Endoplasmic Reticulum Stress–Associated Caspase 12 Cell Apoptosis

Journal of the American Society of Nephrology: JASN 16, 1985-1992 DOI: 10.1681/asn.2004090768

Citation Report

#	Article	IF	CITATIONS
1	Mammalian initiator apoptotic caspases. FEBS Journal, 2005, 272, 5436-5453.	2.2	150
2	Microsomal glutathione transferase 1 in anticancer drug resistance. Carcinogenesis, 2006, 28, 465-470.	1.3	44
3	Caspase-mediated cleavage of ATM during cisplatin-induced tubular cell apoptosis: inactivation of its kinase activity toward p53. American Journal of Physiology - Renal Physiology, 2006, 291, F1300-F1307.	1.3	44
4	mRNA Translation: Unexplored Territory in Renal Science. Journal of the American Society of Nephrology: JASN, 2006, 17, 3281-3292.	3.0	56
5	Calpain-Induced Endoplasmic Reticulum Stress and Cell Death following Cytotoxic Damage to Renal Cells. Toxicological Sciences, 2006, 94, 118-128.	1.4	34
6	Involvement of the CDK2-E2F1 pathway in cisplatin cytotoxicity in vitro and in vivo. American Journal of Physiology - Renal Physiology, 2007, 293, F52-F59.	1.3	49
7	The pathological role of Bax in cisplatin nephrotoxicity. Kidney International, 2007, 72, 53-62.	2.6	197
8	Cisplatin, Gentamicin, and p-Aminophenol Induce Markers of Endoplasmic Reticulum Stress in the Rat Kidneys. Toxicological Sciences, 2007, 99, 346-353.	1.4	124
9	Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicology in Vitro, 2007, 21, 878-886.	1.1	61
10	Cytotoxicity of peroxisome proliferator-activated receptor α and γ agonists in renal proximal tubular cell lines. Toxicology in Vitro, 2007, 21, 1066-1076.	1.1	12
11	Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death and Differentiation, 2007, 14, 1467-1474.	5.0	137
12	Endoplasmic reticulum stress in the kidney. Clinical and Experimental Nephrology, 2008, 12, 317-325.	0.7	56
13	Cyclosporine-Induced Endoplasmic Reticulum Stress Triggers Tubular Phenotypic Changes and Death. American Journal of Transplantation, 2008, 8, 2283-2296.	2.6	138
14	Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney International, 2008, 73, 994-1007.	2.6	1,476
15	Dysfunction of the ER chaperone BiP accelerates the renal tubular injury. Biochemical and Biophysical Research Communications, 2008, 366, 1048-1053.	1.0	83
16	Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochemical and Biophysical Research Communications, 2008, 370, 651-656.	1.0	148
17	Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. American Journal of Physiology - Renal Physiology, 2008, 295, F323-F334.	1.3	154
18	Cytoplasmic initiation of cisplatin cytotoxicity. American Journal of Physiology - Renal Physiology, 2008, 295, F44-F52.	1.3	70

