The Selective Cause of an Ancient Adaptation

Science 307, 1279-1282 DOI: 10.1126/science.1106974

Citation Report

#	ARTICLE	IF	CITATIONS
1	Tricarboxylic Acid Cycle and Glyoxylate Bypass. EcoSal Plus, 2005, 1, .	2.1	81
2	Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus, 2005, 1, .	2.1	50
3	The Biochemical Architecture of an Ancient Adaptive Landscape. Science, 2005, 310, 499-501.	6.0	216
4	Crystal Structure of Tetrameric Homoisocitrate Dehydrogenase from an Extreme Thermophile, Thermus thermophilus : Involvement of Hydrophobic Dimer-Dimer Interaction in Extremely High Thermotolerance. Journal of Bacteriology, 2005, 187, 6779-6788.	1.0	23
5	Location of the Coenzyme Binding Site in the Porcine Mitochondrial NADP-dependent Isocitrate Dehydrogenase. Journal of Biological Chemistry, 2005, 280, 30349-30353.	1.6	10
6	EVOLUTION: Changing the Cofactor Diet of an Enzyme. Science, 2005, 310, 454-455.	6.0	13
7	Evolution of Hormone-Receptor Complexity by Molecular Exploitation. Science, 2006, 312, 97-101.	6.0	540
8	Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling. Applied and Environmental Microbiology, 2006, 72, 1558-1568.	1.4	290
9	Thr373, Asp375, and Lys260 are in the coenzyme site of porcine NADP-dependent isocitrate dehydrogenase. Archives of Biochemistry and Biophysics, 2006, 450, 183-190.	1.4	11
10	Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1001-1009.	1.5	8
11	Phylogenetics by likelihood: Evolutionary modeling as a tool for understanding the genome. Journal of Biomedical Informatics, 2006, 39, 51-61.	2.5	27
12	Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochemical Pharmacology, 2006, 71, 1026-1035.	2.0	34
13	Evoecotoxicology: Environmental Changes and Life Features Development duringthe Evolutionary Process—the Record of the Past at DevelopmentalStages of Living Organisms. Environmental Health Perspectives, 2006, 114, 1139-1142.	2.8	12
14	Direct Demonstration of an Adaptive Constraint. Science, 2006, 314, 458-461.	6.0	70
15	Rapid Detection of Positive Selection in Genes and Genomes Through Variation Clusters. Genetics, 2007, 176, 2451-2463.	1.2	49
16	A systematic analysis of lineage-specific evolution in metabolic pathways. Gene, 2007, 387, 67-74.	1.0	5
17	Understanding Nicotinamide Dinucleotide Cofactor and Substrate Specificity in Class I Flavoprotein Disulfide Oxidoreductases: Crystallographic Analysis of a Glutathione Amide Reductase. Journal of Molecular Biology, 2007, 374, 883-889.	2.0	9
18	The subtle benefits of being promiscuous: Adaptive evolution potentiated by enzyme promiscuity. HFSP Journal, 2007, 1, 94-98.	2.5	39

λτιών Ρερώ

#	Article	IF	CITATIONS
19	Applications of Flow Cytometry to Evolutionary and Population Biology. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 847-876.	3.8	164
20	Mechanistic approaches to the study of evolution: the functional synthesis. Nature Reviews Genetics, 2007, 8, 675-688.	7.7	336
21	Empirical fitness landscapes reveal accessible evolutionary paths. Nature, 2007, 445, 383-386.	13.7	510
22	Physiologic roles of soluble pyridine nucleotide transhydrogenase inEscherichia coli as determined by homologous recombination. Annals of Microbiology, 2008, 58, 275-280.	1.1	10
23	A bilevel optimization algorithm to identify enzymatic capacity constraints in metabolic networks. Computers and Chemical Engineering, 2008, 32, 2072-2085.	2.0	15
24	Metabolic innovations towards the human lineage. BMC Evolutionary Biology, 2008, 8, 247.	3.2	14
25	Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 2008, 134, 341-352.	13.5	949
26	Evolution of Hormone Signaling in Elasmobranchs by Exploitation of Promiscuous Receptors. Molecular Biology and Evolution, 2008, 25, 2643-2652.	3.5	93
27	Evolution of a New Function by Degenerative Mutation in Cephalochordate Steroid Receptors. PLoS Genetics, 2008, 4, e1000191.	1.5	104
28	Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13480-13485.	3.3	214
29	Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20605-20610.	3.3	98
30	The Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa. PLoS Genetics, 2009, 5, e1000406.	1.5	100
31	Stability effects of mutations and protein evolvability. Current Opinion in Structural Biology, 2009, 19, 596-604.	2.6	626
32	Geographic distributions of Idh-1 alleles in a cricket are linked to differential enzyme kinetic performance across thermal environments. BMC Evolutionary Biology, 2009, 9, 113.	3.2	12
33	A framework for evolutionary systems biology. BMC Systems Biology, 2009, 3, 27.	3.0	65
34	Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Biochimie, 2009, 91, 1405-1410.	1.3	24
35	Revealing evolutionary pathways by fitness landscape reconstruction. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 169-174.	2.3	29
36	Constraint-Based Genome-Scale Models of Cellular Metabolism. , 2009, , .		0

