Biodiesel production from vegetable oils via catalytic ar methanol transesterification methods

Progress in Energy and Combustion Science

31, 466-487

DOI: 10.1016/j.pecs.2005.09.001

Citation Report

#	Article	IF	CITATIONS
1	The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochemical Engineering Journal, 2006, 30, 212-217.	1.8	93
2	Literature Cited (Cross-referenced Against the Text). , 0, , 401-483.		0
3	Critical technical areas for future improvement in biodiesel technologies. Environmental Research Letters, 2007, 2, 034001.	2.2	42
4	Recent Developments in Biodiesel Fuels. International Journal of Green Energy, 2007, 4, 15-26.	2.1	91
5	Comparative study on energy sustainability of biofuel production chains. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221, 637-645.	0.8	21
6	Enhancing Reaction Rate of Transesterification of Glycerol Monostearate and Methanol by CO ₂ . Journal of Physical Chemistry A, 2007, 111, 12007-12010.	1.1	17
7	ANALYSIS OF THE PHYSICALAND CHEMICAL CHARACTERISTICS OF VEGETABLE OILS AS FUEL. Journal of Agricultural Engineering, 2007, 38, 39.	0.7	16
9	Production of biodiesel: possibilities and challenges. Biofuels, Bioproducts and Biorefining, 2007, 1, 57-66.	1.9	315
10	Importance of biodiesel as transportation fuel. Energy Policy, 2007, 35, 4661-4670.	4.2	850
11	Transesterification and polymerization reactions of aliphatic polyesters in supercritical CO2 fluids without the presence of a catalyst. European Polymer Journal, 2007, 43, 1847-1856.	2.6	7
12	Flow properties of biodiesel fuel blends at low temperatures. Fuel, 2007, 86, 143-151.	3.4	298
13	Engine performance and emission characteristics of a three-phase emulsion of biodiesel produced by peroxidation. Fuel Processing Technology, 2007, 88, 35-41.	3.7	131
14	Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 2007, 33, 1-18.	15.8	1,255
15	Biodiesel from microalgae. Biotechnology Advances, 2007, 25, 294-306.	6.0	7,922
16	Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Conversion and Management, 2007, 48, 937-941.	4.4	245
17	Importance of rural bioenergy for developing countries. Energy Conversion and Management, 2007, 48, 2386-2398.	4.4	237
18	Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study. Marine Pollution Bulletin, 2007, 54, 894-904.	2.3	111
19	Enzymatic Approach to Biodiesel Production. Journal of Agricultural and Food Chemistry, 2007, 55, 8995-9005.	2.4	354

#	Article	IF	CITATIONS
20	Transesterified Chinese Spicehush (Lindera communis) seed oil as a biodiesel fuel. Forestry Studies in China, 2007, 9, 132-136.	0.4	9
21	Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as injected fuels. Renewable Energy, 2008, 33, 2007-2018.	4.3	109
22	Synthesis of Biodiesel via Deoxygenation of Stearic Acid over Supported Pd/C Catalyst. Catalysis Letters, 2008, 122, 247-251.	1.4	114
23	Microbial diversity and genomics in aid of bioenergy. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 403-419.	1.4	98
24	Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 2008, 34, 440-498.	15.8	547
25	Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renewable Energy, 2008, 33, 1982-1988.	4.3	333
26	Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renewable Energy, 2008, 33, 2294-2302.	4.3	265
27	The effects of preheated cottonseed oil methyl ester on the performance and exhaust emissions of a diesel engine. Applied Thermal Engineering, 2008, 28, 2136-2143.	3.0	120
28	Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 2008, 99, 5923-5927.	4.8	186
29	Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technology, 2008, 99, 6656-6660.	4.8	142
30	Transesterification of RBD palm oil using supercritical methanol. Journal of Supercritical Fluids, 2008, 44, 356-363.	1.6	143
31	Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel, 2008, 87, 1743-1748.	3.4	382
32	A study on using fish oil as an alternative fuel for conventional combustors. Fuel, 2008, 87, 2258-2268.	3.4	40
33	Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel, 2008, 87, 3006-3017.	3.4	156
34	Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel, 2008, 87, 3543-3549.	3.4	129
35	Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 2008, 33, 4013-4029.	3.8	1,046
36	Engine Performance Tests. , 2008, , 175-183.		0
37	Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Conversion and Management, 2008, 49, 908-912.	4.4	148

#	Article	IF	CITATIONS
38	Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 2008, 49, 2106-2116.	4.4	920
39	Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol. Energy Conversion and Management, 2008, 49, 3512-3516.	4.4	47
40	Biofuels: a technological perspective. Energy and Environmental Science, 2008, 1, 542.	15.6	521
42	Global Trends on the Processing of Bio-fuels. International Journal of Green Energy, 2008, 5, 212-238.	2.1	63
43	Biodiesel from Vegetable Oils with MgO Catalytic Transesterification in Supercritical Methanol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 30, 1645-1651.	1.2	36
44	Production of Biodiesel from Algae Oils. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 31, 163-168.	1.2	249
45	Biodegradability of Biodiesel and Petrodiesel Fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 31, 169-174.	1.2	56
46	Production of Biodiesel from Tall Oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 30, 1896-1902.	1.2	28
47	The Importance of Bioethanol and Biodiesel from Biomass. Energy Sources, Part B: Economics, Planning and Policy, 2008, 3, 177-185.	1.8	89
48	Biodiesel Fuel Production from Vegetable Oils via Supercritical Ethanol Transesterification. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 30, 429-440.	1.2	37
49	Biomethanol Production from Organic Waste Materials. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 30, 565-572.	1.2	62
50	Combustion and emission characteristics of a direct injection, compressionâ€ignition engine when operated on Honge oil, HOME and blends of HOME and diesel. International Journal of Sustainable Engineering, 2008, 1, 80-93.	1.9	39
51	Effect of Alkali on Liquid Yields from the Pyrolysis of Olive Oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2008, 30, 1060-1064.	1.2	16
52	Performance of a low heat rejection engine fuelled with low volatile Honge oil and its methyl ester (HOME). Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222, 323-330.	0.8	21
53	A viscosity measurement during the high pressure phase transition in triolein. Journal of Physics: Conference Series, 2008, 121, 142010.	0.3	9
54	Influence of Ethanol Blend Addition on Compression Ignition Engine Performance and Emissions Operated with Diesel and Jatropha Methyl Ester. , 0, , .		12
55	Recovery of Gasoline Range Fuels from Vegetable Oils. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2009, 31, 420-426.	1.2	12
56	Gasoline-rich Liquid from Sunflower Oil by Catalytic Pyrolysis with Alumina-Treated Sodium Hydroxide. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2009, 31, 671-678.	1.2	7

ARTICLE IF CITATIONS # Combustion Performance of Biodiesel and Diesel-Vegetable Oil Blends in a Simulated Gas Turbine 0.5 44 57 Burner. Journal of Engineering for Gas Turbines and Power, 2009, 131, . Supercritical fluids technology for clean biofuel production. Progress in Natural Science: Materials 1.8 140 International, 2009, 19, 273-284. Microemulsion-based palm kernel oil extraction using mixed surfactant solutions. Industrial Crops 59 2.544 and Products, 2009, 30, 194-198. Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 2009, 50, 14-34. 4.4 1,548 Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. 61 4.4 387 Energy Conversion and Management, 2009, 50, 923-927. Transforming Triglycerides and Fatty Acids into Biofuels. ChemSusChem, 2009, 2, 1109-1119. 3.6 Environmental aspects of biofuels in road transportation. Environmental Chemistry Letters, 2009, 7, 63 8.3 21 289-299. Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combustion 64 2.8 and Flame, 2009, 156, 2129-2144. An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Reviews in Environmental Science and Biotechnology, 3.9 65 65 2009, 8, 367-394. Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 229-266. The economics of current and future biofuels. In Vitro Cellular and Developmental Biology - Plant, 67 0.9 123 2009, 45, 199-217. Microbiological stability of biodiesel–diesel-mixtures. Bioresource Technology, 2009, 100, 724-730. 68 4.8 94 Experimental study on diesel engine nitrogen oxide reduction running with jojoba methyl ester by 69 3.4 49 exhaust gas recirculation. Fuel, 2009, 88, 1357-1364. The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. Journal of Supercritical Fluids, 2009, 49, 293-301. 1.6 Role of the co-surfactant nature in soybean w/o microemulsions. Journal of Colloid and Interface 71 5.015 Science, 2009, 337, 579-585. Emissions optimization of a biodiesel fired gas turbine. Proceedings of the Combustion Institute, 2009, 2.4 <u>32, 29</u>49-2956. Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer 73 gas and Honge oil and its methyl ester (HOME) with and without carburetor. Renewable Energy, 2009, 4.3 102 *3*4, 1009-101́5. Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. 74 4.3 Renewable Energy, 2009, 34, 1257-1260.

#	Article	IF	CITATIONS
75	Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction. Renewable Energy, 2009, 34, 1877-1884.	4.3	99
76	Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester. Renewable Energy, 2009, 34, 2178-2186.	4.3	123
77	Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass and Bioenergy, 2009, 33, 44-49.	2.9	127
78	Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 2009, 100, 261-268.	4.8	1,500
79	Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russian Journal of Physical Chemistry B, 2009, 3, 1035-1043.	0.2	50
80	Biofuels from Agricultural Biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2009, 31, 1573-1582.	1.2	46
81	Combustion and emission characteristics of a direct injection CI engine when operated on Marotti oil methyl ester and blends of Marotti oil methyl ester and diesel. International Journal of Sustainable Engineering, 2009, 2, 192-200.	1.9	15
82	Effect of biodiesel derived from Honge oil and its blends with diesel when directly injected at different injection pressures and injection timings in single-cylinder water-cooled compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223, 31-40.	0.8	46
83	Design and Economic Analysis of the Process for Biodiesel Fuel Production from Transesterificated Rapeseed Oil Using Supercritical Methanol. Industrial & Engineering Chemistry Research, 2009, 48, 5370-5378.	1.8	46
84	Biodiesel from Wood Oils in Compressed Methanol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2009, 31, 1530-1536.	1.2	7
85	Improving the Stability and Antioxidant Properties of Sesame Oil: Water-Soluble Spray-Dried Emulsions from New Transesterified Phenolic Derivatives. Journal of Agricultural and Food Chemistry, 2009, 57, 7311-7323.	2.4	7
86	Review of Recent Developments in Solid Acid, Base, and Enzyme Catalysts (Heterogeneous) for Biodiesel Production via Transesterification. Industrial & Engineering Chemistry Research, 2009, 48, 6162-6172.	1.8	182
87	Perspectives of oilseed rape as a bioenergy crop. Biofuels, 2010, 1, 621-630.	1.4	7
88	Performance of Diesel Engine Using Blended Crude Jatropha Oil. , 2010, , .		0
89	Biotechnological processes for biodiesel production using alternative oils. Applied Microbiology and Biotechnology, 2010, 88, 621-636.	1.7	152
90	Experimental study of the oxidation of methyl oleate in a jet-stirred reactor. Combustion and Flame, 2010, 157, 1220-1229.	2.8	81
91	Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combustion and Flame, 2010, 157, 2035-2050.	2.8	124
92	Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Progress in Energy and Combustion Science, 2010, 36, 677-695.	15.8	313