ITATION REDO

#	Article	IF	CITATIONS
19	Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F777-F787.	1.3	239
20	Enhancement of Cisplatin [<i>cis</i> -Diammine Dichloroplatinum (II)] Cytotoxicity by <i>O</i> ⁶ -Benzylguanine Involves Endoplasmic Reticulum Stress. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 442-452.	1.3	38
21	Telmisartan is more effective than losartan in reducing proteinuria. Kidney International, 2009, 75, 119-120.	2.6	2
22	Response to â€~Autophagy: a protective mechanism against nephrotoxicant-induced renal injury'. Kidney International, 2009, 75, 119.	2.6	1
23	Autophagy: a protective mechanism against nephrotoxicant-induced renal injury. Kidney International, 2009, 75, 118-119.	2.6	13
24	Effect of the Methoxychlor Metabolite HPTE on the Rat Ovarian Granulosa Cell Transcriptome In Vitro. Toxicological Sciences, 2009, 110, 95-106.	1.4	33
25	Effect of BSA-induced ER stress on SGLT protein expression levels and α-MG uptake in renal proximal tubule cells. American Journal of Physiology - Renal Physiology, 2009, 296, F1405-F1416.	1.3	34
26	Regulation of mRNA translation in renal physiology and disease. American Journal of Physiology - Renal Physiology, 2009, 297, F1153-F1165.	1.3	52
27	Bcl-2 family proteins as regulators of oxidative stress. Seminars in Cancer Biology, 2009, 19, 42-49.	4.3	152
28	Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemotherapy and Pharmacology, 2009, 64, 1115-1122.	1.1	56
29	Calciumâ€ S ensing Receptors Induce Apoptosis in Rat Cardiomyocytes via the Endo(sarco)plasmic Reticulum Pathway during Hypoxia/Reoxygenation. Basic and Clinical Pharmacology and Toxicology, 2010, 106, 396-405.	1.2	28
30	ER–Golgi network—A future target for anti-cancer therapy. Leukemia Research, 2009, 33, 1440-1447.	0.4	115
31	Apoptosis in Acute Kidney Injury. , 2009, , 565-579.		1
32	Synthetic Analogue of Rocaglaol Displays a Potent and Selective Cytotoxicity in Cancer Cells: Involvement of Apoptosis Inducing Factor and Caspase-12. Journal of Medicinal Chemistry, 2009, 52, 5176-5187.	2.9	94
33	Endoplasmic Reticulum Stress and Renal Disease. Antioxidants and Redox Signaling, 2009, 11, 2341-2352.	2.5	59
34	Endoplasmic reticulum stress-mediated apoptosis is activated in vascular calcification. Biochemical and Biophysical Research Communications, 2009, 387, 694-699.	1.0	81
36	Alpha-Lipoic Acid Attenuates Cisplatin-Induced Tubulointerstitial Injuries through Inhibition of Mitochondrial Bax Translocation in Rats. Nephron Experimental Nephrology, 2009, 113, e104-e112.	2.4	12
37	Endoplasmic Reticulum Stress in the Kidney as a Novel Mediator of Kidney Injury. Nephron Experimental Nephrology, 2009, 112, e1-e9.	2.4	162

#	ARTICLE	IF	CITATIONS
39	Multiple roles of microsomal glutathione transferase 1 in cellular protection: A mechanistic study. Free Radical Biology and Medicine, 2010, 49, 1638-1645.	1.3	73
40	MicroRNA-34a Is Induced via p53 during Cisplatin Nephrotoxicity and Contributes to Cell Survival. Molecular Medicine, 2010, 16, 409-416.	1.9	119
41	The Role of Endoplasmic Reticulum Stress–Related Unfolded Protein Response in the Radiocontrast Medium–Induced Renal Tubular Cell Injury. Toxicological Sciences, 2010, 114, 295-301.	1.4	42
42	Effect of rosiglitazone on cisplatin-induced nephrotoxicity. Renal Failure, 2010, 32, 368-371.	0.8	7
43	Protection of cisplatin cytotoxicity by an inactive cyclin-dependent kinase. American Journal of Physiology - Renal Physiology, 2010, 299, F112-F120.	1.3	14
44	Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. American Journal of Physiology - Renal Physiology, 2010, 298, F293-F300.	1.3	59
45	Cytochrome-P450 2B1 gene silencing attenuates puromycin aminonucleoside-induced cytotoxicity in glomerular epithelial cells. Kidney International, 2010, 78, 182-190.	2.6	9
46	Mechanisms of Cisplatin Nephrotoxicity. Toxins, 2010, 2, 2490-2518.	1.5	1,235
47	Quantitative Imaging of Chemical Composition in Single Cells by Secondary Ion Mass Spectrometry: Cisplatin Affects Calcium Stores in Renal Epithelial Cells. Methods in Molecular Biology, 2010, 656, 113-130.	0.4	31
48	Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer, 2011, 71, 291-297.	0.9	76
49	Apoptotic effect of MG-132 on human tongue squamous cell carcinoma. Biomedicine and Pharmacotherapy, 2011, 65, 322-327.	2.5	8
50	Adiponectin Attenuates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury Through Inhibition of Endoplasmic Reticulum Stress. Journal of Investigative Medicine, 2011, 59, 921-925.	0.7	10
51	Salubrinal, an eIF2 $\hat{1}$ ± dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radical Biology and Medicine, 2011, 51, 671-680.	1.3	66
52	Endoplasmic Reticulum Stress as a Target of Therapy Against Oxidative Stress and Hypoxia. , 2011, , 657-672.		3
53	Overexpression of p18INK4C in LLC-PK1 cells increases resistance to cisplatin-induced apoptosis. Pediatric Nephrology, 2011, 26, 1291-1301.	0.9	9
54	Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosis. American Journal of Physiology - Cell Physiology, 2011, 301, C954-C967.	2.1	49
56	zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. American Journal of Physiology - Renal Physiology, 2012, 303, F1239-F1250.	1.3	68
57	Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Archives of Toxicology, 2012, 86, 1233-1250.	1.9	298

