Energies of organic molecules and atoms in density fun

International Journal of Quantum Chemistry 101, 506-511 DOI: 10.1002/qua.20305

Citation Report

#	Article	IF	CITATIONS
1	Nonempirical Construction of Current-Density Functionals from Conventional Density-Functional Approximations. Physical Review Letters, 2005, 95, 196403.	7.8	61
2	Binding Energy Curves from Nonempirical Density Functionals. I. Covalent Bonds in Closed-Shell and Radical Molecules. Journal of Physical Chemistry A, 2005, 109, 11006-11014.	2.5	57
3	Test of a nonempirical density functional: Short-range part of the van der Waals interaction in rare-gas dimers. Journal of Chemical Physics, 2005, 122, 114102.	3.0	103
4	Binding Energy Curves from Nonempirical Density Functionals II. van der Waals Bonds in Rare-Gas and Alkaline-Earth Diatomics. Journal of Physical Chemistry A, 2005, 109, 11015-11021.	2.5	82
5	Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. Journal of Chemical Physics, 2005, 123, 062201.	3.0	769
6	The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. Journal of Chemical Physics, 2006, 124, 044103.	3.0	528
7	Parametrization of Atomic Energies to Improve Small Basis Set Density Functional Thermochemistry. Journal of Chemical Theory and Computation, 2006, 2, 1045-1049.	5.3	17
8	Scaling down the Perdew-Zunger self-interaction correction in many-electron regions. Journal of Chemical Physics, 2006, 124, 094108.	3.0	122
9	Assessing a new nonempirical density functional: Difficulties in treating π-conjugation effects. Journal of Chemical Physics, 2006, 124, 124112.	3.0	34
10	Comparison of SCC-DFTB and NDDO-Based Semiempirical Molecular Orbital Methods for Organic Molecules. Journal of Physical Chemistry A, 2006, 110, 13551-13559.	2.5	131
11	Meta-generalized gradient approximation for the exchange-correlation hole with an application to the jellium surface energy. Physical Review B, 2006, 73, .	3.2	71
12	Semiempirical hybrid density functional with perturbative second-order correlation. Journal of Chemical Physics, 2006, 124, 034108.	3.0	2,729
13	Density Functional Study of Methyl Chemisorption on Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2006, 7, 1311-1321.	2.1	6
14	One-parameter optimization of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation energy. Physical Review A, 2007, 76, .	2.5	37
15	Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Physical Review B, 2007, 75, .	3.2	120
16	Diminished gradient dependence of density functionals: Constraint satisfaction and self-interaction correction. Journal of Chemical Physics, 2007, 126, 244107.	3.0	26
17	Meta-generalized gradient approximation: non-empirical construction and performance of a density functional. Philosophical Magazine, 2007, 87, 1071-1084.	1.6	11
18	On Calculating a Polymer's Enthalpy of Formation with Quantum Chemical Methods. Journal of Physical Chemistry B, 2007, 111, 13869-13872.	2.6	8

#	Article	IF	CITATIONS
19	Application of the Computationally Efficient Self-Consistent-Charge Density-Functional Tight-Binding Method to Magnesium-Containing Moleculesâ€. Journal of Physical Chemistry A, 2007, 111, 5743-5750.	2.5	15
20	Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 2008, 100, 136406.	7.8	8,139
21	Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. Journal of Chemical Theory and Computation, 2008, 4, 297-306.	5.3	931
22	Enhanced Enthalpies of Formation from Density Functional Theory through Molecular Reference States. Journal of Physical Chemistry A, 2008, 112, 13706-13711.	2.5	6
23	Exact-exchange energy density in the gauge of a semilocal density-functional approximation. Physical Review A, 2008, 77, .	2.5	104
24	Polyfunctional Methodology for Improved DFT Thermochemical Predictions. Journal of Physical Chemistry A, 2008, 112, 10624-10634.	2.5	1
25	Absorption Spectra of Blue-Light-Emitting Oligoquinolines from Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2008, 112, 13701-13710.	2.6	10
26	Semiempirical Double-Hybrid Density Functional with Improved Description of Long-Range Correlation. Journal of Physical Chemistry A, 2008, 112, 2702-2712.	2.5	123
27	Improved Description of Stereoelectronic Effects in Hydrocarbons Using Semilocal Density Functional Theory. Journal of Chemical Theory and Computation, 2008, 4, 888-891.	5.3	63
29	Accurate prediction of heats of formation by a combined method of B3LYP and neural network correction. Journal of Computational Chemistry, 2009, 30, 1424-1444.	3.3	26
30	"Mindless―DFT Benchmarking. Journal of Chemical Theory and Computation, 2009, 5, 993-1003.	5.3	215
31	Evaluation of Density Functionals and Basis Sets for Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 679-692.	5.3	183
32	Unified Inter- and Intramolecular Dispersion Correction Formula for Generalized Gradient Approximation Density Functional Theory. Journal of Chemical Theory and Computation, 2009, 5, 2950-2958.	5.3	76
33	Regularized Gradient Expansion for Atoms, Molecules, and Solids. Journal of Chemical Theory and Computation, 2009, 5, 763-769.	5.3	36
34	Automatized Parametrization of SCC-DFTB Repulsive Potentials: Application to Hydrocarbons. Journal of Physical Chemistry A, 2009, 113, 11866-11881.	2.5	69
35	Assessing the performance of recent density functionals for bulk solids. Physical Review B, 2009, 79, .	3.2	740
36	Global Hybrid Functionals: A Look at the Engine under the Hood. Journal of Chemical Theory and Computation, 2010, 6, 3688-3703.	5.3	87
37	Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. International Reviews in Physical Chemistry, 2011, 30, 115-160.	2.3	116

