The repair of brain lesion by implantation of hyaluronic laminin

Journal of Neuroscience Methods 148, 60-70 DOI: 10.1016/j.jneumeth.2005.04.016

Citation Report

#	Article	IF	CITATIONS
1	Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomedical Materials (Bristol), 2006, 1, R38-R44.	1.7	26
3	Implantation of a New Porous Gelatin–Siloxane Hybrid into a Brain Lesion as a Potential Scaffold for Tissue Regeneration. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1263-1273.	2.4	69
4	Novel hydrogel obtained by chitosan and dextrin-VA co-polymerization. Biotechnology Letters, 2006, 28, 1279-1284.	1.1	10
5	Intelligent Biomatrices and Engineered Tissue Constructs: In-Vitro Models for Drug Discovery and Toxicity Testing. , 2006, , 1-51.		4
6	Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. Journal of Neurosurgery: Spine, 2007, 6, 133-140.	0.9	91
7	Effects of collagen 1, fibronectin, laminin and hyaluronic acid concentration in multi-component gels on neurite extension. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 983-997.	1.9	79
8	An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials (Bristol), 2007, 2, 233-240.	1.7	59
9	Fibronectin and Laminin Increase in the Mouse Brain after Controlled Cortical Impact Injury. Journal of Neurotrauma, 2007, 24, 226-230.	1.7	52
10	Strategies for Regeneration and Repair in the Injured Central Nervous System. Frontiers in Neuroengineering Series, 2007, , 221-244.	0.4	24
11	Three-dimensional Gelatin and Gelatin/Hyaluronan Hydrogel Structures for Traumatic Brain Injury. Journal of Bioactive and Compatible Polymers, 2007, 22, 19-29.	0.8	117
12	The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sciences, 2007, 80, 1921-1943.	2.0	511
13	Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane–tetraethoxysilane. Brain Research, 2007, 1132, 29-35.	1.1	33
14	Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 2007, 59, 325-338.	6.6	325
15	Novel critical point drying (CPD) based preparation and transmission electron microscopy (TEM) imaging of protein specific molecularly imprinted polymers (HydroMIPs). Journal of Materials Science, 2007, 42, 9465-9468.	1.7	18
16	The effect of vestibular nerve section on the expression of the hyaluronan in the frog, Rana esculenta. Brain Structure and Function, 2007, 212, 321-334.	1.2	7
17	The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials, 2008, 29, 1880-1891.	5.7	46
18	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
19	Biomaterials for the central nervous system. Journal of the Royal Society Interface, 2008, 5, 957-975.	1.5	205

	Сітатіо	n Report	
#	Article	IF	CITATIONS
20	Engineering the Microcirculation. Tissue Engineering - Part B: Reviews, 2008, 14, 87-103.	2.5	136
21	Peptide modification of polysaccharide scaffolds for targeted cell signaling. , 2008, , 260-287.		1
22	Cell Proliferation and Tissue Compatibility of Organic-Inorganic Hybrid Materials. Key Engineering Materials, 0, 377, 167-180.	0.4	5
23	Functionalization of Polymer Surface for Nerve Repair. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 231-244.	0.1	4
24	Gelatin-Siloxane Hybrid Scaffolds with Vascular Endothelial Growth Factor Induces Brain Tissue Regeneration. Current Neurovascular Research, 2008, 5, 112-117.	0.4	16
25	Hyaluronic Acid Hydrogel Modified with Nogo-66 Receptor Antibody and Poly(L-Lysine) Enhancement of Adherence and Survival of Primary Hippocampal Neurons. Journal of Bioactive and Compatible Polymers, 2009, 24, 205-219.	0.8	23
26	Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. Journal of Neuroscience Research, 2009, 87, 3207-3220.	1.3	97
27	Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials, 2009, 30, 2881-2898.	5.7	128
28	Therapeutic Strategy for Ischemic Stroke. Neurochemical Research, 2009, 34, 707-710.	1.6	12
29	Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood–spinal cord barrier. European Journal of Neuroscience, 2009, 29, 132-145.	1.2	98
30	Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials, 2009, 30, 4581-4589.	5.7	60
31	Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 2009, 44, 372-378.	3.6	55
32	Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 2009, 10, 682-692.	4.9	378
33	Adhesion molecule-modified biomaterials for neural tissue engineering. Frontiers in Neuroengineering, 2009, 2, 6.	4.8	88
34	Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomedical Materials (Bristol), 2009, 4, 045004.	1.7	106
35	Multidisciplinary Perspectives for Alzheimer's and Parkinson's Diseases: Hydrogels for Protein Delivery and Cell-Based Drug Delivery as Therapeutic Strategies. International Journal of Artificial Organs, 2009, 32, 836-850.	0.7	48
36	Gene and Stem Cell Therapy in Ischemic Stroke. Cell Transplantation, 2009, 18, 999-1002.	1.2	32
37	Interactions between neural stem cells and biomaterials combined with biomolecules. Frontiers of Materials Science in China, 2010, 4, 325-331.	0.5	1

