Contrasting Effects of Substrate and Fertilizer Nitrogen Decomposition

Ecosystems 8, 644-656 DOI: 10.1007/s10021-003-0110-7

Citation Report

#	Article	IF	CITATIONS
1	DECOMPOSITION OF DIVERSE LITTER MIXTURES IN STREAMS. Ecology, 2007, 88, 219-227.	1.5	183
2	Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends in Ecology and Evolution, 2007, 22, 538-547.	4.2	49
3	The influence of different soil substrates on the service life of Scots pine sapwood and oak heartwood in ground contact. Wood Material Science and Engineering, 2007, 2, 15-21.	1.1	9
4	MICROBIAL NITROGEN LIMITATION INCREASES DECOMPOSITION. Ecology, 2007, 88, 2105-2113.	1.5	765
5	The impact of elevated CO ₂ , increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biology, 2007, 13, 1960-1971.	4.2	74
6	Is oak establishment in old-fields and savanna openings context dependent?. Journal of Ecology, 2007, 95, 309-320.	1.9	63
7	The likely impact of elevated [CO 2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 2007, 173, 463-480.	3.5	579
8	Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: a multi-site experiment along a latitudinal gradient. Plant and Soil, 2007, 292, 147-159.	1.8	71
9	Responses of soil microorganisms to resource availability in urban, desert soils. Biogeochemistry, 2008, 87, 143-155.	1.7	44
10	Soil carbon storage, litterfall and CO ₂ efflux in fertilized and unfertilized larch (<i>Larix leptolepis</i>) plantations. Ecological Research, 2008, 23, 757-763.	0.7	19
11	Browsing-induced Effects on Leaf Litter Quality and Decomposition in a Southern African Savanna. Ecosystems, 2008, 11, 238-249.	1.6	41
12	Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia, 2008, 158, 535-543.	0.9	42
13	Nitrogen additions and microbial biomass: a metaâ€analysis of ecosystem studies. Ecology Letters, 2008, 11, 1111-1120.	3.0	1,221
14	Litter type and soil minerals control temperate forest soil carbon response to climate change. Global Change Biology, 2008, 14, 2064-2080.	4.2	44
15	Simple threeâ€pool model accurately describes patterns of longâ€term litter decomposition in diverse climates. Global Change Biology, 2008, 14, 2636-2660.	4.2	401
16	Effects of Stream Water Chemistry and Tree Species on Release and Methylation of Mercury during Litter Decomposition. Environmental Science & Technology, 2008, 42, 8692-8697.	4.6	24
17	Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 685-701.	1.8	696
18	NITROGEN EFFECTS ON DECOMPOSITION: A FIVE‥EAR EXPERIMENT IN EIGHT TEMPERATE SITES. Ecology, 2008, 89, 2633-2644.	1.5	223

