in Nephrotic Syndrome. Journal of Biological Chemistry, 2016, 291, 11105-11113.	3.4	11
96	Synthesis of Amphiphilic Poly(β-amino ester) for Efficiently Minicircle DNA Delivery in Vivo. ACS Applied Materials & Interfaces, 2016, 8, 19284-19290.	8.0	22
97	Induction Chemotherapy. , 2016, , .		3
98	Infusoabdomen with abdominal compartment in extremely low birth weight neonates. Journal of Pediatric Surgery Case Reports, 2016, 6, 9-12.	0.2	1
99	Exploring the Spatial Drug Distribution Pattern of Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC). Annals of Surgical Oncology, 2016, 23, 1220-1224.	1.5	53
100	Novel Treatment with Intraperitoneal MOC31PE Immunotoxin in Colorectal Peritoneal Metastasis: Results From the ImmunoPeCa Phase 1 Trial. Annals of Surgical Oncology, 2017, 24, 1916-1922.	1.5	23
101	Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Delivery, 2017, 24, 491-501.	5.7	64
102	Peritoneal metastasis from pancreatic cancer treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Clinical and Experimental Metastasis, 2017, 34, 309-314.	3.3	55
103	Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids. Nutrition and Cancer, 2017, 69, 534-554.	2.0	18
104	Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura and Peritoneum, 2017, 2, 47-62.	1.2	53
105	Liposome-supported enzymatic peritoneal dialysis. Biomaterials, 2017, 145, 128-137.	11.4	18
106	Applications of hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Expert Review of Anticancer Therapy, 2017, 17, 841-850.	2.4	11
107	A novel method to depurate β-lactam antibiotic residues by administration of a broad-spectrum β-lactamase enzyme in fish tissues. Fisheries and Aquatic Sciences, 2017, 19, .	0.8	0
108	Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis — Mission possible?. Advanced Drug Delivery Reviews, 2017, 108, 13-24.	13.7	76
109	Combination Treatment of Citral Potentiates the Efficacy of Hyperthermic Intraperitoneal Chemoperfusion with Pirarubicin for Colorectal Cancer. Molecular Pharmaceutics, 2017, 14, 3588-3597.	4.6	6
110	Modelling drug transport during intraperitoneal chemotherapy. Pleura and Peritoneum, 2017, 2, 73-83.	1.2	18
111	Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotheprapy to treat patients with peritoneal carcinomatosis. Oncotarget, 2017, 8, 78208-78224.	1.8	18

#	Article	IF	CITATIONS
112	Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opinion on Drug Delivery, 2018, 15, 481-494.	5.0	24
113	HIPEC Methodology, Comparison of Techniques, and Drug Regimens: Is There a Need for Standardization?. , 2018, , 79-102.		0
114	Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model. PLoS ONE, 2018, 13, e0205447.	2.5	12
115	Feasibility and Characteristics of Pressurized Aerosol Chemotherapy (PAC) in the Bladder as a Therapeutical Option in Early-stage Urinary Bladder Cancer. In Vivo, 2018, 32, 1369-1372.	1.3	11
116	Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura and Peritoneum, 2018, 3, 20180103.	1.2	36
117	Electric cauterization of the hernia sac in laparoscopic ventral hernia repair reduces the incidence of postoperative seroma: a propensity score-matched analysis. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2018, 22, 747-750.	2.0	9
118	Mediation of inflammatory ascites formation induced by macromolecules in mice. Acta Microbiologica Et Immunologica Hungarica, 2018, 65, 151-162.	0.8	1
120	Inflammatory Response and Toxicity After Pressurized IntraPeritoneal Aerosol Chemotherapy. Journal of Cancer, 2018, 9, 13-20.	2.5	32
121	New Treatment Modalities for the Management of Peritoneal Metastases. , 2018, , 469-506.		4
122	Differences in peritoneal solute transport rates in peritoneal dialysis. Clinical and Experimental Nephrology, 2019, 23, 122-134.	1.6	10
123	Body surface area-based versus concentration-based intraperitoneal perioperative chemotherapy in a rat model of colorectal peritoneal surface malignancy: pharmacologic guidance towards standardization. Oncotarget, 2019, 10, 1407-1424.	1.8	17
124	Aerosolization of Nanotherapeutics as a Newly Emerging Treatment Regimen for Peritoneal Carcinomatosis. Cancers, 2019, 11, 906.	3.7	18
125	Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis. Medical Hypotheses, 2019, 132, 109318.	1.5	4
126	The use of intraperitoneal chemotherapy for gastric malignancies. Expert Review of Anticancer Therapy, 2019, 19, 879-888.	2.4	20
127	Laparoscopic Hyperthermic Intraperitoneal Chemotherapy is Safe for Patients with Peritoneal Metastases from Gastric Cancer and May Lead to Gastrectomy. Annals of Surgical Oncology, 2019, 26, 1394-1400.	1.5	37
128	Body surface areaâ€based vs concentrationâ€based perioperative intraperitoneal chemotherapy after optimal cytoreductive surgery in colorectal peritoneal surface malignancy treatment: COBOX trial. Journal of Surgical Oncology, 2019, 119, 999-1010.	1.7	23
129	A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy. Drug Delivery, 2019, 26, 404-415.	5.7	35
130	Murine Models of Intraperitoneal Perfusion for Disseminated Colorectal Cancer. Journal of Surgical Research, 2019, 233, 310-322.	1.6	8

