The Biochemical Architecture of an Ancient Adaptive La

Science 310, 499-501 DOI: 10.1126/science.1115649

Citation Report

#	Article	IF	CITATIONS
2	EVOLUTION: Changing the Cofactor Diet of an Enzyme. Science, 2005, 310, 454-455.	6.0	13
3	Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science, 2006, 312, 111-114.	6.0	1,266
4	An Equivalence Principle for the Incorporation of Favorable Mutations in Asexual Populations. Science, 2006, 311, 1615-1617.	6.0	214
5	Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1001-1009.	1.5	8
6	From Bad to Good: Fitness Reversals and the Ascent of Deleterious Mutations. PLoS Computational Biology, 2006, 2, e141.	1.5	31
8	A sex-linked allele, autosomal modifiers and temperature-dependence appear to regulate melanism in male mosquitofish (Gambusia holbrooki). Journal of Experimental Biology, 2006, 209, 4938-4945.	0.8	27
9	Functionally diverging molecular quasi-species evolve by crossing two enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10866-10870.	3.3	24
10	Direct Demonstration of an Adaptive Constraint. Science, 2006, 314, 458-461.	6.0	70
11	Crystal Structure of an Ancient Protein: Evolution by Conformational Epistasis. Science, 2007, 317, 1544-1548.	6.0	376
12	How Mutational Networks Shape Evolution: Lessons from RNA Models. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 203-230.	3.8	62
13	Deterministic and Stochastic Regimes of Asexual Evolution on Rugged Fitness Landscapes. Genetics, 2007, 175, 1275-1288.	1.2	66
14	Ancestral sequence reconstruction as a tool to understand natural history and guide synthetic biology: realizing and extending the vision of Zuckerkandl and Pauling. , 2007, , 20-33.		11
15	Understanding Nicotinamide Dinucleotide Cofactor and Substrate Specificity in Class I Flavoprotein Disulfide Oxidoreductases: Crystallographic Analysis of a Glutathione Amide Reductase. Journal of Molecular Biology, 2007, 374, 883-889.	2.0	9
16	The subtle benefits of being promiscuous: Adaptive evolution potentiated by enzyme promiscuity. HFSP Journal, 2007, 1, 94-98.	2.5	39
17	Applications of Flow Cytometry to Evolutionary and Population Biology. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 847-876.	3.8	164
18	Pathway engineering by designed divergent evolution. Current Opinion in Chemical Biology, 2007, 11, 233-239.	2.8	28
19	Mechanistic approaches to the study of evolution: the functional synthesis. Nature Reviews Genetics, 2007, 8, 675-688.	7.7	336
20	Empirical fitness landscapes reveal accessible evolutionary paths. Nature, 2007, 445, 383-386.	13.7	510

