Five-Year Follow-Up After Clinical Islet Transplantation

Diabetes 54, 2060-2069 DOI: 10.2337/diabetes.54.7.2060

Citation Report

#	Article	IF	CITATIONS
1	Islet Transplantation: Steeple Chase and the Next Hurdle. Transplantation, 2005, 80, 1658-1659.	0.5	0
2	Stem cells and diabetes treatment. Apmis, 2005, 113, 858-875.	0.9	32
3	Saving islets from allograft rejection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12651-12652.	3.3	16
4	Insulin-secreting cells derived from stem cells: Clinical perspectives, hypes and hopes. Transplant Immunology, 2005, 15, 113-129.	0.6	36
5	Progress in Islet Transplantation in Patients with Type 1 Diabetes Mellitus. Treatments in Endocrinology: Guiding Your Management of Endocrine Disorders, 2006, 5, 147-158.	1.8	8
6	Intrahepatic Transplanted Islets in Humans Secrete Insulin in a Coordinate Pulsatile Manner Directly Into the Liver. Diabetes, 2006, 55, 2324-2332.	0.3	36
7	Assessment of Glycemic Control After Islet Transplantation Using the Continuous Glucose Monitor in Insulin-Independent Versus Insulin-Requiring Type 1 Diabetes Subjects. Diabetes Technology and Therapeutics, 2006, 8, 165-173.	2.4	56
8	Conversion of embryonic stem cells into pancreatic β-cell surrogates guided by ontogeny. Regenerative Medicine, 2006, 1, 327-336.	0.8	10
9	Islet transplantation: learning from the Edmonton experience. Expert Review of Endocrinology and Metabolism, 2006, 1, 315-318.	1.2	0
10	Combining cell therapy and nanotechnology. Expert Opinion on Biological Therapy, 2006, 6, 971-981.	1.4	13
11	Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17444-17449.	3.3	166
12	Polymer Chemistry in Diabetes Treatment by Encapsulated Islets of Langerhans: Review to 2006. Australian Journal of Chemistry, 2006, 59, 508.	0.5	40
13	International Trial of the Edmonton Protocol for Islet Transplantation. New England Journal of Medicine, 2006, 355, 1318-1330.	13.9	1,754
14	Monitoring of the islet graft. Diabetes and Metabolism, 2006, 32, 503-512.	1.4	45
15	Immunology of pancreatic islet transplantation. Diabetes and Metabolism, 2006, 32, 523-526.	1.4	20
16	Immunosuppressive drug-induced diabetes. Diabetes and Metabolism, 2006, 32, 539-546.	1.4	124
17	Acute insulin response (AIR): review of protocols and clinical interest in islet transplantation. Diabetes and Metabolism, 2006, 32, 295-303.	1.4	27
18	Type 1 diabetes. Lancet, The, 2006, 367, 847-858.	6.3	764

ATION RED

		CITATION R	EPORT	
#	Article		IF	CITATIONS
19	In vivo multimodal imaging of transplanted pancreatic islets. Nature Protocols, 2006, 1	, 429-435.	5.5	53
20	Management strategies for brittle diabetes. Annales D'Endocrinologie, 2006, 67, 287-2	294.	0.6	28
21	Insulin - producing cells derived from stem cells: recent progress and future directions. Cellular and Molecular Medicine, 2006, 10, 852-868.	Journal of	1.6	13
22	Type 1 diabetes: pathogenesis and prevention. Cmaj, 2006, 175, 165-170.		0.9	204
23	Mechanisms underlying type 1 diabetes and islet transplantation. Drug Discovery Toda Mechanisms, 2006, 3, 155-162.	y Disease	0.8	0
24	Interventional Strategies to Prevent Â-Cell Apoptosis in Islet Transplantation. Diabetes, 1907-1914.	2006, 55,	0.3	131
25	Immune responses to an encapsulated allogeneic islet β-cell line in diabetic NOD mice. Biophysical Research Communications, 2006, 340, 236-243.	Biochemical and	1.0	26
26	Growth factors and beta cell replication. International Journal of Biochemistry and Cell 2006, 38, 931-950.	Biology,	1.2	120
27	Islet neogenesis: A potential therapeutic tool in type 1 diabetes. International Journal o and Cell Biology, 2006, 38, 498-503.	f Biochemistry	1.2	12
28	Islet neogenesis: A potential therapeutic tool in type 1 diabetes. International Journal o and Cell Biology, 2006, 38, 715-720.	f Biochemistry	1.2	12
29	Gene therapy for diabetes: reinventing the islet. Trends in Endocrinology and Metabolis 92-100.	;m, 2006, 17,	3.1	44
30	Differential Analysis of Donor Characteristics for Pancreas and Islet Transplantation. Transplantation Proceedings, 2006, 38, 2579-2581.		0.3	15
31	Continuous Glucose Monitoring System for Early Detection of Graft Dysfunction in Allo Transplant Recipients. Transplantation Proceedings, 2006, 38, 3274-3276.	ogenic Islet	0.3	10
32	Protein Transduction: A Novel Approach to Induce In Vitro Pancreatic Differentiation. C Transplantation, 2006, 15, 85-90.	ell	1.2	9
33	Clinical islet transplantation in type 1 diabetes mellitus: results of Australia's first t Journal of Australia, 2006, 184, 221-225.	rial. Medical	0.8	69
34	Protection of human islets from induction of apoptosis and improved islet function wit transduction. Chinese Medical Journal, 2006, 119, 1639-1645.	h HO-1 gene	0.9	21
35	Current status of pancreatic islet transplantation. Clinical Science, 2006, 110, 611-625	i.	1.8	118
36	Five-Year Follow-up After Clinical Islet Transplantation. Yearbook of Endocrinology, 200	6, 2006, 9-11.	0.0	0

#	Article	IF	CITATIONS
37	Can gene therapy make pancreas and islet transplantation obsolete?. Current Opinion in Organ Transplantation, 2006, 11, 94-100.	0.8	0
38	The state of islet transplantation. Current Opinion in Internal Medicine, 2006, 5, 267-272.	1.5	1
40	Prospective and Challenges of Islet Transplantation for the Therapy of Autoimmune Diabetes. Pancreas, 2006, 32, 231-243.	0.5	80
41	NEW THERAPIES AIMED AT THE PRESERVATION OR RESTORATION OF BETA CELL FUNCTION IN TYPE 1 DIABETES. Acta Clinica Belgica, 2006, 61, 275-285.	0.5	3
42	Reversal of Diabetes by Pancreatic Islet Transplantation into a Subcutaneous, Neovascularized Device. Transplantation, 2006, 81, 1318-1324.	0.5	161
43	Islet transplantation: steady progress and current challenges. Current Opinion in Organ Transplantation, 2006, 11, 7-13.	0.8	18
44	Immature Syngeneic Dendritic Cells Potentiate Tolerance to Pancreatic Islet Allografts Depleted of Donor Dendritic Cells in Microgravity Culture Condition. Transplantation, 2006, 82, 1756-1763.	0.5	19
45	Tetracycline-Regulated Expression of VEGF-A in Beta Cells Induces Angiogenesis: Improvement of Engraftment following Transplantation. Cell Transplantation, 2006, 15, 621-636.	1.2	18
46	Transplantation of Rat Islets Transduced With Human Heme Oxygenase-1 Gene Using Adenovirus Vector. Pancreas, 2006, 33, 280-286.	0.5	18
48	Feasibility and Safety of Pancreatic Islet Transplantation in the Liver by Portal Vein Catheterization using the Transjugular Route. Transplantation, 2006, 81, 1220-1221.	0.5	8
49	Revascularization of Transplanted Pancreatic Islets Following Culture with Stimulators of Angiogenesis. Transplantation, 2006, 82, 340-347.	0.5	50
50	Neonatal Porcine Islets Exhibit Natural Resistance to Hypoxia-Induced Apoptosis. Transplantation, 2006, 82, 945-952.	0.5	66
51	Follow-up Study of the First Successful Living Donor Islet Transplantation. Transplantation, 2006, 82, 1629-1633.	0.5	39
52	Transplant therapies for diabetes: a review of outcomes and indications for kidney, pancreas and islet transplantation. Current Opinion in Internal Medicine, 2006, 5, 473-478.	1.5	0
53	Solitary pancreas transplantation for life-threatening allergy to human insulin*. Transplant International, 2006, 19, 474-477.	0.8	23
54	Xenotransplantation of purified pre-natal porcine beta cells in mice normalizes diabetes when a short anti-CD4-CD8 antibody treatment is combined with transient insulin injections. Xenotransplantation, 2006, 13, 415-422.	1.6	6
55	Morphological changes of isolated rat pancreatic islets: a structural, ultrastructural and morphometric study. Journal of Anatomy, 2006, 209, 381-392.	0.9	39
56	Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nature Medicine, 2006, 12, 1423-1428.	15.2	77

#	Article	IF	CITATIONS
57	Who's who in biotech. Nature Biotechnology, 2006, 24, 291-300.	9.4	2
58	Overcoming the Challenges Now Limiting Islet Transplantation: A Sequential, Integrated Approach. Annals of the New York Academy of Sciences, 2006, 1079, 383-398.	1.8	51
59	Facilitating Physiologic Self-Regeneration: A Step Beyond Islet Cell Replacement. Pharmaceutical Research, 2006, 23, 227-242.	1.7	32
60	Remission of Digestive Insufficiency by Islet Transplantation to the Pancreas. Digestive Diseases and Sciences, 2006, 51, 1777-1779.	1.1	5
62	Suitability of human juvenile pancreatic islets for clinical use. Diabetologia, 2006, 49, 1845-1854.	2.9	67
63	The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia, 2006, 49, 2341-2349.	2.9	107
64	Increased islet beta cell replication adjacent to intrapancreatic gastrinomas in humans. Diabetologia, 2006, 49, 2689-2696.	2.9	62
65	Evidence for the homeostatic regulation of induced beta cell mass expansion. Diabetologia, 2006, 49, 2910-2919.	2.9	20
66	Radiologic aspects of islet cell transplantation. Current Diabetes Reports, 2006, 6, 310-315.	1.7	13
67	Assessment of islet function following islet and pancreas transplantation. Current Diabetes Reports, 2006, 6, 316-322.	1.7	12
68	The effect of whole organ pancreas transplantation and pit on diabetic complications. Current Diabetes Reports, 2006, 6, 323-327.	1.7	26
69	Prolonged Survival of Allogeneic Islets in Cynomolgus Monkeys After Short-Term Anti-CD154-Based Therapy: Nonimmunologic Graft Failure?. American Journal of Transplantation, 2006, 6, 687-696.	2.6	37
70	Islets Transplanted Intraportally into the Liver are Stimulated to Insulin and Clucagon Release Exclusively through the Hepatic Artery. American Journal of Transplantation, 2006, 6, 967-975.	2.6	31
71	Sequential Kidney/Islet Transplantation: Efficacy and Safety Assessment of a Steroid-Free Immunosuppression Protocol. American Journal of Transplantation, 2006, 6, 1049-1058.	2.6	74
72	Cytomegalovirus Infection in a Recipient of Solitary Allogeneic Islets. American Journal of Transplantation, 2006, 6, 1089-1090.	2.6	16
73	Improved Islet Yields from Pancreas Preserved in Perflurocarbon Is Via Inhibition of Apoptosis Mediated by Mitochondrial Pathway American Journal of Transplantation, 2006, 6, 1696-1703.	2.6	36
74	Detection of Insulin mRNA in the Peripheral Blood after Human Islet Transplantion Predicts Deterioration of Metabolic Control American Journal of Transplantation, 2006, 6, 1704-1711.	2.6	31
75	Developments in Clinical Islet, Liver Thoracic, Kidney and Pancreas Transplantation in the Last 5 Years. American Journal of Transplantation, 2006, 6, 1759-1767.	2.6	11

#	Article	IF	Citations
76	Antiangiogenic and Immunomodulatory Effects of Rapamycin on Islet Endothelium: Relevance for Islet Transplantation. American Journal of Transplantation, 2006, 6, 2601-2611.	2.6	66
77	Improved Outcomes in Islet Isolation and Transplantation by the Use of a Novel Hemoglobin-based O2Carrier. American Journal of Transplantation, 2006, 6, 2861-2870.	2.6	31
78	From bench to bedside? Biomedical scientists' expectations of stem cell science as a future therapy for diabetes. Social Science and Medicine, 2006, 63, 2052-2064.	1.8	90
79	Abrogation of recurrent autoimmunity in the NOD mouse: A critical role for host interleukin 4. Surgery, 2006, 140, 281-288.	1.0	4
80	Rehabilitation of adaptive immunity and regeneration of beta cells. Trends in Biotechnology, 2006, 24, 516-522.	4.9	20
81	Characterization of human islet-like structures generated from pancreatic precursor cells in culture. Biotechnology and Bioengineering, 2006, 93, 980-988.	1.7	18
83	Insulin Sensitivity, Glucose Effectiveness, and Free Fatty Acid Dynamics after Human Islet Transplantation for Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2138-2144.	1.8	44
84	A patient with severe, recurrent hypoglycemia and glycemic lability who underwent islet transplantation. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 349-353.	2.9	6
86	No Stem Cell Is an Islet (Yet). New England Journal of Medicine, 2006, 354, 521-523.	13.9	12
87	Diabetes Cure — Is the Glass Half Full?. New England Journal of Medicine, 2006, 355, 1372-1374.	13.9	22
88	The Potential for Stem Cell Therapy in Diabetes. Pediatric Research, 2006, 59, 65R-73R.	1.1	50
89	Islet Cell Transplantation. Current Molecular Medicine, 2006, 6, 369-374.	0.6	22
90	Effects of Autoimmunity and Immune Therapy on Â-Cell Turnover in Type 1 Diabetes. Diabetes, 2006, 55, 3238-3245.	0.3	141
91	Polymer Scaffolds as Synthetic Microenvironments for Extrahepatic Islet Transplantation. Transplantation, 2006, 82, 452-459.	0.5	126
93	In Vivo Imaging of Immune Rejection in Transplanted Pancreatic Islets. Diabetes, 2006, 55, 2419-2428.	0.3	158
94	Pancreatic islet transplantation for treating diabetes. Expert Opinion on Biological Therapy, 2006, 6, 23-37.	1.4	33
95	Embryonic Stem Cell Processing in Obtaining Insulin-Producing Cells: A Technical Review. Cell Preservation Technology, 2006, 4, 278-289.	0.8	3
96	Sirolimus Is Associated With Reduced Islet Engraftment and Impaired β-Cell Function. Diabetes, 2006, 55, 2429-2436.	0.3	143

#	Article	IF	CITATIONS
97	Characterization of Donor Dendritic Cells and Enhancement of Dendritic Cell Efflux With cc-Chemokine Ligand 21: A Novel Strategy to Prolong Islet Allograft Survival. Diabetes, 2007, 56, 912-920.	0.3	38
98	Pancreatic Islet Cell Transplantation: Update and New Developments. Nutrition in Clinical Practice, 2007, 22, 485-493.	1.1	16
100	Nanotechnology as an Adjunct Tool for Transplanting Engineered Cells and Tissues. Current Molecular Medicine, 2007, 7, 609-618.	0.6	18
101	Glycemic Thresholds for Activation of Counterregulatory Hormone and Symptom Responses in Islet Transplant Recipients. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 873-879.	1.8	52
102	Evidence for Allograft Rejection in an Islet Transplant Recipient and Effect on β-Cell Secretory Capacity. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2410-2414.	1.8	36
103	A Case of Pancreatic Islet Cell Transplantation in a Patient with Situs Ambiguous: Anatomical and Radiological Considerations. Seminars in Interventional Radiology, 2007, 24, 043-046.	0.3	0
104	Finding GAD: Early Detection of \hat{l}^2 -Cell Injury. Endocrinology, 2007, 148, 4568-4571.	1.4	12
105	Allogeneic islet transplantation. Expert Opinion on Biological Therapy, 2007, 7, 1627-1645.	1.4	37
106	Metabolic Mechanisms of Failure of Intraportally Transplanted Pancreatic \hat{I}^2 -Cells in Rats. Diabetes, 2007, 56, 2295-2301.	0.3	81
107	Implantation Site-Dependent Dysfunction of Transplanted Pancreatic Islets. Diabetes, 2007, 56, 1544-1550.	0.3	72
108	Human Islet Amyloid Polypeptide Oligomers Disrupt Cell Coupling, Induce Apoptosis, and Impair Insulin Secretion in Isolated Human Islets. Diabetes, 2007, 56, 65-71.	0.3	170
109	Human islet isolation: semi-automated and manual methods. Diabetes and Vascular Disease Research, 2007, 4, 7-12.	0.9	25
110	Prediction of Clinical Outcome in Islet Allotransplantation. Diabetes Care, 2007, 30, 410-417.	4.3	54
111	Interleukin-1β and inducible form of nitric oxide synthase expression in early syngeneic islet transplantation. Journal of Endocrinology, 2007, 192, 169-177.	1.2	64
112	Caspase Inhibitor Therapy Enhances Marginal Mass Islet Graft Survival and Preserves Long-Term Function in Islet Transplantation. Diabetes, 2007, 56, 1289-1298.	0.3	64
113	Angiopoietin-1 Production in Islets Improves Islet Engraftment and Protects Islets From Cytokine-Induced Apoptosis. Diabetes, 2007, 56, 2274-2283.	0.3	58
114	The Immunotherapeutic Effects of Astragalus Polysaccharide in Type 1 Diabetic Mice. Biological and Pharmaceutical Bulletin, 2007, 30, 470-476.	0.6	59
116	Improvement of Pancreatic Islet Cell Isolation for Transplantation. Baylor University Medical Center Proceedings, 2007, 20, 357-362.	0.2	58

#	Article	IF	CITATIONS
117	Pancreas and islet cell transplantation in diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2007, 14, 146-150.	1.2	18
118	Imaging of islet grafts. Current Opinion in Organ Transplantation, 2007, 12, 659-663.	0.8	1
119	Rapamycin Impairs In Vivo Proliferation of Islet Beta-Cells. Transplantation, 2007, 84, 1576-1583.	0.5	97
120	Islet autotransplantation to prevent or minimize diabetes after pancreatectomy. Current Opinion in Organ Transplantation, 2007, 12, 82-88.	0.8	7
121	Allosensitization of Islet Allograft Recipients. Transplantation, 2007, 84, 1413-1427.	0.5	64
122	Expectations and Strategies Regarding Islet Transplantation: Metabolic Data From the GRAGIL 2 Trial. Transplantation, 2007, 84, 89-96.	0.5	69
124	Role of Blood Glucose in Cytokine Gene Expression in Early Syngeneic Islet Transplantation. Cell Transplantation, 2007, 16, 517-525.	1.2	17
125	Sirolimus Toxicity and Vascular Endothelial Growth Factor Release From Islet and Renal Cell Lines. Transplantation, 2007, 83, 1635-1638.	0.5	30
126	Role of Intra-Islet Endothelial Cells in Islet Allo-Immunity. Transplantation, 2007, 84, 1316-1323.	0.5	13
127	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153.	0.8	2
127 128	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118.	0.8	2
127 128 129	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118. One More Step Along the Road. Transplantation, 2007, 84, 15-16.	0.8 0.8 0.5	2 0 4
127 128 129 130	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118. One More Step Along the Road. Transplantation, 2007, 84, 15-16. Cell Loss during Pseudoislet Formation Hampers Profound Improvements in Islet Lentiviral Transplantation, 2007, 16, 527-537.	0.8 0.8 0.5 1.2	2 0 4 17
127 128 129 130	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118. One More Step Along the Road. Transplantation, 2007, 84, 15-16. Cell Loss during Pseudoislet Formation Hampers Profound Improvements in Islet Lentiviral Transplantation Efficacy for Transplantation Purposes. Cell Transplantation, 2007, 16, 527-537. Toward Maximizing the Success Rates of Human Islet Isolation: Influence of Donor and Isolation Factors. Cell Transplantation, 2007, 16, 595-607.	0.8 0.8 0.5 1.2 1.2	2 0 4 17 95
127 128 129 130 131 132	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118. One More Step Along the Road. Transplantation, 2007, 84, 15-16. Cell Loss during Pseudoislet Formation Hampers Profound Improvements in Islet Lentiviral Transplantation, 2007, 16, 527-537. Toward Maximizing the Success Rates of Human Islet Isolation: Influence of Donor and Isolation Pactors. Cell Transplantation, 2007, 16, 595-607. Effect of Exenatide on ?? Cell Function After Islet Transplantation in Type 1 Diabetes. Transplantation, 2007, 83, 24-28.	0.8 0.8 0.5 1.2 1.2 0.5	2 0 4 17 95 121
127 128 129 130 131 132	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118. One More Step Along the Road. Transplantation, 2007, 84, 15-16. Cell Loss during Pseudoislet Formation Hampers Profound Improvements in Islet Lentiviral Transduction Efficacy for Transplantation Purposes. Cell Transplantation, 2007, 16, 527-537. Toward Maximizing the Success Rates of Human Islet Isolation: Influence of Donor and Isolation Factors. Cell Transplantation, 2007, 16, 595-607. Effect of Exenatide on ?? Cell Function After Islet Transplantation in Type 1 Diabetes. Transplantation, 2007, 83, 24-28. The New Deceased Donor Pancreas Allocation Schema: Do the Recommendations Go Far Enough?. Transplantation, 2007, 83, 1151-1152.	0.8 0.8 0.5 1.2 1.2 0.5	2 0 4 17 95 121
127 128 129 130 131 132 133	Islet xenotransplantation. Current Opinion in Organ Transplantation, 2007, 12, 148-153. Current World Literature. Current Opinion in Organ Transplantation, 2007, 12, 89-118. One More Step Along the Road. Transplantation, 2007, 84, 15-16. Cell Loss during Pseudoislet Formation Hampers Profound Improvements in Islet Lentiviral Transduction Efficacy for Transplantation Purposes. Cell Transplantation, 2007, 16, 527-537. Toward Maximizing the Success Rates of Human Islet Isolation: Influence of Donor and Isolation Factors. Cell Transplantation, 2007, 16, 595-607. Effect of Exenatide on ?? Cell Function After Islet Transplantation in Type 1 Diabetes. Transplantation, 2007, 83, 24-28. The New Deceased Donor Pancreas Allocation Schema: Do the Recommendations Co Far Enough?. Transplantation, 2007, 83, 1151-1152. Mechanisms of Recovery From Type 2 Diabetes After Malabsorptive Bariatric Surgery. Yearbook of Endocrinology, 2007, 9-11.	0.8 0.8 0.5 1.2 1.2 0.5 0.5	2 0 4 17 95 121 6 0

#	Article	IF	CITATIONS
136	Acute Insulin Responses to Glucose and Arginine as Predictors of β-Cell Secretory Capacity in Human Islet Transplantation. Transplantation, 2007, 84, 1357-1360.	0.5	36
137	Factors Influencing the Loss of Î ² -Cell Mass in Islet Transplantation. Cell Transplantation, 2007, 16, 1-8.	1.2	144
138	Long-Term Graft Function after Allogeneic Islet Transplantation. Cell Transplantation, 2007, 16, 441-446.	1.2	25
139	In Vivo and In Vitro Effect of Sirolimus on Insulin Secretion. Transplantation, 2007, 83, 532-538.	0.5	30
140	Engineered cells for treatment of diabetes. , 2007, , 388-403.		0
141	Islet transplantation for type 1 diabetes—where should we go?. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 2-3.	2.9	5
142	Three Cases of Cytomegalovirus Infection Following Pancreatic Islet Transplantation. Transplantation Proceedings, 2007, 39, 1599-1603.	0.3	8
143	Evaluation of Alternative Sites for Islet Transplantation in the Minipig: Interest and Limits of the Gastric Submucosa. Transplantation Proceedings, 2007, 39, 2620-2623.	0.3	43
144	Embryonic stem cell therapy for diabetes mellitus. Seminars in Cell and Developmental Biology, 2007, 18, 827-838.	2.3	38
145	Insulin-Producing Cells from Embryonic Stem Cells Experimental Considerations. Methods in Molecular Biology, 2007, 407, 295-309.	0.4	4
146	Implantable insulin pumps. A position statement about theirÂclinical use. Diabetes and Metabolism, 2007, 33, 158-166.	1.4	62
147	Stem Cell Assays. Methods in Molecular Biology, 2007, , .	0.4	3
148	Pancreatic Islet Cell Transplant for Treatment of Diabetes. Endocrinology and Metabolism Clinics of North America, 2007, 36, 999-1013.	1.2	37
149	Islet cell transplantation. Postgraduate Medical Journal, 2007, 83, 224-229.	0.9	46
150	Current Cell-based Approaches for the Treatment of Diabetes Mellitus. Biotechnology and Genetic Engineering Reviews, 2007, 24, 281-296.	2.4	3
151	Wnt signaling regulates pancreatic beta cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6247-6252.	3.3	320
152	Effects ofÂnon-steroid immunosuppressive drugs onÂinsulin secretion inÂtransplantation. Annales D'Endocrinologie, 2007, 68, 21-27.	0.6	24
155	The Role of Total Pancreatectomy and Islet Autotransplantation for Chronic Pancreatitis. Surgical Clinics of North America, 2007, 87, 1477-1501.	0.5	169

#	Article	IF	CITATIONS
156	Isolation of Mouse Pancreatic Ductal Progenitor Cells Expressing CD133 and c-Met by Flow Cytometric Cell Sorting. Gastroenterology, 2007, 132, 720-732.	0.6	126
158	Characterization of Islet Preparations. , 2007, , 85-133.		16
160	Transplantation for the treatment of type 1 diabetes. World Journal of Gastroenterology, 2007, 13, 6347.	1.4	52
161	Engineering Challenges in Immunobarrier Device Development. , 2007, , 405-418.		1
162	Glycemic Variation and Hypoglycemia in Patients with well-Controlled Type 1 Diabetes on a Multiple Daily Insulin Injection Program with use of Glargine and Ultralente as Basal Insulin. Endocrine Practice, 2007, 13, 244-250.	1.1	16
163	Encapsulated Human Islet Allografts: Providing Safety with Efficacy. , 2007, , 135-153.		2
164	Design and analysis of a long-term live-cell imaging chamber for tracking cellular dynamics within cultured human islets of Langerhans. Biotechnology and Bioengineering, 2007, 97, 1138-1147.	1.7	9
165	Lessons from musculoskeletal stem cell research: The key to successful regenerative medicine development. Arthritis and Rheumatism, 2007, 56, 714-721.	6.7	11
166	Suppression of islet allogeneic immune response by indoleamine 2,3 dioxygenase-expressing fibroblasts. Journal of Cellular Physiology, 2007, 213, 137-143.	2.0	29
167	NeuroD and reaggregation induce β-cell specific gene expression in cultured hepatocytes. Diabetes/Metabolism Research and Reviews, 2007, 23, 239-249.	1.7	25
168	Therapy with the hsp60 peptide DiaPep277â,,¢ in C-peptide positive type 1 diabetes patients. Diabetes/Metabolism Research and Reviews, 2007, 23, 269-275.	1.7	77
169	Cellular pathways to \hat{l}^2 -cell replacement. Diabetes/Metabolism Research and Reviews, 2007, 23, 87-99.	1.7	22
170	Long-term effect of FTY720 on lymphocyte count and islet allograft survival in mice. Microsurgery, 2007, 27, 300-304.	0.6	17
171	B lymphocyte–directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nature Medicine, 2007, 13, 1295-1298.	15.2	141
172	Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clinical Transplantation, 2007, 21, 070618134134003-???.	0.8	32
173	Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies. Xenotransplantation, 2007, 14, 74-82.	1.6	76
174	Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets. Xenotransplantation, 2007, 14, 119-125.	1.6	18
175	(2) Targeting the T-cell costimulation pathways allows long-term survival of neonatal porcine islets in diabetic non-human primates. Xenotransplantation, 2007, 14, 178-179.	1.6	1