#	Article	IF	CITATIONS
37	How Evolutionary Biology Presently Pervades Cell and Molecular Biology. Journal for General Philosophy of Science, 2010, 41, 113-120.	0.7	6
38	Using Synthetic Biology to Understand the Evolution of Gene Expression. Current Biology, 2010, 20, R772-R779.	1.8	14
39	Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1138-1148.	0.5	69
40	Molecular Paleoscience: Systems Biology from the Past. Advances in Enzymology and Related Areas of Molecular Biology, 2007, 75, 1-132.	1.3	45
42	Enzymatic characterization of isocitrate dehydrogenase from an emerging zoonotic pathogen Streptococcus suis. Biochimie, 2011, 93, 1470-1475.	1.3	14
43	Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. FEMS Microbiology Letters, 2011, 320, 9-14.	0.7	20
44	Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2011, 177, 61-64.	0.5	33
45	Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Molecular Biology Reports, 2011, 38, 3717-3724.	1.0	14
46	Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. Journal of Microbiology, 2011, 49, 797-802.	1.3	24
47	Genetic Co-Occurrence Network across Sequenced Microbes. PLoS Computational Biology, 2011, 7, e1002340.	1.5	43
48	Measuring Selection Coefficients Below 10â^'3: Method, Questions, and Prospects. Genetics, 2012, 190, 175-186.	1.2	75
49	The Impact of Oxygen on Metabolic Evolution: A Chemoinformatic Investigation. PLoS Computational Biology, 2012, 8, e1002426.	1.5	23
50	Differences in mtDNA whole sequence between Tibetan and Han populations suggesting adaptive selection to high altitude. Gene, 2012, 496, 37-44.	1.0	45
51	Genome-Scale Metabolic Models: Reconstruction and Analysis. Methods in Molecular Biology, 2012, 799, 107-126.	0.4	45
52	Functional relevance of dynamic properties of Dimeric NADP-dependent Isocitrate Dehydrogenases. BMC Bioinformatics, 2012, 13, S2.	1.2	15
53	Biochemical and molecular characterization of NAD+-dependent isocitrate dehydrogenase from the ethanologenic bacterium Zymomonas mobilis. FEMS Microbiology Letters, 2012, 327, 134-141.	0.7	21
54	What genomes have to say about the evolution of the Earth. Gondwana Research, 2012, 21, 483-494.	3.0	18
55	Biochemical characterization of NADP+-dependent isocitrate dehydrogenase from Microcystis aeruginosa PCC7806. Molecular Biology Reports, 2013, 40, 2995-3002.	1.0	11

#	Article	IF	CITATIONS
56	Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033. Molecular Biology Reports, 2013, 40, 1615-1623.	1.0	7
57	NADP+-Specific Isocitrate Dehydrogenase from Oleaginous Yeast Yarrowia lipolytica CLIB122: Biochemical Characterization and Coenzyme Sites Evaluation. Applied Biochemistry and Biotechnology, 2013, 171, 403-416.	1.4	20
58	Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap. Industrial Biotechnology, 2013, 9, 236-246.	0.5	30
59	Fitness, Stress Resistance, and Extraintestinal Virulence in Escherichia coli. Infection and Immunity, 2013, 81, 2733-2742.	1.0	33
60	Reconstruction of Genome-Scale Metabolic Networks. , 2013, , 229-250.		1
61	Optimality in evolution: new insights from synthetic biology. Current Opinion in Biotechnology, 2013, 24, 797-802.	3.3	22
62	Isocitrate Dehydrogenase from Streptococcus mutans: Biochemical Properties and Evaluation of a Putative Phosphorylation Site at Ser102. PLoS ONE, 2013, 8, e58918.	1.1	12
63	Alteration of coenzyme specificity of malate dehydrogenase from Streptomyces coelicolor A3(2) by site-directed mutagenesis. Genetics and Molecular Research, 2014, 13, 5758-5766.	0.3	6
64	The Valley-of-Death: Reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment. Genomics, 2014, 104, 431-437.	1.3	23
65	Enzymatic Characterization of a Type II Isocitrate Dehydrogenase from Pathogenic Leptospira interrogans serovar Lai Strain 56601. Applied Biochemistry and Biotechnology, 2014, 172, 487-496.	1.4	9
66	Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae. Metabolic Engineering, 2014, 24, 117-128.	3.6	40
67	Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli. Microbiology (United Kingdom), 2014, 160, 2780-2793.	0.7	22
68	Escherichia coli d-Malate Dehydrogenase, a Generalist Enzyme Active in the Leucine Biosynthesis Pathway. Journal of Biological Chemistry, 2014, 289, 29086-29096.	1.6	18
69	Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain. Biochemical and Biophysical Research Communications, 2014, 449, 107-113.	1.0	3
70	Evolution of a Transition State: Role of Lys100 in the Active Site of Isocitrate Dehydrogenase. ChemBioChem, 2014, 15, 1145-1153.	1.3	7
71	Systematic Exploration of Ubiquitin Sequence, E1 Activation Efficiency, and Experimental Fitness in Yeast. Journal of Molecular Biology, 2014, 426, 2854-2870.	2.0	55
72	Quantifying NAD(P)H production in the upper Entner–Doudoroff pathway from <i>Pseudomonas putida</i> KT2440. FEBS Open Bio, 2015, 5, 908-915.	1.0	15
73	NADPH-generating systems in bacteria and archaea. Frontiers in Microbiology, 2015, 6, 742.	1.5	254