C	n	
		ICDT.
CHAILO		UK I

#	Article	IF	CITATIONS
93	Advances in biodiesel fuel for application in compression ignition engines. Clean Technologies and Environmental Policy, 2010, 12, 459-493.	2.1	76
94	New Ether-Functionalized Ionic Liquids for Lipase-Catalyzed Synthesis of Biodiesel. Applied Biochemistry and Biotechnology, 2010, 162, 13-23.	1.4	54
95	Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters, 2010, 138, 1-7.	1.4	28
96	Oxidation of methyl and ethyl butanoates. International Journal of Chemical Kinetics, 2010, 42, 226-252.	1.0	78
97	Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends. Applied Energy, 2010, 87, 786-790.	5.1	164
98	Progress in biodiesel processing. Applied Energy, 2010, 87, 1815-1835.	5.1	678
99	Optimization of the transesterification reaction in biodiesel production. Fuel, 2010, 89, 36-42.	3.4	120
100	Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel, 2010, 89, 360-364.	3.4	150
101	An experimental investigation on the use of EGR in a supercharged natural gas SI engine. Fuel, 2010, 89, 1721-1730.	3.4	61
102	A review on FAME production processes. Fuel, 2010, 89, 1-9.	3.4	458
102 103	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160.	3.4 3.8	458 187
102 103 104	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresource Technology, 2010, 101, 1812-1819.	3.4 3.8 4.8	458 187 43
102 103 104 105	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresource Technology, 2010, 101, 1812-1819. Transesterification of supercritical ethyl acetate by higher alcohol. Journal of Supercritical Fluids, 2010, 54, 231-236.	3.4 3.8 4.8 1.6	458 187 43 5
102 103 104 105	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresource Technology, 2010, 101, 1812-1819. Transesterification of supercritical ethyl acetate by higher alcohol. Journal of Supercritical Fluids, 2010, 54, 231-236. Analyzing alternative bio-waste feedstocks for potential biodiesel production using time domain (TD)-NMR. Waste Management, 2010, 30, 1881-1888.	3.4 3.8 4.8 1.6 3.7	458 187 43 5 37
102 103 104 105 106	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresource Technology, 2010, 101, 1812-1819. Transesterification of supercritical ethyl acetate by higher alcohol. Journal of Supercritical Fluids, 2010, 54, 231-236. Analyzing alternative bio-waste feedstocks for potential biodiesel production using time domain (TD)-NMR. Waste Management, 2010, 30, 1881-1888. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis. Biomass and Bioenergy, 2010, 34, 1751-1756.	3.4 3.8 4.8 1.6 3.7 2.9	458 187 43 5 37 56
102 103 104 105 106 107	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresource Technology, 2010, 101, 1812-1819. Transesterification of supercritical ethyl acetate by higher alcohol. Journal of Supercritical Fluids, 2010, 54, 231-236. Analyzing alternative bio-waste feedstocks for potential biodiesel production using time domain (TD)-NMR. Waste Management, 2010, 30, 1881-1888. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis. Biomass and Bioenergy, 2010, 34, 1751-1756. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combustion and Flame, 2010, 157, 893-908.	3.4 3.8 4.8 1.6 3.7 2.9 2.8	 458 187 43 5 37 56 333
 102 103 104 105 105 106 107 108 109 	A review on FAME production processes. Fuel, 2010, 89, 1-9. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 7151-7160. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresource Technology, 2010, 101, 1812-1819. Transesterification of supercritical ethyl acetate by higher alcohol. Journal of Supercritical Fluids, 2010, 54, 231-236. Analyzing alternative bio-waste feedstocks for potential biodiesel production using time domain (TD)-NMR. Waste Management, 2010, 30, 1881-1888. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis. Biomass and Bioenergy, 2010, 34, 1751-1756. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combustion and Flame, 2010, 157, 893-908. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: Biodiesel production and characterization. Bioresource Technology, 2010, 101, 3091-3096.	3.4 3.8 4.8 1.6 3.7 2.9 2.8 4.8	 458 187 43 5 37 56 333 46

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
111	Ultrasound Assisted Oil Extraction from Date Palm Kernels for Biodiesel Production. , 2010, , .		1
112	Performance Emission and Combustion Characteristics of a Diesel Engine Fueled with Biodiesel Produced from Waste Cooking Oil. , 2010, , .		39
113	Biodiesel for Future Transportation Energy Needs. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1490-1508.	1.2	26
114	Sustainability and use of biodiesel. , 2010, , 625-712.		6
115	Biofuels for Transport: Prospects and Challenges. , 2010, , 171-210.		4
117	Performance, combustion, and emissions characteristics of a single-cylinder compression ignition engine operated on ethanol—biodiesel blended fuels. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224, 533-543.	0.8	45
118	Interesting Behavior of Biodiesel Ignition Delay and Combustion Duration. Energy & Fuels, 2010, 24, 4166-4177.	2.5	66
119	Biodiesel Production from Subcritical Methanol Transesterification of Soybean Oil with Sodium Silicate. Energy & Fuels, 2010, 24, 3179-3182.	2.5	40
120	BIODIESEL PRODUCTION FROM PALM OIL VIA HETEROGENEOUS TRANSESTERIFICATION: OPTIMIZATION STUDY. Chemical Engineering Communications, 2010, 197, 1597-1611.	1.5	19
121	Water Cleaning of Biodiesel. Effect of Catalyst Concentration, Water Amount, and Washing Temperature on Biodiesel Obtained from Rapeseed Oil and Used Oil. Industrial & Engineering Chemistry Research, 2010, 49, 4436-4443.	1.8	28
122	Transesterification processes for biodiesel production from oils and fats. , 2010, , 285-321.		4
123	Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chemical Society Reviews, 2011, 40, 4762.	18.7	111
124	Algae, Canola, or Palm Oils—Diesel Microemulsion Fuels: Phase Behaviors, Viscosity, and Combustion Properties. International Journal of Green Energy, 2011, 8, 748-767.	2.1	72
125	Low-Temperature Behavior of Biodiesel: Solid–Liquid Phase Diagrams of Binary Mixtures Composed of Fatty Acid Methyl Esters. Energy & Fuels, 2011, 25, 3244-3250.	2.5	56
126	Synthesis of fatty acid methyl esters via direct transesterification with methanol/carbon dioxide mixtures from spent coffee grounds feedstock. Green Chemistry, 2011, 13, 1196.	4.6	57
127	Challenges and perspectives for catalysis in production of diesel from biomass. Biofuels, 2011, 2, 465-483.	1.4	7
128	Catalytic Deoxygenation of Tall Oil Fatty Acid over Palladium Supported on Mesoporous Carbon. Energy & Fuels, 2011, 25, 2815-2825.	2.5	82
129	Biodiesel Production, Properties, and Feedstocks. , 2011, , 285-347.		51

	Сіт.	ation Report	
#	ARTICLE Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the Seeds Oil of	IF 0.0	CITATIONS
131	Alt; Agt; Curcubita pepo< /i>. Nigerian Journal of Basic and Applied Sciences, 2011, 19, . Production of Biodiesel via In-Situ Supercritical Methanol Transesterification. , 2011, , .		1
132	Extraction and Optimization of Oil from Moringa Oleifera Seed as an Alternative Feedstock for the Production of Biodiesel. , 2011, , .		7
133	Biodiesel Production by Using Heterogeneous Catalysts. , 0, , .		22
134	Performance and emission characteristics of a DI compression ignition engine operated on PODL biofuel. International Journal of Renewable Energy Technology, 2011, 2, 324.	0.2	1
135	Use of Immobilized Pseudomonas sp. as Whole Cell Catalyst for the Transesterification of Used Cotton Seed Oil. Journal of Oleo Science, 2011, 60, 7-10.	0.6	19
136	Transesterification kinetics of palm olein oil using supercritical methanol. Journal of Supercritical Fluids, 2011, 58, 365-370.	1.6	45
137	In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 213-219.	1.8	67
138	ANN virtual sensors for emissions prediction and control. Applied Energy, 2011, 88, 4505-4516.	5.1	17
139	Experimental evaluation of DI diesel engine operating with diestrol at varying injection pressure and injection timing. Fuel Processing Technology, 2011, 92, 2252-2263.	3.7	67
140	Experimental analysis of lipid extraction and biodiesel production from wastewater sludge. Fuel Processing Technology, 2011, 92, 2241-2251.	3.7	61
141	Reforming of vegetable oil for production of hydrogen: A thermodynamic analysis. International Journal of Hydrogen Energy, 2011, 36, 11666-11675.	3.8	35
142	Enzymatic transesterification of fats and oils from animal discards to fatty acid ethyl esters for potential fuel use. Biomass and Bioenergy, 2011, 35, 4149-4157.	2.9	20
143	Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and Bioenergy, 2011, 35, 3787-3809.	2.9	299
144	Catalysis in biomass processing. Catalysis in Industry, 2011, 3, 218-249.	0.3	52
145	Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols. Russian Journal of Physical Chemistry A, 2011, 85, 1336-1346.	0.1	8
146	Calculating the thermodynamic characteristics of the stepwise transesterification of simple triglycerides. Russian Journal of Physical Chemistry A, 2011, 85, 2082-2087.	0.1	5
147	Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied Energy, 2011, 88, 3694-3703.	5.1	349

#	Article	IF	CITATIONS
148	Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19. Proceedings of the Combustion Institute, 2011, 33, 391-398.	2.4	63
149	Microalgae as second generation biofuel. A review. Agronomy for Sustainable Development, 2011, 31, 605-629.	2.2	137
150	Underutilized Annona Species from the Brazilian Cerrado and Amazon Rainforest: A Study on Fatty Acids Profile and Yield of Seed Oils. Economic Botany, 2011, 65, 329-333.	0.8	11
151	Instantaneous 2-D visualization of spray combustion and flame luminosity of GTL and GTL-biodiesel fuel blend under quiescent ambient conditions. International Journal of Automotive Technology, 2011, 12, 159-171.	0.7	11
152	Oxidation of small unsaturated methyl and ethyl esters. International Journal of Chemical Kinetics, 2011, 43, 204-218.	1.0	32
153	The Use of Diamond Electrodes in the Interface Biodiesel/Water. Electroanalysis, 2011, 23, 330-333.	1.5	5
154	Performance of a cutinase membrane reactor for the production of biodiesel in organic media. Biotechnology and Bioengineering, 2011, 108, 1279-1289.	1.7	20
155	Biodiesel Production from the Lipid of Wastewater Sludge Using an Acidic Heterogeneous Catalyst. Chemical Engineering and Technology, 2011, 34, 1983-1988.	0.9	22
156	Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 2011, 102, 106-110.	4.8	363
157	Experimental and modeling study of the thermal decomposition of methyl decanoate. Combustion and Flame, 2011, 158, 1288-1300.	2.8	50
159	Transesterification of rapeseed and palm oils in supercritical methanol and ethanol. Biomass and Bioenergy, 2011, 35, 2999-3011.	2.9	45
160	A comparative study of vegetable oil methyl esters (biodiesels). Energy, 2011, 36, 2129-2137.	4.5	89
161	Upstream and downstream strategies to economize biodiesel production. Bioresource Technology, 2011, 102, 461-468.	4.8	122
162	BrÃ,nsted imidazolium ionic liquids: Synthesis and comparison of their catalytic activities as pre-catalyst for biodiesel production through two stage process. Energy Conversion and Management, 2011, 52, 804-809.	4.4	100
163	Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel, 2011, 90, 42-47.	3.4	157
164	The preparation and shock tube investigation of comparative ignition delays using blends of diesel fuel with bio-diesel of cottonseed oil. Fuel, 2011, 90, 421-429.	3.4	13
165	Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge. Fuel, 2011, 90, 1069-1075.	3.4	67
166	Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 1067-1072.	8.2	137

#	Article	IF	CITATIONS
167	Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 1513-1524.	8.2	2,614
168	A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 2011, 15, 2240-2251.	8.2	464
169	Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable Energy Reviews, 2011, 15, 3278-3300.	8.2	138
170	Investigations on Performance and Emission Characteristics of Vegetable Oil Biodiesels as Fuels in a Single Cylinder Direct Injection Diesel Engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 34, 177-186.	1.2	16
171	Life-cycle assessment of bioenergy production systems from oilseed rape crops. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225, 63-73.	0.8	3
172	Methanolysis and ethanolysis of animal fats: A comparative study of the influence of alcohols. Chemical Industry and Chemical Engineering Quarterly, 2011, 17, 91-97.	0.4	26
173	Study of Soybean Oil Hydrolysis Catalyzed by <i>Thermomyces lanuginosus</i> Lipase and Its Application to Biodiesel Production <i>via</i> Hydroesterification. Enzyme Research, 2011, 2011, 1-8.	1.8	58
174	Studies on biodiesel production and its effect on DI diesel engine performance, emission and combustion characteristics. International Journal of Ambient Energy, 2011, 32, 179-193.	1.4	19
175	Combustion characteristics of a diesel engine operating on biodiesel–diesel–ethanol mixtures. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225, 1076-1087.	0.8	4
176	Investigations on a Compression Ignition Engine Using Animal Fats and Vegetable Oil as Fuels. Journal of Energy Resources Technology, Transactions of the ASME, 2012, 134, .	1.4	18
177	Analysis of Biofuel Policy and Efficiency Towards Greenhouse Gas Reduction. , 2012, , .		0
178	Immobilization of Candida rugosa Lipase on MCM-41 for the Transesterification of Cotton Seed Oil. Journal of Oleo Science, 2012, 61, 469-475.	0.6	17
179	Analysis of soot particles derived from biodiesels and diesel fuel air-flames. Fuel, 2012, 102, 525-535.	3.4	73
180	Densities and Viscosities of Binary Blends of Methyl Esters + Ethyl Esters and Ternary Blends of Methyl Esters + Ethyl Esters + Diesel Fuel from T = (293.15 to 358.15) K. Journal of Chemical & Engineering Data, 2012, 57, 1387-1395.	1.0	15
181	A molecular beam scattering investigation of methanol–noble gas complexes: Characterization of the isotropic potential and insights into the nature of the interaction. Chemical Physics Letters, 2012, 545, 14-20.	1.2	23
182	Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science, 2012, 38, 691-715.	15.8	272
183	Biodiesel Production from Sewage Sludge: New Paradigm for Mining Energy from Municipal Hazardous Material. Environmental Science & Technology, 2012, 46, 10222-10228.	4.6	107
184	Comparative study of the combustion, performance, and emission characteristics of a variable compression ratio engine fuelled with diesel, corn oil methyl ester, and palm oil methyl ester. Journal of Renewable and Sustainable Energy, 2012, 4, 063122.	0.8	23