#	Article	IF	CITATIONS
176	(3) Reversible immortalization of human pancreatic beta cells to develop diabetes-targeted cell therapy. Xenotransplantation, 2007, 14, 178-179.	1.6	1
177	Acute exposure to streptozotocin but not human proinflammatory cytokines impairs neonatal porcine islet insulin secretion in vitro but not in vivo. Xenotransplantation, 2007, 14, 580-590.	1.6	14
178	Prevalence of autoimmune diseases in islet transplant candidates with severe hypoglycaemia and glycaemic lability: previously undiagnosed coeliac and autoimmune thyroid disease is identified by screening. Diabetic Medicine, 2007, 24, 161-165.	1.2	8
179	Revascularization and remodelling of pancreatic islets grafted under the kidney capsule. Journal of Anatomy, 2007, 210, 565-577.	0.9	53
181	Pancreatic small cells: Analysis of quiescence, long-term maintenance and insulin expression in vitro. Experimental Cell Research, 2007, 313, 931-942.	1.2	7
182	Changes in Renal Function after Clinical Islet Transplantation: Four-Year Observational Study. American Journal of Transplantation, 2007, 7, 91-98.	2.6	108
183	Growing Pains from The Islet Cell Transplant World. American Journal of Transplantation, 2007, 7, 1-2.	2.6	62
184	Shipment of Human Islets for Transplantation. American Journal of Transplantation, 2007, 7, 1010-1020.	2.6	106
185	Improvement of Human Islet Cryopreservation by a p38 MAPK Inhibitor. American Journal of Transplantation, 2007, 7, 1224-1232.	2.6	31
186	Pretransplant HLA Antibodies Are Associated with Reduced Graft Survival After Clinical Islet Transplantation. American Journal of Transplantation, 2007, 7, 1242-1248.	2.6	97
187	High Risk of Sensitization After Failed Islet Transplantation. American Journal of Transplantation, 2007, 7, 2311-2317.	2.6	163
188	Combined Coinhibitory and Costimulatory Modulation with Anti-BTLA and CTLA4Ig Facilitates Tolerance in Murine Islet Allografts. American Journal of Transplantation, 2007, 7, 2663-2674.	2.6	48
189	Posttransplant Diabetes Mellitus After Pancreas Transplantation. American Journal of Transplantation, 2008, 8, 175-182.	2.6	52
190	Molecular and cellular key players in human islet transplantation. Journal of Cellular and Molecular Medicine, 2007, 11, 398-415.	1.6	7
191	Autoimmunity and beta Cell Regeneration in Mouse and Human Type 1 Diabetes: The Peace Is Not Enough. Annals of the New York Academy of Sciences, 2007, 1103, 19-32.	1.8	39
192	Stem cell potential for type 1 diabetes therapy. Open Life Sciences, 2007, 2, 449-480.	0.6	0
193	Enhanced Oxygenation Promotes Î ² -Cell Differentiation In Vitro. Stem Cells, 2007, 25, 3155-3164.	1.4	60
194	Prospective prediction of spontaneous but not recurrent autoimmune diabetes in the non-obese diabetic mouse. Diabetologia, 2007, 50, 1015-1023.	2.9	9

#	Article	IF	Citations
195	Improved vascular engraftment and function of autotransplanted pancreatic islets as a result of partial pancreatectomy in the mouse and rat. Diabetologia, 2007, 50, 1257-1266.	2.9	6
196	Vascular endothelial growth factor as a survival factor for human islets: effect of immunosuppressive drugs. Diabetologia, 2007, 50, 1423-1432.	2.9	44
197	Influence of diabetes on the loss of beta cell differentiation after islet transplantation in rats. Diabetologia, 2007, 50, 2117-2125.	2.9	45
198	Simultaneous islet–kidney vs pancreas–kidney transplantation in type 1 diabetes mellitus: a 5Âyear single centre follow-up. Diabetologia, 2007, 51, 110-119.	2.9	74
199	An Odyssey of Islet Transplantation for Therapy of Type 1 Diabetes. World Journal of Surgery, 2007, 31, 1569-1576.	0.8	16
200	Beta-cell replacement in immunosuppressed recipients: old and new clinical indications. Acta Diabetologica, 2007, 44, 171-176.	1.2	16
201	Islet cell transplantation today. Langenbeck's Archives of Surgery, 2007, 392, 239-253.	0.8	48
202	On the way to a diabetes cure? Improvement of glycemic control through islet transplantation with the use of a standardized common protocol. Current Diabetes Reports, 2007, 7, 89-90.	1.7	1
203	Improving islet transplantation by gene delivery of hepatocyte growth factor (HGF) and its downstream target, protein kinase B (PKB)/Akt. Cell Biochemistry and Biophysics, 2007, 48, 191-199.	0.9	20
204	Vascularized composite islet-kidney transplantation in a miniature swine model. Cell Biochemistry and Biophysics, 2007, 48, 201-207.	0.9	16
205	Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials, 2007, 28, 1957-1966.	5.7	78
206	Metabolic aspects of pig-to-monkey (Macaca fascicularis) islet transplantation: implications for translation into clinical practice. Diabetologia, 2008, 51, 120-129.	2.9	85
207	Optimising islet engraftment is critical for successful clinical islet transplantation. Diabetologia, 2008, 51, 227-232.	2.9	150
208	Beta cell mass in diabetes: a realistic therapeutic target?. Diabetologia, 2008, 51, 703-713.	2.9	141
209	Current challenges in islet transplantation. Current Diabetes Reports, 2008, 8, 324-331.	1.7	36
210	Islet transplantation at the Diabetes Research Institute Japan. Journal of Hepato-Biliary-Pancreatic Surgery, 2008, 15, 278-283.	2.0	16
211	The hyperbolic effect of density and strength of inter beta-cell coupling on islet bursting: a theoretical investigation. Theoretical Biology and Medical Modelling, 2008, 5, 17.	2.1	10
212	The current status of pancreatic islet transplantation in Britain. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2008, 25, 218-220.	0.2	0

#	Article	IF	CITATIONS
213	Assessment of Islet Graft Survival Using a 3.0â€Tesla Magnetic Resonance Scanner. Anatomical Record, 2008, 291, 1684-1692.	0.8	8
214	Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials, 2008, 29, 2878-2883.	5.7	81
215	Kidney and pancreas transplantation in type 1 diabetes mellitus. Mount Sinai Journal of Medicine, 2008, 75, 372-384.	1.9	21
216	Toward a cellâ€based cure for diabetes: advances in production and transplant of beta cells. Mount Sinai Journal of Medicine, 2008, 75, 362-371.	1.9	21
217	Induction of immune tolerance to facilitate β cell regeneration in type 1 diabetes. Advanced Drug Delivery Reviews, 2008, 60, 106-113.	6.6	19
218	Beta-cell replacement for insulin-dependent diabetes mellitus. Advanced Drug Delivery Reviews, 2008, 60, 114-123.	6.6	50
219	Characterization of pancreatic ductal cells in human islet preparations. Laboratory Investigation, 2008, 88, 1167-1177.	1.7	32
220	Noble Gene Transduction Into Pancreatic β-Cells by Singularizing Islet Cells With Low Doses of Recombinant Adenoviral Vector. Artificial Organs, 2008, 32, 188-194.	1.0	3
221	The Use of an Approved Biodegradable Polymer Scaffold as a Solid Support System for Improvement of Islet Engraftment. Artificial Organs, 2008, 32, 990-993.	1.0	35
222	Glucocorticoids reduce pro-inflammatory cytokines and tissue factorin vitroand improve function of transplanted human isletsin vivo. Transplant International, 2008, 21, 669-678.	0.8	41
223	Risk factors for islet loss during culture prior to transplantation. Transplant International, 2008, 21, 1029-35.	0.8	109
224	Nonâ€invasive detection of transplanted pancreatic islets. Diabetes, Obesity and Metabolism, 2008, 10, 88-97.	2.2	30
225	New potential treatments for protection of pancreatic B ell function in TypeÂ1 diabetes. Diabetic Medicine, 2008, 25, 1259-1267.	1.2	21
226	2007 IXA Presidential Address. Progress toward an ideal source animal: opportunities and challenges in a changing world. Xenotransplantation, 2008, 15, 7-13.	1.6	8
227	Prolonged survival of pig islets xenograft by adenovirusâ€mediated expression of either the membraneâ€bound human FasL or the human decoy Fas antigen gene. Xenotransplantation, 2008, 15, 333-343.	1.6	7
228	Clinical Magnetic Resonance Imaging of Pancreatic Islet Grafts After Iron Nanoparticle Labeling. American Journal of Transplantation, 2008, 8, 701-706.	2.6	249
229	Has Time Come for New Goals in Human Islet Transplantation?. American Journal of Transplantation, 2008, 8, 1096-1100.	2.6	32
230	Alloreactive (CD4-Independent) CD8+ T Cells Jeopardize Long-Term Survival of Intrahepatic Islet Allografts. American Journal of Transplantation, 2008, 8, 1113-1128.	2.6	14

#	Article	IF	Citations
231	Combined Islet and Hematopoietic Stem Cell Allotransplantation: A Clinical Pilot Trial to Induce Chimerism and Graft Tolerance. American Journal of Transplantation, 2008, 8, 1262-1274.	2.6	48
232	Financial Issues Constraining the Use of Pancreata Recovered for Islet Transplantation: A White Paper. American Journal of Transplantation, 2008, 8, 1588-1592.	2.6	12
233	Prolonged Insulin Independence After Islet Allotransplants in Recipients with Type 1 Diabetes. American Journal of Transplantation, 2008, 8, 2463-2470.	2.6	194
234	Gene transfer to induce insulin production for the treatment of diabetes mellitus. Expert Opinion on Drug Delivery, 2008, 5, 967-977.	2.4	3
235	Experimental hepatology applied to stem cells. Digestive and Liver Disease, 2008, 40, 54-61.	0.4	9
236	Chapter 25 Islet Transplantation for the Treatment of Type I Diabetes. Handbook of Systemic Autoimmune Diseases, 2008, 9, 275-292.	0.1	0
237	Would pancreas duct-epithelium-derived stem/progenitor cells enhance islet allograft survival by means of islets recruitment and tolerance induction in Edmonton protocol era?. Medical Hypotheses, 2008, 70, 661-664.	0.8	4
238	Factors That Affect Human Islet Isolation. Transplantation Proceedings, 2008, 40, 343-345.	0.3	63
239	Ulinastatin Is a Novel Protease Inhibitor and Neutral Protease Activator. Transplantation Proceedings, 2008, 40, 387-389.	0.3	27
240	Comprehensive Analysis of Human Pancreatic Islets Using Flow and Laser Scanning Cytometry. Transplantation Proceedings, 2008, 40, 351-354.	0.3	15
241	Rapamycin Impairs Î ² -Cell Proliferation In Vivo. Transplantation Proceedings, 2008, 40, 436-437.	0.3	25
242	Exendin-4 Does Not Promote Beta-Cell Proliferation or Survival During the Early Post-Islet Transplant Period in Mice. Transplantation Proceedings, 2008, 40, 1650-1657.	0.3	11
243	Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic β-cell differentiation in human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 366, 129-134.	1.0	61
244	GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis. Biochemical and Biophysical Research Communications, 2008, 367, 793-798.	1.0	35
245	Islet alpha cell number is maintained in microencapsulated islet transplantation. Biochemical and Biophysical Research Communications, 2008, 377, 729-733.	1.0	18
246	Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Research and Clinical Practice, 2008, 79, 389-399.	1.1	44
247	Prevention of recurrent but not spontaneous autoimmune diabetes by transplanted NOD islets adenovirally transduced with immunomodulating molecules. Diabetes Research and Clinical Practice, 2008, 80, 352-359.	1.1	7
248	Blood into β-cells: can adult stem cells be used as a therapy for Type 1 diabetes?. Regenerative Medicine, 2008, 3, 33-47.	0.8	15

#	Article	IF	CITATIONS
251	Cell Therapy for Diabetes Mellitus: An Opportunity for Stem Cells?. Cells Tissues Organs, 2008, 188, 70-77.	1.3	22
252	Liraglutide, a Long-Acting Human Glucagon-Like Peptide 1 Analog, Improves Glucose Homeostasis in Marginal Mass Islet Transplantation in Mice. Endocrinology, 2008, 149, 4322-4328.	1.4	55
253	Caspase-3 Gene Silencing for Inhibiting Apoptosis in Insulinoma Cells and Human Islets. Molecular Pharmaceutics, 2008, 5, 1093-1102.	2.3	36
254	Simultaneous Islet and Kidney Transplantation in Seven Patients With Type 1 Diabetes and End-Stage Renal Disease Using a Glucocorticoid-Free Immunosuppressive Regimen With Alemtuzumab Induction. Diabetes, 2008, 57, 2666-2671.	0.3	32
255	Extracellular Matrix Protein-Coated Scaffolds Promote the Reversal of Diabetes After Extrahepatic Islet Transplantation. Transplantation, 2008, 85, 1456-1464.	0.5	133
256	Î2-Cell Replication Is the Primary Mechanism Subserving the Postnatal Expansion of Î2-Cell Mass in Humans. Diabetes, 2008, 57, 1584-1594.	0.3	616
257	A tolerant alternative to immunosuppression. Science-Business EXchange, 2008, 1, 963-963.	0.0	0
258	Islet transplantation—the imperative need for continued clinical trials. Nature Clinical Practice Nephrology, 2008, 4, 662-663.	2.0	9
259	ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14527-14532.	3.3	151
260	Inhibition of Dipeptidyl Peptidase IV With Sitagliptin (MK0431) Prolongs Islet Graft Survival in Streptozotocin-Induced Diabetic Mice. Diabetes, 2008, 57, 1331-1339.	0.3	79
261	The Caspase Selective Inhibitor EP1013 Augments Human Islet Graft Function and Longevity in Marginal Mass Islet Transplantation in Mice. Diabetes, 2008, 57, 1556-1566.	0.3	55
262	Thrombosis and Inflammation in Intraportal Islet Transplantation: A Review of Pathophysiology and Emerging Therapeutics. Journal of Diabetes Science and Technology, 2008, 2, 746-759.	1.3	26
263	Improved Vascular Engraftment and Graft Function After Inhibition of the Angiostatic Factor Thrombospondin-1 in Mouse Pancreatic Islets. Diabetes, 2008, 57, 1870-1877.	0.3	57
265	From Endothelial to β Cells: Insights into Pancreatic Islet Microendothelium. Current Diabetes Reviews, 2008, 4, 1-9.	0.6	68
266	The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Biotechnology Annual Review, 2008, 14, 275-296.	2.1	43
267	Islet Cell Therapy and Pancreatic Stem Cells. , 2008, , 398-417.		0
268	Metabolic and Immunological Features of the Failing Islet-Transplanted Patient. Diabetes Care, 2008, 31, 436-438.	4.3	23
269	Pancreatic Duct Cells in Human Islet Cell Preparations Are a Source of Angiogenic Cytokines Interleukin-8 and Vascular Endothelial Growth Factor. Diabetes, 2008, 57, 2128-2136.	0.3	45

#	Article	IF	CITATIONS
270	Impact of Islet Transplantation on Glycemic Control as Evidenced by a Continuous Glucose Monitoring System. Journal of Diabetes Science and Technology, 2008, 2, 221-228.	1.3	22
271	Cyclin-Dependent Kinase 4 Hyperactivity Promotes Autoreactivity in the Immune System but Protects Pancreatic β Cell Mass from Autoimmune Destruction in the Nonobese Diabetic Mouse Model. Journal of Immunology, 2008, 180, 1189-1198.	0.4	9
272	Cellular Therapies for Type 1 Diabetes. Hormone and Metabolic Research, 2008, 40, 147-154.	0.7	22
273	Resolving the Conundrum of Islet Transplantation by Linking Metabolic Dysregulation, Inflammation, and Immune Regulation. Endocrine Reviews, 2008, 29, 603-630.	8.9	57
274	Generation of Insulin-producing Beta Cells from Stem Cells - Perspectives for Cell Therapy in Type 1 Diabetes. Hormone and Metabolic Research, 2008, 40, 155-161.	0.7	27
275	A New Method for Incorporating Functional Heparin onto the Surface of Islets of Langerhans. Tissue Engineering - Part C: Methods, 2008, 14, 141-147.	1.1	26
276	Overexpression of Pre-Pro-Cholecystokinin Stimulates Î ² -Cell Proliferation in Mouse and Human Islets with Retention of Islet Function. Molecular Endocrinology, 2008, 22, 2716-2728.	3.7	14
277	Pancreatic Islet Transplantation and Regeneration for Diabetes mellitus Treatment. Proceedings of the Latvian Academy of Sciences, 2008, 62, 199-208.	0.0	0
278	The Use of Exenatide in Islet Transplant Recipients with Chronic Allograft Dysfunction: Safety, Efficacy, and Metabolic Effects. Transplantation, 2008, 86, 36-45.	0.5	81
279	Use of a systems biology approach to understand pancreatic β-cell death in TypeÂ1 diabetes. Biochemical Society Transactions, 2008, 36, 321-327.	1.6	42
280	Donor and Isolation Variables Predicting Human Islet Isolation Success. Transplantation, 2008, 85, 950-955.	0.5	66
281	Improvement of Canine Islet Yield by Donor Pancreas Infusion With a p38MAPK Inhibitor. Transplantation, 2008, 86, 321-329.	0.5	26
282	Pathology of an Islet Transplant 2 Years After Transplantation: Evidence for a Nonimmunological Loss. Transplantation, 2008, 86, 54-62.	0.5	32
283	Improved Long-Term Health-Related Quality of Life After Islet Transplantation. Transplantation, 2008, 86, 1161-1167.	0.5	69
284	Effects of Glucose Toxicity and Islet Purity on In Vivo Magnetic Resonance Imaging of Transplanted Pancreatic Islets. Transplantation, 2008, 85, 1091-1098.	0.5	26
285	Late Epstein Barr Virus Reactivation in Islet After Kidney Transplantation. Transplantation, 2008, 86, 1324-1325.	0.5	4
286	Exendin-4 Treatment Expands Graft Î ² -Cell Mass in Diabetic Mice Transplanted with a Marginal Number of Fresh Islets. Cell Transplantation, 2008, 17, 641-647.	1.2	19
287	The Choice of Anatomical Site for Islet Transplantation. Cell Transplantation, 2008, 17, 1005-1014.	1.2	95

#	Article	IF	CITATIONS
288	Anti-Proinflammatory Effects of Sirolimus on Human Islet Preparations. Transplantation, 2008, 86, 46-53.	0.5	20
289	A Multi-Year Analysis of Islet Transplantation Compared With Intensive Medical Therapy on Progression of Complications in Type 1 Diabetes. Transplantation, 2008, 86, 1762-1766.	0.5	138
290	Comparison of Sirolimus Alone With Sirolimus Plus Tacrolimus in Type 1 Diabetic Recipients of Cultured Islet Cell Grafts. Transplantation, 2008, 85, 256-263.	0.5	33
291	Low Risk of Anti-Human Leukocyte Antigen Antibody Sensitization After Combined Kidney and Islet Transplantation. Transplantation, 2008, 86, 357-359.	0.5	24
292	Three-dimensional image study on the vascular structure after angiopoietin-1 transduction in isolated mouse pancreatic islets. , 2008, , .		2
293	Isolating Human Islets of Langerhans Causes Loss of Decay Accelerating Factor (CD55) on β-Cells. Cell Transplantation, 2008, 17, 1349-1359.	1.2	6
294	Pig Islet Xenotransplantation Into Non-human Primate Model. Transplantation, 2008, 86, 753-760.	0.5	48
295	Long-Term Insulin Independence and Improvement in Insulin Secretion After Supplemental Islet Infusion Under Exenatide and Etanercept. Transplantation, 2008, 86, 1658-1665.	0.5	92
296	Improved Metabolic Control and Quality of Life in Seven Patients With Type 1 Diabetes Following Islet After Kidney Transplantation. Transplantation, 2008, 85, 801-812.	0.5	74
297	Reduced Progression of Diabetic Retinopathy After Islet Cell Transplantation Compared With Intensive Medical Therapy. Transplantation, 2008, 85, 1400-1405.	0.5	69
298	Islets Isolated From Donors With Elevated HbA1c Can Be Successfully Transplanted. Transplantation, 2008, 86, 1622-1624.	0.5	7
299	Monotherapy with Anti-LFA-1 Monoclonal Antibody Promotes Long-Term Survival of Rat Islet Xenografts. Cell Transplantation, 2008, 17, 599-608.	1.2	16
300	Islet Autotransplant Outcomes After Total Pancreatectomy: A Contrast to Islet Allograft Outcomes. Transplantation, 2008, 86, 1799-1802.	0.5	167
301	Acute Antibody-Mediated Complement Activation Mediates Lysis of Pancreatic Islets Cells and May Cause Tissue Loss in Clinical Islet Transplantation. Transplantation, 2008, 85, 1193-1199.	0.5	73
302	A Peptide-Major Histocompatibility Complex II Chimera Favors Survival of Pancreatic β-Ιslets Grafted in Type 1 Diabetic Mice. Transplantation, 2008, 85, 1717-1725.	0.5	5
303	Islet Transplantation with Alemtuzumab Induction and Calcineurin-Free Maintenance Immunosuppression Results in Improved Short- and Long-Term Outcomes. Transplantation, 2008, 86, 1695-1701.	0.5	55
304	Genetic manipulation of islet cells in autoimmune diabetes: from bench to bedside. Frontiers in Bioscience - Landmark, 2008, Volume, 6155.	3.0	3
305	Clinical experience with an implanted closed-loop insulin delivery system. Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 349-354.	1.3	12

		CITATION REPORT		
#	Article		IF	CITATIONS
306	Pancreas Transplantation. Annals of the Royal College of Surgeons of England, 2008, 9	90, 368-370.	0.3	4
307	Gene Expression Profiling of a Mouse Model of Pancreatic Islet Dysmorphogenesis. PLo e1611.	oS ONE, 2008, 3,	1.1	19
308	Cellular Islet Autoimmunity Associates with Clinical Outcome of Islet Cell Transplantat 2008, 3, e2435.	ion. PLoS ONE,	1.1	172
309	Gene Therapy in Type 1 Diabetes. Critical Reviews in Immunology, 2008, 28, 301-324.		1.0	7
310	Rapamycin Inhibits Growth Factor-Induced Cell Cycle Regulation in Pancreatic β Cells. Investigative Medicine, 2008, 56, 985-996.	Journal of	0.7	9
312	Long-Term Metabolic and Hormonal Effects of Exenatide on Islet Transplant Recipients Dysfunction. Cell Transplantation, 2009, 18, 1247-1259.	with Allograft	1.2	48
314	Antiapoptotic Effect of Tacrolimus on Cytokine-Challenged Human Islets. Cell Transpla 18, 1237-1246.	intation, 2009,	1.2	7
315	The Toll-Like Receptor Signaling Molecule Myd88 Contributes to Pancreatic Beta-Cell I Response to Injury. PLoS ONE, 2009, 4, e5063.	Homeostasis in	1.1	39
316	Dipeptidyl Peptidase IV Inhibition With MK0431 Improves Islet Graft Survival in Diabet Partially via T-Cell Modulation. Diabetes, 2009, 58, 641-651.	ic NOD Mice	0.3	100
317	Use of Continuous Glucose Monitoring System in the Management of Severe Hypogly Technology and Therapeutics, 2009, 11, 635-639.	cemia. Diabetes	2.4	19
318	Vascular niche of pancreatic islets. Expert Review of Endocrinology and Metabolism, 2	009, 4, 481-491.	1.2	4
319	Differences in Baseline Lymphocyte Counts and Autoreactivity Are Associated With Di Outcome of Islet Cell Transplantation in Type 1 Diabetic Patients. Diabetes, 2009, 58,	fferences in 2267-2276.	0.3	96
320	Point: Steady Progress and Current Challenges in Clinical Islet Transplantation. Diabet 32, 1563-1569.	es Care, 2009,	4.3	64
321	Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny i Stirred-Suspension Culture. Tissue Engineering - Part A, 2009, 15, 2051-2063.	n a Microcarrier	1.6	174
322	Review of vitreous islet cryopreservation. Organogenesis, 2009, 5, 155-166.		0.4	39
323	Monitoring neovascularization of intraportal islet grafts by dynamic contrast enhance resonance imaging. Islets, 2009, 1, 249-255.	d magnetic	0.9	15
324	Rapamycin does not adversely affect intrahepatic islet engraftment in mice and impro- engraftment in humans. Islets, 2009, 1, 42-49.	ves early islet	0.9	14
325	Immobilization of primary cultures of insulin-releasing human pancreatic cells. Islets, 2	009, 1, 224-231.	0.9	5

#	Article	IF	CITATIONS
326	Prolactin Treatment Improves Engraftment and Function of Transplanted Pancreatic Islets. Endocrinology, 2009, 150, 1646-1653.	1.4	34
327	AEB-071 has minimal impact on onset of autoimmune diabetes in NOD mice. Autoimmunity, 2009, 42, 242-248.	1.2	7
328	Allotransplantation of Sulphate Glucomannan-Alginate Barium (SGA)-Microencapsulated Rat Islets for the Treatment of Diabetes Mellitus. Immunological Investigations, 2009, 38, 561-571.	1.0	7
329	Cellular xenotransplantation. Current Opinion in Organ Transplantation, 2009, 14, 168-174.	0.8	25
330	Porcine Marginal Mass Islet Autografts Resist Metabolic Failure Over Time and Are Enhanced by Early Treatment with Liraglutide. Endocrinology, 2009, 150, 2145-2152.	1.4	36
331	Primary Graft Function, Metabolic Control, and Graft Survival After Islet Transplantation. Diabetes Care, 2009, 32, 1473-1478.	4.3	146
332	Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E323-E332.	1.8	11
333	Counterpoint: Clinical Islet Transplantation: Not Ready for Prime Time. Diabetes Care, 2009, 32, 1570-1574.	4.3	17
334	Review: The importance of residual endogenous beta-cell preservation in type 1 diabetes. British Journal of Diabetes and Vascular Disease, 2009, 9, 248-253.	0.6	11
335	Current Advances and Travails in Islet Transplantation. Diabetes, 2009, 58, 2175-2184.	0.3	174
336	Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8659-8664.	3.3	89
337	An update on preventive and regenerative therapies in diabetes mellitus. , 2009, 121, 317-331.		47
338	Allograft-Specific Cytokine Profiles Associate with Clinical Outcome After Islet Cell Transplantation. American Journal of Transplantation, 2009, 9, 382-388.	2.6	68
339	Long-Term Insulin-Independence After Allogeneic Islet Transplantation for Type 1 Diabetes: Over the 10-Year Mark. American Journal of Transplantation, 2009, 9, 419-423.	2.6	75
340	Tirofiban and Activated Protein C Synergistically Inhibit the Instant Blood Mediated Inflammatory Reaction (IBMIR) from Allogeneic Islet Cells Exposure to Human Blood. American Journal of Transplantation, 2009, 9, 1533-1540.	2.6	28
341	Impaired Proinsulin Processing is a Characteristic of Transplanted Islets. American Journal of Transplantation, 2009, 9, 2119-2125.	2.6	18
342	Endoscopic Gastric Submucosal Transplantation of Islets (ENDO-STI): Technique and Initial Results in Diabetic Pigs. American Journal of Transplantation, 2009, 9, 2485-2496.	2.6	72
343	Positron Emission Tomography in Clinical Islet Transplantation. American Journal of Transplantation, 2009, 9, 2816-2824.	2.6	144