ATION REDO

	· ·	15	2
#	Article	IF	CITATIONS
21	VARIABLE EPISTATIC EFFECTS BETWEEN MUTATIONS AT HOST RECOGNITION SITES IN ?X174 BACTERIOPHAGE. Evolution; International Journal of Organic Evolution, 2007, 61, 1710-1724.	1.1	30
22	Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evolutionary Biology, 2007, 7, 60.	3.2	54
23	Localization and nucleotide specificity of <i>Blastocystis</i> succinyl oA synthetase. Molecular Microbiology, 2008, 68, 1395-1405.	1.2	21
24	On the evolution of epistasis III: The haploid case with mutation. Theoretical Population Biology, 2008, 73, 307-316.	0.5	9
25	Clonal Interference, Multiple Mutations and Adaptation in Large Asexual Populations. Genetics, 2008, 180, 2163-2173.	1.2	116
26	The Frequency of Fitness Peak Shifts Is Increased at Expanding Range Margins Due to Mutation Surfing. Genetics, 2008, 179, 941-950.	1.2	48
27	Expression Profiles Reveal Parallel Evolution of Epistatic Interactions Involving the CRP Regulon in Escherichia coli. PLoS Genetics, 2008, 4, e35.	1.5	59
28	Impact of Individual Mutations on Increased Fitness in Adaptively Evolved Strains of <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 5087-5094.	1.0	47
29	Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20605-20610.	3.3	98
30	Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12025-12030.	3.3	241
31	Coalescent under the evolution of coadaptation. Molecular Ecology, 2009, 18, 5018-5029.	2.0	11
32	Revealing evolutionary pathways by fitness landscape reconstruction. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 169-174.	2.3	29
33	Global view of bionetwork dynamics: adaptive landscape. Journal of Genetics and Genomics, 2009, 36, 63-73.	1.7	68
34	Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection. Molecular Systems Biology, 2010, 6, 387.	3.2	38
35	Evolution of Enzymatic Activities of Testis-Specific Short-Chain Dehydrogenase/Reductase in Drosophila. Journal of Molecular Evolution, 2010, 71, 241-249.	0.8	18
36	Causes and evolutionary significance of genetic convergence. Trends in Genetics, 2010, 26, 400-405.	2.9	179
37	SEX LINKAGE, SEX-SPECIFIC SELECTION, AND THE ROLE OF RECOMBINATION IN THE EVOLUTION OF SEXUALLY DIMORPHIC GENE EXPRESSION. Evolution; International Journal of Organic Evolution, 2010, 64, 3417-3442.	1.1	102
38	Fitness Epistasis and Constraints on Adaptation in a Human Immunodeficiency Virus Type 1 Protein Region. Genetics, 2010, 185, 293-303.	1.2	121

#	Article	IF	CITATIONS
39	Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos, 2010, 20, 026105.	1.0	38
40	Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness. Chaos, 2010, 20, 026107.	1.0	6
41	Adaptive landscapes and protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1747-1751.	3.3	114
42	Amplification of the Gene for Isoleucyl–tRNA Synthetase Facilitates Adaptation to the Fitness Cost of Mupirocin Resistance in <i>Salmonella enterica</i> . Genetics, 2010, 185, 305-312.	1.2	27
43	Systematic Dissection and Trajectory-Scanning Mutagenesis of the Molecular Interface That Ensures Specificity of Two-Component Signaling Pathways. PLoS Genetics, 2010, 6, e1001220.	1.5	117
44	Pervasive Cryptic Epistasis in Molecular Evolution. PLoS Genetics, 2010, 6, e1001162.	1.5	147
45	De Novo Metabolic Engineering and the Promise of Synthetic DNA. , 2010, 120, 101-131.		8
47	Evolutionary dynamics on strongly correlated fitness landscapes. Physical Review E, 2010, 82, 031109.	0.8	5
49	Experimental Approach for Early Evolution of Protein Function. , 2011, , 139-153.		0
50	Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation. Science, 2011, 332, 1190-1192.	6.0	450
51	Tradeoffs and Optimality in the Evolution of Gene Regulation. Cell, 2011, 146, 462-470.	13.5	109
52	Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population. Science, 2011, 332, 1193-1196.	6.0	497
53	THE LENGTH OF ADAPTIVE WALKS IS INSENSITIVE TO STARTING FITNESS IN ASPERGILLUS NIDULANS. Evolution; International Journal of Organic Evolution, 2011, 65, 3070-3078.	1.1	32
54	Molecular mechanisms of epistasis within and between genes. Trends in Genetics, 2011, 27, 323-331.	2.9	273
55	Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. Journal of Theoretical Biology, 2011, 272, 141-144.	0.8	182
56	Hidden Randomness between Fitness Landscapes Limits Reverse Evolution. Physical Review Letters, 2011, 106, 198102.	2.9	76
57	The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3617-3624.	1.2	175
58	Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genetics, 2011, 7, e1002056.	1.5	240

