Heme-based sensors: defining characteristics, recent de hypotheses

Journal of Inorganic Biochemistry 99, 1-22 DOI: 10.1016/j.jinorgbio.2004.11.006

Citation Report

#	Article	IF	CITATIONS
1	Insights into heme-based O2 sensing from structure–function relationships in the FixL proteins. Journal of Inorganic Biochemistry, 2005, 99, 963-977.	1.5	42
2	Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins. Current Opinion in Chemical Biology, 2005, 9, 441-446.	2.8	96
3	Interplay between iron complexes, nitric oxide and sulfur ligands: Structure, (photo)reactivity and biological importance. Coordination Chemistry Reviews, 2005, 249, 2408-2436.	9.5	87
4	Pulling NO out of thin air. Nature Chemical Biology, 2005, 1, 6-7.	3.9	7
5	Trp modification signals a quorum. Nature Chemical Biology, 2005, 1, 7-8.	3.9	5
6	Transcriptional Response ofCandida albicansto Nitric Oxide and the Role of theYHB1Gene in Nitrosative Stress and Virulence. Molecular Biology of the Cell, 2005, 16, 4814-4826.	0.9	173
7	Metalloporphyrinâ^'NO Bonding:Â Building Bridges with Organometallic Chemistry. Accounts of Chemical Research, 2005, 38, 943-954.	7.6	102
8	Oxygen Blocks the Reaction of the FixLâ ^{^,} FixJ Complex with ATP but Does Not Influence Binding of FixJ or ATP to FixLâ€. Biochemistry, 2005, 44, 15359-15365.	1.2	39
9	A GAF Domain in the Hypoxia/NO-inducible Mycobacterium tuberculosis DosS Protein Binds Haem. Journal of Molecular Biology, 2005, 353, 929-936.	2.0	119
10	30 some years of heme oxygenase: From a "molecular wrecking ball―to a "mesmerizing―trigger of cellular events. Biochemical and Biophysical Research Communications, 2005, 338, 568-577.	1.0	193
11	The Drosophila Nuclear Receptor E75 Contains Heme and Is Gas Responsive. Cell, 2005, 122, 195-207.	13.5	235
12	The Heme Oxygenase System: Update 2005. Antioxidants and Redox Signaling, 2005, 7, 1761-1766.	2.5	142
13	Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases. Microbiology and Molecular Biology Reviews, 2006, 70, 910-938.	2.9	592
14	DrosophilaNuclear Receptor E75 Is a Thiolate Hemoproteinâ€. Biochemistry, 2006, 45, 9727-9734.	1.2	40
15	Differential Sensing of Protein Influences by NO and CO Vibrations in Heme Adducts. Journal of the American Chemical Society, 2006, 128, 16834-16845.	6.6	69
16	Effect of Mutation on the Dissociation and Recombination Dynamics of CO in Transcriptional Regulator CooA:  A Picosecond Infrared Transient Absorption Study. Biochemistry, 2006, 45, 9246-9253.	1.2	5
17	Characterization of Heme-Regulated eIF2α Kinase: Roles of the N-Terminal Domain in the Oligomeric State, Heme Binding, Catalysis, and Inhibitionâ€. Biochemistry, 2006, 45, 9894-9905.	1.2	57
18	Coordination of Diatomic Ligands to Heme:  Simply CO. Inorganic Chemistry, 2006, 45, 7050-7052.	1.9	45

#	Article	IF	CITATIONS
19	Functional Implications of the Propionate 7â^'Arginine 220 Interaction in the FixLH Oxygen Sensor from Bradyrhizobium japonicum. Biochemistry, 2006, 45, 2072-2084.	1.2	26
20	Structureâ~'Function Relationships of EcDOS, a Heme-Regulated Phosphodiesterase from Escherichia coli. Accounts of Chemical Research, 2006, 39, 37-43.	7.6	68
21	A Proximal Arginine R206 Participates in Switching of the Bradyrhizobium japonicum FixL Oxygen Sensor. Journal of Molecular Biology, 2006, 360, 80-89.	2.0	33
22	The Signaling Pathway in Histidine Kinase and the Response Regulator Complex Revealed by X-ray Crystallography and Solution Scattering. Journal of Molecular Biology, 2006, 362, 123-139.	2.0	27
23	Nitric Oxide Is Formed in Medicago truncatula-Sinorhizobium meliloti Functional Nodules. Molecular Plant-Microbe Interactions, 2006, 19, 970-975.	1.4	148
24	Characterization of ac-type heme-containing PAS sensor domain fromGeobacter sulfurreducensrepresenting a novel family of periplasmic sensors inGeobacteraceaeand other bacteria. FEMS Microbiology Letters, 2006, 258, 173-181.	0.7	26
25	Concepts and Approaches Towards Understanding the Cellular Redox Proteome. Plant Biology, 2006, 8, 407-418.	1.8	47
26	Modeling proline ligation in the heme-dependent CO sensor, CooA, using small-molecule analogs. Journal of Biological Inorganic Chemistry, 2006, 11, 642-650.	1.1	8
27	CO–metal interaction: vital signaling from a lethal gas. Trends in Biochemical Sciences, 2006, 31, 614-621.	3.7	164
28	Oxygen-sensitive guanylyl cyclases in insects and their potential roles in oxygen detection and in feeding behaviors. Journal of Insect Physiology, 2006, 52, 340-348.	0.9	29
29	Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. , 2006, 111, 327-345.		216
30	A phylogenomic profile of globins. BMC Evolutionary Biology, 2006, 6, 31.	3.2	191
31	Role of a tyrosine kinase in the CO2-induced stimulation of HCO3â^' reabsorption by rabbit S2 proximal tubules. American Journal of Physiology - Renal Physiology, 2006, 291, F358-F367.	1.3	26
32	TheNPAS3gene—emerging evidence for a role in psychiatric illness. Annals of Medicine, 2006, 38, 439-448.	1.5	43
33	Evidence for Displacements of the C-helix by CO Ligation and DNA Binding to CooA Revealed by UV Resonance Raman Spectroscopy. Journal of Biological Chemistry, 2006, 281, 11271-11278.	1.6	25
34	Differential Activation of Escherichia coli Chemoreceptors by Blue-Light Stimuli. Journal of Bacteriology, 2006, 188, 3962-3971.	1.0	28
35	MEKHLA, a Novel Domain with Similarity to PAS Domains, Is Fused to Plant Homeodomain-Leucine Zipper III Proteins. Plant Physiology, 2006, 140, 1142-1150.	2.3	104
36	Heme Displacement Mechanism of CooA Activation. Journal of Biological Chemistry, 2006, 281, 29165-29173.	1.6	16

