The Cucurbit[n]uril Family

Angewandte Chemie - International Edition 44, 4844-4870

DOI: 10.1002/anie.200460675

Citation Report

#	Article	IF	CITATIONS
1	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 1990, , 277-288.	0.5	4
2	Molecular recognition of dihydroxyaromatics with bis-o-xylyleneglycoluril hosts. Pure and Applied Chemistry, 1996, 68, 1561-1567.	0.9	19
3	The Cucurbit[n]uril Family:Â Prime Components for Self-Sorting Systems. Journal of the American Chemical Society, 2005, 127, 15959-15967.	6.6	786
4	The Cucurbit[n]uril Family. ChemInform, 2005, 36, no.	0.1	2
5	Cucurbit[10]uril. Journal of the American Chemical Society, 2005, 127, 16798-16799.	6.6	298
6	Chapter 3 From methylene bridged glycoluril dimers to cucurbit[n]uril analogs with some detours along the way. Strategies and Tactics in Organic Synthesis, 2005, 6, 71-99.	0.1	O
7	Cucurbit[n]uril Analogues:Â Synthetic and Mechanistic Studies. Journal of Organic Chemistry, 2005, 70, 10381-10392.	1.7	83
8	The Inverted Cucurbit[n]uril Family. Journal of the American Chemical Society, 2005, 127, 18000-18001.	6.6	162
9	Hostâ [^] Cuest Complexation of Neutral Red with Macrocyclic Host Molecules:Â Contrasting pKaShifts and Binding Affinities for Cucurbit[7]uril and Î ² -Cyclodextrin. Journal of Physical Chemistry B, 2006, 110, 5132-5138.	1.2	266
10	High Fidelity Kinetic Self-Sorting in Multi-Component Systems Based on Guests with Multiple Binding Epitopes. Journal of the American Chemical Society, 2006, 128, 14093-14102.	6.6	190
11	Cucurbit[7]uril host-guest complexes with cationic bis(4,5-dihydro-1H-imidazol-2-yl) guests in aqueous solution. Canadian Journal of Chemistry, 2006, 84, 905-914.	0.6	28
12	Inhibition of C(2)-H/D exchange of a bis(imidazolium) dication upon complexation with cucubit[7]uril. Chemical Communications, 2006, , 2908.	2.2	67
13	Cucurbituril binding of trans-[{PtCl(NH3)2}2($\hat{A}\mu$ -NH2(CH2)8NH2)]2+and the effect on the reaction with cysteine. Dalton Transactions, 2006, , 5337-5344.	1.6	63
14	lon Binding to Cucurbit[6]uril:Â Structure and Dynamics. Journal of Physical Chemistry B, 2006, 110, 14463-14468.	1.2	11
15	Regioselective Photodimerization of Cinnamic Acids in Water:Â Templation with Cucurbiturils. Langmuir, 2006, 22, 7605-7609.	1.6	79
16	Chiral Recognition in Cucurbituril Cavities. Journal of the American Chemical Society, 2006, 128, 14871-14880.	6.6	110
17	Photoinduced and dark complexation of unsaturated viologen analogues containing two ammonium tails with cucurbit[8]uril. New Journal of Chemistry, 2006, 30, 458.	1.4	34
18	Silver(I) Ion Assisted Assembly of One-Dimensional Polyrotaxanes Incorporating Cucurbit[6]uril. Crystal Growth and Design, 2006, 6, 1420-1427.	1.4	25

#	Article	IF	CITATIONS
19	Stabilization of the (E)-1-Ferrocenyl-2-(1-methyl-4-pyridinium)ethylene Cation by Inclusion in Cucurbit[7]uril. Organometallics, 2006, 25, 1820-1823.	1.1	41
20	Cucurbit[7]uril Mediates the Stereoselective [4+4] Photodimerization of 2-Aminopyridine Hydrochloride in Aqueous Solution. Journal of Organic Chemistry, 2006, 71, 1237-1239.	1.7	89
21	JÃ,rgensen Complex within a Molecular Container:Â Selective Encapsulation oftrans-[Co(en)2Cl2]+into Cucurbit[8]uril and Influence of Inclusion on Guest's Properties. Inorganic Chemistry, 2006, 45, 6950-6955.	1.9	41
22	Substituent Effects Control the Self-Association of Molecular Clips in the Crystalline State. Journal of Organic Chemistry, 2006, 71, 4502-4508.	1.7	61
23	Circular Dichroism of Intra- and Intermolecular Charge-Transfer Complexes. Enhancement of Anisotropy Factors by Dimer Formation and by Confinement. Journal of Organic Chemistry, 2006, 71, 3232-3247.	1.7	34
24	Complexation of Poly(phenylenevinylene) Precursors and Monomers by Cucurbituril Hosts. Chemistry of Materials, 2006, 18, 5944-5949.	3.2	26
25	Preparation and biological activity of novel cucurbit[8]uril–fullerene complex. Journal of Photochemistry and Photobiology B: Biology, 2006, 85, 223-227.	1.7	21
26	Cucurbituril anchored silica gel. Tetrahedron Letters, 2006, 47, 2073-2075.	0.7	48
27	DFT study of cucurbit[n]uril, n=5–10. Computational and Theoretical Chemistry, 2006, 765, 151-152.	1.5	31
28	Recent progress on switchable rotaxanes. Chemical Society Reviews, 2006, 35, 361.	18.7	369
29	Nor-Seco-Cucurbit[10]uril Exhibits Homotropic Allosterism. Journal of the American Chemical Society, 2006, 128, 14744-14745.	6.6	167
30	Switching a molecular shuttle on and off: simple, pH-controlled pseudorotaxanes based on cucurbit[7]uril. Chemical Communications, 2006, , 2185.	2.2	124
31	Synthesis and guest exchange reactions of inclusion compounds of cucurbit[8]uril with nickel(II) and copper(II) complexes. Russian Chemical Bulletin, 2006, 55, 26-35.	0.4	10
32	Synthesis and crystal structures of supramolecular compounds of polynuclear aluminum(III) aqua hydroxo complexes with cucurbit[6]uril. Russian Chemical Bulletin, 2006, 55, 267-275.	0.4	29
33	Use of the macrocyclic ligand cucurbit[6]uril for isolation of tetranuclear lanthanide aquahydroxo-carboxylate complexes from aqueous solutions. Russian Chemical Bulletin, 2006, 55, 1956-1965.	0.4	33
34	Unexpected Cyclization of Dipyridyl-glycoluril in the Presence of Formaldehyde and Strong Acid: A New Scaffold with a Potential as an Anion Receptor. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 219-222.	1.6	1
35	Self-assembly of a [2]Pseudorotaxane Composed of Cucurbit[6]uril into Linear Pseudopolyrotaxanes by N–H···O, C–HÂ·Â·Â·Ô and π···π Interactions. Journal of Inclusion Phenomena and Macrocyclic Che 2006, 56, 193-196.	em ist ry,	6
36	[5]Rotaxane and [5]Pseudorotaxane Based on Cucurbit[6]uril and Anchored to a Meso-tetraphenyl Porphyrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 373-380.	1.6	60

#	ARTICLE	IF	Citations
37	11-Aminoundecanoic acid, Cyclodextrins (\hat{l} ±, \hat{l} 2) and Cucurbit[n]urils (n = 6, 7) as Building Blocks for Supramolecular Assemblies: A Thermodynamic Study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 363-368.	1.6	19
38	Electrochemical Switching and Size Selection in Cucurbit[8]uril-Mediated Dendrimer Self-Assembly. Angewandte Chemie - International Edition, 2006, 45, 7042-7046.	7.2	128
39	Characterization of host–guest complexes of cucurbit[n]uril (n = 6, 7) by electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2006, 41, 202-207.	0.7	43
41	Cucurbit[n]uril: A New Molecule in Host - Guest Chemistry. Australian Journal of Chemistry, 2006, 59, 354.	0.5	25
42	Interaction Between Cucurbit[8]uril and HCl Salts of 3,4,7,8-Tetramethyl-1,10-phenanthroline. Supramolecular Chemistry, 2006, 18, 523-528.	1.5	10
43	Sequence-Specific Recognition and Cooperative Dimerization of N-Terminal Aromatic Peptides in Aqueous Solution by a Synthetic Host. Journal of the American Chemical Society, 2006, 128, 12574-12581.	6.6	304
44	A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20737-20742.	3.3	534
45	The Host-Guest Chemistry of Proflavine with Cucurbit[6,7,8]urils. Supramolecular Chemistry, 2007, 19, 475-484.	1.5	38
46	Squeezing Fluorescent Dyes into Nanoscale Containersâ€"The Supramolecular Approach to Radiative Decay Engineering. Springer Series on Fluorescence, 2007, , 185-211.	0.8	20
47	Exclusive Formation of 1:1 and 2:2 Complexes between Cucurbit[8]uril and Electron Donor-acceptor Molecules Induced by Host-stabilized Charge-transfer Interactions. Supramolecular Chemistry, 2007, 19, 287-293.	1.5	38
48	A Comparative Study of Complexation of \hat{l}^2 -Cyclodextrin, Calix[4]arenesulfonate and Cucurbit[7]uril with Dye Guests: Fluorescence Behavior and Binding Ability. Supramolecular Chemistry, 2007, 19, 517-523.	1.5	58
49	Functionalized cucurbiturils and their applications. Chemical Society Reviews, 2007, 36, 267-279.	18.7	858
50	Reversible 2D Pseudopolyrotaxanes Based On Cyclodextrins and Cucurbit[6]uril. Journal of Organic Chemistry, 2007, 72, 280-283.	1.7	69
51	Structure and binding properties of water-soluble cavitands and capsules. Chemical Society Reviews, 2007, 36, 93-104.	18.7	385
52	Mechanism of the Conversion of Inverted CB[6] to CB[6]. Journal of Organic Chemistry, 2007, 72, 6840-6847.	1.7	40
53	Inclusion of anthraquinone derivatives by the cucurbit[7]uril host. New Journal of Chemistry, 2007, 31, 725.	1.4	25
54	A new cucurbit[8]uril-based fluorescent receptor for indole derivatives. Chemical Communications, 2007, , 610-612.	2.2	69
55	Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n = 6, 8). CrystEngComm, 2007, 9, 973.	1.3	62

