Carbohydrate-binding Agents Cause Deletions of Highly HIV GP120

Journal of Biological Chemistry 280, 41005-41014

DOI: 10.1074/jbc.m508801200

Citation Report

#	Article	IF	CITATIONS
1	Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Review of Anti-Infective Therapy, 2006, 4, 291-302.	2.0	142
2	Insights into neutralizing antibodies and HIV Envelope. Current Opinion in HIV and AIDS, 2006, 1, 301-308.	1.5	1
3	Large-molecular-weight carbohydrate-binding agents as HIV entry inhibitors targeting glycoprotein gp120. Current Opinion in HIV and AIDS, 2006, 1, 355-360.	1.5	10
4	Inhibition of HIV entry by carbohydrate-binding proteins. Antiviral Research, 2006, 71, 237-247.	1.9	147
5	Therapeutic strategies towards HIV-1 infection in macrophages. Antiviral Research, 2006, 71, 293-300.	1.9	39
6	Mutational Pathways, Resistance Profile, and Side Effects of Cyanovirin Relative to Human Immunodeficiency Virus Type 1 Strains with N-Glycan Deletions in Their gp120 Envelopes. Journal of Virology, 2006, 80, 8411-8421.	1.5	93
7	Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: new therapeutic strategies. Journal of Leukocyte Biology, 2006, 80, 1103-1110.	1.5	44
8	Cyanovirin-N Inhibits Hepatitis C Virus Entry by Binding to Envelope Protein Glycans. Journal of Biological Chemistry, 2006, 281, 25177-25183.	1.6	153
9	Primary Structure and Carbohydrate Binding Specificity of a Potent Anti-HIV Lectin Isolated from the Filamentous Cyanobacterium Oscillatoria agardhii. Journal of Biological Chemistry, 2007, 282, 11021-11029.	1.6	103
10	Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiology, 2007, 17, 479-491.	1.3	60
11	Pradimicin A, a Carbohydrate-Binding Nonpeptidic Lead Compound for Treatment of Infections with Viruses with Highly Glycosylated Envelopes, Such as Human Immunodeficiency Virus. Journal of Virology, 2007, 81, 362-373.	1.5	99
12	The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. Journal of Antimicrobial Chemotherapy, 2007, 60, 741-749.	1.3	56
13	Carbohydrate-Binding Agents: A Potential Future Cornerstone for the Chemotherapy of Enveloped Viruses?. Antiviral Chemistry and Chemotherapy, 2007, 18, 1-11.	0.3	94
14	Sialic Acid on Herpes Simplex Virus Type 1 Envelope Glycoproteins Is Required for Efficient Infection of Cells. Journal of Virology, 2007, 81, 3731-3739.	1.5	27
15	The value of natural products to future pharmaceutical discovery. Natural Product Reports, 2007, 24, 1225.	5.2	316
16	A new lectin from the sea worm Serpula vermicularis: Isolation, characterization and anti-HIV activity. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 184-193.	1.3	34
17	The α(1,2)-mannosidase I inhibitor 1-deoxymannojirimycin potentiates the antiviral activity of carbohydrate-binding agents against wild-type and mutant HIV-1 strains containing glycan deletions in gp120. FEBS Letters, 2007, 581, 2060-2064.	1.3	20
18	Microbicide drug candidates to prevent HIV infection. Lancet, The, 2007, 369, 787-797.	6.3	180