#	Article	IF	CITATIONS
38	Hyaluronic acid hydrogel modified with nogoâ€66 receptor antibody and polyâ€ <scp>L</scp> â€lysine to promote axon regrowth after spinal cord injury. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 110-117.	1.6	92
39	Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 2010, 31, 1148-1157.	5.7	234
40	Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials, 2010, 31, 2105-2120.	5.7	159
41	Biomimetic materials in tissue engineering. Materials Today, 2010, 13, 14-22.	8.3	251
42	Transplantation of Human Neural Precursor Cells in Matrigel Scaffolding Improves Outcome from Focal Cerebral Ischemia after Delayed Postischemic Treatment in Rats. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 534-544.	2.4	173
43	Angiogenesis, the Neurovascular Niche and Neuronal Reintegration After Injury. , 2010, , 145-167.		0
44	Design of biomaterials to enhance stem cell survival when transplanted into the damaged central nervous system. Soft Matter, 2010, 6, 4988.	1.2	91
45	Hydrogel Matrix to Support Stem Cell Survival After Brain Transplantation in Stroke. Neurorehabilitation and Neural Repair, 2010, 24, 636-644.	1.4	199
46	High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. Journal of Neural Engineering, 2011, 8, 046033.	1.8	174
47	Materials for central nervous system regeneration: bioactive cues. Journal of Materials Chemistry, 2011, 21, 7033.	6.7	42
48	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492.		1
49	Bioengineered Scaffolds for Spinal Cord Repair. Tissue Engineering - Part B: Reviews, 2011, 17, 177-194.	2.5	75
50	A Mini Review on Interactions Between Neural Stem Cells and Biomaterials. Recent Patents on Regenerative Medicine, 2011, 1, 19-29.	0.4	0
51	Neural stem cell niches: Roles for the hyaluronan-based extracellular matrix. Frontiers in Bioscience - Scholar, 2011, S3, 1165.	0.8	135
52	Advances in the Combined Use of Adult Cell Therapy and Scaffolds for Brain Tissue Engineering. , 0, , .		2
53	Vascular Protection and Restorative Therapy in Ischemic Stroke. Cell Transplantation, 2011, 20, 95-97.	1.2	32
54	Combination of Hyaluronic Acid Hydrogel Scaffold and PLGA Microspheres for Supporting Survival of Neural Stem Cells. Pharmaceutical Research, 2011, 28, 1406-1414.	1.7	112
55	Designing clinically useful substitutes for the extracellular matrix. , 2011, , 3-23.		1