#	Article	IF	CITATIONS
37	Genomic Organization and Molecular Evolution of the Genes for Neuroglobin and Cytoglobin in the Hypoxiatolerant Israeli Mole Rat, Spalax Carmeli. Israel Journal of Ecology and Evolution, 2006, 52, 389-403.	0.2	5
38	Up-Regulation of Heme Biosynthesis during Differentiation of Neuro2a Cells. Journal of Biochemistry, 2006, 139, 373-381.	0.9	12
39	Unexpected NO-dependent DNA binding by the CooA homolog from Carboxydothermus hydrogenoformans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 891-896.	3.3	31
40	Critical Role of the Heme Axial Ligand, Met95, in Locking Catalysis of the Phosphodiesterase from Escherichia coli (Ec DOS) toward Cyclic diGMP. Journal of Biological Chemistry, 2007, 282, 21301-21307.	1.6	61
41	Novel Heme-based Oxygen Sensor with a Revealing Evolutionary History. Journal of Biological Chemistry, 2007, 282, 28740-28748.	1.6	58
42	Characterization of a Globin-coupled Oxygen Sensor with a Gene-regulating Function. Journal of Biological Chemistry, 2007, 282, 37325-37340.	1.6	30
43	The Symbiosis Regulator CbrA Modulates a Complex Regulatory Network Affecting the Flagellar Apparatus and Cell Envelope Proteins. Journal of Bacteriology, 2007, 189, 3591-3602.	1.0	44
44	<i>Mycobacterium tuberculosis</i> DosS is a redox sensor and DosT is a hypoxia sensor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11568-11573.	3.3	306
45	Relationship between reactive oxygen species and heme metabolism during the differentiation of Neuro2a cells. Biochemical and Biophysical Research Communications, 2007, 358, 130-135.	1.0	13
46	A model of globin evolution. Gene, 2007, 398, 132-142.	1.0	99
47	Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins. Gene, 2007, 398, 12-28.	1.0	29
48	Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective. Journal of Biotechnology, 2007, 129, 229-248.	1.9	39
49	Properties of an unusual heme cofactor in PLP-dependent cystathionine β-synthase. Natural Product Reports, 2007, 24, 631-639.	5.2	68
50	Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV–LOV dimerization and interdomain interactions. Photochemical and Photobiological Sciences, 2007, 6, 41-49.	1.6	57
51	Structure of the Redox Sensor Domain ofAzotobacter vinelandiiNifL at Atomic Resolution:Â Signaling, Dimerization, and Mechanismâ€,‡. Biochemistry, 2007, 46, 3614-3623.	1.2	103
52	Time-Resolved Crystallographic Studies of the Heme Domain of the Oxygen Sensor FixL:  Structural Dynamics of Ligand Rebinding and Their Relation to Signal Transduction,. Biochemistry, 2007, 46, 4706-4715.	1.2	45
53	A Memory of Oxygen Binding Explains the Dose Response of the Heme-Based Sensor FixL. Biochemistry, 2007, 46, 6249-6257.	1.2	31
54	Quantitative Vibrational Dynamics of Iron in Carbonyl Porphyrins. Biophysical Journal, 2007, 92, 3764-3783.	0.2	49

#	Article	IF	CITATIONS
55	Biomedical implications of information processing in chemical systems: Non-classical approach to photochemistry of coordination compounds. BioSystems, 2007, 90, 738-749.	0.9	8
56	Time resolved thermodynamics of ligand binding to heme proteins. Coordination Chemistry Reviews, 2007, 251, 1101-1127.	9.5	36
57	Mechanism of the CO-sensing heme protein CooA: New insights from the truncated heme domain and UVRR spectroscopy. Journal of Inorganic Biochemistry, 2007, 101, 1776-1785.	1.5	18
58	ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 2007, 8, 813-824.	16.1	2,930
59	Heme is involved in microRNA processing. Nature Structural and Molecular Biology, 2007, 14, 23-29.	3.6	253
60	A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Molecular Microbiology, 2007, 64, 1090-1104.	1.2	53
61	Regulators of bacterial responses to nitric oxide. FEMS Microbiology Reviews, 2007, 31, 193-211.	3.9	173
62	DosT and DevS are oxygen-switched kinases inMycobacterium tuberculosis. Protein Science, 2007, 16, 1708-1719.	3.1	139
63	NTP-binding properties of the blue-light receptor YtvA and effects of the E105L mutation. European Biophysics Journal, 2007, 36, 831-839.	1.2	20
64	DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state. Journal of Biological Inorganic Chemistry, 2007, 12, 139-146.	1.1	7
65	Ligand-induced monomerization of Allochromatium vinosum cytochrome c′ studied using native mass spectrometry and fluorescence resonance energy transfer. Journal of Biological Inorganic Chemistry, 2007, 12, 919-928.	1.1	7
66	Modulation of NO binding to cytochrome c′ by distal and proximal haem pocket residues. Journal of Biological Inorganic Chemistry, 2008, 13, 531-540.	1.1	19
67	Resonance Raman investigation of redoxâ€induced structural changes of protein and heme in the sensor domain of <i>Ec</i> DOS protein. Journal of Raman Spectroscopy, 2008, 39, 1614-1626.	1.2	10
68	Probing the weak interactions between amino acids and carbon monoxide. Chinese Chemical Letters, 2008, 19, 119-122.	4.8	6
69	Digital Information Processing in Molecular Systems. Chemical Reviews, 2008, 108, 3481-3548.	23.0	777
70	Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radical Biology and Medicine, 2008, 45, 562-569.	1.3	234
71	Soluble Guanylyl Cyclase and Its Evolutionary Relatives. , 2008, , 524-539.		0
72	A Surfeit of Biological Heme-based Sensors. , 2008, , 18-65.		3