#	Article	IF	CITATIONS
56	Dynamic Switching between Single- and Double-Axial Rotaxanes Manipulated by Charge and Bulkiness of Axle Termini. Organic Letters, 2007, 9, 4789-4792.	2.4	50
57	A theoretical analysis of a classic example of supramolecular catalysis. Chemical Communications, 2007, , 748-750.	2.2	54
58	Selective binding of cucurbit[7]uril and β-cyclodextrin with a redox-active molecular triad Ru(bpy)3–MV2+–naphthol. Chemical Communications, 2007, , 4734.	2.2	32
59	Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chemical Communications, 2007, , 1305-1315.	2.2	467
60	Cucurbit[7]uril-included neutral intramolecular charge-transfer ferrocene derivatives. Dalton Transactions, 2007, , 3991.	1.6	23
61	Molecular switch based on a cucurbit[6]uril containing bistable [3]rotaxane. Chemical Communications, 2007, , 1369-1371.	2.2	104
62	Complexation Thermodynamics of Cucurbit[6]uril with Aliphatic Alcohols, Amines, and Diamines. Supramolecular Chemistry, 2007, 19, 39-46.	1.5	114
63	Interaction between Tetramethylcucurbit[6]uril and Some Pyridine Derivates. Journal of Physical Chemistry A, 2007, 111, 2715-2721.	1.1	26
64	Hostâ^'Guest Chemistry and Light Driven Molecular Lock of Ru(bpy)3â^'Viologen with Cucurbit[7â^8]urils. Journal of Physical Chemistry B, 2007, 111, 13357-13363.	1.2	55
65	Reconfigurable Four-Component Molecular Switch Based on pH-Controlled Guest Swapping. Organic Letters, 2007, 9, 2349-2352.	2.4	50
66	Refolding Foldamers:Â Triazene-Arylene Oligomers That Change Shape with Chemical Stimuli. Journal of the American Chemical Society, 2007, 129, 11232-11241.	6.6	58
67	Eight-membered and larger rings. Progress in Heterocyclic Chemistry, 2007, , 430-448.	0.5	3
68	Chiral Molecular Clips Control Orthogonal Crystalline Organization. Organic Letters, 2007, 9, 1899-1902.	2.4	35
69	Blue-Colored Donorâ^'Acceptor [2]Rotaxane. Organic Letters, 2007, 9, 1481-1484.	2.4	38
70	Kinetics of the Electron Self-Exchange and Electron-Transfer Reactions of the (Trimethylammonio)methylferrocene Hostâ-'Guest Complex with Cucurbit[7]uril in Aqueous Solutionâ€. Journal of Physical Chemistry B, 2007, 111, 6949-6954.	1.2	36
71	Binding Modes of Cucurbit[6]uril and Cucurbit[7]uril with a Tetracationic Bis(viologen) Guest. Journal of Organic Chemistry, 2007, 72, 4539-4542.	1.7	58
72	Preorientation of Olefins toward a Single Photodimer:  Cucurbituril-Mediated Photodimerization of Protonated Azastilbenes in Water. Langmuir, 2007, 23, 7545-7554.	1.6	97
73	Interesting Anion-Inclusion Behavior of Cucurbit[5]uril and Its Lanthanide-Capped Molecular Capsule. Inorganic Chemistry, 2007, 46, 10168-10173.	1.9	108

#	Article	IF	Citations
74	Cucurbit[7]uril Induces Superior Probe Performance for Single-Molecule Detection. Journal of the American Chemical Society, 2007, 129, 10338-10339.	6.6	32
75	Cucurbituril Encapsulation of Fluorescent Dyes. Supramolecular Chemistry, 2007, 19, 55-66.	1.5	250
76	Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter, 2007, 3, 1456.	1.2	280
77	Novel platinum(ii)-based anticancer complexes and molecular hosts as their drug delivery vehicles. Dalton Transactions, 2007, , 5055.	1.6	110
78	Synthesis and X-ray Structure of the Inclusion Complex of Dodecamethylcucurbit[6]uril with 1,4-Dihydroxybenzene. Molecules, 2007, 12, 716-722.	1.7	29
79	Chlorine Anion Encapsulation by Molecular Capsules Based on Cucurbit[5]uril and Decamethylcucurbit[5]uril. Molecules, 2007, 12, 1325-1333.	1.7	34
80	Inherently Chiral Molecular Clips: Synthesis, Chiroptical Properties, and Application to Chiral Discrimination. Chemistry - A European Journal, 2007, 13, 2473-2479.	1.7	20
81	Nitroxide Radicals as Probes for Exploring the Binding Properties of the Cucurbit[7]uril Host. Chemistry - A European Journal, 2007, 13, 7223-7233.	1.7	70
82	Gold Nanoparticles in Organic Capsules: A Supramolecular Assembly of Gold Nanoparticles and Cucurbituril. Chemistry - A European Journal, 2007, 13, 6359-6364.	1.7	78
83	Cucurbit[8]uril/Cucurbit[7]uril Controlled Off/On Fluorescence of the Acridizinium and 9-Aminoacridizinium Cations in Aqueous Solution. Chemistry - A European Journal, 2007, 13, 6468-6473.	1.7	75
84	Inclusion Complexation of Diquat and Paraquat by the Hosts Cucurbit[7]uril and Cucurbit[8]uril. Chemistry - A European Journal, 2007, 13, 7908-7914.	1.7	68
85	Insulated Molecular Wires. Angewandte Chemie - International Edition, 2007, 46, 1028-1064.	7.2	577
86	Supramolecular Chemistry in Water. Angewandte Chemie - International Edition, 2007, 46, 2366-2393.	7.2	644
87	Cucurbit[7]uril: A Simple Macrocyclic, pH-Triggered Hydrogelator Exhibiting Guest-Induced Stimuli-Responsive Behavior. Angewandte Chemie - International Edition, 2007, 46, 210-213.	7.2	213
88	Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface. Angewandte Chemie - International Edition, 2007, 46, 3471-3474.	7.2	119
89	Efficient Fluorescence Enhancement and Cooperative Binding of an Organic Dye in a Supra-biomolecular Host–Protein Assembly. Angewandte Chemie - International Edition, 2007, 46, 4120-4122.	7.2	206
90	Chiral Recognition inside a Chiral Cucurbituril. Angewandte Chemie - International Edition, 2007, 46, 7425-7427.	7.2	131
91	Longer Guests Drive the Reversible Assembly of Hyperextended Capsules. Angewandte Chemie - International Edition, 2007, 46, 9283-9286.	7.2	65

#	ARTICLE	IF	CITATIONS
92	Carbohydrate Wheels: Cucurbiturilâ€Based Carbohydrate Clusters. Angewandte Chemie - International Edition, 2007, 46, 7393-7395.	7.2	72
100	Supported Gold Nanoparticles as Oxidation Catalysts. , 0, , 389-426.		1
101	Proton and Electron Transfer Control of the Position of Cucurbit[n]uril Wheels in Pseudorotaxanes. Advanced Functional Materials, 2007, 17, 694-701.	7.8	97
102	A Light-Driven Pseudo[4]rotaxane Encoded by Induced Circular Dichroism in a Hydrogel. Advanced Functional Materials, 2007, 17, 829-837.	7.8	105
103	Electron Transfer and Molecular Recognition in Metalloceneâ€Containing Dendrimers. European Journal of Inorganic Chemistry, 2007, 2007, 5015-5027.	1.0	72
104	Supramolecular Dye Laser with Cucurbit[7]uril in Water. ChemPhysChem, 2007, 8, 54-56.	1.0	96
105	Chiroptic behaviour of a chiral guest in an achiral cucurbit[7]uril host. Tetrahedron: Asymmetry, 2007, 18, 483-487.	1.8	24
106	Triple helical structure constructed by covalent bondings: effective synthesis by a pre-organized partial structure and helicity induced by aromatic–aromatic interactions. Tetrahedron Letters, 2007, 48, 4369-4372.	0.7	12
107	A pseudopolyrotaxane consisting in PPV threaded in multiple cucurbiturils. Tetrahedron Letters, 2007, 48, 4613-4617.	0.7	14
108	A novel supramolecular adduct formed by CB[6]-based pseudo-rotaxane and hydrated Zn(II) ion. Inorganic Chemistry Communication, 2007, 10, 101-104.	1.8	4
109	Electrochemically controlled supramolecular systems. Coordination Chemistry Reviews, 2007, 251, 1761-1780.	9.5	118
110	Cucurbit[n]urils-induced room temperature phosphorescence of quinoline derivatives. Analytica Chimica Acta, 2007, 597, 90-96.	2.6	29
111	Copper localization in cucurbit[8] uril. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 88-90.	0.7	8
112	The crystal structure, self-assembly, DNA-binding and cleavage studies of the [2]pseudorotaxane composed of cucurbit[6]uril. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 932-936.	1.0	27
113	N-(2-Pyridylmethyl)adamantane-1-ammonium chloride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o256-o258.	0.2	1
114	Cucurbit[6]urilp-phenylenediammonium diiodide decahydrate inclusion complex. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1060-o1062.	0.2	7
115	A very versatile nanocapsule. Nature Nanotechnology, 2007, 2, 201-202.	15.6	27
116	Toward High-Generation Rotaxane Dendrimers That Incorporate a Ring Component on Every Branch: Noncovalent Synthesis of a Dendritic [10]Pseudorotaxane with 13 Molecular Components. Chemistry - an Asian Journal, 2007, 2, 747-754.	1.7	44

#	ARTICLE	IF	Citations
118	Interaction of Cucurbit $[n\hat{A}=\hat{A}6\hat{a}^1/48]$ urils and Benzimidazole Derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 63-69.	1.6	13
119	Encapsulation of platinum(II)-based DNA intercalators within cucurbit[6,7,8]urils. Journal of Biological Inorganic Chemistry, 2007, 12, 969-979.	1.1	84
120	Studies of the interaction of tetramethylcucurbit[6]uril and 5,5′-dimethyl-2,2′-bipyridyl hydrochloride. Journal of Molecular Modeling, 2007, 13, 1221-1226.	0.8	11
121	Distinctive unimolecular gas-phase reactivity of [M(en) ₂] ²⁺ (M=Ni, Cu) dications and their inclusion complexes with the macrocyclic cavitand Cucurbit[8]uril. Journal of the American Society for Mass Spectrometry, 2007, 18, 1863-1872.	1.2	23
122	Synthesis and characteristics of a novel pseudorotaxane with the diarylethene as the functional stopper. Dyes and Pigments, 2008, 76, 294-298.	2.0	21
123	Interaction between cucurbit[8]uril and viologen derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 131-138.	1.6	15
124	Solubility enhancement of kinetin through host–guest interactions with cucurbiturils. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 171-177.	1.6	22
125	Complex formation of cucurbit[6]uril with amines in the presence of different salts. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 343-346.	1.6	17
126	Scope of amino acid recognition by cucurbit[8]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 251-254.	1.6	84
127	A novel one-dimensional supramolecular inclusion compound linked by hydrogen bonding interaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 263-267.	1.6	6
128	Synthesis, characterization, and properties of copolymer of acrylamide and complex pseudorotaxane monomer consisting of cucurbit[6]uril with butyl ammonium methacrylate. Journal of Polymer Science Part A, 2008, 46, 5999-6008.	2.5	16
129	Specific Binding Effects for Cucurbit[8]uril in 2,4,6â€Triphenylpyrylium–Cucurbit[8]uril Host–Guest Complexes: Observation of Roomâ€Temperature Phosphorescence and their Application in Electroluminescence. Chemistry - A European Journal, 2008, 14, 1762-1768.	1.7	52
130	pHâ€Triggered Dethreading–Rethreading and Switching of Cucurbit[6]uril on Bistable [3]Pseudorotaxanes and [3]Rotaxanes. Chemistry - A European Journal, 2008, 14, 4110-4116.	1.7	74
131	Supramolecular Tandem Enzyme Assays for Multiparameter Sensor Arrays and Enantiomeric Excess Determination of Amino Acids. Chemistry - A European Journal, 2008, 14, 6069-6077.	1.7	176
132	Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils. ChemPhysChem, 2008, 9, 713-720.	1.0	102
133	Tetranuclear Lanthanide Aqua Hydroxo Complexes with Macrocyclic Ligand Cucurbit[6]uril. European Journal of Inorganic Chemistry, 2008, 2008, 416-424.	1.0	86
134	pHâ€Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angewandte Chemie - International Edition, 2008, 47, 2222-2226.	7.2	448
135	Ternary Complexes Comprising Cucurbit[10]uril, Porphyrins, and Guests. Angewandte Chemie - International Edition, 2008, 47, 2657-2660.	7.2	97

