Mechanobiology in the Third Dimension

Annals of Biomedical Engineering 33, 1469-1490

DOI: 10.1007/s10439-005-8159-4

Citation Report

#	Article	IF	CITATIONS
1	Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling. Tissue Engineering, 2006, 12, 3285-3305.	4.9	255
2	Physiological 3D tissue model of the airway wall and mucosa. Nature Protocols, 2006, 1, 357-362.	5. 5	64
3	Mechanisms of Interstitial Flow-Induced Remodeling of Fibroblast–Collagen Cultures. Annals of Biomedical Engineering, 2006, 34, 446-454.	1.3	97
4	Microstructural Characteristics of Extracellular Matrix Produced by Stromal Fibroblasts. Annals of Biomedical Engineering, 2006, 34, 1615-1627.	1.3	29
5	Fiber Kinematics of Small Intestinal Submucosa Under Biaxial and Uniaxial Stretch. Journal of Biomechanical Engineering, 2006, 128, 890-898.	0.6	59
6	Extracellular Matrix Remodeling by Dynamic Strain in a Three-Dimensional Tissue-Engineered Human Airway Wall Model. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 306-313.	1.4	88
7	A new microrheometric approach reveals individual and cooperative roles for TGFâ€Î²1 and ILâ€1β in fibroblastâ€mediated stiffening of collagen gels. FASEB Journal, 2007, 21, 2064-2073.	0.2	52
8	Matrix Effects., 2007,, 297-308.		3
9	VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases. Thrombosis Research, 2007, 121, 203-212.	0.8	26
10	Predicted extension, compression and shearing of optic nerve head tissues. Experimental Eye Research, 2007, 85, 312-322.	1.2	159
11	Cellular Remodelling of Individual Collagen Fibrils Visualized by Time-lapse AFM. Journal of Molecular Biology, 2007, 372, 594-607.	2.0	105
12	Using Gold Nanorods to Probe Cell-Induced Collagen Deformation. Nano Letters, 2007, 7, 116-119.	4.5	102
13	Modulation of Cellular Mechanics during Osteogenic Differentiation of Human Mesenchymal Stem Cells. Biophysical Journal, 2007, 93, 3693-3702.	0.2	256
14	Differential Response of Adult and Embryonic Mesenchymal Progenitor Cells to Mechanical Compression in Hydrogels. Stem Cells, 2007, 25, 2730-2738.	1.4	208
15	Cellular mechanobiology and cancer metastasis. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 329-343.	3.6	67
16	Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnology and Bioengineering, 2007, 96, 167-176.	1.7	127
17	Effects of negative pressure wound therapy on fibroblast viability, chemotactic signaling, and proliferation in a provisional wound (fibrin) matrix. Wound Repair and Regeneration, 2007, 15, 838-846.	1.5	129
18	A driving force for change: interstitial flow as a morphoregulator. Trends in Cell Biology, 2007, 17, 44-50.	3.6	248

#	ARTICLE	IF	CITATIONS
19	Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1. Journal of Neuro-Oncology, 2007, 82, 29-40.	1.4	39
20	Brushes, cables, and anchors: Recent insights into multiscale assembly and mechanics of cellular structural networks. Cell Biochemistry and Biophysics, 2007, 47, 348-360.	0.9	19
21	Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. Journal of Biomechanics, 2007, 40, 1484-1492.	0.9	97
22	Protein–polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials, 2007, 28, 3876-3886.	5.7	145
23	Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3455-3463.	1.7	79
24	Part II: Fibroblasts preferentially migrate in the direction of principal strain. Biomechanics and Modeling in Mechanobiology, 2008, 7, 215-225.	1.4	37
25	Neurite Outgrowth on a DNA Crosslinked Hydrogel with Tunable Stiffnesses. Annals of Biomedical Engineering, 2008, 36, 1565-1579.	1.3	120
26	Contractilityâ€Dependent Modulation of Cell Proliferation and Adhesion by Microscale Topographical Cues. Small, 2008, 4, 1416-1424.	5.2	49
27	Genipinâ€induced changes in collagen gels: Correlation of mechanical properties to fluorescence. Journal of Biomedical Materials Research - Part A, 2008, 87A, 308-320.	2.1	185
28	Heat denaturation of fibrinogen to develop a biomedical matrix. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 49-57.	1.6	33
29	Influence of chondroitin sulfate on collagen gel structure and mechanical properties at physiologically relevant levels. Biopolymers, 2008, 89, 841-851.	1.2	85
30	A perfusable 3D cell–matrix tissue culture chamber for in situ evaluation of nanoparticle vehicle penetration and transport. Biotechnology and Bioengineering, 2008, 99, 1490-1501.	1.7	74
31	A poroviscoelastic description of fibrin gels. Journal of Biomechanics, 2008, 41, 3265-3269.	0.9	31
32	Fluorescence Proteins, Live-Cell Imaging, and Mechanobiology: Seeing Is Believing. Annual Review of Biomedical Engineering, 2008, 10, 1-38.	5.7	273
33	Biomechanical regulation of cell orientation and fate. Oncogene, 2008, 27, 6981-6993.	2.6	134
34	Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecologic Oncology, 2008, 110, 99-109.	0.6	46
35	Defining the Role of Matrix Compliance and Proteolysis in Three-Dimensional Cell Spreading and Remodeling. Biophysical Journal, 2008, 94, 2914-2925.	0.2	131
36	Transfer of Macroscale Tissue Strain to Microscale Cell Regions in the Deformed Meniscus. Biophysical Journal, 2008, 95, 2116-2124.	0.2	56