	CITATION	tion Report	
#	Article	IF	CITATIONS
73	Metal-containing sensor proteins sensing diatomic gas molecules. Dalton Transactions, 2008, , 3137.	1.6	35
74	Structures and Solution Properties of Two Novel Periplasmic Sensor Domains with c-Type Heme from Chemotaxis Proteins of Geobacter sulfurreducens: Implications for Signal Transduction. Journal of Molecular Biology, 2008, 377, 1498-1517.	2.0	54
75	NO sensing in Pseudomonas aeruginosa: Structure of the Transcriptional Regulator DNR. Journal of Molecular Biology, 2008, 378, 1002-1015.	2.0	80
76	Novel Structure of the Conserved Gram-Negative Lipopolysaccharide Transport Protein A and Mutagenesis Analysis. Journal of Molecular Biology, 2008, 380, 476-488.	2.0	144
77	B2 SINE retrotransposon causes polymorphic expression of mouse 5-aminolevulinic acid synthase 1 gene. Biochemical and Biophysical Research Communications, 2008, 377, 515-520.	1.0	11
78	Mycobacterium tuberculosis Senses Host-Derived Carbon Monoxide during Macrophage Infection. Cell Host and Microbe, 2008, 3, 323-330.	5.1	210
79	The Transcription Regulator RcoM-2 from Burkholderia xenovorans Is a Cysteine-Ligated Hemoprotein That Undergoes a Redox-Mediated Ligand Switch. Biochemistry, 2008, 47, 9016-9028.	1.2	56
80	Electronic Structure of Six-Coordinate Iron(III)â^'Porphyrin NO Adducts: The Elusive Iron(III)â^'NO(radical) State and Its Influence on the Properties of These Complexes. Journal of the American Chemical Society, 2008, 130, 15288-15303.	6.6	141
81	lron Oxidation State Modulates Active Site Structure in a Heme Peroxidase [,] . Biochemistry, 2008, 47, 4403-4409.	1.2	11
82	X-ray Absorption Spectroscopy of Hemes and Hemeproteins in Solution: Multiple Scattering Analysis. Inorganic Chemistry, 2008, 47, 9905-9918.	1.9	52
83	Heme-Binding Characteristics of the Isolated PAS-A Domain of Mouse Per2, a Transcriptional Regulatory Factor Associated with Circadian Rhythms. Biochemistry, 2008, 47, 6157-6168.	1.2	57
84	Arg97 at the Heme-Distal Side of the Isolated Heme-Bound PAS Domain of a Heme-Based Oxygen Sensor from Escherichia coli (Ec DOS) Plays Critical Roles in Autoxidation and Binding to Gases, Particularly O2. Biochemistry, 2008, 47, 8874-8884.	1.2	41
85	A PAS Domain with an Oxygen Labile [4Fe-4S] ²⁺ Cluster in the Oxygen Sensor Kinase NreB of <i>Staphylococcus carnosus</i> . Biochemistry, 2008, 47, 13921-13932.	1.2	52
86	Changes at the KinA PAS-A Dimerization Interface Influence Histidine Kinase Function [,] . Biochemistry, 2008, 47, 4051-4064.	1.2	59
87	Ligand Binding to the Fe(III)-Protoporphyrin IX Complex of Phosphodiesterase from <i>Escherichia coli</i> (<i>Ec</i> DOS) Markedly Enhances Catalysis of Cyclic di-GMP: Roles of Met95, Arg97, and Phe113 of the Putative Heme Distal Side in Catalytic Regulation and Ligand Binding. Biochemistry, 2008, 47, 13438-13446.	1.2	26
88	Reversible NO Motion in Crystalline [Fe(Porph)(1-MeIm)(NO)] Derivatives. Inorganic Chemistry, 2008, 47, 912-920.	1.9	31
89	Changes in Quaternary Structure in the Signaling Mechanisms of PAS Domains [,] . Biochemistry, 2008, 47, 12078-12086.	1.2	45
90	Mass Instability in Isolated Recombinant FixL Heme Domains of Bradyrhizobium japonicum. Biochemistry, 2008, 47, 1540-1553.	1.2	6

#	Article	IF	CITATIONS
91	2.3 Ã X-ray Structure of the Heme-Bound GAF Domain of Sensory Histidine Kinase DosT of <i>Mycobacterium tuberculosis</i> . Biochemistry, 2008, 47, 12523-12531.	1.2	71
92	The N-end rule pathway is a sensor of heme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 76-81.	3.3	107
93	Role of the Per/Arnt/Sim Domains in Ligand-dependent Transformation of the Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2008, 283, 32995-33005.	1.6	70
94	Roles of Arg-97 and Phe-113 in Regulation of Distal Ligand Binding to Heme in the Sensor Domain of Ec DOS Protein. Journal of Biological Chemistry, 2008, 283, 19000-19010.	1.6	20
95	PAS-mediated Dimerization of Soluble Guanylyl Cyclase Revealed by Signal Transduction Histidine Kinase Domain Crystal Structure. Journal of Biological Chemistry, 2008, 283, 1167-1178.	1.6	84
96	RcoM: A New Single-Component Transcriptional Regulator of CO Metabolism in Bacteria. Journal of Bacteriology, 2008, 190, 3336-3343.	1.0	59
97	The pH Dependence of Heme Pocket Hydration and Ligand Rebinding Kinetics in Photodissociated Carbonmonoxymyoglobin. Journal of Biological Chemistry, 2008, 283, 14165-14175.	1.6	22
98	Structural chemistry involved in information detection and transmission by gas sensor heme proteins: Resonance Raman investigation. Pure and Applied Chemistry, 2008, 80, 2667-2678.	0.9	5
99	Protein Conformation Changes of HemAT-Bs upon Ligand Binding Probed by Ultraviolet Resonance Raman Spectroscopy. Journal of Biological Chemistry, 2008, 283, 6942-6949.	1.6	22
100	A Novel Heme-Regulatory Motif Mediates Heme-Dependent Degradation of the Circadian Factor Period 2. Molecular and Cellular Biology, 2008, 28, 4697-4711.	1.1	88
101	O ₂ - and NO-Sensing Mechanism through the DevSR Two-Component System in <i>Mycobacterium smegmatis</i> . Journal of Bacteriology, 2008, 190, 6795-6804.	1.0	49
102	Ligand Dynamics in Heme Proteins Observed by Fourier Transform Infrared Spectroscopy at Cryogenic Temperatures. Methods in Enzymology, 2008, 437, 347-378.	0.4	21
103	Oxygenâ€5ensing Histidineâ€Protein Kinases: Assays of Ligand Binding and Turnover of Responseâ€Regulator Substrates. Methods in Enzymology, 2008, 437, 173-189.	0.4	20
104	Metalloregulatory proteins and nitric oxide signalling in bacteria. Biochemical Society Transactions, 2008, 36, 1160-1164.	1.6	13
105	EPR and Low-temperature MCD Spectroscopy of Ferrous Heme Nitrosyls. , 2008, , 147-171.		9
109	The transcription factor DNR from Pseudomonas aeruginosa specifically requires nitric oxide and haem for the activation of a target promoter in Escherichia coli. Microbiology (United Kingdom), 2009, 155, 2838-2844.	0.7	47
110	Structural Insight into the Heme-based Redox Sensing by DosS from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2009, 284, 13057-13067.	1.6	91
111	Nitric Oxide Signaling in <i>Pseudomonas aeruginosa</i> Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal. Journal of Bacteriology, 2009, 191, 7333-7342.	1.0	432

