Recovery of carboxylic acids C1C3 with organophosp

Journal of Chemical Technology and Biotechnology 80, 1425-1430 DOI: 10.1002/jctb.1348

Citation Report

#	Article	IF	CITATIONS
1	Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. Journal of Membrane Science, 2007, 305, 313-324.	4.1	109
2	Today's and tomorrow's bio-based bulk chemicals from white biotechnology. Applied Biochemistry and Biotechnology, 2007, 136, 361-388.	1.4	141
3	Intensification of Nicotinic Acid Separation using Organophosphorous Solvating Extractants by Reactive Extraction. Chemical Engineering and Technology, 2008, 31, 1584-1590.	0.9	57
4	Extraction and permeation studies of Cd(II) in acidic and neutral chloride media using Cyanex 923 on supported liquid membrane. Hydrometallurgy, 2009, 96, 81-87.	1.8	45
5	A study on a combined process for the treatment of phenolic resin plant effluents. Journal of Hazardous Materials, 2009, 169, 659-666.	6.5	5
6	Extraction of Pyridine-3-carboxylic Acid Using 1-Dioctylphosphoryloctane (TOPO) with Different Diluents: Equilibrium Studies. Journal of Chemical & Engineering Data, 2009, 54, 2669-2677.	1.0	23
7	Mathematical modeling of cadmium(II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier. Journal of Hazardous Materials, 2010, 182, 903-911.	6.5	13
9	Experimental Data and Theoretical (Chemodel Using the Differential Evolution Approach and Linear) Tj ETQq1 1 (Using Tri- <i>n</i> -octylamine. Journal of Chemical & Engineering Data, 2010, 55, 4290-4300.).784314 1.0	rgBT /Overlo 27
10	Differential Evolution Approach for Reactive Extraction of Propionic Acid Using Tri- <i>n</i> -Butyl Phosphate (TBP) in Kerosene and 1-Decanol. Materials and Manufacturing Processes, 2011, 26, 1222-1228.	2.7	16
11	Estimation of equilibrium parameters using differential evolution in reactive extraction of propionic acid by tri-n-butyl phosphate. Chemical Engineering and Processing: Process Intensification, 2011, 50, 614-622.	1.8	31
12	Conditioning hardwood-derived pre-pulping extracts for use in fermentation through removal and recovery of acetic acid using trioctylphosphine oxide (TOPO). Holzforschung, 2011, 65, 51-58.	0.9	27
13	Reactive Extraction of Short-Chain Fatty Acids from Synthetic Acidic Fermentation Broth of Organic Solid Wastes and Their Stripping. Journal of Chemical & Engineering Data, 2012, 57, 46-51.	1.0	18
14	Treatment of Effluents Issued from Agro-Food Industries by Liquid–Liquid Extraction of Malic and Lactic Acids Using Tri-n-octylamine and Tri-n-butyl Phosphate. Industrial & Engineering Chemistry Research, 2012, 51, 12471-12478.	1.8	7
15	Solvent extraction separation of tyramine from simulated alkaloid processing wastewater by Cyanex 923/kerosene. Separation and Purification Technology, 2013, 103, 28-35.	3.9	9
16	INTENSIFICATION OF RECOVERY OF FORMIC ACID FROM AQUEOUS STREAM USING REACTIVE EXTRACTION WITH N, N-DIOCTYLOCTAN-1-AMINE: EFFECT OF DILUENT AND TEMPERATURE. Chemical Engineering Communications, 2013, 200, 678-700.	1.5	15
17	Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth. Bioresource Technology, 2014, 167, 219-225.	4.8	29
18	Reaktive Trennung von Essigsäre/Ameisensäre/Wasser-Gemischen aus der Bioraffinerie. Chemie-Ingenieur-Technik, 2015, 87, 843-847.	0.4	5
19	Green liquor extraction of hemicellulosic fractions and subsequent organic acid recovery from the extracts using liquid–liquid extraction. Industrial Crops and Products, 2015, 67, 395-402.	2.5	15

