ReAS: Recovery of Ancestral Sequences for Transposabl Reads of a Whole Genome Shotgun

PLoS Computational Biology 1, e43

DOI: 10.1371/journal.pcbi.0010043

Citation Report

#	Article	IF	CITATIONS
1	Cluster and Grid Based Classification of Transposable Elements in Eukaryotic Genomes. , 2006, , .		6
2	Comparing the whole-genome-shotgun and map-based sequences of the rice genome. Trends in Plant Science, 2006, 11, 387-391.	4.3	14
3	Morphological Characters from the Genome: SINE Insertion Polymorphism and Phylogenies. Genome Dynamics and Stability, 2006, , 45-75.	1.1	2
4	Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics, 2007, 8, 382-392.	3.2	189
5	A Multiscale Model for Efficient Simulation of a Membrane Bound Viral Fusion Peptide. , 2007, , .		2
6	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	13.7	1,886
7	Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics, 2007, 8, 427.	1.2	256
8	Computational Approaches and Tools Used in Identification of Dispersed Repetitive DNA Sequences. Tropical Plant Biology, 2008, 1, 85-96.	1.0	52
9	An automated, high-throughput sequence read classification pipeline for preliminary genome characterization. Analytical Biochemistry, 2008, 373, 78-87.	1.1	5
10	Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm. BMC Bioinformatics, 2008, 9, 235.	1.2	23
11	A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics, 2008, 9, 517.	1.2	214
12	Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics, 2008, 9, 518.	1.2	75
13	Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1046-1057.	1.2	113
14	The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1036-1045.	1.2	592
15	Empirical comparison of ab initio repeat finding programs. Nucleic Acids Research, 2008, 36, 2284-2294.	6.5	265
16	An algorithm for finding substantially broken repeated sequences in newly sequenced genomes. AIP Conference Proceedings, 2008, , .	0.3	0
17	Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes. Genome Biology and Evolution, 2009, 1, 205-220.	1.1	102
18	What can you do with 0.1× genome coverage? A case study based on a genome survey of the scuttle fly Megaselia scalaris (Phoridae). BMC Genomics, 2009, 10, 382.	1.2	53

LATION REDO

	CITATION R	EPORT	
#	Article	IF	Citations
19	The genome of the cucumber, Cucumis sativus L Nature Genetics, 2009, 41, 1275-1281.	9.4	1,317
20	Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews, 2009, 33, 539-571.	3.9	137
21	The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes. Plant Methods, 2009, 5, 8.	1.9	21
22	Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biology, 2009, 10, R22.	13.9	128
23	The Evolution of tRNA Genes in Drosophila. Genome Biology and Evolution, 2010, 2, 467-477.	1.1	40
24	An algorithm for the reconstruction of consensus sequences of ancient segmental duplications and transposon copies in eukaryotic genomes. International Journal of Bioinformatics Research and Applications, 2010, 6, 147.	0.1	3
25	Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity, 2010, 104, 520-533.	1.2	194
26	SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Research, 2010, 38, D453-D456.	6.5	239
27	Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics, 2010, 26, 2101-2108.	1.8	43
28	RepFrag. , 2010, , .		0
29	Evolutionary Transients in the Rice Transcriptome. Genomics, Proteomics and Bioinformatics, 2010, 8, 211-228.	3.0	9
30	Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Journal of Genetics and Genomics, 2011, 38, 39-45.	1.7	28
31	Identification and Annotation of Repetitive Sequences in Fungal Genomes. Methods in Molecular Biology, 2011, 722, 33-50.	0.4	2
32	Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Research, 2011, 19, 787-808.	1.0	49
33	Analysis of high-identity segmental duplications in the grapevine genome. BMC Genomics, 2011, 12, 436.	1.2	35
34	Restless Genomes. Advances in Genetics, 2011, 73, 219-262.	0.8	19
35	Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS Genetics, 2011, 7, e1002384.	1.5	907
36	Identification of transposable elements of the giant panda (Ailuropoda melanoleuca) genome. , 2012, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
37	Roadmap for Annotating Transposable Elements in Eukaryote Genomes. Methods in Molecular Biology, 2012, 859, 53-68.	0.4	15
38	Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics, 2012, 13, 53.	1.2	35
39	Transposable Element Annotation in Completely Sequenced Eukaryote Genomes. Topics in Current Genetics, 2012, , 17-39.	0.7	16
40	Optimizing hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with highly divergent genome. BMC Systems Biology, 2012, 6, S21.	3.0	24
41	Mitochondrial Pseudogenes in the Nuclear Genomes of Drosophila. PLoS ONE, 2012, 7, e32593.	1.1	33
42	Transposable Elements: From DNA Parasites to Architects of Metazoan Evolution. Genes, 2012, 3, 409-422.	1.0	26
43	Insect Transposable Elements. , 2012, , 57-89.		3
44	Overview of Repeat Annotation and De Novo Repeat Identification. Methods in Molecular Biology, 2013, 1057, 275-287.	0.4	12
45	Transposable elements and their potential role in complex lung disorder. Respiratory Research, 2013, 14, 99.	1.4	9
46	Arguments for standardizing transposable element annotation in plant genomes. Trends in Plant Science, 2013, 18, 367-376.	4.3	26
47	The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45, 487-494.	9.4	1,031
48	BmTEdb: a collective database of transposable elements in the silkworm genome. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat055.	1.4	34
49	BengaSaVex: A new computational genetic sequence extraction tool for DNA repeats. African Journal of Biotechnology, 2014, 13, 2103-2112.	0.3	2
50	Stick Insect Genomes Reveal Natural Selection's Role in Parallel Speciation. Science, 2014, 344, 738-742.	6.0	386
51	Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nature Communications, 2014, 5, 5269.	5.8	99
52	RepARK—de novo creation of repeat libraries from whole-genome NGS reads. Nucleic Acids Research, 2014, 42, e80-e80.	6.5	67
53	Tedna: a transposable element <i>de novo </i> assembler. Bioinformatics, 2014, 30, 2656-2658.	1.8	30
54	Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nature Communications. 2014. 5. 4611.	5.8	128