#	Article	IF	CITATIONS
19	Fifteen years of Env C2V3C3 evolution in six individuals infected clonally with human immunodeficiency virus type 1. Journal of Medical Virology, 2007, 79, 1629-1639.	2.5	6
20	Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nature Reviews Microbiology, 2007, 5, 583-597.	13.6	264
21	Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Research, 2007, 75, 179-187.	1.9	242
22	Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Research, 2007, 76, 21-29.	1.9	52
23	Resistance of HIV-1 to the broadly HIV-1-neutralizing, anti-carbohydrate antibody 2G12. Virology, 2007, 360, 294-304.	1.1	40
24	The role of N-glycosylation sites on the CXCR4 receptor for CXCL-12 binding and signaling and X4 HIV-1 viral infectivity. Virology, 2007, 363, 280-287.	1.1	27
25	Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology, 2007, 366, 40-50.	1.1	70
26	Electrochemical evaluation of lectin–sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids and Surfaces B: Biointerfaces, 2008, 66, 13-19.	2.5	37
27	Glycan deletions in the HIV-1 gp120 V1/V2 domain compromise viral infectivity, sensitize the mutant virus strains to carbohydrate-binding agents and represent a specific target for therapeutic intervention. Virology, 2008, 382, 10-19.	1.1	31
28	Safety concerns for the potential use of cyanovirin-N as a microbicidal anti-HIV agent. International Journal of Biochemistry and Cell Biology, 2008, 40, 2802-2814.	1.2	67
29	Inhibition of Cell-to-Cell Transmission of Human T-Cell Lymphotropic Virus Type 1 In Vitro by Carbohydrate-Binding Agents. Antimicrobial Agents and Chemotherapy, 2008, 52, 2771-2779.	1.4	12
30	Simian Immunodeficiency Virus Is Susceptible to Inhibition by Carbohydrate-Binding Agents in a Manner Similar to That of HIV: Implications for Further Preclinical Drug Development. Molecular Pharmacology, 2008, 74, 330-337.	1.0	11
31	Carbohydrates on HIV: mediators of immune evasion and targets for antiviral intervention. Future HIV Therapy, 2008, 2, 253-257.	0.5	1
32	Diffusion of Two Potential Anti-HIV Microbicides across Intact and De-Epithelialised, Human Vaginal Mucosa. European Journal of Inflammation, 2008, 6, 17-23.	0.2	1
33	Human Immunodeficiency Virus Type 1 Escape from Cyclotriazadisulfonamide-Induced CD4-Targeted Entry Inhibition Is Associated with Increased Neutralizing Antibody Susceptibility. Journal of Virology, 2009, 83, 9577-9583.	1.5	10
34	The Phthalocyanine Prototype Derivative Alcian Blue Is the First Synthetic Agent with Selective Anti-Human Immunodeficiency Virus Activity Due to Its gp120 Glycan-Binding Potential. Antimicrobial Agents and Chemotherapy, 2009, 53, 4852-4859.	1.4	11
35	Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology, 2009, 387, 67-75.	1.1	64
36	Carbohydrate recognition by boronolectins, small molecules, and lectins. Medicinal Research Reviews, 2010, 30, 171-257.	5.0	262

#	Article	IF	CITATIONS
37	Spermicides, Microbicides and Antiviral Agents: Recent Advances in the Development of Novel Multi-Functional Compounds. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1556-1567.	1.1	7
38	Involvement of Envelope-Glycoprotein Glycans in HIV-1 Biology and Infection. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 191-208.	1.0	14
39	A new chitin-binding lectin from rhizome of Setcreasea purpurea with antifungal, antiviral and apoptosis-inducing activities. Process Biochemistry, 2010, 45, 1477-1485.	1.8	28
40	Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity. Nature Structural and Molecular Biology, 2010, 17, 608-613.	3.6	92
41	Pradimicin S, a Highly Soluble Nonpeptidic Small-Size Carbohydrate-Binding Antibiotic, Is an Anti-HIV Drug Lead for both Microbicidal and Systemic Use. Antimicrobial Agents and Chemotherapy, 2010, 54, 1425-1435.	1.4	46
42	Microvirin, a Novel α(1,2)-Mannose-specific Lectin Isolated from Microcystis aeruginosa, Has Anti-HIV-1 Activity Comparable with That of Cyanovirin-N but a Much Higher Safety Profile. Journal of Biological Chemistry, 2010, 285, 24845-24854.	1.6	108
43	Multivalent Benzoboroxole Functionalized Polymers as gp120 Glycan Targeted Microbicide Entry Inhibitors. Molecular Pharmaceutics, 2010, 7, 116-129.	2.3	59
44	Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Proteins Incorporated into Infectious Virions. Journal of Virology, 2010, 84, 11905-11915.	1.5	181
45	Conformational stability of peanut agglutinin using small angle X-ray scattering. International Journal of Biological Macromolecules, 2011, 48, 398-402.	3.6	6
46	Targeting HIV Entry through Interaction with Envelope Glycoprotein 120 (gp120): Synthesis and Antiviral Evaluation of 1,3,5-Triazines with Aromatic Amino Acids. Journal of Medicinal Chemistry, 2011, 54, 5335-5348.	2.9	33
47	Activity and Safety of Synthetic Lectins Based on Benzoboroxole-Functionalized Polymers for Inhibition of HIV Entry. Molecular Pharmaceutics, 2011, 8, 2465-2475.	2.3	77
48	Investigation of Griffithsin's Interactions with Human Cells Confirms Its Outstanding Safety and Efficacy Profile as a Microbicide Candidate. PLoS ONE, 2011, 6, e22635.	1.1	99
49	Synergistic in vitro anti-HIV type 1 activity of tenofovir with carbohydrate-binding agents (CBAs). Antiviral Research, 2011, 90, 200-204.	1.9	17
50	Inhibition of α-glucosidase and α-amylase by diaryl derivatives of imidazole-thione and 1,2,4-triazole-thiol. European Journal of Medicinal Chemistry, 2011, 46, 2596-2601.	2.6	43
51	Recombinant expression of Polygonatum cyrtonema lectin with anti-viral, apoptosis-inducing activities and preliminary crystallization. Process Biochemistry, 2011, 46, 533-542.	1.8	19
52	The Highly Conserved Glycan at Asparagine 260 of HIV-1 gp120 Is Indispensable for Viral Entry. Journal of Biological Chemistry, 2011, 286, 42900-42910.	1.6	28
54	The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response. Viruses, 2011, 3, 1909-1932.	1.5	89
55	Pinellia pedatisecta agglutinin interacts with the methylosome and induces cancer cell death. Oncogenesis, 2012, 1, e29-e29.	2.1	25