		CITATION REPORT		
#	Article		IF	CITATIONS
56	Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 2011,	91, 221-264.	13.1	848
57	Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord. Functional Biomaterials, 2012, 3, 839-863.	Journal of	1.8	61
58	The role of hyaluronic acid in biomineralization. Frontiers of Materials Science, 2012, 6	o, 283-296.	1.1	15
59	Injectable hydrogels for central nervous system therapy. Biomedical Materials (Bristol) 024101.	, 2012, 7,	1.7	198
60	Characterization of a Bilateral Penetrating Brain Injury in Rats and Evaluation of a Colla Biomaterial for Potential Treatment. Journal of Neurotrauma, 2012, 29, 2086-2102.	agen	1.7	11
61	Improvement of Neural Stem Cell Survival in Collagen Hydrogels by Incorporating Lam Cell Adhesive Polypeptides. Bioconjugate Chemistry, 2012, 23, 212-221.	inin-Derived	1.8	38
62	Engineering therapies in the CNS: What works and what can be translated. Neuroscier 519, 147-154.	nce Letters, 2012,	1.0	13
63	Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus, 2	012, 2, 278-291.	1.5	114
64	Stem cell therapy in stroke: Where are we now?. Sang Thrombose Vaisseaux, 2012, 24	ł, 119-124.	0.1	0
65	Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Resea 2012, 100A, 3276-3286.	arch - Part A,	2.1	40
66	Functional improvement and neurogenesis after collagen-GAG matrix implantation int trauma. Biomaterials, 2012, 33, 2067-2075.	o surgical brain	5.7	50
67	Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation injury. Biomaterials, 2012, 33, 2681-2692.	after stroke	5.7	131
68	The Influence of Silkworm Species on Cellular Interactions with Novel PVA/Silk Sericin Macromolecular Bioscience, 2012, 12, 322-332.	Hydrogels.	2.1	54
69	PI3 Kinase regulation of neural regeneration and muscle hypertrophy after spinal cord Molecular Biology Reports, 2012, 39, 3541-3547.	injury.	1.0	32
70	Endothelialization approaches for viable engineered tissues. Angiogenesis, 2013, 16, 1	-14.	3.7	105
71	Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering. Fror Materials Science, 2013, 7, 269-284.	tiers of	1.1	45
72	Nanomaterials design and tests for neural tissue engineering. Chemical Society Reviev 225-262.	vs, 2013, 42,	18.7	160
73	Directing neural stem cell fate with biomaterial parameters for injured brain regenerat in Natural Science: Materials International, 2013, 23, 103-112.	ion. Progress	1.8	36

	Cı	tation Report	
#	Article	IF	Citations
74	Natural Polymers in Tissue Engineering Applications. , 2013, , 385-425.		19
75	Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomedical Materials (Bristol), 2013, 8, 022001.	1.7	87
76	Therapeutic applications of bone marrow-derived stem cells in ischemic stroke. Neurological Research, 2013, 35, 470-478.	0.6	28
77	Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease. Brain, 2013, 136, 209-222.	3.7	76
78	Sugar glues for broken neurons. Biomolecular Concepts, 2013, 4, 233-257.	1.0	22
80	Overview on Biocompatibilities of Implantable Biomaterials. , 0, , .		27
81	Mesenchymal Cells in the Treatment of Spinal Cord Injury: Current & Future Perspectives. Curren Stem Cell Research and Therapy, 2013, 8, 25-38.	t 0.6	67
82	Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in Neuroengineering, 2014, 7, 7.	4.8	39
83	Materials for Central Nervous System Tissue Engineering. , 0, , .		5
84	Spinal Cord Injury and Regeneration: A Critical Evaluation of Current and Future Therapeutic Strategies. , 2014, , 593-638.		1
85	Recovery of Peripheral Nerve with Massive Loss Defect by Tissue Engineered Guiding Regenerative Ge BioMed Research International, 2014, 2014, 1-7.	l. 0.9	19
86	Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regeneration Research, 2014, 9, 1573.	1.6	25
87	Conductive hydrogels with tailored bioactivity for implantable electrode coatings. Acta Biomaterialia, 2014, 10, 1216-1226.	4.1	102
88	Vascular Mechanisms in CNS Trauma. , 2014, , .		4
89	Combination of growth factor treatment and scaffold deposition following traumatic brain injury has only a temporary effect on regeneration. Brain Research, 2014, 1588, 37-46.	1.1	7
90	Biologic scaffold for CNS repair. Regenerative Medicine, 2014, 9, 367-383.	0.8	44
91	Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomaterials Science, 2014, 2, 703-709.	2.6	88
92	Delivery of iPSâ€NPCs to the Stroke Cavity within a Hyaluronic Acid Matrix Promotes the Differentiati of Transplanted Cells. Advanced Functional Materials, 2014, 24, 7053-7062.	on 7.8	147