3

#	Article	IF	CITATIONS
37	Robust Pore Size Analysis of Filamentous Networks from Three-Dimensional Confocal Microscopy. Biophysical Journal, 2008, 95, 6072-6080.	0.2	131
38	Cell Patterning: Interaction of Cardiac Myocytes and Fibroblasts in Three-Dimensional Culture. Microscopy and Microanalysis, 2008, 14, 117-125.	0.2	60
39	Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab on A Chip, 2008, 8, 1468.	3.1	312
40	Three-dimensional neural constructs: a novel platform for neurophysiological investigation. Journal of Neural Engineering, 2008, 5, 333-341.	1.8	108
41	In silico zebrafish pattern formation. Developmental Biology, 2008, 315, 397-403.	0.9	22
42	Endothelial Cell–Matrix Interactions in Neovascularization. Tissue Engineering - Part B: Reviews, 2008, 14, 19-32.	2.5	75
43	Synthetic Biomaterials as Cell-Responsive Artificial Extracellular Matrices., 2008,, 255-278.		0
44	Interactions between Geometry and Mechanical Properties on the Optic Nerve Head., 2009, 50, 2785.		91
45	Inhibition of ERK Promotes Collagen Gel Compaction and Fibrillogenesis to Amplify the Osteogenesis of Human Mesenchymal Stem Cells in Three-Dimensional Collagen I Culture. Stem Cells and Development, 2009, 18, 331-341.	1.1	39
46	Characterization of Endothelial Basement Membrane Nanotopography in Rhesus Macaque as a Guide for Vessel Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 2643-2651.	1.6	142
47	Complete mechanical characterization of soft media using nonspherical rods. Journal of Applied Physics, 2009, 106, 63528.	1.1	12
48	Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine, 2009, 4, 193-206.	1.7	90
49	Two-component protein-engineered physical hydrogels for cell encapsulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22067-22072.	3.3	311
50	Fluid Flow Regulates Stromal Cell Organization and CCL21 Expression in a Tissue-Engineered Lymph Node Microenvironment. Journal of Immunology, 2009, 183, 4273-4283.	0.4	122
51	Hydrocolloids and Medicinal Chemistry Applications. , 2009, , 595-618.		0
52	A Nonintrusive Method of Measuring the Local Mechanical Properties of Soft Hydrogels Using Magnetic Microneedles. Journal of Biomechanical Engineering, 2009, 131, 021014.	0.6	19
53	Magnitude and Duration of Stretch Modulate Fibroblast Remodeling. Journal of Biomechanical Engineering, 2009, 131, 051005.	0.6	53
54	Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering. Tissue Engineering - Part C: Methods, 2009, 15, 309-321.	1.1	106

#	Article	IF	Citations
55	Three―and fourâ€dimensional visualization of cell migration using optical coherence tomography. Journal of Biophotonics, 2009, 2, 370-379.	1.1	21
56	Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissueâ€engineered smallâ€diameter blood vessels. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1104-1121.	2.1	120
57	Development of a cellâ€derived matrix: Effects of epidermal growth factor in chemically defined culture. Journal of Biomedical Materials Research - Part A, 2010, 92A, 533-541.	2.1	18
58	Rheological Properties of Crossâ€Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 20-28.	2.1	210
59	3D collagen cultures under wellâ€defined dynamic strain: A novel strain device with a porous elastomeric support. Biotechnology and Bioengineering, 2009, 103, 217-225.	1.7	35
60	An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomedical Microdevices, 2009, 11, 827-835.	1.4	145
61	Three-dimensional context regulation of metastasis. Clinical and Experimental Metastasis, 2009, 26, 35-49.	1.7	285
62	A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 634-646.	1.3	90
63	Reversible mitotic and metabolic inhibition following the encapsulation of fibroblasts in alginate hydrogels. Biomaterials, 2009, 30, 6435-6443.	5.7	41
64	Microengineered Platforms for Cell Mechanobiology. Annual Review of Biomedical Engineering, 2009, 11, 203-233.	5.7	378
65	An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte coâ€culture. Biotechnology Journal, 2009, 4, 730-737.	1.8	60
66	Biomechanics of the optic nerve head. Experimental Eye Research, 2009, 88, 799-807.	1.2	283
67	Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biology, 2009, 28, 336-346.	1.5	81
68	Laser Photoablation of Guidance Microchannels into Hydrogels Directs Cell Growth in Three Dimensions. Biophysical Journal, 2009, 96, 4743-4752.	0.2	126
69	Cellular Morphogenesis In Silico. Biophysical Journal, 2009, 97, 958-967.	0.2	12
70	The compaction of gels by cells: a case of collective mechanical activity. Integrative Biology (United) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
71	Fibroblasts in three dimensional matrices: cell migration and matrix remodeling. Experimental and Molecular Medicine, 2009, 41, 858.	3.2	141
72	The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials, 2010, 31, 8454-8464.	5.7	271

