Role of Endothelin in Mediating Tumor Necrosis Factor Rats

Hypertension 46, 82-86 DOI: 10.1161/01.hyp.0000169152.59854.36

Citation Report

#	Article	IF	CITATIONS
1	An emerging role for inflammatory cytokines in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H923-H924.	3.2	74
2	Endothelin, the kidney, and hypertension. Current Hypertension Reports, 2006, 8, 298-303.	3.5	38
3	Enhanced Endothelin Synthesis by Endothelial Cells Exposed to Sera From Pregnant Rats With Decreased Uterine Perfusion. Hypertension, 2006, 47, 615-618.	2.7	74
4	Hypertension Produced by Reductions in Uterine Perfusion in the Pregnant Rat. Hypertension, 2006, 48, 711-716.	2.7	140
5	Neurovascular Mechanisms of Hypertension in Pregnancy. Current Neurovascular Research, 2006, 3, 131-148.	1.1	40
6	Dysregulation of the Circulating and Tissue-Based Renin-Angiotensin System in Preeclampsia. Hypertension, 2007, 49, 604-611.	2.7	235
7	Pathophysiology of Hypertension During Preeclampsia: Role of Inflammatory Cytokines. Current Hypertension Reviews, 2007, 3, 69-74.	0.9	2
8	Role of Sex Steroids in Modulating Tumor Necrosis Factor Alpha-Induced Changes in Vascular Function and Blood Pressure <xref <br="" ref-type="author-notes">rid="fn1">[*]</xref> <subtitle></subtitle> . American Journal of Hypertension, 2007 20, 1216-21	2.0	13
9	Role of Cytokines and Inflammation in Hypertension. , 2007, , 229-239.		0
10	Role of the Kidney in Hypertension. , 2007, , 241-263.		2
11	Differential regulation of visfatin and adiponectin in pregnancies with normal and abnormal placental function. Clinical Endocrinology, 2007, 66, 434-439.	2.4	74
11		2.4 3.2	74 209
	placental function. Clinical Endocrinology, 2007, 66, 434-439. Functional Network Analysis of the Transcriptomes of Mesenchymal Stem Cells Derived from		
12	placental function. Clinical Endocrinology, 2007, 66, 434-439. Functional Network Analysis of the Transcriptomes of Mesenchymal Stem Cells Derived from Amniotic Fluid, Amniotic Membrane, Cord Blood, and Bone Marrow. Stem Cells, 2007, 25, 2511-2523. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Current	3.2	209
12 13	placental function. Clinical Endocrinology, 2007, 66, 434-439. Functional Network Analysis of the Transcriptomes of Mesenchymal Stem Cells Derived from Amniotic Fluid, Amniotic Membrane, Cord Blood, and Bone Marrow. Stem Cells, 2007, 25, 2511-2523. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Current Hypertension Reports, 2007, 9, 480-485. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nature	3.2 3.5	209 178
12 13 14	placental function. Clinical Endocrinology, 2007, 66, 434-439. Functional Network Analysis of the Transcriptomes of Mesenchymal Stem Cells Derived from Amniotic Fluid, Amniotic Membrane, Cord Blood, and Bone Marrow. Stem Cells, 2007, 25, 2511-2523. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Current Hypertension Reports, 2007, 9, 480-485. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nature Medicine, 2008, 14, 855-862. Serum levels of the adipokine visfatin are increased in preâ€eclampsia. Clinical Endocrinology, 2008, 69,	3.2 3.5 30.7	209 178 450
12 13 14 15	placental function. Clinical Endocrinology, 2007, 66, 434-439. Functional Network Analysis of the Transcriptomes of Mesenchymal Stem Cells Derived from Amniotic Fluid, Amniotic Membrane, Cord Blood, and Bone Marrow. Stem Cells, 2007, 25, 2511-2523. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Current Hypertension Reports, 2007, 9, 480-485. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nature Medicine, 2008, 14, 855-862. Serum levels of the adipokine visfatin are increased in preâ€eclampsia. Clinical Endocrinology, 2008, 69, 69-73.	3.2 3.5 30.7 2.4	209 178 450 78