TATION REDO

#	Article	IF	CITATIONS
19	Tree species distribution and its impact on soil properties, and nitrogen and phosphorus mineralization in a humid subtropical forest ecosystem of northeastern India. Canadian Journal of Forest Research, 2009, 39, 36-47.	0.8	22
20	Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastal lagoon affected by agricultural runoff. Estuarine, Coastal and Shelf Science, 2009, 82, 608-614.	0.9	22
21	Effects of Long-Term Nitrogen Addition on Microbial Enzyme Activity in Eight Forested and Grassland Sites: Implications for Litter and Soil Organic Matter Decomposition. Ecosystems, 2009, 12, 1-15.	1.6	326
22	Effects of Dry-Season N Input on the Productivity and N Storage of Mediterranean-Type Shrublands. Ecosystems, 2009, 12, 473-488.	1.6	64
23	Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science, 2009, 60, 186-197.	1.8	202
24	Longâ€lasting effects on nitrogen cycling 12 years after treatments cease despite minimal longâ€ŧerm nitrogen retention. Global Change Biology, 2009, 15, 1755-1766.	4.2	40
25	Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of Ecology, 2009, 97, 48-56.	1.9	145
26	Decomposition in tropical forests: a panâ€ŧropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	1.9	256
27	The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Applied Soil Ecology, 2009, 42, 264-270.	2.1	73
28	Impacts of management on decomposition and the litter-carbon balance in irrigated and rainfed no-till agricultural systems. Agricultural and Forest Meteorology, 2009, 149, 1983-1993.	1.9	25
29	Direct effect of fertilization on microbial carbon transformation in grassland soils in dependence on the substrate quality. Journal of Plant Nutrition and Soil Science, 2010, 173, 706-714.	1.1	8
30	Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling. Ecology, 2010, 91, 3620-3630.	1.5	48
31	Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 2010, 162, 771-780.	0.9	98
32	Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia, 2010, 163, 509-515.	0.9	130
33	Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 2010, 100, 57-73.	1.7	157
34	Comparing two mechanistic formalisms for soil organic matter dynamics: A test with in vitro priming effect observations. Soil Biology and Biochemistry, 2010, 42, 1212-1221.	4.2	12
35	Nonâ€symbiotic nitrogen fixation during leaf litter decomposition in an oldâ€growth temperate rain forest of Chiloé Island, southern Chile: Effects of single <i>versus</i> mixed species litter. Austral Ecology, 2010, 35, 148-156.	0.7	29
36	Singleâ€pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology, 2010, 91, 1225-1236.	1.5	60

#	Article	IF	CITATIONS
37	Is there a linear relationship between priming effect intensity and the amount of organic matter input?. Applied Soil Ecology, 2010, 46, 436-442.	2.1	182
38	Carbon, nitrogen, and phosphorus fluxes in household ecosystems in the Minneapolis-Saint Paul, Minnesota, urban region. , 2011, 21, 619-639.		96
39	Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research, 2011, 116, .	3.3	108
40	Metabolic capacities of microorganisms from a long-term bare fallow. Applied Soil Ecology, 2011, 51, 87-93.	2.1	18
41	Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments, 2011, 75, 787-792.	1.2	60
42	Decomposition of Different Litter Fractions in a Subtropical Bamboo Ecosystem as Affected by Experimental Nitrogen Deposition. Pedosphere, 2011, 21, 685-695.	2.1	19
43	Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biology, 2011, 17, 1963-1974.	4.2	94
44	Functional diversity indices reveal the impacts of land use intensification on plant community assembly. Journal of Ecology, 2011, 99, 1143-1151.	1.9	156
45	Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biology and Biochemistry, 2011, 43, 1902-1907.	4.2	110
46	Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agriculture, Ecosystems and Environment, 2011, 144, 241-252.	2.5	225
47	Management intensity alters decomposition via biological pathways. Biogeochemistry, 2011, 104, 365-379.	1.7	58
48	Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry, 2011, 106, 397-414.	1.7	66
49	Feedback from soil inorganic nitrogen on soil organic matter mineralisation and growth in a boreal forest ecosystem. Plant and Soil, 2011, 338, 193-203.	1.8	13
50	Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation. Plant and Soil, 2011, 340, 383-396.	1.8	40
51	Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant and Soil, 2011, 346, 245-257.	1.8	54
52	Effects of manipulated herbivore inputs on nutrient flux and decomposition in a tropical rainforest in Puerto Rico. Oecologia, 2011, 167, 1141-1149.	0.9	43
53	Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia, 2011, 167, 1177-1184.	0.9	56
54	Indirect Effects of Nitrogen Amendments on Organic Substrate Quality Increase Enzymatic Activity Driving Decomposition in a Mesic Grassland. Ecosystems, 2011, 14, 234-247.	1.6	47