#	Article	IF	CITATIONS
185	Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 2012, 16, 4763-4784.	8.2	262
186	Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development. Renewable and Sustainable Energy Reviews, 2012, 16, 4574-4587.	8.2	92
187	Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil). Waste Management, 2012, 32, 1539-1547.	3.7	48
188	Analysis of mono-sugars obtained by acid hydrolysis of algae-based polysaccharides. Journal of Industrial and Engineering Chemistry, 2012, 18, 1366-1369.	2.9	9
189	Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy, 2012, 43, 4-18.	4.5	149
190	Theoretical Studies on the Unimolecular Decomposition of Ethylene Glycol. Journal of Physical Chemistry A, 2012, 116, 55-63.	1.1	30
191	Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. 1. Flammability and Toxicity. Energy & Fuels, 2012, 26, 3864-3873.	2.5	49
192	Artificial neural networks based prediction of performance and exhaust emissions in direct injection engine using castor oil biodiesel-diesel blends. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	11
193	Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine. Applied Energy, 2012, 99, 334-343.	5.1	89
194	Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 2012, 63, 138-148.	4.4	492
195	Chapter 2. Vegetable Oil as a Fuel: Can it be used Directly?. , 2012, , 5-30.		0
196	Development of Thermophysical and Transport Properties for the CFD Simulations of In-Cylinder Biodiesel Spray Combustion. Energy & Fuels, 2012, 26, 4857-4870.	2.5	39
197	Transesterification of rapeseed oil in supercritical methanol in a flow reactor. Russian Journal of Physical Chemistry A, 2012, 86, 1646-1653.	0.1	8
198	Thermodynamics of Phase and Chemical Equilibrium in the Processes of Biodiesel Fuel Synthesis in Subcritical and Supercritical Methanol. Industrial & Engineering Chemistry Research, 2012, 51, 4783-4796.	1.8	31
199	Production and Characterization of Biofuel from Non-Edible Oils: An Alternative Energy Sources to Petrol Diesel. , 2012, , .		7
200	Production and Characterization of Biofuel from Refined Groundnut Oil. , 0, , .		7
201	Biodiesel Feedstock and Production Technologies: Successes, Challenges and Prospects. , 0, , .		28
202	Chemical equilibrium of transesterification reactions between mixed triglycerides and methanol. Russian Journal of Physical Chemistry A, 2012, 86, 19-25.	0.1	2

#	Article	IF	CITATIONS
203	Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 2012, 24, 791-801.	1.5	178
204	Determination of Ca, Mg, and Zn in biodiesel microemulsions by FAAS using discrete nebulization. Fuel, 2012, 93, 167-171.	3.4	34
205	The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel, 2012, 94, 227-233.	3.4	94
206	Gasoline-range hydrocarbon production using biomass derived synthesis gas over Mo/H+ZSM-5. Fuel, 2012, 96, 239-249.	3.4	12
207	Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 2012, 96, 70-76.	3.4	231
208	A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Applied Energy, 2012, 92, 109-132.	5.1	207
209	A kinetic model for methyl decanoate combustion. Combustion and Flame, 2012, 159, 1793-1805.	2.8	82
210	Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 2012, 63, 104-115.	1.8	82
211	Non-catalytic heterogeneous biodiesel production via a continuous flow system. Bioresource Technology, 2012, 114, 370-374.	4.8	29
212	Experimental investigations on performance and emission characteristics of Honge oil biodiesel (HOME) operated compression ignition engine. Renewable Energy, 2012, 48, 193-201.	4.3	27
213	The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 3456-3470.	8.2	229
214	Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. New Biotechnology, 2012, 29, 332-344.	2.4	60
215	Use of bioethanol for biodiesel production. Progress in Energy and Combustion Science, 2012, 38, 283-301.	15.8	98
216	Biodiesel production from high free fatty acids content Jatropha curcas L. oil using dual step process. Biomass Conversion and Biorefinery, 2013, 3, 361-369.	2.9	15
217	Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approach. Fuel, 2013, 107, 633-640.	3.4	68
218	Development of a reduced biodiesel combustion kinetics mechanism for CFD modelling of a light-duty diesel engine. Fuel, 2013, 106, 388-400.	3.4	69
219	Microalgae for a macroenergy world. Renewable and Sustainable Energy Reviews, 2013, 26, 241-264.	8.2	156
220	Are plant lipases a promising alternative to catalyze transesterification for biodiesel production?. Progress in Energy and Combustion Science, 2013, 39, 441-456.	15.8	54

#	Article	IF	CITATIONS
221	Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 2013, 27, 118-127.	8.2	511
222	Microwave energy potential for biodiesel production. Sustainable Chemical Processes, 2013, 1, 5.	2.3	167
223	Continuous Catalyst-Free Production of Biodiesel through Transesterification of Soybean Fried Oil in Supercritical Methanol and Ethanol. Energy & Fuels, 2013, 27, 5253-5259.	2.5	73
224	Simulation and optimization of a biojet fuel production process. Computer Aided Chemical Engineering, 2013, 32, 13-18.	0.3	19
225	Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review. Renewable and Sustainable Energy Reviews, 2013, 28, 441-455.	8.2	156
226	Computational study of biodiesel–diesel fuel blends on emission characteristics for a light-duty diesel engine using OpenFOAM. Applied Energy, 2013, 111, 827-841.	5.1	27
228	Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine. Environmental Technology (United Kingdom), 2013, 34, 2019-2026.	1.2	30
229	Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification. Procedia Engineering, 2013, 53, 7-12.	1.2	59
230	Biodiesel synthesis from vegetable oils with supercritical methanol. Journal of Supercritical Fluids, 2013, 77, 100-102.	1.6	14
231	Effect of alkali catalyst on biodiesel production in South Korea from mixtures of fresh soybean oil and waste cooking oil. Journal of Material Cycles and Waste Management, 2013, 15, 223-228.	1.6	10
232	Production and characterization of biodiesel obtained from Sapindus mukorossi kernel oil. Energy, 2013, 60, 159-167.	4.5	49
233	Production of biodiesel from soybean and Jatropha Curcas oils with KSF and amberlyst 15 catalysts in the presence of co-solvents. Sustainable Chemical Processes, 2013, 1, .	2.3	14
234	A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy, 2013, 50, 858-878.	4.3	297
235	Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM. Energy & Fuels, 2013, 27, 208-219.	2.5	14
236	Catalytic cracking of vegetable oils and vacuum gas oil. Fuel, 2013, 106, 757-765.	3.4	66
237	Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. Journal of Chemical Technology and Biotechnology, 2013, 88, 3-12.	1.6	242
238	Optimization of biodiesel production from animal fat residue in wastewater using response surface methodology. Bioresource Technology, 2013, 129, 315-320.	4.8	34
239	Mechanistic investigation into water tolerance of non-catalytic biodiesel conversion. Applied Energy, 2013, 112, 388-392.	5.1	16

# 240	ARTICLE Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel, 2013, 107, 474-482.	IF 3.4	CITATIONS
241	Phase diagrams for vegetable oil/methanol mixtures. Journal of Supercritical Fluids, 2013, 81, 99-102.	1.6	1
242	Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS. Catalysis Communications, 2013, 36, 1-4.	1.6	55
243	Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresource Technology, 2013, 136, 475-480.	4.8	163
244	Mechanism and kinetics of thermal decomposition of biodiesel fuel. Fuel, 2013, 106, 593-604.	3.4	63
245	Biofuels Combustion. Annual Review of Physical Chemistry, 2013, 64, 201-219.	4.8	120
246	An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles. Polymer Bulletin, 2013, 70, 549-561.	1.7	67
248	Mesoporous nanocrystalline sulfated zirconia synthesis and its application for FFA esterification in oils. Applied Catalysis A: General, 2013, 462-463, 196-206.	2.2	61
249	Generation Means Analysis of Fatty Acid Composition in Peanut. Journal of Crop Improvement, 2013, 27, 430-443.	0.9	5
250	Performance Assessment of Turbojet Engine Operated With Alternative Biodiesel. , 2013, , .		7
251	The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks. Energies, 2013, 6, 3764-3806.	1.6	53
252	Investigation on performance and emissions of a biodiesel engine through optimization techniques. Thermal Science, 2013, 17, 179-193.	0.5	17
253	Influence of Fatty Acid Profiles during Supercritical Transesterification of Conventional and Non-Conventional Feedstocks: A Review. American Journal of Analytical Chemistry, 2013, 04, 469-475.	0.3	5
254	The Comparison of Preheat Fuel Characteristics of Biodiesel and Straight Vegetable Oil. Applied Mechanics and Materials, 0, 465-466, 161-166.	0.2	9
256	Structure-Property Studies of Thermoplastic and Thermosetting Polyurethanes Using Palm and Soya Oils-Based Polyols. Journal of Oleo Science, 2013, 62, 1059-1072.	0.6	16
257	Blend Characteristics of Biodiesel Obtained from Four Virgin Tropical Seed Oils. International Journal of Chemistry, 2013, 5, .	0.3	2
258	Assessment of Physicochemical Properties of Biodiesel from African Grapes (<i>Lannea microcarpa</i>) Tj ETQq0	0 0 rgBT / 0.0	Oyerlock 10

259	Energetic and economic viability of olive stone recovery as a renewable energy source: a Southern Italy case study. Journal of Agricultural Engineering, 2014, 45, 60.	0.'	7	6
-----	---	-----	---	---

#	Article	IF	CITATIONS
260	Methanolysis of <i>Carica papaya</i> Seed Oil for Production of Biodiesel. Journal of Fuels, 2014, 2014, 1-6.	0.2	19
261	Biodiesel fromCitrullus colocynthisOil: Sulfonic-Ionic Liquid-Catalyzed Esterification of a Two-Step Process. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	6
262	Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with <i>Jatropha curcas</i> Ethyl Ester Blends at Different Compression Ratio. Journal of Renewable Energy, 2014, 2014, 1-12.	2.1	14
263	El aceite de palma africana elae guineensis: Alternativa de recurso energético para la producción de biodiesel en Colombia y su impacto ambiental. Prospectiva, 2014, 12, 90.	0.2	5
264	Tin (II) Chloride Catalyzed Esterification of High FFA Jatropha Oil: Experimental and Kinetics Study. International Journal of Renewable Energy Development, 2014, 3, 75-81.	1.2	7
265	Effects of Light Exposure and Nitrogen Source on the Production of Oil from Freshwater and Marine Water Microalgae. American Journal of Biochemistry and Biotechnology, 2014, 10, 211-233.	0.1	7
266	Process for Synthesis of Biodiesel from Used Cooking Oil: Feasibility and Experimental Studies. Computer Aided Chemical Engineering, 2014, , 1111-1116.	0.3	0
267	Performance, combustion and emission characteristics of a single-cylinder, four-stroke, direct injection diesel engine operated on a dual-fuel mode using Honge oil methyl ester and producer gas derived from biomass feedstock of different origin. International Journal of Sustainable Engineering, 2014. 7, 253-268.	1.9	16
268	Production of Biodiesel from Waste Frying Oil Using Whole Cell Biocatalysts: Optimization of Effective Factors. Waste and Biomass Valorization, 2014, 5, 947-954.	1.8	5
269	Continuous Esterification of Free Fatty Acids in Crude Biodiesel by an Integrated Process of Supercritical Methanol and Sodium Methoxide Catalyst. Applied Biochemistry and Biotechnology, 2014, 174, 1484-1495.	1.4	6
270	Microcalorimetry and Kinetics of Biodiesel. Applied Mechanics and Materials, 0, 592-594, 1647-1651.	0.2	0
271	Study on Emission and Performance of Diesel Engine Using Castor Biodiesel. Journal of Chemistry, 2014, 2014, 1-8.	0.9	53
272	Influence of Chemical Blends on Palm Oil Methyl Esters' Cold Flow Properties and Fuel Characteristics. Energies, 2014, 7, 4364-4380.	1.6	54
273	Oxidation of small alkyl esters in flames. Combustion and Flame, 2014, 161, 810-817.	2.8	63
274	Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel. International Journal of Environmental Science and Technology, 2014, 11, 949-958.	1.8	74
275	An acidic ionic liquid-conventional alkali-catalyzed biodiesel production process. Korean Journal of Chemical Engineering, 2014, 31, 431-435.	1.2	5
276	Comparative assessment of Cladophora, Spirogyra and Oedogonium biomass for the production of fatty acid methyl esters. Applied Biochemistry and Microbiology, 2014, 50, 69-72.	0.3	7
277	Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion. Renewable and Sustainable Energy Reviews, 2014, 32, 379-395.	8.2	214