#	Article	IF	CITATIONS
19	CaR activation increases TNF production by mTAL cells via a Gi-dependent mechanism. American Journal of Physiology - Renal Physiology, 2008, 294, F345-F354.	2.7	19
20	TNF-α inhibition reduces renal injury in DOCA-salt hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R76-R83.	1.8	121
21	Hypertension in Response to Chronic Reductions in Uterine Perfusion in Pregnant Rats. Hypertension, 2008, 52, 1161-1167.	2.7	150
22	Recent Progress Toward the Understanding of the Pathophysiology of Hypertension During Preeclampsia. Hypertension, 2008, 51, 982-988.	2.7	134
23	Rosiglitazone decreases blood pressure and renal injury in a female mouse model of systemic lupus erythematosus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1282-R1289.	1.8	74
24	Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H489-H496.	3.2	29
25	Ghrelin protects mice against endotoxemia-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2009, 297, F1032-F1037.	2.7	76
26	Effects of 17-Hydroxyprogesterone on Tumor Necrosis Factor-Â-Induced Hypertension During Pregnancy. American Journal of Hypertension, 2009, 22, 1120-1125.	2.0	41
27	Hypertension in Response to Autoantibodies to the Angiotensin II Type I Receptor (AT1-AA) in Pregnant Rats. Hypertension, 2009, 54, 905-909.	2.7	185
28	17-hydroxyprogesterone blunts the hypertensive response associated with reductions in uterine perfusion pressure in pregnant rats. American Journal of Obstetrics and Gynecology, 2009, 201, 324.e1-324.e6.	1.3	19
29	Is preeclampsia an autoimmune disease?. Clinical Immunology, 2009, 133, 1-12.	3.2	54
30	Comparison of the accuracy of dichlorophenolindophenol (DCIP), modified DCIP, and hemoglobin E tests to screen for the HbE trait in pregnant women. International Journal of Gynecology and Obstetrics, 2009, 107, 59-60.	2.3	10
31	Placental and umbilical cord levels of neurokinin B and neurokinin B receptor in preâ€eclampsia. International Journal of Gynecology and Obstetrics, 2009, 107, 58-59.	2.3	4
32	Adipocytokines in Normal and Complicated Pregnancies. Reproductive Sciences, 2009, 16, 921-937.	2.5	161
33	Molecular and Vascular Targets in the Pathogenesis and Management of the Hypertension Associated with Preeclampsia. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2010, 8, 204-226.	1.0	69
34	Endothelial Dysfunction and Insulin Resistance as Pathophysiologic Mechanisms in a Rat Model of Preeclampsia. American Journal of Biochemistry and Biotechnology, 2010, 6, 172-180.	0.4	2
35	Autoantibody-Mediated Angiotensin Receptor Activation Contributes to Preeclampsia Through Tumor Necrosis Factor-α Signaling. Hypertension, 2010, 55, 1246-1253.	2.7	87
36	Risk Factors and Mediators of the Vascular Dysfunction Associated with Hypertension in Pregnancy. Cardiovascular & Hematological Disorders Drug Targets, 2010, 10, 33-52.	0.7	44

#	Article	IF	CITATIONS
37	Interleukin-10 inhibits the in vivo and in vitro adverse effects of TNF-α on the endothelium of murine aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1160-H1167.	3.2	51
38	TNFR1-deficient mice display altered blood pressure and renal responses to ANG II infusion. American Journal of Physiology - Renal Physiology, 2010, 299, F1141-F1150.	2.7	40
39	Circulating and Vascular Bioactive Factors During Hypertension in Pregnancy. Current Bioactive Compounds, 2010, 6, 60-75.	0.5	32
40	Recent insights into the pathophysiology of preeclampsia. Expert Review of Obstetrics and Gynecology, 2010, 5, 557-566.	0.4	81
41	Neurokinin B and urotensin II levels in pre-eclampsia. Journal of Maternal-Fetal and Neonatal Medicine, 2010, 23, 869-873.	1.5	4
42	Tumor necrosis factor α induces a model of preeclampsia in pregnant baboons (Papio hamadryas). Cytokine, 2011, 56, 192-199.	3.2	72
43	Is inflammation the cause of pre-eclampsia?. Biochemical Society Transactions, 2011, 39, 1619-1627.	3.4	97
44	Role of Endothelin and Inflammatory Cytokines in Pre-eclampsia - A Pilot North Indian Study. American Journal of Reproductive Immunology, 2011, 65, 428-432.	1.2	31
45	Animal Models of Pre-eclampsia. American Journal of Reproductive Immunology, 2011, 65, 533-541.	1.2	39
46	TNF-α inhibits trophoblast integration into endothelial cellular networks. Placenta, 2011, 32, 241-246.	1.5	66
47	Animal models of preeclampsia; uses and limitations. Placenta, 2011, 32, 413-419.	1.5	139
48	Endothelin type A receptor antagonist attenuates placental ischemia–induced hypertension and uterine vascular resistance. American Journal of Obstetrics and Gynecology, 2011, 204, 330.e1-330.e4.	1.3	55
49	Mechanisms and Potential Therapies for Preeclampsia. Current Hypertension Reports, 2011, 13, 269-275.	3.5	69
50	Hypertension in Response to AT1-AA: Role of Reactive Oxygen Species in Pregnancy-Induced Hypertension. American Journal of Hypertension, 2011, 24, 835-840.	2.0	67
51	Hypertension in Response to Placental Ischemia During Pregnancy. Hypertension, 2011, 57, 865-871.	2.7	107
52	Induction of Heme Oxygenase 1 Attenuates Placental Ischemia–Induced Hypertension. Hypertension, 2011, 57, 941-948.	2.7	101
53	IL-6-induced pathophysiology during pre-eclampsia: potential therapeutic role for magnesium sulfate?. International Journal of Interferon, Cytokine and Mediator Research, 2011, 2011, 59.	1.1	59
54	Autoantibody-Mediated IL-6–Dependent Endothelin-1 Elevation Underlies Pathogenesis in a Mouse Model of Preeclampsia. Journal of Immunology, 2011, 186, 6024-6034.	0.8	84