#	Article	IF	CITATIONS
55	Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere, 2012, 3, art54.	1.0	33
56	Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology, 2012, 93, 345-354.	1.5	310
57	Tree species effects on fine root decomposition and nitrogen release in subtropical forests in southern China. Plant Ecology and Diversity, 2012, 5, 323-331.	1.0	8
58	Effect of incorporation of some wastes on a wheat-guar rotation system on soil physical and chemical properties. International Journal of Recycling of Organic Waste in Agriculture, 2012, 1, 1.	2.0	25
59	Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 2012, 82, 389-405.	2.4	237
60	Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in midâ€subtropical forests of China. Ecological Research, 2012, 27, 923-932.	0.7	20
61	Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression. PLoS ONE, 2012, 7, e45140.	1.1	7
62	Resource quality in a soil food web. Biology and Fertility of Soils, 2012, 48, 501-510.	2.3	12
63	Interspecific differences in wood decay rates: insights from a new shortâ€ŧerm method to study longâ€ŧerm wood decomposition. Journal of Ecology, 2012, 100, 161-170.	1.9	136
64	A plant economics spectrum of litter decomposability. Functional Ecology, 2012, 26, 56-65.	1.7	312
65	Impacts of nitrogen fertilization on volatile organic compound emissions from decomposing plant litter. Global Change Biology, 2012, 18, 739-748.	4.2	30
66	When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos, 2012, 121, 1112-1120.	1.2	40
67	A traitâ€based approach for modelling microbial litter decomposition. Ecology Letters, 2012, 15, 1058-1070.	3.0	307
68	Litter decay rates are determined by lignin chemistry. Biogeochemistry, 2012, 108, 279-295.	1.7	169
69	Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 2012, 168, 301-310.	0.9	109
70	Temperature sensitivity of soil carbon and nitrogen mineralization: impacts of nitrogen species and land use type. Plant and Soil, 2013, 372, 597-608.	1.8	40
71	Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores. Plant and Soil, 2013, 366, 633-646.	1.8	35
72	Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models. Ecological Modelling, 2013, 251, 221-231.	1.2	46

#	Article		CITATIONS
73	Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry, 2013, 114, 25-40.		51
74	Microbial abundance and composition influence litter decomposition response to environmental change. Ecology, 2013, 94, 714-725.	1.5	340
75	The <scp>M</scp> icrobial <scp>E</scp> fficiencyâ€ <scp>M</scp> atrix <scp>S</scp> tabilization (<scp>MEMS</scp>) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global Change Biology, 2013, 19, 988-995.	4.2	1,962
76	Estimating the critical N:C from litter decomposition data and its relation to soil organic matter stoichiometry. Soil Biology and Biochemistry, 2013, 67, 312-318.	4.2	57
77	Effects of Species and Low Dose Nitrogen Addition on Litter Decomposition of Three Dominant Grasses in Hulun Buir Meadow Steppe. Journal of Resources and Ecology, 2013, 4, 20-26.	0.2	9
78	The influence of litter quality and micro-habitat on litter decomposition and soil properties in a silvopasture system. Acta Oecologica, 2013, 50, 40-50.	0.5	14
79	Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant and Soil, 2013, 367, 347-361.	1.8	58
80	Contextâ€specific effects of the identity of detrital mixtures on invertebrate communities. Ecology and Evolution, 2013, 3, 3986-3999.	0.8	18
81	Moisture drives surface decomposition in thawing tundra. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1133-1143.	1.3	62
82	Soil Biochemical Responses to Nitrogen Addition in a Bamboo Forest. PLoS ONE, 2014, 9, e102315.	1.1	24
83	Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production. PLoS ONE, 2014, 9, e115598.	1.1	29
84	Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition. PLoS ONE, 2014, 9, e88752.	1.1	45
85	Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. Biogeochemistry, 2014, 117, 67-79.	1.7	52
86	Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China. Plant and Soil, 2014, 374, 677-688.	1.8	38
87	Soil Quality and Plant Nutrition. Sustainable Agriculture Reviews, 2014, , 345-447.	0.6	32
88	Priming of soil organic carbon by malic acid addition is differentially affected by nutrient availability. Soil Biology and Biochemistry, 2014, 77, 158-169.	4.2	72
89	Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay. Soil Biology and Biochemistry, 2014, 77, 121-128.	4.2	45
90	Interactive responses of grass litter decomposition to warming, nitrogen addition and detritivore access in a temperate old field. Oecologia, 2014, 176, 1151-1160.	0.9	10