#	ARTICLE	IF	CITATIONS
136	Supramolecular Block Copolymers with Cucurbit[8]uril in Water. Angewandte Chemie - International Edition, 2008, 47, 3950-3953.	7.2	291
137	Uâ€Shaped Conformation of Alkyl Chains Bound to a Synthetic Host. Angewandte Chemie - International Edition, 2008, 47, 4106-4109.	7.2	106
138	Cucurbit[6]uril: Organic Molecular Porous Material with Permanent Porosity, Exceptional Stability, and Acetylene Sorption Properties. Angewandte Chemie - International Edition, 2008, 47, 3352-3355.	7.2	293
139	Activation and Stabilization of Drugs by Supramolecular p <i>K</i> _a Shifts: Drugâ€Delivery Applications Tailored for Cucurbiturils. Angewandte Chemie - International Edition, 2008, 47, 5398-5401.	7.2	238
146	Linear Movements., 0,, 401-451.		1
147	Supramolecular ionic liquids based on host–guest cucurbituril imidazolium complexes. Journal of Molecular Catalysis A, 2008, 279, 165-169.	4.8	38
148	Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. Journal of Inorganic Biochemistry, 2008, 102, 2060-2066.	1.5	132
149	A novel inclusion complex form between Q[10] host and Q[5] guest stabilized by potassium ion coordination. Inorganic Chemistry Communication, 2008, 11 , $1085-1087$.	1.8	18
150	Direct force measurement between cucurbit[6]uril and spermine using atomic force microscopy. Tetrahedron, 2008, 64, 8389-8393.	1.0	22
151	Cucurbit[7]uril stabilization of a diarylmethane carbocation in aqueous solution. Tetrahedron Letters, 2008, 49, 311-314.	0.7	27
152	Cucurbit[8]uril-mediated photodimerization of alkyl 2-naphthoate in aqueous solution. Tetrahedron Letters, 2008, 49, 1502-1505.	0.7	45
153	Diphenylglycoluril as a novel ligand architecture for dirhodium(II) carboxamidates. Inorganica Chimica Acta, 2008, 361, 3309-3314.	1.2	11
154	Synthesis of partially methyl substituted cucurbit[n]urils with 3a-methyl-glycoluril. Journal of Molecular Structure, 2008, 875, 442-446.	1.8	39
155	Structures of supramolecular assemblies formed by substituted cucurbiturils and metal ions. Journal of Molecular Structure, 2008, 875, 435-441.	1.8	16
156	Crystal structures of host–guest complexes of meta-tricyclohexyl cucurbit[6]uril with small organic molecules. Journal of Molecular Structure, 2008, 876, 322-327.	1.8	25
157	Inclusion complexes of the antitumour metallocenes Cp2MCl2 (M = Mo, Ti) with cucurbit[n]urils. Dalton Transactions, 2008, , 2328.	1.6	49
158	Uranyl Ion Complexes with Cucurbit $[\langle i \rangle n \langle i \rangle]$ urils $(\langle i \rangle n \langle i \rangle = 6, 7, and 8)$: A New Family of Uranyl-Organic Frameworks. Crystal Growth and Design, 2008, 8, 4132-4143.	1.4	118
159	Synthetic Molecular Machine Based on Reversible Endâ€toâ€Interior and Endâ€toâ€End Loop Formation Triggered by Electrochemical Stimuli. Chemistry - an Asian Journal, 2008, 3, 1277-1283.	1.7	56

#	Article	IF	CITATIONS
160	A Host-Induced Intramolecular Charge-Transfer Complex and Light-Driven Radical Cation Formation of a Molecular Triad with Cucurbit[8]uril. Journal of Organic Chemistry, 2008, 73, 3775-3783.	1.7	59
161	Formation Thermodynamics of Cucurbit[6]uril Macrocycle Molecules: A Theory Study. Journal of Physical Chemistry B, 2008, 112, 12010-12013.	1.2	21
162	Digital Information Processing in Molecular Systems. Chemical Reviews, 2008, 108, 3481-3548.	23.0	777
163	Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT. Organic Letters, 2008, 10, 3681-3684.	2.4	121
164	Substituted β-Cyclodextrin and Calix[4] arene As Encapsulatory Vehicles for Platinum(II)-Based DNA Intercalators. Inorganic Chemistry, 2008, 47, 6880-6888.	1.9	77
165	Salt-induced guest relocation from a macrocyclic cavity into a biomolecular pocket: interplay between cucurbit[7]uril and albumin. Chemical Communications, 2008, , 3681.	2.2	125
166	<i>>para</i> -Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host–Guest Property. Journal of the American Chemical Society, 2008, 130, 5022-5023.	6.6	1,788
167	Solid-Phase Synthesis of Amphiphilic Dendron-Surface-Modified Silica Particles and Their Application Toward Water Purification. Chemistry of Materials, 2008, 20, 2669-2676.	3.2	47
168	The N—H···X (X = Cl, Br, and I) Hydrogen-Bonding Pattern in Aromatic Amides: A Crystallographic and ¹ H NMR Study. Crystal Growth and Design, 2008, 8, 1294-1300.	1.4	51
169	Complexation of acridine orange by cucurbit [7] uril and \hat{l}^2 -cyclodextrin: photophysical effects and pKa shifts. Photochemical and Photobiological Sciences, 2008, 7, 408-414.	1.6	161
170	Syntheses, Structures, and Electrochemical Properties of Inclusion Compounds of Cucurbit[8]uril with Cobalt(III) and Nickel(II) Complexes. Inorganic Chemistry, 2008, 47, 6748-6755.	1.9	78
171	Sandwich-Type Tetranuclear Lanthanide Complexes with Cucurbit[6]uril: From Molecular Compounds to Coordination Polymers. Inorganic Chemistry, 2008, 47, 8869-8880.	1.9	130
172	Folding of Long-Chain Alkanediammonium Ions Promoted by a Cucurbituril Derivative. Organic Letters, 2008, 10, 2577-2580.	2.4	63
173	N,N $\hat{E}^{1}\!\!/_{4}$ -Disubstituted Methylenediimidazolium Salts: A Versatile Guest for Various Macrocycles. Journal of Organic Chemistry, 2008, 73, 3784-3790.	1.7	45
174	Electronic Structure, Molecular Electrostatic Potential, and NMR Chemical Shifts in Cucurbit[$\langle i\rangle n\langle i\rangle$] urils ($\langle i\rangle n\langle i\rangle = 5\hat{a}^{\circ}8$), Ferrocene, and Their Complexes. Journal of Physical Chemistry A, 2008, 112, 12679-12686.	1.1	59
175	Cucurbit[<i>n</i>]uril Formation Proceeds by Step-Growth Cyclo-oligomerization. Journal of the American Chemical Society, 2008, 130, 8446-8454.	6.6	98
176	Control of H- and J-Aggregate Formation via Hostâ^Guest Complexation using Cucurbituril Hosts. Journal of the American Chemical Society, 2008, 130, 17114-17119.	6.6	183
177	Directing Role of Hydrophobicâ^'Hydrophobic and Hydrophilicâ^'Hydrophilic Interactions in the Self-Assembly of Calixarenes/Cucurbiturils-Based Architectures. Crystal Growth and Design, 2008, 8, 791-794.	1.4	34

#	Article	IF	CITATIONS
178	Rapid determination of aristolochic acid I and II in medicinal plants with high sensitivity by cucurbit[7]uril-modifier capillary zone electrophoresis. Talanta, 2008, 74, 619-624.	2.9	30
179	lonic liquids as novel guests for cucurbit[6]uril in neutral water. Chemical Communications, 2008, , 1070.	2.2	52
180	Cucurbit[7]uril host–guest complexes of the histamine H2-receptor antagonist ranitidine. Organic and Biomolecular Chemistry, 2008, 6, 1955.	1.5	95
181	Repulsive Interaction Can Be a Key Design Element of Molecular Rotary Motors. Journal of Organic Chemistry, 2008, 73, 8772-8779.	1.7	26
182	Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. Organic and Biomolecular Chemistry, 2008, 6, 4509.	1.5	104
183	A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces. Chemical Communications, 2008, , 1989.	2.2	123
184	Defection-selective solubilization and chemically-responsive solubility switching of single-walled carbon nanotubes with cucurbit[7]uril. Chemical Communications, 2008, , 2245.	2.2	17
185	Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. Chemical Communications, 2008, , 2756.	2.2	86
186	Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. Chemical Communications, 2008, , 2236.	2.2	99
187	Cucurbit[<i>n</i>]urils (<i>n</i> =7, 8) binding of camptothecin and the effects on solubility and reactivity of the anticancer drug. Supramolecular Chemistry, 2008, 20, 663-671.	1.5	61
188	Cucurbit[7]uril host–guest complexes with small polar organic guests in aqueous solution. Organic and Biomolecular Chemistry, 2008, 6, 1796.	1.5	56
189	Construction of polyrotaxanes via reversible chain exchange between acylhydrazone bonds. Chemical Communications, 2008, , 6351.	2.2	12
190	Encapsulation of charge-diffuse peralkylated onium cations in the cavity of cucurbit[7]uril. Chemical Communications, 2008, , 4936.	2.2	59
191	Opposing substitution in cucurbit[6]urils forms ellipsoid cavities: the symmetrical dicyclohexanocucurbit[6]uril is no exception highlighted by inclusion and exclusion complexes. Supramolecular Chemistry, 2008, 20, 709-716.	1.5	39
192	Tetrameric molecular bowl assembled from glycoluril building blocks. Chemical Communications, 2008, , 3133.	2,2	13
193	Single-crystal to single-crystal phase transition of cucurbit[5]uril hydrochloride hydrates: large water-filled channels transforming to layers of unusual stability. Chemical Communications, 2008, , 4927.	2.2	34
194	Drastically Decreased Reactivity of Thiols and Disulfides Complexed by Cucurbit[6]uril. Organic Letters, 2008, 10, 3721-3724.	2.4	31
195	NMR Study of the Reversible Trapping of SF6 by Cucurbit[6]uril in Aqueous Solution. Journal of Physical Chemistry B, 2008, 112, 15014-15020.	1.2	29