#	Article	IF	CITATIONS
56	Thioredoxin-1 and protein disulfide isomerase catalyze the reduction of similar disulfides in HIV gp120. International Journal of Biochemistry and Cell Biology, 2012, 44, 556-562.	1.2	36
57	Carbohydrate Recognition by the Antiviral Lectin Cyanovirin-N. Journal of the American Chemical Society, 2012, 134, 19639-19651.	6.6	23
58	Molecular architecture and therapeutic potential of lectin mimics. Advances in Carbohydrate Chemistry and Biochemistry, 2012, 68, 1-58.	0.4	11
59	Potential of carbohydrateâ€binding agents as therapeutics against enveloped viruses. Medicinal Research Reviews, 2012, 32, 349-387.	5.0	71
60	Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins. Glycoconjugate Journal, 2013, 30, 269-279.	1.4	34
61	How to use the monographs. , 2013, , 353-961.		0
62	Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. , 2013, 137, 266-282.		38
63	Inhibition of Hepatitis C Virus by the Cyanobacterial Protein <i>Microcystis viridis</i> Lectin: Mechanistic Differences between the High-Mannose Specific Lectins MVL, CV-N, and GNA. Molecular Pharmaceutics, 2013, 10, 4590-4602.	2.3	43
64	INHIBITION OF NITRIC OXIDE PRODUCTION IN THE MACROPHAGE-LIKE RAW 264.7 CELL LINE BY PROTEIN FROM THE RHIZOMES OF ZINGIBERACEAE PLANTS. Preparative Biochemistry and Biotechnology, 2013, 43, 60-78.	1.0	11
65	Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents. Journal of Antimicrobial Chemotherapy, 2013, 68, 2026-2037.	1.3	14
66	Neutralizing IgG at the Portal of Infection Mediates Protection against Vaginal Simian/Human Immunodeficiency Virus Challenge. Journal of Virology, 2013, 87, 11604-11616.	1.5	44
67	Clinical use of vaginal or rectally applied microbicides in patients suffering from HIV/AIDS. HIV/AIDS - Research and Palliative Care, 2013, 5, 295.	0.4	10
68	Prime-Boost Immunization of Rabbits with HIV-1 gp120 Elicits Potent Neutralization Activity against a Primary Viral Isolate. PLoS ONE, 2013, 8, e52732.	1.1	17
69	Surfactant Protein D Inhibits HIV-1 Infection of Target Cells via Interference with gp120-CD4 Interaction and Modulates Pro-Inflammatory Cytokine Production. PLoS ONE, 2014, 9, e102395.	1.1	40
70	HIV-1 and Its Resistance to Peptidic Carbohydrate-Binding Agents (CBAs): An Overview. Molecules, 2014, 19, 21085-21112.	1.7	6
71	The role of N-glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents. Retrovirology, 2014, 11, 107.	0.9	8
72	Exposure of HIV-1 to a combination of two carbohydrate-binding agents markedly delays drug resistance development and selects for virus strains with compromised fitness. Journal of Antimicrobial Chemotherapy, 2014, 69, 582-593.	1.3	9
73	Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiology Reviews, 2014, 38, 598-632.	3.9	117