		CITATION REPORT		
#	Article		IF	CITATIONS
112	Iron-Based Redox Switches in Biology. Antioxidants and Redox Signaling, 2009, 11, 102	29-1046.	2.5	88
113	Identification of subdomains in NADPH oxidase-4 critical for the oxygen-dependent reg TASK-1 K+ channels. American Journal of Physiology - Cell Physiology, 2009, 297, C855	ulation of -C864.	2.1	27
114	Chapter 6 Disruption of Heme Synthesis by Polyhalogenated Aromatics. Advances in M Toxicology, 2009, 3, 161-210.	olecular	0.4	4
115	Amplifying the fluorescence of bilirubin enables the real-time detection of heme oxyger Free Radical Biology and Medicine, 2009, 46, 305-311.	nase activity.	1.3	11
116	Catalytic peroxidation of nitrogen monoxide and peroxynitrite by globins. IUBMB Life, 2	2009, 61, 62-73.	1.5	28
117	Oxygen detection in biological systems. Photosynthesis Research, 2009, 102, 487-498		1.6	32
118	Oxygen sensing drives predictable migrations in a microbial community. Environmental 2009, 11, 81-85.	Microbiology,	1.8	21
119	Role of Phe113 at the distal side of the heme domain of an oxygen-sensor (Ec DOS) in characterization of the heme environment. Journal of Inorganic Biochemistry, 2009, 10		1.5	7
120	The FG loop of a heme-based gas sensor enzyme, Ec DOS, functions in heme binding, a catalysis. Journal of Inorganic Biochemistry, 2009, 103, 1380-1385.	utoxidation and	1.5	7
121	Heme Ligand Binding Properties and Intradimer Interactions in the Full-length Sensor P from Escherichia coli and Its Isolated Heme Domain. Journal of Biological Chemistry, 20 36146-36159.		1.6	21
122	Dynamics of Carbon Monoxide Photodissociation in <i>Bradyrhizobium japonicum</i> Picosecond Midinfrared Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 329	FixL Probed by 2-3297.	1.2	10
123	Principles of Ligand Binding within a Completely Buried Cavity in HIF2α PAS-B. Journal Chemical Society, 2009, 131, 17647-17654.	of the American	6.6	102
124	An Oxygen-Sensing Diguanylate Cyclase and Phosphodiesterase Couple for c-di-GMP C Biochemistry, 2009, 48, 9764-9774.	ontrol.	1.2	215
125	Resonance Raman Spectra of an O ₂ -Binding H-NOX Domain Reveal Heme Mutation. Biochemistry, 2009, 48, 8568-8577.	Relaxation upon	1.2	28
126	Guanidine Hydrochloride-Induced Unfolding of the Three Heme Coordination States of Transcription Factor, CooA. Biochemistry, 2009, 48, 6585-6597.	the CO-Sensing	1.2	10
127	Structure and function evolution in the superfamily of globins. Comptes Rendus - Biolo 273-282.	gies, 2009, 332,	0.1	54
128	HisE11 and HisF8 Provide Bis-histidyl Heme Hexa-coordination in the Globin Domain of sulfurreducens Globin-coupled Sensor. Journal of Molecular Biology, 2009, 386, 246-26		2.0	47
129	Role of conserved Fα-helix residues in the native fold and stability of the kinase-inhibite the oxygen-sensing FixL protein from Sinorhizobium meliloti. Archives of Biochemistry a 2009, 485, 150-159.	ed oxy state of and Biophysics,	1.4	5

#	Article	IF	CITATIONS
130	lonic Loops and Rebounds: Oxygen-Deprivation Signaling in Plants. Signaling and Communication in Plants, 2009, , 195-207.	0.5	2
131	Signaling in Plants. Signaling and Communication in Plants, 2009, , .	0.5	1
132	Sensory Transduction in Bacteria. , 2009, , 447-463.		4
134	Sensor systems for medical application based on hemoproteins and nanocomposite materials. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4, 25-36.	0.2	8
135	Cytochromes: Reactivity of the "dark side―of the heme. Biophysical Chemistry, 2010, 152, 21-27.	1.5	19
136	The heme pocket of the globin domain of the globin-coupled sensor of Geobacter sulfurreducens — An EPR study. Journal of Inorganic Biochemistry, 2010, 104, 1022-1028.	1.5	8
137	l-Glyceraldehyde 3-phosphate reductase from Escherichia coli is a heme binding protein. Bioorganic Chemistry, 2010, 38, 37-41.	2.0	1
138	FixK, a global regulator of microaerobic growth, controls photosynthesis in <i>Rhodopseudomonas palustris</i> . Molecular Microbiology, 2010, 75, 1007-1020.	1.2	55
139	Sensing oxygen. , 2010, , 14-48.		1
140	Catalysis and oxygen binding of Ec DOS: a haem-based oxygen-sensor enzyme from Escherichia coli. Journal of Biochemistry, 2010, 148, 693-703.	0.9	18
141	Hemin Binds to Human Cytoplasmic Arginyl-tRNA Synthetase and Inhibits Its Catalytic Activity. Journal of Biological Chemistry, 2010, 285, 39437-39446.	1.6	32
142	Behavioral Responses to Hypoxia in Drosophila Larvae Are Mediated by Atypical Soluble Guanylyl Cyclases. Genetics, 2010, 186, 183-196.	1.2	51
143	Structure of Cinaciguat (BAY 58–2667) Bound to Nostoc H-NOX Domain Reveals Insights into Heme-mimetic Activation of the Soluble Guanylyl Cyclase. Journal of Biological Chemistry, 2010, 285, 22651-22657.	1.6	90
144	The PpaA/AerR Regulators of Photosynthesis Gene Expression from Anoxygenic Phototrophic Proteobacteria Contain Heme-Binding SCHIC Domains. Journal of Bacteriology, 2010, 192, 5253-5256.	1.0	17
145	Recent Appdtcations of Infrared Spectroscopy and Microscopy in Chemistry, Biology and Medicine. Handbook of Porphyrin Science, 2010, , 437-492.	0.3	1
146	Characterization of a diguanylate cyclase from Shewanella woodyi with cyclase and phosphodiesterase activities. Molecular BioSystems, 2010, 6, 1561.	2.9	25
147	Bacterial Sensor Kinases: Diversity in the Recognition of Environmental Signals. Annual Review of Microbiology, 2010, 64, 539-559.	2.9	310
148	Heme Binding to the Mammalian Circadian Clock Protein Period 2 Is Nonspecific. Biochemistry, 2010, 49, 4327-4338.	1.2	36