\mathbf{C}	IT A T	LON	Dr	DODT
C	ПАI		IXE.	PORT

#	Article	IF	CITATIONS
59	Experimental illumination of a fitness landscape. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7896-7901.	3.3	289
60	Epistasis between Beneficial Mutations and the Phenotype-to-Fitness Map for a ssDNA Virus. PLoS Genetics, 2011, 7, e1002075.	1.5	88
61	Evolutionary Accessibility of Mutational Pathways. PLoS Computational Biology, 2011, 7, e1002134.	1.5	161
62	Predictability of Evolutionary Trajectories in Fitness Landscapes. PLoS Computational Biology, 2011, 7, e1002302.	1.5	67
63	Exploring the Complexity of the HIV-1 Fitness Landscape. PLoS Genetics, 2012, 8, e1002551.	1.5	100
64	Environmental change exposes beneficial epistatic interactions in a catalytic RNA. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3418-3425.	1.2	22
65	Quantifying Homologous Replacement of Loci between Haloarchaeal Species. Genome Biology and Evolution, 2012, 4, 1223-1244.	1.1	55
66	Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 2012, 44, 101-105.	9.4	651
67	Synthetic approaches to understanding biological constraints. Current Opinion in Chemical Biology, 2012, 16, 323-328.	2.8	12
68	Global optimality of fitness landscapes in evolution. Chemical Science, 2012, 3, 900-906.	3.7	13
69	FROM MOLECULAR PHYLOGENETICS TO QUANTUM CHEMISTRY: DISCOVERING ENZYME DESIGN PRINCIPLES THROUGH COMPUTATION. Computational and Structural Biotechnology Journal, 2012, 2, e201209018.	1.9	2
70	Intra-Chain 3D Segment Swapping Spawns the Evolution of New Multidomain Protein Architectures. Journal of Molecular Biology, 2012, 415, 221-235.	2.0	13
71	Replaying the Tape of Life: Quantification of the Predictability of Evolution. Frontiers in Genetics, 2012, 3, 246.	1.1	100
72	Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap. Industrial Biotechnology, 2013, 9, 236-246.	0.5	30
73	Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14984-14989.	3.3	137
74	Quantitative analyses of empirical fitness landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P01005.	0.9	183
75	Should evolutionary geneticists worry about higher-order epistasis?. Current Opinion in Genetics and Development, 2013, 23, 700-707.	1.5	236
76	Exact results for amplitude spectra of fitness landscapes. Journal of Theoretical Biology, 2013, 332, 218-227.	0.8	42

		CITATION RE	PORT	
#	Article		IF	CITATIONS
77	From Systems to Structure: Bridging Networks and Mechanism. Molecular Cell, 2013, 4	9, 222-231.	4.5	46
78	Optimality in evolution: new insights from synthetic biology. Current Opinion in Biotech 24, 797-802.	nology, 2013,	3.3	22
79	Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape or ribozyme. Rna, 2013, 19, 1116-1128.	f a kinase	1.6	30
80	Statistical questions in experimental evolution. Journal of Statistical Mechanics: Theory Experiment, 2013, 2013, P01003.	and	0.9	28
81	A Population-Based Experimental Model for Protein Evolution: Effects of Mutation Rate Stringency on Evolutionary Outcomes. Biochemistry, 2013, 52, 1490-1499.	and Selection	1.2	37
82	Latent Effects of Hsp90 Mutants Revealed at Reduced Expression Levels. PLoS Genetics e1003600.	, 2013, 9,	1.5	93
83	Environmental Dependence of Genetic Constraint. PLoS Genetics, 2013, 9, e1003580.		1.5	47
84	Mechanisms of Protein Sequence Divergence and Incompatibility. PLoS Genetics, 2013,	9, e1003665.	1.5	43
85	Genetic Background and GxE Interactions Modulate the Penetrance of a Naturally Occu Mutation in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2013, 3, 18		0.8	8
86	Accessibility percolation on n-trees. Europhysics Letters, 2013, 101, 66004.		0.7	20
87	Experiments on the role of deleterious mutations as stepping stones in adaptive evoluti Proceedings of the National Academy of Sciences of the United States of America, 2013	on. 3, 110, E3171-8.	3.3	76
88	Epistasis Among Adaptive Mutations in Deer Mouse Hemoglobin. Science, 2013, 340, 1	324-1327.	6.0	174
89	FISHER'S GEOMETRIC MODEL OF ADAPTATION MEETS THE FUNCTIONAL SYNTHESIS: D EPISTASIS FOR FITNESS YIELDS INSIGHTS INTO THE SHAPE AND SIZE OF PHENOTYPE SF International Journal of Organic Evolution, 2013, 67, 2957-2972.		1.1	32
90	Finding the boundary between evolutionary basins of attraction, and implications for W fitness landscape analogy. Journal of Statistical Mechanics: Theory and Experiment, 201		0.9	9
91	Mechanistic Explanations for Restricted Evolutionary Paths That Emerge from Gene Reg Networks. PLoS ONE, 2013, 8, e61178.	ulatory	1.1	11
92	Properties of selected mutations and genotypic landscapes under Fisher's geometric mo Evolution; International Journal of Organic Evolution, 2014, 68, 3537-3554.	odel.	1.1	73
93	Epistatic Adaptive Evolution of Human Color Vision. PLoS Genetics, 2014, 10, e1004884	4	1.5	39
94	Empirically founded genotype–phenotype maps from mammalian cyclic nucleotide-ga Journal of Theoretical Biology, 2014, 363, 205-215.	ted ion channels.	0.8	1

