Amino acid coupling patterns in thermophilic proteins

Proteins: Structure, Function and Bioinformatics 59, 58-63 DOI: 10.1002/prot.20386

Citation Report

#	Article	IF	CITATIONS
1	Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics, 2007, 23, 2231-2238.	1.8	89
2	KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Research, 2007, 35, W588-W594.	6.5	320
3	Discrimination and Classification of Thermophilic and Mesophilic Proteins. , 2007, , .		0
4	Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1274-1279.	1.5	73
6	Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 2008, 34, 25-33.	1.2	146
7	The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog. BMC Structural Biology, 2008, 8, 20.	2.3	11
8	PSLDoc: Protein subcellular localization prediction based on gappedâ€dipeptides and probabilistic latent semantic analysis. Proteins: Structure, Function and Bioinformatics, 2008, 72, 693-710.	1.5	44
9	Using a strategy based on the concept of convergent evolution to identify residue substitutions responsible for thermal adaptation. Proteins: Structure, Function and Bioinformatics, 2008, 73, 53-62.	1.5	7
10	Potential implications of availability of short amino acid sequences in proteins: An old and new approach to protein decoding and design. Biotechnology Annual Review, 2008, 14, 109-141.	2.1	14
11	Sequence Based Prediction of Protein Mutant Stability and Discrimination of Thermophilic Proteins. Lecture Notes in Computer Science, 2008, , 1-12.	1.0	2
12	Conformational Dynamics Coupled to Protonation Equilibrium at the Cu _A Site of <i>Thermus thermophilus</i> :  Insights into the Origin of Thermostability. Biochemistry, 2008, 47, 1309-1318.	1.2	10
13	Predicting melting temperature directly from protein sequences. Computational Biology and Chemistry, 2009, 33, 445-450.	1.1	79
14	An expert system to predict protein thermostability using decision tree. Expert Systems With Applications, 2009, 36, 9007-9014.	4.4	45
15	Discrimination of thermophilic and mesophilic proteins. , 2009, , .		0
17	Discrimination of thermophilic and mesophilic proteins. BMC Structural Biology, 2010, 10, S5.	2.3	109
18	Prediction of thermophilic proteins using feature selection technique. Journal of Microbiological Methods, 2011, 84, 67-70.	0.7	89
19	Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Applied Microbiology and Biotechnology, 2012, 95, 1469-1478.	1.7	37
20	Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins. PLoS ONE, 2012, 7, e31791.	1.1	17

	Сіта	CITATION REPORT	
#	ARTICLE Conformational Temperature-Dependent Behavior of a Histone H2AX: A Coarse-Grained Monte Carlo	IF 1.1	CITATIONS
22	Approach Via Knowledge-Based Interaction Potentials. PLoS ONE, 2012, 7, 632075. Molecular dynamics simulations of the thermal stability of tteRBP and ecRBP. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1086-1100.	2.0	2
23	A similarity distance of diversity measure for discriminating mesophilic and thermophilic proteins. Amino Acids, 2013, 44, 573-580.	1.2	31
24	Increasing activity and thermal resistance of <i>Bacillus gibsonii</i> alkaline protease (BgAP) by directed evolution. Biotechnology and Bioengineering, 2013, 110, 711-720.	1.7	72
25	Thermostable Proteases. , 2013, , 859-880.		11
26	Using First Passage Statistics to Extract Environmentally Dependent Amino Acid Correlations. PLoS ONE, 2014, 9, e101665.	1.1	3
27	Advances in protease engineering for laundry detergents. New Biotechnology, 2015, 32, 629-634.	2.4	82
28	Characterization of a Novel α- <scp>l</scp> -Arabinofuranosidase from <i>Ruminococcus albus</i> 7 and Rational Design for Its Thermostability. Journal of Agricultural and Food Chemistry, 2016, 64, 7546-7554.	2.4	8
29	Protein thermostability engineering. RSC Advances, 2016, 6, 115252-115270.	1.7	101
30	Insights into the molecular basis of piezophilic adaptation: Extraction of piezophilic signatures. Journal of Theoretical Biology, 2016, 390, 117-126.	0.8	18
31	Thermozymes: Adaptive strategies and tools for their biotechnological applications. Bioresource Technology, 2019, 278, 372-382.	4.8	79
32	Controlling and quantifying the stability of amino acid-based cargo within polymeric delivery systems. Journal of Controlled Release, 2019, 300, 102-113.	4.8	5
33	PSLCNN: Protein Subcellular Localization Prediction for Eukaryotes and Prokaryotes Using Deep Learning. , 2019, , .		0
34	GODoc: high-throughput protein function prediction using novel k-nearest-neighbor and voting algorithms. BMC Bioinformatics, 2020, 21, 276.	1.2	2
35	Discrimination of Thermophilic Proteins and Non-thermophilic Proteins Using Feature Dimension Reduction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 584807.	2.0	38
36	An effective computationalâ€screening strategy for simultaneously improving both catalytic activity and thermostability of αâ€ <scp>l</scp> â€rhamnosidase. Biotechnology and Bioengineering, 2021, 118 3409-3419.	, 1.7	14
37	Temperature-Dependent Molecular Adaptation Features in Proteins. , 0, , 75-85.		6
38	Protein Thermal Stability Enhancement by Designing Salt Bridges: A Combined Computational and Experimental Study. PLoS ONE, 2014, 9, e112751.	1.1	73

	Сітатіо	ion Report		
#	Article	IF	CITATIONS	
39	Predicting Thermophilic Proteins by Machine Learning. Current Bioinformatics, 2020, 15, 493-502.	0.7	90	
40	Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. International Journal of Biological Macromolecules, 2022, 214, 642-654.	3.6	33	
41	A Review of Extremophile Protein Classification Using Machine Learning. , 2022, , .		0	
42	Unravelling and Quantifying the Biophysical– Biochemical Descriptors Governing Protein Thermostability by Machine Learning. Advanced Theory and Simulations, 2023, 6, .	1.3	0	
43	Hot spring distribution and survival mechanisms of thermophilic comammox <i>Nitrospira</i> . ISME Journal, 2023, 17, 993-1003.	4.4	4	
44	Hyperthermophiles: Diversity, Adaptation and Applications. , 2023, , 24-63.		0	