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
58	Subcellular targets of cisplatin cytotoxicity: An integrated view. , 2012, 136, 35-55.		148
59	Effect of ethanol extract ofSphaeranthus indicuson cisplatin-induced nephrotoxicity in rats. Natural Product Research, 2012, 26, 933-938.	1.0	6
60	Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy. Journal of Nutritional Biochemistry, 2012, 23, 494-500.	1.9	89
61	ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Experimental Cell Research, 2012, 318, 238-250.	1.2	46
62	Cellular Mechanisms of Drug Nephrotoxicity. , 2013, , 2889-2932.		3
63	The unfolded protein response triggered by environmental factors. Seminars in Immunopathology, 2013, 35, 259-275.	2.8	54
64	Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. American Journal of Physiology - Renal Physiology, 2013, 305, F881-F890.	1.3	38
65	Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. Journal of Diabetes Research, 2013, 2013, 1-8.	1.0	41
66	Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray. European Journal of Medical Research, 2013, 18, 62.	0.9	2
67	Endoplasmic Reticulum Stress Is Involved in the Response of Human Laryngeal Carcinoma Cells to Carboplatin but Is Absent in Carboplatin-Resistant Cells. PLoS ONE, 2013, 8, e76397.	1.1	20
68	Pathophysiology of Cisplatin-Induced Acute Kidney Injury. BioMed Research International, 2014, 2014, 1-17.	0.9	493
69	Caspase-12 mediates carbon tetrachloride-induced hepatocyte apoptosis in mice. World Journal of Gastroenterology, 2014, 20, 18189.	1.4	25
70	Endoplasmic reticulum stress is involved in restraint stress-induced hippocampal apoptosis and cognitive impairments in rats. Physiology and Behavior, 2014, 131, 41-48.	1.0	59
71	Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radical Research, 2014, 48, 1371-1385.	1.5	32
72	Regulated Cell Death in AKI. Journal of the American Society of Nephrology: JASN, 2014, 25, 2689-2701.	3.0	423
73	Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Archives of Toxicology, 2014, 88, 1249-1256.	1.9	128
74	Deletion of p18INK4c aggravates cisplatin-induced acute kidney injury. International Journal of Molecular Medicine, 2014, 33, 1621-1626.	1.8	3
75	Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. International Journal of Molecular Medicine, 2014, 33, 809-816.	1.8	84