#	Article	IF	CITATIONS
149	Nuclear Resonance Vibrational Spectroscopy Applied to [Fe(OEP)(NO)]: The Vibrational Assignments of Five-Coordinate Ferrous Hemeâ Nitrosyls and Implications for Electronic Structure. Inorganic Chemistry, 2010, 49, 4133-4148.	1.9	45
150	Is <i>Nostoc</i> H-NOX a NO Sensor or Redox Switch?. Biochemistry, 2010, 49, 6587-6599.	1.2	41
151	Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the <i>trans</i> Effect of NO. Inorganic Chemistry, 2010, 49, 7197-7215.	1.9	66
152	Fe-heme structure in Cu,Zn superoxide dismutase from Haemophilus ducreyi by X-ray Absorption Spectroscopy. Archives of Biochemistry and Biophysics, 2010, 498, 43-49.	1.4	3
153	Electronic Structure of Heme-Nitrosyls and Its Significance for Nitric Oxide Reactivity, Sensing, Transport, and Toxicity in Biological Systems. Inorganic Chemistry, 2010, 49, 6293-6316.	1.9	191
154	Heme-Based Sensing by the Mammalian Circadian Protein CLOCK. Inorganic Chemistry, 2010, 49, 6349-6365.	1.9	58
155	New Light on NO Bonding in Fe(III) Heme Proteins from Resonance Raman Spectroscopy and DFT Modeling. Journal of the American Chemical Society, 2010, 132, 4614-4625.	6.6	90
156	Important Roles of Tyr43 at the Putative Heme Distal Side in the Oxygen Recognition and Stability of the Fe(II)â~O ₂ Complex of YddV, a Globin-Coupled Heme-Based Oxygen Sensor Diguanylate Cyclase. Biochemistry, 2010, 49, 10381-10393.	1.2	69
157	Protein Conformational Changes of the Oxidative Stress Sensor, SoxR, upon Redox Changes of the [2Fe–2S] Cluster Probed with Ultraviolet Resonance Raman Spectroscopy. Biochemistry, 2011, 50, 9468-9474.	1.2	19
158	Structural Dynamics of <i>Ec</i> DOS Heme Domain Revealed by Time-Resolved Ultraviolet Resonance Raman Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 2212-2217.	2.1	6
159	The regulatory role of heme in neurons. Metallomics, 2011, 3, 955.	1.0	45
161	63 The Role of Heme-Nitrosyls in the Biosynthesis, Transport, Sensing, and Detoxification of Nitric Oxide in Biological Systems: Enzymes and Model Complexes. Handbook of Porphyrin Science, 2011, , 1-247.	0.3	22
162	Fibrinogen is a heme-associated, carbon monoxide sensing molecule. Blood Coagulation and Fibrinolysis, 2011, 22, 443-447.	0.5	40
163	HEME AND microRNA BIOGENESIS. , 2011, , 127-138.		2
164	THE CHEMICAL AND STRUCTURAL BASES OF HEME RECOGNITION: Binding Interactions of Heme with Proteins and Peptides. , 2011, , 161-196.		1
165	Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIEâ€1 is mediated by the global regulator, FixK. Molecular Microbiology, 2011, 79, 63-75.	1.2	39
166	PAS/poly-HAMP signalling in Aer-2, a soluble haem-based sensor. Molecular Microbiology, 2011, 79, 686-699.	1.2	43
167	Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiology Reviews, 2011, 35, 124-146.	3.9	94

#	Article	IF	CITATIONS
168	Generation, Translocation, and Action of Nitric Oxide in Living Systems. Chemistry and Biology, 2011, 18, 1211-1220.	6.2	85
169	Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus. Biotechnology Letters, 2011, 33, 347-351.	1.1	12
170	The Nâ€end rule pathway and regulation by proteolysis. Protein Science, 2011, 20, 1298-1345.	3.1	594
171	Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins. Journal of Computational Chemistry, 2011, 32, 2219-2231.	1.5	39
172	Plant Oxygen Sensing Is Mediated by the N-End Rule Pathway: A Milestone in Plant Anaerobiosis. Plant Cell, 2011, 23, 4173-4183.	3.1	87
173	Identification and Functional and Spectral Characterization of a Globin-coupled Histidine Kinase from Anaeromyxobacter sp. Fw109-5. Journal of Biological Chemistry, 2011, 286, 35522-35534.	1.6	43
174	DiGeorge Critical Region 8 (DGCR8) Is a Double-cysteine-ligated Heme Protein. Journal of Biological Chemistry, 2011, 286, 16716-16725.	1.6	54
175	Identification of a haem domain in human soluble adenylate cyclase. Bioscience Reports, 2012, 32, 491-499.	1.1	21
176	Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1213-1225.	1.8	128
177	Carbon monoxide binding to the heme group at the dimeric interface modulates structure and copper accessibility in the Cu,Zn superoxide dismutase from <i>Haemophilus ducreyi</i> : in silico and <i>in vitro</i> evidences. Journal of Biomolecular Structure and Dynamics, 2012, 30, 269-279.	2.0	4
178	Human Neuroglobin Functions as an Oxidative Stress-responsive Sensor for Neuroprotection. Journal of Biological Chemistry, 2012, 287, 30128-30138.	1.6	52
179	Site-specific Protein Dynamics in Communication Pathway from Sensor to Signaling Domain of Oxygen Sensor Protein, HemAT-Bs. Journal of Biological Chemistry, 2012, 287, 19973-19984.	1.6	13
180	Changes in the heme ligation during folding of a Geobacter sulfurreducens sensor GSU0935. Dalton Transactions, 2012, 41, 8022.	1.6	4
181	Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control. Antioxidants and Redox Signaling, 2012, 16, 819-852.	2.5	170
182	Structural dynamics of proximal heme pocket in HemAT-Bs associated with oxygen dissociation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 866-872.	1.1	13
183	Unusual Heme Binding Properties of the Dissimilative Nitrate Respiration Regulator, a Bacterial Nitric Oxide Sensor. Antioxidants and Redox Signaling, 2012, 17, 1178-1189.	2.5	21
184	Environmental Heme-Based Sensor Proteins: Implications for Understanding Bacterial Pathogenesis. Antioxidants and Redox Signaling, 2012, 17, 1232-1245.	2.5	30
185	Identification of Cys94 as the distal ligand to the Fe(III) heme in the transcriptional regulator RcoM-2 from Burkholderia xenovorans. Journal of Biological Inorganic Chemistry, 2012, 17, 1071-1082.	1.1	20