#	Article		CITATIONS
91	Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 2014, 382, 203-218.	1.8	149
92	Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology, 2014, 95, 1861-1875.	1.5	91
93	Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in Eastern Tibetan Plateau, China. Plant and Soil, 2014, 382, 189-201.	1.8	50
94	Fine roots are the dominant source of recalcitrant plant litter in sugar mapleâ€dominated northern hardwood forests. New Phytologist, 2015, 208, 715-726.	3.5	111
95	Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry, 2015, 126, 115-129.	1.7	41
96	Modeling of early stage litter decomposition in Mediterranean mixed forests: functional aspects affected by local climate. IForest, 2015, 8, 517-525.	0.5	2
97	Warming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem. PLoS ONE, 2015, 10, e0116013.	1.1	28
98	Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity. PLoS ONE, 2015, 10, e0144665.	1.1	11
99	Functional guild classification predicts the enzymatic role of fungi inÂlitter and soil biogeochemistry. Soil Biology and Biochemistry, 2015, 88, 441-456.		121
100	Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. Journal of Ecology, 2015, 103, 1454-1463.	1.9	85
101	Modeling the Dynamics of Soil Organic Matter and Nutrient Cycling. , 2015, , 505-537.		14
102	Simulated Atmospheric Nitrogen Deposition Alters Decomposition of Ephemeral Roots. Ecosystems, 2015, 18, 1240-1252.	1.6	19
103	Lignin biochemistry and soil N determine crop residue decomposition and soil priming. Biogeochemistry, 2015, 124, 335-351.	1.7	71
104	Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs, 2015, 85, 269-286.	2.4	125
105	Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Applied Soil Ecology, 2015, 96, 183-191.	2.1	26
106	Changes in litter quality caused by simulated nitrogen deposition reinforce the Nâ€induced suppression of litter decay. Ecosphere, 2015, 6, 1-16.	1.0	55
107	Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biology and Biochemistry, 2015, 91, 160-168.	4.2	77
108	Short-Term Response of Sasa Dwarf Bamboo to a Change of Soil Nitrogen Fertility in a Forest Ecosystem in Northern Hokkaido, Japan. Plants, 2016, 5, 19.	1.6	3

#	Article	IF	CITATIONS
109	N fertilizer and harvest impacts on bioenergy crop contributions to <scp>SOC</scp> . GCB Bioenergy, 2016, 8, 1201-1211.	2.5	43
110	Long-term effects of pest-induced tree species change on carbon and nitrogen cycling in northeastern U.S. forests: A modeling analysis. Forest Ecology and Management, 2016, 372, 269-290.	1.4	15
111	Ecological stoichiometry controls the transformation and retention of plant-derived organic matter to humus in response to nitrogen fertilisation. Soil Biology and Biochemistry, 2016, 99, 117-127.	4.2	35
112	Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biology and Biochemistry, 2016, 98, 85-94.	4.2	113
113	Substrate quality influences organic matter accumulation in the soil silt and clay fraction. Soil Biology and Biochemistry, 2016, 103, 138-148.	4.2	65
114	Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition. Scientific Reports, 2016, 6, 23717.	1.6	9
115	Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia. Eurasian Soil Science, 2016, 49, 1149-1160.	0.5	28
116	Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology, 2016, 30, 295-304.	1.7	57
117	Divergent effects of tropical forest fragmentation and conversion on leaf litter decomposition. Landscape Ecology, 2016, 31, 1037-1050.	1.9	18
118	Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biology and Biochemistry, 2016, 93, 50-59.	4.2	59
119	Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant and Soil, 2016, 399, 61-74.	1.8	47
120	Nitrogen Dynamics in Two Created Riparian Wetlands over Space and Time. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	5
121	Invasive N-fixer Impacts on Litter Decomposition Driven by Changes to Soil Properties Not Litter Quality. Ecosystems, 2017, 20, 1151-1163.	1.6	25
122	Microbial energy and matter transformation in agricultural soils. Soil Biology and Biochemistry, 2017, 111, 176-192.	4.2	61
123	Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition. Soil Biology and Biochemistry, 2017, 112, 24-34.	4.2	38
124	Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112, 47-55.	4.2	90
125	Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. Forest Ecology and Management, 2017, 400, 123-128.	1.4	30
126	Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 2017, 418, 241-253.	1.8	37

