Extraction and pertraction of phenol through bulk liqui

Journal of Chemical Technology and Biotechnology 80, 189-197 DOI: 10.1002/jctb.1178

Citation Report

#	Article	IF	CITATIONS
1	Salt Effects on the Recovery of Phenol by Liquid‣iquid Extraction with Cyanex 923. Separation Science and Technology, 2005, 40, 3365-3380.	1.3	22
2	A Study on the Selective Recovery of Phenol and Formaldehyde from Phenolic Resin Plant Effluents by Liquidâ€Liquid Extraction. Solvent Extraction and Ion Exchange, 2007, 25, 485-501.	0.8	14
3	Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. Journal of Membrane Science, 2007, 305, 313-324.	4.1	109
4	Phenol recovery with tributyl phosphate in a hollow fiber membrane contactor: Experimental and model analysis. Separation and Purification Technology, 2009, 69, 48-56.	3.9	54
5	Liquid-Liquid Equilibrium Study of Phenol Extraction with Cyanex 923. Separation Science and Technology, 2009, 44, 1753-1771.	1.3	18
6	Short-cut calculations for integrated product recovery options in fermentative production of bio-bulk chemicals. Process Biochemistry, 2010, 45, 1605-1615.	1.8	21
7	Performance evaluation of organic emulsion liquid membrane on phenol removal. Journal of Hazardous Materials, 2010, 184, 255-260.	6.5	97
8	Separation of phenol and formaldehyde from industrial wastes. Modelling of the phenol extraction equilibrium. Journal of Chemical Technology and Biotechnology, 2010, 85, 1215-1222.	1.6	15
9	Bulk Hybrid Liquid Membrane with Organic Water-Immiscible Carriers. , 2010, , 201-275.		5
10	In-Situ Product Removal from Fermentations by Membrane Extraction: Conceptual Process Design and Economics. Industrial & Engineering Chemistry Research, 2011, 50, 9197-9208.	1.8	10
11	Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization. Desalination, 2011, 278, 250-258.	4.0	68
12	A Meticulous Study on the Adsorption of Mercury as Tetrachloromercurate(II) Anion with Trioctylamine Modified Sodium Montmorillonite and Its Application to a Coal Fly Ash Sample. Industrial & Engineering Chemistry Research, 2012, 51, 11312-11327.	1.8	28
13	Removal of phenolic compounds from aqueous solutions by emulsion liquid membrane containing Ionic Liquid [BMIM]+[PF6]â~ in Tributyl phosphate. Desalination, 2012, 289, 27-34.	4.0	98
14	State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. Journal of Membrane Science, 2013, 430, 263-303.	4.1	191
15	Removal of phenol from wastewaters using membrane contactors: Comparative experimental analysis of emulsion pertraction. Desalination, 2013, 309, 171-180.	4.0	38
16	Postiive tone resists based on network deploymerization of molecular resists. , 2013, , .		2
18	Influence of Carrier Concentration (1-Alkylimidazols and TOA) on Citric Acid Transport across Polymer Inclusion Membranes (PIM). Separation Science and Technology, 2014, 49, 1736-1744.	1.3	9
19	Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 2014, 32, 873-904.	6.0	374

CITATION REPORT

#	Article	IF	CITATIONS
20	Phenol Removal from Aqueous System by Bis(2-ethylhexyl) Sulfoxide Extraction. Separation Science and Technology, 2014, 49, 2495-2501.	1.3	11
21	Transport of p-nitrophenol in an agitated bulk liquid membrane system – Experimental and theoretical study by network analysis. Separation and Purification Technology, 2014, 132, 616-626.	3.9	19
22	Kinetics modeling of two phase biodegradation in a hollow fiber membrane bioreactor. Separation and Purification Technology, 2014, 122, 350-358.	3.9	9
23	Solvent extraction of phenol from aqueous solution with benzyl 2â€ethylhexyl sulfoxide as a novel extractant. Canadian Journal of Chemical Engineering, 2015, 93, 1787-1792.	0.9	9
24	Facilitated transport of phenol through supported liquid membrane containing bis(2-ethylhexyl) sulfoxide (BESO) as the carrier. Chemical Engineering and Processing: Process Intensification, 2015, 93, 79-86.	1.8	33
25	ABE fermentation products recovery methods—A review. Renewable and Sustainable Energy Reviews, 2015, 48, 648-661.	8.2	221
26	Analytical Applications of Transport Through Bulk Liquid Membranes. Critical Reviews in Analytical Chemistry, 2016, 46, 332-341.	1.8	18
27	Measurements and correlation of liquid-liquid equilibrium data for the ternary (3-heptanone+phenol+water) system. Journal of Chemical Thermodynamics, 2017, 106, 295-302.	1.0	18
28	Experimental and model studies of p–nitrophenol and phenol separation in the bulk liquid membrane with the application of bond–graph method. Chemical Engineering Science, 2018, 185, 141-148.	1.9	9
29	Extraction of glycyrrhizin from licorice (Glycyrrhiza Glabra L.) by bulk liquid membrane. Environmental Technology and Innovation, 2018, 12, 180-188.	3.0	7
30	Improving understanding of solvent effects on intermolecular interactions in reactive liquid–liquid extraction with Isothermal Titration Calorimetry and molecular modeling. Journal of Industrial and Engineering Chemistry, 2019, 72, 364-373.	2.9	19
31	Extraction of phenolic pollutants from industrial wastewater using a bulk ionic liquid membrane technique. Environmental Technology (United Kingdom), 2022, 43, 1038-1049.	1.2	5
32	Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass and Bioenergy, 2021, 144, 105919.	2.9	117
33	Membrane assisted processing of acetone, butanol, and ethanol (ABE) aqueous streams. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108462.	1.8	16
34	Performance Evaluation of Bulk Liquid Membrane Technique on p-Nitrophenol Removal from Aqueous Solution. Chemical and Biochemical Engineering Quarterly, 2018, 32, 83-90.	0.5	5
35	An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp Environmental Science and Pollution Research, 2022, 29, 47988-48019.	2.7	9
36	Process intensification in biobutanol production. , 2022, , 223-262.		1
37	Successful removal of phenol from industrial wastewater using novel hydrophobic modified ceramic hollow fiber membrane contactors with remarkably high stability. Journal of Industrial and Engineering Chemistry, 2022, 114, 402-408.	2.9	8

#	Article	IF	CITATIONS
38	Investigation of the extraction of natural alkaloids in Karr reciprocating plate columns: Fluid dynamic study. Chemical Engineering Science, 2022, 264, 118090.	1.9	2
39	Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes. Membranes, 2023, 13, 236.	1.4	0
40	Challenges in Biobutanol Fermentation and Separation. , 2023, , 87-110.		0
42	Novel devices for the extraction and recovery of rare-earth metals through recycling of waste. Journal of Material Cycles and Waste Management, 0, , .	1.6	0

CITATION REPORT