#	Article	IF	CITATIONS
196	Highly Stereoselective Photocyclodimerization of \hat{l} ±-Cyclodextrin-Appended Anthracene Mediated by \hat{l} 3-Cyclodextrin and Cucurbit[8]uril: A Dramatic Steric Effect Operating Outside the Binding Site. Journal of the American Chemical Society, 2008, 130, 8574-8575.	6.6	194
197	Supramolecular Bracelets and Interlocking Rings Elaborated Through the Interrelationship of Neighboring Chemical Environments of Alkyl-Substitution on Cucurbit[5]uril. Crystal Growth and Design, 2008, 8, 3446-3450.	1.4	73
198	Highly Efficient Cucurbit[8]uril-Templated Intramolecular Photocycloaddition of 2-Naphthalene-Labeled Poly(ethylene glycol) in Aqueous Solution. Journal of Organic Chemistry, 2008, 73, 491-494.	1.7	55
199	Examination of Cucurbit[7]uril and Its Hostâ^'Guest Complexes by Diffusion Nuclear Magnetic Resonance. Journal of Physical Chemistry B, 2008, 112, 2311-2314.	1.2	43
200	Supramolecular Catalysis at Work:  Diastereoselective Synthesis of a Molecular Bowl with Dynamic Inner Space. Journal of Organic Chemistry, 2008, 73, 355-363.	1.7	32
201	Pseudopolyrotaxanes of Cucurbit[6]uril: A Novel Three-Dimensional Network Self-Assembled by (H2O)3 Clusters and Brâ~'(H2O)3 Anion Clusters. Crystal Growth and Design, 2008, 8, 2970-2974.	1.4	13
202	Highly Sensitive Fluorescence Response to Inclusion Complex Formation of Berberine Alkaloid with Cucurbit[7]uril. Journal of Physical Chemistry C, 2008, 112, 3410-3416.	1.5	147
203	Noncovalent Interaction of 5,10,15,20-Tetrakis(4- <i>N</i> -methylpyridyl)porphyrin with Cucurbit[7]uril: A Supramolecular Architecture. Journal of Physical Chemistry B, 2008, 112, 10782-10785.	1.2	92
204	Control of the Ketone to gem-Diol Equilibrium by Hostâ-'Guest Interactions. Organic Letters, 2008, 10, 1131-1134.	2.4	26
205	Manipulating Photochemical Reactivity of Coumarins within Cucurbituril Nanocavities. Organic Letters, 2008, 10, 3339-3342.	2.4	76
206	Disrupting Aggregation of Tethered Rhodamine B Dyads through Inclusion in Cucurbit[7]uril. Journal of Organic Chemistry, 2008, 73, 3266-3269.	1.7	37
207	Host–guest Complex of a Water-soluble Cucurbit[6]uril Derivative with the Hydrochloride Salt of 3-amino-5-phenylpyrazole. Supramolecular Chemistry, 2008, 20, 517-525.	1.5	11
208	Calorimetric Analysis of the 1:1 Complexes Formed between a Water-soluble Deep-cavity Cavitand, and Cyclic and Acyclic Carboxylic Acids. Supramolecular Chemistry, 2008, 20, 141-147.	1.5	45
209	Drug Delivery Devices and Targeting Agents for Platinum(II) Anticancer Complexes. Australian Journal of Chemistry, 2008, 61, 675.	0.5	17
210	New Properties and Reactions in Self-Assembled M6L4 Coordination Cages., 0,, 277-313.		7
211	Effects of the number and placement of positive charges on viologen–cucurbit[⟨i⟩n⟨/i⟩]uril interactions. Supramolecular Chemistry, 2008, 20, 681-687.	1.5	34
212	Inclusion Interactions of Cucurbit[7]uril with Adenine and its Derivatives. Supramolecular Chemistry, 2008, 20, 279-287.	1.5	18
213	Characterization of Water-Soluble Cucurbit[7]uril in Alcohol-Water Mixtures by High-Pressure Studies on the Inclusion Complexation with New Methylene Blue. Zeitschrift Fur Physikalische Chemie, 2008, 222, 153-161.	1.4	3

#	Article	IF	Citations
214	Molecular Recognizable Cucurbituril/Silica Hybrids. Chemistry Letters, 2008, 37, 312-313.	0.7	5
215	Molecular Encapsulation via Metal-to-Ligand Coordination in a Cu(I)-Folded Molecular Basket. Journal of Organic Chemistry, 2008, 73, 5100-5109.	1.7	35
216	Cucurbit[6]uril <i>p</i> -xylylenediammonium diiodide decahydrate inclusion complex. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1321-o1322.	0.2	10
217	Structure of Supramolecular Assemblies Formed by $\hat{l}\pm,\hat{l}$ -Tetramethylcucurbit[6]uril and 4-Nitrophenol. Molecules, 2008, 13, 2814-2822.	1.7	7
218	Sensor for Nitrophenol Based on a Fluorescent Molecular Clip. Organic Letters, 2009, 11, 2603-2606.	2.4	27
222	Supramolecular Complexation of <i>N</i> â€Alkyl―and <i>N</i> , <i>N</i> ′â€Dialkylpiperazines with Cucurbit[6]uril in Aqueous Solution and in the Solid State. Chemistry - A European Journal, 2009, 15, 1957-1965.	1.7	12
223	Controlling the Formation of Cyanine Dye H―and Jâ€Aggregates with Cucurbituril Hosts in the Presence of Anionic Polyelectrolytes. Chemistry - A European Journal, 2009, 15, 6025-6031.	1.7	73
224	Preparation and Characterisation of a New Inclusion Compound of Cucurbit[8]uril with a Nitroxide Radical. Chemistry - A European Journal, 2009, 15, 7859-7862.	1.7	32
225	Control of the Supramolecular Excimer Formation of Thioflavin T within a Cucurbit[8]uril Host: A Fluorescence On/Off Mechanism. Chemistry - A European Journal, 2009, 15, 5215-5219.	1.7	93
226	Efficient Preparation of Separable Pseudo[<i>n</i>]rotaxanes by Selective Threading of Oligoalkylammonium Salts with Cucurbit[7]uril. Chemistry - A European Journal, 2009, 15, 6050-6057.	1.7	31
227	Complexation of Aliphatic Ammonium Ions with a Waterâ€Soluble Cucurbit[6]uril Derivative in Pure Water: Isothermal Calorimetric, NMR, and Xâ€ray Crystallographic Study. Chemistry - A European Journal, 2009, 15, 6143-6151.	1.7	94
228	Modulation of Excitedâ€State Proton Transfer of 2â€(2′â€Hydroxyphenyl)benzimidazole in a Macrocyclic Cucurbit[7]uril Host Cavity: Dual Emission Behavior and p <i>K</i> _a Shift. Chemistry - A European Journal, 2009, 15, 12362-12370.	1.7	91
229	Electron Density Shift in Imidazolium Derivatives upon Complexation with Cucurbit[6]uril. Chemistry - A European Journal, 2009, 15, 6926-6931.	1.7	39
230	Dynamic Molecular Tweezers Composed of Dibenzocyclooctatetraene Units: Synthesis, Properties, and Thermochromism in Host–Guest Complexes. Chemistry - A European Journal, 2009, 15, 6838-6847.	1.7	61
231	Sequenceâ€Specific Selfâ€Sorting of the Binding Sites of a Ditopic Guest by Cucurbituril Homologues and Subsequent Formation of a Hetero[4]pseudorotaxane. Chemistry - A European Journal, 2009, 15, 10360-10363.	1.7	53
232	Cucurbit[7]uril Complexation Drives Thermal <i>trans</i> â€" <i>cis</i> â€Azobenzene Isomerization and Enables Colorimetric Amine Detection. Chemistry - A European Journal, 2009, 15, 11675-11680.	1.7	98
233	Complexes of Diquat with Dibenzoâ€24â€Crownâ€8. Chinese Journal of Chemistry, 2009, 27, 1777-1781.	2.6	7
234	Positron Annihilation Lifetimes in Cucurbiturils: Evidence of Internal Inclusion of Gold in CB[7]. ChemPhysChem, 2009, 10, 812-816.	1.0	8

#	Article	IF	Citations
235	Selective Positioning of CB[8] on Two Linked Viologens and Electrochemically Driven Movement of the Host Molecule. European Journal of Organic Chemistry, 2009, 2009, 1163-1172.	1.2	23
236	Insight into Unusual Downfield NMR Shifts in the Inclusion Complex of Acridine Orange with Cucurbit[7]uril. European Journal of Organic Chemistry, 2009, 2009, 4931-4938.	1.2	27
237	Multiâ \in Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Hostâ \in Guest Inclusion Complexation between $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in \mathbb{C}$ yclodextrin and Adamantyl Moieties. Macromolecular Chemistry and Physics, 2009, 210, 2125-2137.	1.1	90
239	Binding Mechanisms in Supramolecular Complexes. Angewandte Chemie - International Edition, 2009, 48, 3924-3977.	7.2	1,018
240	Electron Transport in the Longâ€Range Chargeâ€Recombination Dynamics of Single Encapsulated Dye Molecules on TiO ₂ Nanoparticle Films. Angewandte Chemie - International Edition, 2009, 48, 7379-7382.	7.2	27
241	Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host–guest complexation. Tetrahedron Letters, 2009, 50, 2301-2304.	0.7	46
242	Host–guest complexes of some cucurbit[n]urils with the hydrochloride salts of some imidazole derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 121-131.	1.6	11
244	Encapsulation of a \hat{i}^2 -carboline in cucurbit[7]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 233-237.	1.6	23
245	A novel 1:2 cucurbit[8]uril inclusion complex with N-phenylpiperazine hydrochloride. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 325-329.	1.6	10
246	Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and \hat{l}^2 -cyclodextrin: a computational study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 357-365.	1.6	13
247	The formation of alkali and alkaline earth cation complexes with cucurbit[6]uril in aqueous solution: a critical survey of old and new results. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 293-297.	1.6	32
248	Anchoring of Fluorophores to Plasma-chemically Modified Polymer Surfaces and the Effect of Cucurbit[6]uril on Dye Emission. Journal of Fluorescence, 2009, 19, 229-237.	1.3	11
249	Host-guest complexes of a water soluble cucurbit[6]uril derivative with some dications of 1,ï‰-alkyldipyridines: 1H NMR and X-ray structures. Science in China Series B: Chemistry, 2009, 52, 475-482.	0.8	8
250	Cucurbit[6]uril/PVC-based semipermeable membranes as electrode modifiers for electrochemical investigation of insoluble substrates. Electrochemistry Communications, 2009, 11, 1928-1931.	2.3	21
251	Isolation of the trans-I and trans-II isomers of Cull(cyclam) via complexation with the macrocyclic host cucurbit[8]uril. Inorganica Chimica Acta, 2009, 362, 4145-4151.	1.2	30
252	Toward supramolecular polymers incorporating double cavity cucurbituril hosts. Tetrahedron, 2009, 65, 7249-7258.	1.0	54
253	Synthesis and chiral discrimination of cyclic aromatic amides and the determination of their absolute configuration by TD-DFT calculations. Tetrahedron: Asymmetry, 2009, 20, 2646-2650.	1.8	17
254	First colorimetric sensor array for the identification of quaternary ammonium salts. Tetrahedron Letters, 2009, 50, 7001-7004.	0.7	19