	CITATION REI	PORT	
#	Article	IF	Citations
74	Natural Antiviral Compounds. Studies in Natural Products Chemistry, 2014, 42, 195-228.	0.8	13
75	Targeting strategies for delivery of anti-HIV drugs. Journal of Controlled Release, 2014, 192, 271-283.	4.8	47
76	Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family. Journal of Antimicrobial Chemotherapy, 2014, 69, 2746-2758.	1.3	39
77	The Roles of Direct Recognition by Animal Lectins in Antiviral Immunity and Viral Pathogenesis. Molecules, 2015, 20, 2272-2295.	1.7	47
78	The Evolution of HIV-1 Interactions with Coreceptors and Mannose C-Type Lectin Receptors. Progress in Molecular Biology and Translational Science, 2015, 129, 109-140.	0.9	6
79	NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. Journal of Antimicrobial Chemotherapy, 2015, 70, 1674-1685.	1.3	32
80	Exposure of Trypanosoma brucei to an N-acetylglucosamine-Binding Lectin Induces VSG Switching and Glycosylation Defects Resulting in Reduced Infectivity. PLoS Neglected Tropical Diseases, 2015, 9, e0003612.	1.3	11
81	Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant) in CCl 4 challenged rats. Toxicology Reports, 2015, 2, 1101-1110.	1.6	30
82	Algal lectins as promising biomolecules for biomedical research. Critical Reviews in Microbiology, 2015, 41, 77-88.	2.7	54
83	A Designed "Nested―Dimer of Cyanovirin-N Increases Antiviral Activity. Viruses, 2016, 8, 158.	1.5	5
84	Binding Site Geometry and Subdomain Valency Control Effects of Neutralizing Lectins on HIV-1 Viral Particles. ACS Infectious Diseases, 2016, 2, 882-891.	1.8	20
85	Layer-by-Layer Engineered Microbicide Drug Delivery System Targeting HIV-1 gp120: Physicochemical and Biological Properties. Molecular Pharmaceutics, 2017, 14, 3512-3527.	2.3	21
86	Surface Glycans: A Therapeutic Opportunity for Kinetoplastid Diseases. Trends in Parasitology, 2017, 33, 775-787.	1.5	3
87	Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention. Parasitology, 2019, 146, 1743-1754.	0.7	7
88	Complex-type <i>N</i> -glycans on VSV-G pseudotyped HIV exhibit â€~tough' sialic and â€~brittle' mannose self-adhesions. Soft Matter, 2019, 15, 4525-4540.	² 1.2	8
89	Mannobioseâ€Grafting Shifts PEI Charge and Biphasic Dependence on pH. Macromolecular Chemistry and Physics, 2019, 220, 1800423.	1.1	9
90	Griffithsin Retains Anti-HIV-1 Potency with Changes in gp120 Glycosylation and Complements Broadly Neutralizing Antibodies PGT121 and PGT126. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	11
91	Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. International Journal of Molecular Sciences, 2019, 20, 254.	1.8	48

#	Article	IF	Citations
92	<i>In Vitro</i> Characterization of the Carbohydrate-Binding Agents HHA, GNA, and UDA as Inhibitors of Influenza A and B Virus Replication. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	8
93	A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc 2 Disaccharide in Water. Angewandte Chemie, 2021, 133, 11268-11272.	1.6	5
94	A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc 2 Disaccharide in Water. Angewandte Chemie - International Edition, 2021, 60, 11168-11172.	7.2	14
95	35Âyears in plant lectin research: a journey from basic science to applicationsÂin agriculture and medicine. Glycoconjugate Journal, 2022, 39, 83-97.	1.4	19
96	HIV-1 entry inhibitors as microbicides. , 2007, , 99-117.		2
97	The role of N -glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents. Retrovirology, 2014, 11, 107.	0.9	5
98	Anti-HIV lectins and current delivery strategies. AIMS Molecular Science, 2018, 5, 96-116.	0.3	5
100	Entry Inhibitors Directed Towards Glycoprotein gp120: An Overview on a Promising Target for HIV-1 Therapy. Current Medicinal Chemistry, 2013, 20, 751-771.	1.2	4
101	Protective Effect of Urtica dioica Seeds' Extract in Experimental Chronic Aflatoxicosis in Broiler Chickens. International Journal of Poultry Science, 2021, 20, 256-269.	0.6	0
102	A novel plant lectin, NTL-125, interferes with SARS-CoV-2 interaction with hACE2. Virus Research, 2022, 315, 198768.	1.1	5
103	Nutritional and pharmacological importance of stinging nettle (Urtica dioica L.): A review. Heliyon, 2022, 8, e09717.	1.4	44
105	Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	7
106	Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina. Virology Journal, 2023, 20, .	1.4	1
107	Antiviral Lectins of the Plant Family Amaryllidaceae. Revista Brasileira De Farmacognosia, 0, ,	0.6	0