#	Article	IF	CITATIONS
344	Long-Term Controlled Normoglycemia in Diabetic Non-Human Primates After Transplantation with hCD46 Transgenic Porcine Islets. American Journal of Transplantation, 2009, 9, 2716-2726.	2.6	246
345	Media and Extra Cellular Matrix Requirements for Large-Scale ESC Growth. , 0, , 249-274.		1
346	A novel alginate hollow fiber bioreactor process for cellular therapy applications. Biotechnology Progress, 2009, 25, 1740-1751.	1.3	19
347	Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2009, 22, 257-265.	1.1	49
348	Insulin-producing cells derived from stem/progenitor cells: therapeutic implications for diabetes mellitus. Medical Molecular Morphology, 2009, 42, 195-200.	0.4	21
349	Islet cell transplantation for the treatment of type 1 diabetes in the USA. Journal of Hepato-Biliary-Pancreatic Surgery, 2009, 16, 118-123.	2.0	28
350	Current status of islet cell transplantation. Journal of Hepato-Biliary-Pancreatic Surgery, 2009, 16, 101-112.	2.0	82
351	Diabetes mellitus and apoptosis: inflammatory cells. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1435-1450.	2.2	17
352	Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomaterialia, 2009, 5, 3433-3440.	4.1	50
353	Implications of the 2008 update from the collaborative islet transplant registry. Current Diabetes Reports, 2009, 9, 258-259.	1.7	2
357	Amyloid formation results in recurrence of hyperglycaemia following transplantation of human IAPP transgenic mouse islets. Diabetologia, 2009, 52, 145-153.	2.9	61
358	The synthetic liver X receptor agonist GW3965 reduces tissue factor production and inflammatory responses in human islets in vitro. Diabetologia, 2009, 52, 1352-1362.	2.9	15
359	Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia, 2009, 52, 2594-2601.	2.9	50
360	Insulin but Not Glucagon Gene is Silenced in Human Pancreas-Derived Mesenchymal Stem Cells. Stem Cells, 2009, 27, 2703-2711.	1.4	15
361	Relevance of cytotoxic alloreactivity under different immunosuppressive regimens in clinical islet cell transplantation. Clinical and Experimental Immunology, 2009, 156, 141-148.	1.1	41
362	Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic Î ² -cells to correct diabetes in allogeneic mice. Gene Therapy, 2009, 16, 340-348.	2.3	10
363	Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial–mesenchymal transition is an artifact of cell culture. Laboratory Investigation, 2009, 89, 110-121.	1.7	31
364	Rapamycin in islet transplantation: friend or foe?. Transplant International, 2009, 22, 153-161.	0.8	36

#	Article	IF	CITATIONS
365	Minimization and withdrawal of steroids in pancreas and islet transplantation. Transplant International, 2009, 22, 20-37.	0.8	41
366	Effect of short-term culture on functional and stress-related parameters in isolated human islets. Transplant International, 2009, 22, 207-216.	0.8	40
367	False aneurysm of a hepatic artery branch complicating intrahepatic islet transplantation. Transplant International, 2009, 22, 663-666.	0.8	5
368	High prevalence of ovarian cysts in premenopausal women receiving sirolimus and tacrolimus after clinical islet transplantation. Transplant International, 2009, 22, 622-625.	0.8	31
369	Immunomodulation by blockade of the TRANCE co-stimulatory pathway in murine allogeneic islet transplantation. Transplant International, 2009, 22, 931-939.	0.8	8
370	Angiostatic factors normally restrict islet endothelial cell proliferation and migration: implications for islet transplantation. Transplant International, 2009, 22, 1182-1188.	0.8	17
371	<i>In vivo</i> imaging demonstrates a timeâ€line for new vessel formation in islet transplantation. Pediatric Transplantation, 2009, 13, 892-897.	0.5	35
372	Chapter 6: Patient selection for pilot clinical trials of islet xenotransplantation. Xenotransplantation, 2009, 16, 249-254.	1.6	20
373	<i>In vitro</i> (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatric Diabetes, 2009, 10, 413-419.	1.2	15
374	Total pancreatectomy with islet autotransplantation: an overview. Hpb, 2009, 11, 613-621.	0.1	49
375	Stem Cells to Pancreatic β-Cells: New Sources for Diabetes Cell Therapy. Endocrine Reviews, 2009, 30, 214-227.	8.9	97
376	Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes and Metabolism, 2009, 35, 85-93.	1.4	144
377	Induction of Diabetes in Rhesus Monkeys and Establishment of Insulin Administration Strategy. Transplantation Proceedings, 2009, 41, 413-417.	0.3	17
378	Rapamycin Induces Autophagy in Islets: Relevance in Islet Transplantation. Transplantation Proceedings, 2009, 41, 334-338.	0.3	31
379	Purification Method Using Iodixanol (OptiPrep)-Based Density Gradient Significantly Reduces Cytokine Chemokine Production From Human Islet Preparations, Leading to Prolonged Î2-Cell Survival During Pretransplantation Culture. Transplantation Proceedings, 2009, 41, 314-315.	0.3	23
380	Mammalian Target of Rapamycin and Diabetes: What Does the Current Evidence Tell Us?. Transplantation Proceedings, 2009, 41, S31-S38.	0.3	37
381	Influence of Human Allogenic Bone Marrow and Cord Blood–Derived Mesenchymal Stem Cell Secreting Trophic Factors on ATP (adenosine-5′-triphosphate)/ADP (adenosine-5′-diphosphate) Ratio and Insulin Secretory Function of Isolated Human Islets From Cadaveric Donor. Transplantation Proceedings, 2009, 41, 3813-3818.	0.3	56
382	Improved Islet Survival and Funtion With Rat Endothelial Cells In Vitro Co-Culture. Transplantation Proceedings, 2009, 41, 4302-4306.	0.3	7

#	Article	IF	CITATIONS
383	Factors influencing the regulation of cytokine balance during islet transplantation in mice. Transplant Immunology, 2009, 20, 186-194.	0.6	4
384	Overexpression of suppressor of cytokine signaling 1 in islet grafts results in anti-apoptotic effects and prolongs graft survival. Life Sciences, 2009, 84, 810-816.	2.0	12
385	Do immunotherapy and ß cell replacement play a synergistic role in the treatment of type 1 diabetes?. Life Sciences, 2009, 85, 549-556.	2.0	14
386	Pulsatile intravenous insulin therapy: The best practice to reverse diabetes complications?. Medical Hypotheses, 2009, 73, 363-369.	0.8	13
387	Delayed improvement of insulin secretion after autologous islet transplantation in partially pancreatectomized patients. Metabolism: Clinical and Experimental, 2009, 58, 1629-1635.	1.5	16
388	Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors. Virology Journal, 2009, 6, 61.	1.4	12
389	Pancreatic islet transplantation. Diabetology and Metabolic Syndrome, 2009, 1, 9.	1.2	20
390	Artificial pancreas: an emerging approach to treat Type 1 diabetes. Expert Review of Medical Devices, 2009, 6, 401-410.	1.4	50
391	Alginate Modification Improves Long-Term Survival and Function of Transplanted Encapsulated Islets. Tissue Engineering - Part A, 2009, 15, 1301-1309.	1.6	71
392	Seeding of Pancreatic Islets into Prevascularized Tissue Engineering Chambers. Tissue Engineering - Part A, 2009, 15, 3823-3833.	1.6	47
394	Adenoviral infection or deferoxamine? Two approaches to overexpress VEGF in β-cell lines. Journal of Drug Targeting, 2009, 17, 415-422.	2.1	8
395	Early Metabolic Markers of Islet Allograft Dysfunction. Transplantation, 2009, 87, 689-697.	0.5	19
396	MRI Assessment of Ischemic Liver After Intraportal Islet Transplantation. Transplantation, 2009, 87, 825-830.	0.5	47
397	Long-Term Metabolic Control of Autoimmune Diabetes in Spontaneously Diabetic Nonobese Diabetic Mice by Nonvascularized Microencapsulated Adult Porcine Islets. Transplantation, 2009, 88, 160-169.	0.5	57
398	Oleanolic Acid, a Plant Triterpenoid, Significantly Improves Survival and Function of Islet Allograft. Transplantation, 2009, 88, 987-994.	0.5	26
399	Histologic Graft Assessment After Clinical Islet Transplantation. Transplantation, 2009, 88, 1286-1293.	0.5	74
400	Protein Kinase C Inhibitor, AEB-071, Acts Complementarily With Cyclosporine to Prevent Islet Rejection in Rats. Transplantation, 2009, 87, 59-65.	0.5	12
401	Islet Grafting and Imaging in a Bioengineered Intramuscular Space. Transplantation, 2009, 88, 1065-1074.	0.5	35

#	Article	IF	CITATIONS
402	Intraperitoneal Insulin Infusion Versus Islet Transplantation: Comparative Study in Patients with Type 1 Diabetes. Transplantation, 2009, 87, 66-71.	0.5	32
403	ATP Measurement Predicts Porcine Islet Transplantation Outcome in Nude Mice. Transplantation, 2009, 87, 166-169.	0.5	23
404	Toward Improving Human Islet Isolation from Younger Donors: Rescue Purification is Efficient for Trapped Islets. Cell Transplantation, 2009, 18, 13-22.	1.2	23
405	Pig islets for clinical islet xenotransplantation. Current Opinion in Nephrology and Hypertension, 2009, 18, 495-500.	1.0	20
406	Low Revascularization of Human Islets When Experimentally Transplanted Into the Liver. Transplantation, 2009, 87, 322-325.	0.5	58
407	Evidence for Induced Expression of HLA Class II on Human Islets: Possible Mechanism for HLA Sensitization in Transplant Recipients. Transplantation, 2009, 87, 500-506.	0.5	20
408	Type 2 Diabetes Mellitus Phenotype and Graft Survival After Islet Transplantation. Transplantation, 2009, 88, 57-61.	0.5	9
409	Islet Alone Versus Islet After Kidney Transplantation: Metabolic Outcomes and Islet Graft Survival. Transplantation, 2009, 88, 820-825.	0.5	26
410	Human β-cell Precursors Mature Into Functional Insulin-producing Cells in an Immunoisolation Device: Implications for Diabetes Cell Therapies. Transplantation, 2009, 87, 983-991.	0.5	99
412	Making the Pancreatic β-cells from IPS Cells. The Journal of the Japanese Society of Internal Medicine, 2009, 98, 3148-3153.	0.0	0
414	Tracking Intrahepatically Transplanted Islets Labeled With Feridex-Polyethyleneimine Complex Using a Clinical 3.0-T Magnetic Resonance Imaging Scanner. Pancreas, 2009, 38, 293-302.	0.5	20
415	Clinical Use of Fructosamine in Islet Transplantation. Cell Transplantation, 2009, 18, 453-458.	1.2	8
416	Different Effects of FK506, Rapamycin, and Mycophenolate Mofetil on Glucose-Stimulated Insulin Release and Apoptosis in Human Islets. Cell Transplantation, 2009, 18, 833-845.	1.2	144
417	Stable Renal Function After Islet Transplantation: Importance of Patient Selection and Aggressive Clinical Management. Transplantation, 2009, 87, 681-688.	0.5	33
418	Islet Allograft Rejection Is Independent of Toll-Like Receptor Signaling in Mice. Transplantation, 2009, 88, 1075-1080.	0.5	22
419	Microassay for Glucose-Induced Preproinsulin mRNA Expression to Assess Islet Functional Potency for Islet Transplantation. Transplantation, 2010, 89, 146-154.	0.5	14
420	Bone Marrow Cell Cotransplantation With Islets Improves Their Vascularization and Function. Transplantation, 2010, 89, 686-693.	0.5	69
421	Prolactin Supplementation to Culture Medium Improves β-Cell Survival. Transplantation, 2010, 89, 1328-1335.	0.5	32

#	Article	IF	CITATIONS
423	Calcium Phosphate Cement Chamber as an Immunoisolative Device for Bioartificial Pancreas. Pancreas, 2010, 39, 444-451.	0.5	5
424	Antiproinflammatory Effects of Iodixanol (OptiPrep)-Based Density Gradient Purification on Human Islet Preparations. Cell Transplantation, 2010, 19, 1537-1546.	1.2	37
425	Insulin-Heparin Infusions Peritransplant Substantially Improve Single-Donor Clinical Islet Transplant Success. Transplantation, 2010, 89, 465-471.	0.5	108
426	Donor Pancreata: Evolving Approaches to Organ Allocation for Whole Pancreas Versus Islet Transplantation. Transplantation, 2010, 90, 238-243.	0.5	58
427	P38α-Selective Mitogen-Activated Protein Kinase Inhibitor for Improvement of Cultured Human Islet Recovery. Pancreas, 2010, 39, 436-443.	0.5	11
428	New Stepwise Cooling System for Short-Term Porcine Islet Preservation. Pancreas, 2010, 39, 960-963.	0.5	12
429	Supplemental Islet Infusions Restore Insulin Independence After Graft Dysfunction in Islet Transplant Recipients. Transplantation, 2010, 89, 361-365.	0.5	33
430	Low-Temperature Preservation of Isolated Islets is Superior to Conventional Islet Culture Before Islet Transplantation. Transplantation, 2010, 89, 47-54.	0.5	43
431	Improved Second Phase Insulin Secretion and Preserved Insulin Sensitivity After Islet Transplantation. Transplantation, 2010, 89, 1291-1292.	0.5	4
432	Islet Transplantation Using Donors After Cardiac Death: Report of the Japan Islet Transplantation Registry. Transplantation, 2010, 90, 740-747.	0.5	51
433	Cooperative Signaling for Angiogenesis and Neovascularization by VEGF and HGF Following Islet Transplantation. Transplantation, 2010, 90, 725-731.	0.5	65
434	Quantitative Assessment of Î ² -Cell Apoptosis and Cell Composition of Isolated, Undisrupted Human Islets by Laser Scanning Cytometry. Transplantation, 2010, 90, 836-842.	0.5	21
435	Combined Transplantation of Pancreatic Islets and Adipose Tissue-Derived Stem Cells Enhances the Survival and Insulin Function of Islet Grafts in Diabetic Mice. Transplantation, 2010, 90, 1366-1373.	0.5	76
436	Distinct Requirements for Achievement of Allotolerance Versus Reversal of Autoimmunity via Nonmyeloablative Mixed Chimerism Induction in NOD Mice. Transplantation, 2010, 89, 23-32.	0.5	22
437	Intramedullary Cavity as an Implant Site for Bioartificial Pancreas: An In Vivo Study on Diabetic Canine. Transplantation, 2010, 90, 604-611.	0.5	6
438	Design of a Bioartificial Pancreas. Journal of Investigative Medicine, 2010, 58, 831-837.	0.7	94
439	Are stem cells a cure for diabetes?. Clinical Science, 2010, 118, 87-97.	1.8	49
440	Update on Transplanting Beta Cells for Reversing Type 1 Diabetes. Endocrinology and Metabolism Clinics of North America, 2010, 39, 655-667.	1.2	15

	CITATIC	IN REPORT	
#	Article	IF	CITATIONS
441	Stem cell and gene therapies for diabetes mellitus. Nature Reviews Endocrinology, 2010, 6, 173-177.	4.3	27
442	Blockade of interleukin 1 in type 1 diabetes mellitus. Nature Reviews Endocrinology, 2010, 6, 158-166.	4.3	204
443	Bioartificial pancreas. Advanced Drug Delivery Reviews, 2010, 62, 827-840.	6.6	167
444	In Vivo Regeneration of Insulin-Producing β-Cells. Advances in Experimental Medicine and Biology, 2010, 654, 627-640.	0.8	12
445	Successes and Disappointments with Clinical Islet Transplantation. Advances in Experimental Medicine and Biology, 2010, 654, 749-769.	0.8	16
446	Human Islet Autotransplantation: The Trail Thus Far and the Highway Ahead. Advances in Experimental Medicine and Biology, 2010, 654, 711-724.	0.8	6
447	The Long Road to Pancreatic Islet Transplantation. World Journal of Surgery, 2010, 34, 625-627.	0.8	6
448	Amelioration of hyperglycemia by intestinal overexpression of glucagon-like peptide-1 in mice. Journal of Molecular Medicine, 2010, 88, 351-358.	1.7	12
449	Human islet cell implants in a nude rat model of diabetes survive better in omentum than in liver with a positive influence of beta cell number and purity. Diabetologia, 2010, 53, 1690-1699.	2.9	38
450	In vivo non-viral gene delivery of human vascular endothelial growth factor improves revascularisation and restoration of euglycaemia after human islet transplantation into mouse liver. Diabetologia, 2010, 53, 1669-1679.	2.9	53
451	Inhibition of TLR4 signaling prolongs Treg-dependent murine islet allograft survival. Immunology Letters, 2010, 127, 119-125.	1.1	32
452	Tissue transplantation by stealth—Coherent alginate microcapsules for immunoisolation. Biochemical Engineering Journal, 2010, 48, 337-347.	1.8	30
453	Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials, 2010, 31, 420-427.	5.7	298
454	Diabetes mellitus: new challenges and innovative therapies. EPMA Journal, 2010, 1, 138-163.	3.3	48
456	Islet Versus Pancreas Transplantation in Type 1 Diabetes: Competitive or Complementary?. Current Diabetes Reports, 2010, 10, 506-511.	1.7	41
457	Transfection of pancreatic islets using polyvalent DNA-functionalized gold nanoparticles. Surgery, 2010, 148, 335-345.	1.0	38
459	Functional MRI characterization of isolated human islet activation. NMR in Biomedicine, 2010, 23, 1158-1165.	1.6	23
460	Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactor. Biotechnology and Bioengineering, 2010, 107, 582-592.	1.7	9

#	Article	IF	CITATIONS
461	Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Laboratory Investigation, 2010, 90, 1661-1675.	1.7	137
462	Islet cell transplantation for Type 1 diabetes. Journal of Diabetes, 2010, 2, 16-22.	0.8	79
463	Correction of insulin sensitivity and glucose disposal after pancreatic islet transplantation: preliminary results. Diabetes, Obesity and Metabolism, 2010, 12, 994-1003.	2.2	19
464	Patientâ€reported outcomes following islet cell or pancreas transplantation (alone or after kidney) in Type 1 diabetes: a systematic review. Diabetic Medicine, 2010, 27, 812-822.	1.2	56
465	Suppressing memory T cell activation induces islet allograft tolerance in alloantigen-primed mice. Transplant International, 2010, 23, 1154-1163.	0.8	25
466	Hyperbaric oxygen therapy improves early posttransplant islet function. Pediatric Diabetes, 2010, 11, 471-478.	1.2	37
467	Transplantation Options in Type 1 Diabetes with End Stage Renal Disease. The Journal of the Korean Society for Transplantation, 2010, 24, 69-72.	0.2	0
468	Stem cells as a therapeutic target for diabetes. Frontiers in Bioscience - Landmark, 2010, 15, 461.	3.0	42
469	One Hundred Human Pancreatic Islet Isolations at Baylor Research Institute. Baylor University Medical Center Proceedings, 2010, 23, 341-348.	0.2	21
470	Comparison of Four Pancreatic Islet Implantation Sites. Journal of Korean Medical Science, 2010, 25, 203.	1.1	65
471	Assessment of Islet Quality following International Shipping of more than 10,000 km. Cell Transplantation, 2010, 19, 731-741.	1.2	21
472	Islet Transplantation a Decade Later and Strategies for Filling a Half-Full Glass. Diabetes, 2010, 59, 1285-1291.	0.3	104
473	Redox Modulation Protects Islets From Transplant-Related Injury. Diabetes, 2010, 59, 1731-1738.	0.3	61
474	Treatment of Diabetes with Encapsulated Islets. Advances in Experimental Medicine and Biology, 2010, 670, 38-53.	0.8	59
475	Pancreas and Islet Transplantation. , 2010, , 1232-1244.		0
476	Generating pancreatic β-cells from embryonic stem cells by manipulating signaling pathways. Journal of Endocrinology, 2010, 206, 13-26.	1.2	53
477	Therapeutic Applications of Cell Microencapsulation. Advances in Experimental Medicine and Biology, 2010, , .	0.8	3
478	Short-Term Administrations of a Combination of Anti–LFA-1 and Anti-CD154 Monoclonal Antibodies Induce Tolerance to Neonatal Porcine Islet Xenografts in Mice. Diabetes, 2010, 59, 958-966.	0.3	41

# 479	ARTICLE Clinical and Experimental Pancreatic Islet Transplantation to Striated Muscle. Diabetes, 2010, 59, 2569-2578.	IF 0.3	CITATIONS
480	Anchoring of Vascular Endothelial Growth Factor to Surface-Immobilized Heparin on Pancreatic Islets: Implications for Stimulating Islet Angiogenesis. Tissue Engineering - Part A, 2010, 16, 961-970.	1.6	48
481	Surgical aspects of human islet isolation. Islets, 2010, 2, 265-273.	0.9	40
482	Role of Imaging in Clinical Islet Transplantation. Radiographics, 2010, 30, 353-366.	1.4	54
483	Regulated Expansion of Human Pancreatic \hat{l}^2 -Cells. Molecular Therapy, 2010, 18, 1389-1396.	3.7	4
484	The isolated pancreatic islet as a micro-organ and its transplantation to cure diabetes. Islets, 2010, 2, 210-224.	0.9	16
485	FGF-21 enhances islet engraftment in mouse syngeneic islet transplantation model. Islets, 2010, 2, 247-251.	0.9	25
486	Cytoprotective effect of low-dose tacrolimus on islets of Langerhans in cultures subjected to stimulation by acute rejection cytokines. CirugÃa Española (English Edition), 2010, 87, 372-377.	0.1	1
487	Current Status of Islet Cell Replacement and Regeneration Therapy. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1034-1043.	1.8	84
488	XIAP Gene Expression Protects Î ² -Cells and Human Islets from Apoptotic Cell Death. Molecular Pharmaceutics, 2010, 7, 1655-1666.	2.3	25
489	<i>In Vivo</i> Selection of Biocompatible Alginates for Islet Encapsulation and Subcutaneous Transplantation. Tissue Engineering - Part A, 2010, 16, 1503-1513.	1.6	86
490	Omental Roll-Up: A Technique for Islet Engraftment in a Large Animal Model. Journal of Surgical Research, 2010, 161, 134-138.	0.8	25
491	Cell therapy for diabetes: Stem cells, progenitors or beta-cell replication?. Molecular and Cellular Endocrinology, 2010, 323, 55-61.	1.6	18
492	Interests in beta-cell replacement therapies among Japanese patients with type 1 diabetes. Diabetes Research and Clinical Practice, 2010, 89, e5-e8.	1.1	16
493	Silencing inducible nitric oxide synthase protects rat pancreatic islet. Diabetes Research and Clinical Practice, 2010, 89, 268-275.	1.1	10
494	Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochemical and Biophysical Research Communications, 2010, 397, 679-684.	1.0	9
495	Isolation and Purification of Islet Cells From Adult Pigs. Transplantation Proceedings, 2010, 42, 1830-1834.	0.3	5
496	Suppressor of Cytokine Signaling 1 Inhibits Apoptosis of Islet Grafts Through Caspase 3 and Apoptosis-Inducing Factor Pathways in Rats. Transplantation Proceedings, 2010, 42, 2658-2661.	0.3	14

#	Article	IF	CITATIONS
497	Cartilage Oligomeric Matrix Protein–Angiopoientin-1 Enhances Angiogenesis of Isolated Islet and Maintains Normoglycemia Following Transplantation. Transplantation Proceedings, 2010, 42, 2653-2657.	0.3	8
498	Assessment of Human Islet Isolation With Four Different Collagenases. Transplantation Proceedings, 2010, 42, 2049-2051.	0.3	15
499	Improved Method of Human Islet Isolation for Young Donors. Transplantation Proceedings, 2010, 42, 2024-2026.	0.3	13
500	Super-High-Dose Islet Transplantation Is Associated With High SUITO Index and Prolonged Insulin Independence: A Case Report. Transplantation Proceedings, 2010, 42, 2156-2158.	0.3	9
501	Secretory Unit of Islet Transplant Objects (SUITO) Index Can Predict Outcome of Intravenous Glucose Tolerance Test. Transplantation Proceedings, 2010, 42, 2065-2067.	0.3	10
502	Magnetic Resonance Imaging of Transplanted Mouse Islets Labeled With Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles. Transplantation Proceedings, 2010, 42, 2104-2108.	0.3	39
503	Prolongation of Islet Graft Survival Using Concomitant Transplantation of Islets and Vascular Endothelial Cells in Diabetic Rats. Transplantation Proceedings, 2010, 42, 2662-2665.	0.3	22
504	Magnetic Resonance Imaging Study of Mouse Islet Allotransplantation. Transplantation Proceedings, 2010, 42, 4217-4220.	0.3	11
505	Transforming growth factor beta 1 (TGF-β1) and rapamycin synergize to effectively suppress human T cell responses via upregulation of FoxP3+ Tregs. Transplant Immunology, 2010, 23, 28-33.	0.6	24
506	Modulation of Early Inflammatory Reactions to Promote Engraftment and Function of Transplanted Pancreatic Islets in Autoimmune Diabetes. Advances in Experimental Medicine and Biology, 2010, 654, 725-747.	0.8	25
507	Cytocompatibility studies of mouse pancreatic islets on gelatin - PVP semi IPN scaffolds in vitro: Potential implication towards pancreatic tissue engineering. Islets, 2010, 2, 357-366.	0.9	27
508	Optimal Control of Blood Glucose: The Diabetic Patient or the Machine?. Science Translational Medicine, 2010, 2, 27ps18.	5.8	6
509	Immunomodulation with heat shock protein DiaPep277 to preserve beta cell function in type 1 diabetes – an update. Expert Opinion on Biological Therapy, 2010, 10, 265-272.	1.4	30
510	Principles of Diabetes Mellitus. , 2010, , .		67
512	Simultaneous Detection of Circulating Autoreactive CD8+ T-Cells Specific for Different Islet Cell–Associated Epitopes Using Combinatorial MHC Multimers. Diabetes, 2010, 59, 1721-1730.	0.3	187
513	Clinical Islet Transplantation. , 2011, , 795-816.		1
515	Translational Stem Cell Research. Pancreatic Islet Biology, 2011, , .	0.1	3
517	Reprogramming Towards Pancreatic β-Cells. , 2011, , 177-191.		1