#	Article	IF	CITATIONS
255	The formation of homogeneous and heterogeneous 2:1 complexes between dialkyl- and diarylammonium ions and α-cyclodextrin and cucurbit[6]uril in aqueous formic acid. Thermochimica Acta, 2009, 495, 28-32.	1.2	13
256	Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. Journal of Inorganic Biochemistry, 2009, 103, 373-380.	1.5	33
257	Molecular capsules formed by three different cucurbit[5]urils and some lanthanide ions. Journal of Molecular Structure, 2009, 929, 167-173.	1.8	23
258	Crystal structures of three host–guest complexes of methylsubstituted cucurbit[6]urils and anthracene derivatives. Journal of Molecular Structure, 2009, 930, 140-146.	1.8	7
259	Crystal structures of four host–guest inclusion complexes of α,α′,δ,δ′-tetramethylcucurbit[6]uril and cucurbit[8]uril with some l-amino acids. Journal of Molecular Structure, 2009, 933, 112-117.	1.8	33
260	Tautomerization of lumichrome promoted by supramolecular complex formation with cucurbit[7]uril. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 47-51.	2.0	33
261	Complexes of basic tricyclic dyes in their acid and basic forms with cucurbit[7]uril: Determination of pKa and association constants in the ground and singlet excited state. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 97-101.	2.0	35
262	A novel two-dimensional network formed by complexation of cucurbituril with cadmium ions. Inorganic Chemistry Communication, 2009, 12, 849-852.	1.8	25
263	Cucurbit[7]uril Complexes of Crown-Ether Derived Styryl and (Bis)styryl Dyes. Journal of Physical Chemistry B, 2009, 113, 10149-10158.	1.2	32
264	Electrochemistry of the Inclusion Complexes Formed Between the Cucurbit[7]uril Host and Several Cationic and Neutral Ferrocene Derivativesâ€Part of the "Langmuir 25th Year: Molecular and macromolecular self-assemblies―special issue Langmuir, 2009, 25, 13763-13769.	1.6	50
265	Selective binding and highly sensitive fluorescent sensor of palmatine and dehydrocorydaline alkaloids by cucurbit[7]uril. Organic and Biomolecular Chemistry, 2009, 7, 2699.	1.5	64
266	pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 2009, 131, 12912-12914.	6.6	323
267	Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1, 16.	2.8	481
268	Glycoluril Trimers: Selective Synthesis and Supramolecular Properties. Organic Letters, 2009, 11, 4184-4187.	2.4	46
269	Diffusion Coefficient of Cucurbit[$\langle i \rangle n \langle i \rangle$] urils ($\langle i \rangle n \langle i \rangle$ = 6 or 7) at Various Concentrations, Temperatures, and pH. Journal of Chemical & Engineering Data, 2009, 54, 323-326.	1.0	14
270	Metal-Ion-Induced Folding and Dimerization of a Glycoluril Decamer in Water. Organic Letters, 2009, 11, 3918-3921.	2.4	30
271	Formation of Inclusion Complexes between $1,1\hat{a}\in^2$ -Dialkyl- $3,3\hat{a}\in^2$ - $(1,4$ -phenylene) bisimidazolium Dibromide Salts and Cucurbit[7]uril. Journal of Physical Chemistry B, 2009, 113, 16159-16168.	1.2	15
272	Self Aggregation of Supramolecules of Nitroxides@Cucurbit[8]uril Revealed by EPR Spectra. Langmuir, 2009, 25, 13820-13832.	1.6	47

#	ARTICLE	IF	CITATIONS
273	Supramolecular Modification of Ion Chemistry: Modulation of Peptide Charge State and Dissociation Behavior through Complexation with Cucurbit $[n]$ uril $(n = 5, 6)$ or \hat{l} ±-Cyclodextrin. Journal of Physical Chemistry A, 2009, 113, 1508-1517.	1.1	41
274	Inclusion Complex Formation of Ionic Liquids and Other Cationic Organic Compounds with Cucurbit[7]uril Studied by 4′,6-Diamidino-2-phenylindole Fluorescent Probe. Journal of Physical Chemistry B, 2009, 113, 1645-1651.	1.2	73
275	Hostâ^'Guest Complexes and Pseudorotaxanes of Cucurbit[7]uril with Acetylcholinesterase Inhibitors. Journal of Organic Chemistry, 2009, 74, 8031-8038.	1.7	55
276	Enhancement of Energy Utilization in Light-Harvesting Dendrimers by the Pseudorotaxane Formation at Periphery. Journal of the American Chemical Society, 2009, 131, 9100-9106.	6.6	91
277	Probing Systems in Solution by NMR Using Sulfur Hexafluoride as a Spy Molecule. Journal of Physical Chemistry B, 2009, 113, 7599-7605.	1.2	7
278	Uranyl Ion Complexes with Cucurbit[5]uril: from Molecular Capsules to Uranyl-Organic Frameworks. Crystal Growth and Design, 2009, 9, 1208-1215.	1.4	100
279	Cucurbit[<i>n</i>]urilâ^'Polyoxoanion Hybrids. Journal of the American Chemical Society, 2009, 131, 432-433.	6.6	154
280	Cucurbituril complexes cross the cell membrane. Photochemical and Photobiological Sciences, 2009, 8, 1743-1747.	1.6	101
281	Multivalent Recognition of Peptides by Modular Self-Assembled Receptors. Journal of the American Chemical Society, 2009, 131, 2408-2415.	6.6	142
282	Dual-Controlled Nanoparticles Exhibiting AND Logic. Journal of the American Chemical Society, 2009, 131, 11344-11346.	6.6	302
283	A new three-way supramolecular switch based on redox-controlled interconversion of hetero- and homo-guest-pair inclusion inside a host molecule. Chemical Communications, 2009, , 416-418.	2.2	66
284	The Use of Coumarins as Environmentally-Sensitive Fluorescent Probes of Heterogeneous Inclusion Systems. Molecules, 2009, 14, 210-237.	1.7	333
285	Nature of Supramolecular Complexes Controlled by the Structure of the Guest Molecules: Formation of Octa Acid Based Capsuleplex and Cavitandplex. Langmuir, 2009, 25, 10575-10586.	1.6	67
286	Remarkable Salt Effect on Stability of Supramolecular Complex between Modified Cucurbit[6]uril and Methylviologen in Aqueous Media. Journal of Physical Chemistry B, 2009, 113, 11054-11057.	1.2	27
287	Stabilization of the base-off forms of vitamin B12 and coenzyme B12 by encapsulation of the \hat{l}_{\pm} -axial 5,6-dimethylbenzimidazole ligand with cucurbit[7]uril. Dalton Transactions, 2009, , 3584.	1.6	54
288	Cucurbituril-Mediated Supramolecular Acid Catalysis. Organic Letters, 2009, 11, 2595-2598.	2.4	115
289	Cucurbit $[n]$ urils: from mechanism to structure and function. Chemical Communications, 2009, , 619-629.	2.2	381
290	Chemistry of metalated container molecules. Advances in Inorganic Chemistry, 2009, 61, 407-470.	0.4	29

#	ARTICLE	IF	CITATIONS
291	One Ring to Bind Them All: Shape-Selective Complexation of Phenylenediamine Isomers with Cucurbit[6]uril in the Gas Phase. Journal of Physical Chemistry A, 2009, 113, 989-997.	1.1	50
292	Naphthalene-bis-hydrazimide: radical anions and ICT as new bimodal probes for differential sensing of a library of amines. Chemical Communications, 2009, , 3702.	2.2	53
293	EXAFS spectroscopy investigation Cu(II) complexes encapsulated in cucurbit[<i>8</i>]uril. Journal of Physics: Conference Series, 2009, 190, 012128.	0.3	2
294	Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. Chemical Communications, 2009, , 71-73.	2.2	114
295	Methylene Blue Encapsulation in Cucurbit[7]uril: Laser Flash Photolysis and Near-IR Luminescence Studies of the Interaction with Oxygen. Langmuir, 2009, 25, 10490-10494.	1.6	74
296	Inclusion Polymers. Advances in Polymer Science, 2009, , .	0.4	17
297	Bridged bis-Tröger's base molecular tweezers as new cavitand family. Collection of Czechoslovak Chemical Communications, 2009, 74, 1091-1099.	1.0	5
298	Effect of Aromaticâr'Aromatic Interactions on the Conformational Stabilities of Macrocycle and Preorganized Structure during Macrocyclization. Journal of Organic Chemistry, 2009, 74, 2804-2810.	1.7	23
299	Four Novel Solid-State Supramolecular Assemblies Constructed from Decavanadate Salts and Decamethylcucurbit[5]uril. Crystal Growth and Design, 2009, 9, 1494-1498.	1.4	35
300	Photophysical Studies on the Noncovalent Interaction of Thioflavin T with Cucurbit[<i>n</i>)uril Macrocycles. Journal of Physical Chemistry B, 2009, 113, 1891-1898.	1.2	89
301	Exclusion complexes of the HCl salts of benzidine and bis(4-aminophenyl) methane with two methyl-substituted cucurbiturils. New Journal of Chemistry, 2009, 33, 2136.	1.4	3
302	Synthesis and Characterization of Polyrotaxaneâ^'Amino Acid Conjugates: A New Synthetic Pathway for Amino-Functionalized Polyrotaxanes. Biomacromolecules, 2009, 10, 1947-1954.	2.6	17
303	Synthesis, cytotoxicity and cucurbituril binding of triamine linked dinuclear platinum complexes. Dalton Transactions, 2009, , 5190.	1.6	35
304	Cucurbit[7]uril host-guest and pseudorotaxane complexes with \hat{l}_{\pm} , l	1.5	31
305	Uranyl ion complexes of cucurbit[7]uril with zero-, one- and two-dimensionality. CrystEngComm, 2009, 11, 1150.	1.3	58
306	Photoluminescent quantum dot–cucurbituril nanocomposites. Chemical Communications, 2009, , 6807.	2.2	14
307	Through-space π-delocalized Pillar[5]arene. Chemical Communications, 2009, , 4874.	2.2	97
308	Investigations of the supramolecular host properties of a fluorescent bistren cage compound. Canadian Journal of Chemistry, 2009, 87, 448-452.	0.6	0