#	Article	IF	CITATIONS
55	Endothelin: Key Mediator of Hypertension in Preeclampsia. American Journal of Hypertension, 2011, 24, 964-969.	2.0	158
56	Kupffer Cells. Molecular Pathology Library, 2011, , 81-95.	0.1	4
57	A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1-H8.	3.2	163
58	Hypertension in response to CD4+ T cells from reduced uterine perfusion pregnant rats is associated with activation of the endothelin-1 system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R144-R149.	1.8	40
59	Tumor necrosis factor-α receptor type 1, not type 2, mediates its acute responses in the kidney. American Journal of Physiology - Renal Physiology, 2012, 302, F1650-F1657.	2.7	28
60	Linking Placental Ischemia and Hypertension in Preeclampsia. Hypertension, 2012, 60, 507-511.	2.7	51
61	Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clinical Science, 2012, 123, 53-72.	4.3	153
62	Eicosanoids and tumor necrosis factor-alpha in the kidney. Prostaglandins and Other Lipid Mediators, 2012, 98, 101-106.	1.9	13
63	Neutralization of Tumor Necrosis Factor-Alpha Reduces Renal Fibrosis and Hypertension in Rats with Renal Failure. American Journal of Nephrology, 2012, 36, 151-161.	3.1	54
64	Hypertension: Physiology and Pathophysiology. , 2012, 2, 2393-2442.		187
65	Vascular Mechanisms of Hypertension in the Pathophysiology of Preeclampsia. , 2012, , 1329-1337.		0
66	Tumor necrosis factor-α: regulation of renal function and blood pressure. American Journal of Physiology - Renal Physiology, 2013, 304, F1231-F1242.	2.7	123
67	Elucidating Immune Mechanisms Causing Hypertension During Pregnancy. Physiology, 2013, 28, 225-233.	3.1	78
68	TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice. American Journal of Physiology - Renal Physiology, 2013, 304, F991-F999.	2.7	30
69	Progesterone blunts vascular endothelial cell secretion ofÂendothelin-1 in response to placental ischemia. American Journal of Obstetrics and Gynecology, 2013, 209, 44.e1-44.e6.	1.3	39
70	Pathophysiology of hypertension in preâ€eclampsia: a lesson in integrative physiology. Acta Physiologica, 2013, 208, 224-233.	3.8	160
71	Angiotensin <scp>II</scp> Type 1 Receptor Autoantibody (<scp>AT</scp> 1â€ <scp>AA</scp>)â€Mediated Pregnancy Hypertension. American Journal of Reproductive Immunology, 2013, 69, 413-418.	1.2	81
72	Excess LIGHT Contributes to Placental Impairment, Increased Secretion of Vasoactive Factors, Hypertension, and Proteinuria in Preeclampsia. Hypertension, 2014, 63, 595-606.	2.7	37