		CITATION REPORT	
#	Article	IF	CITATIONS
127	Immobilization of Carbon in Mycorrhizal Mycelial Biomass and Secretions. , 2017, , 413-440.		10
128	Maintaining connectivity: understanding the role of root order and mycelial networks in fine decomposition of woody plants. Plant and Soil, 2017, 420, 19-36.	root 1.8	48
129	Historical and recent land use affects ecosystem functions in subtropical grasslands in Brazil. Ecosphere, 2017, 8, e02032.	1.0	22
130	Residue addition and liming history interactively enhance mineralization of native organic car acid soils. Biology and Fertility of Soils, 2017, 53, 61-75.	bon in 2.3	35
131	The role of microbial community in the decomposition of leaf litter and deadwood. Applied So Ecology, 2018, 126, 75-84.	oil 2.1	230
132	Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terre ecosystems. Applied Soil Ecology, 2018, 128, 35-42.	estrial 2.1	72
133	The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis a review. Nutrient Cycling in Agroecosystems, 2018, 111, 103-125.	nd 1.1	129
134	Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic ac two plant species in a peatland in Northeast China. Science of the Total Environment, 2018, 6 640-646.	tivity of 625, 3.9	38
135	Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposi Ecosystems, 2018, 21, 1-14.	tion. 1.6	46
136	Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemic process, measurement methods, and policy framework. Ecological Engineering, 2018, 114, 1		111
137	Decomposition of harvest residue needles of different needle ages in a Chinese fir (Cunningh	amia) Tj ETQq0 0 0 rgBT _{.8} /Ov	verlock 10 Tf 50
138	Decomposition of tree leaf litter and crop residues from ginkgo agroforestry systems in Easte China: an in situ study. Journal of Soils and Sediments, 2018, 18, 1424-1431.	ern 1.5	7
139	Plant Carbon Components Derived From Maize Straw Influence Priming Processes in Two Mo Soil Science, 2018, 183, 66-73.	Illisols. 0.9	3
140	Differential responses of litter decomposition to regional excessive nitrogen input and global warming between two mangrove species. Estuarine, Coastal and Shelf Science, 2018, 214, 14	41-148. 0.9	24
141	Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitro phosphorus have contrasting mechanisms. Soil Biology and Biochemistry, 2018, 127, 213-22		19
142	Responses of decomposition of green leaves and leaf litter to stand density, N and P addition Acacia auriculaeformis stands. European Journal of Forest Research, 2018, 137, 819-830.	is in 1.1	8
143	Decomposing litter and associated microbial activity responses to nitrogen deposition in two subtropical forests containing nitrogen-fixing or non-nitrogen-fixing tree species. Scientific Re 2018, 8, 12934.		21
144	Nitrogen enrichment shifts functional genes related to nitrogen and carbon acquisition in the fungal community. Soil Biology and Biochemistry, 2018, 123, 87-96.	2 4.2	17