#	Article	IF	CITATIONS
93	Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. Journal of Controlled Release, 2014, 190, 219-227.	4.8	94
94	The Experimental Therapy on Brain Ischemia by Improvement of Local Angiogenesis with Tissue Engineering in the Mouse. Cell Transplantation, 2014, 23, 83-95.	1.2	60
95	Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience, 2015, 9, 13.	1.8	80
96	Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. International Journal of Energy Production and Management, 2015, 2, 31-45.	1.9	133
97	Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 137-150.	1.3	10
98	Circumventing the blood–brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain. Journal of Controlled Release, 2015, 215, 1-11.	4.8	65
99	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101.	1.0	6
102	Bioâ€Interface of Conducting Polymerâ€Based Materials for Neuroregeneration. Advanced Materials Interfaces, 2015, 2, 1500059.	1.9	33
103	Biopolymers in Medical Implants. , 2015, , 311-348.		6
104	Hyaluronic acid and neural stem cells: implications for biomaterial design. Journal of Materials Chemistry B, 2015, 3, 7850-7866.	2.9	50
105	Enhancement of Neuroblast Migration into the Injured Cerebral Cortex Using Laminin-Containing Porous Sponge. Tissue Engineering - Part A, 2015, 21, 193-201.	1.6	33
106	Neural Tissue Engineering. , 2016, , 29-42.		4
107	Three-Dimensional Nanofiber Hybrid Scaffold Directs and Enhances Axonal Regeneration after Spinal Cord Injury. ACS Biomaterials Science and Engineering, 2016, 2, 1319-1329.	2.6	40
108	Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions. ACS Applied Materials & Interfaces, 2016, 8, 25051-25059.	4.0	44
109	Response to di-functionalized hyaluronic acid with orthogonal chemistry grafting at independent modification sites in rodent models of neural differentiation and spinal cord injury. Journal of Materials Chemistry B, 2016, 4, 6865-6875.	2.9	14
110	Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex. Regenerative Therapy, 2016, 3, 63-67.	1.4	3
111	Scaffolds based on hyaluronan and carbon nanotubes gels. Journal of Biomaterials Applications, 2016, 31, 534-543.	1.2	4
112	Scaffolds of Hyaluronic Acid–Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies. Macromolecular Bioscience, 2016, 16, 1147-1157.	2.1	7

#	Article	IF	CITATIONS
113	Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E419-E432.	1.3	33
114	Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 2016, 86, 917-928.	3.6	202
115	Waterborne biodegradable polyurethane 3-dimensional porous scaffold for rat cerebral tissue regeneration. RSC Advances, 2016, 6, 3840-3849.	1.7	19
116	Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell and Tissue Research, 2016, 364, 17-28.	1.5	59
117	China's landscape in regenerative medicine. Biomaterials, 2017, 124, 78-94.	5.7	18
118	Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Scientific Reports, 2017, 7, 42212.	1.6	141
119	A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair. Advanced Healthcare Materials, 2017, 6, 1700954.	3.9	51
120	In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering. Bioactive Materials, 2017, 2, 253-259.	8.6	18
121	Hydrogels with precisely controlled integrin activation dictate vascular patterning andÂpermeability. Nature Materials, 2017, 16, 953-961.	13.3	158
123	Injectable uncrosslinked biomimetic hydrogels as candidate scaffolds for neural stem cell delivery. Journal of Biomedical Materials Research - Part A, 2017, 105, 790-805.	2.1	27
124	Combining Injectable Plasma Scaffold with Mesenchymal Stem/Stromal Cells for Repairing Infarct Cavity after Ischemic Stroke. , 2017, 8, 203.		19
125	Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. Reactive and Functional Polymers, 2018, 124, 29-39.	2.0	25
126	Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. Journal of Biomedical Materials Research - Part A, 2018, 106, 1129-1140.	2.1	59
127	The Role of Extracellular Matrix in Tissue Regeneration. , 0, , .		24
128	Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature Materials, 2018, 17, 642-651.	13.3	235
129	Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BioMed Research International, 2018, 2018, 1-19.	0.9	57
130	Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, .	1.2	31
131	Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Frontiers in Cellular Neuroscience, 2017, 11, 430.	1.8	83