#	Article	IF	CITATIONS
73	Boundary Stiffness Regulates Fibroblast Behavior in Collagen Gels. Annals of Biomedical Engineering, 2010, 38, 658-673.	1.3	38
74	Mechanical Interactions of Mouse Mammary Gland Cells with Collagen in a Three-Dimensional Construct. Annals of Biomedical Engineering, 2010, 38, 2485-2498.	1.3	12
75	Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by microdomain heterogeneity in 3D. Biomedical Microdevices, 2010, 12, 1073-1085.	1.4	12
76	Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Seminars in Cancer Biology, 2010, 20, 139-145.	4.3	108
77	Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers, 2010, 93, 690-707.	1.2	120
78	A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: Development, characterization, and applications. Biotechnology and Bioengineering, 2010, 105, 982-991.	1.7	50
79	Cells in 3D matrices under interstitial flow: Effects of extracellular matrix alignment on cell shear stress and drag forces. Journal of Biomechanics, 2010, 43, 900-905.	0.9	84
80	On the correlation between continuum mechanics entities and cell activity in biological soft tissues: Assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues. Journal of Theoretical Biology, 2010, 264, 66-76.	0.8	4
81	A continuum mechanics framework and a constitutive model for remodelling of collagen gels and collagenous tissues. Journal of the Mechanics and Physics of Solids, 2010, 58, 918-933.	2.3	16
82	Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices. Biomaterials, 2010, 31, 1875-1884.	5.7	277
83	Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials, 2010, 31, 8596-8607.	5.7	306
84	Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomaterialia, 2010, 6, 1978-1991.	4.1	167
85	A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials, 2010, 31, 577-584.	5.7	101
86	Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials, 2010, 31, 5678-5688.	5.7	186
87	Threeâ€Dimensional Culture with Stiff Microstructures Increases Proliferation and Slows Osteogenic Differentiation of Human Mesenchymal Stem Cells. Small, 2010, 6, 355-360.	5.2	29
88	Nanoscale Topography–Induced Modulation of Fundamental Cell Behaviors of Rabbit Corneal Keratocytes, Fibroblasts, and Myofibroblasts. , 2010, 51, 1373.		90
89	Imaging Cells in Threeâ€Dimensional Collagen Matrix. Current Protocols in Cell Biology, 2010, 48, Unit 10.18.1-20.	2.3	76
90	Modeling of Fibroblast-Controlled Strengthening and Remodeling of Uniaxially Constrained Collagen Gels. Journal of Biomechanical Engineering, 2010, 132, 111008.	0.6	8

#	Article	IF	CITATIONS
91	Spatiotemporal Measurement of Freezing-Induced Deformation of Engineered Tissues. Journal of Biomechanical Engineering, 2010, 132, 031003.	0.6	19
92	Understanding Hypoxic Environments: Biomaterials Approaches to Neural Stabilization and Regeneration after Ischemia. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 247-274.	0.7	0
93	The Mechanical Environment of Cells in Collagen Gel Models. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 201-245.	0.7	4
94	A Blind Spot in Confocal Reflection Microscopy: The Dependence of Fiber Brightness on Fiber Orientation in Imaging Biopolymer Networks. Biophysical Journal, 2010, 98, L1-L3.	0.2	50
95	Cell Motility and Mechanics in Three-Dimensional Collagen Matrices. Annual Review of Cell and Developmental Biology, 2010, 26, 335-361.	4.0	298
96	Capillary Fluid Exchange: Regulation, Functions, and Pathology. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2010, 2, 1-94.	0.3	7 5
97	Matrix mechanics and receptor–ligand interactions in cell adhesion. Organic and Biomolecular Chemistry, 2010, 8, 299-304.	1.5	43
98	Incorporation of Hydroxyapatite Sol Into Collagen Gel to Regulate the Contraction Mediated by Human Bone Marrow-Derived Stromal Cells. IEEE Transactions on Nanobioscience, 2010, 9, 1-11.	2.2	8
99	Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit. Tissue Engineering - Part A, 2010, 16, 3173-3184.	1.6	100
100	Fibronectin-mimetic peptide-amphiphile nanofiber gels support increased cell adhesion and promote ECM production. Soft Matter, 2010, 6, 5064.	1.2	34
101	Characterization and modelling of a dense lamella formed during self-compression of fibrillar collagen gels: implications for biomimetic scaffolds. Soft Matter, 2011, 7, 2918.	1.2	25
102	Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomedical Materials (Bristol), 2011, 6, 045008.	1.7	41
103	Sprouting Angiogenesis under a Chemical Gradient Regulated by Interactions with an Endothelial Monolayer in a Microfluidic Platform. Analytical Chemistry, 2011, 83, 8454-8459.	3.2	102
104	Elucidating the Role of Matrix Stiffness in 3D Cell Migration and Remodeling. Biophysical Journal, 2011, 100, 284-293.	0.2	291
105	The Effects of Mechanical Loading on Mesenchymal Stem Cell Differentiation and Matrix Production. Vitamins and Hormones, 2011, 87, 417-480.	0.7	48
106	Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration. Biomacromolecules, 2011, 12, 3194-3204.	2.6	180
107	Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integrative Biology (United Kingdom), 2011, 3, 267.	0.6	179
108	Criticality and isostaticity in fibre networks. Nature Physics, 2011, 7, 983-988.	6.5	266

#	Article	IF	CITATIONS
109	Reduced serum content and increased matrix stiffness promote the cardiac myofibroblast transition in 3D collagen matrices. Cardiovascular Pathology, 2011, 20, 325-333.	0.7	59
110	Glaucomatous cupping of the lamina cribrosa: A review of the evidence for active progressive remodeling as a mechanism. Experimental Eye Research, 2011, 93, 133-140.	1.2	199
111	Correlated-photon imaging with cancellation of object-induced aberration. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 247.	0.9	11
112	Post-translational modifications of the extracellular matrix are key events in cancer progression: Opportunities for biochemical marker development. Biomarkers, 2011, 16, 193-205.	0.9	75
113	Regulation of tumor invasion by interstitial fluid flow. Physical Biology, 2011, 8, 015012.	0.8	96
114	Neural Tissue Engineering and Biohybridized Microsystems for Neurobiological Investigation In Vitro (Part 1). Critical Reviews in Biomedical Engineering, 2011, 39, 201-240.	0.5	48
115	Rapid Prototyping of Engineered Heart Tissues through Miniaturization and Phenotype-Automation. , $2011, , .$		0
116	The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells International, 2011, 2011, 1-12.	1.2	36
117	Combining Dynamic Stretch and Tunable Stiffness to Probe Cell Mechanobiology In Vitro. PLoS ONE, 2011, 6, e23272.	1.1	95
118	Lung Parenchymal Mechanics., 2011, 1, 1317-1351.		139
119	Chemokines in health and disease. Experimental Cell Research, 2011, 317, 575-589.	1.2	312
120	Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials, 2011, 32, 7159-7168.	5.7	30
121	Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis. Biomaterials, 2011, 32, 7839-7846.	5.7	38
122	Probing Mechanical Adaptation of Neurite Outgrowth on a Hydrogel Material Using Atomic Force Microscopy. Annals of Biomedical Engineering, 2011, 39, 706-713.	1.3	17
123	Regulation of the Matrix Microenvironment for Stem Cell Engineering and Regenerative Medicine. Annals of Biomedical Engineering, 2011, 39, 1201-1214.	1.3	52
124	Quantitative Stereovision in a Scanning Electron Microscope. Experimental Mechanics, 2011, 51, 97-109.	1.1	68
125	Extracellular Matrix Functionalized Microcavities to Control Hematopoietic Stem and Progenitor Cell Fate. Macromolecular Bioscience, 2011, 11, 739-747.	2.1	40
126	Morphology and Linearâ€Elastic Moduli of Random Network Solids. Advanced Materials, 2011, 23, 2633-2637.	11.1	44