#	Article	IF	CITATIONS
309	Fabrication and properties of cucurbit[6]uril induced thermo-responsive supramolecular hydrogels. Soft Matter, 2009, 5, 3511.	1.2	38
310	Redox-induced partner radical formation and its dynamic balance with radical dimer in cucurbit[8]uril. Physical Chemistry Chemical Physics, 2009, 11, 11134.	1.3	28
311	Enhanced efficiency of the visible-light photocatalytic hydrogen generation by the ruthenium tris(2,2′-bipyridyl)–methyl viologen system in the presence of cucurbit[n]urils. Photochemical and Photobiological Sciences, 2009, 8, 1650.	1.6	10
312	Supramolecular assembly from decavanadate anion and decamethylcucurbit[5]uril. Dalton Transactions, 2009, , 1101-1103.	1.6	30
313	Cucurbituril and Cyclodextrin Complexes of Dendrimers. Advances in Polymer Science, 2009, , 1-54.	0.4	42
314	Rapid transformation of benzylic alcohols to aldehyde in the presence of cucurbit[8]uril. Catalysis Communications, 2009, 11, 167-170.	1.6	30
315	Novel and emerging approaches for the delivery of metallo-drugs. Dalton Transactions, 2009, , 10702.	1.6	79
316	Inverted Cucurbit[$\langle i \rangle n \langle i \rangle$]urils: Density Functional Investigations on the Electronic Structure, Electrostatic Potential, and NMR Chemical Shifts. Journal of Physical Chemistry A, 2009, 113, 1368-1376.	1.1	27
317	Inclusion complexes of coumarin in cucurbiturils. Organic and Biomolecular Chemistry, 2009, 7, 2435.	1.5	71
318	Probing Cucurbituril Assemblies in Water with TEMPO-like Nitroxides: A Trinitroxide Supraradical with Spinâ°Spin Interactions. Journal of the American Chemical Society, 2009, 131, 5402-5404.	6.6	66
319	pH-Responsive mechanised nanoparticles gated by semirotaxanes. Chemical Communications, 2009, , 5371.	2.2	61
320	Lanthanide Complexes with Cucurbit[$\langle i \rangle n \langle i \rangle$] urils ($\langle i \rangle n \langle i \rangle = 5, 6, 7$) and Perrhenate Ligands: New Examples of Encapsulation of Perrhenate Anions. Inorganic Chemistry, 2009, 48, 4497-4513.	1.9	77
321	Switchable V-Type [2]Pseudorotaxanes. Organic Letters, 2009, 11, 3234-3237.	2.4	71
322	Kinetic vs Thermodynamic Self-Sorting of Cucurbit[6]uril, Cucurbit[7]uril, and a Spermine Derivative. Organic Letters, 2009, 11, 3798-3801.	2.4	60
323	Variations on a Cage Theme: Some Complexes of Bicyclic Polyamines as Supramolecular Synthons. Australian Journal of Chemistry, 2009, 62, 1246.	0.5	27
324	Residual Neuromuscular Block. Anesthesia and Analgesia, 2010, 111, 129-140.	1.1	243
327	Trifluoromethanesulfonate Anion-linked Supramolecular Frameworks of Cucurbit[5]uril and Cucurbit[7]uril. Chemistry Letters, 2010, 39, 1016-1017.	0.7	16
328	Quantum-chemical study of the formation mechanism of cucurbit[n]uril nanocavitands. Russian Journal of Inorganic Chemistry, 2010, 55, 1594-1599.	0.3	6

#	Article	IF	CITATIONS
329	Direct Space Methods for Powder X-ray Diffraction for Guestâ^'Host Materials: Applications to Cage Occupancies and Guest Distributions in Clathrate Hydrates. Journal of the American Chemical Society, 2010, 132, 524-531.	6.6	190
330	Supramolecular Cross-Linked Networks <i>via</i> Hostâ^Guest Complexation with Cucurbit[8]uril. Journal of the American Chemical Society, 2010, 132, 14251-14260.	6.6	547
331	Binding Studies on CB[6] with a Series of 1â€Alkylâ€3â€methylimidazolium Ionic Liquids in an Aqueous System. Chemistry - an Asian Journal, 2010, 5, 530-537.	1.7	50
332	Cucurbit[7]uril as a Tool in the Green Synthesis of Gold Nanoparticles. Chemistry - an Asian Journal, 2010, 5, 2468-2476.	1.7	34
333	Inclusion of Carboxyl Function Inside of Cucurbiturils and its Use in Molecular Switches. Chemistry - an Asian Journal, 2010, 5, 2386-2392.	1.7	11
334	<i>endo</i> -Cavity Complexation and Through-the-Annulus Threading of Large Calixarenes Induced by Very Loose Alkylammonium Ion Pairs. Organic Letters, 2010, 12, 2092-2095.	2.4	94
335	Host–guest control on the formation of pinacyanol chloride H-aggregates in anionic polyelectrolyte solutions. Supramolecular Chemistry, 2010, 22, 40-45.	1.5	11
336	Long-Lived Charge Separation in Gold Nanoparticles Encapsulated inside Cucurbit[7]uril and Its Relevance for Photocatalysis. Journal of Physical Chemistry C, 2010, 114, 18847-18852.	1.5	14
337	A Fluorescence Perspective on the Differential Interaction of Riboflavin and Flavin Adenine Dinucleotide with Cucurbit[7]uril. Journal of Physical Chemistry B, 2010, 114, 10717-10727.	1.2	31
338	Biological Catalysis Regulated by Cucurbit[7]uril Molecular Containers. Journal of the American Chemical Society, 2010, 132, 4445-4454.	6.6	117
339	Supramolecular Catalysis by Cucurbit[7]uril and Cyclodextrins: Similarity and Differences. Journal of Organic Chemistry, 2010, 75, 848-855.	1.7	66
340	Conductivity and Surface Tension Study for Cucurbit[7]uril Inclusion Complex of Cetyltrimethylammonium Chloride in Aqueous Solution. Journal of Dispersion Science and Technology, 2010, 31, 861-865.	1.3	0
341	pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. Journal of Materials Chemistry, 2010, 20, 3642.	6.7	68
342	Host–guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. Organic and Biomolecular Chemistry, 2010, 8, 247-252.	1.5	92
343	Cucurbit[7]urilhost–guest complexes of cholines and phosphonium cholines in aqueous solution. Organic and Biomolecular Chemistry, 2010, 8, 253-260.	1.5	62
344	Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Organic and Biomolecular Chemistry, 2010, 8, 765.	1.5	89
345	Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Organic and Biomolecular Chemistry, 2010, 8, 2037.	1.5	342
346	Crystal structure and chemical oxidation of the palladium(II) cyclam complex within the cavity of cucurbit[8]uril. Inorganica Chimica Acta, 2010, 363, 4387-4391.	1.2	11

#	Article	IF	Citations
347	Supramolecular assemblies of host–guest complexes of cucurbit[6]uril with some organic molecules. Journal of Molecular Structure, 2010, 965, 109-115.	1.8	6
348	Hexagonal framework based on heterometallic zinc and potassium ions/cucurbit[5]uril capsules. Journal of Molecular Structure, 2010, 969, 216-219.	1.8	13
349	Direct coordination of metal ions to cucurbit[n]urils. Science Bulletin, 2010, 55, 3633-3640.	1.7	35
350	Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils nÂ=Â5 to 8. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66, 213-218.	1.6	54
351	Inclusion complexes of cationic xanthene dyes in cucurbit[7]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66, 231-241.	1.6	17
352	Host–guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 359-367.	1.6	39
353	Inclusion compounds of cucurbit[8]uril with noble metal polyamine complexes. Russian Chemical Bulletin, 2010, 59, 2072-2080.	0.4	4
354	New Microporous Materials for Acetylene Storage and C ₂ H ₂ /CO ₂ Separation: Insights from Molecular Simulations. ChemPhysChem, 2010, 11, 2220-2229.	1.0	118
355	Molecular Encapsulation of Fluorescent Dyes Affords Efficient Narrowâ€band Dye Laser Operation in Water. ChemPhysChem, 2010, 11, 3333-3338.	1.0	63
356	Metal Cation Controlled Supramolecular Assembly of 1â€Butylâ€4,4′â€bipyridinium and Cucurbit[8]uril. European Journal of Inorganic Chemistry, 2010, 2010, 2956-2961.	1.0	12
357	Photocontrolled Molecular Assembler Based on Cucurbit[8]uril: [2+2]â€Autophotocycloaddition of Styryl Dyes in the Solid State and in Water. European Journal of Organic Chemistry, 2010, 2010, 2587-2599.	1,2	63
358	A Voltammetric Study of the Interaction Between Cucurbit[6]uril and Divalent Metal Ions. Electroanalysis, 2010, 22, 2123-2130.	1.5	10
362	Threading the Calix[5]arene Annulus. Chemistry - A European Journal, 2010, 16, 2381-2385.	1.7	40
363	Switchable Cucurbituril–Bipyridine Beacons. Chemistry - A European Journal, 2010, 16, 9056-9067.	1.7	31
364	A Colorimetric Sensor Array for the Detection of the Dateâ€Rape Drug γâ€Hydroxybutyric Acid (GHB): A Supramolecular Approach. Chemistry - A European Journal, 2010, 16, 4489-4495.	1.7	59
365	Inclusion of a Nitronyl Nitroxyl Radical and Its Hydrochloride in Cucurbit[8]uril. Chemistry - A European Journal, 2010, 16, 12481-12487.	1.7	16
366	Macrocycles as a Tool: A Facile and Oneâ€Pot Synthesis of Silver Nanoparticles Using Cucurbituril Designed for Cancer Therapeutics. Chemistry - A European Journal, 2010, 16, 11563-11566.	1.7	62
367	Glycoâ€pseudopolyrotaxanes: Carbohydrate Wheels Threaded on a Polymer String and Their Inhibition of Bacterial Adhesion. Chemistry - A European Journal, 2010, 16, 12168-12173.	1.7	20