#	Article	IF	CITATIONS
74	Novel Type II and Monomeric NAD+ Specific Isocitrate Dehydrogenases: Phylogenetic Affinity, Enzymatic Characterization and Evolutionary Implication. Scientific Reports, 2015, 5, 9150.	1.6	27
75	A unique homodimeric NAD ⁺ â€linked isocitrate dehydrogenase from the smallest autotrophic eukaryote <i>Ostreococcus tauri</i> . FASEB Journal, 2015, 29, 2462-2472.	0.2	14
76	Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum. International Journal of Molecular Sciences, 2016, 17, 296.	1.8	8
77	Two isocitrate dehydrogenases from a plant pathogen <i>Xanthomonas campestris</i> pv. campestris 8004. Bioinformatic analysis, enzymatic characterization, and implication in virulence. Journal of Basic Microbiology, 2016, 56, 975-985.	1.8	10
79	Molecular Evolution, Functional Synthesis of. , 2016, , 44-54.		0
80	Point mutation (R153H or R153C) in <i>Escherichia coli</i> isocitrate dehydrogenase: Biochemical characterization and functional implication. Journal of Basic Microbiology, 2017, 57, 41-49.	1.8	1
81	Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. Journal of Molecular Evolution, 2017, 84, 69-84.	0.8	40
82	Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the †retro' approach to protein engineering. Biochemical Journal, 2017, 474, 1-19.	1.7	100
83	Efficient conversion of acetate into phloroglucinol by recombinant Escherichia coli. RSC Advances, 2017, 7, 50942-50948.	1.7	13
84	Peculiar citric acid cycle of hydrothermal vent chemolithoautotroph Hydrogenovibrio crunogenus, and insights into carbon metabolism by obligate autotrophs. FEMS Microbiology Letters, 2017, 364, .	0.7	8
85	Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus. PLoS ONE, 2017, 12, e0176056.	1.1	8
86	Recombinant NADP-dependent isocitrate dehydrogenase of Edwardsiella tarda induces both Th1 and Th2 type immune responses and evokes protective efficacy against edwardsiellosis. Vaccine, 2018, 36, 2337-2345.	1.7	16
87	Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from <i>Xylella fastidiosa</i> . Biotechnology and Applied Biochemistry, 2018, 65, 230-237.	1.4	8
88	Microbial production of mevalonate by recombinant <i>Escherichia coli</i> using acetic acid as a carbon source. Bioengineered, 2018, 9, 116-123.	1.4	24
89	The soluble transhydrogenase UdhA affecting the glutamate-dependent acid resistance system of <i>Escherichia coli</i> under acetate stress. Biology Open, 2018, 7, .	0.6	8
90	Pyridine Nucleotide Coenzyme Specificity of p-Hydroxybenzoate Hydroxylase and Related Flavoprotein Monooxygenases. Frontiers in Microbiology, 2018, 9, 3050.	1.5	17
91	Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. PLoS ONE, 2018, 13, e0196182.	1.1	12
92	The Glyoxylate Shunt, 60 Years On. Annual Review of Microbiology, 2018, 72, 309-330.	2.9	111