# 278	ARTICLE Macauba oil as an alternative feedstock for biodiesel: Characterization and ester conversion by the supercritical method. Journal of Supercritical Fluids, 2014, 93, 130-137.	IF 1.6	CITATIONS
279	Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol. Catalysis Today, 2014, 220-222, 12-20.	2.2	28
280	Synthesis of Biodiesel Fuel in Supercritical Lower Alcohols with and without Heterogeneous Catalysts (Thermodynamics, Phase and Chemical Equilibriums, Experimental Studies). , 2014, , 1-29.		0
281	A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 2014, 61, 276-297.	2.9	546
282	Microemulsion systems containing diesel and colza oil as alternative fuels: Phase studies, interfacial tension and solubilization. Fuel, 2014, 117, 251-258.	3.4	35
283	Deoxygenation of guaiacol and woody tar over reduced catalysts. Applied Catalysis B: Environmental, 2014, 146, 237-243.	10.8	89
284	Perspectives and advances of microalgal biodiesel production with supercritical fluid technology. RSC Advances, 2014, 4, 39771-39781.	1.7	19
285	Continuous flow vortex fluidic production of biodiesel. RSC Advances, 2014, 4, 49850-49854.	1.7	37
286	Experimental Investigation on Performance and Emission Characteristics of a Diesel Engine Fuelled with Mahua Biodiesel Using Additive. Energy Procedia, 2014, 54, 569-579.	1.8	87
287	Potential non-edible oil feedstock for biodiesel production in Africa: A survey. Renewable and Sustainable Energy Reviews, 2014, 38, 461-477.	8.2	80
288	Catalytic Depolymerization of Lignin in Supercritical Ethanol. ChemSusChem, 2014, 7, 2276-2288.	3.6	313
289	Integration of reactive extraction with supercritical fluids for process intensification of biodiesel production: Prospects and recent advances. Progress in Energy and Combustion Science, 2014, 45, 54-78.	15.8	45
290	Biodiesel production from algae by using heterogeneous catalysts: AÂcritical review. Energy, 2014, 78, 72-83.	4.5	160
291	Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables. Renewable and Sustainable Energy Reviews, 2014, 38, 368-382.	8.2	124
292	Calculating the Thermodynamic Characteristics and Chemical Equilibrium of the Stepwise Transesterification of Triolein Using Supercritical Lower Alcohols. Industrial & Engineering Chemistry Research, 2014, 53, 7209-7216.	1.8	21
293	A Method of Central Composite Design (CCD) For Optimization of Biodiesel Production from Chlorella vulgaris. Journal of Petroleum & Environmental Biotechnology, 2015, 06, .	0.3	1
294	New Insights in Polymer-Biofuels Interaction. Oil and Gas Science and Technology, 2015, 70, 317-333.	1.4	18
295	Production of Biodiesel from Waste Vegetable Oil via KM Micromixer. Journal of Chemistry, 2015, 2015, 1-9.	0.9	72

Сп	ON	REPORT
<u> </u>		

#	Article	IF	CITATIONS
296	Mitigating crystallization of saturated FAMES in biodiesel: 5. TheÂunusual phase behavior of a structured triacylglycerol dimer andÂmethyl palmitate binary system. Energy, 2015, 93, 1011-1021.	4.5	4
297	Bioenergy: Biofuels Process Technology. , 2015, , 165-207.		1
298	Evaluation of beech for production of bio-char, bio-oil and gaseous materials. Chemical Engineering Research and Design, 2015, 94, 29-36.	2.7	19
299	Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644.	5.5	78
300	Additives improve the enzymatic synthesis of biodiesel from waste oil in a solvent free system. Fuel, 2015, 146, 13-19.	3.4	29
301	Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Processing Technology, 2015, 132, 74-82.	3.7	53
302	Fatty acid methyl ester biofuels produced from canola oil with honeycomb monolithic catalysts. Fuel, 2015, 145, 116-126.	3.4	9
303	Effect of swine wastewater on Jatropha curcas L. oil acidity. Industrial Crops and Products, 2015, 74, 642-647.	2.5	2
304	Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Advances, 2015, 5, 65454-65461.	1.7	67
305	Synthesis of Biodiesel through Catalytic Transesterification of Various Feedstocks using Fast Solvothermal Technology: A Critical Review. Catalysis Reviews - Science and Engineering, 2015, 57, 407-435.	5.7	31
306	Recent studies on soot modeling for diesel combustion. Renewable and Sustainable Energy Reviews, 2015, 48, 635-647.	8.2	173
307	Second Generation Bioethanol from Arabica Coffee Waste Processing at Smallholder Plantation in Ijen Plateau Region of East Java. Procedia Chemistry, 2015, 14, 408-413.	0.7	19
308	Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources and Industry, 2015, 10, 1-14.	1.9	178
309	Comparison of Ethyl Acetate with Hexane for Oil Extraction from Various Oilseeds. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 743-754.	0.8	36
310	Pangium edule Reinw: A Promising Non-edible Oil Feedstock for Biodiesel Production. Arabian Journal for Science and Engineering, 2015, 40, 583-594.	1.1	47
311	Mechanism and Kinetics of Low-Temperature Oxidation of a Biodiesel Surrogate: Methyl Propanoate Radicals with Oxygen Molecule. Journal of Physical Chemistry A, 2015, 119, 3689-3703.	1.1	24
312	Combustion and emission characteristics of an off-road diesel engine fuelled with biodiesel–diesel blends. International Journal of Sustainable Energy, 2015, 34, 417-430.	1.3	1
313	Heterogeneous alkaline earth metal–transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock. RSC Advances, 2015, 5, 83748-83756.	1.7	16

#	Article	IF	CITATIONS
314	State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Advances, 2015, 5, 101023-101044.	1.7	121
315	Evaluation of the use of degummed soybean oil and supercritical ethanol for non-catalytic biodiesel production. Journal of Supercritical Fluids, 2015, 105, 21-28.	1.6	13
316	Advances in Bioprocess Technology. , 2015, , .		6
317	An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renewable and Sustainable Energy Reviews, 2015, 43, 495-520.	8.2	135
318	Study of carbon and carbon–metal particulates in a canola methyl ester air-flame. Combustion and Flame, 2015, 162, 216-225.	2.8	2
319	Prospect of biofuels as an alternative transport fuel in Australia. Renewable and Sustainable Energy Reviews, 2015, 43, 331-351.	8.2	169
320	An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renewable and Sustainable Energy Reviews, 2015, 42, 1437-1452.	8.2	96
321	Determination of the kinetics of biodiesel saponification in alcoholic hydroxide solutions. Fuel, 2015, 140, 724-730.	3.4	36
322	High-purity biodiesel production from microalgae and added-value lipid extraction: a new process. Applied Microbiology and Biotechnology, 2015, 99, 109-119.	1.7	6
323	Physical and chemical properties of fish oil biodiesel produced in Brazil. Renewable and Sustainable Energy Reviews, 2015, 42, 154-157.	8.2	40
324	Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogateâ^'methyl acetate radicals with molecular oxygen. Structural Chemistry, 2015, 26, 431-444.	1.0	13
325	The Kinetics of Interesterfication on Waste Cooking Oil (Sunflower Oil) for the Production of Fatty Acid Alkyl Esters using a Whole Cell Biocatalyst (<>Rhizopus oryzae) and Pure Lipase Enzyme. International Journal of Green Energy, 2015, 12, 1012-1017.	2.1	11
326	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	8.2	134
327	Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective. Frontiers in Bioengineering and Biotechnology, 2016, 4, 89.	2.0	12
328	Response surface methodology for the optimization of biofuel production at a low molar ratio of supercritical methanol to used palm olein oil. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 539-548.	0.8	7
329	Fuel properties comparison of species of microalgae and selected second-generation oil feedstocks. African Journal of Science, Technology, Innovation and Development, 2016, 8, 221-232.	0.8	5
330	Biodiesel synthesis and characterization using welted thistle plant (<i>Carduus acanthoides</i>) as source of new non-edible seed oil. International Journal of Green Energy, 2016, 13, 462-469.	2.1	18
331	Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renewable and Sustainable Energy Reviews, 2016, 61, 302-318.	8.2	105

#	Article	IF	CITATIONS
332	Kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica SKY7. Bioresource Technology, 2016, 221, 234-240.	4.8	32
333	Biodiesel from kernel oil of sweet cherry (Prunus aviumL.) seed. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2503-2509.	1.2	8
334	Continuous production of biodiesel from rapeseed oil by ultrasonic assist transesterification in supercritical ethanol. Journal of Supercritical Fluids, 2016, 118, 107-118.	1.6	51
335	Evaluation of Sinapis alba as feedstock for biodiesel production in Mediterranean climate. Fuel, 2016, 184, 656-664.	3.4	21
336	Use of supercritical methanol/carbon dioxide mixtures for biodiesel production. Korean Journal of Chemical Engineering, 2016, 33, 2342-2349.	1.2	12
337	Production of bioethanol from a mixture of agricultural feedstocks: Biofuels characterization. Fuel, 2016, 185, 612-621.	3.4	48
338	High-yield production of fuel- and oleochemical-precursors from triacylglycerols in a novel continuous-flow pyrolysis reactor. Applied Energy, 2016, 179, 755-764.	5.1	24
339	Environmental assessment of bioenergy production from microalgae based systems. Journal of Cleaner Production, 2016, 139, 51-60.	4.6	54
340	Hydrogen production by semicoke gasification with a supercritical water fluidized bed reactor. International Journal of Hydrogen Energy, 2016, 41, 16055-16063.	3.8	51
341	Electricity Production from Organic Wastes Fermentation by Microbial Fuel Cell Process. Applied Mechanics and Materials, 2016, 855, 91-97.	0.2	0
342	Features of combined conversion of naphthenic hydrocarbons and fatty acids under catalytic cracking conditions. Petroleum Chemistry, 2016, 56, 745-752.	0.4	5
343	Biodiesel from corn germ oil catalytic and non-catalytic supercritical methanol transesterification. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1890-1897.	1.2	14
344	Recent advances in the catalytic hydrodeoxygenation of bio-oil. Korean Journal of Chemical Engineering, 2016, 33, 3299-3315.	1.2	104
345	Pyrolysis of cherry laurel (<i>Prunus Laurocerasus</i> L.) seed in the presence of sodium carbonate. Energy Exploration and Exploitation, 2016, 34, 158-168.	1.1	5
346	Glycerol-free biodiesel production through transesterification: a review. Fuel Processing Technology, 2016, 151, 139-147.	3.7	71
347	Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review. Renewable and Sustainable Energy Reviews, 2016, 63, 269-291.	8.2	41
348	Optimization of biological transesterification of waste cooking oil in different solvents using response surface methodology. Management of Environmental Quality, 2016, 27, 537-550.	2.2	1
349	Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 2016, 55, 1109-1128.	8.2	224

#	Article	IF	CITATIONS
350	Polythiophene–Clay Composite Solid-Phase Microextraction Fiber: Preparation, Characterization, and Application to the Determination of Methanol in Biodiesel. Analytical Letters, 2016, 49, 896-906.	1.0	2
351	Evaluation of a methodology of biodiesel purification: study of the contaminant removal capacity. Biofuels, 2016, 7, 155-161.	1.4	5
352	One-step production of biodiesel through simultaneous esterification and transesterification from highly acidic unrefined feedstock over efficient and recyclable ZnO nanostar catalyst. Renewable Energy, 2016, 90, 450-457.	4.3	34
353	Influence of fatty acids content in non-edible oil for biodiesel properties. Clean Technologies and Environmental Policy, 2016, 18, 473-482.	2.1	90
354	Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: A new approach. Fuel, 2016, 166, 143-151.	3.4	81
355	Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester – Diesel blends. Ecotoxicology and Environmental Safety, 2016, 134, 455-461.	2.9	36
356	Effect of injection timing, injector opening pressure, injector nozzle geometry, and swirl on the performance of a direct injection, compression-ignition engine fuelled with honge oil methyl ester (HOME). International Journal of Automotive Technology, 2016, 17, 35-50.	0.7	13
357	Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste. Energy, 2016, 102, 139-147.	4.5	12
358	Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 2016, 57, 496-504.	8.2	279
359	Ag-doped M2O3 nanoflakes as effective catalyst for lignin liquefaction in supercritical methanol medium. Ceramics International, 2016, 42, 4386-4392.	2.3	8
360	Effects of tetrahedral molybdenum oxide species and MoO _x domains on the selective oxidation of dimethyl ether under mild conditions. Catalysis Science and Technology, 2016, 6, 2975-2983.	2.1	18
361	Catalytic upgrading of soybean oil methyl esters by partial hydrogenation using Pd catalysts. Fuel, 2016, 163, 8-16.	3.4	34
362	Transient Predictive Model for Dynamic Analysis, Kinetic Study, and Reactor Design of Triglycerides Transesterification to Biodiesel. International Journal of Chemical Reactor Engineering, 2016, 14, 235-249.	0.6	1
363	Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renewable and Sustainable Energy Reviews, 2016, 53, 265-278.	8.2	263
364	Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection. Talanta, 2016, 148, 666-672.	2.9	31
365	Contributions to improving small ester combustion chemistry: Theory, model and experiments. Proceedings of the Combustion Institute, 2017, 36, 543-551.	2.4	42
366	The methylic versus the ethylic route: considerations about the sustainability of Brazilian biodiesel production. Environment, Development and Sustainability, 2017, 19, 637-651.	2.7	4
367	Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 2017, 72, 497-509.	8.2	477