#	Article	IF	CITATIONS
132	Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers, 2018, 10, 184.	2.0	28
133	Injectable hydrogels as novel materials for central nervous system regeneration. Journal of Neural Engineering, 2018, 15, 051002.	1.8	56
135	Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules, 2019, 20, 3009-3020.	2.6	12
136	Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. International Journal of Energy Production and Management, 2019, 6, 325-334.	1.9	49
137	Dual-Channel Fluorescence Imaging of Hydrogel Degradation and Tissue Regeneration in the Brain. Theranostics, 2019, 9, 4255-4264.	4.6	29
138	Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. International Journal of Pharmaceutics, 2019, 566, 342-351.	2.6	30
139	dvances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials. , 2019, 37, 186-213.		39
140	Theranostic Biomaterials for Regulation of the Blood–Brain Barrier. , 2019, , 303-319.		4
141	Building an Artificial Stem Cell Niche: Prerequisites for Future 3Dâ€Formation of Inner Ear Structures—Toward 3D Inner Ear Biotechnology. Anatomical Record, 2020, 303, 408-426.	0.8	9
142	Enzymatically crosslinked gelatin–laminin hydrogels for applications in neuromuscular tissue engineering. Biomaterials Science, 2020, 8, 591-606.	2.6	33
143	Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules, 2020, 21, 276-293.	2.6	40
144	Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2020, 14, 594304.	1.8	10
145	Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells, 2020, 9, 2113.	1.8	55
146	Interpenetrating polymer networks of collagen, hyaluronic acid, and chondroitin sulfate as scaffolds for brain tissue engineering. Acta Biomaterialia, 2020, 112, 122-135.	4.1	33
147	A novel poly-Îμ-lysine based implant, Proliferate®, for promotion of CNS repair following spinal cord injury. Biomaterials Science, 2020, 8, 3611-3627.	2.6	4
148	Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 2020, 8, 83.	2.0	136
149	Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. Journal of Functional Biomaterials, 2020, 11, 15.	1.8	7
150	Combination of IKVAV, LRE, and GPQGIWGQ Bioactive Signaling Peptides Increases Human Induced Pluripotent Stem Cell Derived Neural Stem Cells Extracellular Matrix Remodeling and Neurite Extension. Advanced Biology, 2020, 4, e2000084.	3.0	6