#	Article	IF	CITATIONS
95	Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations. PLoS Genetics, 2014, 10, e1004149.	1.5	75
96	What can we learn from fitness landscapes?. Current Opinion in Microbiology, 2014, 21, 51-57.	2.3	51
97	The Valley-of-Death: Reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment. Genomics, 2014, 104, 431-437.	1.3	23
98	Cofactory: Sequence-based prediction of cofactor specificity of Rossmann folds. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1819-1828.	1.5	36
99	Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae. Metabolic Engineering, 2014, 24, 117-128.	3.6	40
100	Ecological Genomics. Advances in Experimental Medicine and Biology, 2014, , .	0.8	30
101	Viewing Protein Fitness Landscapes Through a Next-Gen Lens. Genetics, 2014, 198, 461-471.	1.2	52
102	Enzyme Recruitment and Its Role in Metabolic Expansion. Biochemistry, 2014, 53, 836-845.	1.2	26
103	Dynamics and constraints of enzyme evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 468-487.	0.6	77
104	Strong Epistatic Interactions within a Single Protein. Molecular Biology and Evolution, 2014, 31, 1546-1553.	3.5	42
105	Empirical fitness landscapes and the predictability of evolution. Nature Reviews Genetics, 2014, 15, 480-490.	7.7	578
106	Systematic Exploration of Ubiquitin Sequence, E1 Activation Efficiency, and Experimental Fitness in Yeast. Journal of Molecular Biology, 2014, 426, 2854-2870.	2.0	55
107	Modelling metabolic evolution on phenotypic fitness landscapes: a case study on C4 photosynthesis. Biochemical Society Transactions, 2015, 43, 1172-1176.	1.6	4
108	The impact of highâ€order epistasis in the withinâ€host fitness of a positiveâ€sense plant RNA virus. Journal of Evolutionary Biology, 2015, 28, 2236-2247.	0.8	23
109	Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. Journal of the Royal Society Interface, 2015, 12, 20150036.	1.5	26
110	Replaying the tape of life in the twenty-first century. Interface Focus, 2015, 5, 20150057.	1.5	70
112	Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chemical Society Reviews, 2015, 44, 1172-1239.	18.7	316
113	Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142698.	1.2	45