#	Article	IF	CITATIONS
368	Hydrodynamic feasibility of the production of biodiesel fuel in a high-pressure reactive distillation column. Chemical Engineering and Processing: Process Intensification, 2017, 112, 31-37.	1.8	7
369	Bifunctionality of Cu/ZnO catalysts for alcohol-assisted low-temperature methanol synthesis from syngas: Effect of copper content. Journal of Energy Chemistry, 2017, 26, 373-379.	7.1	22
370	Synergistic Effect of EtOAc/H ₂ O Biphasic Solvent and Ru/C Catalyst for Cornstalk Hydrolysis Residue Depolymerization. ACS Sustainable Chemistry and Engineering, 2017, 5, 2981-2993.	3.2	31
371	Sugar-Improved Enzymatic Synthesis of Biodiesel with <i>Yarrowia lipolytica</i> Lipase 2. Energy & Fuels, 2017, 31, 6248-6256.	2.5	10
372	Direct use of waste vegetable oil in internal combustion engines. Renewable and Sustainable Energy Reviews, 2017, 69, 759-770.	8.2	87
373	Biodiesel synthesis from Calophyllum inophyllum oil with different supercritical fluids. Bioresource Technology, 2017, 241, 767-774.	4.8	31
374	Optimisation of biodiesel production from waste vegetable oil and eggshell ash. South African Journal of Chemical Engineering, 2017, 23, 145-156.	1.2	78
375	Microalgae biodiesel: Current status and future needs for engine performance and emissions. Renewable and Sustainable Energy Reviews, 2017, 79, 1160-1170.	8.2	84
376	Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment. Energy, 2017, 129, 273-291.	4.5	37
377	Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 2017, 59, 32-78.	15.8	305
378	Biodiesel from rapeseed oil (Brassica napus) by supported Li2O and MgO. International Journal of Energy and Environmental Engineering, 2017, 8, 9-23.	1.3	15
379	Valorisation of Spent Coffee Grounds: Production of Biodiesel via Enzymatic Catalysis with Ethanol and a Co-solvent. Waste and Biomass Valorization, 2017, 8, 1981-1994.	1.8	41
380	Production of biodiesel by transesterification of Senna occidentalis nonedible oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1855-1861.	1.2	10
381	Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: A predictive analysis of the biodiesel product properties. Journal of Cleaner Production, 2017, 168, 1436-1447.	4.6	27
382	Castor oil (Ricinus communis) supercritical methanolysis. Energy, 2017, 140, 426-435.	4.5	31
383	Production of biodiesel from waste cooking oil using MgMoO ₄ -supported TiO ₂ as a heterogeneous catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 2053-2059.	1.2	11
384	Measurement and correlation of solubility of carbon dioxide in triglycerides. Journal of Chemical Thermodynamics, 2017, 104, 252-260.	1.0	14
385	An experimental investigation on performance and emission parameters of a multi-cylinder SI engine with gasoline–LPG dual fuel mode of operation. Biofuels, 2017, 8, 113-123.	1.4	4

#	Article	IF	CITATIONS
386	Polyurethaneâ€functionalized starch nanoparticles for the purification of biodiesel. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
387	Stability and emission analysis of crude rapeseed oil combustion. Fuel Processing Technology, 2017, 156, 204-210.	3.7	26
388	Influence of fatty acids in waste cooking oil for cleaner biodiesel. Clean Technologies and Environmental Policy, 2017, 19, 859-868.	2.1	35
389	Evaluation of performance, emission and combustion characteristics of diesel engine fueled with castor biodiesel. Biofuels, 2017, 8, 225-233.	1.4	18
390	Calculation of anharmonic effect on the dissociation of ethylene glycol. Journal of Theoretical and Computational Chemistry, 2017, 16, 1750077.	1.8	1
391	Added Palm Methyl Ester + Diesel and Bioethanol Mixtures and Engine Tune-Maintenance of a Research on the Determination of the Effect on Engine Performance. , 2017, , .		0
392	Biodiesel From Queensland Bush Nut (Macadamia integrifolia). , 2017, , 419-439.		1
393	Potential of Biodiesel as Fuel for Diesel Engine. , 2017, , 557-590.		10
394	Process Optimization of Biodiesel Production for Mixed Neem (Azadirachta indica) and Sesame (Sesamum indicum L.) Biodiesel Using Response Surface Methodology Based on Doehlert's Experimental Design. , 0, , .		1
395	Industrial Bioprocesses and the Biorefinery Concept. , 2017, , 3-27.		9
396	Comparison of Biodiesel Obtained from Virgin Cooking Oil and Waste Cooking Oil Using Supercritical and Catalytic Transesterification. Energies, 2017, 10, 546.	1.6	15
397	Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel. Energies, 2017, 10, 1689.	1.6	37
398	In-situ Transesterification of Jatropha curcas L. Seeds for Biodiesel Production using Supercritical Methanol. MATEC Web of Conferences, 2017, 97, 01082.	0.1	3
399	Evaluation of the Tung's fruits as a possible source of sustainable energy. Acta Scientiarum - Technology, 2017, 39, 487.	0.4	1
400	Biofuels from Microalgae: Energy and Exergy Analysis for the Biodiesel Case. Green Energy and Technology, 2018, , 181-200.	0.4	1
401	Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene. Journal of Cleaner Production, 2018, 185, 860-869.	4.6	30
402	The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock. South African Journal of Chemical Engineering, 2018, 25, 98-102.	1.2	32
403	ZrO ₂ /TiO ₂ nanofiber catalyst for effective liquefaction of agricultural wastes in subcritical methanol. Separation Science and Technology, 2018, 53, 2628-2638.	1.3	6

#	Article	IF	CITATIONS
404	Pt–Sn/Al 2 O 3 catalyst for the selective hydrodeoxygenation of esters. Mendeleev Communications, 2018, 28, 91-92.	0.6	6
405	A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Industrial Crops and Products, 2018, 114, 28-44.	2.5	50
407	Two-step methyl ester production and characterization from the broiler rendering fat: The optimization of the first step. Renewable Energy, 2018, 122, 216-224.	4.3	12
408	In situ epoxidation of waste soybean cooking oil for synthesis of biolubricant basestock: A process parameter optimization and comparison with RSM, ANN, and GA. Canadian Journal of Chemical Engineering, 2018, 96, 1451-1461.	0.9	24
409	An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environmental Technology and Innovation, 2018, 9, 210-219.	3.0	76
410	Skeletal Mechanism of Ethyl Propionate Oxidation for CFD Modeling to Predict Experimental Profiles of Unsaturated Products in a Nonpremixed Flame. Energy & amp; Fuels, 2018, 32, 855-866.	2.5	9
411	Potential use of chicken egg shells and cacao pod husk as catalyst for biodiesel production. AIP Conference Proceedings, 2018, , .	0.3	1
412	Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel, 2018, 222, 574-585.	3.4	134
413	Supercritical transesterification of microalgae triglycerides for biodiesel production: Effect of alcohol type and co-solvent. Journal of Supercritical Fluids, 2018, 137, 50-56.	1.6	37
414	Analysis of 22 vegetable oils' physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renewable Energy, 2018, 126, 403-419.	4.3	118
415	Performance and emissions characteristics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel. Egyptian Journal of Petroleum, 2018, 27, 215-219.	1.2	88
416	Evaluation of the use of <i>Gossypium hirsutum</i> oil and supercritical ethanol for the production of ethyl esters in nonâ€catalytic process. Canadian Journal of Chemical Engineering, 2018, 96, 651-658.	0.9	Ο
417	Experimental Investigations on LHR Single Cylinder Air Cooled Diesel Engine using Simarouba Biodiesel and its Blends as Alternate to Diesel Fuel. Journal of the Institution of Engineers (India): Series C, 2018, 99, 513-524.	0.7	3
418	Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, 2018, 128, 267-277.	5.3	81
419	Optimization of biodiesel production as a clean fuel for thermal power plants using renewable energy source. Renewable Energy, 2018, 119, 365-374.	4.3	55
420	Production and analysis of biodiesel from <i>Jatropha curcas</i> seed. Journal of Applied Sciences and Environmental Management, 2018, 22, 26.	0.1	2
421	Heterogeneous and efficient transesterification of <i>Jatropha curcas</i> L. seed oil to produce biodiesel catalysed by nano-sized SO ₄ ^{2â^} /TiO ₂ . Royal Society Open Science, 2018, 5, 181331.	1.1	26
422	Optimization of Engine Parameters using Polanga Biodiesel and Diesel Blends by using Taguchi Method. Materials Today: Proceedings, 2018, 5, 28221-28228.	0.9	12

#	Article	IF	CITATIONS
423	Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions. Energies, 2018, 11, 2622.	1.6	18
424	Influence of Polyunsaturated Fatty Acid Alkyl Esters on Biodiesel Fuel Properties: Optimization and Assessment. ChemistrySelect, 2018, 3, 13217-13226.	0.7	2
425	Comparative analyses of biodiesel produced from jatropha and neem seed oil using a gas chromatography–mass spectroscopy technique. Biofuels, 2021, 12, 757-768.	1.4	22
426	Review of Catalytic Transesterification Methods for Biodiesel Production. , 0, , .		24
427	Kinetics of Transesterification Processes for Biodiesel Production. , 0, , .		12
428	Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies, 2018, 11, 3366.	1.6	260
429	Production, properties and engine characteristics of Jatropha biodiesel – a review. International Journal of Ambient Energy, 2021, 42, 1810-1814.	1.4	43
430	Applications of Supercritical Fluids for Biodiesel Production. , 2018, , 261-284.		8
431	Process optimization for biodiesel production from neutralized waste cooking oil and the effect of this biodiesel on engine performance. CTyF - Ciencia, Tecnologia Y Futuro, 2018, 8, 121-127.	0.3	6
432	Densities and Viscosities of Mixtures of Methyl Dodecanoate + Ethyl Octanoate at Pressures up to 15 MPa. Journal of Chemical & Engineering Data, 2018, 63, 4085-4094.	1.0	5
433	Revalorization of Grape Seed Oil for Innovative Non-Food Applications. , 2018, , .		1
434	Low Temperature Oxidation Kinetics of Biodiesel Molecules: Rate Rules for Concerted HO ₂ Elimination from Alkyl Ester Peroxy Radicals. Journal of Physical Chemistry A, 2018, 122, 8259-8273.	1.1	14
435	Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies, 2018, 11, 2132.	1.6	197
436	Investigation of Physico-Chemical Properties of Simaruoba Methyl Ester and Diesel Blends. International Journal of Engineering and Technology(UAE), 2018, 7, 138.	0.2	0
437	Acidic activated carbons as catalysts of biodiesel formation. Diamond and Related Materials, 2018, 87, 124-133.	1.8	45
438	Experimental and kinetic modeling investigation on methyl decanoate pyrolysis at low and atmospheric pressures. Fuel, 2018, 232, 333-340.	3.4	27
439	A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel. Journal of Molecular Liquids, 2018, 266, 673-686.	2.3	90
440	Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Chemical Engineering Research and Design, 2018, 117, 711-721.	2.7	82

#	Article	IF	CITATIONS
441	Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation. Applied Catalysis B: Environmental, 2018, 239, 36-45.		35
442	Biodiesel Production Using Lipases. , 2018, , 203-238.		2
443	Biodiesel, a Green Fuel Obtained Through Enzymatic Catalysis. , 2018, , 191-234.		1
444	Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants. Energies, 2018, 11, 504.	1.6	14
445	Study of a reactor model for enzymatic reactions in continuous mode coupled to an ultrasound bath for esters production. Bioprocess and Biosystems Engineering, 2018, 41, 1589-1597.	1.7	12
446	Theoretical Studies on Isomerization and Decomposition Reactions of 2-Methyl-1-butanol Radicals. Energy & Fuels, 2018, 32, 7652-7659.	2.5	3
447	Integrated Lignocellulosic Biorefinery for Sustainable Bio-Based Economy. Biofuel and Biorefinery Technologies, 2019, , 25-46.	0.1	12
448	Evaluating the predicting capability of response surface methodology on biodiesel production from grapeseed bio-oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-16.	1.2	5
449	Biodiesel Production Using Second-Generation Feedstocks: A Review. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 693-709.	0.4	9
450	Dataset on optimized biodiesel production from seeds of Vitis vinifera using ANN, RSM and ANFIS. Data in Brief, 2019, 25, 104298.	O.5	34
451	The efficacy of multiple-criteria design matrix for biodiesel feedstock selection. Energy Conversion and Management, 2019, 198, 111790.	4.4	44
452	Microwave enhanced catalytic conversion of canola-based methyl ester. , 2019, , 153-166.		12
453	Emerging Technologies for Biofuels Production. , 2019, , 45-76.		3
454	Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management, 2019, 201, 112155.	4.4	246
455	Efficacy of extraction techniques and solvent polarity on lipid recovery from domestic wastewater microalgae. Environmental Nanotechnology, Monitoring and Management, 2019, 12, 100271.	1.7	11
456	Role of Co-Solvent in the Super Critical Esterification process of Bio-Diesel Production through Karanja oil. Journal of Physics: Conference Series, 2019, 1240, 012159.	0.3	1
457	Contribution of Fourier transform mass spectrometry to bio-oil study. , 2019, , 679-733.		7
458	A Review of Early Injection Strategy in Premixed Combustion Engines. Applied Sciences (Switzerland), 2019, 9, 3737.	1.3	29