#	Article	IF	CITATIONS
127	Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability. Journal of Biomedical Materials Research - Part A, 2011, 96A, 609-620.	2.1	30
128	Microelastic properties of lung cell-derived extracellular matrix. Acta Biomaterialia, 2011, 7, 96-105.	4.1	57
129	Microscale mechanisms of agarose-induced disruption of collagen remodeling. Biomaterials, 2011, 32, 5633-5642.	5.7	53
130	Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials. Biomaterials, 2011, 32, 6025-6033.	5.7	48
131	High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials, 2011, 32, 1477-1483.	5 . 7	183
132	A DIGITAL VOLUME CORRELATION TECHNIQUE FOR 3-D DEFORMATION MEASUREMENTS OF SOFT GELS. International Journal of Applied Mechanics, 2011, 03, 335-354.	1.3	41
133	Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5614-5619.	3.3	178
134	Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers. Biofabrication, 2011, 3, 045004.	3.7	50
136	Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Physical Biology, 2011, 8, 026013.	0.8	72
137	Biphasic Investigation of Tissue Mechanical Response During Freezing Front Propagation. Journal of Biomechanical Engineering, 2012, 134, 061005.	0.6	2
138	Substratum Topography Modulates Corneal Fibroblast to Myofibroblast Transformation. , 2012, 53, 811.		69
139	Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integrative Biology (United Kingdom), 2012, 4, 401-409.	0.6	158
140	Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomedical Microdevices, 2012, 14, 829-838.	1.4	60
141	Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials, 2012, 33, 7064-7070.	5.7	107
142	Effect of mesh construction on the physicomechanical properties of bicomponent knit mesh using yarns derived from degradable copolyesters. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1922-1934.	1.6	4
143	Microâ€Engineered 3D Scaffolds for Cell Culture Studies. Macromolecular Bioscience, 2012, 12, 1301-1314.	2.1	109
144	Biofunctionalization of Surfaces Using Ultrathin Nanoscopic Collagen Matrices. , 2012, , 427-441.		0
145	7.7 Biophysics of Three-Dimensional Cell Motility. , 2012, , 88-103.		0

#	Article	IF	CITATIONS
146	Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 2012, 12, 1347-1360.	1.4	413
147	Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2474-2482.	2.1	79
148	Holography of Tissues. , 2012, , 307-333.		3
149	Cell–cell and cell–matrix dynamics in intraperitoneal cancer metastasis. Cancer and Metastasis Reviews, 2012, 31, 397-414.	2.7	121
150	Microfluidics for Mammalian Cell Chemotaxis. Annals of Biomedical Engineering, 2012, 40, 1316-1327.	1.3	80
151	Eccentric Rheometry for Viscoelastic Characterization of Small, Soft, Anisotropic, and Irregularly Shaped Biopolymer Gels and Tissue Biopsies. Annals of Biomedical Engineering, 2012, 40, 1654-1665.	1.3	9
152	Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering. Acta Biomaterialia, 2012, 8, 244-252.	4.1	24
153	Open porous microscaffolds for cellular and tissue engineering by lipid templating. Acta Biomaterialia, 2012, 8, 1303-1315.	4.1	20
154	Tensegrity and plasma for skin regeneration. Skin Research and Technology, 2012, 18, 356-363.	0.8	2
155	Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials, 2012, 33, 4157-4165.	5.7	159
156	A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research. Biomedical Microdevices, 2012, 14, 225-234.	1.4	23
157	Bioinformatic analysis of responsive genes in twoâ€dimension and threeâ€dimension cultured human periodontal ligament cells subjected to compressive stress. Journal of Periodontal Research, 2013, 48, 87-97.	1.4	16
158	Nonlinear Strain Stiffening Is Not Sufficient to Explain How Far Cells CanÂFeel on Fibrous Protein Gels. Biophysical Journal, 2013, 105, 11-20.	0.2	112
159	Dimensions in cell migration. Current Opinion in Cell Biology, 2013, 25, 642-649.	2.6	171
160	Regulating tension in three-dimensional culture environments. Experimental Cell Research, 2013, 319, 2447-2459.	1.2	41
161	Multiscale analysis of collagen microstructure with generalized image correlation spectroscopy and the detection of tissue prestress. Biomaterials, 2013, 34, 6127-6132.	5.7	12
162	Glioblastoma Behaviors in Three-Dimensional Collagen-Hyaluronan Composite Hydrogels. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9276-9284.	4.0	129
163	Oscillatory Flow Accelerates Autocrine Signaling due to Nonlinear Effect of Convection on Receptor-Related Actions. Biophysical Journal, 2013, 105, 818-828.	0.2	3

