Comparative evolutionary genetics of spontaneous mut rhabditid nematodes

Proceedings of the National Academy of Sciences of the Unite 102, 5785-5790

DOI: 10.1073/pnas.0406056102

Citation Report

#	Article	IF	CITATIONS
1	Is It What We Know or Who We Know? Choice of Organism and Robustness of Inference in Ecology and Evolutionary Biology. American Naturalist, 2006, 167, 303-314.	1.0	24
2	A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES. Evolution; International Journal of Organic Evolution, 2006, 60, 893-907.	1.1	183
3	Three-dimensional reconstruction of the nose epidermal cells in the microbial feeding nematode,Acrobeles complexus(Nematoda: Rhabditida). Journal of Morphology, 2006, 267, 1257-1272.	0.6	22
4	A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES. Evolution; International Journal of Organic Evolution, 2006, 60, 893.	1.1	60
5	Negative environmental perturbations may improve species persistence. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2501-2506.	1.2	12
6	High Nucleotide Polymorphism and Rapid Decay of Linkage Disequilibrium in Wild Populations of Caenorhabditis remanei. Genetics, 2006, 174, 901-913.	1.2	112
7	Cumulative Effects of Spontaneous Mutations for Fitness in Caenorhabditis: Role of Genotype, Environment and Stress. Genetics, 2006, 174, 1387-1395.	1.2	49
8	The Relative Roles of Three DNA Repair Pathways in Preventing Caenorhabditis elegans Mutation Accumulation. Genetics, 2006, 174, 57-65.	1.2	48
9	Patterns of Nucleotide Polymorphism Distinguish Temperate and Tropical Wild Isolates of Caenorhabditis briggsae. Genetics, 2006, 173, 2021-2031.	1.2	100
10	Low Impact of Germline Transposition on the Rate of Mildly Deleterious Mutation in Caenorhabditis elegans. Genetics, 2006, 174, 2129-2136.	1.2	21
11	Estimation of the upper limit of the mutation rate and mean heterozygous effect of deleterious mutations. Genetical Research, 2006, 88, 137.	0.3	2
12	Understanding the Evolutionary Fate of Finite Populations: The Dynamics of Mutational Effects. PLoS Biology, 2007, 5, e94.	2.6	172
13	Mutational Bias for Body Size in Rhabditid Nematodes. Genetics, 2007, 176, 1653-1661.	1.2	35
14	Mating Systems and the Efficacy of Selection at the Molecular Level. Genetics, 2007, 177, 905-916.	1.2	98
15	Experimental Estimate of the Abundance and Effects of Nearly Neutral Mutations in the RNA Virus ϕ6. Genetics, 2007, 176, 467-476.	1.2	28
16	Mutation rate variation in multicellular eukaryotes: causes and consequences. Nature Reviews Genetics, 2007, 8, 619-631.	7.7	389
17	Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature, 2007, 445, 82-85.	13.7	381
18	Hemiclonal reproduction slows down the speed of Muller's ratchet in the hybridogenetic frog Rana esculenta. Journal of Evolutionary Biology, 2007, 20, 650-660.	0.8	13