#	Article	IF	CITATIONS
73	Enodthelin 1 Is Elevated in Plasma and Explants From Patients Having Uterine Leiomyomas. Reproductive Sciences, 2014, 21, 1196-1205.	2.5	23
74	IL-27 Activates Human Trophoblasts to Express IP-10 and IL-6: Implications in the Immunopathophysiology of Preeclampsia. Mediators of Inflammation, 2014, 2014, 1-10.	3.0	25
75	Maternally sequestered therapeutic polypeptides ââ,¬â€œ a new approach for the management of preeclampsia. Frontiers in Pharmacology, 2014, 5, 201.	3.5	15
76	New Approaches for Managing Preeclampsia: Clues From Clinical and Basic Research. Clinical Therapeutics, 2014, 36, 1873-1881.	2.5	19
77	Downregulation of Microvascular Endothelial Type B Endothelin Receptor Is a Central Vascular Mechanism in Hypertensive Pregnancy. Hypertension, 2014, 64, 632-643.	2.7	63
78	The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin?. American Journal of Physiology - Renal Physiology, 2014, 306, F1121-F1135.	2.7	73
79	Adaptive Regulation of Endothelin Receptor Typeâ€A and Typeâ€B in Vascular Smooth Muscle Cells during Pregnancy in Rats. Journal of Cellular Physiology, 2014, 229, 489-501.	4.1	14
80	Future therapies for preâ€eclampsia: beyond treading water. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2014, 54, 3-8.	1.0	22
81	Placental ischemia induces changes in gene expression in chorionic tissue. Mammalian Genome, 2014, 25, 253-261.	2.2	11
82	Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response. Laboratory Investigation, 2014, 94, 873-880.	3.7	28
83	Antihypertensive drugs methyldopa, labetalol, hydralazine, and clonidine improve trophoblast interaction with endothelial cellular networks in vitro. Journal of Hypertension, 2014, 32, 1075-1083.	0.5	27
84	Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT ₁ -AA in response to adoptive transfer of CD4 ⁺ T lymphocytes from RUPP rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1243-R1250.	1.8	17
85	Thrombosis during pregnancy: Risks, prevention, and treatment for mother and fetus—harvesting the power of omic technology, biomarkers and in vitro or in vivo models to facilitate the treatment of thrombosis. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 209-225.	3.6	7
86	Plasma nitric oxide, endothelin-1, arginase and superoxide dismutase in the plasma and placentae from preeclamptic patients. Anais Da Academia Brasileira De Ciencias, 2015, 87, 713-719.	0.8	21
87	Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules, 2015, 5, 3142-3176.	4.0	69
88	Preeclampsia: long-term consequences for vascular health. Vascular Health and Risk Management, 2015, 11, 403.	2.3	116
89	Heme oxygenase induction attenuates TNF-α-induced hypertension in pregnant rodents. Frontiers in Pharmacology, 2015, 6, 165.	3.5	15
90	Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochemical Pharmacology, 2015, 95, 211-226.	4.4	131

#	Article	IF	CITATIONS
91	Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1326-R1343.	1.8	99
92	Placental ischemia-induced increases in brain water content and cerebrovascular permeability: role of TNF-α. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1425-R1431.	1.8	41
93	An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R884-R891.	1.8	68
94	Linking the old and new — do angiotensin II type 1 receptor antibodies provide the missing link in the pathophysiology of preeclampsia?. Hypertension in Pregnancy, 2015, 34, 369-382.	1.1	6
95	Pregnant rats treated with a high-fat/prooxidant Western diet with ANG II and TNF-α are resistant to elevations in blood pressure and renal oxidative stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R945-R956.	1.8	1
96	Dual regulation of tumor necrosis factor-α on myosin light chain phosphorylation in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H398-H406.	3.2	11
97	Differential regulation of TNF receptors in maternal leukocytes is associated with severe preterm preeclampsia. Journal of Maternal-Fetal and Neonatal Medicine, 2015, 28, 869-875.	1.5	7
98	Hypothesis: Pentoxifylline explores new horizons in treatment of preeclampsia. Medical Hypotheses, 2015, 85, 468-474.	1.5	9
99	Chronic hyperleptinemia results in the development of hypertension in pregnant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R855-R861.	1.8	27
100	Neurokinin 3 Receptor and Phosphocholine Transferase. Hypertension, 2015, 65, 430-439.	2.7	22
101	Aberrant maternal inflammation as a cause of pregnancy complications: A potential therapeutic target?. Placenta, 2015, 36, 960-966.	1.5	91
102	Genetic, immune and vasoactive factors in the vascular dysfunction associated with hypertension in pregnancy. Expert Opinion on Therapeutic Targets, 2015, 19, 1495-1515.	3.4	65
103	Identifying immune mechanisms mediating the hypertension during preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1-R9.	1.8	74
104	Serelaxin improves the pathophysiology of placental ischemia in the reduced uterine perfusion pressure rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1158-R1163.	1.8	30
105	Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia. Current Hypertension Reports, 2016, 18, 38.	3.5	52
106	The paternal polymorphism rs5370 in the EDN1 gene decreases the risk of preeclampsia. Pregnancy Hypertension, 2016, 6, 327-332.	1.4	14
107	The effects of hydroxychloroquine on endothelial dysfunction. Pregnancy Hypertension, 2016, 6, 259-262.	1.4	40
108	Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. Advances in Pharmacology, 2016, 77, 361-431.	2.0	156