#	Article	IF	CITATIONS
38	Theoretical study of substituent and solvent effects on the thermodynamics for cis/trans isomerization and intramolecular rearrangements of 2,2′-diphenoquinones. Structural Chemistry, 2011, 22, 615-625.	2.0	5
39	Accurate bond dissociation enthalpies by using doubly hybrid XYG3 functional. Journal of Computational Chemistry, 2011, 32, 1824-1838.	3.3	26
40	A meta-GGA Made Free of the Order of Limits Anomaly. Journal of Chemical Theory and Computation, 2012, 8, 2078-2087.	5.3	49
41	NH and NCl homolytic bond dissociation energies and radical stabilization energies: An assessment of theoretical procedures through comparison with benchmarkâ€quality W2w data. International Journal of Quantum Chemistry, 2012, 112, 1862-1878.	2.0	46
42	The calculation of active Raman modes of α-quartz crystal via density functional theory based on B3LYP Hamiltonian in 6–311+G(2d) basis setâ€. Pramana - Journal of Physics, 2012, 78, 803-810.	1.8	5
43	Performance of meta-GGA Functionals on General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2013, 9, 355-363.	5.3	68
44	Parametrization and Benchmark of DFTB3 for Organic Molecules. Journal of Chemical Theory and Computation, 2013, 9, 338-354.	5.3	743
45	Assessment of Density Functional Theory for Thermochemical Approaches Based on Bond Separation Reactions. Journal of Physical Chemistry A, 2013, 117, 228-243.	2.5	16
46	The calculation of the energies of phonon normal modes in the alpha-quartz crystal by analyzing the change of forces on atoms in the hydrogen-passivated small cluster of H16Si7O6. Optik, 2014, 125, 224-227.	2.9	1
47	A comparative DFT study on the differences between normal modes of polyethylene and polyethylene glycol via B3LYP Hamiltonian and the Hartree–Fock method in multiple bases. Optik, 2014, 125, 228-231.	2.9	8
48	Strongly Constrained and Appropriately Normed Semilocal Density Functional. Physical Review Letters, 2015, 115, 036402.	7.8	2,273
49	Construction and Application of a New Dual-Hybrid Random Phase Approximation. Journal of Chemical Theory and Computation, 2015, 11, 4615-4626.	5.3	54
50	Why Density Functionals Should Not Be Judged Primarily by Atomization Energies. Periodica Polytechnica: Chemical Engineering, 2016, 60, 2-7.	1.1	18
51	Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 2016, 145, 234306.	3.0	25
52	Semilocal density functionals and constraint satisfaction. International Journal of Quantum Chemistry, 2016, 116, 847-851.	2.0	65
53	The two pillars: density and spin-density functional theories. Molecular Physics, 2016, 114, 928-931.	1.7	6
54	Performance of a nonempirical exchange functional from density matrix expansion: comparative study with different correlations. Physical Chemistry Chemical Physics, 2017, 19, 21707-21713.	2.8	20
55	Theoretical Study of the Mechanism for CO2 Hydrogenation to Methanol Catalyzed by trans-RuH2(CO)(dpa). Catalysts, 2018, 8, 244.	3.5	8

IF ARTICLE CITATIONS # Statistically representative databases for density functional theory <i>via</i> data science. Physical 56 2.8 20 Chemistry Chemical Physics, 2019, 21, 19092-19103. Crystal structure and DFT studies of (E)-1-(4-fluorophenyl)-3-(1H-indol-1-yl)-4-styrylazetidin-2-one. Journal of Molecular Structure, 2019, 1187, 50-58. 3.6 Response to "Comment on â€~Regularized SCAN functional'―[J. Chem. Phys. 151, 207101 (2019)]. Journal of 58 10 Chemical Physics, 2019, 151, 207102. A simple model to calculate total and ionization energies of any atom. European Journal of Physics, 2019, 40, 015403. ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet 60 6.4 35 fuels. Fuel, 2020, 279, 118548. Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185. 12.8 ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel. Fuel, 2021, 297, 62 6.4 36 120724. The Connectivity Matrix: A Toolbox for Monitoring Bonded Atoms and Bonds. Journal of Physical 2.5 Chemistry A, 2020, 124, 1076-1086. Improving the Accuracy of Composite Methods: A G4MP2 Method with G4-like Accuracy and 64 2.5 3 Implications for Machine Learning. Journal of Physical Chemistry A, 2022, 126, 4528-4536.

CITATION REPORT