#	Article	IF	CITATIONS
368	Benzobis(imidazolium)–Cucurbit[8]uril Complexes for Binding and Sensing Aromatic Compounds in Aqueous Solution. Chemistry - A European Journal, 2010, 16, 13716-13722.	1.7	92
371	Bambus[6]uril. Angewandte Chemie - International Edition, 2010, 49, 2378-2381.	7.2	198
372	Facile, Templateâ€Free Synthesis of Stimuliâ€Responsive Polymer Nanocapsules for Targeted Drug Delivery. Angewandte Chemie - International Edition, 2010, 49, 4405-4408.	7.2	198
373	Study on the inclusion interaction of cucurbit[n]urils with sanguinarine by spectrofluorimetry and its analytical application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 912-917.	2.0	34
374	Host–guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today, 2010, 5, 337-350.	6.2	126
375	A new oxovanadium(IV)–cucurbit[6]uril complex: Properties and potential for confined heterogeneous catalytic oxidation reactions. Polyhedron, 2010, 29, 3008-3013.	1.0	40
376	Improving pore exposure in mesoporous silica films for mechanized control of the pores. Microporous and Mesoporous Materials, 2010, 132, 435-441.	2.2	25
377	Structure and vibrational spectra of sulfur hexafluoride encapsulated $\hat{l}\pm$ -cyclodextrin. Computational and Theoretical Chemistry, 2010, 957, 77-83.	1.5	3
378	Under control. Nature Chemistry, 2010, 2, 248-250.	6.6	61
379	Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nature Chemistry, 2010, 2, 962-966.	6.6	295
380	Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers. PLoS ONE, 2010, 5, e10514.	1.1	224
381	Electrochemistry of Redox Active Centres Encapsulated by Non-Covalent Methods. Australian Journal of Chemistry, 2010, 63, 184.	0.5	35
382	Novel Molecular Clip: Synthesis, Structure and Encapsulation of Small Solvent Molecule in the Crystal State. Journal of Chemical Research, 2010, 34, 246-249.	0.6	1
383	Electrically insulated molecular wires. Supramolecular Chemistry, 2010, 22, 237-248.	1.5	20
384	Anion encapsulation by Ln(III)/K(I) heterobismetal-capped cucurbit[5]uril. Supramolecular Chemistry, 2010, 22, 130-134.	1.5	21
385	Synthesis and Conformational Characteristics of Alkyl-Substituted Pillar[5] arenes. Journal of Organic Chemistry, 2010, 75, 3268-3273.	1.7	172
386	Highly Selective Carbon Dioxide Sorption in an Organic Molecular Porous Material. Journal of the American Chemical Society, 2010, 132, 12200-12202.	6.6	301
387	Synthesis and Conformational Characteristics of Nonsymmetric Pillar[5] arene. Organic Letters, 2010, 12, 636-638.	2.4	64

#	Article	IF	CITATIONS
388	Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein Journal of Organic Chemistry, 2010, 6, 32.	1.3	198
389	Inclusion Complexes of Nitroxides of Pyrrolidine and Imidazoline Series with Cucurbit[7]uril. Journal of Physical Chemistry B, 2010, 114, 1719-1728.	1.2	27
390	An Aqueous Supramolecular Side-Chain Polymer Designed for Molecular Loading. Australian Journal of Chemistry, 2010, 63, 627.	0.5	14
391	Synthesis, Processing and Solid State Excipient Interactions of Cucurbit[6]uril and Its Formulation into Tablets for Oral Drug Delivery. Molecular Pharmaceutics, 2010, 7, 2166-2172.	2.3	36
392	Closed Nanocontainer Enables Thioketones to Phosphoresce at Room Temperature in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 14320-14328.	1.2	34
393	Synthesis, conformational and host–guest properties of water-soluble pillar[5]arene. Chemical Communications, 2010, 46, 3708.	2.2	316
394	Transfer of cationic cucurbit[7]uril inclusion complexes from water to non-aqueous solvents. Supramolecular Chemistry, 2010, 22, 710-716.	1.5	18
395	Probing cucurbit[8]uril-mediated supramolecular block copolymer assembly in water using diffusion NMR. Polymer Chemistry, 2010, 1, 1434.	1.9	39
396	Conjugates, Complexes, and Interlocked Systems Based on Squaraines and Cyanines. Springer Series on Fluorescence, 2010, , 159-190.	0.8	11
397	Raman and SERS spectroscopy of cucurbit[n]urils. Physical Chemistry Chemical Physics, 2010, 12, 10429.	1.3	71
398	Site-Selective Immobilization of Colloids on Au Substrates via a Noncovalent Supramolecular "Handcuff― Langmuir, 2010, 26, 5323-5328.	1.6	57
399	Acyclic Cucurbit[<i>n</i>]uril Congeners Are High Affinity Hosts. Journal of Organic Chemistry, 2010, 75, 4786-4795.	1.7	119
400	Design and Synthesis of Self-assembly Supramolecular Entities Based on Noncovalent Interaction of Cucurbit[5]uril, Metal Ions, and Hydroxybenzene or Its Derivatives. Crystal Growth and Design, 2010, 10, 2901-2907.	1.4	23
401	Silver-Promoted Desilylation Catalyzed by Ortho- and Allosteric Cucurbiturils. Organic Letters, 2010, 12, 2310-2313.	2.4	70
402	Electronic Structure and ¹ H NMR Chemical Shifts in Host-Guest Complexes of Cucurbit[6]uril and sym-Tetramethyl Cucurbit[6]uril with Imidazole Derivatives. Journal of Physical Chemistry A, 2010, 114, 10906-10916.	1.1	17
403	On the Binding of SF ₆ to Cucurbit[6]uril Host: Density Functional Investigations. Journal of Physical Chemistry A, 2010, 114, 2338-2343.	1.1	24
404	Molecular Dynamics of Methyl Viologen-Cucurbit[<i>n</i>]uril Complexes in Aqueous Solution. Journal of Chemical Theory and Computation, 2010, 6, 984-992.	2.3	45
405	Cucurbit[10]uril binding of dinuclear platinum(II) and ruthenium(II) complexes: association/dissociation rates from seconds to hours. Dalton Transactions, 2010, 39, 2078.	1.6	47

#	Article	IF	CITATIONS
406	Reasons Why Aldehydes Do Not Generally Participate in Cucurbit $[\langle i \rangle n \langle j \rangle]$ uril Forming Reactions. Journal of Organic Chemistry, 2010, 75, 2934-2941.	1.7	19
407	Stress Analysis at the Molecular Level: A Forced Cucurbituril-Guest Dissociation Pathway. Journal of Chemical Theory and Computation, 2010, 6, 637-646.	2.3	12
408	Molecular and Supramolecular Diversity Displayed by Dienone-Ether Macrocycles. Crystal Growth and Design, 2010, 10, 2409-2420.	1.4	4
409	Approach to 10-Unit "Bracelet―Frameworks Based on Coordination of Alkyl-Substituted Cucurbit[5]urils and Potassium Ions. Crystal Growth and Design, 2010, 10, 5113-5116.	1.4	45
410	Complexation of Cyclohexanocucurbit[6]uril with Cadmium Ions: X-ray Crystallographic and Electrochemical Study. Inorganic Chemistry, 2010, 49, 7638-7640.	1.9	32
411	Cucurbituril Slippage: Translation is a Complex Motion. Organic Letters, 2010, 12, 2730-2733.	2.4	38
412	Second-Sphere Tethering of Rare-Earth lons to Cucurbit[6]uril by Iminodiacetic Acid Involving Carboxylic Group Encapsulation. Inorganic Chemistry, 2010, 49, 9078-9085.	1.9	45
413	Uranyl Ion Complexation by Cucurbiturils in the Presence of Perrhenic, Phosphoric, or Polycarboxylic Acids. Novel Mixed-Ligand Uranylâ^'Organic Frameworks. Crystal Growth and Design, 2010, 10, 716-725.	1.4	72
414	The application of CuAAC â€~click' chemistry to catenane and rotaxane synthesis. Chemical Society Reviews, 2010, 39, 1240-1251.	18.7	400
415	Dendrimers Derived from 1 â†' 3 Branching Motifs. Chemical Reviews, 2010, 110, 6338-6442.	23.0	326
416	Unconventional U-shaped conformation of a bolaamphiphile embedded in a synthetic host. Chemical Communications, 2010, 46, 4091.	2.2	50
417	Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application. Talanta, 2010, 80, 1939-1944.	2.9	40
418	A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. Talanta, 2010, 81, 1542-1546.	2.9	61
419	New fluorescent probes based on supramolecular diastereomers for the detection of 2-nitrophenol. Talanta, 2010, 81, 1643-1649.	2.9	9
420	Folding and self-assembly of aromatic and aliphatic urea oligomers: Towards connecting structure and function. Organic and Biomolecular Chemistry, 2010, 8, 3101.	1.5	112
421	Kinetic and thermodynamic inclusion complexes of symmetric teramethyl-substituted cucurbit[6]uril with HCl salts of N,N′-bis(pyridylmethyl)-1,6-hexanediamine. Supramolecular Chemistry, 2010, 22, 619-628.	1.5	8
422	Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. Chemical Communications, 2010, 46, 2438.	2.2	124
423	A Systems Approach to Controlling Supramolecular Architecture and Emergent Solution Properties via Hostâ°Guest Complexation in Water. Journal of the American Chemical Society, 2010, 132, 15734-15743.	6.6	72