#	Article	IF	CITATIONS
76	Proteasome inhibitor lactacystin enhances cisplatin cytotoxicity by increasing endoplasmic reticulum stress-associated apoptosis in HeLa cells. Molecular Medicine Reports, 2015, 11, 189-195.	1.1	22
77	Inhibition of autophagy using 3-methyladenine increases cisplatin-induced apoptosis by increasing endoplasmic reticulum stress in U251 human glioma cells. Molecular Medicine Reports, 2015, 12, 1727-1732.	1.1	36
78	2-Deoxy- <scp>d</scp> -Glucose Sensitizes Human Ovarian Cancer Cells to Cisplatin by Increasing ER Stress and Decreasing ATP Stores in Acidic Vesicles. Journal of Biochemical and Molecular Toxicology, 2015, 29, 572-578.	1.4	9
79	Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Experimental Biology and Medicine, 2015, 240, 1513-1519.	1.1	36
80	Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Laboratory Investigation, 2015, 95, 1157-1173.	1.7	35
81	An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicology Letters, 2015, 237, 219-227.	0.4	353
82	Effect of cisplatin on proteasome activity. Journal of Inorganic Biochemistry, 2015, 153, 253-258.	1.5	14
83	Expression profiles of the apoptosis signaling pathway mediated by death receptor and endoplasmic reticulum in rat liver regeneration. Genetics and Molecular Research, 2016, 15, .	0.3	1
84	Glucagonâ€like peptideâ€1 preserves nonâ€alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stressâ€associated pathway. Hepatology Research, 2016, 46, 343-353.	1.8	41
85	The Green Tea Polyphenol(—)-epigallocatechin-3-gallate and its beneficial roles in chronic kidney disease. Journal of Translational Internal Medicine, 2016, 4, 99-103.	1.0	32
86	Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum. Toxicology and Applied Pharmacology, 2016, 309, 24-36.	1.3	15
87	Role of endoplasmic reticulum stress in drugâ€induced toxicity. Pharmacology Research and Perspectives, 2016, 4, e00211.	1.1	179
88	An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371, 58-66.	2.0	163
89	Heat shock factor 1 induces crystallin-αB to protect against cisplatin nephrotoxicity. American Journal of Physiology - Renal Physiology, 2016, 311, F94-F102.	1.3	13
90	Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78ÂKda. Chemico-Biological Interactions, 2016, 254, 45-53.	1.7	5
91	Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury. Renal Failure, 2016, 38, 831-837.	0.8	60
92	Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opinion on Pharmacotherapy, 2016, 17, 561-570.	0.9	41
93	Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury. Archives of Toxicology, 2016, 90, 2249-2260.	1.9	16