#	Article	IF	CITATIONS
131	Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS Nano, 2020, 14, 255-271.	14.6	100
132	Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Delivery, 2020, 27, 40-53.	5.7	53
133	Enabling Microparticle Imprinting to Achieve Penetration and Local Endurance in the Peritoneum via High-Intensity Ultrasound (HIUS) for the Treatment of Peritoneal Metastasis. International Journal of Surgical Oncology, 2020, 2020, 1-7.	0.6	5
134	On the change of transport parameters with dwell time during peritoneal dialysis. Peritoneal Dialysis International, 2021, 41, 404-412.	2.3	2
135	Indications for Hyperthermic Intraperitoneal Chemotherapy with Cytoreductive Surgery: A Clinical Practice Guideline. Current Oncology, 2020, 27, 146-154.	2.2	22
136	Intraperitoneal and subcutaneous glucagon delivery in anaesthetized pigs: effects on circulating glucagon and glucose levels. Scientific Reports, 2020, 10, 13735.	3.3	12
137	An overview and update of hyperthermic intraperitoneal chemotherapy in ovarian cancer. Expert Opinion on Pharmacotherapy, 2020, 21, 1479-1492.	1.8	8
138	Impact of Perfusate Concentration on Hyperthermic Intraperitoneal Chemotherapy Efficacy and Toxicity in a Rodent Model. Journal of Surgical Research, 2020, 253, 262-271.	1.6	6
139	Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy. Pharmaceutical Research, 2020, 37, 119.	3.5	8
140	Evaluation of a Novel Prototype for Pressurized Intraperitoneal Aerosol Chemotherapy. Cancers, 2020, 12, 633.	3.7	9
141	Factors Associated with Resection and Survival After Laparoscopic HIPEC for Peritoneal Gastric Cancer Metastasis. Annals of Surgical Oncology, 2020, 27, 4963-4969.	1.5	12
142	Indications for hyperthermic intraperitoneal chemotherapyÂwith cytoreductive surgery: a systematic review. European Journal of Cancer, 2020, 127, 76-95.	2.8	61
143	A fully implantable device for diffuse insulin delivery at extraperitoneal site for physiological treatment of type 1 diabetes. Journal of Controlled Release, 2020, 320, 431-441.	9.9	4
144	Is Prophylactic Hyperthermic Intraperitoneal Chemotherapy Beneficial to the Long-Term Survival of Patients After Radical Gastric Cancer Surgery: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, O, , .	0.4	0
145	Advancement of Biomaterialâ€Based Postoperative Adhesion Barriers. Macromolecular Bioscience, 2021, 21, e2000395.	4.1	58
146	Application of IPC, HIPEC, and PIPAC. , 2021, , 111-133.		0
147	Technical Aspects and Prescription of Peritoneal Dialysis in Children. , 2021, , 193-228.		1
148	HIPEC Methodology and Regimens: The Need for an Expert Consensus. Annals of Surgical Oncology, 2021, 28, 9098-9113.	1.5	22

#	Article	IF	CITATIONS
149	Intraperitoneal Drug Therapy: Physical and Biological Principles. , 2007, 134, 131-152.		12
150	Principles of Perioperative Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis. , 2007, 169, 39-51.		35
151	Pharmacokinetics and toxicity of carboplatin used for hyperthermic intraperitoneal chemotherapy (HIPEC) in treatment of epithelial ovarian cancer. Pleura and Peritoneum, 2020, 5, 20200137.	1.2	9
153	Pharmacologic rationale for treatments of peritoneal surface malignancy from colorectal cancer. World Journal of Gastrointestinal Oncology, 2010, 2, 19.	2.0	48
154	Impact of Mitomycin-C-Induced Neutropenia after Hyperthermic Intraperitoneal Chemotherapy with Cytoreductive Surgery in Colorectal Cancer Patients with Peritoneal Carcinomatosis. Annals of Surgical Oncology, 2022, 29, 2077-2086.	1.5	5
155	Progress in Peritoneal Dialysis. , 2011, , .		0
156	Technical Aspects and Prescription of Peritoneal Dialysis in Children. , 2012, , 169-203.		1
157	Abdominal Advanced Oncologic Surgery. , 0, , .		0
158	Principles and Innovations in Peritoneal Surface Malignancy Treatment. World Journal of Oncology, 2013, 4, 129-136.	1.5	6
159	Pharmacology of cancer chemotherapy drugs for hyperthermic intraperitoneal peroperative chemotherapy in epithelial ovarian cancer. World Journal of Obstetrics and Gynecology, 2013, 2, 143.	0.5	1
160	Zytoreduktive Chirurgie und Hypertherme Intraperitoneale Chemotherapie (HIPEC). , 2013, , 165-185.		0
161	Kinetic Modeling of Peritoneal Dialysis. Studies in Computational Intelligence, 2013, , 1427-1475.	0.9	0
162	Cytoreductive Surgery and "Hyperthermic Intraperitoneal Chemotherapy (HIPEC)― , 2016, , 187-211.		0
163	Encapsulating Peritoneal Sclerosis: Case report and Current Status. Archives of Clinical Nephrology, 0, , 039-046.	0.1	0
164	Applikation von IPC, HIPEC und PIPAC. , 2018, , 119-141.		0
165	Hyperthermic Intraperitoneal Chemotherapy (HIPEC) on the Electrolytes Changes and Nefropaty. Biomedical Journal of Scientific & Technical Research, 2018, 3, .	0.1	0
166	The Basis of Regional Therapy, Pharmacology, Hyperthermia, and Drug Resistance. , 2020, , 3-15.		0
167	The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines, 2021, 9, 1554.	3.2	2