#	Article	IF	CITATIONS
114	A tortoise–hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7530-7535.	3.3	78
115	Quantitative Description of a Protein Fitness Landscape Based on Molecular Features. Molecular Biology and Evolution, 2015, 32, 1774-1787.	3.5	57
116	Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions. Science Advances, 2015, 1, e1500162.	4.7	12
117	Epistasis in protein evolution. Protein Science, 2016, 25, 1204-1218.	3.1	383
118	Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5047-5052.	3.3	41
119	Epistasis and the Structure of Fitness Landscapes: Are Experimental Fitness Landscapes Compatible with Fisher's Geometric Model?. Genetics, 2016, 203, 847-862.	1.2	42
120	Genonets server—a web server for the construction, analysis and visualization of genotype networks. Nucleic Acids Research, 2016, 44, W70-W76.	6.5	12
122	Diminishing-returns epistasis among random beneficial mutations in a multicellular fungus. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161376.	1.2	51
123	Molecular Evolution, Functional Synthesis of. , 2016, , 44-54.		0
124	Resurrecting ancestral structural dynamics of an antiviral immune receptor: adaptive binding pocket reorganization repeatedly shifts RNA preference. BMC Evolutionary Biology, 2016, 16, 241.	3.2	6
125	Causes of molecular convergence and parallelism in protein evolution. Nature Reviews Genetics, 2016, 17, 239-250.	7.7	243
126	Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular Biology and Evolution, 2017, 34, msx053.	3.5	48
127	Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. Journal of Molecular Evolution, 2017, 84, 69-84.	0.8	40
128	Structural and functional innovations in the real-time evolution of new (βα) ₈ barrel enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4727-4732.	3.3	26
129	Stability-Mediated Epistasis Restricts Accessible Mutational Pathways in the Functional Evolution of Avian Hemoglobin. Molecular Biology and Evolution, 2017, 34, 1240-1251.	3.5	49
130	Increased Affinity for RNA Targets Evolved Early in Animal and Plant Dicer Lineages through Different Structural Mechanisms. Molecular Biology and Evolution, 2017, 34, 3047-3063.	3.5	14
131	The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography. Journal of Statistical Physics, 2018, 172, 208-225.	0.5	64
132	Key issues review: evolution on rugged adaptive landscapes. Reports on Progress in Physics, 2018, 81, 012602.	8.1	25

#	Article	IF	CITATIONS
133	Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking. Theoretical Population Biology, 2018, 122, 97-109.	0.5	9
134	Enzyme evolution: innovation is easy, optimization is complicated. Current Opinion in Structural Biology, 2018, 48, 110-116.	2.6	70
135	Compensatory mutations and epistasis for protein function. Current Opinion in Structural Biology, 2018, 50, 18-25.	2.6	67
136	Power law fitness landscapes and their ability to predict fitness. Heredity, 2018, 121, 482-498.	1.2	3
137	Evolutionary constraints in fitness landscapes. Heredity, 2018, 121, 466-481.	1.2	26
138	Ecology dictates evolution? About the importance of genetic and ecological constraints in adaptation. Europhysics Letters, 2018, 122, 58002.	0.7	9
139	Distribution of fitness effects of mutations obtained from a simple genetic regulatory network model. Scientific Reports, 2019, 9, 9842.	1.6	10
140	Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions?. International Journal of Tryptophan Research, 2019, 12, 117864691985594.	1.0	3
141	Recent insights into the genotype–phenotype relationship from massively parallel genetic assays. Evolutionary Applications, 2019, 12, 1721-1742.	1.5	52
142	Adaptive Landscapes in the Age of Synthetic Biology. Molecular Biology and Evolution, 2019, 36, 890-907.	3.5	25
143	An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genetics, 2019, 15, e1008079.	1.5	71
144	The Causes and Consequences of Genetic Interactions (Epistasis). Annual Review of Genomics and Human Genetics, 2019, 20, 433-460.	2.5	164
145	High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection. Molecular Biology and Evolution, 2019, 36, 1533-1550.	3.5	52
146	Mathematical modeling of movement on fitness landscapes. BMC Systems Biology, 2019, 13, 25.	3.0	1
147	Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nature Chemical Biology, 2019, 15, 1120-1128.	3.9	71
148	Predicting Evolution Using Regulatory Architecture. Annual Review of Biophysics, 2020, 49, 181-197.	4.5	9
149	The 4 D's of Pellagra and Progress. International Journal of Tryptophan Research, 2020, 13, 117864692091015.	1.0	8
150	Emergence and propagation of epistasis in metabolic networks. ELife, 2021, 10, .	2.8	25