		CITATION R	EPORT	
# 518	ARTICLE Pancreatic Plasticity and Reprogramming: Novel Directions Towards Disease Therapy. , 201	1, , 193-215.	IF	CITATIONS
519	Cell-based therapy of diabetes: What are the new sources of beta cells?. Diabetes and Meta 37, 371-375.	abolism, 2011,	1.4	4
520	PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesend stromal cells into pancreatic endocrine lineages. Cytotherapy, 2011, 13, 802-813.	chymal	0.3	41
521	Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells u combinatorial MHC multimers. Journal of Autoimmunity, 2011, 37, 151-159.	using	3.0	66
522	Effects of Intrahepatic Bone-Derived Mesenchymal Stem Cells Autotransplantation on the Beagle Dogs. Journal of Surgical Research, 2011, 168, 213-223.	Diabetic	0.8	30
523	Tacrolimus modulates liver and pancreas nitric oxide synthetase and heme-oxygenase isofc cytokine production after endotoxemia. Nitric Oxide - Biology and Chemistry, 2011, 24, 11	orms and 3-122.	1.2	2
524	Subcutaneous Transplantation May Not Be an Appropriate Approach for the Islets Embedd Collagen Gel Scaffolds. Transplantation Proceedings, 2011, 43, 3205-3208.	ed in the	0.3	6
525	Modest Effects of Fas-Ligand and Heme Oxygenase-1 Double Transgenic Mouse Islets on Transplantation Outcomes. Transplantation Proceedings, 2011, 43, 3198-3200.		0.3	1
526	Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiological Reviews,	2011, 91, 79-118.	13.1	812
527	The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Therapeuti in Endocrinology and Metabolism, 2011, 2, 197-210.	c Advances	1.4	29
528	Estrategias de terapia celular para el tratamiento de la diabetes tipo 1: dónde estamos y c esperar. Avances En DiabetologÃa, 2011, 27, 115-127.	jué podemos	0.1	0
529	Significance of membrane microparticles in solid graft and cellular transplantation. Frontie Bioscience - Landmark, 2011, 16, 2499.	rs in	3.0	10
530	Knowledge and Demand for Information about Islet Transplantation in Patients with Type I Journal of Transplantation, 2011, 2011, 1-6.	l Diabetes.	0.3	3
531	Generation of Insulin Producing Cells for the Treatment of Diabetes. , 0, , .			0
532	Pancreatic Stem Cells: Unresolved Business. , 2011, , .			1
534	Clinical Allogeneic and Autologous Islet Cell Transplantation: Update. Diabetes and Metabo Journal, 2011, 35, 199.	blism	1.8	23
535	Regenerative Medicine and Tissue Engineering for the Treatment of Diabetes. , 2011, , .			0
536	Molecular Imaging: A Promising Tool to Monitor Islet Transplantation. Journal of Transplant 2011, 2011, 1-14.	tation,	0.3	17

ARTICLE IF CITATIONS # Cell Isolation from Tissue., 2011, , 591-598. 537 0 Improving Islet Engraftment by Gene Therapy. Journal of Transplantation, 2011, 2011, 1-7. 0.3 Striated Muscle as Implantation Site for Transplanted Pancreatic Islets. Journal of Transplantation, 539 0.3 18 2011, 2011, 1-6. Advances and Challenges in Islet Transplantation: Islet Procurement Rates and Lessons Learned from 540 34 Suboptimal Islet Transplantation. Journal of Transplantation, 2011, 2011, 1-6. \hat{l}^2 -Cell Generation: Can Rodent Studies Be Translated to Humans?. Journal of Transplantation, 2011, 2011, 541 0.3 14 1-15. Islet Graft Survival and Function: Concomitant Culture and Transplantation With Vascular Endothelial Cells in Diabetic Rats. Transplantation, 2011, 92, 1208-1214. High Vascular Density and Oxygenation of Pancreatic Islets Transplanted in Clusters into Striated 543 1.2 53 Muscle. Cell Transplantation, 2011, 20, 783-788. Graft dysfunction in pancreas and islet transplantation: morphological aspects. Current Opinion in 544 0.8 Organ Transplantation, 2011, 16, 106-109. Oxvgenation of the Portal Vein by Intraperitoneal Administration of Oxygenated Perfluorochemical 546 Improves the Engraftment and Function of Intraportally Transplanted Islets. Pancreas, 2011, 40, 0.5 13 403-409. Improved Quantification of Islet Transplants by Magnetic Resonance Imaging With Resovist. Pancreas, 547 2011, 40, 911-919. Similar Islet Function in Islet Allotransplant and Autotransplant Recipients, Despite Lower Islet Mass 548 0.5 45 in Autotransplants. Transplantation, 2011, 91, 367-372. Pancreatic islet transplantation to the liver: how can vascularization problems be resolved?. Diabetes Management, 2011, 1, 219-227. Human Amniotic Epithelial Cells Induce Localized Cell-Mediated Immune Privilege in Vitro: Implications 550 1.2 22 for Pancreatic Islet Transplantation. Cell Transplantation, 2011, 20, 523-534. Tacrolimus and Sirolimus Induce Reproductive Abnormalities in Female Rats. Transplantation, 2011, 91, 1333-1339. Soluble Donor DNA and Islet Injury After Transplantation. Transplantation, 2011, 92, 607-611. 552 7 0.5Mesenchymal Stromal Cells as a Therapeutic Strategy to Support Islet Transplantation in Type 1 Diabetes Mellitus. Cell Medicine, 2011, 2, 43-54. Effects of Acute Cytomegalovirus Infection on Rat Islet Allograft Survival. Cell Transplantation, 2011, 554 1.2 7 20, 1271-1283. Syngeneic Islet Transplantations Into the Submandibular Gland of Mice. Transplantation, 2011, 91, e17-e19.

#	Article	IF	CITATIONS
556	Liver Natural Killer Cells Play a Role in the Destruction of Islets After Intraportal Transplantation. Transplantation, 2011, 91, 952-960.	0.5	28
557	Non-Invasive Imaging of Ferucarbotran Labeled INS-1E Cells and Rodent Islets in Vitro and in Transplanted Diabetic Rats. Current Pharmaceutical Biotechnology, 2011, 12, 488-496.	0.9	6
558	Improvement of Rat Islet Viability during Transplantation: Validation of Pharmacological Approach to Induce VEGF Overexpression. Cell Transplantation, 2011, 20, 1333-1342.	1.2	15
559	Improved Islet Yield and Function by Use of a Chloride Channel Blocker During Collagenase Digestion. Transplantation, 2011, 92, 871-877.	0.5	2
560	Stem cell-derived islet cells for transplantation. Current Opinion in Organ Transplantation, 2011, 16, 76-82.	0.8	26
561	Islet Transplantation and Encapsulation: An Update on Recent Developments. Review of Diabetic Studies, 2011, 8, 51-67.	0.5	139
562	Reprogramming gut and pancreas endocrine cells to treat diabetes. Diabetes, Obesity and Metabolism, 2011, 13, 53-59.	2.2	6
563	Long-term engraftment and function of transplanted pancreatic islets in vascularized segments of small intestine. Transplant International, 2011, 24, 175-183.	0.8	14
564	Effect of hypoxia-inducible VEGF gene expression on revascularization and graft function in mouse islet transplantation. Transplant International, 2011, 24, 307-314.	0.8	22
565	Three-dimensional ex vivo imaging and analysis of intraportal islet transplants. Transplant International, 2011, 24, 839-844.	0.8	2
566	Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Therapy, 2011, 18, 283-293.	2.3	101
567	Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Therapy, 2011, 18, 539-545.	2.3	26
568	Insulin independence by supplemental islet transplantation 5 years after initial islet transplantation. Journal of Diabetes, 2011, 3, 353-355.	0.8	3
569	A Novel Method for Quantitative Monitoring of Transplanted Islets of Langerhans by Positive Contrast Magnetic Resonance Imaging. American Journal of Transplantation, 2011, 11, 1158-1168.	2.6	15
570	Late Cytomegalovirus Transmission and Impact of T-Depletion in Clinical Islet Transplantation. American Journal of Transplantation, 2011, 11, 2708-2714.	2.6	32
571	Composite Islet-Kidneys From Single Baboon Donors Cure Diabetes Across Fully Allogenic Barriers. American Journal of Transplantation, 2011, 11, 2603-2612.	2.6	12
572	The caspase inhibitor IDN-6556 (PF3491390) improves marginal mass engraftment after islet transplantation in mice. Surgery, 2011, 150, 48-55.	1.0	35
573	Endothelin-1 Markedly Decreases the Blood Perfusion of Transplanted Pancreatic Islets in Rats. Transplantation Proceedings, 2011, 43, 1815-1820.	0.3	1

#	Article	IF	Citations
574	Vascularization of collagen–chitosan scaffolds with circulating progenitor cells as potential site for islet transplantation. Journal of Controlled Release, 2011, 152, e196-e198.	4.8	14
575	Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters. Stem Cell Research, 2011, 6, 276-285.	0.3	47
576	Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials, 2011, 32, 9677-9684.	5.7	67
577	Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus. Physiological Reviews, 2011, 91, 795-826.	13.1	851
578	Islets Transplanted in Immunoisolation Devices: A Review of the Progress and the Challenges that Remain. Endocrine Reviews, 2011, 32, 827-844.	8.9	188
579	Total Pancreatectomy with Autoislet Transplantation, and Pancreatic Allotransplantation. , 2011, , 915-926.e2.		0
580	The therapeutic role of endothelial progenitor cells in Type 1 diabetes mellitus. Regenerative Medicine, 2011, 6, 599-605.	0.8	6
581	Genetically Modified Mesenchymal Stem Cells for Improved Islet Transplantation. Molecular Pharmaceutics, 2011, 8, 1458-1470.	2.3	18
582	RNA interference for improving the outcome of islet transplantation. Advanced Drug Delivery Reviews, 2011, 63, 47-68.	6.6	29
583	Mesenchymal Stem Cells as a Gene Delivery Vehicle for Successful Islet Transplantation. Pharmaceutical Research, 2011, 28, 2098-2109.	1.7	25
584	Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia, 2011, 54, 1127-1135.	2.9	131
585	The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials, 2011, 32, 5945-5956.	5.7	51
586	Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials, 2011, 32, 4517-4524.	5.7	53
587	Molecular mechanism of pancreatic β-cell adaptive proliferation: studies during pregnancy in rats and in vitro. Endocrine, 2011, 39, 118-127.	1.1	13
588	Impact of Islet Transplantation on Diabetes Complications and Quality of Life. Current Diabetes Reports, 2011, 11, 355-363.	1.7	63
589	Pig-to-Nonhuman Primates Pancreatic Islet Xenotransplantation: An Overview. Current Diabetes Reports, 2011, 11, 402-412.	1.7	40
590	Blockade of Leukocyte Function Antigen-1 (LFA-1) in Clinical Islet Transplantation. Current Diabetes Reports, 2011, 11, 337-344.	1.7	7
591	Noninvasive Imaging Techniques in Islet Transplantation. Current Diabetes Reports, 2011, 11, 375-383.	1.7	11

#	Article	IF	CITATIONS
592	Poly(ethylene glycol)-Block-Poly(2-methyl-2-benzoxycarbonyl-propylene Carbonate) Micelles for Rapamycin Delivery: In Vitro Characterization and Biodistribution. Journal of Pharmaceutical Sciences, 2011, 100, 2418-2429.	1.6	37
593	Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal. Journal of Cellular Physiology, 2011, 226, 1813-1819.	2.0	65
594	RGD peptideâ€modified adenovirus expressing hepatocyte growth factor and Xâ€linked inhibitor of apoptosis improves islet transplantation. Journal of Gene Medicine, 2011, 13, 658-669.	1.4	17
595	Tracing of islet graft survival by way of <i>in vivo</i> fluorescence imaging. Diabetes/Metabolism Research and Reviews, 2011, 27, 575-583.	1.7	11
596	Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride. Carbohydrate Polymers, 2011, 84, 781-787.	5.1	19
597	The reversal of diabetes in rat model using mouse insulin producing cells – A combination approach of tissue engineering and macroencapsulation. Acta Biomaterialia, 2011, 7, 2153-2162.	4.1	12
598	AEB071 (sotrastaurin) does not exhibit toxic effects on human islets in vitro nor after transplantation into immunodeficient mice. Islets, 2011, 3, 338-343.	0.9	3
600	Influence of microenvironment on engraftment of transplanted β-cells. Upsala Journal of Medical Sciences, 2011, 116, 1-7.	0.4	30
601	Immune monitoring of pancreatic islet graft: towards a better understanding, detection and treatment of harmful events. Expert Opinion on Biological Therapy, 2011, 11, 55-66.	1.4	26
602	Immune and cell therapy in type 1 diabetes: too little too late?. Expert Opinion on Biological Therapy, 2011, 11, 609-621.	1.4	2
603	Cluster Analysis of Self-Monitoring Blood Glucose Assessments in Clinical Islet Cell Transplantation for Type 1 Diabetes. Diabetes Care, 2011, 34, 1799-1803.	4.3	5
604	Islet transplantation in type 1 diabetes. BMJ: British Medical Journal, 2011, 342, d217-d217.	2.4	52
605	Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets, 2011, 3, 73-79.	0.9	28
606	Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes. Hum Vaccin, 2011, 7, 27-36.	2.4	14
607	Monitoring transplanted islets by high-frequency ultrasound. Islets, 2011, 3, 259-266.	0.9	12
608	Intramuscular islet transplantation promotes restored islet vascularity. Islets, 2011, 3, 69-71.	0.9	15
609	A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice. Islets, 2011, 3, 271-283.	0.9	22
610	Urine C-Peptide Creatinine Ratio Is a Noninvasive Alternative to the Mixed-Meal Tolerance Test in Children and Adults With Type 1 Diabetes. Diabetes Care, 2011, 34, 607-609.	4.3	62

# 611	ARTICLE Combined Small Interfering RNA Therapy and In Vivo Magnetic Resonance Imaging in Islet Transplantation. Diabetes, 2011, 60, 565-571.	IF 0.3	Citations 64
612	Presence of Hyperemic Islets in Human Donor-Pancreata Results in Reduced Islet Isolation Yield. Hormone and Metabolic Research, 2011, 43, 92-99.	0.7	4
613	Generating Mature Î ² -Cells From Embryonic Stem Cells. Vitamins and Hormones, 2011, 87, 79-92.	0.7	8
614	Anesthesia for Organ Transplantation. , 2011, , 889-949.		7
615	Pancreas and Islet Cell Transplantation. , 2012, , 631-641.		0
616	Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity. PLoS Computational Biology, 2012, 8, e1002579.	1.5	41
617	PK11195, A Specific Ligand of the Peripheral Benzodiazepine Receptor, May Protect Pancreatic Beta-cells from Cytokine-induced Cell Death. Artificial Cells, Blood Substitutes, and Biotechnology, 2012, 40, 56-61.	0.9	2
618	Adoptive Transfer With In Vitro Expanded Human Regulatory T Cells Protects Against Porcine Islet Xenograft Rejection via Interleukin-10 in Humanized Mice. Diabetes, 2012, 61, 1180-1191.	0.3	65
619	Alpha 1-antitrypsin reduces inflammation and enhances mouse pancreatic islet transplant survival. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15443-15448.	3.3	56
620	Islet Transplantation in Type 1 Diabetes: Ongoing Challenges, Refined Procedures, and Long-Term Outcome. Review of Diabetic Studies, 2012, 9, 385-406.	0.5	92
621	Update on Islet Cell Transplantation for Type 1 Diabetes. Seminars in Interventional Radiology, 2012, 29, 090-098.	0.3	31
622	Preservation of pancreatic islets in cold UW solution before transplantation. Islets, 2012, 4, 32-39.	0.9	4
624	Human allograft rejection in humanized mice: a historical perspective. Cellular and Molecular Immunology, 2012, 9, 225-231.	4.8	33
625	Characterization of the transcriptome in isolated and transplanted mouse pancreatic islets. Islets, 2012, 4, 158-166.	0.9	2
626	Gene expression changes in human islets exposed to type 1 diabetic serum. Islets, 2012, 4, 312-319.	0.9	9
627	Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010. Diabetes Care, 2012, 35, 1436-1445.	4.3	665
628	Markedly Decreased Blood Perfusion of Pancreatic Islets Transplanted Intraportally Into the Liver. Diabetes, 2012, 61, 665-673.	0.3	59
629	The potential benefit of non-purified islets preparations for islet transplantation. Biotechnology and Genetic Engineering Reviews, 2012, 28, 101-114.	2.4	21

#	Article	IF	CITATIONS
630	Reversal of Diabetes in Mice with a Bioengineered Islet Implant Incorporating a Type I Collagen Hydrogel and Sustained Release of Vascular Endothelial Growth Factor. Cell Transplantation, 2012, 21, 2099-2110.	1.2	36
631	Visual Dysfunction in Diabetes. , 2012, , .		2
632	Oral immunosuppressive medication for growing pigs in transplantation studies. Laboratory Animals, 2012, 46, 148-151.	0.5	9
633	Implication of Mitochondrial Cytoprotection in Human Islet Isolation and Transplantation. Biochemistry Research International, 2012, 2012, 1-16.	1.5	4
634	Clinical islet transplantation. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 249-254.	1.2	11
635	Human Mesenchymal Stem Cells Protect Human Islets from Pro-Inflammatory Cytokines. PLoS ONE, 2012, 7, e38189.	1.1	112
636	Partial hepatectomy improves the outcome of intraportal islet transplantation by promoting revascularization. Islets, 2012, 4, 138-144.	0.9	3
637	The Immunosuppressive Role of Adenosine A2A Receptors in Ischemia Reperfusion Injury and Islet Transplantation. Current Diabetes Reviews, 2012, 8, 419-433.	0.6	31
638	Murine Islet Allograft Tolerance Upon Blockade of the B-Lymphocyte Stimulator, BLyS/BAFF. Transplantation, 2012, 93, 676-685.	0.5	26
639	LMP-420, a Small Molecular Inhibitor of TNF-α, Prolongs Islet Allograft Survival by Induction of Suppressor of Cytokine Signaling-1: Synergistic Effect with Cyclosporin-A. Cell Transplantation, 2012, 21, 1285-1296.	1.2	8
640	Activation of Peroxisome Proliferator-Activated Receptor γ Prolongs Islet Allograft Survival. Cell Transplantation, 2012, 21, 2111-2118.	1.2	4
641	Secretory Unit of Islet Transplant Objects (SUITO) Index Can Predict Severity of Hypoglycemic Episodes in Clinical Islet Cell Transplantation. Cell Transplantation, 2012, 21, 91-98.	1.2	11
642	HLA Class I Sensitization in Islet Transplant Recipients: Report from the Collaborative Islet Transplant Registry. Cell Transplantation, 2012, 21, 901-908.	1.2	42
643	Glycaemic Variability and Pancreatic ß-cell Dysfunction. Current Diabetes Reviews, 2012, 8, 345-354.	0.6	55
644	Review of Evidence that Epidemics of Type 1 Diabetes and Type 2 Diabetes/ Metabolic Syndrome are Polar Opposite Responses to latrogenic Inflammation. Current Diabetes Reviews, 2012, 8, 413-418.	0.6	13
645	Emergence of a Broad Repertoire of GAD65-Specific T-Cells in Type 1 Diabetes Patients with Graft Dysfunction after Allogeneic Islet Transplantation. Cell Transplantation, 2012, 21, 2783-2795.	1.2	17
646	The Effects of Digestion Enzymes on Islet Viability and Cellular Composition. Cell Transplantation, 2012, 21, 649-655.	1.2	29
647	Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplantation, 2012, 21, 2537-2554.	1.2	3

#	Article	IF	CITATIONS
648	Coculture of Insulin-Producing RIN5AH Cells With Neural Crest Stem Cells Protects Partially Against Cytokine-Induced Cell Death. Pancreas, 2012, 41, 490-492.	0.5	11
649	Increased β-Cell Replication and β-Cell Mass Regeneration in Syngeneically Transplanted Rat Islets Overexpressing Insulin-Like Growth Factor II. Cell Transplantation, 2012, 21, 2119-2129.	1.2	22
650	The Islet Size to Oxygen Consumption Ratio Reliably Predicts Reversal of Diabetes Posttransplant. Cell Transplantation, 2012, 21, 2797-2804.	1.2	22
651	Mizoribine as Sole Immunosuppressive Agent in Islet Xenotransplantation Models: A Candidate Immunosuppressant Causing no Adverse Effects on Islets. Cell Transplantation, 2012, 21, 535-545.	1.2	2
652	Caspase Inhibitor IDN6556 Facilitates Marginal Mass Islet Engraftment in a Porcine Islet Autotransplant Model. Transplantation, 2012, 94, 30-35.	0.5	13
653	Accelerated Antibody-Mediated Graft Loss of Rodent Pancreatic Islets After Pretreatment With Dexamethasone-Treated Immature Donor Dendritic Cells. Transplantation, 2012, 94, 903-910.	0.5	11
654	Immune responses against islet allografts during tapering of immunosuppression - A pilot study in 5 subjects. Clinical and Experimental Immunology, 2012, , no-no.	1.1	0
655	Encapsulated islets transplantation: Past, present and future. World Journal of Gastrointestinal Pathophysiology, 2012, 3, 19.	0.5	69
656	Immunoisolation Effect of Polyvinyl Alcohol (PVA) Macroencapsulated Islets in Type 1 Diabetes Therapy. Cell Transplantation, 2012, 21, 525-533.	1.2	23
657	Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells. Molecular Medicine Reports, 2012, 6, 1428-1432.	1.1	4
658	Mitomycin C Treatment Significantly Reduces Central Damage of Islets in Culture. Pancreas, 2012, 41, 245-252.	0.5	1
659	Immune Protection for Transplanted Pancreatic Islets by Nano-Encapsulation Strategies. , 2012, , 248-269.		0
660	Update on Global Intervention Studies in Type 1 Diabetes. Endocrinology and Metabolism Clinics of North America, 2012, 41, 695-712.	1.2	3
661	Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets. Clinical and Experimental Immunology, 2012, 170, 238-247.	1.1	12
662	Insulin independence after conversion from tacrolimus to cyclosporine in islet transplantation. Transplant International, 2012, 25, e108-e110.	0.8	4
663	Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 701-710.	2.3	92
664	From cellular therapies to tissue reprogramming and regenerative strategies in the treatment of diabetes. Regenerative Medicine, 2012, 7, 41-48.	0.8	15
665	The IL-1 Receptor Antagonist Anakinra Enhances Survival and Function of Human Islets during Culture: Implications in Clinical Islet Transplantation. Canadian Journal of Diabetes, 2012, 36, 244-250.	0.4	1
#	Article	IF	CITATIONS
-----	--	-----	-----------
666	Mechanisms and techniques of reprogramming – Using PDX-1 homeobox protein as a novel treatment of insulin dependent diabetes mellitus. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2012, 6, 113-119.	1.8	5
667	Induction of insulinâ€dependent diabetes mellitus by total pancreatectomy for pancreatic islet transplantation in cynomolgus monkeys. Journal of Hepato-Biliary-Pancreatic Sciences, 2012, 19, 661-666.	1.4	5
668	Cryopreservation of rat islets of Langerhans by vitrification. Journal of Artificial Organs, 2012, 15, 283-289.	0.4	21
669	Three-Dimensional Scaffolds Reduce Islet Amyloid Formation and Enhance Survival and Function of Cultured Human Islets. American Journal of Pathology, 2012, 181, 1296-1305.	1.9	31
670	Evaluation of Bone Health in Adults Undergoing Islet Transplantation. Canadian Journal of Diabetes, 2012, 36, 224-227.	0.4	2
671	Pro-angiogenic CD14++ CD16+ CD163+ monocytes accelerate the in vitro endothelialization of soft hydrophobic poly(n-butyl acrylate) networks. Acta Biomaterialia, 2012, 8, 4253-4259.	4.1	28
672	Combinatorial Human Progenitor Cell Transplantation Optimizes Islet Regeneration Through Secretion of Paracrine Factors. Stem Cells and Development, 2012, 21, 1863-1876.	1.1	40
673	Pig islet for xenotransplantation in human: structural and physiological compatibility for human clinical application. Transplantation Reviews, 2012, 26, 183-188.	1.2	45
674	Islet Transplantation at the University of Alberta: Status Update and Review of Progress over the Last Decade. Canadian Journal of Diabetes, 2012, 36, 32-37.	0.4	27
675	The role of interventional radiology and imaging in pancreatic islet cell transplantation. Clinical Radiology, 2012, 67, 923-931.	0.5	10
676	Persufflation (or gaseous oxygen perfusion) as a method of organ preservation. Cryobiology, 2012, 64, 125-143.	0.3	46
677	Coagulation abnormalities in deceased donors are associated with unsuccessful human islet cell isolation. Diabetes Research and Clinical Practice, 2012, 95, e45-e48.	1.1	0
678	Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast Media and Molecular Imaging, 2012, 7, 485-493.	0.4	13
679	Survival of human islets in microbeads containing high guluronic acid alginate crosslinked with Ca ²⁺ and Ba ²⁺ . Xenotransplantation, 2012, 19, 355-364.	1.6	45
680	PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplantation Research, 2012, 1, 19.	1.5	27
681	Safety and tolerability of the <scp>T</scp> â€cell depletion protocol coupled with anakinra and etanercept for clinical islet cell transplantation. Clinical Transplantation, 2012, 26, E471-84.	0.8	33
682	Nerve growth factor is associated with islet graft failure following intraportal transplantation. Islets, 2012, 4, 24-31.	0.9	4
683	Pancreatic Islet Cell Transplantation: An Update for Interventional Radiologists. Journal of Vascular and Interventional Radiology, 2012, 23, 583-594.	0.2	36

#	Article	IF	CITATIONS
684	Reversal of Diabetes: Islet Cell Transplantation. , 2012, , 339-357.		0
685	Transplanted Human Bone Marrow Progenitor Subtypes Stimulate Endogenous Islet Regeneration and Revascularization. Stem Cells and Development, 2012, 21, 97-109.	1.1	63
687	Treatment options for diabetes: Potential role of stem cells. Diabetes Research and Clinical Practice, 2012, 98, 361-368.	1.1	21
688	Thérapie cellulaire du diabète de type 1 : un pancréas bio-artificiel, sinon rien ?. Medecine Des Maladies Metaboliques, 2012, 6, 397-402.	0.1	1
689	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
690	Diabetes in an Undergraduate Class. , 2012, , 35-71.		0
691	Pancreatic Transcription Factors Containing Protein Transduction Domains Drive Mouse Embryonic Stem Cells towards Endocrine Pancreas. PLoS ONE, 2012, 7, e36481.	1.1	10
692	Autoreactive Effector/Memory CD4+ and CD8+ T Cells Infiltrating Grafted and Endogenous Islets in Diabetic NOD Mice Exhibit Similar T Cell Receptor Usage. PLoS ONE, 2012, 7, e52054.	1.1	20
694	Stem Cells as a Tool to Improve Outcomes of Islet Transplantation. Journal of Transplantation, 2012, 2012, 1-11.	0.3	9
695	Islet <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">1²</mml:mi </mml:mrow></mml:math> -Cell Mass Preservation and Regeneration in Diabetes Mellitus: Four Factors with Potential Therapeutic Interest. Journal of Transplantation 2012 2012 1-9	0.3	19
696	Exenatide Pretreatment Improved Graft Function in Nonhuman Primate Islet Recipients Compared to Treatment after Transplant Only. Journal of Transplantation, 2012, 2012, 1-10.	0.3	7
697	Fresh Islets are more Effective for Islet Transplantation than Cultured Islets. Cell Transplantation, 2012, 21, 517-523.	1.2	47
698	Total Pancreatectomy and Islet Autotransplantation for Chronic Pancreatitis. , 2012, , .		0
699	Macro- or microencapsulation of pig islets to cure type 1 diabetes. World Journal of Gastroenterology, 2012, 18, 6885.	1.4	60
700	Emerging Therapeutic Targets in Regenerative Medicine for the Treatment of Diabetes Mellitus: A Patent Literature Review. Recent Patents on Regenerative Medicine, 2012, 3, 56-62.	0.4	0
701	Adverse Events in Clinical Islet Transplantation: One Institutional Experience. Cell Transplantation, 2012, 21, 547-551.	1.2	13
702	The endocrine pancreas: insights into development, differentiation, and diabetes. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 609-628.	5.9	60
703	Pancreatic Stem Cells: From Possible to Probable. Stem Cell Reviews and Reports, 2012, 8, 647-657.	5.6	16