#	Article	IF	CITATIONS
168	Physiologic Influences of Transepithelial K+ Secretion. Physiology in Health and Disease, 2020, , 337-393.	0.3	0
169	Ideal Nozzle Position During Pressurized Intraperitoneal Aerosol Chemotherapy in an <i>Ex Vivo</i> Model. Anticancer Research, 2021, 41, 5489-5498.	1.1	6
170	Diffusion péritonéale des antibiotiques. , 2007, , 41-50.		0
171	Place de la chimiothérapie intrapéritonéale (NIPS, EPIC, PIPAC, CHIP). Colon and Rectum, 2020, 14, 193-1	990.0	Ο
172	The Effects of Acute Blood Loss for Diagnostic Bloodwork and Fluid Replacement in Clinically III Mice. Comparative Medicine, 2015, 65, 202-16.	1.0	1
173	Anesthetic implications in hyperthermic intraperitoneal chemotherapy. Journal of Anaesthesiology Clinical Pharmacology, 2019, 35, 3-11.	0.7	5
174	The Feasibility of Pressurised Intraperitoneal Aerosolised Virotherapy (PIPAV) to Administer Oncolytic Adenoviruses. Pharmaceutics, 2021, 13, 2043.	4.5	5
175	Hyperthermic Intraperitoneal Chemotherapy in the Treatment Armamentarium of Epithelial Ovarian Cancer: Time to End the Dichotomy. Visceral Medicine, 2022, 38, 109-119.	1.3	2
176	Le péritoineÂ: une membrane filtrante. Bulletin De L'Academie Nationale De Medecine, 2022, 206, 187-194.	0.0	0
177	Anesthetic implications in hyperthermic intraperitoneal chemotherapy. Journal of Anaesthesiology Clinical Pharmacology, 2019, 35, 3.	0.7	11
178	Prophylactic hyperthermic intraperitoneal chemotherapy may benefit the long-term survival of patients after radical gastric cancer surgery. Scientific Reports, 2022, 12, 2583.	3.3	9
179	Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS Applied Materials & Interfaces, 2022, 14, 10015-10029.	8.0	3
180	The Peritoneal Membrane—A Potential Mediator of Fibrosis and Inflammation among Heart Failure Patients on Peritoneal Dialysis. Membranes, 2022, 12, 318.	3.0	4
181	Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration. International Journal of Pharmaceutics, 2022, 622, 121828.	5.2	7
182	Advances in the management of peritoneal malignancies. Nature Reviews Clinical Oncology, 2022, 19, 698-718.	27.6	20
184	Intraperitoneal Chemotherapy for Unresectable Peritoneal Surface Malignancies. Drugs, 2023, 83, 159-180.	10.9	4
185	Side-effects of hyperthermic intraperitoneal chemotherapy in patients with gastrointestinal cancers. PeerJ, 0, 11, e15277.	2.0	0
186	Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Frontiers in Oncology, 0, 13, .	2.8	0

#	Article	IF	CITATIONS
187	A Comprehensive Review on Current Treatments and Challenges Involved in the Treatment of Ovarian Cancer. Current Cancer Drug Targets, 2024, 24, 142-166.	1.6	0
188	In Silico Investigation of the Clinical Translatability of Competitive Clearance Glucose-Responsive Insulins. ACS Pharmacology and Translational Science, 2023, 6, 1382-1395.	4.9	0
189	Sphingosine-1-phosphate receptor 3 regulates the transendothelial transport of HDL and LDL in opposite ways. Cardiovascular Research, 0, , .	3.8	0
190	Intraperitoneal irinotecan with concomitant FOLFOX and bevacizumab for patients with unresectable colorectal peritoneal metastases: protocol of the multicentre, open-label, phase II, INTERACT-II trial. BMJ Open, 2024, 14, e077667.	1.9	0
191	Hyperthermic pressurized intraperitoneal aerosol drug delivery system in a large animal model: a feasibility and safety study. Surgical Endoscopy and Other Interventional Techniques, 2024, 38, 2062-2069.	2.4	0