	CITATION RE	PORT	
#	Article	IF	CITATIONS
109	The role of inflammation in the pathology of preeclampsia. Clinical Science, 2016, 130, 409-419.	4.3	379
110	Differential body weight, blood pressure and placental inflammatory responses to normal versus high-fat diet in melanocortin-4 receptor-deficient pregnant rats. Journal of Hypertension, 2016, 34, 1998-2007.	0.5	8
111	Plasma ghrelin levels as a predictor of adverse renal events due to cisplatin-based chemotherapy in patients with esophageal cancer. Japanese Journal of Clinical Oncology, 2016, 46, 421-426.	1.3	2
112	Hypertension in an Animal Model of HELLP Syndrome is Associated With Activation of Endothelin 1. Reproductive Sciences, 2016, 23, 42-50.	2.5	30
113	Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiological Genomics, 2017, 49, 261-276.	2.3	11
114	Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. Progress in Molecular Biology and Translational Science, 2017, 148, 87-165.	1.7	195
115	Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. American Journal of Reproductive Immunology, 2017, 78, e12724.	1.2	22
116	Reduction of Uterine Perfusion Pressure Induced Redistribution of Endothelin Receptor Type-B Between the Intima and Media Contributes to the Pathogenesis of Pregnancy-Induced Hypertension. Cellular Physiology and Biochemistry, 2017, 44, 1715-1725.	1.6	6
117	The Endothelin Type A Receptor as a Potential Therapeutic Target in Preeclampsia. International Journal of Molecular Sciences, 2017, 18, 522.	4.1	34
118	The Endothelin System: A Critical Player in the Pathophysiology of Preeclampsia. Current Hypertension Reports, 2018, 20, 32.	3.5	60
119	Preeclampsia: From Inflammation to Immunoregulation. Plasmatology, 2018, 11, 1179545X1775232.	0.4	120
120	Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins and Other Lipid Mediators, 2018, 136, 15-22.	1.9	22
121	Treatment of preeclampsia with hydroxychloroquine: a review. Journal of Maternal-Fetal and Neonatal Medicine, 2018, 31, 525-529.	1.5	18
122	Animal Models of Fetal Medicine and Obstetrics. , 0, , .		18
123	The role of interleukins in preeclampsia: A comprehensive review. American Journal of Reproductive Immunology, 2018, 80, e13055.	1.2	48
124	Evaluation of blood vessel injury, oxidative stress and circulating inflammatory factors in an L‑NAME‑induced preeclampsia‑like rat model. Experimental and Therapeutic Medicine, 2018, 16, 585-594.	1.8	27
125	Renal-Specific Silencing of TNF (Tumor Necrosis Factor) Unmasks Salt-Dependent Increases in Blood Pressure via an NKCC2A (Na ⁺ -K ⁺ -2Cl ^{â^'} Cotransporter Isoform) Tj ETQc	102070 rgB	T Q verlock]
126	Interactions between the complement and endothelin systems in normal pregnancy and following placental ischemia. Molecular Immunology, 2019, 114, 10-18.	2.2	12