	CHAID	N KEPOKI	
#	Article	IF	CITATIONS
704	Curing Diabetes With Transplantation?. Mount Sinai Journal of Medicine, 2012, 79, 267-275.	1.9	3
705	Organ repair and regeneration: An overview. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 1-29.	3.6	102
706	Deletion of GαZ Protein Protects against Diet-induced Glucose Intolerance via Expansion of β-Cell Mass. Journal of Biological Chemistry, 2012, 287, 20344-20355.	1.6	39
707	Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia, 2012, 55, 1355-1365.	2.9	64
708	Self-assembling glucagon-like peptide 1-mimetic peptide amphiphiles for enhanced activity and proliferation of insulin-secreting cells. Acta Biomaterialia, 2012, 8, 1685-1692.	4.1	35
709	Position Statement of the Chinese Diabetes Society regarding stem cell therapy for diabetes*. Journal of Diabetes, 2012, 4, 18-21.	0.8	4
710	Effect of glucagon-like peptide-1 gene expression on graft function in mouse islet transplantation. Transplant International, 2012, 25, 242-249.	0.8	8
711	Detection of pancreatic islet allograft impairment in advance of functional failure using magnetic resonance imaging. Transplant International, 2012, 25, 250-260.	0.8	22
712	InÂvitro Generation of Functional Insulin-producing Cells from Lipoaspirated Human Adipose Tissue-derived Stem Cells. Archives of Medical Research, 2012, 43, 83-88.	1.5	18
713	In vitro morphogenesis of PANC-1 cells into islet-like aggregates using RGD-covered dextran derivative surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 89, 117-125.	2.5	22
714	Total Pancreatectomy and Islet Autotransplantation for Chronic Pancreatitis. Journal of the American College of Surgeons, 2012, 214, 409-424.	0.2	384
715	Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials, 2012, 33, 6691-6697.	5.7	154
716	Rapamycin Causes Upregulation of Autophagy and Impairs Islets Function Both In Vitro and In Vivo. American Journal of Transplantation, 2012, 12, 102-114.	2.6	89
717	Endogenous Expansion of Regulatory T Cells Leads to Long-Term Islet Graft Survival in Diabetic NOD Mice. American Journal of Transplantation, 2012, 12, 1124-1132.	2.6	12
718	Potent Induction Immunotherapy Promotes Long-Term Insulin Independence After Islet Transplantation in Type 1 Diabetes. American Journal of Transplantation, 2012, 12, 1576-1583.	2.6	293
719	Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors. Molecular and Cellular Endocrinology, 2012, 358, 69-80.	1.6	24
720	Conditional and specific inhibition of NF-κB in mouse pancreatic β cells prevents cytokine-induced deleterious effects and improves islet survival posttransplant. Surgery, 2012, 151, 330-339.	1.0	25
721	Functional enhancement of beta cells in transplanted pancreatic islets by secretion signal peptide-linked exendin-4 gene transduction. Journal of Controlled Release, 2012, 159, 368-375.	4.8	14

#	Article	IF	Citations
722	Immune responses against islet allografts during tapering of immunosuppression – a pilot study in 5 subjects. Clinical and Experimental Immunology, 2012, 169, 190-198.	1.1	22
723	A health economic analysis of clinical islet transplantation. Clinical Transplantation, 2012, 26, 23-33.	0.8	38
724	The Role of SOX9 Transcription Factor in Pancreatic and Duodenal Development. Stem Cells and Development, 2013, 22, 2935-2943.	1.1	41
726	Current status of uterus transplantation in primates and issues for clinical application. Fertility and Sterility, 2013, 100, 280-294.	0.5	52
727	The use of stem cells for pancreatic regeneration in diabetes mellitus. Nature Reviews Endocrinology, 2013, 9, 598-606.	4.3	76
728	Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia, 2013, 56, 1605-1614.	2.9	190
729	Biologic Agents in Islet Transplantation. Current Diabetes Reports, 2013, 13, 713-722.	1.7	25
730	Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials, 2013, 34, 8122-8130.	5.7	111
731	Translational Molecular Imaging of Diabetes. Current Radiology Reports, 2013, 1, 205-215.	0.4	2
733	Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy, 2013, 15, 192-200.	0.3	87
734	Greffe de pancréas et d'îlots de Langerhans. Canadian Journal of Diabetes, 2013, 37, S468-S470.	0.4	0
735	Collagen IV-Modified Scaffolds Improve Islet Survival and Function and Reduce Time to Euglycemia. Tissue Engineering - Part A, 2013, 19, 2361-2372.	1.6	62
736	Synergistic Effect of Surface Modification With Poly(ethylene glycol) and Immunosuppressants on Repetitive Pancreatic Islet Transplantation Into Antecedently Sensitized Rat. Transplantation Proceedings, 2013, 45, 585-590.	0.3	18
737	Co-transplantation of mesenchymal stromal cells and cord blood cells in treatment of diabetes. Cytotherapy, 2013, 15, 1374-1384.	0.3	18
738	Attainment of Metabolic Goals in the Integrated UK Islet Transplant Program With Locally Isolated and Transported Preparations. American Journal of Transplantation, 2013, 13, 3236-3243.	2.6	55
739	The Protective Effects of CD39 Overexpression in Multiple Low-Dose Streptozotocin–Induced Diabetes in Mice. Diabetes, 2013, 62, 2026-2035.	0.3	32
740	Evidence for Rapamycin Toxicity in Pancreatic β-Cells and a Review of the Underlying Molecular Mechanisms. Diabetes, 2013, 62, 2674-2682.	0.3	165
741	Inhibition of instant blood-mediated inflammatory responses by co-immobilization of sCR1 and heparin on islets. Biomaterials, 2013, 34, 5019-5024.	5.7	24

ARTICLE IF CITATIONS # Correction of Diabetes Mellitus by Transplanting Minimal Mass of Syngeneic Islets Into Vascularized 742 2.6 21 Small Intestinal Segment. American Journal of Transplantation, 2013, 13, 2550-2557. Reduction in Carotid Intima-Media Thickness After Pancreatic Islet Transplantation in Patients With 743 4.3 Type 1 Diabetes. Diabetes Care, 2013, 36, 450-456. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clinical and Experimental Immunology, 2013, 172, 744 1.1 37 375-382. Genetic Modification of Primate Amniotic Fluid-Derived Stem Cells Produces Pancreatic Progenitor 745 Cells in vitro. Cells Tissues Organs, 2013, 197, 269-282. Mesenchymal Stem Cell-Based Therapy. Molecular Pharmaceutics, 2013, 10, 77-89. 746 2.3 101 Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplantation 1.2 Reviews, 2013, 27, 21-29. 748 Pancreas and Islet Transplantation. Canadian Journal of Diabetes, 2013, 37, S94-S96. 0.4 8 Islet allograft rejection in sensitized mice is refractory to control by combination therapy of 0.6 immune-modulating agents. Transplant Immunology, 2013, 28, 86-92. Rosiglitazone Treatment Does Not Decrease Amyloid Deposition in Transplanted Islets From 750 Transgenic Mice Expressing Human Islet Amyloid Polypeptide. Transplantation Proceedings, 2013, 45, 0.3 4 574-579. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clinical and Experimental 1.1 Immunology, 2013, 171, 135-146. Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and 752 1.1 20 Transplant Outcomes in a Murine Marginal Islet Mass Model. PLoS ONE, 2013, 8, e55288. Diabetes Mellitus: New Challenges and Innovative Therapies. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 29-87. 754 Islet Cell Therapy and Pancreatic Stem Cells., 2013, , 835-853. 4 What would surgeons like from materials scientists?. Wiley Interdisciplinary Reviews: Nanomedicine 3.3 and Nanobiotechnology, 2013, 5, 299-319. Isolation of Human Cadaveric Pancreatic Islets for Clinical Transplantation. Methods in Molecular 756 0.4 6 Biology, 2013, 1001, 227-259. Imaging beta-cell mass and function in situ and in vivo. Journal of Molecular Medicine, 2013, 91, 929-938. Differentiation and Lineage Commitment of Murine Embryonic Stem Cells into Insulin Producing Cells. 758 0.4 10 Methods in Molecular Biology, 2013, 1029, 93-108. Embryonic Stem Cell Immunobiology. Methods in Molecular Biology, 2013, , .

#	Article	IF	CITATIONS
760	Synthesis and Characterization of an Anti-Apoptotic Immunosuppressive Compound for Improving the Outcome of Islet Transplantation. Bioconjugate Chemistry, 2013, 24, 2036-2044.	1.8	7
761	Immune Monitoring of Islet and Pancreas Transplant Recipients. Current Diabetes Reports, 2013, 13, 704-712.	1.7	22
762	Bioengineered Sites for Islet Cell Transplantation. Current Diabetes Reports, 2013, 13, 745-755.	1.7	56
763	Implanted islets in the anterior chamber of the eye are prone to autoimmune attack in a mouse model of diabetes. Diabetologia, 2013, 56, 2213-2221.	2.9	36
764	An Automated Process for Layerâ€by‣ayer Assembly of Polyelectrolyte Multilayer Thin Films on Viable Cell Aggregates. Advanced Healthcare Materials, 2013, 2, 266-270.	3.9	25
765	CRTC2 Is Required for Î ² -Cell Function and Proliferation. Endocrinology, 2013, 154, 2308-2317.	1.4	31
766	Research Highlights: Highlights from the latest articles in regenerative medicine. Regenerative Medicine, 2013, 8, 17-21.	0.8	0
768	Immune Antibody Monitoring Predicts Outcome in Islet Transplantation. Diabetes, 2013, 62, 1377-1378.	0.3	10
769	Xenogeneic Islet Transplantation of Ad5F35-SOCS1 Infected Islets for Therapy of Diabetes. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, 521-525.	0.6	2
770	Generating β-cells in vitro. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 112-117.	1.2	14
771	Insulin-Producing Cells from Adult Human Bone Marrow Mesenchymal Stem Cells Control Streptozotocin-Induced Diabetes in Nude Mice. Cell Transplantation, 2013, 22, 133-145.	1.2	94
772	Microfluidics for monitoring and imaging pancreatic islet and \hat{I}^2 -cells for human transplant. , 2013, , 557-596e.		1
773	mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. Journal of Endocrinology, 2013, 216, 21-29.	1.2	32
774	Pre-transplant signal induction for vascularisation in human islets. Diabetes and Vascular Disease Research, 2013, 10, 536-545.	0.9	3
775	Mesenchymal stromal cells as a means of controlling pathological T-cell responses in allogeneic islet transplantation. Current Opinion in Organ Transplantation, 2013, 18, 59-64.	0.8	16
776	Co-Transplantation of Bone Marrow-Derived Endothelial Progenitor Cells Improves Revascularization and Organization in Islet Grafts. American Journal of Transplantation, 2013, 13, 1429-1440.	2.6	45
777	Impaired glucose tolerance in rat islet isograft recipients after cytomegalovirus infection. Transplant Infectious Disease, 2013, 15, E44-7.	0.7	1
778	Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets. Transplant International, 2013, 26, 443-452.	0.8	4

#	Article	IF	CITATIONS
779	Comprehensive health assessment and fiveâ€yr followâ€up of allogeneic islet transplant recipients. Clinical Transplantation, 2013, 27, E715-24.	0.8	21
780	Improved <scp>MIN</scp> 6 βâ€ <scp>C</scp> ell Function on Selfâ€ <scp>A</scp> ssembled Peptide Amphiphile Nanomatrix Inscribed with Extracellular Matrixâ€ <scp>D</scp> erived Cell Adhesive Ligands. Macromolecular Bioscience, 2013, 13, 1404-1412.	2.1	11
781	Multicenter Australian Trial of Islet Transplantation: Improving Accessibility and Outcomes. American Journal of Transplantation, 2013, 13, 1850-1858.	2.6	99
782	ASKP1240, a Fully Human Anti-CD40 Monoclonal Antibody, Prolongs Pancreatic Islet Allograft Survival in Nonhuman Primates. American Journal of Transplantation, 2013, 13, 1976-1988.	2.6	52
783	Microbial Contamination of Clinical Islet Transplant Preparations Is Associated with Very Low Risk of Infection. Diabetes Technology and Therapeutics, 2013, 15, 323-327.	2.4	27
784	Leptin Administration Enhances Islet Transplant Performance in Diabetic Mice. Diabetes, 2013, 62, 2738-2746.	0.3	14
785	Endocrine Secretory Reserve and Proinsulin Processing in Recipients of Islet of Langerhans Versus Whole Pancreas Transplants. Diabetes Care, 2013, 36, 3726-3731.	4.3	5
786	Young porcine endocrine pancreatic islets cultured in fibrin show improved resistance toward hydrogen peroxide. Islets, 2013, 5, 207-215.	0.9	24
787	Cell transplantation therapy for diabetes mellitus: endocrine pancreas and adipocyte [Review]. Endocrine Journal, 2013, 60, 697-708.	0.7	3
788	Technique of Endoscopic Biopsy of Islet Allografts Transplanted into the Gastric Submucosal Space in Pigs. Cell Transplantation, 2013, 22, 2335-2344.	1.2	26
789	ER Stress and β-Cell Pathogenesis of Type 1 and Type 2 Diabetes and Islet Transplantation. Cell Medicine, 2013, 5, 53-57.	5.0	16
790	GABA Protects Human Islet Cells Against the Deleterious Effects of Immunosuppressive Drugs and Exerts Immunoinhibitory Effects Alone. Transplantation, 2013, 96, 616-623.	0.5	67
791	Selective Depletion of Alloreactive T Cells Leads to Long-Term Islet Allograft Survival across a Major Histocompatibility Complex Mismatch in Diabetic Mice. Cell Transplantation, 2013, 22, 1929-1941.	1.2	10
792	Porous Scaffolds Support Extrahepatic Human Islet Transplantation, Engraftment, and Function in Mice. Cell Transplantation, 2013, 22, 811-819.	1.2	40
793	Islet Engraftment and Revascularization in Clinical and Experimental Transplantation. Cell Transplantation, 2013, 22, 243-251.	1.2	18
794	The TheraCyteâ,"¢ Device Protects against Islet Allograft Rejection in Immunized Hosts. Cell Transplantation, 2013, 22, 1137-1146.	1.2	109
795	Significant Improvement in Islet Yield and Survival with Modified ET-Kyoto Solution: ET-Kyoto/Neutrophil Elastase Inhibitor. Cell Transplantation, 2013, 22, 159-173.	1.2	6
796	Administration of a Negative Vaccination Induces Hyporesponsiveness to Islet Allografts. Cell Transplantation, 2013, 22, 1147-1155.	1.2	3

		CITATION REPORT		
#	Article		IF	CITATIONS
797	Hepatic Hematoma After Islet Cell Transplantation. Transplantation, 2013, 95, e73-e76		0.5	5
798	Predictive Factors of Allosensitization After Immunosuppressant Withdrawal in Recipier Long-Term Cultured Islet Cell Grafts. Transplantation, 2013, 96, 162-169.	nts of	0.5	9
799	Beta Cell Function After Islet Transplantation. , 2013, , .			1
800	Beta Cell Regeneration: A Novel Strategy for Treating Type 1 Diabetes. Gene Technolog	y, 2013, 02, .	0.5	0
801	Current status of clinical islet transplantation. World Journal of Transplantation, 2013,	3, 48.	0.6	56
802	Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans. PLoS C e64772.	DNE, 2013, 8,	1.1	56
803	Tacrolimus Inhibits the Revascularization of Isolated Pancreatic Islets. PLoS ONE, 2013,	8, e56799.	1.1	35
804	Magnetic Resonance Imaging of Mouse Islet Grafts Labeled with Novel Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles. PLoS ONE, 2013, 8, e62626.	đ	1.1	14
805	Enhancing Pancreatic Beta-Cell Regeneration In Vivo with Pioglitazone and Alogliptin. P 8, e65777.	LoS ONE, 2013,	1.1	15
806	Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-Angiogenic Site for Transplantation. PLoS ONE, 2013, 8, e77538.	or Islet	1.1	51
807	Genetically Modified Human Bone Marrow Derived Mesenchymal Stem Cells for Improv Outcome of Human Islet Transplantation. PLoS ONE, 2013, 8, e77591.	ing the	1.1	14
808	Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Spectroscopy. PLoS ONE, 2013, 8, e78148.	Raman	1.1	18
809	Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges. Journal Acids, 2013, 2013, 1-7.	of Nucleic	0.8	35
810	A Preexistent Hypoxic Gene Signature Predicts Impaired Islet Graft Function and Glucos Cell Transplantation, 2013, 22, 2147-2159.	e Homeostasis.	1.2	47
812	Recent Progress in Clinical Islet Transplantation. Hanyang Medical Reviews, 2014, 34, 1	73.	0.4	2
813	Co-Transplantation of Endothelial Progenitor Cells and Pancreatic Islets to Induce Long Normoglycemia in Streptozotocin-Treated Diabetic Rats. PLoS ONE, 2014, 9, e94783.	-Lasting	1.1	30
814	Transplantation of Encapsulated Pancreatic Islets as a Treatment for Patients with Type Mellitus. Advances in Medicine, 2014, 2014, 1-15.	1 Diabetes	0.3	55
815	Collagen matrix support of pancreatic islet survival and function. Frontiers in Bioscience 2014, 19, 77.	e - Landmark,	3.0	49

# 816	ARTICLE Mesenchymal Stem Cell Therapy in Type 1 Diabetes Mellitus and Its Main Complications: From Experimental Findings to Clinical Practice. Journal of Stem Cell Research & Therapy, 2014, 04, .	IF 0.3	CITATIONS
817	Current Status of Islet Transplantation. , 2014, , 583-598.		0
818	Membranes to achieve immunoprotection of transplanted islets. Frontiers in Bioscience - Landmark, 2014, 19, 49.	3.0	74
820	Islet neogenesis-associated protein-related pentadecapeptide improves the function of allograft after islets transplantation. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 1167-73.	0.4	2
821	Use of the BacT/Alert System for Rapid Detection of Microbial Contamination in a Pilot Study Using Pancreatic Islet Cell Products. Journal of Clinical Microbiology, 2014, 52, 3769-3771.	1.8	15
822	Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetologica, 2014, 51, 833-843.	1.2	78
823	Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols. BioMed Research International, 2014, 2014, 1-9.	0.9	36
824	Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules. International Journal of Molecular Sciences, 2014, 15, 23418-23447.	1.8	25
825	Effects of Dipeptidyl Peptidase-4 Inhibition with MK-0431 on Syngeneic Mouse Islet Transplantation. International Journal of Endocrinology, 2014, 2014, 1-5.	0.6	2
826	Microfluidics for Live-Cell Imaging Pancreatic Islets of Langerhans for Human Transplant. , 2014, , .		Ο
827	Islet transplantation in type 1 diabetes: hype, hope and reality – a clinician's perspective. Diabetes/Metabolism Research and Reviews, 2014, 30, 83-87.	1.7	10
828	Xenoantibody response to porcine islet cell transplantation using <scp>GTKO</scp> , <scp> CD</scp> 55, <scp>CD</scp> 59, and fucosyltransferase multiple transgenic donors. Xenotransplantation, 2014, 21, 244-253.	1.6	30
829	Rat islets are not rejected by antiâ€islet antibodies in mice treated with costimulation blockade. Xenotransplantation, 2014, 21, 353-366.	1.6	4
830	Challenges in the Development of Immunoisolation Devices. , 2014, , 543-562.		2
831	The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation, 2014, 21, 420-430.	1.6	31
832	Long-Term Allogeneic Islet Graft Survival in Prevascularized Subcutaneous Sites Without Immunosuppressive Treatment. American Journal of Transplantation, 2014, 14, 1533-1542.	2.6	56
833	Defective Glucagon Secretion During Hypoglycemia After Intrahepatic But Not Nonhepatic Islet Autotransplantation. American Journal of Transplantation, 2014, 14, 1880-1886.	2.6	51
834	Improving allogeneic islet transplantation by suppressing Th17 and enhancing Treg with histone deacetylase inhibitors. Transplant International, 2014, 27, 408-415.	0.8	22

	CITATION	REPORT	
#	Article	IF	CITATIONS
835	Phases of type 1 diabetes in children and adolescents. Pediatric Diabetes, 2014, 15, 18-25.	1.2	48
836	Prevention of Nonimmunologic Loss of Transplanted Islets in Monkeys. American Journal of Transplantation, 2014, 14, 1543-1551.	2.6	19
837	Evidence for Instant Blood-Mediated Inflammatory Reaction in Clinical Autologous Islet Transplantation. American Journal of Transplantation, 2014, 14, 428-437.	2.6	159
838	Islet and Stem Cell Encapsulation for Clinical Transplantation. Review of Diabetic Studies, 2014, 11, 84-101.	0.5	97
839	Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 211.	1.1	123
840	Modulation of the Pancreatic Islet-Stress Axis as a Novel Potential Therapeutic Target in Diabetes Mellitus. Vitamins and Hormones, 2014, 95, 195-222.	0.7	8
841	Single-Donor Islet Transplantation and Long-term Insulin Independence in Select Patients With Type 1 Diabetes Mellitus. Transplantation, 2014, 98, 1007-1012.	0.5	55
842	Alleviation of Instant Blood-Mediated Inflammatory Reaction in Autologous Conditions Through Treatment of Human Islets with NF-κB Inhibitors. Transplantation, 2014, 98, 578-584.	0.5	31
843	Islet Size Index as a Predictor of Outcomes in Clinical Islet Autotransplantation. Transplantation, 2014, 97, 1286-1291.	0.5	37
844	Has the Gap Between Pancreas and Islet Transplantation Closed?. Transplantation, 2014, 98, 593-599.	0.5	41
845	Home Urine C-Peptide Creatinine Ratio Can Be Used to Monitor Islet Transplant Function: Figure 1. Diabetes Care, 2014, 37, 1737-1740.	4.3	5
846	Minimizing immunosuppression in islet xenotransplantation. Immunotherapy, 2014, 6, 419-430.	1.0	11
847	Pancreas Transplantation: Solid Organ and Islet. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015610-a015610.	2.9	29
848	Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia. World Journal of Diabetes, 2014, 5, 235.	1.3	22
849	Molecular Imaging of Pancreatic Islet Transplantation. Experimental and Clinical Endocrinology and Diabetes, 2014, 122, 79-86.	0.6	4
850	Continuous Glucose Monitoring Analysis as Predictor of Islet Yield and Insulin Requirements in Autologous Islet Transplantation After Complete Pancreatectomy. Journal of Diabetes Science and Technology, 2014, 8, 1097-1104.	1.3	7
851	Allografts in Soft Tissue Reconstructive Procedures. Sports Health, 2014, 6, 256-264.	1.3	27
852	Islet Transplantation Stabilizes Hemostatic Abnormalities and Cerebral Metabolism in Individuals With Type 1 Diabetes. Diabetes Care, 2014, 37, 267-276.	4.3	39

#	Article	IF	CITATIONS
853	Transplantation of insulin-secreting multicellular spheroids for the treatment of type 1 diabetes in mice. Journal of Controlled Release, 2014, 173, 119-124.	4.8	34
854	Treating diabetes with islet transplantation: Lessons from the past decade in Lille. Diabetes and Metabolism, 2014, 40, 108-119.	1.4	41
855	Trophic effect of adipose tissue–derived stem cells on porcine islet cells. Journal of Surgical Research, 2014, 187, 667-672.	0.8	37
856	Islet cell transplantation. Seminars in Pediatric Surgery, 2014, 23, 83-90.	0.5	29
857	Metabolic syndrome – Removing roadblocks to therapy: Antigenic immunotherapies. Molecular Metabolism, 2014, 3, 275-283.	3.0	8
858	Human Fetal Liver Stromal Cell Co-Culture Enhances the Differentiation of Pancreatic Progenitor Cells into Islet-Like Cell Clusters. Stem Cell Reviews and Reports, 2014, 10, 280-294.	5.6	9
859	Transplantation of Human Menstrual Blood Progenitor Cells Improves Hyperglycemia by Promoting Endogenous Progenitor Differentiation in Type 1 Diabetic Mice. Stem Cells and Development, 2014, 23, 1245-1257.	1.1	83
860	Overcoming barriers in clinical islet transplantation: Current limitations and future prospects. Current Problems in Surgery, 2014, 51, 49-86.	0.6	22
861	Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model. Diabetologia, 2014, 57, 522-531.	2.9	80
862	Magnitude and mechanisms of glucose counterregulation following islet transplantation in patients with type 1 diabetes suffering from severe hypoglycaemic episodes. Diabetologia, 2014, 57, 623-632.	2.9	25
863	Investigating design principles of micropatterned encapsulation systems containing high-density microtissue arrays. Science China Life Sciences, 2014, 57, 221-231.	2.3	3
864	Encapsulated piscine (tilapia) islets for diabetes therapy: studies in diabetic <scp>NOD</scp> and <scp>NOD</scp> CID mice. Xenotransplantation, 2014, 21, 127-139.	1.6	20
865	Tissue Engineering Approaches to Cell-Based Type 1 Diabetes Therapy. Tissue Engineering - Part B: Reviews, 2014, 20, 455-467.	2.5	50
866	Transplantation: Kidney, Kidney–Pancreas Transplant. , 2014, , 175-201.		0
867	Compliant 3D Microenvironment Improves β-Cell Cluster Insulin Expression Through Mechanosensing and β-Catenin Signaling. Tissue Engineering - Part A, 2014, 20, 1888-1895.	1.6	42
869	Type 1 diabetes. Lancet, The, 2014, 383, 69-82.	6.3	1,863
870	The Multiple Therapeutic Targets of A20. Advances in Experimental Medicine and Biology, 2014, , .	0.8	0
871	Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E838-E846.	1.8	87