#	Article	IF	CITATIONS
145	Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecological Monographs, 2018, 88, 429-444.		87
146	Integration of an automated identification-quantification pipeline and statistical techniques for pyrolysis GC/MS tracking of the molecular fingerprints of natural organic matter. Journal of Analytical and Applied Pyrolysis, 2018, 134, 371-380.	2.6	11
147	Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time. Science of the Total Environment, 2018, 636, 699-708.	3.9	50
148	Soil Nutrients and Soil Carbon Storage. , 2018, , 167-205.		8
149	Root order and initial moisture status influenced root decomposition in a subtropical tree species Liquidambar formosana. Plant and Soil, 2019, 443, 539-548.	1.8	7
150	Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots. Global Change Biology, 2019, 25, 4369-4382.	4.2	40
151	Constraining Carbon and Nutrient Flows in Soil With Ecological Stoichiometry. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	33
152	Slope exposure and forest stand type as crucial factors determining the decomposition rate of herbaceous litter on a reclaimed spoil heap. Catena, 2019, 175, 219-227.	2.2	10
153	Fineâ€root decomposition characteristics of four typical shrubs in sandy areas of an arid and semiarid alpine region in western China. Ecology and Evolution, 2019, 9, 5407-5419.	0.8	7
154	The effects of simulated deposited nitrogen on nutrient dynamics in decomposing litters across a wide quality spectrum using a 15N tracing technique. Plant and Soil, 2019, 442, 141-156.	1.8	4
155	Effect of Different Straw Return Modes on Soil Bacterial Community, Enzyme Activities and Organic Carbon Fractions. Soil Science Society of America Journal, 2019, 83, 638-648.	1.2	29
156	Cover crop potential of winter oilseed crops in the Northern U.S. Corn Belt. Archives of Agronomy and Soil Science, 2019, 65, 1845-1859.	1.3	7
157	Landscape context mediates the relationship between plant functional traits and decomposition. Plant and Soil, 2019, 438, 377-391.	1.8	1
158	Long-Term Nitrogen Addition Does Not Increase Soil Carbon Storage or Cycling Across Eight Temperate Forest and Grassland Sites on a Sandy Outwash Plain. Ecosystems, 2019, 22, 1592-1605.	1.6	16
159	Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. Forest Ecology and Management, 2019, 440, 61-69.	1.4	61
160	Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland. Soil Biology and Biochemistry, 2019, 134, 78-80.	4.2	26
161	Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environmental Pollution, 2019, 250, 143-154.	3.7	14
162	Effect of reduction of aggregate size on the priming effect in a Mollisol under different soil managements. European Journal of Soil Science, 2019, 70, 765-775.	1.8	11

# 163	ARTICLE Fertilizer and soil nitrogen utilization of pear trees as affected by the timing of split fertilizer application in rain-fed orchard. Scientia Horticulturae, 2019, 252, 363-369.	IF 1.7	Citations 19
164	Effects of elevated UV-B radiation and N deposition on the decomposition of coarse woody debris. Science of the Total Environment, 2019, 663, 170-176.	3.9	20
165	Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant and Soil, 2019, 437, 413-426.	1.8	25
166	Nitrogen Input Increases Deyeuxia angustifolia Litter Decomposition and Enzyme Activities in a Marshland Ecosystem in Sanjiang Plain, Northeast China. Wetlands, 2019, 39, 549-557.	0.7	9
167	Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology and Biochemistry, 2019, 130, 33-42.	4.2	77
168	Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition. New Phytologist, 2020, 226, 569-582.	3.5	53
169	Exogenous P compounds differentially interacted with N availability to regulate enzymatic activities in a meadow steppe. European Journal of Soil Science, 2020, 71, 667-680.	1.8	7
170	Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard. Forest Ecology and Management, 2020, 457, 117717.	1.4	22
171	Mineral Nutrients, Organic Amendment, and Water Impact Decomposition of Biodegradable Containers Under Controlled Conditions. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	0
172	Residue decomposition and priming of soil organic carbon following different NPK fertilizer histories. Soil Science Society of America Journal, 2020, 84, 1898-1909.	1.2	10
173	Effects of experimental nitrogen enrichment on soil properties and litter decomposition in a Neotropical savanna. Austral Ecology, 2020, 45, 1093-1102.	0.7	2
174	Nonlinear Coupling of Carbon and Nitrogen Release During Litter Decomposition and its Responses to Nitrogen Addition. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005462.	1.3	11
175	Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. , 2020, , 25-54.		61
176	Foliage C:N ratio, stage of organic matter decomposition and interaction with soil affect microbial respiration and its response to C and N addition more than C:N changes during decomposition. Applied Soil Ecology, 2020, 152, 103568.	2.1	23
177	Soil quality shapes the composition of microbial community stress response and core cell metabolism functional genes. Applied Soil Ecology, 2020, 148, 103483.	2.1	11
178	The response of coarse woody debris decomposition and microbial community to nutrient additions in a subtropical forest. Forest Ecology and Management, 2020, 460, 117799.	1.4	16
179	Eucalypt harvest residue management influences microbial community structure and soil organic matter fractions in an afforested grassland. Soil and Tillage Research, 2021, 205, 104787.	2.6	6
180	The effects of nutrient limitations on microbial respiration and organic matter decomposition in a Florida Spodosol as influenced by historical forest management practices. Forest Ecology and Management, 2021, 479, 118592.	1.4	16