#	Article	IF	CITATIONS
164	Receptor-Targeted, Magneto-Mechanical Stimulation of Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2013, 14, 19276-19293.	1.8	63
165	Estimating the 3D Pore Size Distribution of Biopolymer Networks from Directionally Biased Data. Biophysical Journal, 2013, 105, 1967-1975.	0.2	96
166	Matrix Microarchitecture and Myosin II Determine Adhesion in 3D Matrices. Current Biology, 2013, 23, 1607-1619.	1.8	76
167	Polysaccharideâ€Based Polyanion–Polycation–Polyanion Ternary Systems in the Concentrated Regime and Hydrogel Form. Macromolecular Chemistry and Physics, 2013, 214, 1309-1320.	1.1	14
168	Fibroblasts and the Ground They Walk On. Physiology, 2013, 28, 380-390.	1.6	85
169	One-step microfluidic generation of pre-hatching embryo-like core–shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab on A Chip, 2013, 13, 4525.	3.1	163
170	3D engineered neural networks coupled to Micro-Electrode Arrays: Development of an innovative in-vitro experimental model for neurophysiological studies. , 2013 , , .		0
171	Hydrogels derived from central nervous system extracellular matrix. Biomaterials, 2013, 34, 1033-1040.	5.7	237
172	Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction. Biomechanics and Modeling in Mechanobiology, 2013, 12, 95-109.	1.4	11
173	Mimicking white matter tract topography using core–shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials, 2013, 34, 5181-5190.	5.7	102
174	Assembly of a Three-Dimensional Multitype Bronchiole Coculture Model Using Magnetic Levitation. Tissue Engineering - Part C: Methods, 2013, 19, 665-675.	1.1	103
175	Extracellular Matrix Remodeling: The Common Denominator in Connective Tissue Diseases < i > Possibilities for Evaluation and Current Understanding of the Matrix as More Than a Passive Architecture, but a Key Player in Tissue Failure < /i > . Assay and Drug Development Technologies, 2013. 11. 70-92.	0.6	226
176	Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for three-dimensional tissue engineering. RSC Advances, 2013, 3, 11185.	1.7	52
177	Three-dimensional tissue cultures: current trends and beyond. Cell and Tissue Research, 2013, 352, 123-131.	1.5	149
178	Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clinical and Experimental Metastasis, 2013, 30, 615-630.	1.7	132
179	Hydrocolloids and Medicinal Chemistry Applications. , 2013, , 365-384.		1
180	Inorganic Polymers: Morphogenic Inorganic Biopolymers for Rapid Prototyping Chain. Progress in Molecular and Subcellular Biology, 2013, 54, 235-259.	0.9	5
181	Minkowski tensors of anisotropic spatial structure. New Journal of Physics, 2013, 15, 083028.	1.2	87

#	Article	IF	Citations
182	Altered phenotypic gene expression of 10T1/2 mesenchymal cells in nonuniformly stretched PEGDA hydrogels. American Journal of Physiology - Cell Physiology, 2013, 305, C100-C110.	2.1	6
183	Mesenchymal stem cell mechanobiology and emerging experimental platforms. Journal of the Royal Society Interface, 2013, 10, 20130179.	1.5	120
184	A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis. Scientific Reports, 2013, 3, 3000.	1.6	75
185	Stem cell culture: mimicking the stem cell niche in vitro. , 2013, , 33-68.		0
186	Three-Dimensional Geometries Representing the Retinal Nerve Fiber Layer in Multiple Sclerosis, Optic Neuritis, and Healthy Eyes. Ophthalmic Research, 2013, 50, 72-81.	1.0	5
187	Cellular control of connective tissue matrix tension. Journal of Cellular Biochemistry, 2013, 114, 1714-1719.	1.2	43
188	Molecular Mechanisms of Metastasis: Epithelial-Mesenchymal Transition, Anoikis and Loss of Adhesion. , 0, , .		1
189	Hydrogel scaffolds for regenerative medicine. , 0, , 295-316.		5
190	Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion. PLoS ONE, 2014, 9, e102359.	1.1	81
191	Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices. Matrix Biology, 2014, 38, 36-47.	1.5	12
192	Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens. Toxicology and Applied Pharmacology, 2014, 280, 421-433.	1.3	17
193	Tissue Engineered Scaffolds for an Effective Healing and Regeneration: Reviewing Orthotopic Studies. BioMed Research International, 2014, 2014, 1-27.	0.9	23
194	DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. Journal of Experimental Medicine, 2014, 211, 2549-2566.	4.2	150
195	Influence of the microenvironment on cell fate determination and migration. Physiological Genomics, 2014, 46, 309-314.	1.0	54
196	Matrix Effects. , 2014, , 407-421.		2
197	Why is Rose Bengal More Phototoxic to Fibroblasts <i>In Vitro</i> Than <i>In Vivo</i> ?. Photochemistry and Photobiology, 2014, 90, 297-305.	1.3	18
198	Measurement of Spatiotemporal Intracellular Deformation of Cells Adhered to Collagen Matrix During Freezing of Biomaterials. Journal of Biomechanical Engineering, 2014, 136, 021025.	0.6	5
199	Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation. Vascular Medicine, 2014, 19, 394-406.	0.8	26