#	Article	IF	CITATIONS
186	Heme Flattening Is Sufficient for Signal Transduction in the H-NOX Family. Journal of the American Chemical Society, 2012, 134, 2044-2046.	6.6	33
187	How Do Heme-Protein Sensors Exclude Oxygen? Lessons Learned from Cytochrome c′, <i>Nostoc puntiforme</i> Heme Nitric Oxide/Oxygen-Binding Domain, and Soluble Guanylyl Cyclase. Antioxidants and Redox Signaling, 2012, 17, 1246-1263.	2.5	57
189	Structural basis for oxygen sensing and signal transduction of the heme-based sensor protein Aer2 from Pseudomonas aeruginosa. Chemical Communications, 2012, 48, 6523.	2.2	29
190	Novel Bacterial Gas Sensor Proteins with Transition Metal–Containing Prosthetic Groups as Active Sites. Antioxidants and Redox Signaling, 2012, 16, 678-686.	2.5	17
191	A detailed investigation into the electronic structures of macrocyclic iron(II)-nitrosyl compounds and their similarities to ferrous heme-nitrosyls. Inorganica Chimica Acta, 2012, 380, 148-160.	1.2	9
192	Biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 898-910.	0.5	85
193	Leu65 in the heme distal side is critical for the stability of the Fe(II)–O2 complex of YddV, a globin-coupled oxygen sensor diguanylate cyclase. Journal of Inorganic Biochemistry, 2012, 108, 163-170.	1.5	23
194	Hydrogen sulfide stimulates the catalytic activity of a heme-regulated phosphodiesterase from Escherichia coli (Ec DOS). Journal of Inorganic Biochemistry, 2012, 109, 66-71.	1.5	12
195	The NtrY/X twoâ€component system of <i>Brucella</i> spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Molecular Microbiology, 2012, 85, 39-50.	1.2	72
196	CO metabolism, sensing, and signaling. BioFactors, 2012, 38, 1-13.	2.6	51
197	Development of Inhibitors of the PAS-B Domain of the HIF-2α Transcription Factor. Journal of Medicinal Chemistry, 2013, 56, 1739-1747.	2.9	101
198	Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet. Lasers in Medical Science, 2013, 28, 1271-1280.	1.0	34
199	Prokaryotic Redox Switches. , 2013, , 233-276.		2
200	Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends in Biochemical Sciences, 2013, 38, 566-575.	3.7	96
201	The Dos Family of Globin-Related Sensors Using PAS Domains to Accommodate Haem Acting as the Active Site for Sensing External Signals. Advances in Microbial Physiology, 2013, 63, 273-327.	1.0	4
202	Haem-Based Sensors. Advances in Microbial Physiology, 2013, 63, 1-47.	1.0	13
203	Bacterial sensor kinases using Fe–S cluster binding PAS or GAF domains for O ₂ sensing. Dalton Transactions, 2013, 42, 3082-3087.	1.6	22
204	Heme-based Globin-coupled Oxygen Sensors: Linking Oxygen Binding to Functional Regulation of Diguanylate Cyclase, Histidine Kinase, and Methyl-accepting Chemotaxis. Journal of Biological Chemistry, 2013, 288, 27702-27711.	1.6	71

#	Article	IF	CITATIONS
205	Primary processes in heme-based sensor proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1684-1692.	1.1	37
206	Chemical foundations of hydrogen sulfide biology. Nitric Oxide - Biology and Chemistry, 2013, 35, 21-34.	1.2	272
207	Coordination Chemistry of Nitrosyls and Its Biochemical Implications. Structure and Bonding, 2013, , 45-114.	1.0	10
208	Direct electrochemistry and environmental sensing of rice hemoglobin immobilized at graphite electrodes. Journal of Electroanalytical Chemistry, 2013, 704, 67-74.	1.9	12
209	Using Supramolecular Chemistry Strategy for Mapping Electrochemical Phenomena on the Nanoscale. , 2013, , 87-104.		0
210	Signal Transduction and Phosphoryl Transfer by a FixL Hybrid Kinase with Low Oxygen Affinity: Importance of the Vicinal PAS Domain and Receiver Aspartate. Biochemistry, 2013, 52, 456-465.	1.2	24
211	Beer's Law. , 2013, , 184-184.		0
212	Bcl-2 Inhibitors. , 2013, , 184-184.		1
213	Heme-Containing Oxygen Carriers. , 2013, , 963-963.		0
214	Ultraviolet Resonance Raman Observations of the Structural Dynamics of Rhizobial Oxygen Sensor FixL on Ligand Recognition. Journal of Physical Chemistry B, 2013, 117, 15786-15791.	1.2	13
215	Expression of NPAS3 in the Human Cortex and Evidence of Its Posttranscriptional Regulation by miR-17 During Development, With Implications for Schizophrenia. Schizophrenia Bulletin, 2013, 39, 396-406.	2.3	41
216	Thiol/Disulfide Redox Switches as a Regulatory Mechanism in Heme-binding Proteins. Handbook of Porphyrin Science, 2013, , 31-54.	0.3	0
217	Heme Sensor Proteins. Journal of Biological Chemistry, 2013, 288, 13194-13203.	1.6	116
218	Mutations in Tyr808 reveal a potential auto-inhibitory mechanism of guanylate cyclase-B regulation. Bioscience Reports, 2013, 33, .	1.1	0
218 219		1.1	0
	Bioscience Reports, 2013, 33, . A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during		
219	Bioscience Reports, 2013, 33, . A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Frontiers in Plant Science, 2013, 4, 14. Globin-coupled heme containing oxygen sensor soluble adenylate cyclase in <i>Leishmania</i> prevents cell death during hypoxia. Proceedings of the National Academy of Sciences of the United	1.7	120