# 459	ARTICLE Optimization of biodiesel production from stone fruit kernel oil. Energy Procedia, 2019, 160, 268-276.	IF 1.8	Citations
460	Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials, 2019, 12, 350.	1.3	91
461	Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 2019, 216, 117-128.	4.6	164
462	Conversion of Shizochitrium limacinum microalgae to biodiesel by non-catalytic transesterification using various supercritical fluids. Bioresource Technology, 2019, 288, 121538.	4.8	30
463	Appliance of a high pressure semi-batch reactor: supercritical transesterification of soybean oil using methanol. Food Science and Technology, 2019, 39, 754-773.	0.8	5
464	Techno-economic modeling and optimization of catalytic reactive distillation for the esterification reactions in bio-oil upgradation. Chemical Engineering Research and Design, 2019, 148, 86-101.	2.7	11
465	Utilization of microbial oil produced from <i>Pichia kudriavzevii</i> NCIM 3653 using paper mill sludge as an alternative substrate for biodiesel synthesis. Biofuels, 2021, 12, 1309-1316.	1.4	8
466	Optimization of lipid accumulation in an aboriginal green microalga Selenastrum sp. GA66 for biodiesel production. Biomass and Bioenergy, 2019, 126, 1-13.	2.9	21
467	Biodiesel preparation from Phoenix tree seed oil using ethanol as acyl acceptor. Industrial Crops and Products, 2019, 137, 270-275.	2.5	26
468	Valorization of Waste Date Seeds for Green Carbon Catalysts and Biodiesel Synthesis. Sustainable Agriculture Reviews, 2019, , 105-123.	0.6	1
469	Biodiesel, Bioethanol, and Biobutanol Production from Microalgae. , 2019, , 293-321.		17
470	Experimental and Modeling Study on Autoignition of a Biodiesel/ <i>n</i> -Heptane Mixture and Related Surrogate in a Heated Rapid Compression Machine. Energy & Fuels, 2019, 33, 4552-4563.	2.5	5
471	Advances in plant materials, food by-products, and algae conversion into biofuels: use of environmentally friendly technologies. Green Chemistry, 2019, 21, 3213-3231.	4.6	65
472	Influence of fuel injection timing and nozzle opening pressure on a CRDI-assisted diesel engine fueled with biodiesel-diesel-alcohol fuel. , 2019, , 353-390.		9
473	Predictions of oxidation and autoignition of large methyl ester with small molecule fuels. Fuel, 2019, 251, 162-174.	3.4	11
474	Significant parameters and technological advancements in biodiesel production systems. Fuel, 2019, 250, 27-41.	3.4	55
475	Introduction to sustainable and alternative ecofuels. , 2019, , 1-14.		3
476	Biofuel conversion of Chlorococcum sp. and Scenedesmus sp. biomass by one- and two-step transesterification. Biomass Conversion and Biorefinery, 2021, 11, 1301-1309.	2.9	21

# 477	ARTICLE Catalysis in biodiesel production—a review. Clean Energy, 2019, 3, 2-23.	IF 1.5	CITATIONS 330
478	Biodiesel Production Systems: Operation, Process Control and Troubleshooting. Biofuel and Biorefinery Technologies, 2019, , 27-56.	0.1	2
479	A quick method for producing biodiesel from soy sauce residue under supercritical carbon dioxide. Renewable Energy, 2019, 134, 739-744.	4.3	16
480	Fatty Acid Deoxygenation in Supercritical Hexane over Catalysts Synthesized Hydrothermally for Biodiesel Production. Chemical Engineering and Technology, 2019, 42, 780-787.	0.9	11
481	Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization. Journal of Environmental Chemical Engineering, 2019, 7, 102903.	3.3	41
482	Supercritical CO2 extraction and transesterification of the residual oil from industrial palm kernel cake with supercritical methanol. Journal of Supercritical Fluids, 2019, 147, 179-187.	1.6	18
483	Biodiesel Supply Chain Optimization Modeled with Geographical Information System (GIS) and Mixed-Integer Linear Programming (MILP) for the Northern Great Plains Region. Bioenergy Research, 2019, 12, 229-240.	2.2	26
484	Surrogate formulation methodology for biodiesel based on chemical deconstruction in consideration of molecular structure and engine combustion factors. Combustion and Flame, 2019, 199, 152-167.	2.8	24
485	Study on decanol and Calophyllum Inophyllum biodiesel as ternary blends in CI engine. Fuel, 2019, 239, 862-873.	3.4	82
486	An overview on the light alcohol fuels in diesel engines. Fuel, 2019, 236, 890-911.	3.4	204
487	Synthesis of biodiesel from chicken's skin waste by homogeneous transesterification. International Journal of Sustainable Engineering, 2019, 12, 272-280.	1.9	14
488	Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arabian Journal of Chemistry, 2019, 12, 2028-2036.	2.3	24
489	An overview of transesterification methods for producing biodiesel from waste vegetable oils. Biofuels, 2019, 10, 419-437.	1.4	57
490	A comprehensive review of biodiesel production methods from various feedstocks. Biofuels, 2019, 10, 325-333.	1.4	38
491	Influence of injection timing on engine performance, emission characteristics of Mimusops Elangi methyl ester. International Journal of Ambient Energy, 2020, 41, 374-383.	1.4	15
492	Synthesis of cracked Mahua oil using coal ash catalyst for diesel engine application. International Journal of Ambient Energy, 2020, 41, 241-256.	1.4	5
493	Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Conversion and Biorefinery, 2020, 10, 339-349.	2.9	24
494	Optimisation of performance and emission characteristics of CI engine fuelled with Mahua oil methyl ester–diesel blend using response surface methodology. International Journal of Ambient Energy, 2020, 41, 674-685.	1.4	23

#	Article	IF	CITATIONS
495	Enhancement of biodiesel production via sequential esterification/transesterification over solid superacidic and superbasic catalysts. Catalysis Today, 2020, 348, 257-269.	2.2	12
496	Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel, 2020, 259, 116262.	3.4	123
497	Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission. Renewable Energy, 2020, 147, 1836-1844.	4.3	29
498	Zirconia supported nickel catalysts for glycerol steam reforming: Effect of zirconia structure on the catalytic performance. International Journal of Hydrogen Energy, 2020, 45, 4457-4467.	3.8	30
500	Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel, 2020, 264, 116817.	3.4	124
501	Bacterial production of fatty acid and biodiesel: opportunity and challenges. , 2020, , 21-49.		12
502	Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Reports, 2020, 6, 40-54.	2.5	74
503	Biodiesel production from Hiptage benghalensis seed oil. Industrial Crops and Products, 2020, 144, 112027.	2.5	12
504	A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering, 2020, 8, 104523.	3.3	146
505	The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresource Technology Reports, 2020, 12, 100608.	1.5	52
506	The effect of high oleic and linoleic fatty acid composition for quality and economical of biodiesel from crude Calophyllum inophyllum oil (CCIO) with microwave-assisted extraction (MAE), batchwise solvent extraction (BSE), and combination of MAE–BSE methods. Energy Reports, 2020, 6, 3240-3248.	2.5	12
507	Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel. Energies, 2020, 13, 5941.	1.6	19
508	A computational study on the kinetics of pyrolysis of isopropyl propionate as a biodiesel model: DFT and ab initio investigation. Fuel, 2020, 281, 118798.	3.4	18
509	Bio-Oil Characterizations of <i>Spirulina Platensis</i> Residue (SPR) Pyrolysis Products for Renewable Energy Development. Key Engineering Materials, 2020, 849, 47-52.	0.4	2
510	Biodiesel from microalgae. , 2020, , 329-371.		2
511	Heterogeneous and Homogeneous Components in Gas-Phase Pyrolysis of Hydrolytic Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 12891-12901.	3.2	3
512	Basic Characteristics and Application Progress of Supercritical Water. IOP Conference Series: Earth and Environmental Science, 2020, 555, 012036.	0.2	6
513	Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms. Renewable Energy, 2020, 159, 642-651.	4.3	29

#	Article	IF	CITATIONS
514	Preparation and modification of 13X zeolite as a heterogeneous catalyst for esterification of oleic acid. AIP Conference Proceedings, 2020, , .	0.3	6
515	Potential of Chrozophora tinctoria Seed Oil as a Biodiesel Resource. Applied Sciences (Switzerland), 2020, 10, 3473.	1.3	3
516	ESTUDO DA ESTABILIDADE OXIDATIVA DO BIODIESEL A PARTIR DO ÓLEO DE PEQUI APÓS DIFERENTES TEMPOS DE FRITURA. Revista Tecnológica, 2020, 29, 460-474.	0.1	0
517	Shock tube ignition delay time measurements for methyl propanoate and methyl acrylate: Influence of saturation on small methyl ester highâ€ŧemperature reactivity. International Journal of Chemical Kinetics, 2020, 52, 712-722.	1.0	5
518	Use of Central Composite Design and Artificial Neural Network for Predicting the Yield of Biodiesel. Procedia CIRP, 2020, 89, 59-67.	1.0	6
519	Biogasoline production via catalytic cracking process using zeolite and zeolite catalyst modified with metals: a review. IOP Conference Series: Materials Science and Engineering, 2020, 801, 012051.	0.3	24
521	Optimisation of performance and emission parameters of diesel engine using tyre pyrolysis oil. Australian Journal of Mechanical Engineering, 2022, 20, 1172-1184.	1.5	3
522	The performance, emissions, and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2903-2942.	2.0	84
523	Characteristic and Catalytic Performance of Co and Co-Mo Metal Impregnated in Sarulla Natural Zeolite Catalyst for Hydrocracking of MEFA Rubber Seed Oil into Biogasoline Fraction. Catalysts, 2020, 10, 121.	1.6	26
524	A theoretical investigation on Bell-Evans-Polanyi correlations for hydrogen abstraction reactions of large biodiesel molecules by H and OH radicals. Combustion and Flame, 2020, 214, 394-406.	2.8	18
525	Bioresource Utilization and Bioprocess. , 2020, , .		6
526	Waste biorefinery based on waste carbon sources: case study of biodiesel production using carbon based catalysts and mixed feedstocks of nonedible and waste oils. , 2020, , 337-378.		3
527	Bioenergy technologies adoption in Africa: A review of past and current status. Journal of Cleaner Production, 2020, 264, 121683.	4.6	37
528	Green synthesis of amyl levulinate using lipase in the solvent free system: Optimization, mechanism and thermodynamics studies. Catalysis Today, 2021, 375, 120-131.	2.2	18
529	Biodiesel production by transesterification of a mixture of pongamia and neem oils. Biofuels, 2021, 12, 187-195.	1.4	19
530	The rotor-stator type hydrodynamic cavitation reactor approach for enhanced biodiesel fuel production. Fuel, 2021, 283, 118821.	3.4	33
531	A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101. Renewable Energy, 2021, 165, 481-490.	4.3	28
532	Optimization of the Mass Yield in the Biodiesel Production from Chicken Viscera Oil. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 31-41.	0.8	0

#	Article	IF	CITATIONS
533	Application of microwave synthesis in biodiesel production. , 2021, , 623-641.		1
534	A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel, 2021, 285, 119110.	3.4	104
535	Optimization of <i>Jatropha</i> Biodiesel Production by Response Surface Methodology. Green and Sustainable Chemistry, 2021, 11, 23-37.	0.8	9
536	Biofuel: Marine Biotechnology Securing Alternative Sources of Renewable Energy. Environmental and Microbial Biotechnology, 2021, , 161-194.	0.4	2
537	Green, cost effective barium loaded montmorillonite catalyst for biodiesel synthesis from waste cooking oil. Materials Today: Proceedings, 2021, 45, 4544-4549.	0.9	2
538	Advanced and sustainable biodiesel fuels: technologies and applications. , 2021, , 131-161.		0
539	Improving Physio-Chemical Properties of Biodiesel by Using Blending. Lecture Notes in Mechanical Engineering, 2021, , 355-365.	0.3	0
540	Optimization of Biodiesel Production Using Supercritical Solvent by Taguchi's Technique and CI Engine Testing. Lecture Notes in Mechanical Engineering, 2021, , 507-517.	0.3	1
541	Economic evaluation and production process simulation of biodiesel production from waste cooking oil. Current Research in Green and Sustainable Chemistry, 2021, 4, 100091.	2.9	30
542	Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach. Processes, 2021, 9, 130.	1.3	21
543	State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production. Energies, 2021, 14, 1031.	1.6	20
544	KINETIC MODELING STUDIES OF HETEROGENEOUSLY CATALYZED TRANSESTERIFICATION OF NON-EDIBLE OIL. , 2021, 5, .		0
545	Scaling Up Sustainable Biofuels for a Low-Carbon Future. , 0, , .		0
546	A concise review on alternative route of biodiesel production via interesterification of different feedstocks. International Journal of Energy Research, 2021, 45, 12614-12637.	2.2	14
547	Optimization and Characterization of Novel and Non-Edible Seed Oil Sources for Biodiesel Production. , 0, , .		1
548	Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification. Journal of Genetic Engineering and Biotechnology, 2021, 19, 55.	1.5	8
549	Utilization of rice husk silica as solid catalyst in the transesterification process for biodiesel production. IOP Conference Series: Earth and Environmental Science, 2021, 739, 012083.	0.2	0
550	Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review. Energies, 2021, 14, 2565.	1.6	43