#	ARTICLE	IF	CITATIONS
873	Clinical imaging in regenerative medicine. Nature Biotechnology, 2014, 32, 804-818.	9.4	207
874	Pancreatic Islet Transplantation: From Dogs to Humans and Back Again. Veterinary Surgery, 2014, 43, 631-641.	0.5	8
875	Concise Review: Pluripotent Stem Cell-Based Regenerative Applications for Failing <i>β</i> -Cell Function. Stem Cells Translational Medicine, 2014, 3, 653-661.	1.6	22
876	Effects of All-Trans Retinoid Acid and Exendin-4 on Islet Transplantation in NOD Mice. Transplantation Proceedings, 2014, 46, 1950-1952.	0.3	2
877	Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 345, 1247391.	6.0	243
878	Peptide YY: more than just an appetite regulator. Diabetologia, 2014, 57, 1762-1769.	2.9	73
879	Cross talk between the extracellular matrix and the immune system in the context of endocrine pancreatic islet transplantation. A review article. Pathologie Et Biologie, 2014, 62, 67-78.	2.2	14
880	Maintenance of ischemic β cell viability through delivery of lipids and ATP by targeted liposomes. Biomaterials Science, 2014, 2, 548.	2.6	15
881	Pancreas-like extracellular matrix scaffold for successful pancreatic islet transplantation. Macromolecular Research, 2014, 22, 575-582.	1.0	4
882	Pancreas Versus Islets After a Successful Kidney Transplant. Current Transplantation Reports, 2014, 1, 124-135.	0.9	3
883	Emerging Medical Devices for Minimally Invasive Cell Therapy. Mayo Clinic Proceedings, 2014, 89, 259-273.	1.4	36
884	Death and Dysfunction of Transplanted β-Cells: Lessons Learned From Type 2 Diabetes?. Diabetes, 2014, 63, 12-19.	0.3	47
885	Original hypothesis: Extracorporeal shockwaves as a homeostatic autoimmune restorative treatment (HART) for Type 1 diabetes mellitus. Medical Hypotheses, 2014, 83, 250-253.	0.8	1
886	Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Frontiers in Bioengineering and Biotechnology, 2014, 2, 26.	2.0	138
887	Thérapeutique des désordres glycémiques. , 2014, , 115-188.		0
891	The Role of Alloresponsive Ly49+ NK Cells in Rat Islet Allograft Failure in the Presence and Absence of Cytomegalovirus. Cell Transplantation, 2014, 23, 1381-1394.	1.2	4
892	Improvement of Subcutaneous Bioartificial Pancreas Vascularization and Function by Coencapsulation of Pig Islets and Mesenchymal Stem Cells in Primates. Cell Transplantation, 2014, 23, 1349-1364.	1.2	80
893	Islet-after-failed-pancreas and pancreas-after-failed islet transplantation: Two complementary rescue strategies to control diabetes. Islets, 2015, 7, e1126036.	0.9	12

#	ARTICLE Controlled aggregation of primary human pancreatic islet cells leads to glucoseâ€responsive	IF	Citations
894	pseudoislets comparable to native islets. Journal of Cellular and Molecular Medicine, 2015, 19, 1836-1846.	1.6	64
895	DAMP production by human islets under low oxygen and nutrients in the presence or absence of an immunoisolating-capsule and necrostatin-1. Scientific Reports, 2015, 5, 14623.	1.6	60
896	Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin. Scientific Reports, 2015, 5, 15521.	1.6	13
897	Islet Culture/Preservation before Islet Transplantation. Cell Medicine, 2015, 8, 25-29.	5.0	28
898	Nieuwe inzichten in therapeutische mogelijkheden bij diabetes mellitus type 1. Tijdschrift Voor Kindergeneeskunde, 2015, 83, 9-17.	0.0	0
899	Islet autotransplantation: past, present and future. Chapter II: the role of islet autotransplantation for the treatment of chronic pancreatitis. Diabetes Management, 2015, 5, 103-118.	0.5	0
900	Islet Heparan Sulfate but Not Heparan Sulfate Proteoglycan Core Protein Is Lost During Islet Isolation and Undergoes Recovery Post-Islet Transplantation. American Journal of Transplantation, 2015, 15, 2851-2864.	2.6	21
901	Simply the right time to turn on insulin. EMBO Journal, 2015, 34, 1740-1742.	3.5	2
902	CCL22 Prevents Rejection of Mouse Islet Allografts and Induces Donor-Specific Tolerance. Cell Transplantation, 2015, 24, 2143-2154.	1.2	28
903	Long-Term Immunosuppression After Solitary Islet Transplantation Is Associated With Preserved C-Peptide Secretion for More Than a Decade. American Journal of Transplantation, 2015, 15, 2995-3001.	2.6	13
904	Surface Coating of Pancreatic Islets with Neural Crest Stem Cells Improves Engraftment and Function after Intraportal Transplantation. Cell Transplantation, 2015, 24, 2263-2272.	1.2	24
905	The Impact of c-Fos/Activator Protein-1 Inhibition on Allogeneic Pancreatic Islet Transplantation. American Journal of Transplantation, 2015, 15, 2565-2575.	2.6	8
906	A New System to Evaluate the Influence of Immunosuppressive Drugs on Pancreatic Islets Using Epigenetic Analysis in a 3-Dimensional Culture. Pancreas, 2015, 44, 778-785.	0.5	3
907	Impact of Procedure-Related Complications on Long-term Islet Transplantation Outcome. Transplantation, 2015, 99, 979-984.	0.5	16
908	Glycemia, Hypoglycemia, and Costs of Simultaneous Islet-Kidney or Islet After Kidney Transplantation Versus Intensive Insulin Therapy and Waiting List for Islet Transplantation. Transplantation, 2015, 99, 2174-2180.	0.5	22
909	Islet Transplantation for Type 1 Diabetes. Juntendo Medical Journal, 2015, 61, 131-135.	0.1	0
910	A Simple High Efficiency Intra-Islet Transduction Protocol Using Lentiviral Vectors. Current Gene Therapy, 2015, 15, 436-446.	0.9	19
911	Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices. PLoS ONE, 2015, 10, e0130169.	1.1	39

#	Article	IF	CITATIONS
912	Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation. PLoS ONE, 2015, 10, e0134428.	1.1	55
913	Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory. Archives of Endocrinology and Metabolism, 2015, 59, 161-170.	0.3	22
914	Diazoxide, a K _{ATP} Channel Opener, Prevents Ischemia–Reperfusion Injury in Rodent Pancreatic Islets. Cell Transplantation, 2015, 24, 25-36.	1.2	19
915	Islets and Glucose Homeostasis. International Journal of Endocrinology, 2015, 2015, 1-2.	0.6	0
916	Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Insulin-Producing Cells: Evidence for Further Maturation In Vivo. BioMed Research International, 2015, 2015, 1-10.	0.9	25
917	Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice. Molecular Medicine, 2015, 21, 702-708.	1.9	29
918	Eighty years of research on islet amyloidosis in Uppsala. Upsala Journal of Medical Sciences, 2015, 120, 1-7.	0.4	0
919	Islet Transplantation for Type 1 Diabetes, 2015: What Have We Learned From Alloislet and Autoislet Successes?. Diabetes Care, 2015, 38, 1030-1035.	4.3	38
920	Formation of Cholangiogenic Cysts Following Intrahepatic Islet Transplantation in Streptozotocin Diabetic Rats. Transplantation Proceedings, 2015, 47, 2763-2767.	0.3	0
921	The Choice of Enzyme for Human Pancreas Digestion Is a Critical Factor for Increasing the Success of Islet Isolation. Transplantation Direct, 2015, 1, 1-9.	0.8	35
922	Obesity and Diabetes. , 2015, , .		0
923	Self-assembled gold coating enhances X-ray imaging of alginate microcapsules. Nanoscale, 2015, 7, 2480-2488.	2.8	12
924	Glucose-regulated insulin production in the liver improves glycemic control in type 1 diabetic mice. Molecular Metabolism, 2015, 4, 70-76.	3.0	5
925	Comparison of surface modification chemistries in mouse, porcine, and human islets. Journal of Biomedical Materials Research - Part A, 2015, 103, 869-877.	2.1	4
926	Insulin-producing cells from embryonic stem cells rescues hyperglycemia via intra-spleen migration. Scientific Reports, 2014, 4, 7586.	1.6	4
927	Sustained benefits of islet transplants for T1DM. Nature Reviews Endocrinology, 2015, 11, 572-574.	4.3	15
928	Exendin-4 protects rat islets against loss of viability and function induced by brain death. Molecular and Cellular Endocrinology, 2015, 412, 239-250.	1.6	19
929	Demonstration of an Intrinsic Relationship Between Endogenous C-Peptide Concentration and Determinants of Glycemic Control in Type 1 Diabetes Following Islet Transplantation. Diabetes Care, 2015, 38, 105-112.	4.3	41

#	Article	IF	CITATIONS
930	Five-Year Metabolic, Functional, and Safety Results of Patients With Type 1 Diabetes Transplanted With Allogenic Islets Within the Swiss-French GRAGIL Network. Diabetes Care, 2015, 38, 1714-1722.	4.3	104
931	Enhanced Ultrasonography Using a Nano/Microbubble Contrast Agent for Islet Transplantation. American Journal of Transplantation, 2015, 15, 1531-1542.	2.6	8
932	Islet Transplantation at the Dresden Diabetes Center: Five Years' Experience. Hormone and Metabolic Research, 2015, 47, 4-8.	0.7	27
933	Total pancreatectomy and islet autotransplantation for chronic pancreatitis: spectrum of postoperative CT findings. Abdominal Imaging, 2015, 40, 2411-2423.	2.0	5
934	A Method for Performing Islet Transplantation Using Tissue-Engineered Sheets of Islets and Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2015, 21, 1205-1215.	1.1	44
935	Infectious Complications of Pancreatic Islet Transplantation: Clinical Experience and Unanswered Questions. Current Infectious Disease Reports, 2015, 17, 482.	1.3	2
936	Islet transplantation from a nationally funded UK centre reaches socially deprived groups and improves metabolic outcomes. Diabetologia, 2015, 58, 1300-1308.	2.9	19
937	A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nature Biotechnology, 2015, 33, 518-523.	9.4	293
938	Islet implantation in a pocket. Nature Biotechnology, 2015, 33, 493-494.	9.4	4
939	β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection. Gene Therapy, 2015, 22, 430-438.	2.3	42
941	Innate immunity for better or worse govern the allograft response. Current Opinion in Organ Transplantation, 2015, 20, 8-12.	0.8	17
943	Low gravity rotational culture and the integration of immunomodulatory stem cells reduce human islet alloâ€reactivity. Clinical Transplantation, 2015, 29, 90-98.	0.8	13
944	Evidence-based practice guideline for the treatment for diabetes in Japan 2013. Diabetology International, 2015, 6, 151-187.	0.7	65
945	Trophic effects of adipose derived stem cells on Langerhans islets viability — Review. Transplantation Reviews, 2015, 29, 121-126.	1.2	7
946	Tissue-Specific Stem Cell Niche. Pancreatic Islet Biology, 2015, , .	0.1	4
947	The Elusive Pancreatic Stem Cell. Pancreatic Islet Biology, 2015, , 99-133.	0.1	0
948	Repurposed biological scaffolds: kidney to pancreas. Organogenesis, 2015, 11, 47-57.	0.4	22
949	Puzzling About Partial Glucagon Responses to Hypoglycemia in Intrahepatic Islet Recipients: Missing Pieces. Diabetes, 2015, 64, 1511-1512.	0.3	1

ARTICLE IF CITATIONS THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. 950 1.9 43 European Journal of Endocrinology, 2015, 173, R165-R183. Replacing and safeguarding pancreatic \hat{l}^2 cells for diabetes. Science Translational Medicine, 2015, 7, 5.8 39 316ps23 Improved islet transplantation outcome by the co-delivery of siRNAs for iNOS and 17Î²-estradiol using 952 5.7 9 an R3V6 peptide carrier. Biomaterials, 2015, 38, 36-42. Human Islet Autotransplantation., 2015, , 1229-1243. 953 Porcine Islet-Specific Tolerance Induced by the Combination of Anti-LFA-1 and Anti-CD154 mAbs is 954 1.2 8 Dependent on PD-1. Cell Transplantation, 2016, 25, 327-342. Novel Methods of Insulin Replacement: The Artificial Pancreas and Encapsulated Islets. Reviews on 0.4 Recent Clinical Trials, 2016, 11, 106-123. 956 mTOR inhibitors in cancer therapy. F1000Research, 2016, 5, 2078. 0.8 228 Oxygenation of the Intraportally Transplanted Pancreatic Islet. Journal of Diabetes Research, 2016, 1.0 29 2016, 1-12. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to 958 1.2 23 Mesenchymal Stem Cells. Stem Cells International, 2016, 2016, 1-22. Autologous and Allogenous Antibodies in Lung and Islet Cell Transplantation. Frontiers in 2.2 Immunology, 2016, 7, 650. Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes. PLoS ONE, 2016, 11, 960 12 1.1 e0146649. Well, I Wouldn't be Any Worse Off, Would I, Than I am Now? A Qualitative Study of Decision-Making, Hopes, and Realities of Adults With Type 1 Diabetes Undergoing Islet Cell Transplantation. 0.8 Transplantation Direct, 2016, 2, e72. Long-Term Follow-Up of the Edmonton Protocol of Islet Transplantation in the United States. 962 2.6 134 American Journal of Transplantation, 2016, 16, 509-517. Collagen-chitosan-laminin hydrogels for the delivery of insulin-producing tissue. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E397-E408. 1.3 The effect of chemically modified alginates on macrophage phenotype and biomolecule transport. 964 2.1 33 Journal of Biomedical Materials Research - Part A, 2016, 104, 1707-1719. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia, 2016, 59, 1795-1805. 187 Agarose Hydrogel Beads for Treating Diabetes., 2016, , 463-477. 966 0 Moldâ€casted nonâ€degradable, islet macroâ€encapsulating hydrogel devices for restoration of

normoglycemia in diabetic mice. Biotechnology and Bioengineering, 2016, 113, 2485-2495.

CITATION REPORT

19

#

#	Article	IF	CITATIONS
968	Glycemic Stability Through Islet-After-Kidney Transplantation Using an Alemtuzumab-Based Induction Regimen and Long-Term Triple-Maintenance Immunosuppression. American Journal of Transplantation, 2016, 16, 246-253.	2.6	33
969	Human Fibroblast Sheet Promotes Human Pancreatic Islet Survival and Function in Vitro. Cell Transplantation, 2016, 25, 1525-1537.	1.2	15
970	Islet cell transplantation improves nerve conduction velocity in type 1 diabetes compared with intensive medical therapy over six years. Diabetes Research and Clinical Practice, 2016, 122, 101-105.	1.1	18
973	Efficient generation of pancreatic β-like cells from the mouse gallbladder. Stem Cell Research, 2016, 17, 587-596.	0.3	13
974	Progress and challenges for treating Type 1 diabetes. Journal of Autoimmunity, 2016, 71, 1-9.	3.0	23
975	Immune Tolerance for Autoimmune Disease and Cell Transplantation. Annual Review of Biomedical Engineering, 2016, 18, 181-205.	5.7	66
976	Promoting Immune Regulation in Type 1 Diabetes Using Low-Dose Interleukin-2. Current Diabetes Reports, 2016, 16, 46.	1.7	50
977	Cost effectiveness and value of information analyses of islet cell transplantation in the management of â€~unstable' type 1 diabetes mellitus. BMC Endocrine Disorders, 2016, 16, 17.	0.9	19
978	One hundred top-cited articles in endocrinology and metabolism: a bibliometric analysis. Endocrine, 2016, 54, 564-571.	1.1	7
979	Dose optimization of tacrolimus for improving survival time of PEGylated islets in a rat-to-mouse xenograft model. Macromolecular Research, 2016, 24, 1047-1054.	1.0	1
980	Positron Emission Tomography to Assess the Outcome of Intraportal Islet Transplantation. Diabetes, 2016, 65, 2482-2489.	0.3	27
981	Spontaneous Hypoglycemia After Islet Transplantation: The Case For Using Non-Hepatic Sites. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3571-3574.	1.8	4
982	Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells and Development, 2016, 25, 1321-1341.	1.1	9
983	Porcine antigenâ€specific IFNâ€Î³ ELISpot as a potentially valuable tool for monitoring cellular immune responses in pigâ€toâ€nonâ€human primate islet xenotransplantation. Xenotransplantation, 2016, 23, 310-319.	1.6	11
984	The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia, 2016, 59, 2047-2057.	2.9	55
985	Pretreatment of donor islets with papain improves allograft survival without systemic immunosuppression in mice. Islets, 2016, 8, 145-155.	0.9	3
986	Therapeutic efficacy of differentiated versus undifferentiated mesenchymal stem cells in experimental type I diabetes in rat. Biochemistry and Biophysics Reports, 2016, 5, 468-475.	0.7	10
987	Concise Review: Markers for Assessing Human Stem Cell-Derived Implants as β-Cell Replacement in Type 1 Diabetes. Stem Cells Translational Medicine, 2016, 5, 1338-1344.	1.6	10

#	Article	IF	CITATIONS
988	Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus. Cytotherapy, 2016, 18, 1077-1086.	0.3	32
989	Xenotransplanted Pig Sertoli Cells Inhibit Both the Alternative and Classical Pathways of Complement-Mediated Cell Lysis While Pig Islets Are Killed. Cell Transplantation, 2016, 25, 2027-2040.	1.2	18
990	Outcomes of Pancreatic Islet Allotransplantation Using the Edmonton Protocol at the University of Chicago. Transplantation Direct, 2016, 2, e105.	0.8	17
991	Current outcomes in islet versus solid organ pancreas transplant for β-cell replacement in type 1 diabetes. Current Opinion in Organ Transplantation, 2016, 21, 399-404.	0.8	18
992	Unique CD8+ T Cell–Mediated Immune Responses Primed in the Liver. Transplantation, 2016, 100, 1907-1915.	0.5	7
993	Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions. Stem Cells, 2016, 34, 873-887.	1.4	9
994	Optimization and Scale-up Isolation and Culture of Neonatal Porcine Islets: Potential for Clinical Application. Cell Transplantation, 2016, 25, 539-547.	1.2	35
995	Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnology and Bioengineering, 2016, 113, 1381-1402.	1.7	74
996	Application of nanomaterials for imaging pancreatic islets. Macromolecular Research, 2016, 24, 197-204.	1.0	4
997	A novel redox-active metalloporphyrin reduces reactive oxygen species and inflammatory markers but does not improve marginal mass engraftment in a murine donation after circulatory death islet transplantation model. Islets, 2016, 8, e1190058.	0.9	13
998	Pancreatic islet autotransplantation for nonmalignant and malignant indications. Transfusion, 2016, 56, 761-770.	0.8	4
999	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 6: patient selection for pilot clinical trials of islet xenotransplantation. Xenotransplantation, 2016, 23, 60-76.	1.6	21
1000	Size effect of engineered islets prepared using microfabricated wells on islet cell function and arrangement. Heliyon, 2016, 2, e00129.	1.4	30
1001	Regenerative Medicine and Tissue Engineering in Reproductive Medicine. , 2016, , 139-151.		0
1002	Combination strategy of multi-layered surface camouflage using hyperbranched polyethylene glycol and immunosuppressive drugs for the prevention of immune reactions against transplanted porcine islets. Biomaterials, 2016, 84, 144-156.	5.7	27
1003	Portal Venous Interventions: State of the Art. Radiology, 2016, 278, 333-353.	3.6	51
1004	The Human Endocrine Pancreas: New Insights on Replacement and Regeneration. Trends in Endocrinology and Metabolism, 2016, 27, 153-162.	3.1	28
1005	The IsletCore Program: Improving the Supply of Human Islets to Satisfy the Demand for Research See article in Endocrinology 2016;157:560–569. Endocrinology, 2016, 157, 997-1002.	1.4	2

#	Article	IF	CITATIONS
1006	The characterisation and functional β-cell differentiation of duck pancreas-derived mesenchymal cells. British Poultry Science, 2016, 57, 201-210.	0.8	4
1007	Silk matrices promote formation of insulin-secreting islet-like clusters. Biomaterials, 2016, 90, 50-61.	5.7	30
1008	Noninvasive Imaging of Islet Transplants with ¹¹¹ In-Exendin-3 SPECT/CT. Journal of Nuclear Medicine, 2016, 57, 799-804.	2.8	11
1009	Beta-Cell Replacement: Pancreas and Islet Cell Transplantation. Endocrine Development, 2016, 31, 146-162.	1.3	24
1010	High-throughput Functional Genomics Identifies Regulators of Primary Human Beta Cell Proliferation. Journal of Biological Chemistry, 2016, 291, 4614-4625.	1.6	38
1011	Therapeutic Perspectives in Type-1 Diabetes. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.2	0
1012	Coculturing Human Islets with Proangiogenic Support Cells to Improve Islet Revascularization at the Subcutaneous Transplantation Site. Tissue Engineering - Part A, 2016, 22, 375-385.	1.6	27
1013	Nanoparticles for Pancreatic Islet Imaging. Biosystems and Biorobotics, 2016, , 19-40.	0.2	0
1015	The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochemical Pharmacology, 2016, 100, 12-27.	2.0	51
1016	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5.		1
1016 1017	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212.	1.2	1
1016 1017 1018	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets, 2017, 9, 30-42.	1.2 0.9	1 11 44
1016 1017 1018 1019	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets, 2017, 9, 30-42. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 36.	1.2 0.9 1.2	1 11 44 82
1016 1017 1018 1019	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets, 2017, 9, 30-42. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 36. Combinations of Activin A or Nicotinamide with the Pancreatic Transcription Factor PDX1 Support Differentiation of Human Amnion Epithelial Cells Toward a Pancreatic Lineage. Cellular Reprogramming, 2017, 19, 255-262.	1.2 0.9 1.2 0.5	1 11 44 82 8
1016 1017 1018 1019 1020	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets, 2017, 9, 30-42. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 36. Combinations of Activin A or Nicotinamide with the Pancreatic Transcription Factor PDX1 Support Differentiation of Human Amnion Epithelial Cells Toward a Pancreatic Lineage. Cellular Reprogramming, 2017, 19, 255-262. Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic endocrine cells. Diabetologia, 2017, 60, 1454-1466.	1.2 0.9 1.2 0.5 2.9	1 11 44 82 8
1016 1017 1018 1020 1021	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets, 2017, 9, 30-42. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 36. Combinations of Activin A or Nicotinamide with the Pancreatic Transcription Factor PDX1 Support Differentiation of Human Amnion Epithelial Cells Toward a Pancreatic Lineage. Cellular Reprogramming, 2017, 19, 255-262. Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells. Diabetologia, 2017, 60, 1454-1466. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice. Biomaterials, 2017, 138, 80-90.	1.2 0.9 1.2 0.5 2.9	1 11 44 82 8 19 46
 1016 1017 1018 1020 1021 1022 1023 	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5. Sitagliptin plus pantoprazole can restore but not maintain insulin independence after clinical islet transplantation: results of a pilot study. Diabetic Medicine, 2017, 34, 204-212. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets, 2017, 9, 30-42. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 36. Combinations of Activin A or Nicotinamide with the Pancreatic Transcription Factor PDX1 Support Differentiation of Human Amnion Epithelial Cells Toward a Pancreatic Lineage. Cellular Reprogramming, 2017, 19, 255-262. Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells. Diabetologia, 2017, 60, 1454-1466. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice. Biomaterials, 2017, 138, 80-90. Long-term cryopreservation of reaggregated pancreatic islets resulting in successful transplantation in rats. Cryobiology, 2017, 76, 41-50.	1.2 0.9 1.2 0.5 2.9 5.7 0.3	1 11 44 82 8 3 19 46 14

	СІТАТІ	on Report	
# 1025	ARTICLE Recent progress in the use and tracking of transplanted islets as a personalized treatment for type 1	IF 0.4	CITATIONS
1020	diabetes. Expert Review of Precision Medicine and Drug Development, 2017, 2, 57-67.		
1026	Allogeneic islet cells implant on poly- l -lactide matrix to reduce hyperglycaemia in streptozotocin-induced diabetic rat. Pancreatology, 2017, 17, 411-418.	0.5	2
1027	Advances in islet encapsulation technologies. Nature Reviews Drug Discovery, 2017, 16, 338-350.	21.5	315
1028	Tolerance of Vascularized Islet-Kidney Transplants in Rhesus Monkeys. American Journal of Transplantation, 2017, 17, 91-102.	2.6	14
1029	Ex vivo Pretreatment of Islets with Mitomycin C. Cell Transplantation, 2017, 26, 1392-1404.	1.2	7
1030	Transplantation sites for porcine islets. Diabetologia, 2017, 60, 1972-1976.	2.9	11
1031	Transplantation sites for human and murine islets. Diabetologia, 2017, 60, 1961-1971.	2.9	47
1032	Scaffold-supported Transplantation of Islets in the Epididymal Fat Pad of Diabetic Mice. Journal of Visualized Experiments, 2017, , .	0.2	10
1033	Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation. Diabetologia, 2017, 60, 1987-1998.	2.9	26
1034	Non-invasive in vivo determination of viable islet graft volume by 1111n-exendin-3. Scientific Reports, 2017, 7, 7232.	1.6	20
1035	Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy. ACS Nano, 2017, 11, 7747-7757.	7.3	71
1036	Sirolimus induces depletion of intracellular calcium stores and mitochondrial dysfunction in pancreatic beta cells. Scientific Reports, 2017, 7, 15823.	1.6	32
1037	Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. Transplantation, 2017, 101, 2218-2227.	0.5	3
1038	Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: A systematic review. Islets, 2017, 9, 73-86.	0.9	16
1039	Lineage conversion of mouse fibroblasts to pancreatic α-cells. Experimental and Molecular Medicine, 2017, 49, e350-e350.	3.2	2
1040	Clinical pancreatic islet transplantation. Nature Reviews Endocrinology, 2017, 13, 268-277.	4.3	525
1041	Immunomodulation of cell-penetrating tat-metallothionein for successful outcome of xenotransplanted pancreatic islet. Journal of Drug Targeting, 2017, 25, 350-359.	2.1	10
1042	Therapeutic potential of Mesenchymal Stem Cells for the treatment of diabetic peripheral neuropathy. Experimental Neurology, 2017, 288, 75-84.	2.0	21

#	Article	IF	CITATIONS
1043	From Micro to Macro: The Hierarchical Design in a Micropatterned Scaffold for Cell Assembling and Transplantation. Advanced Materials, 2017, 29, 1604600.	11.1	41
1044	Islet-Expressed CXCL10 Promotes Autoimmune Destruction of Islet Isografts in Mice With Type 1 Diabetes. Diabetes, 2017, 66, 113-126.	0.3	27
1045	Immunosuppression With CD40 Costimulatory Blockade Plus Rapamycin for Simultaneous Islet–Kidney Transplantation in Nonhuman Primates. American Journal of Transplantation, 2017, 17, 646-656.	2.6	17
1046	Anti-Donor HLA Antibody Response After Pancreatic Islet Grafting: Characteristics, Risk Factors, and Impact on Graft Function. American Journal of Transplantation, 2017, 17, 462-473.	2.6	29
1047	Impairment of neurovascular coupling in Type 1 Diabetes Mellitus in rats is prevented by pancreatic islet transplantation and reversed by a semi-selective PKC inhibitor. Brain Research, 2017, 1655, 48-54.	1.1	14
1048	Cost and clinical outcome of islet transplantation in Norway 2010â€2015. Clinical Transplantation, 2017, 31, e12871.	0.8	8
1049	In Vivo Reprogramming in Regenerative Medicine. Pancreatic Islet Biology, 2017, , .	0.1	0
1050	Polyglycolic Acid Fibrous Scaffold Improving Endothelial Cell Coating and Vascularization of Islet. Chinese Medical Journal, 2017, 130, 832-839.	0.9	14
1051	T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Frontiers in Endocrinology, 2017, 8, 343.	1.5	194
1052	Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. Journal of Biological Engineering, 2017, 11, 21.	2.0	29
1053	Single-donor islet transplantation in type 1 diabetes: patient selection and special considerations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2017, Volume 10, 73-78.	1.1	12
1054	Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice. Journal of Controlled Release, 2018, 275, 78-84.	4.8	14
1055	BMX-001, a novel redox-active metalloporphyrin, improves islet function and engraftment in a murine transplant model. American Journal of Transplantation, 2018, 18, 1879-1889.	2.6	15
1056	A New 2-Step Acceleration Protocol Using a Histone Deacetylase Inhibitor to Generate Insulin-Producing Cells From Adipose-Derived Mesenchymal Stem Cells. Pancreas, 2018, 47, 477-481.	0.5	18
1057	Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1230-1237.	1.3	55
1058	Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study. Advances in Experimental Medicine and Biology, 2018, 1079, 151-162.	0.8	5
1059	Effectiveness of bioengineered islet cell sheets for the treatment of diabetes mellitus. Journal of Surgical Research, 2018, 227, 119-129.	0.8	3
1060	Islet Cell or Pancreas Transplantation. Endocrinology, 2018, , 1-40.	0.1	1