#	Article		CITATIONS
181	Effects of canopy nitrogen addition on soil fauna and litter decomposition rate in a temperate forest and a subtropical forest. Geoderma, 2021, 382, 114703.		20
182	Responses of Litter Decomposition and Nutrient Dynamics to Nitrogen Addition in Temperate Shrublands of North China. Frontiers in Plant Science, 2020, 11, 618675.	1.7	12
184	Spatiotemporal Assessment of GHG Emissions and Nutrient Sequestration Linked to Agronutrient Runoff in Global Wetlands. Global Biogeochemical Cycles, 2021, 35, e2020GB006816.	1.9	18
185	Distinct microbial communities alter litter decomposition rates in a fertilized coastal plain wetland. Ecosphere, 2021, 12, e03619.	1.0	6
186	Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China. Journal of Arid Land, 2021, 13, 717-729.	0.9	4
187	Soil mesofauna drives litter decomposition under combined nitrogen and phosphorus additions in a Brazilian woodland savanna. Austral Ecology, 2022, 47, 26-34.	0.7	5
188	Wheat Straw Decomposition Patterns and Control Factors Under Nitrogen Fertilization. Journal of Soil Science and Plant Nutrition, 2021, 21, 3110-3121.	1.7	16
189	Responses of leaf litter decomposability to nitrogen and phosphorus additions are associated with cell wall carbohydrate composition in a subtropical plantation. Plant and Soil, 2021, 467, 359-372.	1.8	2
190	Nitrogen Deposition Effects on Soil Properties, Microbial Abundance, and Litter Decomposition Across Three Shrublands Ecosystems From the Mediterranean Basin. Frontiers in Environmental Science, 2021, 9, .	1.5	7
191	Phosphorus deposition accelerates wood decomposition and temperature sensitivity in a subtropical forest. Ecological Indicators, 2021, 128, 107819.	2.6	4
192	Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition?. Soil Biology and Biochemistry, 2021, 160, 108363.	4.2	41
193	Assessing biological soil health through decomposition of inexpensive household items. Applied Soil Ecology, 2021, 168, 104099.	2.1	6
194	Different forms of nitrogen deposition show variable effects on soil organic nitrogen turnover in a temperate forest. Applied Soil Ecology, 2022, 169, 104212.	2.1	10
195	Role of Precipitation Partitioning in Litter Biogeochemistry. , 2020, , 163-182.		8
196	Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biology and Biochemistry, 2020, 147, 107845.	4.2	29
198	Effects of Increased Summer Precipitation and Nitrogen Addition on Root Decomposition in a Temperate Desert. PLoS ONE, 2015, 10, e0142380.	1.1	10
199	Root growth into litter layer and its impact on litter decomposition: a review. Chinese Journal of Plant Ecology, 2013, 36, 1197-1204.	0.3	3
200	Effects of Nitrogen on Temporal and Spatial Patterns of Nitrate in Streams and Soil Solution of a Central Hardwood Forest. ISRN Ecology, 2011, 2011, 1-9.	1.0	10