#	Article	IF	CITATIONS
551	The influence of n-pentanol blending with gasoline on performance, combustion, and emission behaviors of an SI engine. Engineering Science and Technology, an International Journal, 2021, 24, 1329-1346.	2.0	10
552	Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and performance characteristics of a CI engine. Energy, 2021, 222, 119942.	4.5	58
553	Development of surfactant-free microemulsion hybrid biofuels employing halophytic salicornia oil/ethanol and oxygenated additives. Fuel, 2021, 292, 120249.	3.4	8
554	Supercritical transesterification route for biodiesel production: Effect of parameters on yield and future perspectives. Environmental Progress and Sustainable Energy, 2021, 40, e13685.	1.3	16
555	Polar Aromatic Compounds in Soot from Premixed Flames of Kerosene, Synthetic Paraffinic Kerosene, and Kerosene–Synthetic Biofuels. Energy & Fuels, 2021, 35, 11427-11444.	2.5	2
556	Investigation of the Characteristics of Ternary Fuel Efficiency and Combustion on Dual Fuel Engines. Journal of the Institution of Engineers (India): Series C, 2021, 102, 951.	0.7	0
557	Selection of Indigenous Algal Species for Potential Biodiesel Production. Journal of Pure and Applied Microbiology, 2021, 15, 851-863.	0.3	1
558	Improving the CFPP property of biodiesel via composition design: An intelligent raw material selection strategy based on different machine learning algorithms. Renewable Energy, 2021, 170, 354-363.	4.3	13
559	Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 2021, 98, 60-81.	2.9	127
560	Fish oil mixed to castor oil for biodiesel production: antioxidant effects and renewable energy generation. International Journal of Energy and Environmental Engineering, 2022, 13, 57-65.	1.3	2
561	Developing a Novel Method for Estimating the Speed of Sound in Biodiesel Known as Grey Wolf Optimizer Support Vector Machine Algorithm. BioMed Research International, 2021, 2021, 1-8.	0.9	3
562	Methyl Esterification of Oleic Acid in Supercritical Methanol with Methyl Formate. Journal of the Japan Petroleum Institute, 2021, 64, 188-196.	0.4	1
563	Establishing a quantification process for nexus repercussions to mitigate environmental impacts in a water-energy interdependency network. Resources, Conservation and Recycling, 2021, 171, 105628.	5.3	4
564	Performance and optimization studies of oil extraction from Nannochloropsis spp. and Scenedesmus obliquus. Journal of Cleaner Production, 2021, 311, 127295.	4.6	7
565	Biodiesel production from sour cherry kernel oil as novel feedstock using potassium hydroxide catalyst: Optimization using response surface methodology. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102089.	1.5	20
566	Design and economic analysis of biodiesel production process of simultaneous supercritical transesterification and partial hydrogenation using soybean oil with Pd/Al2O3 catalyst. Chemical Engineering Research and Design, 2021, 172, 264-279.	2.7	9
567	Characterization of Heavy Products from Lignocellulosic Biomass Pyrolysis by Chromatography and Fourier Transform Mass Spectrometry: A Review. Energy & Fuels, 2021, 35, 17979-18007.	2.5	22
568	Coupling Nutrient Removal and Biodiesel Production by the Chlorophyte Asterarcys quadricellulare Grown in Municipal Wastewater. Bioenergy Research, 2022, 15, 193-201.	2.2	1

#	Article	IF	CITATIONS
569	Ethers and esters as alternative fuels for internal combustion engine: A review. International Journal of Engine Research, 2023, 24, 178-216.	1.4	7
570	Comprehensive lipid profiling of Microchloropsis gaditana by liquid chromatography - (tandem) mass spectrometry: Bead milling and extraction solvent effects. Algal Research, 2021, 58, 102388.	2.4	4
571	State of the art of vegetable oil transformation into biofuels using catalytic cracking technology: Recent trends and future perspectives. Process Biochemistry, 2021, 109, 148-168.	1.8	46
572	Waste To Energy Feedstock Sources for the Production of Biodiesel as Fuel Energy in Diesel Engine – A Review. Advances in Science, Technology and Engineering Systems, 2021, 6, 409-446.	0.4	2
573	Investigation of physical and chemical properties of tobacco seed oil fatty acid methyl ester for biodiesel production. Materials Today: Proceedings, 2021, 46, 7670-7675.	0.9	5
574	Synthesis and Characterization of Waste Eggshell-Based Montmorillonite Clay Catalyst for Biodiesel Production from Waste Cooking Oil. E3S Web of Conferences, 2021, 287, 02006.	0.2	0
575	Noncatalytic Biodiesel Synthesis under Supercritical Conditions. Processes, 2021, 9, 138.	1.3	13
576	The Economics of Current and Future Biofuels. , 2011, , 37-69.		13
577	Combustion of Jatropha curcas Oil, Methyl Esters and Blends with Diesel or Ethanol in a CI Engine. , 2012, , 557-569.		1
578	Biodiesel—A Review on Recent Advancements in Production. , 2020, , 117-129.		4
578 579	Biodiesel—A Review on Recent Advancements in Production. , 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. , 2020, , 197-219.		4
578 579 580	Biodieselâ€"A Review on Recent Advancements in Production. , 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. , 2020, , 197-219. Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy, 2020, 206, 118199.	4.5	4 2 37
578 579 580 581	Biodieselâ€"A Review on Recent Advancements in Production. , 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. , 2020, , 197-219. Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy, 2020, 206, 118199. Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester. Fuel, 2020, 271, 117634.	4.5 3.4	4 2 37 72
578 579 580 581 584	Biodieselâ€"A Review on Recent Advancements in Production., 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management., 2020, , 197-219. Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy, 2020, 206, 118199. Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester. Fuel, 2020, 271, 117634. Potential, Cultivation and Quality of Some Crambe Sp. in Southern Turkey. Cercetari Agronomice in Moldova, 2017, 50, 89-100.	4.5 3.4 0.3	4 2 37 72 2
578 579 580 581 584 585	Biodieselâ€"A Review on Recent Advancements in Production. , 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. , 2020, , 197-219. Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy, 2020, 206, 118199. Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester. Fuel, 2020, 271, 117634. Potential, Cultivation and Quality of Some Crambe Sp. in Southern Turkey. Cercetari Agronomice in Moldova, 2017, 50, 89-100. Prospects for Biodiesel as a Byproduct of Wood Pulping - A Review. BioResources, 2006, 1, 150-171.	4.5 3.4 0.3 0.5	4 2 37 72 2 38
578 579 580 581 584 585	Biodieselâ@"A Review on Recent Advancements in Production. , 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. , 2020, , 197-219. Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy, 2020, 206, 118199. Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester. Fuel, 2020, 271, 117634. Potential, Cultivation and Quality of Some Crambe Sp. in Southern Turkey. Cercetari Agronomice in Moldova, 2017, 50, 89-100. Prospects for Biodiesel as a Byproduct of Wood Pulping - A Review. BioResources, 2006, 1, 150-171. Tests of differential diesel fuels in engine testing room. Applied Studies in Agribusiness and Commerce, 2014, 8, 59-65.	4.5 3.4 0.3 0.5 0.1	4 2 37 72 2 38 2
 578 579 580 581 584 585 586 587 	Biodieselà€"A Review on Recent Advancements in Production., 2020, , 117-129. Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management., 2020, , 197-219. Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions. Energy, 2020, 206, 118199. Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester. Fuel, 2020, 271, 117634. Potential, Cultivation and Quality of Some Crambe Sp. in Southern Turkey. Cercetari Agronomice in Moldova, 2017, 50, 89-100. Prospects for Biodiesel as a Byproduct of Wood Pulping - A Review. BioResources, 2006, 1, 150-171. Tests of differential diesel fuels in engine testing room. Applied Studies in Agribusiness and Commerce, 2014, 8, 59-65. Calculation and Optimizing of Brake Thermal Efficiency of Diesel Engines Based on Theoretical Diesel Cycle Parameters. International Journal of Engineering Technologies UET, 2016, 2, 100-104.	4.5 3.4 0.3 0.5 0.1	4 2 37 72 2 38 2 2 1

щ		15	CITATIONS
#	ARTICLE	IF	CHATIONS
589	Research in Applied Science and Engineering Technology, 2017, V, 2971-2976.	0.1	6
590	Comparative study of calorific value of rapeseed, soybean, jatropha curcas and crambe biodiesel. Renewable Energy and Power Quality Journal, 0, , 679-682.	0.2	39
591	The Potential of Some Non-Conventional Vegetable Oils in Biodiesel Applications. Journal of Advances in Chemistry, 2015, 11, 3919-3929.	0.1	1
592	Measurement and Prediction of Density and Viscosity of Different Diesel-Vegetable Oil Binary Blends. Environmental and Climate Technologies, 2019, 23, 214-228.	0.5	21
593	Optimization of Biodiesel Production from Sunflower Oil Using Response Surface Methodology. Journal of Chemical Engineering & Process Technology, 2012, 03, .	0.1	29
594	Influence of Jatropha Fruit Maturity on Seed Oil Yield, Composition and Heat of Combustion of Derived Biodiesel. Energy and Power Engineering, 2018, 10, 77-86.	0.5	7
595	Supercritical Synthesis of Ethyl Esters via Transesterification from Waste Cooking Oil Using a Co-Solvent. Journal of Environmental Protection, 2015, 06, 986-994.	0.3	2
596	Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026. Algae, 2013, 28, 93-99.	0.9	10
597	Effect of kinematic viscosity variation with blended-oil biodiesel on engine performance and exhaust emission in a power tiller engine. Environmental Engineering Research, 2020, 25, 946-959.	1.5	4
598	Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock. Journal of Life Science, 2016, 26, 460-467.	0.2	7
599	Production of Biodiesel from Marine and Freshwater Microalgae: A Review. Advances in Research, 2015, 3, 107-155.	0.3	10
600	Effects of Transesterification Variables on the Characteristics of the Methyl Esters Obtained from Four Virgin Tropical Seed Oils in Nigeria. International Research Journal of Pure and Applied Chemistry, 2012, 2, 230-246.	0.2	3
601	Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review. Bulletin of Chemical Reaction Engineering and Catalysis, 2016, 11, 406-430.	0.5	38
602	Acid and Base Catalysed Transesterification of Mango (Mangifera Indica) Seed Oil to Biodiesel IOSR Journal of Applied Chemistry, 2012, 2, 18-22.	0.2	8
603	Metal Oxides as Soluble Nano Catalyst on Biodiesel: A Review. Journal of Applied Agricultural Science and Technology, 2021, 5, 95-105.	0.0	0
604	Experimental Investigation of Feasibility of Using Biodiesel Produced from Nahar, Castor, and Rice Bran Seeds in CI Engine. Lecture Notes in Mechanical Engineering, 2022, , 339-349.	0.3	1
605	Synthesis of biodiesel from waste palm fatty acid distillate (PFAD) and dimethyl carbonate (DMC) via Taguchi optimisation method. Biomass and Bioenergy, 2021, 154, 106262.	2.9	8
609	Production of biodiesel and catalysts for transesterification: A review. QuÃmica Hoy Chemistry Sciences \$b, 2013, 3, 6.	0.1	0