#	Article	IF	CITATIONS
127	Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	4.0	130
128	Anti-Qa2 Animal Models for Preeclampsia Preclinical Studies: A Pathological Elevation of Blood Pressure and Proteinuria. Folia Biologica, 2019, 67, 69-78.	0.5	Ο
129	Perinatal Micro-Bleeds and Neuroinflammation in E19 Rat Fetuses Exposed to Utero-Placental Ischemia. International Journal of Molecular Sciences, 2019, 20, 4051.	4.1	16
130	Immunomodulation and preeclampsia. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2019, 60, 87-96.	2.8	57
131	Placental CD4+ T cells isolated from preeclamptic women cause preeclampsia-like symptoms in pregnant nude-athymic rats. Pregnancy Hypertension, 2019, 15, 7-11.	1.4	13
132	Hydroxychloroquine treatment during pregnancy in lupus patients is associated with lower risk of preeclampsia. Lupus, 2019, 28, 722-730.	1.6	85
133	Preeclampsia link to gestational hypoxia. Journal of Developmental Origins of Health and Disease, 2019, 10, 322-333.	1.4	49
134	A perspective on preâ€eclampsia and neurodevelopmental outcomes in the offspring: Does maternal inflammation play a role?. International Journal of Developmental Neuroscience, 2019, 77, 69-76.	1.6	19
135	Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation, 2019, 26, e12508.	1.8	13
136	Interleukin-27 Inhibits Trophoblast Cell Invasion and Migration by Affecting the Epithelial—Mesenchymal Transition in Preeclampsia. Reproductive Sciences, 2019, 26, 928-938.	2.5	25
137	Nicotine Alleviates Cortical Neuronal Injury by Suppressing Neuroinflammation and Upregulating Neuronal PI3K-AKT Signaling in an Eclampsia-Like Seizure Model. Neurotoxicity Research, 2020, 38, 665-681.	2.7	5
138	Quercetin attenuates reduced uterine perfusion pressure -induced hypertension in pregnant rats through regulation of endothelin-1 and endothelin-1 type A receptor. Lipids in Health and Disease, 2020, 19, 180.	3.0	17
139	Tumor necrosis factor alpha (TNF-α) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia. Hypertension in Pregnancy, 2020, 39, 399-404.	1.1	19
140	Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. , 2020, 11, 1315-1349.		26
141	Inflammasomes—A Molecular Link for Altered Immunoregulation and Inflammation Mediated Vascular Dysfunction in Preeclampsia. International Journal of Molecular Sciences, 2020, 21, 1406.	4.1	35
142	Cyclosporin A ameliorates eclampsia seizure through reducing systemic inflammation in an eclampsia-like rat model. Hypertension Research, 2020, 43, 263-270.	2.7	7
143	First trimester inflammatory mediators in women with chronic hypertension. Acta Obstetricia Et Gynecologica Scandinavica, 2020, 99, 1198-1205.	2.8	2
144	Preeclampsia: Pathophysiology and management. Journal of Gynecology Obstetrics and Human Reproduction, 2021, 50, 101975.	1.3	56