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
1061	Diabetes and Transplantation. Canadian Journal of Diabetes, 2010, 42, 5143-5149.		0.4	Э
1062	Overexpression of appoptosin promotes mitochondrial damage in MIN6 cells. Molecular Reports, 2018, 17, 7149-7155.	⁻ Medicine	1.1	1
1063	Impact of Oxygen on Pancreatic Islet Survival. Pancreas, 2018, 47, 533-543.		0.5	58
1064	The second phase of insulin secretion in non-diabetic islet-grafted recipients is altered a predict graft outcome. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 13	nd can 10-1319.	1.8	9
1065	The journey of islet cell transplantation and future development. Islets, 2018, 10, 80-94		0.9	126
1066	Evaluation of collagenase gold plus BP protease in isolating islets from human pancreat 10, 51-59.	a. Islets, 2018,	0.9	2
1067	Engineering the Surface of Therapeutic "Living―Cells. Chemical Reviews, 2018, 118	3, 1664-1690.	23.0	93
1069	Metformin, beta-cell development, and novel processes following beta-cell ablation in ze Endocrine, 2018, 59, 419-425.	ebrafish.	1.1	7
1070	Characterization and Differentiation of Sorted Human Fetal Pancreatic ALDH ^{hiALDH^{hi}/CD133⁺Cells Toward Insulin-Expressing Cells. Stem C Development, 2018, 27, 275-286.}	up>and Cells and	1.1	5
1071	An engineered cell sheet composed of human islets and human fibroblast, bone marrow mesenchymal stem cells, or adipose–derived mesenchymal stem cells: An in vitro com Islets, 2018, 10, e1445948.	–derived parison study.	0.9	17
1072	Improved Health-Related Quality of Life in a Phase 3 Islet Transplantation Trial in Type 1 Complicated by Severe Hypoglycemia. Diabetes Care, 2018, 41, 1001-1008.	Diabetes	4.3	89
1073	<scp>iPSC</scp> technologyâ€based regenerative therapy for diabetes. Journal of Diab 2018, 9, 234-243.	etes Investigation,	1.1	62
1074	Pancreatic \hat{I}^2 Cell Regeneration as a Possible Therapy for Diabetes. Cell Metabolism, 201	.8, 27, 57-67.	7.2	172
1075	Molecular shielding of porcine islets by tissue-adhesive chitosan-catechol for enhanceme in-vitro stability. Journal of Industrial and Engineering Chemistry, 2018, 57, 330-338.	ent of	2.9	3
1076	Carbon Monoxide Inhibits Islet Apoptosis <i>via</i> Induction of Autophagy. Antioxidan Signaling, 2018, 28, 1309-1322.	its and Redox	2.5	21
1077	Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy. St Translational Medicine, 2018, 7, 11-19.	em Cells	1.6	51
1078	Clinical Islet Transplantation for Adults With Type 1 Diabetes in Canada: Referral Patterr Eligibility Assessment. Canadian Journal of Diabetes, 2018, 42, 419-425.	is and	0.4	2
1079	Cellular models for beta ell function and diabetes gene therapy. Acta Physiologica, 20	018, 222, e13012.	1.8	29

#	Article	IF	CITATIONS
1080	Delayed revascularization of islets after transplantation by <scp>IL</scp> â€6 blockade in pig to nonâ€human primate islet xenotransplantation model. Xenotransplantation, 2018, 25, e12374.	1.6	24
1081	Islet Cell Transplantation. , 2018, , 181-196.		0
1082	Differential Impact of T-bet and IFNÎ ³ on Pancreatic Islet Allograft Rejection. Transplantation, 2018, 102, 1496-1504.	0.5	7
1083	Allo- and auto-percutaneous intra-portal pancreatic islet transplantation (PIPIT) for diabetes cure and prevention: the role of imaging and interventional radiology. Gland Surgery, 2018, 7, 117-131.	0.5	12
1085	Critical Role of Macrophage Fcl ³ R Signaling and Reactive Oxygen Species in Alloantibody-Mediated Hepatocyte Rejection. Journal of Immunology, 2018, 201, 3731-3740.	0.4	7
1086	ARF influences diabetes through promoting the proliferation and malignant development of <i>β</i> cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 702-706.	1.9	6
1087	25 Islet Cell Transplantation. , 2018, , .		7
1088	Functional Role of Circular RNA in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1087, 299-308.	0.8	2
1089	The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. Journal of Immunology Research, 2018, 2018, 1-13.	0.9	30
1090	Functional Maturation and In Vitro Differentiation of Neonatal Porcine Islet Grafts. Transplantation, 2018, 102, e413-e423.	0.5	28
1091	Pancreatic Islet Beta-Cell Replacement Strategies. , 2018, , 1-23.		0
1092	Epigenetic Control of Pancreatic Regeneration in Diabetes. Genes, 2018, 9, 448.	1.0	5
1093	Imaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2γa. Molecules, 2018, 23, 2100.	1.7	9
1094	Does Islet Size Really Influence Graft Function After Clinical Islet Transplantation?. Transplantation, 2018, 102, 1857-1863.	0.5	10
1095	Heat shock protein B1 is required for the prolactin-induced cytoprotective effects on pancreatic islets. Molecular and Cellular Endocrinology, 2018, 477, 39-47.	1.6	4
1096	Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death and Disease, 2018, 9, 595.	2.7	106
1097	Islet transplantation in type 1 diabetes: moving forward. Lancet Diabetes and Endocrinology,the, 2018, 6, 516-517.	5.5	13
1098	Clinical islet transplantation: is the future finally now?. Current Opinion in Organ Transplantation, 2018, 23, 428-439.	0.8	60

#	Article	IF	CITATIONS
1099	Comparison of metabolic responses to the mixed meal tolerance test vs the oral glucose tolerance test after successful clinical islet transplantation. Clinical Transplantation, 2018, 32, e13301.	0.8	5
1100	The liver surface as a favorable site for islet cell sheet transplantation in type 1 diabetes model mice. Regenerative Therapy, 2018, 8, 65-72.	1.4	25
1101	The Future of Islet Transplantation Is Now. Frontiers in Medicine, 2018, 5, 202.	1.2	58
1102	Magnetoliposomes as Contrast Agents for Longitudinal in vivo Assessment of Transplanted Pancreatic Islets in a Diabetic Rat Model. Scientific Reports, 2018, 8, 11487.	1.6	10
1103	Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS Nano, 2018, 12, 7613-7628.	7.3	287
1104	A model for determining an effective in vivo dose of transplanted islets based on in vitro insulin secretion. Xenotransplantation, 2018, 25, e12443.	1.6	3
1105	(Re)generating Human Beta Cells: Status, Pitfalls, and Perspectives. Physiological Reviews, 2018, 98, 1143-1167.	13.1	32
1106	Regulation of compensatory β-cell proliferation by inter-organ networks from the liver to pancreatic β-cells. Endocrine Journal, 2018, 65, 677-684.	0.7	8
1107	The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2018, 19, 1391.	1.8	24
1108	Effects of Transplanted Islets Nano-Encapsulated with Hyperbranched Polyethylene Glycol and Heparin on Microenvironment Reconstruction and Glucose Control. Bioconjugate Chemistry, 2018, 29, 2945-2953.	1.8	7
1109	Using Mesenchymal Stromal Cells in Islet Transplantation. Stem Cells Translational Medicine, 2018, 7, 559-563.	1.6	34
1110	Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocinâ€diabetic nonâ€human primates. Xenotransplantation, 2018, 25, e12450.	1.6	51
1111	Patient and family expectations of beta-cell replacement therapies in type 1 diabetes. Islets, 2018, 10, 190-200.	0.9	6
1112	Selection of Tissue Factor-Deficient Cell Transplants as a Novel Strategy for Improving Hemocompatibility of Human Bone Marrow Stromal Cells. Theranostics, 2018, 8, 1421-1434.	4.6	47
1114	Investigating pediatric disorders with induced pluripotent stem cells. Pediatric Research, 2018, 84, 499-508.	1.1	9
1115	Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Biotechnology and Bioengineering, 2018, 115, 2356-2364.	1.7	19
1116	Stem Cell Therapy and Type 1 Diabetes Mellitus: Treatment Strategies and Future Perspectives. Advances in Experimental Medicine and Biology, 2018, 1084, 95-107.	0.8	14
1117	Islet Cell Transplantation. , 2019, , 987-1007.		3

	Сіта	tion Report	
#	Article	IF	CITATIONS
1118	Supporting Survival of Transplanted Stemâ€Cellâ€Derived Insulinâ€Producing Cells in an Encapsulation Device Augmented with Controlled Release of Amino Acids. Advanced Biology, 2019, 3, 1900086.	3.0	14
1120	Mussel-Inspired Catechol-Functionalized Hydrogels and Their Medical Applications. Molecules, 2019, 24, 2586.	1.7	46
1121	Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters. Acta Biomaterialia, 2019, 96, 111-122.	4.1	34
1122	Bioprinting an Artificial Pancreas for Type 1 Diabetes. Current Diabetes Reports, 2019, 19, 53.	1.7	25
1123	Ten-Year Outcome of Islet Alone or Islet After Kidney Transplantation in Type 1 Diabetes: A Prospective Parallel-Arm Cohort Study. Diabetes Care, 2019, 42, 2042-2049.	4.3	76
1125	Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Materials, 2019, 11	3.8	92
1126	Optimization of Islet Microencapsulation with Thin Polymer Membranes for Long-Term Stability. Micromachines, 2019, 10, 755.	1.4	8
1127	Understanding the Signaling Pathways Related to the Mechanism and Treatment of Diabetic Peripheral Neuropathy. Endocrinology, 2019, 160, 2119-2127.	1.4	26
1128	Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet, The, 2019, 394, 1274-1285.	6.3	134
1129	The Differences in the Characteristics of Insulin-producing Cells Using Human Adipose-tissue Derived Mesenchymal Stem Cells from Subcutaneous and Visceral Tissues. Scientific Reports, 2019, 9, 13204.	1.6	18
1130	Human Multipotent Stromal Cell Secreted Effectors Accelerate Islet Regeneration. Stem Cells, 2019, 37, 516-528.	1.4	6
1131	Reprogramming Cells to Make Insulin. Journal of the Endocrine Society, 2019, 3, 1214-1226.	0.1	19
1132	Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 134.	2.0	61
1133	Cell culture of differentiated human salivary epithelial cells in a serumâ€free and scalable suspension system: The salivary functional units model. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1559-1570.	1.3	14
1134	Oxygenation strategies for encapsulated islet and beta cell transplants. Advanced Drug Delivery Reviews, 2019, 139, 139-156.	6.6	55
1135	Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocrine Reviews, 2019, 40, 631-668.	8.9	192
1136	Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metabolism, 2019, 29, 545-563.	7.2	77
1137	Autoimmune Thyroid Disease in Islet Transplant Recipients Discontinuing Immunosuppression Late After Lymphodepletion. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1141-1147.	1.8	2

#	Article	IF	CITATIONS
1138	Local release of rapamycin by microparticles delays islet rejection within the anterior chamber of the eye. Scientific Reports, 2019, 9, 3918.	1.6	26
1139	Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model. ACS Biomaterials Science and Engineering, 2019, 5, 2631-2646.	2.6	58
1140	The protective effect of epigallocatechin 3-gallate on mouse pancreatic islets via the Nrf2 pathway. Surgery Today, 2019, 49, 536-545.	0.7	16
1141	Regenerative and Transplantation Medicine: Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for Type 1 Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 249.	1.0	26
1142	Risk Indices in Deceased-donor Organ Allocation for Transplantation: Review From an Australian Perspective. Transplantation, 2019, 103, 875-889.	0.5	5
1143	The Role of Vitamin D and Omega-3 PUFAs in Islet Transplantation. Nutrients, 2019, 11, 2937.	1.7	23
1144	Bioinformatic analysis of peripheral blood RNA-sequencing sensitively detects the cause of late graft loss following overt hyperglycemia in pig-to-nonhuman primate islet xenotransplantation. Scientific Reports, 2019, 9, 18835.	1.6	4
1145	Role of the Interventional Radiologist in Pancreatic Whole Organ and Islet Cell Transplantation. Digestive Disease Interventions, 2019, 03, 314-325.	0.3	0
1146	Method for isolation of pancreatic blood vessels, their culture and coculture with islets of langerhans. Biotechnology Progress, 2019, 35, e2745.	1.3	3
1147	Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	11.1	112
1148	Stem cells in the treatment of diabetes mellitus — Focus on mesenchymal stem cells. Metabolism: Clinical and Experimental, 2019, 90, 1-15.	1.5	88
1149	Indications for islet or pancreatic transplantation: Statement of the TREPID working group on behalf of the Société francophone du diabÃïte (SFD), Société francaise d'endocrinologie (SFE), Société francophone de transplantation (SFT) and Société française de néphrologie – dialyse – trans (SFNDT). Diabetes and Metabolism. 2019. 45. 224-237.	plantatio	n ³⁵
1150	Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Medicinal Research Reviews, 2019, 39, 631-664.	5.0	27
1151	Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. American Journal of Transplantation, 2020, 20, 689-700.	2.6	22
1152	Longâ€ŧerm outcome of islet transplantation on insulinâ€dependent diabetes mellitus: An observational cohort study. Journal of Diabetes Investigation, 2020, 11, 363-372.	1.1	19
1153	Considerations for an Alternative Site of Islet Cell Transplantation. Journal of Diabetes Science and Technology, 2020, 14, 338-344.	1.3	17
1154	Treating diabetes with islet cell transplantation: Lessons from the Edmonton experience. , 2020, , 671-684.		1
1155	Pancreas and islet preservation. , 2020, , 503-527.		0

#	ARTICLE	IF	CITATIONS
1156	preâ€vascularization. Xenotransplantation, 2020, 27, e12575.	1.6	11
1157	Cell pouch devices. , 2020, , 339-343.		Ο
1158	Subcutaneous islet transplantation using tissue-engineered sheets. , 2020, , 487-495.		0
1159	Eligibility of patients with type 1 diabetes for islet transplantation alone. , 2020, , 407-416.		0
1160	Islet vs pancreas transplantation in nonuremic patients with type 1 diabetes. , 2020, , 417-423.		7
1161	Metabolic and endocrine evaluation of islet transplant function. , 2020, , 565-578.		0
1162	Procedure-related and medical complications in and after intraportal islet transplantation. , 2020, , 579-590.		0
1163	Secondary complications of diabetes. , 2020, , 591-595.		0
1164	Noninvasive Fluorine-19 Magnetic Resonance Relaxometry Measurement of the Partial Pressure of Oxygen in Acellular Perfluorochemical-loaded Alginate Microcapsules Implanted in the Peritoneal Cavity of Nonhuman Primates. Transplantation, 2020, 104, 259-269.	0.5	3
1165	Integration of Primary Endocrine Cells and Supportive Cells Using Functionalized Silk Promotes the Formation of Prevascularized Islet-like Clusters. ACS Biomaterials Science and Engineering, 2020, 6, 1186-1195.	2.6	1
1166	Improvement of Islet Allograft Function Using Cibinetide, an Innate Repair Receptor Ligand. Transplantation, 2020, 104, 2048-2058.	0.5	4
1167	Brown Adipose Tissue: A Potential Site for Islet Transplantation. Transplantation, 2020, 104, 2059-2064.	0.5	10
1168	Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1979-1993.	0.8	3
1169	Fluorescence lifetime metabolic mapping of hypoxiaâ€induced damage in pancreatic pseudoâ€islets. Journal of Biophotonics, 2020, 13, e202000375.	1.1	8
1170	Current State and Evidence of Cellular Encapsulation Strategies in Type 1 Diabetes. , 2020, 10, 839-878.		19
1171	Pancreatic extracellular matrix and plateletâ€rich plasma constructing injectable hydrogel for pancreas tissue engineering. Artificial Organs, 2020, 44, e532-e551.	1.0	6
1172	Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Research and Therapy, 2020, 11, 488.	2.4	8
1173	A 3D culture platform enables development of zinc-binding prodrugs for targeted proliferation of \hat{l}^2 cells. Science Advances, 2020, 6, .	4.7	22

CITATION REPORT ARTICLE IF CITATIONS Designing a bioelectronic treatment for Type 1 diabetes: targeted parasympathetic modulation of 2.0 7 insulin secretion. Bioelectronics in Medicine, 2020, 3, 17-31. Immunotherapy via PD-L1–presenting biomaterials leads to long-term islet graft survival. Science 54 Advances, 2020, 6, eaba5573. The Fragility of Cryopreserved Insulin-producing Cells Differentiated from Adipose-tissue-derived 1.2 6 Stem Cells. Cell Transplantation, 2020, 29, 096368972095479. Evaluation of Multi-Layered Pancreatic Islets and Adipose-Derived Stem Cell Sheets Transplanted on 1.8 Various Sites for Diabetes Treatment. Cells, 2020, 9, 1999. Protection of Pancreatic Islets Using Theranostic Silencing Nanoparticles in a Baboon Model of Islet 0.3 11 Transplantation. Diabetes, 2020, 69, 2414-2422. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Research and Therapy, 2020, 11, 405. 2.4 Pig Islet Transplant., 2020,,. 0 Drug-Induced NaÃ-ve iPS Cells Exhibit Better Performance than Primed iPS Cells with Respect to the Ability to Differentiate into Pancreatic Î²-Cell Lineage. Journal of Clinical Medicine, 2020, 9, 2838. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. Tissue 2.5 11 Engineering - Part B: Reviews, 2021, 27, 238-252. Safety and Clinical Outcomes of Using Low–Molecular-Weight Dextran During Islet Autotransplantation in Children. Pancreas, 2020, 49, 774-780 Implanted islet mass influences the effects of dipeptidyl peptidase-IV inhibitor LAF237 on 1.4 1 transplantation outcomes in diabetic mice. Biomedical Journal, 2020, , . Establishment of three human induced pluripotent stem cell lines from a type 1 diabetic family 0.3 harboring sequence variants associated with autoimmunity. Stem Cell Research, 2020, 49, 102029. Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. 1.2 7 Stem Cells International, 2020, 2020, 1-10. Islet Transplantation to the Anterior Chamber of the Eyeâ€"A Future Treatment Option for Insulin-Deficient Type-2 Diabetics? A Case Report from a Nonhuman Type-2 Diabetic Primate. Cell Transplantation, 2020, 29, 096368972091325. 1.2 An islet maturation media to improve the development of young porcine islets during in vitro culture. 0.9 7 Islets, 2020, 12, 41-58. Alginate@TiO2 hybrid microcapsules as a reservoir of beta INS-1E cells with controlled insulin delivery. Journal of Materials Science, 2020, 55, 7857-7869. Pancreatic and duodenal homeobox-1 in pancreatic ductal adenocarcinoma and diabetes mellitus. 0.9 9 Chinese Medical Journal, 2020, 133, 344-350.

1191Enhancement of Subcutaneously Transplanted β Cell Survival Using 3D Stem Cell Spheroids with
Proangiogenic and Prosurvival Potential. Advanced Biology, 2020, 4, e1900254.3.020

1174

1176

1178

1179

1180

1181

1182

1184

1186

1188

1189

#	Article	IF	CITATIONS
1192	Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2020, 8, 249-256.	5.5	114
1193	Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Medicinal Research Reviews, 2020, 40, 1200-1219.	5.0	27
1194	In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. Journal of Polymer Research, 2020, 27, 1.	1.2	6
1195	Coâ€transplantation of human adiposeâ€derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation, 2020, 27, e12581.	1.6	16
1197	Protective Effects of Bone Marrow–Derived Mesenchymal Stem Cells on Insulin Secretion and Inflammation in the Treatment of Severe Acute Pancreatitis in Rats. Transplantation Proceedings, 2020, 52, 333-344.	0.3	3
1198	Bioartificial pancreas: challenges and progress. , 2020, , 665-679.		4
1199	Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. Nanomaterials, 2020, 10, 789.	1.9	33
1200	Culture on a native bone marrowâ€derived extracellular matrix restores the pancreatic islet basement membrane, preserves islet function, and attenuates islet immunogenicity. FASEB Journal, 2020, 34, 8044-8056.	0.2	9
1201	The Effect of Recovery Warm-up Time Following Cold Storage on the Dynamic Glucose-stimulated Insulin Secretion of Isolated Human Islets. Cell Transplantation, 2020, 29, 096368972090827.	1.2	0
1202	Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. International Journal of Molecular Sciences, 2020, 21, 2388.	1.8	17
1203	Pancreatectomy, Islet Cell Transplantation, and Nutrition Considerations. Nutrition in Clinical Practice, 2021, 36, 385-397.	1.1	12
1204	Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. American Journal of Transplantation, 2021, 21, 1713-1724.	2.6	15
1205	Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches. Future Science OA, 2021, 7, FSO660.	0.9	3
1206	A scalable device-less biomaterial approach for subcutaneous islet transplantation. Biomaterials, 2021, 269, 120499.	5.7	23
1207	Autoreactive T cell profiles are altered following allogeneic islet transplantation with alemtuzumab induction and re-emerging phenotype is associated with graft function. American Journal of Transplantation, 2021, 21, 1027-1038.	2.6	5
1208	Synthesis of PEG-dendron for surface modification of pancreatic islets and suppression of the immune response. Journal of Materials Chemistry B, 2021, 9, 2631-2640.	2.9	3
1209	Porcine iPSCs. , 2021, , 93-127.		0
1210	Improvement of the therapeutic capacity of insulin-producing cells trans-differentiated from human liver cells using engineered cell sheet. Stem Cell Research and Therapy, 2021, 12, 3.	2.4	8

#	Article	IF	CITATIONS
1211	Regulation of Adaptive Cell Proliferation by Vagal Nerve Signals for Maintenance of Whole-Body Homeostasis: Potential Therapeutic Target for Insulin-Deficient Diabetes. Tohoku Journal of Experimental Medicine, 2021, 254, 245-252.	0.5	2
1212	Fibroblast growth factor 7 releasing particles enhance islet engraftment and improve metabolic control following islet transplantation in mice with diabetes. American Journal of Transplantation, 2021, 21, 2950-2963.	2.6	12
1213	Noninvasive Tracking of mPEG-poly(Ala) Hydrogel-Embedded MIN6 Cells after Subcutaneous Transplantation in Mice. Polymers, 2021, 13, 885.	2.0	4
1214	Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All-trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Frontiers in Immunology, 2021, 12, 586220.	2.2	16
1215	Magnetic Resonance Imaging of Transplanted Porcine Neonatal Pancreatic Cell Clusters Labeled with Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles in Mice. Polymers, 2021, 13, 1238.	2.0	6
1216	Pancreas preservation with amphotericin B deteriorates islet yield for porcine islet isolation. Xenotransplantation, 2021, 28, e12690.	1.6	0
1217	Enhancing islet transplantation using a biocompatible collagen-PDMS bioscaffold enriched with dexamethasone-microplates. Biofabrication, 2021, 13, 035011.	3.7	17
1218	Early Graft Loss after Deceased-Donor Kidney Transplantation: What Are the Consequences?. Journal of the American College of Surgeons, 2021, 232, 493-502.	0.2	13
1219	Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes. World Journal of Diabetes, 2021, 12, 306-330.	1.3	2
1220	Applications of iPSC-derived beta cells from patients with diabetes. Cell Reports Medicine, 2021, 2, 100238.	3.3	51
1221	A Strategy to Simultaneously Cure Type 1 Diabetes and Diabetic Nephropathy by Transplant of Composite Islet-Kidney Grafts. Frontiers in Endocrinology, 2021, 12, 632605.	1.5	5
1222	The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 599-611.	1.3	2
1223	Effects of islet transplantation on microvascular and macrovascular complications in type 1 diabetes. Diabetic Medicine, 2021, 38, e14570.	1.2	15
1224	Improvements in stem cell to beta-cell differentiation for the treatment of diabetes. Journal of Immunology and Regenerative Medicine, 2021, 12, 100043.	0.2	2
1225	Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomaterialia, 2021, 133, 87-101.	4.1	22
1226	Islet cell transplantation transitioning to proven therapy for type 1 diabetes. Annals of Pediatric Endocrinology and Metabolism, 2021, 26, 72-73.	0.8	1
1227	Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. Current Transplantation Reports, 2021, 8, 205-219.	0.9	6
1228	Pancreas transplant in type 1 diabetes mellitus: the emerging role of islet cell transplant. Annals of Pediatric Endocrinology and Metabolism, 2021, 26, 86-91.	0.8	4

		CITATION REPORT		
#	Article		IF	Citations
1229	In vitro generation of peri-islet basement membrane-like structures. Biomaterials, 2021	., 273, 120808.	5.7	10
1230	Long-term control of diabetes in a nonhuman primate by two separate transplantation adult islets under immunosuppression. American Journal of Transplantation, 2021, 21,	s of porcine 3561-3572.	2.6	3
1231	Ten-year outcomes of islet transplantation in patients with type 1 diabetes: Data from GRAGIL network. American Journal of Transplantation, 2021, 21, 3725-3733.	the Swiss-French	2.6	20
1232	The functional importance of the cellular and extracellular composition of the islets of Journal of Immunology and Regenerative Medicine, 2021, 13, 100048.	Langerhans.	0.2	4
1233	From insulin injections to islet transplantation: An overview of the journey. Diabetes, C Metabolism, 2022, 24, 5-16.	besity and	2.2	4
1234	mTOR inhibitors and risk of ovarian cysts: a systematic review and meta-analysis. BMJ 0 e048190.	Dpen, 2021, 11,	0.8	3
1235	Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: Ar Pharmaceutics, 2021, 13, 1568.	ו Update.	2.0	9
1236	A therapeutic convection–enhanced macroencapsulation device for enhancing β cel insulin secretion. Proceedings of the National Academy of Sciences of the United State 2021, 118, .	l viability and es of America,	3.3	29
1237	Glucose as a modifiable cause of atherosclerotic cardiovascular disease: Insights from t and transplantation. Atherosclerosis, 2021, 335, 16-22.	.ype 1 diabetes	0.4	10
1238	Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Tran 2021, 30, 096368972199961.	splantation,	1.2	97
1239	Microfluidic applications on pancreatic islets and β-cells study for human islet transpla 617-658.	nt., 2021,,		1
1240	Long-term Persistence of Allosensitization After Islet Allograft Failure. Transplantation, 2490-2498.	2021, 105,	0.5	4
1242	The Main Events in the History of Diabetes Mellitus. , 2010, , 3-16.			18
1243	Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery. Advar Experimental Medicine and Biology, 2010, 670, 104-125.	nces in	0.8	20
1244	Pancreatic Transplant in Diabetes. Advances in Experimental Medicine and Biology, 202	13, 771, 420-437.	0.8	10
1245	Emerging Roles for A20 in Islet Biology and Pathology. Advances in Experimental Media 2014, 809, 141-162.	cine and Biology,	0.8	9
1246	Humanized Mice as Preclinical Models in Transplantation. Methods in Molecular Biolog 177-196.	y, 2016, 1371,	0.4	3
1247	The Main Events in the History of Diabetes Mellitus. , 2017, , 3-19.			3