#	ARTICLE	IF	CITATIONS
19	Distinct patterns of genetic variation inPristionchus pacificusandCaenorhabditis elegans, two partially selfing nematodes with cosmopolitan distribution. Molecular Ecology, 2007, 16, 1267-1280.	2.0	24
20	On the potential for extinction by Muller's Ratchet in Caenorhabditis elegans. BMC Evolutionary Biology, 2008, 8, 125.	3.2	38
21	Muller's Ratchet and compensatory mutation in Caenorhabditis briggsae mitochondrial genome evolution. BMC Evolutionary Biology, 2008, 8, 62.	3.2	77
22	Evolutionary origins of invasive populations. Evolutionary Applications, 2008, 1, 427-448.	1.5	198
23	Oscheius tipulae, a widespread hermaphroditic soil nematode, displays a higher genetic diversity and geographical structure than Caenorhabditis elegans. Molecular Ecology, 2008, 17, 1523-1534.	2.0	35
24	Patterns of Molecular Evolution in Caenorhabditis Preclude Ancient Origins of Selfing. Genetics, 2008, 178, 2093-2104.	1.2	87
25	Sexual Selection and Maintenance of Sex: Evidence from Comparisons of Rates of Genomic Accumulation of Mutations and Divergence of Sex-Related Genes in Sexual and Hermaphroditic Species of Caenorhabditis. Molecular Biology and Evolution, 2008, 25, 972-979.	3.5	32
26	Spontaneous Mutational and Standing Genetic (Co)variation at Dinucleotide Microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans. Molecular Biology and Evolution, 2008, 26, 659-669.	3.5	31
27	Increased Transmission of Mutations by Low-Condition Females: Evidence for Condition-Dependent DNA Repair. PLoS Biology, 2008, 6, e30.	2.6	66
28	Divergence Times in Caenorhabditis and Drosophila Inferred from Direct Estimates of the Neutral Mutation Rate. Molecular Biology and Evolution, 2008, 25, 778-786.	3.5	220
29	Spontaneous mutations in diploid <i>Saccharomyces cerevisiae</i> : another thousand cell generations. Genetical Research, 2008, 90, 229-241.	0.3	59
30	Quantifying the Decanalizing Effects of Spontaneous Mutations in Rhabditid Nematodes. American Naturalist, 2008, 172, 272-281.	1.0	36
31	A genome-wide view of <i>Caenorhabditis elegans</i> base-substitution mutation processes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16310-16314.	3.3	251
32	Genetic (Co)Variation for Life Span in Rhabditid Nematodes: Role of Mutation, Selection, and History. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1134-1145.	1.7	12
33	Evolution of the Caenorhabditis elegans Genome. Molecular Biology and Evolution, 2009, 26, 1199-1234.	3.5	109
34	Comparing Mutational and Standing Genetic Variability for Fitness and Size in Caenorhabditis briggsae and C. elegans. Genetics, 2009, 183, 685-692.	1.2	18
35	Analysis and implications of mutational variation. Genetica, 2009, 136, 359-369.	0.5	43
37	Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 151-172.	3.8	396

#	Article	IF	CITATIONS
38	High Rate of Large Deletions in Caenorhabditis briggsae Mitochondrial Genome Mutation Processes. Genome Biology and Evolution, 2010, 2, 29-38.	1.1	48
39	RAPID DECLINE IN FITNESS OF MUTATION ACCUMULATION LINES OF GONOCHORISTIC (OUTCROSSING) CAENORHABDITIS NEMATODES. Evolution; International Journal of Organic Evolution, 2010, 64, 3242-3253.	1.1	15
40	Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode <i>Caenorhabditis briggsae</i> . Molecular Ecology, 2010, 19, 798-809.	2.0	37
41	Purging Deleterious Mutations under Self Fertilization: Paradoxical Recovery in Fitness with Increasing Mutation Rate in Caenorhabditis elegans. PLoS ONE, 2010, 5, e14473.	1.1	11
42	<i>Caenorhabditis elegans</i> as a platform for molecular quantitative genetics and the systems biology of natural variation. Genetical Research, 2010, 92, 331-348.	0.3	61
43	Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System. PLoS Genetics, 2010, 6, e1000877.	1.5	63
44	Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae. BMC Evolutionary Biology, 2011, 11, 11.	3.2	33
45	No Evidence of Elevated Germline Mutation Accumulation Under Oxidative Stress in Caenorhabditis elegans. Genetics, 2011, 189, 1439-1447.	1.2	32
46	Mutation Rates and Intraspecific Divergence of the Mitochondrial Genome of Pristionchus pacificus. Molecular Biology and Evolution, 2011, 28, 2317-2326.	3.5	39
47	Reproductive isolation in Caenorhabditis briggsae. Worm, 2012, 1, 189-195.	1.0	25
48	<i>Caenorhabditis elegans</i> vulval cell fate patterning. Physical Biology, 2012, 9, 045001.	0.8	21
49	Variation in Base-Substitution Mutation in Experimental and Natural Lineages of Caenorhabditis Nematodes. Genome Biology and Evolution, 2012, 4, 513-522.	1.1	114
50	Invariance (?) of Mutational Parameters for Relative Fitness Over 400 Generations of Mutation Accumulation in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2012, 2, 1497-1503.	0.8	9
51	Mutation Load: The Fitness of Individuals in Populations Where Deleterious Alleles Are Abundant. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 115-135.	3.8	163
52	Evidence for elevated mutation rates in low-quality genotypes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6142-6146.	3.3	85
53	Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes. PLoS ONE, 2012, 7, e41433.	1.1	51
54	In Vivo Quantification Reveals Extensive Natural Variation in Mitochondrial Form and Function in Caenorhabditis briggsae. PLoS ONE, 2012, 7, e43837.	1.1	31
55	Robustness and flexibility in nematode vulva development. Trends in Genetics, 2012, 28, 185-195.	2.9	58