#	Article	IF	CITATIONS
94	Variants in <i>WFS1</i> and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated Ototoxicity. Clinical Cancer Research, 2017, 23, 3325-3333.	3.2	65
95	The Sodium-Glucose Co-Transporter 2 Inhibitor, Empagliflozin, Protects against Diabetic Cardiomyopathy by Inhibition of the Endoplasmic Reticulum Stress Pathway. Cellular Physiology and Biochemistry, 2017, 41, 2503-2512.	1.1	52
96	Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons. Neurochemical Research, 2017, 42, 3559-3572.	1.6	48
97	Endoplasmic Reticulum Stress Is Involved in Cochlear Cell Apoptosis in a Cisplatin-Induced Ototoxicity Rat Model. Audiology and Neuro-Otology, 2017, 22, 160-168.	0.6	29
98	Animal Models of Kidney Disease. , 2017, , 379-417.		14
99	Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Frontiers in Cellular Neuroscience, 2017, 11, 192.	1.8	91
100	Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury. PLoS ONE, 2017, 12, e0184570.	1.1	32
101	Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats. PLoS ONE, 2017, 12, e0179042.	1.1	37
102	Hyperhomocysteinemia Exacerbates Cisplatin-induced Acute Kidney Injury. International Journal of Biological Sciences, 2017, 13, 219-231.	2.6	27
103	The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication. Inflammation, 2018, 41, 1032-1048.	1.7	39
104	Pharmacological inhibition of fatty acid-binding protein 4 (FABP4) protects against renal ischemia-reperfusion injury. RSC Advances, 2018, 8, 15207-15214.	1.7	20
105	Schizandrin B inhibits the cisâ€ʿDDPâ€ʻinduced apoptosis of HKâ€ʿ2 cells by activating ERK/NFâ€́1ºB signaling to regulate the expression of survivin. International Journal of Molecular Medicine, 2018, 41, 2108-2116.	1.8	14
106	Morin hydrate ameliorates cisplatin-induced ER stress, inflammation and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. International Immunopharmacology, 2018, 56, 156-167.	1.7	55
107	Epigallocatechin-3-gallate alleviates bladder overactivity in a rat model with metabolic syndrome and ovarian hormone deficiency through mitochondria apoptosis pathways. Scientific Reports, 2018, 8, 5358.	1.6	11
108	Cetuximab enhances cisplatin-induced endoplasmic reticulum stress-associated apoptosis in laryngeal squamous cell carcinoma cells by inhibiting expression of TXNDC5. Molecular Medicine Reports, 2018, 17, 4767-4776.	1.1	12
109	Overview of Pathophysiology of Acute Kidney Injury: Human Evidence, Mechanisms, Pathological Correlations and Biomarkers and Animal Models. , 2018, , 45-67.		3
110	Renal Toxicology/Nephrotoxicity of Cisplatin and Other Chemotherapeutic Agents. , 2018, , 452-486.		1
111	Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors. Cardiovascular Diabetology, 2018, 17, 101.	2.7	114

#	Article	IF	CITATIONS
112	Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food and Chemical Toxicology, 2018, 120, 230-242.	1.8	67
113	Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Annals of Medicine, 2018, 50, 381-390.	1.5	109
114	Intracellular organelles in health and kidney disease. Nephrologie Et Therapeutique, 2019, 15, 9-21.	0.2	25
115	Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats. Journal of Cellular Physiology, 2019, 234, 1682-1688.	2.0	33
116	Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chemical Research in Toxicology, 2019, 32, 1469-1486.	1.7	215
117	In vitro effects of the activity of novel platinum (II) complex in canine and human cell lines. Veterinary and Comparative Oncology, 2019, 17, 497-506.	0.8	6
118	The Protective Effect of Alpha-Mangostin against Cisplatin-Induced Cell Death in LLC-PK1 Cells is Associated to Mitochondrial Function Preservation. Antioxidants, 2019, 8, 133.	2.2	18
119	"Adjusting internal organs and dredging channel―electroacupuncture treatment prevents the development of diabetic peripheral neuropathy by downregulating glucoseâ€related protein 78 (GRP78) and caspaseâ€12 in streptozotocinâ€diabetic rats. Journal of Diabetes, 2019, 11, 928-937.	0.8	22
120	Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. Journal of Biomedical Science, 2019, 26, 25.	2.6	249
121	In vitro and in vivo anti-proliferative activity and ultrastructure investigations of a copper(II) complex toward human lung cancer cell NCI-H460. Journal of Inorganic Biochemistry, 2020, 210, 111166.	1.5	10
122	Cisplatin chemotherapy and renal function. Advances in Cancer Research, 2021, 152, 305-327.	1.9	45
123	Effect of Intravenous Glutamine on Caspase-12 Expression in the Apoptosis of the Glomerular Epithelial Cells of Male Rats Exposed to Cisplatin. Asian Pacific Journal of Cancer Prevention, 2021, 22, 457-462.	0.5	1
124	Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers, 2021, 13, 1572.	1.7	135
125	Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacologica Sinica, 2021, 42, 1951-1969.	2.8	151
126	Endoplasmic Reticulum Stress-Activated PERK-eIF2α-ATF4 Signaling Pathway is Involved in the Ameliorative Effects of Ginseng Polysaccharides against Cisplatin-Induced Nephrotoxicity in Mice. ACS Omega, 2021, 6, 8958-8966.	1.6	14
127	2-Methylquinazoline derivative 23BB as a highly selective histone deacetylase 6 inhibitor alleviated cisplatin-induced acute kidney injury. Bioscience Reports, 2020, 40, .	1.1	11
128	Excessive Oxidative Stress Contributes to Increased Acute ER Stress Kidney Injury in Aged Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	1.9	29
129	Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer. Journal of Clinical Investigation, 2011, 121, 2709-2722.	3.9	128