#	Article	IF	CITATIONS
	Islet Isolation for Clinical Transplantation. Advances in Experimental Medicine and Biology, 2010, 654.		
1248	683-710.	0.8	61
1249	Generating Pancreatic Endocrine Cells from Pluripotent Stem Cells. , 2014, , 1-37.		1
1250	Islet Cell Transplantation. , 2008, , 794-811.		1
1251	Generation of Islets from Stem Cells. , 2007, , 605-618.		1
1252	Whole-organ pancreas and pancreatic islet transplantation. , 2012, , 1796-1804.e1.		1
1253	Insulin - producing cells derived from stem cells: recent progress and future directions. Journal of Cellular and Molecular Medicine, 2006, 10, 866-883.	1.6	35
1254	Recovery from diabetes in mice by \hat{l}^2 cell regeneration. Journal of Clinical Investigation, 2007, 117, 2553-2561.	3.9	525
1255	Protective Unfolded Protein Response in Human Pancreatic Beta Cells Transplanted into Mice. PLoS ONE, 2010, 5, e11211.	1.1	29
1256	Co-Culture of Neural Crest Stem Cells (NCSC) and Insulin Producing Beta-TC6 Cells Results in Cadherin Junctions and Protection against Cytokine-Induced Beta-Cell Death. PLoS ONE, 2013, 8, e61828.	1.1	15
1257	Electrofusion of Mesenchymal Stem Cells and Islet Cells for Diabetes Therapy: A Rat Model. PLoS ONE, 2013, 8, e64499.	1.1	30
1258	Sustained NF-κB Activation and Inhibition in β-Cells Have Minimal Effects on Function and Islet Transplant Outcomes. PLoS ONE, 2013, 8, e77452.	1.1	10
1259	De Novo Lipogenesis and Cholesterol Synthesis in Humans with Long-Standing Type 1 Diabetes Are Comparable to Non-Diabetic Individuals. PLoS ONE, 2013, 8, e82530.	1.1	11
1260	Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2rγnull Mice. PLoS ONE, 2014, 9, e90387.	1.1	50
1261	Krüppel-Like Factor 4 Overexpression Initiates a Mesenchymal-to-Epithelial Transition and Redifferentiation of Human Pancreatic Cells following Expansion in Long Term Adherent Culture. PLoS ONE, 2015, 10, e0140352.	1.1	8
1262	Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia. PLoS ONE, 2016, 11, e0145838.	1.1	57
1263	In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation. PLoS ONE, 2016, 11, e0147068.	1.1	20
1264	Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation. PLoS ONE, 2016, 11, e0156053.	1.1	34
1265	Pleckstrin homology-like domain family A, member 3 (PHLDA3) deficiency improves islets engraftment through the suppression of hypoxic damage. PLoS ONE, 2017, 12, e0187927.	1.1	13

#	Article	IF	Citations
1266	Generation of Insulin Producing Cells using Mesenchymal Stem Cells Derived from Bone Marrow of New-Zealand White Rabbits. Canadian Journal of Clinical Nutrition, 2013, 1, 47-66.	0.1	2
1268	Mesenchymal Stem Cells as Feeder Cells for Pancreatic Islet Transplants. Review of Diabetic Studies, 2010, 7, 132-143.	0.5	27
1269	Interleukin-1 Antagonists and Other Cytokine Blockade Strategies for Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 338-347.	0.5	16
1270	Engineering Biomimetic Materials for Islet Transplantation. Current Diabetes Reviews, 2015, 11, 163-169.	0.6	8
1271	Can Diabetes Heal?- From Observations to Perspectives. Current Diabetes Reviews, 2016, 12, 184-198.	0.6	2
1272	Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies. Current Stem Cell Research and Therapy, 2019, 14, 152-168.	0.6	9
1273	Design of a bioartificial pancreas(+). Journal of Investigative Medicine, 2010, 58, 831-7.	0.7	48
1274	Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care, 2006, 29, 137-8.	4.3	106
1275	Transplantation: current developments and future directions; The future of clinical islet transplantation as a cure for diabetes. Frontiers in Bioscience - Landmark, 2008, 13, 1192.	3.0	50
1276	Culture and Transportation of Human Islets Between Centers. , 2007, , 251-268.		7
1277	Patient Selection and Assessment. , 2007, , 57-79.		1
1278	Utility of co-transplanting mesenchymal stem cells in islet transplantation. World Journal of Gastroenterology, 2011, 17, 5150.	1.4	40
1279	Present and future cell therapies for pancreatic beta cell replenishment. World Journal of Gastroenterology, 2012, 18, 6876.	1.4	18
1280	How regenerative medicine and tissue engineering may complement the available armamentarium in gastroenterology?. World Journal of Gastroenterology, 2012, 18, 6908.	1.4	3
1281	Review of experimental attempts of islet allotransplantation in rodents: Parameters involved and viability of the procedure. World Journal of Gastroenterology, 2014, 20, 13512.	1.4	6
1282	The differentiation of human MSCs derived from adipose and amniotic tissues into insulin-producing cells, induced by PEI@Fe3O4 nanoparticles-mediated NRSF and SHH silencing. International Journal of Molecular Medicine, 2018, 42, 2831-2838.	1.8	5
1283	Is islet transplantation a realistic approach to curing diabetes?. Korean Journal of Internal Medicine, 2017, 32, 62-66.	0.7	9
1284	Questionnaire Survey of Patients with Type-1 Diabetes Mellitus and their Family Members on the Acceptance of Newly Emerging Therapies. Journal of Diabetes & Metabolism, 2014, 05, .	0.2	4

#	Article	IF	CITATIONS
1285	Identification and differentiation of PDX1 β-cell progenitors within the human pancreatic epithelium. World Journal of Diabetes, 2014, 5, 59.	1.3	7
1286	Implanting 1.1B4 human β-cell pseudoislets improves glycaemic control in diabetic severe combined immune deficient mice. World Journal of Diabetes, 2016, 7, 523.	1.3	8
1287	Pancreatic islet transplantation. World Journal of Gastrointestinal Surgery, 2009, 1, 16.	0.8	24
1288	Islet transplantation: the quest for an ideal source. Annals of Saudi Medicine, 2008, 28, 325-333.	0.5	4
1289	Recent progress in pancreatic islet transplantation. World Journal of Transplantation, 2011, 1, 13.	0.6	9
1290	Advances in Machine Perfusion Graft Viability Assessment in Kidney, Liver, Pancreas, Lung, and Heart Transplant. Experimental and Clinical Transplantation, 2012, 10, 87-100.	0.2	42
1291	Human islet xenotransplantation in rodents: A literature review of experimental model trends. Clinics, 2017, 72, 238-243.	0.6	4
1292	Successful treatment of brittle diabetes following total pancreatectomy by islet allotransplantation: a case report. JOP: Journal of the Pancreas, 2013, 14, 428-31.	1.5	1
1293	Lychee Seed as a Potential Hypoglycemic Agent, and Exploration of its Underlying Mechanisms. Frontiers in Pharmacology, 2021, 12, 737803.	1.6	5
1294	The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Frontiers in Endocrinology, 2021, 12, 756581.	1.5	20
1295	Bio nanocomposites of graphene oxide with carboxymethyl guargum: fabrication and characterization and application for type 1 diabetes. Biomedical Materials (Bristol), 2021, 16, 065025.	1.7	3
1296	Pancreas and Islet Cell Transplantation. , 2006, , 717-730.		1
1297	Biopharmaceuticals. Nature Biotechnology, 2006, 24, 293-293.	9.4	0
1298	Insulin - producing cells derived from stem cells: recent progress and future directions. Journal of Cellular and Molecular Medicine, 2006, 10, 1-18.	1.6	0
1299	International Trial of the Edmonton Protocol for Islet Transplantation. Yearbook of Endocrinology, 2007, 2007, 6-9.	0.0	0
1300	Whole Organ Pancreas and Pancreatic Islet Transplantation. , 2007, , 1829-1837.		0
1301	Islet Transplants for Diabetes: The Edmonton Protocol. , 2007, , 59-84.		0
1302	Stem Cell Approaches forCell Replacement. , 2007, , 311-325.		0

	CITATION R	EPORT	
#	Article	IF	Citations
1303	Clinical Outcomes and Future Directions in Islet Transplantation. , 2007, , 229-249.		0
1304	Islet Graft Monitoring and Imaging. , 2007, , 179-191.		0
1305	Care of the Islet Transplant Recipient. , 2007, , 147-178.		0
1306	Pancreas and Islet Transplantation. , 2008, , 1773-1786.		0
1307	Islet-Cell Transplant. , 2008, , 245-258.		0
1308	Novel Approaches to Immunosuppression in Liver Transplantation. , 2009, , 19-44.		0
1310	Breakthrough in Diabetes Therapy Just Around the Corner?. Review of Diabetic Studies, 2009, 6, 76-80.	0.5	0
1311	Strategies Toward Beta-Cell Replacement. , 2009, , 299-317.		0
1312	Type 1 Diabetes—Pathogenesis, Prediction, and Prevention. US Endocrinology, 2009, 05, 79.	0.3	1
1314	Cell Cycle Regulation in Human Pancreatic Beta Cells. , 2010, , 85-103.		0
1315	Prevention of Islet Graft Rejection and Recipient Tolerization. , 2010, , 263-279.		0
1316	Islet and Pancreas Transplantation. , 2010, , 41-83.		0
1317	Therapy of Type 1 Diabetes Mellitus. , 2010, , 709-729.		0
1318	Pancreatic and Islet Transplantation. , 2010, , 943-958.		0
1319	Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes. , 2011, , 363-381.		1
1320	Cell Isolation From Tissue. , 2011, , 599-606.		0
1321	Magnetic Resonance Imaging of Pancreatic Î ² -Cells. , 2011, , 121-146.		1
1322	Immunosuppressive therapy in islet transplantation. Suizo, 2011, 26, 197-203.	0.1	Ο

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1323	Treating Diabetes. Pancreatic Islet Biology, 2011, , 23-34.		0.1	1
1324	Current progress of MRI imaging for the detection of transplanted islets. Suizo, 2011, 2	26, 190-196.	0.1	0
1325	Islet Cell Therapy and Pancreatic Stem Cells. , 2011, , 403-426.			1
1326	Cell Therapy in Type 1 Diabetes. Journal of Stem Cell Research & Therapy, 2011, 01, .		0.3	1
1328	Early loss of transplanted islets as a major limiting factor for successful islet transplant one donor to one recipient. Suizo, 2011, 26, 183-189.	ation from	0.1	0
1329	Perspectives of Islet Cell Transplantation as a Therapeutic Approach for Diabetes Mellit	us. , 0, , .		0
1330	Perspectives of Cell Therapy in Type 1 Diabetes. , 0, , .			0
1331	Imaging the Pancreatic Beta Cell. , 0, , .			2
1334	Addressing the Challenge of Autoimmunity in the Treatment of Diabetes with Stem Cel 313-329.	ls. , 2013, ,		0
1335	Growing Organs for Transplantation from Embryonic Precursor Tissues. , 2013, , 365-3	75.		0
1337	Pancreas and Islet Allotransplantation. , 2013, , 1251-1261.			0
1338	Parameters involved and viability of immunosuppression on islet allotransplantation prorodents. Medical Express, 2014, 1, .	ocedure in	0.2	0
1339	B7-H4 as a protective shield for pancreatic islet beta cells. World Journal of Diabetes, 2	014, 5, 739.	1.3	2
1340	Human Islet Autotransplantation. , 2014, , 1-15.			0
1341	Advances in Clinical Islet Isolation. , 2014, , 1-30.			0
1342	Advances in Clinical Islet Isolation. , 2015, , 1165-1197.			0
1343	Generating Pancreatic Endocrine Cells from Pluripotent Stem Cells. , 2015, , 1335-137	3		0
1344	Successes and Disappointments with Clinical Islet Transplantation. , 2015, , 1245-1274	ł.		0
#	Article	IF	CITATIONS	
------	--	-----	-----------	
1345	Cell Therapy for Diabetes. , 2015, , 231-255.		0	
1347	The Main Events in the History of Diabetes Mellitus. , 2015, , 1-17.		0	
1348	Islet Cell Transplant. , 2016, , 1-25.		1	
1349	Therapy of Type 1 Diabetes Mellitus. , 2016, , 1-24.		0	
1350	Risks and Epidemiology of Infections After Pancreas or Kidney–Pancreas Transplantation. , 2016, , 201-213.		1	
1351	Type 1 Diabetes: Past, Present, and Future Therapies. SpringerBriefs in Applied Sciences and Technology, 2016, , 29-78.	0.2	0	
1352	The Hypoglycaemia-Hyperglycaemia Minimizer System in the Management of Type 1 Diabetes. European Endocrinology, 2016, 12, 18.	0.8	0	
1353	Islet Cell Transplant. , 2016, , 1-25.		0	
1355	Whole Organ pancreas and pancreatic islet transplantation. , 2017, , 1879-1887.e1.		0	
1356	Therapy of Type 1 Diabetes Mellitus. , 2017, , 881-904.		0	
1357	Direct Reprogramming to Beta Cells. Pancreatic Islet Biology, 2017, , 31-44.	0.1	0	
1358	Beta Cell Imaging as Part of "lmaging on Metabolic Diseases― , 2017, , 605-625.		0	
1359	Therapy of Type 1 Diabetes Mellitus. , 2017, , 1-24.		0	
1360	PROSPECTS OF APPLICATION OF TISSUE-ENGINEERED PANCREATIC CONSTRUCTS IN THE TREATMENT OF TYPE 1 DIABETES. Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 18, 133-145.	0.1	2	
1361	Stem Cell Transplantation in Diabetes Mellitus Type I and Type II. Stem Cells in Clinical Applications, 2017, , 3-33.	0.4	0	
1362	Diabetes Mellitus: Can Stem Cells be the Answer?. Biotechnology Journal International, 2017, 18, 1-12.	0.2	0	
1363	Transitional Meningioma After Fetal Liver-Derived Cell Suspension Allotransplant: A Case Report. Experimental and Clinical Transplantation, 2017, 15, 231-234.	0.2	3	
1364	Islet Cell or Pancreas Transplantation. Endocrinology, 2018, , 655-693.	0.1	0	

#	Article	IF	CITATIONS
1365	Pediatric Diabetes: Review Article. Indian Journal of Public Health Research and Development, 2019, 10, 2641.	0.1	0
1366	Islet Cell Transplant. Organ and Tissue Transplantation, 2019, , 103-127.	0.0	0
1367	Pancreas and Islet Allotransplantation. , 2019, , 1226-1238.		0
1368	Thérapeutique des désordres glycémiques. , 2019, , 141-252.		0
1370	Pancreatic Islet Transplantation: A Surgical Approach to Type 1 Diabetes Treatment. , 2020, , 655-664.		0
1372	Pancreatic β-Cell Mass as a Pharmacologic Target in Diabetes. McGill Journal of Medicine, 2009, 12, .	0.1	2
1373	Pancreatic Islet Beta-Cell Replacement Strategies. , 2020, , 193-214.		0
1375	Pig-to-Macaque Islet Xenotransplantation. Methods in Molecular Biology, 2020, 2110, 289-314.	0.4	2
1376	Comprehensive analysis of gene expression of isolated pancreatic islets during pretransplant culture. Fukushima Journal of Medical Sciences, 2020, 67, 17-26.	0.1	1
1378	Islet Transplantation and Results. , 2008, , 913-920.		0
1380	Chronic diabetic complications: the body's adaptive response to hyperglycemia gone awry?. Transactions of the American Clinical and Climatological Association, 2006, 117, 341-51; discussion 351-2.	0.9	9
1381	Transplantation for type 1 diabetes mellitus. Whole organ or islets?. Hippokratia, 2009, 13, 6-8.	0.3	22
1382	HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. International Journal of Clinical and Experimental Pathology, 2009, 3, 24-38.	0.5	37
1383	Monitoring neovascularization of intraportal islet grafts by dynamic contrast enhanced magnetic resonance imaging. Islets, 2009, 1, 249-255.	0.9	3
1385	Pancreatic Î ² -Cell Mass as a Pharmacologic Target in Diabetes. McGill Journal of Medicine, 2009, 12, 51.	0.1	2
1386	Islet transplantation in type I diabetes mellitus. Yale Journal of Biology and Medicine, 2012, 85, 37-43.	0.2	25
1391	HLA sensitization in islet transplantation. Clinical Transplants, 2006, , 413-20.	0.2	7
1392	Pancreas Islet Transplantation for Patients With Type 1 Diabetes Mellitus: A Clinical Evidence Review. Ontario Health Technology Assessment Series, 2015, 15, 1-84.	3.0	7

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
1393	25 YEARS OF THE RICORDI AUTOMATED METHOD FOR ISLET ISOLATION. CellR4, 2013	s, 1, . O).5	13
1394	Erastin-induced ferroptosis is a regulator for the growth and function of human pancre cell clusters. Cell Regeneration, 2020, 9, 16.	atic islet-like 1	.1	3
1395	Fructan Improves Survival and Function of Cryopreserved Rat Islets. Nutrients, 2021, 1	3,. 1	.7	0
1396	MRI monitoring of transplanted neonatal porcine islets labeled with polyvinylpyrrolidor superparamagnetic iron oxide nanoparticles in a mouse model. Xenotransplantation, 2	leâ€coated 1 021,,.	.6	1
1397	Towards a Rational Balanced Pancreatic and Islet Allocation Schema. Cell Transplantati 096368972110571.	on, 2021, 30, 1	.2	2
1398	Erastin-induced ferroptosis is a regulator for the growth and function of human pancre cell clusters. Cell Regeneration, 2020, 9, 16.	atic islet-like 1	.1	19
1399	Transplantation (Islet and Solid Organ). , 2022, , 2038-2044.			0
1400	Fructan Improves Survival and Function of Cryopreserved Rat Islets. Nutrients, 2021, 1	3, 2959. 1	.7	4
1401	Mesenchymal Stem Cells Secretions Enhanced ATP Generation on Isolated Islets during Transplantation. Islets, 2022, 14, 69-81.	5 O).9	5
1402	New advanced therapy medicinal products in treatment of autoimmune diseases. , 202	2,,319-359.		1
1403	Considerations and challenges of islet transplantation and future therapies on the hori American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E109-E113	zon. 1 7. 1	.8	18
1404	Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the t diabetes. Molecular Aspects of Medicine, 2022, 83, 101063.	reatment of 2	.7	8
1405	Pancreatic Islet Transplantation in Type 1 Diabetes: 20-Year Outcomes. SSRN Electroni	c Journal, O, , . O).4	0
1406	Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Ce from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Dial Pharmaceutics, 2022, 14, 400.	ll Clusters betes Treatment. 2	.0	3
1407	Macroencapsulation Devices for Cell Therapy. Engineering, 2022, 13, 53-70.	3	.2	19
1408	The History of Clinical Islet Transplantation in Japan. Journal of Clinical Medicine, 2022,	11, 1645. 1	.0	2
1409	The Influence of Microenvironment on Survival of Intraportal Transplanted Islets. Front Immunology, 2022, 13, 849580.	iers in 2	2	7
1410	Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Neonatal Porcine Islets. Polymers, 2022, 14, 1120.	Function of 2	.0	9

#	Article	IF	CITATIONS
1411	Magnetic Resonance Imaging of Transplanted Porcine Neonatal Pancreatic Cell Clusters Labeled with Exendin-4-Conjugated Manganese Magnetism-Engineered Iron Oxide Nanoparticles. Nanomaterials, 2022, 12, 1222.	1.9	1
1412	Longâ€ŧerm efficacy and safety of porcine islet macrobeads in nonimmunosuppressed diabetic cynomolgus macaques. Xenotransplantation, 2022, 29, e12747.	1.6	4
1413	Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Advanced Drug Delivery Reviews, 2022, 185, 114280.	6.6	32
1414	Augmenting engraftment of beta cell replacement therapies for T1DM. Journal of Immunology and Regenerative Medicine, 2022, 16, 100058.	0.2	2
1415	A Safe, Fibrosisâ€Mitigating, and Scalable Encapsulation Device Supports Longâ€Term Function of Insulinâ€Producing Cells. Small, 2022, 18, e2104899.	5.2	17
1417	Integrating Additive Manufacturing Techniques to Improve Cellâ€Based Implants for the Treatment of Type 1 Diabetes. Advanced Healthcare Materials, 2022, 11, e2200243.	3.9	4
1421	Oxygenation of the pancreas. , 2022, , 113-124.		0
1422	Auto islet isolation: Methods in removal and isolation from fibrosed and autolyzed pancreata. , 2022, , 97-111.		0
1423	Novel Replaceable Device Encapsulating Porcine Islets Enable Long-Term Discordant Xenotransplantation in Immunocompetent Diabetic Mice. SSRN Electronic Journal, 0, , .	0.4	0
1424	Allogeneic islet isolation: Methods to improve islet cell transplantation with new technologies in organ transplant retrieval and isolation techniques. , 2022, , 81-96.		1
1425	Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada. Lancet Diabetes and Endocrinology,the, 2022, 10, 519-532.	5.5	65
1426	The current state of clinical islet transplantation. Lancet Diabetes and Endocrinology,the, 2022, 10, 476-478.	5.5	4
1427	Local Dexamethasone Administration Delays Allogeneic Islet Graft Rejection in the Anterior Chamber of the Eye of Non-Human Primates. Cell Transplantation, 2022, 31, 096368972210980.	1.2	1
1428	Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants, 2022, 11, 1038.	2.2	6
1429	Feline Adipose Derived Multipotent Stromal Cell Transdifferentiation Into Functional Insulin Producing Cell Clusters. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1430	Estimation of Early Graft Function Using the BETA-2 Score Following Clinical Islet Transplantation. Transplant International, 0, 35, .	0.8	3
1431	Adiponectin gene therapy prevents islet loss after transplantation. Journal of Cellular and Molecular Medicine, 2022, 26, 4847-4858.	1.6	4
1432	Type 1 diabetes and engineering enhanced islet transplantation. Advanced Drug Delivery Reviews, 2022, 189, 114481.	6.6	13

#	Article	IF	CITATIONS
1433	Stepwise differentiation of functional pancreatic \hat{l}^2 cells from human pluripotent stem cells. Cell Regeneration, 2022, 11, .	1.1	6
1434	Adhesion Characteristics of Human Pancreatic Islets, Duct Epithelial Cells, and Acinar Cells to a Polymer Scaffold. Cell Transplantation, 2022, 31, 096368972211205.	1.2	2
1435	AP39, a Mitochondrial-Targeted H2S Donor, Improves Porcine Islet Survival in Culture. Journal of Clinical Medicine, 2022, 11, 5385.	1.0	0
1436	A Century-long Journey From the Discovery of Insulin to the Implantation of Stem Cell–derived Islets. Endocrine Reviews, 2023, 44, 222-253.	8.9	13
1437	New horizons of biomaterials in treatment of nerve damage in diabetes mellitus: A translational prospective review. Frontiers in Endocrinology, 0, 13, .	1.5	1
1438	Partially Oxidized Alginate as a Biodegradable Carrier for Glucoseâ€Responsive Insulin Delivery and Islet Cell Replacement Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1439	Recent Developments in Islet Biology: A Review with Patient Perspectives. Canadian Journal of Diabetes, 2022, , .	0.4	1
1440	Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis. Transplant Immunology, 2022, 75, 101740.	0.6	4
1441	Human stem cell derived beta-like cells engineered to present PD-L1 improve transplant survival in NOD mice carrying human HLA class I. Frontiers in Endocrinology, 0, 13, .	1.5	4
1442	Immunoregulatory Sertoli Cell Allografts Engineered to Express Human Insulin Survive Humoral-Mediated Rejection. International Journal of Molecular Sciences, 2022, 23, 15894.	1.8	0
1443	journey from the insulin gene to reprogramming pancreatic tissue. British Journal of Diabetes, 2022, 22, S72-S78.	0.1	0
1444	PDX1 is the cornerstone of pancreatic β-cell functions and identity. Frontiers in Molecular Biosciences, 0, 9, .	1.6	16
1445	Synthesis of siRNA-Conjugated Dextran-Coated Iron Oxide Nanoparticles for Islet Protection During Transplantation and Noninvasive Imaging. Methods in Molecular Biology, 2023, , 163-174.	0.4	0
1446	A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. Cell Reports Methods, 2023, 3, 100370.	1.4	3
1447	Yield, cell composition, and function of islets isolated from different ages of neonatal pigs. Frontiers in Endocrinology, 0, 13, .	1.5	1
1449	Freezing biological organisms for biomedical applications. , 2022, 1, .		9
1450	eATP and autoimmune diabetes. Pharmacological Research, 2023, 190, 106709.	3.1	3
1451	Applications of bile acids as biomaterials-based modulators, in biomedical science and microfluidics. Therapeutic Delivery, 2022, 13, 591-604.	1.2	0

#	Article	IF	CITATIONS
1452	Noninvasive quantitative evaluation of viable islet grafts using <scp>¹¹¹In</scp> â€exendinâ€4 <scp>SPECT</scp> / <scp>CT</scp> . FASEB Journal, 2023, 37, .	0.2	1
1453	Macro-capsule Fabrication via 3D printing for Cellular Therapy. International Journal of Advances in Engineering and Pure Sciences, 0, , .	0.2	0
1454	Editorial: Xenotransplantation for the therapy of diabetes: A new look. Frontiers in Endocrinology, 0, 14, .	1.5	1
1455	A case of abdominal abscess after simultaneous omentum intraomental bio-scaffold islet-kidney transplantation. Journal of Pancreatology, 0, Publish Ahead of Print, .	0.3	0
1464	Harnessing Human Pluripotent Stem Cell-Derived Pancreatic In Vitro Models for High-Throughput Toxicity Testing and Diabetes Drug Discovery. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
1469	Islet Allotransplantation. , 2023, , 1157-1204.		0
1470	Endocrine Function and Metabolic Outcomes After Pancreas and Islet Transplantation. , 2023, , 801-815.		0
1476	Allogeneic Islet Transplantation and Future. , 0, , .		0
1484	Islet transplantation using living donors. , 2008, , 845-855.		0
1486	Lessons Learned from Clinical Trials of Islet Transplantation. , 2023, , 499-527.		0
1487	Islet Macroencapsulation: Strategies to Boost Islet Graft Oxygenation. , 2023, , 251-280.		0
1488	An Ethical Perspective on the Social Value of Cell-Based Technologies in Type 1 Diabetes. , 2023, , 461-484.		0