			CITATIONS
# 151	ARTICLE Central nervous system responses to biomaterials. , 2020, , 507-554.	IF	CITATIONS 2
131	Central hervous system responses to biomaterials. , 2020, , 307-334.		2
152	Progress toward finding the perfect match: hydrogels for treatment of central nervous system injury. Materials Today Advances, 2020, 6, 100039.	2.5	22
153	Relevance of Electrostatics for the Interaction of Tyrosine Hydroxylase with Porous Silicon Nanoparticles. Molecular Pharmaceutics, 2021, 18, 976-985.	2.3	3
154	Hydrogel-mediated local delivery of dexamethasone reduces neuroinflammation after traumatic brain injury. Biomedical Materials (Bristol), 2021, 16, 035002.	1.7	27
155	Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering, 2021, 8, 27.	1.6	93
156	Natural biomaterials in brain repair: A focus on collagen. Neurochemistry International, 2021, 146, 105033.	1.9	14
157	Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications. Biotechnology and Bioprocess Engineering, 2021, 26, 503-516.	1.4	20
158	Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. Journal of Controlled Release, 2021, 336, 598-620.	4.8	59
159	In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials. Materials Science and Engineering C, 2021, 128, 112253.	3.8	6
160	Injectable Hydrogels in Repairing Central Nervous System Injuries. Advances in Materials Science and Engineering, 2021, 2021, 1-11.	1.0	8
161	Digital micro-mirror device -based light curing technology and its biological applications. Optics and Laser Technology, 2021, 143, 107344.	2.2	11
162	SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomaterials Science, 2021, 9, 2804-2824.	2.6	2
163	Spinal Cord Repair by Means of Tissue Engineered Scaffolds. , 2013, , 485-547.		1
164	Tussah Silk Fibroin Excels Silk Fibroin from the Domesticated Silkworm in Supporting the Development of Neurons. IFMBE Proceedings, 2010, , 1574-1577.	0.2	3
165	Laminin Enriched Scaffolds for Tissue Engineering Applications. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	7
166	Macroporous Polymeric Scaffolds for Tissue Engineering Applications. , 2009, , 405-466.		0
167	Mesenchymal Stromal Cells to Treat Brain Injury. , 0, , .		1
169	Biomaterials for CNS Injury. , 2014, , 333-352.		0

#	Article	IF	CITATIONS
170	Scaffolds for cell Transplantation in Neurology–The Suitability of a Thermoreversible Gelation Polymer: Our Perspectives. The Journal of Spinal Surgery, 2014, 1, 16-24.	0.1	2
171	Biomimetic Materials: Polymeric Substrates for Axonal Regeneration. , 0, , 913-931.		Ο
172	Neurosurgical Research – Cutting Edge: Recent Advancements and Shortcomings in Neural Growth and Regeneration. Journal of Surgery (New York, N Y), 2016, 4, 49.	0.1	0
174	Dual-function hydrogels with sequential release of GSK3β inhibitor and VEGF inhibit inflammation and promote angiogenesis after stroke. Chemical Engineering Journal, 2022, 433, 133671.	6.6	20
175	Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomaterialia, 2022, 140, 88-101.	4.1	40
176	Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture. International Journal of Molecular Sciences, 2021, 22, 12726.	1.8	3
177	An aligned fibrous and thermosensitive hyaluronic acid-puramatrix interpenetrating polymer network hydrogel with mechanical properties adjusted for neural tissue. Journal of Materials Science, 2022, 57, 2883-2896.	1.7	5
178	Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics, 2021, 13, 2161.	2.0	13
179	Highly Effective Stroke Therapy Enabled by Genetically Engineered Viral Nanofibers. Advanced Materials, 2022, 34, e2201210.	11.1	20
180	Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers, 2022, 14, 1549.	2.0	21
181	Biomaterials based growth factor delivery for brain regeneration after injury. Smart Materials in Medicine, 2022, 3, 352-360.	3.7	3
182	Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. International Journal of Molecular Sciences, 2022, 23, 5148.	1.8	5
183	Supramolecular Hydrogel Based Post-Surgical Implant System for Hydrophobic Drug Delivery Against Glioma Recurrence. International Journal of Nanomedicine, 0, Volume 17, 2203-2224.	3.3	12
184	Simulating traumatic brain injury in vitro: developing high throughput models to test biomaterial based therapies. Neural Regeneration Research, 2023, 18, 289.	1.6	3
185	Donors for nerve transplantation in craniofacial soft tissue injuries. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
186	Beneficial Effects of Hyaluronan-Based Hydrogel Implantation after Cortical Traumatic Injury. Cells, 2022, 11, 3831.	1.8	1
187	The Application of Biomaterials in Spinal Cord Injury. International Journal of Molecular Sciences, 2023, 24, 816.	1.8	9
188	The potential of hydrogels as a niche for promoting neurogenesis and regulating neuroinflammation in ischemic stroke. Materials and Design, 2023, 229, 111916.	3.3	1

Hyaluronic acid in tissue engineering. , 2023, , 585-607. 192

#