#	Article	IF	CITATIONS
223	Structure of REV-ERBÎ ² Ligand-binding Domain Bound to a Porphyrin Antagonist. Journal of Biological Chemistry, 2014, 289, 20054-20066.	1.6	22
224	Nitric Oxide and Heat Shock Protein 90 Activate Soluble Guanylate Cyclase by Driving Rapid Change in Its Subunit Interactions and Heme Content. Journal of Biological Chemistry, 2014, 289, 15259-15271.	1.6	62
225	Pressure effects reveal that changes in the redox states of the heme iron complexes in the sensor domains of two hemeâ€based oxygen sensor proteins, <i>Ec</i> <scp>DOS</scp> and YddV, have profound effects on their flexibility. FEBS Journal, 2014, 281, 5208-5219.	2.2	7
226	Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function. Cell Reports, 2014, 7, 180-193.	2.9	170
227	MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis. Archives of Biochemistry and Biophysics, 2014, 544, 112-118.	1.4	6
228	Oxygen sensing strategies in mammals and bacteria. Journal of Inorganic Biochemistry, 2014, 133, 63-72.	1.5	45
229	Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. Molecular BioSystems, 2014, 10, 2823-2826.	2.9	34
230	Evaluation of Heme Peripheral Group Interactions in Extremely Low-Dielectric Constant Media and Their Contributions to the Heme Reduction Potential Inorganic Chemistry, 2014, 53, 182-188.	1.9	4
231	Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction. Journal of Inorganic Biochemistry, 2014, 140, 29-38.	1.5	11
232	Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer. Journal of Inorganic Biochemistry, 2014, 133, 104-109.	1.5	1
233	Thermodynamic and kinetic characterization of two methyl-accepting chemotaxis heme sensors from Geobacter sulfurreducens reveals the structural origin of their functional difference. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 920-928.	0.5	4
234	The DGCR8 RNA-Binding Heme Domain Recognizes Primary MicroRNAs by Clamping the Hairpin. Cell Reports, 2014, 7, 1994-2005.	2.9	76
235	Wearing Red for Signaling: The Heme-Bach Axis in Heme Metabolism, Oxidative Stress Response and Iron Immunology. Tohoku Journal of Experimental Medicine, 2014, 232, 229-253.	0.5	92
236	Gaseous O ₂ , NO, and CO in Signal Transduction: Structure and Function Relationships of Heme-Based Gas Sensors and Heme-Redox Sensors. Chemical Reviews, 2015, 115, 6491-6533.	23.0	150
237	Hydrogen-bonding network in heme active site regulates the hydrolysis activity of myoglobin. Journal of Molecular Catalysis B: Enzymatic, 2015, 111, 9-15.	1.8	11
238	Cooperative Substrate Binding by a Diguanylate Cyclase. Journal of Molecular Biology, 2015, 427, 415-432.	2.0	22
239	Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120. Journal of Biological Chemistry, 2015, 290, 19067-19080.	1.6	14
240	Complicity of haem in some adverse drug-reactions. Toxicology Research, 2015, 4, 1128-1142.	0.9	2

#	Article	IF	CITATIONS
241	Gated electron transfer reactions of truncated hemoglobin from Bacillus subtilis differently orientated on SAM-modified electrodes. Physical Chemistry Chemical Physics, 2015, 17, 15365-15374.	1.3	11
242	Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure. BioMetals, 2015, 28, 637-652.	1.8	8
243	Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Archives of Biochemistry and Biophysics, 2015, 565, 25-31.	1.4	31
244	Functional Divergence of Heme-Thiolate Proteins: A Classification Based on Spectroscopic Attributes. Chemical Reviews, 2015, 115, 2532-2558.	23.0	49
245	Kinetic Analysis of a Globin-Coupled Histidine Kinase, <i>Af</i> GcHK: Effects of the Heme Iron Complex, Response Regulator, and Metal Cations on Autophosphorylation Activity. Biochemistry, 2015, 54, 5017-5029.	1.2	18
246	Oxygen and Bis(3′,5′)-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry, 2016, 55, 6642-6651.	1.2	18
247	A heme-binding domain controls regulation of ATP-dependent potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3785-3790.	3.3	53
248	A molecule for all seasons: The heme. Journal of Porphyrins and Phthalocyanines, 2016, 20, 134-149.	0.4	22
249	Met104 is the CO-replaceable ligand at Fe(II) heme in the CO-sensing transcription factor BxRcoM-1. Journal of Biological Inorganic Chemistry, 2016, 21, 559-569.	1.1	9
250	The Heme-Based Oxygen Sensor Rhizobium etli FixL: Influence of Auxiliary Ligands on Heme Redox Potential and Implications on the Enzyme Activity. Journal of Inorganic Biochemistry, 2016, 164, 34-41.	1.5	10
251	Regulation of intracellular heme trafficking revealed by subcellular reporters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5144-52.	3.3	98
252	Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK. BioMetals, 2016, 29, 715-729.	1.8	7
253	An oxidative N-demethylase reveals PAS transition from ubiquitous sensor to enzyme. Nature, 2016, 539, 593-597.	13.7	21
254	Heme Oxygenase-1 and Carbon Monoxide in the Heart. Circulation Research, 2016, 118, 1940-1959.	2.0	160
255	Kinetic Control of O ₂ Reactivity in H-NOX Domains. Journal of Physical Chemistry B, 2016, 120, 5351-5358.	1.2	8
256	The heme–p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis. Molecular and Cellular Oncology, 2016, 3, e965642.	0.3	9
257	Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	236
258	Gas Sensing and Signaling in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. Journal of Bacteriology, 2017, 199, .	1.0	30

#	Article	IF	CITATIONS
259	Insights into signal transduction by a hybrid FixL: Denaturation study of on and off states of a multi-domain oxygen sensor. Journal of Inorganic Biochemistry, 2017, 172, 129-137.	1.5	6
260	Target <scp>DNA</scp> stabilizes <i>Mycobacterium tuberculosis</i> DevR/DosR phosphorylation by the fullâ€length oxygen sensors DevS/DosS and DosT. FEBS Journal, 2017, 284, 3954-3967.	2.2	16
261	Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling. Journal of the American Chemical Society, 2017, 139, 15738-15747.	6.6	6
262	Time-Resolved Resonance Raman Spectroscopy and Application to Studies on Ultrafast Protein Dynamics. Bulletin of the Chemical Society of Japan, 2017, 90, 1344-1371.	2.0	29
263	Mechanism and Role of Globin-Coupled Sensor Signalling. Advances in Microbial Physiology, 2017, 71, 133-169.	1.0	26
264	Phosphatase activity tunes two-component system sensor detection threshold. Nature Communications, 2018, 9, 1433.	5.8	66
265	Protein Dynamics of the Sensor Protein HemAT as Probed by Time-Resolved Step-Scan FTIR Spectroscopy. Biophysical Journal, 2018, 114, 584-591.	0.2	2
266	Histidine–Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates. Biochemistry, 2018, 57, 631-644.	1.2	10
267	Bacterial Heme-Based Sensors of Nitric Oxide. Antioxidants and Redox Signaling, 2018, 29, 1872-1887.	2.5	21
268	Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chemistry, 2018, 29, 3231-3239.	1.8	265
269	Statistical and quantum-chemical analysis of the effect of heme porphyrin distortion in heme proteins: Differences between oxidoreductases and oxygen carrier proteins. Chemical Physics Letters, 2018, 710, 108-112.	1.2	13
270	The Aer2 receptor from <i>Vibrio cholerae</i> is a dual PASâ€heme oxygen sensor. Molecular Microbiology, 2018, 109, 209-224.	1.2	19
271	A spectroelectrochemical investigation of the hemeâ€based sensor DevSÂfrom <i>MycobacteriumÂtuberculosis</i> : a redox <i>versus</i> oxygen sensor. FEBS Journal, 2019, 286, 4278-4293.	2.2	11
272	Heme binding to human CLOCK affects interactions with the E-box. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19911-19916.	3.3	35
273	A Heme Propionate Staples the Structure of Cytochrome <i>c</i> for Methionine Ligation to the Heme Iron. Inorganic Chemistry, 2019, 58, 14085-14106.	1.9	12
274	Thiolâ€based redox sensing in the methyltransferase associated sensor kinase RdmS in <i>Methanosarcina acetivorans</i> . Environmental Microbiology, 2019, 21, 1597-1610.	1.8	8
275	Nucleotide Second Messenger-Based Signaling in Extreme Acidophiles of the Acidithiobacillus Species Complex: Partition Between the Core and Variable Gene Complements. Frontiers in Microbiology, 2019, 10, 381.	1.5	19
276	Modeling the dual oxygen- and pH-stimulated response of hemoglobin-loaded polyampholyte hydrogel for oxygen-pH coupled biosensor platform. Sensors and Actuators B: Chemical, 2019, 286, 421-428.	4.0	16