ARTICLE IF CITATIONS The Mixing Effect of Methanol and Ethanol in Lard and Soybean Oil Based Biodiesel Production. 610 0.2 0 Applied Chemistry for Engineering, 2014, 25, 515-519. Analysis on Components of Fatty Acids from New Jatropha Cultivars Seed Oils and Their Potential of Preparing Biodiesel. Botanical Résearch, 2015, 04, 16-24. La sostenibilidad en el diseño de cadenas de suministro de biocombustibles. Revista IngenierÃas 613 0.1 0 Universidad De MedellÃn, 2015, 14, 57-72. PREDIÇÃ∱O DAS PROPRIEDADES FÃSICAS E TERMODINÃ,MICAS DO ÓLEO DA POLPA DA MACAÃSBA E BIODIESEL 614 POR MÉTODO DE CONTRIBUIÇÃ∱O DE GRUPOS., 0, ,. INVESTIGAÇĂſO DA PRODUÇĂſO DE BIODIESEL A PARTIR DE Ă"LEO DE SOJA DEGOMADO, UTILIZANDO ETANOL 615 0 EM CONDIÇÕES SUPERCRÃTICAS., 0,,. PEMBUATAN BIODIESEL DARI RBDPO DENGAN KATALIS CANGKANG KEPAH. Jurnal Teknik Kimia USU, 2015, 4, 0.2 20-26. Dizel, Dizel-Biyodizel-Alkol Yakä±t Karä±ÅŸÄ±mlı Sä±kıÅŸtä±rma Oranä± DeäŸiÅŸen Bir Dizel Motorun Performans ve Emisyon Karakteristiklerinin Değerlendirilmesi. ćukurova Üniversitesi Mühendislik-Mimarlık Fakültesi 617 0.1 1 Dergisi, 2016, 31, 263-272. Theoretical and Experimental Study of Reaction of Transesterification of Vegetable Oils in an Alcohol Environment in the SbCF and SCF Conditions with the Ultrasonic Emulsification of Reaction Mixture and the Use of Heterogeneous Catalysts. International Journal of Analytical Mass Spectrometry and Chromatography. 2017. 05. 40-55. 619 Catalytic Conversion of Microalgal Lipids to Biodiesel: Overview and Recent Advances., 2017, , 315-329. 1 Manufacturing of Biodiesel from Mahua (Madhuca Indica) Oil. Springer Proceedings in Energy, 2017, 0.2 261-269. 10 Bio Fuel. Green Chemistry and Chemical Engineering, 2017, , 333-372. 621 0.0 1 Non-Conventional Feedstock and Technologies for Biodiesel Production. Advances in Chemical and 0.2 Materials Engineering Book Series, 2018, , 96-118. Evaluation of the reaction conditions in the transesterification of canola oil for biodiesel 623 0.1 2 production. Engevista, 2018, 20, 509. An Experimental Study of Performance and Emission Characteristics of a Diesel Engine Fueled with Palm Kernel Methyl Ester with Ethanol Additive: A Fuzzy-Based Optimization Approach. Lecture Notes 0.3 in Mechanical Engineering, 2020, , 15-28. ADVANCES IN BIODIESEL SYNTHESIS: THE ROLE OF VARIOUS CATALYSTS. Open Journal of Engineering 626 0.0 1 Science, 2020, 1, 53-71. Cattail (Typha angustifolia) flower-derived porous carbons as support of electroplated Ni and Cu catalysts for hydrogenation of methyl levulinate to î³-valerolactone. Biomass Conversion and Biorefinery, 2023, 13, 12631-12641. 628 Biodiesel Feedstocks. Green Energy and Technology, 2020, , 29-43. 0.4 0 Microbial Factories for Biofuel Production: Current Trends and Future Prospects. Environmental and 629 0.4 Microbial Biotechnology, 2021, , 71-97.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
630	Microbial biodiesel: a comprehensive study toward sustainable biofuel production. , 20.	22, , 353-375.		1
631	Assessment of farm-level biodiesel unit—a potential alternative for sustainable future.	. , 2022, , 377-396.		4
632	Biocatalysis for Cellulosic Alcohol and Biodiesel Preparation: Roles of (co-)Solvents. , 20)20, , 213-213.		0
633	Non-Edible Oil Biodiesel Production via Microwave Irradiation Technologies Using Waste-Heterogeneous Catalyst Derived From Natural Calcium Oxide. Advances in Envir Engineering and Green Technologies Book Series, 2020, , 92-111.	onmental	0.3	1
635	Advancements in Diatom Algae Based Biofuels. Clean Energy Production Technologies,	2021, , 127-148.	0.3	0
636	Various methods of biodiesel production and types of catalysts. , 2022, , 111-132.			4
637	A critical review of recent advancements in continuous flow reactors and prominent int microreactors for biodiesel production. Renewable and Sustainable Energy Reviews, 20	egrated 22, 154, 111869.	8.2	27
638	Methane-assisted waste cooking oil conversion for renewable fuel production. Fuel, 20.	22, 311, 122613.	3.4	10
639	Mixed Aqueous Surfactants Solution for Rapid Oil Extraction from Palm Kernel Seed. Ni of Pure Applied Sciences, 0, , 4050-4057.	gerian Journal	0.0	0
640	Fabrication of novel microreactors in-house and their performance analysis via continue production of biodiesel. Chemical Engineering and Processing: Process Intensification, 2 108792.	bus 2022, 172,	1.8	11
641	Development of a reduced chemical kinetic mechanism for biodiesel/natural gas mixtur 312, 122920.	e. Fuel, 2022,	3.4	6
644	Biological carbon dioxide sequestration by microalgae for biofuel and biomaterials prod 2022, , 137-153.	uction. ,		3
645	Recent Progress on the Implementation of Renewable Biodiesel Fuel for Automotive an Raw Materials Perspective. Advances in Materials Science and Engineering, 2022, 2022	d Power Plants: ., 1-19.	1.0	6
646	Comparative Thermodynamic Analysis of Simple Gas Turbine Fueled with Renewable Fu in Mechanical Engineering, 2022, , 299-310.	el. Lecture Notes	0.3	1
647	Transesterification methods. , 2022, , 117-151.			1
648	Biodiesel and its properties. , 2022, , 39-79.			5
649	A seed of Albizzia julibrissin wild plant as an efficient source for biodiesel production. B Bioenergy, 2022, 158, 106381.	iomass and	2.9	7
650	Preparation, characterization and evaluation of x-MoO3/Al-SBA-15 catalysts for biodies Materials for Renewable and Sustainable Energy, 2022, 11, 17-31.	el production.	1.5	10

#	Article	IF	CITATIONS
652	Whole cell enzyme catalyst production using waste substrate for application in production of biodiesel. , 2022, , 163-191.		0
653	Oxidation stability and cold flow properties of biodiesel synthesized from castor oil: Influence of alkaline catalysts type and purification techniques. Materials Today: Proceedings, 2022, 57, 748-752.	0.9	1
654	Non-catalytic and catalytic pyrolysis of citrus waste (orange peel). Indian Chemical Engineer, 2022, 64, 433-460.	0.9	1
655	Characteristics Analysis of Performance as Well as Emission of Elaeocarpus Ganitrus Additive Based Pumpkin and Juliflora Mixed Biodiesel Blend in CI Engine. , 0, , .		0
656	Assessment of density and kinematic viscosity of two methyl ester blends at elevated temperatures. Materials Today: Proceedings, 2022, , .	0.9	1
657	Integrated bioconversion process for biodiesel production utilizing waste from the palm oil industry. Journal of Environmental Chemical Engineering, 2022, 10, 107550.	3.3	5
658	Influence of 1-pentanol as the renewable fuel blended with jatropha oil on the reactivity controlled compression ignition engine characteristics and trade-off study with variable fuel injection pressure. Sustainable Energy Technologies and Assessments, 2022, 52, 102215.	1.7	7
659	Ab Initio Kinetics of Initial Thermal Pyrolysis of Isopropyl Propionate: A Revisited Study. ACS Omega, 2022, 7, 661-668.	1.6	0
660	A systematic study of the influence of 1-pentanol as the renewable fuel blended with diesel on the reactivity controlled compression ignition engine characteristics and Trade-off study with variable fuel injection pressure. Fuel, 2022, 322, 124166.	3.4	5
663	A comparative study of biodiesel production by microwave assisted and conventional transesterification methods. Journal of Mines, Metals and Fuels, 2022, 69, 276.	0.0	0
664	Production of biodiesel: From the oil to the engine. , 2022, , 109-156.		0
665	Production of Biodiesel from Mixed Castor Seed and Microalgae Oils: Optimization of the Production and Fuel Quality Assessment. International Journal of Chemical Engineering, 2022, 2022, 1-14.	1.4	5
666	Wild Olive Oil as a Novel and Sustainable Feedstock for Biodiesel Production: Overviewed Various Feedstock, Methodologies and Reaction Mechanisms of Different Catalysts. Catalysis Surveys From Asia, 0, , .	1.0	0
668	Technoeconomic analysis of biofuel production from marine algae. , 2022, , 627-652.		0
669	Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials – A review. Fuel, 2022, 328, 125254.	3.4	69
670	Chemical kinetics of cyclic ethers in combustion. Progress in Energy and Combustion Science, 2022, 92, 101019.	15.8	15
671	Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends. Renewable Energy, 2022, 198, 549-567.	4.3	11
672	Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. Fuel, 2022, 329, 125408.	3.4	14

		CITATION REPORT		
#	Article		IF	CITATIONS
673	Studied on the mechanism of acid-base synergistic pyrolysis of waste cooking oils to superior biofuel. Biomass and Bioenergy, 2022, 165, 106591.	quality	2.9	2
674	Electrostatic field and nano-adsorbent refining of fatty acid methyl esters. Journal of Cleaner Production, 2022, 373, 133679.		4.6	1
675	Omics in Biofuel Production: A Sustainable Approach. , 2022, , 515-541.			2
676	Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	egzoz emisyonlarÄ:	±na etkisir 0.3	າເກ
677	Efficacy of the Immobilized Kocuria flava Lipase on Fe3O4/Cellulose Nanocomposite for Biodic Production from Cooking Oil Wastes. Catalysts, 2022, 12, 977.	isel	1.6	9
678	A review on catalysts of biodiesel (methyl esters) production. Catalysis Reviews - Science and Engineering, 0, , 1-53.		5.7	18
679	A Critical Review of Croton as a Multipurpose Nonedible Tree Plant for Biodiesel Production to Feedstock Diversification for Sustainable Energy. Advances in Agriculture, 2022, 2022, 1-20.	wards	0.3	1
680	Experimental Study and Kinetic Modeling for the Laminar Flame Speed of Methyl Octanoate a <i>n</i> -Nonane. Combustion Science and Technology, 0, , 1-23.	nd	1.2	0
681	Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: A review. Energy Conversion and Management, 2022, 270, 116292.		4.4	38
682	Food Wastes for Biofuel Production. Clean Energy Production Technologies, 2022, , 309-333.		0.3	0
683	Enhancement of Lipid and Biomass Production in Microalgae Scenedesmus abundans by Micr Irradiation. International Journal of Life Science and Pharma Research, 0, , L130-L136.	owave	0.1	0
684	Sustainable biodiesel supply chain model based on waste animal fat with subsidy and advertis Journal of Cleaner Production, 2023, 382, 134806.	ement.	4.6	22
685	Evaluating the effect of temperature on biodiesel production from castor oil. Ingenieria E Investigacion, 2010, 30, 52-61.		0.2	4
686	Binary blending of different types of biofuels with diesel, and study of engine performance, combustion and exhaust emission characteristics. Materials Today: Proceedings, 2023, 78, 37	8-389.	0.9	0
687	Study on cool flame radical index and oxygen concentration dependence of oxygenated fuels. Combustion and Flame, 2023, 257, 112493.		2.8	3
688	Production and characterization of hierarchical zeolite Y catalyst for biodiesel production usin waste cooking oil as a feedstock. Biofuels, 2023, 14, 365-372.	g	1.4	1
689	State-of-the-art catalysts for clean fuel (methyl esters) production—a comprehensive review Energy, 2023, 5, 014005.	. JPhys	2.3	7
690	Jatropha's Rapid Developments and Future Opportunities as a Renewable Source of Biofu Energies, 2023, 16, 828.	el—A Review.	1.6	8

#	Article	IF	CITATIONS
691	Review of density and viscosity data of pure fatty acid methyl ester, ethyl ester and butyl ester. Fuel, 2023, 339, 127466.	3.4	9
692	Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 2023, 338, 127220.	3.4	23
693	A review of bio-kerosene and biodiesel existed production technologies. AIP Conference Proceedings, 2023, , .	0.3	0
694	Biological Methods for Diesel Formation. , 2023, , 71-94.		0
695	Nanocatalyst Mediated Biodiesel Production from Waste Lipid as Feedstock: A Review. , 0, , .		0
715	Lipid Biomass to Biofuel. Springer Water, 2023, , 343-372.	0.2	0
718	ESTUDO DO DESEMPENHO TRIBOLOGICO DE BIODIESEL. , 0, , .		0
722	Production of biodiesel feedstock from trace element-contaminated lands in Ukraine. , 2024, , 59-80.		0
723	Ethanol and renewable diesel lead biofuels growth in India. AIP Conference Proceedings, 2024, , .	0.3	0
725	Biofuel Production from Agricultural Residue: An Effective and Sustainable Approach for Management of Agro-waste. Clean Energy Production Technologies, 2024, , 131-145.	0.3	0