#	Article	IF	Citations
153	Resource Uptake and the Evolution of Moderately Efficient Enzymes. Molecular Biology and Evolution, 2021, 38, 3938-3952.	3.5	7
154	Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chemical Reviews, 2021, 121, 7957-8094.	23.0	114
155	Metabolic response to point mutations reveals principles of modulation of <i>in vivo</i> enzyme activity and phenotype. Molecular Systems Biology, 2021, 17, e10200.	3.2	10
156	Ensemble epistasis: thermodynamic origins of nonadditivity between mutations. Genetics, 2021, 219, .	1.2	13
157	Epistasis shapes the fitness landscape of an allosteric specificity switch. Nature Communications, 2021, 12, 5562.	5.8	16
158	From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Physics of Life Reviews, 2021, 38, 55-106.	1.5	49
159	Visualizing Macroevolution: From Adaptive Landscapes to Compositions of Multiple Spaces. Interdisciplinary Evolution Research, 2015, , 113-162.	0.2	7
160	Fitness Landscapes: From Evolutionary Biology to Evolutionary Computation. Emergence, Complexity and Computation, 2014, , 3-31.	0.2	10
161	Predicting Evolution and Visualizing High-Dimensional Fitness Landscapes. Emergence, Complexity and Computation, 2014, , 509-526.	0.2	13
162	The Reproducibility of Adaptation in the Light of Experimental Evolution with Whole Genome Sequencing. Advances in Experimental Medicine and Biology, 2014, 781, 211-231.	0.8	32
163	The fitness challenge of studying molecular adaptation. Biochemical Society Transactions, 2019, 47, 1533-1542.	1.6	5
169	Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria. PLoS Genetics, 2015, 11, e1005612.	1.5	79
170	The Consistency of Beneficial Fitness Effects of Mutations across Diverse Genetic Backgrounds. PLoS ONE, 2012, 7, e43864.	1.1	16
171	Genotype to Phenotype Mapping and the Fitness Landscape of the E. coli lac Promoter. PLoS ONE, 2013, 8, e61570.	1.1	54
172	Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. ELife, 2015, 4, e07864.	2.8	90
173	Adaptation in protein fitness landscapes is facilitated by indirect paths. ELife, 2016, 5, .	2.8	184
174	Hidden role of mutations in the evolutionary process. Physical Review E, 2021, 104, 044413.	0.8	9
175	Experimental resurrection of ancient biomolecules: gene synthesis, heterologous protein expression, and functional assays. , 2007, , 153-163.		4

#	Article	IF	CITATIONS
180	Separating Spandrels from Phenotypic Targets of Selection in Adaptive Molecular Evolution. , 2016, , 309-325.		2
186	Generalization of the Ewens sampling formula to arbitrary fitness landscapes. PLoS ONE, 2018, 13, e0190186.	1.1	1
189	Antimicrobial Resistance Strategies: Are We Approaching the End?. Journal of Pure and Applied Microbiology, 2020, 14, 93-102.	0.3	0
195	Proteomic study of plaque fluid in high caries and caries free children. Technology and Health Care, 2022, 30, 337-361.	0.5	1
196	Environmental selection and epistasis in an empirical phenotype–environment–fitness landscape. Nature Ecology and Evolution, 2022, 6, 427-438.	3.4	10
197	Protein cost minimization promotes the emergence of coenzyme redundancy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110787119.	3.3	7
200	A Family of Fitness Landscapes Modeled through Gene Regulatory Networks. Entropy, 2022, 24, 622.	1.1	2
202	Mutational robustness changes during long-term adaptation in laboratory budding yeast populations. ELife, 0, 11, .	2.8	10
203	Constraints on the evolution of toxin-resistant Na,K-ATPases have limited dependence on sequence divergence. PLoS Genetics, 2022, 18, e1010323.	1.5	8
205	Coevolutionary signals in metabotropic glutamate receptors capture residue contacts and long-range functional interactions. Journal of Biological Chemistry, 2023, 299, 103030.	1.6	2
210	The Surprising Ease of Finding Optimal Solutions for Controlling Nonlinear Phenomena in Quantum and Classical Complex Systems. Journal of Physical Chemistry A, 2023, 127, 4224-4236.	1.1	0