#	Article	IF	CITATIONS
20	Response surface methodology for optimization of solvent extraction to recovery of acetic acid from black liquor derived from Typha latifolia pulping process. Industrial Crops and Products, 2016, 89, 34-44.	2.5	22
21	Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid. Separation and Purification Technology, 2017, 185, 186-195.	3.9	100
22	Extraction of carboxylic acids with neutral extractants. Theoretical Foundations of Chemical Engineering, 2017, 51, 786-794.	0.2	12
23	Isolation of Carboxylic Acids from Biobased Feedstock. Chemie-Ingenieur-Technik, 2017, 89, 161-171.	0.4	23
24	Delignification from Geodae-Uksae1 using soda-pulping followed by evaluation on recycling of liquid-liquid extraction solvent. Biomass and Bioenergy, 2018, 109, 23-30.	2.9	4
25	<i>In situ</i> recovery of bio-based carboxylic acids. Green Chemistry, 2018, 20, 1791-1804.	4.6	63

CITATION REPORT

Removal of succinic acid from fermentation broth by multistage process (membrane separation and) Tj ETQq000 rgBT /Overlock 10 Tf $\frac{1}{29}$

27	Explore the competency of natural diluents with Tri-n-octylamine for the extractive separation of malonic acid. Chemical Data Collections, 2019, 22, 100253.	1.1	3
28	Study of a New Process for the Preparation of Butyl Levulinate from Cellulose. ACS Omega, 2019, 4, 9828-9834.	1.6	7
29	Removal of acetic acid from aqueous solutions using bulk ionic liquid membranes: A transport and experimental design study. Separation and Purification Technology, 2019, 224, 51-61.	3.9	23
30	High-Pressure Electrochemical Reduction of CO ₂ to Formic Acid/Formate: Effect of pH on the Downstream Separation Process and Economics. Industrial & Engineering Chemistry Research, 2019, 58, 22718-22740.	1.8	84
31	Improving understanding of solvent effects on intermolecular interactions in reactive liquid–liquid extraction with Isothermal Titration Calorimetry and molecular modeling. Journal of Industrial and Engineering Chemistry, 2019, 72, 364-373.	2.9	19
32	Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Separation and Purification Technology, 2019, 211, 935-957.	3.9	131
33	The effect of fermentation broth composition on removal of carboxylic acids by reactive extraction with Cyanex 923. Separation and Purification Technology, 2020, 236, 116289.	3.9	15
34	Liquid–liquid extraction technology for resource recovery: Applications, potential, and perspectives. Journal of Water Process Engineering, 2021, 40, 101762.	2.6	21
35	Extraction Equilibria of Propionic Acid in Systems with Phosphonium Phosphinate Ionic Liquid, Dodecane, and Water. Journal of Chemical & Engineering Data, 2021, 66, 947-957.	1.0	8
36	Pressure-swing distillation process for separating ternary azeotropic mixture of acidic aqueous solution. Chemical Engineering Communications, 2022, 209, 882-894.	1.5	1
37	Process Intensification for Separation of Carboxylic Acids from Fermentation Broths using Reactive Extraction. I-manager's Journal on Future Engineering and Technology, 2008, 3, 21-28.	0.3	19

CITATION REPO	RT.

#	Article	IF	CITATIONS
38	Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents. Korean Chemical Engineering Research, 2015, 53, 695-702.	0.2	6
39	Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction. Korean Chemical Engineering Research, 2016, 54, 753-761.	0.2	6
40	Recovery of Fumaric acid from Aqueous Solution Using Laboratory Prepared Nontoxic Diluent. International Journal of ChemTech Research, 2018, 11, 14-21.	0.1	0
41	Highly effective mineralization of acetic acid wastewater via catalytic ozonation over the promising MnO2/γ-Al2O3 catalyst. Chemical Physics Impact, 2023, 6, 100149.	1.7	4