#	Article	IF	CITATIONS
200	The bioactivity of composite Fmoc-RGDS-collagen gels. Biomaterials Science, 2014, 2, 1222-1229.	2.6	43
201	Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells. Biofabrication, 2014, 6, 035017.	3.7	8
202	Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment. Cellular and Molecular Bioengineering, 2014, 7, 355-368.	1.0	19
203	Effect of strain on human dermal fibroblasts in a three-dimensional collagen sponge. Cytotechnology, 2014, 66, 723-728.	0.7	6
204	Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nature Reviews Microbiology, 2014, 12, 563-574.	13.6	66
205	The integrin needle in the stromal haystack: emerging role in corneal physiology and pathology. Journal of Cell Communication and Signaling, 2014, 8, 113-124.	1.8	4
206	<i>In situ</i> cell–matrix mechanics in tendon fascicles and seeded collagen gels: implications for the multiscale design of biomaterials. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 39-47.	0.9	13
207	Mechanoregulation of valvular interstitial cell phenotype in the third dimension. Biomaterials, 2014, 35, 1128-1137.	5.7	29
208	Observing and Quantifying Fibroblast-mediated Fibrin Gel Compaction. Journal of Visualized Experiments, 2014, , e50918.	0.2	8
209	Quantification of the 3D collagen network geometry in confocal reflection microscopy. , 2015, , .		3
210	Structurally Governed Cell Mechanotransduction through Multiscale Modeling. Scientific Reports, 2015, 5, 8622.	1.6	10
211	Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization. Journal of Visualized Experiments, 2015, , .	0.2	4
212	Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity. PLoS ONE, 2015, 10, e0131814.	1.1	30
213	Breast Cancer Cell Line Aggregate Morphology Does Not Predict Invasive Capacity. PLoS ONE, 2015, 10, e0139523.	1.1	22
214	Cyclic mechanical strain induces $TGF\hat{l}^21$ -signalling in dermal fibroblasts embedded in a 3D collagen lattice. Archives of Dermatological Research, 2015, 307, 191-197.	1.1	10
215	Engineering 2D and 3D Cellular Microenvironments Using Laser Direct Write. , 2015, , 105-127.		4
216	The importance of extracellular matrix for cell function and in vivo likeness. Experimental and Molecular Pathology, 2015, 98, 286-294.	0.9	47
217	Collagen matrix as a tool in studying fibroblastic cell behavior. Cell Adhesion and Migration, 2015, 9, 308-316.	1.1	71

#	Article	IF	CITATIONS
218	Hepatic fibrosis: Concept to treatment. Journal of Hepatology, 2015, 62, S15-S24.	1.8	554
219	Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. American Journal of Physiology - Renal Physiology, 2015, 308, G807-G830.	1.6	200
220	Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments. Biomaterials, 2015, 69, 121-132.	5.7	44
221	Cell-mediated fibre recruitment drives extracellular matrix mechanosensing inÂengineered fibrillar microenvironments. Nature Materials, 2015, 14, 1262-1268.	13.3	464
222	Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H532-H542.	1.5	58
223	Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nature Communications, 2015, 6, 8720.	5.8	374
224	Identification of Stable Reference Genes for Gene Expression Analysis of Three-Dimensional Cultivated Human Bone Marrow-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 192-206.	1.1	32
225	Gaze Evoked Deformations of the Peripapillary Retina in Papilledema and Ischemic Optic Neuropathy. , 2016, 57, 4979.		39
226	The Application of Ultrasound in 3D Bio-Printing. Molecules, 2016, 21, 590.	1.7	31
227	Cell migration and organization in threeâ€dimensional in vitro culture driven by stiffness gradient. Biotechnology and Bioengineering, 2016, 113, 2496-2506.	1.7	29
228	Bioactive Nanomaterials for Neural Engineering. , 2016, , 181-206.		1
229	Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous selfâ€assembling peptide hydrogel. Journal of Biomedical Materials Research - Part A, 2016, 104, 2356-2368.	2.1	53
230	Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respiratory Research, 2016, 17, 76.	1.4	39
231	Mechanical Properties of the Tumor Stromal Microenvironment Probed In Vitro and Ex Vivo by In Situ-Calibrated Optical Trap-Based Active Microrheology. Cellular and Molecular Bioengineering, 2016, 9, 398-417.	1.0	48
232	Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Journal of Biomechanical Engineering, 2016, 138, 021004.	0.6	74
233	Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution. Lab on A Chip, 2016, 16, 1047-1062.	3.1	17
234	In Situ "Clickable―Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. ACS Applied Materials & Company (1988) August 1988 (1988) Au	4.0	91
235	Noninvasive imaging of embryonic stem cell cultures by multiphoton microscopy reveals the significance of collagen hydrogel preparation parameters. Analytical Methods, 2016, 8, 280-294.	1.3	1

#	Article	IF	CITATIONS
236	Mechanosensing via cell-matrix adhesions in 3D microenvironments. Experimental Cell Research, 2016, 343, 60-66.	1.2	208
237	Shaping tissues by balancing active forces and geometric constraints. Journal Physics D: Applied Physics, 2016, 49, 053001.	1.3	21
238	A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells. Acta Biomaterialia, 2016, 34, 113-124.	4.1	34
239	Artificial extracellular matrices support cell growth and matrix synthesis of human dermal fibroblasts in macroporous 3D scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1390-1402.	1.3	13
240	The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 2017, 117, 4376-4421.	23.0	424
241	Imaging Cell–Matrix Interactions in 3D Collagen Hydrogel Culture Systems. Macromolecular Bioscience, 2017, 17, 1600478.	2.1	18
242	Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4549-E4555.	3.3	88
243	Nanoscale silicon for subcellular biointerfaces. Journal of Materials Chemistry B, 2017, 5, 4276-4289.	2.9	24
244	Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. Journal of Cardiovascular Translational Research, 2017, 10, 150-166.	1.1	30
245	Multispectral MR Imaging and Sensing Using Shaped Nanoparticles. , 2017, , 95-122.		0
246	Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Experimental Biology and Medicine, 2017, 242, 1559-1572.	1.1	50
247	Hydrogel Modulus Affects Proliferation Rate and Pluripotency of Human Mesenchymal Stem Cells Grown in Three-Dimensional Culture. ACS Biomaterials Science and Engineering, 2017, 3, 3433-3446.	2.6	33
248	Three-Dimensional Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise Three-Dimensional Printability and Angiogenesis Potential for Tissue-Engineered Substitutes. Tissue Engineering - Part C: Methods, 2017, 23, 604-615.	1.1	94
249	Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomaterialia, 2017, 63, 294-305.	4.1	65
250	Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biology, 2017, 60-61, 86-95.	1.5	75
251	Single-platelet nanomechanics measured by high-throughput cytometry. Nature Materials, 2017, 16, 230-235.	13.3	88
252	Autophagy Induction Results in Enhanced Anoikis Resistance in Models of Peritoneal Disease. Molecular Cancer Research, 2017, 15, 26-34.	1.5	32
253	iRGD-mediated core-shell nanoparticles loading carmustine and O ⁶ -benzylguanine for glioma therapy. Journal of Drug Targeting, 2017, 25, 235-246.	2.1	32