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
201	Mixed leaf litter decomposition and N, P release with a focus on Phyllostachys edulis (Carr Houz. forest in subtropical southeastern China. Acta Societatis Botanicorum Poloniae, 202 207-214.		0.8	7
202	Changes of the components and energy of corn stalk during decomposition process in cro different fertility. African Journal of Agricultural Research Vol Pp, 2013, 8, 1411-1417.	pland with	0.2	2
203	Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainab 13, 11766.	ility, 2021,	1.6	21
204	Effects of Nitrogen Addition on the Mixed Litter Decomposition in <i>Stipa baicalens Steppe in Inner Mongolia. American Journal of Plant Sciences, 2016, 07, 547-561.</i>	is	0.3	1
205	Decomposition of Root Tips, Fine Roots, and Coarse Roots. , 2020, , 189-208.			1
206	Effects of nitrogen application on the decomposition of fine roots in temperate forests: a meta-analysis. Plant and Soil, 2022, 472, 77-89.		1.8	9
207	Models that Describe Decomposition of Foliar Litter and Roots. , 2020, , 227-246.			0
208	Salty water and salty leaf litter alters riparian detrital processes: Evidence from sodium-addition laboratory mesocosm experiments. Science of the Total Environment, 2022, 806, 151392.		3.9	3
209	Arbuscular mycorrhizal fungi promote litter decomposition and alleviate nutrient limitations of soil microbes under warming and nitrogen application. Applied Soil Ecology, 2022, 171, 104318.		2.1	24
210	Nitrogen addition slows litter decomposition accompanied by accelerated manganese rele five-year experiment in a subtropical evergreen broadleaf forest. Soil Biology and Biochemi 165, 108511.		4.2	20
211	Foliar nutrient resorption dynamics of trembling aspen and white birch during secondary s in the boreal forest of central Canada. Forest Ecology and Management, 2022, 505, 11983	uccession 76.	1.4	9
212	Calibrating the soil organic carbon model Yasso20 with multiple datasets. Geoscientific Mo Development, 2022, 15, 1735-1752.	odel	1.3	5
213	A Cross-System Analysis of Litter Chemical Dynamics Throughout Decomposition. Ecosyst 1792-1808.	ems, 2022, 25,	1.6	4
214	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse gras of Ecology, 2022, 110, 1376-1389.	slands. Journal	1.9	12
219	Fine-Root Biomass Production and its Contribution to Organic Matter Accumulation in Sec Under Changing Climate. SSRN Electronic Journal, 0, , .	lge Fens	0.4	0
220	Stumps increased soil respiration in a subtropical Moso bamboo (Phyllostachys edulis) pla under nitrogen addition. Agricultural and Forest Meteorology, 2022, 323, 109047.	ntation	1.9	4
221	Effects of Excess Nitrogen (N) on Fine Root Growth in Tropical Forests of Contrasting N St Forests, 2022, 13, 1328.	atus.	0.9	1
222	Land Application of Organic Waste Compost. , 2022, , 601-633.			Ο

#	Article	IF	CITATIONS
223	Impacts of insect frass and cadavers on soil surface litter decomposition along a tropical forest temperature gradient. Ecology and Evolution, 2022, 12, .	0.8	2
224	Species loss and nitrogen pollution alter litter decomposition dynamics in coastal salt marshes. Oecologia, 2022, 200, 479-490.	0.9	1
225	Fine-root biomass production and its contribution to organic matter accumulation in sedge fens under changing climate. Science of the Total Environment, 2023, 858, 159683.	3.9	4
226	Species shifts induce soil organic matter priming and changes in microbial communities. Science of the Total Environment, 2023, 859, 159956.	3.9	6
227	Response of wood decomposition to different forms of N deposition in subtropical forests. Frontiers in Forests and Global Change, 0, 6, .	1.0	1
228	Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biology and Biochemistry, 2023, 179, 108992.	4.2	10
229	Effects of two-year nitrogen and phosphorus additions on nutrient release and enzyme activity during leaf litter decomposition in Larix principis-rupprechtii plantation. Plant and Soil, 2023, 487, 521-532.	1.8	0
230	Leaf Litter Breakdown and Soil Microbes in Catalpa bungei Plantations in Response to Various Fertilization Regimes. Forests, 2023, 14, 699.	0.9	0