CITATION REPORT

#	Article	IF	CITATIONS
55	<i>Drosophila</i> Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution. G3: Genes, Genomes, Genetics, 2015, 5, 719-740.	0.8	84
56	Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics, 2015, 16, 227.	1.2	150
57	RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538.	1.2	86
58	A call for benchmarking transposable element annotation methods. Mobile DNA, 2015, 6, 13.	1.3	83
59	phRAIDER: Pattern-Hunter based Rapid Ab Initio Detection of Elementary Repeats. Bioinformatics, 2016, 32, i209-i215.	1.8	16
60	Repetitive Sequences. Compendium of Plant Genomes, 2016, , 115-123.	0.3	0
61	Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification. Genetica, 2016, 144, 577-589.	0.5	1
62	Mining approximate patterns with frequent locally optimal occurrences. Discrete Applied Mathematics, 2016, 200, 123-152.	0.5	5
64	Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nature Communications, 2017, 8, 2286.	5.8	123
65	Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mobile DNA, 2017, 8, 19.	1.3	103
66	Comparative Genomics in Drosophila. Methods in Molecular Biology, 2018, 1704, 433-450.	0.4	1
67	RepLong: <i>de novo</i> repeat identification using long read sequencing data. Bioinformatics, 2018, 34, 1099-1107.	1.8	21
68	A benchmark study of k-mer counting methods for high-throughput sequencing. GigaScience, 2018, 7, .	3.3	53
69	Drosophila parasitoid wasps bears a distinct DNA transposon profile. Mobile DNA, 2018, 9, 23.	1.3	7
70	Repeat in Genomes: How and Why You Should Consider Them in Genome Analyses?. , 2019, , 210-220.		1
71	Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning. International Journal of Molecular Sciences, 2019, 20, 3837.	1.8	56
72	Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics. Methods in Molecular Biology, 2019, 1910, 177-207.	0.4	74
73	MGERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mobile DNA, 2019, 10, 21.	1.3	2

CITATION REPORT

#	Article	IF	CITATIONS
74	Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties. Plant Journal, 2019, 99, 895-909.	2.8	19
75	Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins. Scientific Reports, 2020, 10, 11893.	1.6	3
76	Silkworm genomics. , 2021, , 259-280.		0
77	Evolutionary Dynamics of the Pericentromeric Heterochromatin in Drosophila virilis and Related Species. Genes, 2021, 12, 175.	1.0	2
78	Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. Journal of Genetics and Genomics, 2021, 48, 184-197.	1.7	7
80	A sensitive repeat identification framework based on short and long reads. Nucleic Acids Research, 2021, 49, e100-e100.	6.5	10
81	Finding and Characterizing Repeats in Plant Genomes. Methods in Molecular Biology, 2016, 1374, 293-337.	0.4	7
82	Computational Methods for the Analysis of Primate Mobile Elements. Methods in Molecular Biology, 2010, 628, 137-151.	0.4	9
83	RAIDER: Rapid Ab Initio Detection of Elementary Repeats. Lecture Notes in Computer Science, 2013, , 170-180.	1.0	1
85	piRNAs Are Associated with Diverse Transgenerational Effects on Gene and Transposon Expression in a Hybrid Dysgenic Syndrome of D. virilis. PLoS Genetics, 2015, 11, e1005332.	1.5	37
86	Estimating the k-mer Coverage Frequencies in Genomic Datasets: A Comparative Assessment of the State-of-the-art. Current Genomics, 2019, 20, 2-15.	0.7	10
90	Finding and Characterizing Repeats in Plant Genomes. Methods in Molecular Biology, 2022, 2443, 327-385.	0.4	2
91	The genomes of 204 Vitis vinifera accessions reveal the origin of European wine grapes. Nature Communications, 2021, 12, 7240.	5.8	39
92	Methodologies for the De novo Discovery of Transposable Element Families. Genes, 2022, 13, 709.	1.0	10