#	Article	IF	CITATIONS
145	CD4+ T cells cause renal and placental mitochondrial oxidative stress as mechanisms of hypertension in response to placental ischemia. American Journal of Physiology - Renal Physiology, 2021, 320, F47-F54.	2.7	15
146	Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. American Journal of Obstetrics and Gynecology, 2022, 226, S973-S987.	1.3	32
147	Effect of hydroxychloroquine on preeclampsia in lupus pregnancies: a propensity score-matched analysis and meta-analysis. Archives of Gynecology and Obstetrics, 2021, 303, 435-441.	1.7	9
148	Hypoxia-induced mitochondrial abnormalities in cells of the placenta. PLoS ONE, 2021, 16, e0245155.	2.5	19
149	Investigation of interleukin-2-mediated changes in blood pressure, fetal growth restriction, and innate immune activation in normal pregnant rats and in a preclinical rat model of preeclampsia. Biology of Sex Differences, 2021, 12, 4.	4.1	6
150	Progesterone-induced blocking factor improves blood pressure, inflammation, and pup weight in response to reduced uterine perfusion pressure (RUPP). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R719-R727.	1.8	14
151	Association Between Endothelial Nitric Oxide Synthase (eNOS) â^786 T/C and 27-bp VNTR 4b/a Polymorphisms and Preeclampsia Development. Reproductive Sciences, 2021, 28, 3529-3539.	2.5	10
152	Selective Phosphodiesterase 1 Inhibition Ameliorates Vascular Function, Reduces Inflammatory Response, and Lowers Blood Pressure in Aging Animals. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 173-183.	2.5	9
153	Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. International Journal of Molecular Sciences, 2021, 22, 8622.	4.1	16
154	Modulation by antenatal therapies of cardiovascular and renal programming in male and female offspring of preeclamptic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2273-2287.	3.0	5
155	TNFα blockade reverses vascular and uteroplacental matrix metalloproteinases imbalance and collagen accumulation in hypertensive pregnant rats. Biochemical Pharmacology, 2021, 193, 114790.	4.4	3
156	Low Dose of IL-2 Normalizes Hypertension and Mitochondrial Function in the RUPP Rat Model of Placental Ischemia. Cells, 2021, 10, 2797.	4.1	4
157	Progesterone Induced Blocking Factor Reduces Hypertension and Placental Mitochondrial Dysfunction in Response to sFlt-1 during Pregnancy. Cells, 2021, 10, 2817.	4.1	7
158	Placental Insufficiency: The Impact on Cardiovascular Health in the Mother and Her Offspring Across the Lifespan. , 2015, , 1315-1329.		Ο
161	The role of immune activation in contributing to vascular dysfunction and the pathophysiology of hypertension during preeclampsia. Minerva Ginecologica, 2010, 62, 105-20.	0.8	77
162	Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecologica, 2012, 64, 309-20.	0.8	70
163	Endothelin-1 is not a Mechanism of IL-17 Induced Hypertension during Pregnancy. Medical Journal of Obstetrics and Gynecology, 2013, 1, .	0.2	10
164	Manipulating CD4+ T Cell Pathways to Prevent Preeclampsia. Frontiers in Bioengineering and Biotechnology, 2021, 9, 811417.	4.1	10

\sim		<u>_</u>	
		Repo	DT
	паг	KLPU	ALC L

#	Article	IF	CITATIONS
165	Animal Models of Preeclampsia: Mechanistic Insights and Promising Therapeutics. Endocrinology, 2022, 163, .	2.8	9
166	Involvement of AGE and Its Receptors in the Pathogenesis of Hypertension in Elderly People and Its Treatment. International Journal of Angiology, 0, , .	0.6	0
167	Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension, 2022, 79, 2656-2670.	2.7	4
168	Echinochrome A Reverses Kidney Abnormality and Reduces Blood Pressure in a Rat Model of Preeclampsia. Marine Drugs, 2022, 20, 722.	4.6	2
169	Increased Ca2+-dependent intrinsic tone and arterial stiffness in mesenteric microvessels of hypertensive pregnant rats. Biochemical Pharmacology, 2023, 208, 115353.	4.4	1
170	Reliability of Rodent and Rabbit Models in Preeclampsia Research. International Journal of Molecular Sciences, 2022, 23, 14344.	4.1	4
171	The role of immune cells and mediators in preeclampsia. Nature Reviews Nephrology, 2023, 19, 257-270.	9.6	31
172	Role of blood-borne factors in sympathoexcitation-mediated hypertension: Potential neurally mediated hypertension in preeclampsia. Life Sciences, 2023, 320, 121351.	4.3	0
173	Setting a stage: Inflammation during preeclampsia and postpartum. Frontiers in Physiology, 0, 14, .	2.8	5
174	The Clinical Value of Rodent Models in Understanding Preeclampsia Development and Progression. Current Hypertension Reports, 2023, 25, 77-89.	3.5	1
175	The Regulation of Endothelin-1 in Pregnancies Complicated by Gestational Diabetes: Uncovering the Vascular Effects of Insulin. Biomedicines, 2023, 11, 2660.	3.2	1
176	A comparison of rat models that best mimic immune-driven preeclampsia in humans. Frontiers in Endocrinology, 0, 14, .	3.5	2
177	Gestational intermittent hypoxia induces endothelial dysfunction and hypertension in pregnant rats: role of endothelin type B receptor. Biology of Reproduction, 0, , .	2.7	1
178	Progesteroneâ€induced blocking factor blockade causes hypertension in pregnant rats. American Journal of Reproductive Immunology, 2024, 91, .	1.2	0
179	Prevention of preeclampsia. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2024, 93, 102481.	2.8	0
180	Systemic inflammatory regulators and preeclampsia: a two-sample bidirectional Mendelian randomization study. Frontiers in Genetics, 0, 15, .	2.3	0
181	Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. International Journal of Molecular Sciences, 2024, 25, 3632.	4.1	0