#	Article	IF	CITATIONS
93	Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in Escherichia coli pgi Knockout Evolutions. Applied and Environmental Microbiology, 2018, 84, .	1.4	22
94	Crystal Structure of the Isocitrate Dehydrogenase 2 from Acinetobacter baumannii (AbIDH2) Reveals a Novel Dimeric Structure with Two Monomeric-IDH-Like Subunits. International Journal of Molecular Sciences, 2018, 19, 1131.	1.8	6
95	Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions?. International Journal of Tryptophan Research, 2019, 12, 117864691985594.	1.0	3
96	Adaptive Landscapes in the Age of Synthetic Biology. Molecular Biology and Evolution, 2019, 36, 890-907.	3.5	25
97	Assessing Cofactor Usage in Pseudoclostridium thermosuccinogenes via Heterologous Expression of Central Metabolic Enzymes. Frontiers in Microbiology, 2019, 10, 1162.	1.5	7
98	Evaluation of the Potential Phosphorylation Effect on Isocitrate Dehydrogenases from Saccharomyces cerevisiae and Yarrowia lipolytica. Applied Biochemistry and Biotechnology, 2019, 187, 1131-1142.	1.4	3
99	Characterization of the nicotinamide adenine dinucleotides (NAD+ and NADP+) binding sites of the monomeric isocitrate dehydrogenases from Campylobacter species. Biochimie, 2019, 160, 148-155.	1.3	4
100	Equilibrium of the intracellular redox state for improving cell growth and l-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Microbial Cell Factories, 2019, 18, 65.	1.9	14
101	Biochemical Characterization and Crystal Structure of a Novel NAD+-Dependent Isocitrate Dehydrogenase from Phaeodactylum tricornutum. International Journal of Molecular Sciences, 2020, 21, 5915.	1.8	5
102	The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. International Journal of Biological Macromolecules, 2020, 163, 240-250.	3.6	8
103	Biochemical and phylogenetic characterization of a monomeric isocitrate dehydrogenase from a marine methanogenic archaeon Methanococcoides methylutens. Extremophiles, 2020, 24, 319-328.	0.9	4
106	Survival of the first rather than the fittest in a Shewanella electrode biofilm. Communications Biology, 2021, 4, 536.	2.0	10
107	Biochemical and Phylogenetic Characterization of a Novel NADP+-Specific Isocitrate Dehydrogenase From the Marine Microalga Phaeodactylum tricornutum. Frontiers in Molecular Biosciences, 2021, 8, 702083.	1.6	3
108	Crystal structures of NAD+-linked isocitrate dehydrogenase from the green alga Ostreococcus tauri and its evolutionary relationship with eukaryotic NADP+-linked homologs. Archives of Biochemistry and Biophysics, 2021, 708, 108898.	1.4	2
109	How Evolutionary Biology Presently Pervades Cell and Molecular Biology. , 2010, , 59-66.		1
111	Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annual Review of Biochemistry, 2018, 87, 187-216.	5.0	106
112	A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71. PLoS ONE, 2015, 10, e0125229.	1.1	10
113	From a dimer to a monomer: Construction of a chimeric monomeric isocitrate dehydrogenase. Protein Science, 2021, 30, 2396-2407.	3.1	2

#	ARTICLE	IF	CITATIONS
114	Experimental resurrection of ancient biomolecules: gene synthesis, heterologous protein expression, and functional assays. , 2007, , 153-163.		4
115	Separating Spandrels from Phenotypic Targets of Selection in Adaptive Molecular Evolution. , 2016, , 309-325.		2
117	4. EXPERIMENTAL EVOLUTION FROM THE BOTTOM UP. , 2019, , 67-88.		2
118	Biochemical Characterization of Recombinant Isocitrate Dehydrogenase and Its Putative Role in the Physiology of an Acidophilic Micrarchaeon. Microorganisms, 2021, 9, 2318.	1.6	1
119	Heterologous expression and enzymatic identification of two novel soluble pyridine nucleotide transhydrogenases from Acidobacteria bacterium KBS 146 and Nocardia jiangxiensis. Biotechnology and Biotechnological Equipment, 2021, 35, 1452-1460.	0.5	0
120	Proteomic study of plaque fluid in high caries and caries free children. Technology and Health Care, 2022, 30, 337-361.	0.5	1
121	Protein cost minimization promotes the emergence of coenzyme redundancy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110787119.	3.3	7
122	Identification and Characterization of a Novel Soluble Pyridine Nucleotide Transhydrogenase from Streptomyces avermitilis. Current Microbiology, 2022, 79, 32.	1.0	1
126	Molecular Simulation Research on Metabolic Origin and Evolution. Kongjian Kexue Xuebao, 2021, 41, 158.	0.2	0