#	Article	IF	CITATIONS
56	TEMPORAL DYNAMICS OF OUTCROSSING AND HOST MORTALITY RATES IN HOST-PATHOGEN EXPERIMENTAL COEVOLUTION. Evolution; International Journal of Organic Evolution, 2013, 67, 1860-1868.	1.1	21
57	The effect of spontaneous mutations on competitive ability. Journal of Evolutionary Biology, 2013, 26, 451-456.	0.8	22
58	Genomic Background and Generation Time Influence Deleterious Mutation Rates in <i>Daphnia</i> . Genetics, 2013, 193, 539-544.	1.2	18
59	Stress-induced hypermutation as a physical property of life, a force of natural selection and its role in four thought experiments. Physical Biology, 2013, 10, 026001.	0.8	0
60	Temperature, stress and spontaneous mutation in Caenorhabditis briggsae and Caenorhabditis elegans. Biology Letters, 2013, 9, 20120334.	1.0	61
61	The evolution of mutation rate in an antagonistic coevolutionary model with maternal transmission of parasites. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130647.	1.2	8
62	The Rate and Effects of Spontaneous Mutation on Fitness Traits in the Social Amoeba, <i>Dictyostelium discoideum</i> . G3: Genes, Genomes, Genetics, 2013, 3, 1115-1127.	0.8	19
64	Evolution of a Higher Intracellular Oxidizing Environment in Caenorhabditis elegans under Relaxed Selection. PLoS ONE, 2013, 8, e65604.	1.1	7
65	The Interaction between Selection, Demography and Selfing and How It Affects Population Viability. PLoS ONE, 2014, 9, e86125.	1.1	8
66	Precise estimates of mutation rate and spectrum in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2310-8.	3.3	362
67	Opposing Forces of A/T-Biased Mutations and G/C-Biased Gene Conversions Shape the Genome of the Nematode Pristionchus pacificus. Genetics, 2014, 196, 1145-1152.	1.2	42
68	Mainstreaming <i>Caenorhabditis elegans</i> in experimental evolution. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133055.	1.2	52
69	SPONTANEOUS MUTATION ACCUMULATION IN MULTIPLE STRAINS OF THE GREEN ALGA, <i>CHLAMYDOMONAS REINHARDTII</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 2589-2602.	1.1	34
70	Cryptic genetic variation uncovers evolution of environmentally sensitive parameters in <i>Caenorhabditis</i> vulval development. Evolution & Development, 2014, 16, 278-291.	1.1	14
71	Fitness decline in spontaneous mutation accumulation lines of <i>Caenorhabditis elegans</i> with varying effective population sizes. Evolution; International Journal of Organic Evolution, 2015, 69, 104-116.	1.1	37
72	The red death meets the abdominal bristle: Polygenic mutation for susceptibility to a bacterial pathogen in <i>Caenorhabditis elegans</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 508-519.	1.1	6
73	Scaling, Selection, and Evolutionary Dynamics of the Mitotic Spindle. Current Biology, 2015, 25, 732-740.	1.8	73
74	Abiotic stress does not magnify the deleterious effects of spontaneous mutations. Heredity, 2015, 115, 503-508	1.2	6