#	Article	IF	CITATIONS
277	Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxidants and Redox Signaling, 2019, 30, 1651-1696.	2.5	25
278	Energy Exchange Network Model Demonstrates Protein Allosteric Transition: An Application to an Oxygen Sensor Protein. Journal of Physical Chemistry B, 2019, 123, 768-775.	1.2	19
279	Oxygen triggers signal transduction in the DevS (DosS) sensor of Mycobacterium tuberculosis by modulating the quaternary structure. FEBS Journal, 2019, 286, 479-494.	2.2	13
280	Conferment of CO-Controlled Dimer–Monomer Transition Property to Thermostable Cytochrome <i>c</i> ′ by Mutation in the Subunit–Subunit Interface. Bulletin of the Chemical Society of Japan, 2019, 92, 702-709.	2.0	3

Successful Mesoporous Silica Encapsulation of Optimally Functional EcDOS (E. coli Direct Oxygen) Tj ETQq000 rg $BT_{.8}$ /Overlock 10 Tf 50

282	Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxidants and Redox Signaling, 2020, 32, 228-246.	2.5	17
283	Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. Journal of Biological Inorganic Chemistry, 2020, 25, 685-704.	1.1	6
284	Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coordination Chemistry Reviews, 2020, 423, 213476.	9.5	8
285	Electrochemical Characterization and Bioelectrocatalytic H ₂ O ₂ Sensing of Nonâ€Symbiotic Hexaâ€Coordinated Sugar Beet Hemoglobins. ChemElectroChem, 2020, 7, 2114-2122.	1.7	6
286	Azorhizobium caulinodans c-di-GMP phosphodiesterase Chp1 involved in motility, EPS production, and nodulation of the host plant. Applied Microbiology and Biotechnology, 2020, 104, 2715-2729.	1.7	15
287	Mycobacterial and Human Nitrobindins: Structure and Function. Antioxidants and Redox Signaling, 2020, 33, 229-246.	2.5	17
288	Fast autooxidation of a bis-histidyl-ligated globin from the anhydrobiotic tardigrade, <i>Ramazzottius varieornatus</i> , by molecular oxygen. Journal of Biochemistry, 2021, 169, 663-673.	0.9	2
289	Oxygen sensing in crustaceans: functions and mechanisms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 1-15.	0.7	10
290	FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium <i>Gluconobacter oxydans</i> Affects Expression of Genes Involved in Respiration and Redox Metabolism. Applied and Environmental Microbiology, 2021, 87, .	1.4	4
291	Oxygen-dependent regulation of ion channels: acute responses, post-translational modification, and response to chronic hypoxia. Pflugers Archiv European Journal of Physiology, 2021, 473, 1589-1602.	1.3	5
292	Resonance Raman studies of gas sensing heme proteins. Journal of Raman Spectroscopy, 0, , .	1.2	4
293	Oxygen-Induced Conformational Changes in the PAS-Heme Domain of the <i>Pseudomonas aeruginosa</i> Aer2 Receptor. Biochemistry, 2021, 60, 2610-2622.	1.2	8
294	Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. International Journal of Molecular Sciences, 2021, 22, 9034.	1.8	3

#	Article	IF	CITATIONS
295	Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coordination Chemistry Reviews, 2021, 445, 214096.	9.5	14
296	Heme and Hemoproteins. , 2009, , 160-183.		21
297	Respiratory Physiology of Vertebrates. , 2010, , .		23
298	Haem-based Sensors of Dioxygen. 2-Oxoglutarate-Dependent Oxygenases, 2017, , 47-83.	0.8	1
299	Overview of Gasotransmitters and the Related Signaling Network. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 1-28.	0.8	6
300	Protein Folding Modulates the Swapped Dimerization Mechanism of Methyl-Accepting Chemotaxis Heme Sensors. PLoS ONE, 2012, 7, e46328.	1.1	11
302	Insights into Heme-based O2 Sensing from Structure–Function Relationships in the FixL Proteins. , 2008, , 564-596.		0
303	Novel Heme-Protein Interactions— Some More Radical Than Others. , 2009, , 184-207.		2
304	CHAPTER 1: Literature review. , 2018, , 41-62.		0
305	Bacterial Globins. , 2018, , 1-6.		0
307	Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells, 2021, 10, 3366.	1.8	10
308	Heme-Based Gas Sensors in Nature and Their Chemical and Biotechnological Applications. Biochem, 2022, 2, 43-63.	0.5	7
309	Haem-based Sensors of Nitric Oxide. 2-Oxoglutarate-Dependent Oxygenases, 2017, , 15-46.	0.8	1
310	Overview of Gas-sensing Systems. 2-Oxoglutarate-Dependent Oxygenases, 2017, , 1-14.	0.8	0
318	Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacological Reviews, 2022, 74, 825-875.	7.1	15
319	Intracellular hemin is a potent inhibitor of the voltage-gated potassium channel Kv10.1. Scientific Reports, 2022, 12, .	1.6	2
320	Biosensor for heavy metals detection in wastewater: A review. Food and Chemical Toxicology, 2022, 168, 113307.	1.8	22
321	The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Translational Research, 2023, 252, 34-44.	2.2	6

#	Article	IF	CITATIONS
322	The Aer2 chemoreceptor from <i>Vibrio vulnificus</i> is a triâ€PASâ€heme oxygen sensor. Molecular Microbiology, 2023, 119, 59-73.	1.2	1
323	Measurement of O2 Binding by Sensory Hemeproteins. Methods in Molecular Biology, 2023, , 11-25.	0.4	0
324	Structures of biological heme-based sensors of oxygen. Journal of Inorganic Biochemistry, 2023, 244, 112229.	1.5	1