#	Article	IF	CITATIONS
254	Automated analysis of collagen networks via microscopy. , 2017, , .		1
255	Comparison of peripapillary choroidal thickness between healthy subjects and patients with Parkinson's disease. PLoS ONE, 2017, 12, e0177163.	1.1	22
256	Three-Dimensional Magnetic Levitation Culture System Simulating White Adipose Tissue. Methods in Molecular Biology, 2018, 1773, 147-154.	0.4	15
257	A review of techniques for visualising soft tissue microstructure deformation and quantifying strain <i>Ex Vivo</i> . Journal of Microscopy, 2018, 272, 165-179.	0.8	35
258	Mechanobiology of the cell–matrix interplay: Catching a glimpse of complexity via minimalistic models. Extreme Mechanics Letters, 2018, 20, 59-64.	2.0	14
259	Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomaterialia, 2018, 70, 110-119.	4.1	42
260	Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 2018, 7, e1701067.	3.9	68
261	Tailored environments to study motile cells and pathogens. Cellular Microbiology, 2018, 20, e12820.	1.1	13
262	Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly. Biomacromolecules, 2018, 19, 364-373.	2.6	46
263	Assessment of Migration of Human MSCs through Fibrin Hydrogels as a Tool for Formulation Optimisation. Materials, 2018, 11, 1781.	1.3	24
264	The effect of low-magnitude, high-frequency vibration on poly(ethylene glycol)-microencapsulated mesenchymal stem cells. Journal of Tissue Engineering, 2018, 9, 204173141880010.	2.3	15
265	Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. Journal of Biological Engineering, 2018, 12, 20.	2.0	59
266	A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomedical Microdevices, 2018, 20, 43.	1.4	18
267	Strain and Vibration in Mesenchymal Stem Cells. International Journal of Biomaterials, 2018, 2018, 1-13.	1.1	18
268	Biomimetic tumor microenvironments based on collagen matrices. Biomaterials Science, 2018, 6, 2009-2024.	2.6	63
269	3D Spatiotemporal Mechanical Microenvironment: A Hydrogelâ€Based Platform for Guiding Stem Cell Fate. Advanced Materials, 2018, 30, e1705911.	11.1	162
270	Defining the Role of Solid Stress and Matrix Stiffness in Cancer Cell Proliferation and Metastasis. Frontiers in Oncology, 2018, 8, 55.	1.3	183
271	Techniques for studying mechanobiology. , 2018, , 1-53.		2

#	Article	IF	CITATIONS
273	Characterization and Analysis of Collective Cellular Behaviors in 3D Dextran Hydrogels with Homogenous and Clustered RGD Compositions. Materials, 2019, 12, 3391.	1.3	13
274	Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Science Advances, 2019, 5, eaax0729.	4.7	132
275	Image-based Characterization of 3D Collagen Networks and the Effect of Embedded Cells. Microscopy and Microanalysis, 2019, 25, 971-981.	0.2	14
276	Fibrinogenâ€Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Twoâ€Dimensional and Threeâ€Dimensional Cell Cultures. Advanced Healthcare Materials, 2019, 8, 1801436.	3.9	16
277	Enrichment and Identification of Neural Stem Cells in Neurospheres Using Rigidity-Tunable Gels. Tissue Engineering - Part A, 2019, 25, 427-436.	1.6	3
278	Changes in peripapillary choroidal thickness in patients with multiple sclerosis. Acta Ophthalmologica, 2019, 97, e77-e83.	0.6	14
279	Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology. Biomechanics and Modeling in Mechanobiology, 2020, 19, 519-531.	1.4	5
280	Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules, 2020, 25, 5286.	1.7	10
281	Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomaterials Science, 2020, 8, 5106-5120.	2.6	25
282	An Electroactive Oligoâ€EDOT Platform for Neural Tissue Engineering. Advanced Functional Materials, 2020, 30, 2003710.	7.8	32
283	Actomyosinâ€dependent invasion of endothelial sprouts in collagen. Cytoskeleton, 2020, 77, 261-276.	1.0	2
284	Multiparametric Analysis of Tissue Spheroids Fabricated from Different Types of Cells. Biotechnology Journal, 2020, 15, e1900217.	1.8	25
285	Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Biomacromolecules, 2021, 22, 419-429.	2.6	36
286	A model for 3D deformation and reconstruction of contractile microtissues. Soft Matter, 2021, 17, 10198-10209.	1.2	7
287	Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials, 2021, 268, 120572.	5.7	55
288	Probing tissue mechanics at the cellular-length scale in cancer microenvironments., 2021,, 71-103.		2
290	Actively Driven Fluctuations in a Fibrin Network. Frontiers in Physics, 2021, 8, .	1.0	4
291	Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Frontiers in Bioengineering and Biotechnology, 2021, 9, 574035.	2.0	2