#	Article	IF	CITATIONS
130	A Comprehensive Review on the Genetic Regulation of Cisplatin-induced Nephrotoxicity. Current Genomics, 2016, 17, 279-293.	0.7	27
131	Amelioration of cisplatin induced nephrotoxicity in Swiss albino mice by Rubia cordifolia extract. Journal of Cancer Research and Therapeutics, 2008, 4, 111.	0.3	67
132	Cellular Mechanisms of Drug Nephrotoxicity. , 2008, , 2507-2535.		0
133	Programmed Cell Death and Trypanosomatids: A Brief Review. , 2008, , 24-38.		1
134	The Protective Effect of Berberis aristata against Mitochondrial Dysfunction Induced due to Co-administration of Mitomycin C and Cisplatin. Journal of Cancer Science & Therapy, 2012, 04, .	1.7	1
135	New Insights in the Pathogenesis of Cisplatin-Induced Nephrotoxicity. Serbian Journal of Experimental and Clinical Research, 2019, .	0.2	0
136	Epigallocatechin-3-gallate protects against cisplatin nephrotoxicity by inhibiting the apoptosis in mouse. International Journal of Clinical and Experimental Pathology, 2014, 7, 4607-16.	0.5	26
138	Tetramethylpyrazine: An Active Ingredient of Chinese Herbal Medicine With Therapeutic Potential in Acute Kidney Injury and Renal Fibrosis. Frontiers in Pharmacology, 2022, 13, 820071.	1.6	10
139	Leonurine attenuates cisplatin nephrotoxicity by suppressing the NLRP3 inflammasome, mitochondrial dysfunction, and endoplasmic reticulum stress. International Urology and Nephrology, 2022, , 1.	0.6	9
140	Mechanism of kidney injury induced by cisplatin. Toxicology Research, 2022, 11, 385-390.	0.9	7
141	A Novel VCP modulator KUS121 exerts renoprotective effects in ischemia-reperfusion injury with retaining ATP and restoring ERAD-processing capacity American Journal of Physiology - Renal Physiology, 2022, , .	1.3	0
143	Endoplasmic reticulum stress contributes to cisplatin-induced chronic kidney disease via the PERK–PKCδ pathway. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	5
144	Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity. Disease Markers, 2022, 2022, 1-17.	0.6	6
145	Platycodin D restores the intestinal mechanicalbarrier by reducing endoplasmic reticulum stress-mediated apoptosis. Journal of Functional Foods, 2022, 99, 105336.	1.6	2
146	The developmental regulator HAND1 inhibits gastric carcinogenesis through enhancing ER stress apoptosis <i>via</i> targeting CHOP and BAK which is augmented by cisplatin. International Journal of Biological Sciences, 2023, 19, 120-136.	2.6	1
147	Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. International Journal of Molecular Sciences, 2022, 23, 15410.	1.8	21
148	Taurine reduces apoptosis mediated by endoplasmic reticulum stress in islet β-cells induced by high-fat and -glucose diets. Food and Chemical Toxicology, 2023, 175, 113700.	1.8	3
151	The underlying mechanisms of cisplatin-induced nephrotoxicity and its therapeutic intervention using natural compounds. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 2925-2941.	1.4	3

ARTICLE

IF CITATIONS