#	Article	IF	CITATIONS
75	Paths of Heritable Mitochondrial DNA Mutation and Heteroplasmy in Reference and gas-1 Strains of Caenorhabditis elegans. Frontiers in Genetics, 2016, 7, 51.	1.1	16
76	Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum. PLoS Biology, 2016, 14, e1002419.	2.6	45
77	The mutational structure of metabolism in <i>Caenorhabditis elegans</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2239-2246.	1.1	30
78	Mutation rate analysis via parent–progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161016.	1.2	64
79	Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 1859-1870.	1.2	25
80	Experimental Evolution with <i>Caenorhabditis</i> Nematodes. Genetics, 2017, 206, 691-716.	1.2	94
81	Evo-devo: Developmental constraints. Nature Ecology and Evolution, 2017, 1, 128.	3.4	0
82	Developmental constraints shape the evolution of the nematode mid-developmental transition. Nature Ecology and Evolution, 2017, 1, 113.	3.4	67
83	Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Molecular Biology and Evolution, 2017, 34, 119-130.	3.5	93
84	Mutation independently affects reproductive traits and dauer larvae development in mutation accumulation lines of Caenorhabditis elegans. Development Genes and Evolution, 2017, 227, 411-414.	0.4	0
85	Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the <i>Caenorhabditis elegans</i> Multiparental Experimental Evolution (CeMEE) Panel. Genetics, 2017, 207, 1663-1685.	1.2	81
86	Extremely Rare Polymorphisms in Saccharomyces cerevisiae Allow Inference of the Mutational Spectrum. PLoS Genetics, 2017, 13, e1006455.	1.5	13
87	Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans. Genome Biology and Evolution, 2017, 9, 3008-3022.	1.1	10
88	Development and Evolution through the Lens of Global Gene Regulation. Trends in Genetics, 2018, 34, 11-20.	2.9	20
89	DNA mismatch repair preferentially protects genes from mutation. Genome Research, 2018, 28, 66-74.	2.4	62
90	The mutational decay of male-male and hermaphrodite-hermaphrodite competitive fitness in the androdioecious nematode C. elegans. Heredity, 2018, 120, 1-12.	1.2	11
91	Hierarchical Assessment of Mutation Properties in Daphnia magna. G3: Genes, Genomes, Genetics, 2018, 8, 3481-3487.	0.8	5
92	Network Architecture and Mutational Sensitivity of the C. elegans Metabolome. Frontiers in Molecular Biosciences, 2018, 5, 69.	1.6	4

#	Article	IF	CITATIONS
93	Complex Transmission Patterns and Age-Related Dynamics of a Selfish mtDNA Deletion. Integrative and Comparative Biology, 2019, 59, 983-993.	0.9	4
94	Evolution of the Mutational Process under Relaxed Selection in <i>Caenorhabditis elegans</i> . Molecular Biology and Evolution, 2019, 36, 239-251.	3.5	46
95	Accelerated rates of large-scale mutations in the presence of copper and nickel. Genome Research, 2019, 29, 64-73.	2.4	13
96	Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches. Genome Biology and Evolution, 2019, 11, 136-165.	1.1	110
97	Fitness and Genomic Consequences of Chronic Exposure to Low Levels of Copper and Nickel in Daphnia pulex Mutation Accumulation Lines. G3: Genes, Genomes, Genetics, 2019, 9, 61-71.	0.8	10
98	Shortâ€ŧerm heritable variation overwhelms 200 generations of mutational variance for metabolic traits in <i>Caenorhabditis elegans</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 2451-2464.	1.1	3
100	Fitness effects of spontaneous mutations in a warming world. Evolution; International Journal of Organic Evolution, 2021, 75, 1513-1524.	1.1	6
103	Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in <i>C. elegans</i> . Genome Research, 2021, 31, 1602-1613.	2.4	24
105	Maintaining Genetic Variation in Fitness. , 2009, , 59-81.		11
109	Mitochondrial DNA Variation and Selfish Propagation Following Experimental Bottlenecking in Two Distantly Related Caenorhabditis briggsae Isolates. Genes, 2020, 11, 77.	1.0	5
110	A broad mutational target explains a fast rate of phenotypic evolution. ELife, 2020, 9, .	2.8	13
114	Role of Metabolic Shifts in Protection from Mutation Damage: Characterizing Mitochondrial Membrane Potential in C. Elegans Gas-1 Mutants. PSU McNair Scholars Online Journal, 2015, 9, .	0.3	0
123	Competitive fitness analysis using Convolutional Neural Network. Journal of Nematology, 2020, 52, 1-15.	0.4	1
125	A larger target leads to faster evolution. ELife, 2020, 9, .	2.8	0
126	Mutation, selection, and the prevalence of the <i>Caenorhabditis elegans</i> heat-sensitive mortal germline phenotype. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
140	Fitness effects of somatic mutations accumulating during vegetative growth. Evolutionary Ecology, 2022, 36, 767-785.	0.5	6
141	Selection in a growing colony biases results of mutation accumulation experiments. Scientific Reports, 2022, 12, .	1.6	6
142	Multigenerational downregulation of insulin/IGF $\hat{a} \in \mathbb{I}$ signalling in adulthood improves lineage survival, reproduction, and fitness in <i>C. elegans</i> supporting the developmental theory of ageing.	1.1	0

#	Article	IF	CITATIONS
143	Variation in mutational (co)variances. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	4