#	Article	IF	CITATIONS
292	A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine. Journal of Clinical Medicine, 2021, 10, 1920.	1.0	20
293	Guest–Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. ACS Biomaterials Science and Engineering, 2021, 7, 4164-4174.	2.6	28
294	A story of fibers and stress: <scp>Matrixâ€embedded</scp> signals for fibroblast activation in the skin. Wound Repair and Regeneration, 2021, 29, 515-530.	1.5	17
295	Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Physical Review E, 2021, 104, L022402.	0.8	5
296	Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Materials, 2022, 9, 316-331.	8.6	36
297	3D Bioreactors for Cell Culture: Fluid Dynamics Aspects. Lecture Notes in Networks and Systems, 2022, , 80-99.	0.5	2
298	TMT-based quantitative proteome profiles reveal the memory function of a whole heart decellularized matrix for neural stem cell trans-differentiation into the cardiac lineage. Biomaterials Science, 2021, 9, 3692-3704.	2.6	3
299	Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications. , 2008, , 475-504.		19
300	Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells. Biological and Medical Physics Series, 2011, , 89-109.	0.3	1
301	Development of Three-Dimensional Tumor Models for the Study of Anti-Cancer Drug Effects. , 2011, , 151-168.		1
302	3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix. Methods in Molecular Biology, 2017, 1612, 29-37.	0.4	24
303	High-Aspect-Ratio Gold Nanorods: Their Synthesis and Application to Image Cell-Induced Strain Fields in Collagen Films. Methods in Molecular Biology, 2013, 1026, 1-20.	0.4	4
304	Biomechanical Function in Regenerative Medicine., 2009,, 693-703.		1
305	Nanofiber Biomaterials., 2013,, 977-1010.		8
306	Thiolâ€X Reactions in Tissue Engineering. RSC Polymer Chemistry Series, 2013, , 165-194.	0.1	3
307	Microrheology for biomaterial design. APL Bioengineering, 2020, 4, 041508.	3.3	20
308	Changes in cell cycle and extracellular matrix gene expression during placental development in deer mouse (Peromyscus) hybrids. Reproduction, Fertility and Development, 2007, 19, 695.	0.1	6
309	Quantification of Three-Dimensional Cell-Mediated Collagen Remodeling Using Graph Theory. PLoS ONE, 2010, 5, e12783.	1.1	10

#	Article	IF	CITATIONS
310	Cell Growth in Response to Mechanical Stiffness is Affected by Neuron-Astroglia Interactions. The Open Neuroscience Journal, 2007, 1, 7-14.	0.8	31
311	Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1. Open Stem Cell Journal, 2009, 1, 40-53.	2.0	29
312	How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model. , 2011, 22, 202-213.		62
313	The famousversusthe inconvenient - or the dawn and the rise of 3D-culture systems. World Journal of Stem Cells, 2009, 1, 43.	1.3	15
314	Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Advanced Healthcare Materials, 2021, 10, e2100625.	3.9	12
315	Endothelial Cell–Matrix Interactions in Neovascularization. Tissue Engineering, 0, , 110306233438005.	4.9	0
316	Chapter 8. Fibrin-based Matrices to Support Stem Cell-Based Tissue Regeneration. , 2010, , 159-177.		0
317	Cell Mechanobiology in Regenerative Medicine. , 2012, , 1-16.		0
318	Micropost Methods for Cell Biomechanics of the Cardiovascular System., 2015,, 309-328.		0
320	Collagen–iron oxide nanoparticle based ferrogel: large reversible magnetostrains with potential for bioactuation. Multifunctional Materials, 2020, 3, 035001.	2.4	4
321	Finite element simulation of the impedance response of a vascular segment as a function of changes in electrode configuration. Journal of Electrical Bioimpedance, 2020, 11, 112-131.	0.5	3
324	Physically-based structural modeling of a typical regenerative tissue analog bridges material macroscale continuum and cellular microscale discreteness and elucidates the hierarchical characteristics of cell-matrix interaction. Journal of the Mechanical Behavior of Biomedical Materials. 2021. 126, 104956.	1.5	1
325	In Vitro Mechanobiology of Glioma: Mimicking the Brain Blood Vessels and White Matter Tracts Invasion Paths. Neuromethods, 2021, , 159-196.	0.2	3
326	Mesenchymal stem cell responses to mechanical stimuli. Muscles, Ligaments and Tendons Journal, 2012, 2, 169-80.	0.1	109
327	A Technique for Measuring the 3D Deformation of a Multiphase Structure to Elucidate the Mechanism of Tumor Invasion. , 2022, , 139-143.		0
328	<i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Approaches for Investigation of Skin Scarring: Human and Animal Models. Advances in Wound Care, 2023, 12, 97-116.	2.6	6
330	Laser Direct-Write Bioprinting: A Powerful Tool for Engineering Cellular Microenvironments. , 2022, , 123-151.		1
331	In Situ Crosslinkable Collagen-Based Hydrogels for 3D Printing of Dermis-Mimetic Constructs. ECS Journal of Solid State Science and Technology, 2022, 11, 045014.	0.9	4

#	ARTICLE	IF	CITATIONS
332	High-resolution mass measurements of single budding yeast reveal linear growth segments. Nature Communications, 2022, 13 , .	5.8	8
333	Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication, 2022, 14, 035019.	3.7	10
335	Engineered 3D Matrices with Spatiotemporally Tunable Properties. Biomaterials Science Series, 2022, , 282-308.	0.1	0
336	Thermoplasmonic Scaffold Design for the Modulation of Neural Activity in Three-Dimensional Neuronal Cultures. Biochip Journal, 2022, 16, 451-462.	2.5	4
337	Mechanoresponsive regulation of fibroblast-to-myofibroblast transition in three-dimensional tissue analogues: mechanical strain amplitude dependency of fibrosis. Scientific Reports, 2022, 12, .	1.6	7
338	Bio-hybrid electronic and photonic devices. Experimental Biology and Medicine, 2022, 247, 2128-2141.	1.1	3
339	Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: A review. International Journal of Biological Macromolecules, 2023, 234, 123664.	3.6	3
340	A novel integrated experimental and computational approach to unravel fibroblast motility in response to chemical gradients in 3D collagen matrices. Integrative Biology (United Kingdom), 2022, 14, 212-227.	0.6	0