#	Article	IF	CITATIONS
424	Density Functional Investigations on the Charge Distribution, Vibrational Spectra, and NMR Chemical Shifts in Cucurbit[$\langle i \rangle n \langle i \rangle$]uril ($\langle i \rangle n \langle i \rangle$ = 5â°12) Hosts. Journal of Physical Chemistry A, 2010, 114, 4464-4470.	1.1	41
425	Cucurbituril Complexation Enhances Intersystem Crossing and Triplet Lifetime of 2,4,6-Triphenylpyrylium Ion. Journal of Physical Chemistry C, 2010, 114, 2034-2038.	1.5	26
426	Direct Synthesis of Polymer Nanocapsules: Self-Assembly of Polymer Hollow Spheres through Irreversible Covalent Bond Formation. Journal of the American Chemical Society, 2010, 132, 9908-9919.	6.6	147
427	Host–guest assembly of squaraine dye in cucurbit[8]uril: its implication in fluorescent probe for mercury ions. Chemical Communications, 2010, 46, 4073.	2.2	59
428	Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, 2010, , .	0.8	13
429	Construction of Train-Like Supramolecular Structures from Decamethylcucurbit[5]uril and Iso- or Hetero-Keggin-Type Polyoxotungstates. Crystal Growth and Design, 2010, 10, 1966-1970.	1.4	37
430	Supramolecular logic with macrocyclic input and competitive reset. Chemical Communications, 2010, 46, 2635.	2.2	98
431	Contrasting guest binding interaction of cucurbit [7-8] urils with neutral red dye: controlled exchange of multiple guests. Physical Chemistry Chemical Physics, 2010, 12, 7050.	1.3	84
432	Self-assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations. Chemical Communications, 2010, 46, 9016.	2.2	273
433	Anion-linked cucurbit[6]uril frameworks formed by microwave-assisted synthesis in ionic liquids. CrystEngComm, 2010, 12, 3445.	1.3	10
434	Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent. Chemical Communications, 2010, 46, 5088.	2.2	75
435	Unusual partner radical trimer formation in a host complex of cucurbit[8]uril, ruthenium(ii) tris-bipyridine linked phenol and methyl viologen. Chemical Communications, 2010, 46, 463-465.	2.2	20
436	A "green―method for isolation of cucurbit[7]uril via a solid state metathesis reaction. Chemical Communications, 2010, 46, 2007.	2.2	37
437	Chirality from achiral components: N,N′-bis(4-dimethylaminobenzyl)dodecane-1,12-diammonium in cucurbit[8]uril. Chemical Communications, 2010, 46, 3741.	2.2	28
438	Supramolecular photocatalysis by confinementâ€"photodimerization of coumarins within cucurbit[8]urils. Chemical Communications, 2010, 46, 225-227.	2.2	92
439	Supramolecular assemblies and modes of binding of the 1,6-hexanedipyridinium ion and the HCl salt of N,Nâ \in 2-bis(3-pyridylmethyl)-diaminoethane, with the symmetrically substituted tetramethylcucurbit[6]uril. Supramolecular Chemistry, 2010, 22, 194-201.	1.5	9
440	Correlating Solution Binding and ESI-MS Stabilities by Incorporating Solvation Effects in a Confined Cucurbit[8]uril System. Journal of Physical Chemistry B, 2010, 114, 8606-8615.	1.2	118
441	A cucurbit[8]uril inclusion complex with 1,7-dimethyl-1,4,7,10-tetraazacyclododecane tetrachloride. New Journal of Chemistry, 2010, 34, 17-20.	1.4	7

#	Article	IF	CITATIONS
442	Coordination polymers constructed from alkali metal ions and (HO)10cucurbit[5]uril. CrystEngComm, 2011, 13, 3794.	1.3	23
443	Pseudorotaxane-type n-hydrocarbon container. Metallacyclodimer of ionic palladium(ii) complexes containing 1,3-bis(4-pyridyl)tetramethyldisiloxane. Dalton Transactions, 2011, 40, 8520.	1.6	11
444	Surface functionalized silver nanoparticle conjugates: demonstration of uptake and release of a phototherapeutic porphyrin dye. Chemical Communications, 2011, 47, 9182.	2.2	31
445	Redistribution of electron density in pyridinium and pyrazinium guests induced by complexation with cucurbit[6]uril. New Journal of Chemistry, 2011, 35, 2854.	1.4	8
446	A molecular chalice with hydrophobic walls and a hydrophilic rim: self-assembly and complexation properties. Chemical Communications, 2011, 47, 12834.	2.2	1
447	Host–guest complexes of cucurbit[8]uril with some pentaerythritol derivative guests. New Journal of Chemistry, 2011, 35, 1088.	1.4	5
448	Elucidating the structures and binding of halide ions bound to cucurbit[6]uril, hemi-cucurbit[6]uril and bambus[6]uril using DFT calculations. RSC Advances, 2011, 1, 1333.	1.7	27
449	Size Selective Supramolecular Cages from Aryl-Bisimidazolium Derivatives and Cucurbit[8]uril. Organic Letters, 2011, 13, 3044-3047.	2.4	39
450	Stable cucurbit[5]uril MOF structures as â€~beaded' rings built on a p-hydroxybenzoic acid template—a small molecule absorption material. CrystEngComm, 2011, 13, 5049.	1.3	63
451	Determining Protease Substrate Selectivity and Inhibition by Label-Free Supramolecular Tandem Enzyme Assays. Journal of the American Chemical Society, 2011, 133, 7528-7535.	6.6	176
452	Effects of Cocrystalline Subunits on the Supramolecular Chemistry of Me ₁₀ Q[5]: From Simple Inorganic Anions to Cluster Anions. Crystal Growth and Design, 2011, 11, 778-783.	1.4	24
453	Supramolecular vesicle: triggered by formation of pseudorotaxane between cucurbit[6]uril and surfactant. Chemical Communications, 2011, 47, 11315.	2.2	25
454	A clipped [3]rotaxane derived from bis-nor-seco-cucurbit[10]uril. Chemical Communications, 2011, 47, 9420.	2.2	42
455	Formation of linear supramolecular polymers that is based on host–guest assembly in water. Chemical Communications, 2011, 47, 8883.	2.2	44
456	Efficient and selective photodimerization of 2-naphthalenecarbonitrile mediated by cucurbit[8]uril in an aqueous solution. Photochemical and Photobiological Sciences, 2011, 10, 1441-1444.	1.6	24
457	Selective complexation of n-alkanes with pillar[5] arene dimers in organic media. Chemical Communications, 2011, 47, 10290.	2.2	84
458	Influence of charge repulsion on binding strengths: experimental and computational characterization of mixed alkali metal complexes of decamethylcucurbit[5]uril in the gas phase. Chemical Communications, 2011, 47, 6081.	2.2	15
459	Complexation of 1,4-Bis(pyridinium)butanes by Negatively Charged Carboxylatopillar [5] arene. Journal of Organic Chemistry, 2011, 76, 8458-8465.	1.7	140

#	Article	IF	CITATIONS
460	Coordination Polymers and Frameworks in Uranyl Ion Complexes with Sulfonates and Cucurbit[6]uril. Crystal Growth and Design, 2011, 11, 5702-5711.	1.4	30
461	Coordination and Supramolecular Self-Assemblies of Alkali and Alkaline Earth Metal Ions to Cucurbit[5]uril in the Presence of Nitrophenol. Crystal Growth and Design, 2011, 11, 5712-5722.	1.4	30
462	Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement. Photochemical and Photobiological Sciences, 2011, 10, 1405-1414.	1.6	13
463	Regiospecific $[2 + 2]$ photocyclodimerization of trans-4-styrylpyridines templated by cucurbit $[8]$ uril. Photochemical and Photobiological Sciences, 2011, 10, 1496-1500.	1.6	25
464	Photochromism in Cucurbit[8]uril Cavity: Inhibition of Hydrolysis and Modification of the Rate of Merocyanineâ€"Spiropyran Transformations. Journal of Physical Chemistry B, 2011, 115, 12577-12583.	1.2	52
465	Tetrarhena-heterocycle from the Palladium-Catalyzed Dimerization of Re ₂ (CO) ₈ (μ-SbPh ₂)(μ-H) Exhibits an Unusual Host–Guest Behavior. Journal of the American Chemical Society, 2011, 133, 12994-12997.	6.6	144
466	Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral ⊨Surfaces. Journal of the American Chemical Society, 2011, 133, 9580-9591.	6.6	101
467	Recognition Properties of Acyclic Glycoluril Oligomers. Organic Letters, 2011, 13, 4112-4115.	2.4	28
468	Hostâ€"Guest Chemistry in the Gas Phase: Selected Fragmentations of CB[6]â€"Peptide Complexes at Lysine Residues and Its Utility to Probe the Structures of Small Proteins. Analytical Chemistry, 2011, 83, 7916-7923.	3.2	47
469	Supramolecular Glycopolymers in Water: A Reversible Route Toward Multivalent Carbohydrate–Lectin Conjugates Using Cucurbit[8]uril. Macromolecules, 2011, 44, 4276-4281.	2.2	64
470	A Novel Strategy To Assemble Achiral Ligands to Chiral Helical Polyrotaxane Structures. Inorganic Chemistry, 2011, 50, 6521-6525.	1.9	42
471	Supramolecular Shuttle Based on Inclusion Complex between Cucurbit[6]uril and Bispyridinium Ethylene. Organic Letters, 2011, 13, 6148-6151.	2.4	35
472	Aggregates of Cucurbituril Complexes in the Gas Phase. Organic Letters, 2011, 13, 2410-2413.	2.4	36
473	Protein-Binding Molecular Switches via Host–Guest Stabilized DNA Hairpins. Journal of the American Chemical Society, 2011, 133, 7676-7679.	6.6	37
474	Uranyl Ion Complexation by Aliphatic Dicarboxylic Acids in the Presence of Cucurbiturils as Additional Ligands or Structure-Directing Agents. Crystal Growth and Design, 2011, 11, 2606-2620.	1.4	118
475	Uranyl–Alkali Metal Ion Heterometallic Complexes with Cucurbit[6]uril and a Sulfonated Catechol. Crystal Growth and Design, 2011, 11, 3282-3294.	1.4	62
476	New Water-Soluble Organic Capsules Are Effective in Controlling Excited-State Processes of Guest Molecules. Organic Letters, 2011, 13, 5092-5095.	2.4	33
478	Physical gels based on supramolecular gelators, including host–guest complexes and pseudorotaxanes. Journal of Materials Chemistry, 2011, 21, 930-938.	6.7	64

#	Article	IF	CITATIONS
479	Chiral ionic liquid-mediated photochirogenesis. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid. Organic and Biomolecular Chemistry, 2011, 9, 7105.	1.5	14
480	Bambus[<i>n</i>]urils: a New Family of Macrocyclic Anion Receptors. Organic Letters, 2011, 13, 4000-4003.	2.4	107
481	Facile, Rapid, and High-Yield Synthesis of Pillar[5]arene from Commercially Available Reagents and Its X-ray Crystal Structure. Journal of Organic Chemistry, 2011, 76, 328-331.	1.7	199
482	The use of cucurbit[8]uril host–guest interactions in the development of an electrochemical sensor: characterization and application to tryptophan determination. Journal of Materials Chemistry, 2011, 21, 13657.	6.7	42
483	Biomimetic Crystallization of Ag ₂ S Nanoclusters in Nanopore Assemblies. Journal of the American Chemical Society, 2011, 133, 2875-2877.	6.6	38
484	Molecular Recognition of Insulin by a Synthetic Receptor. Journal of the American Chemical Society, 2011, 133, 8810-8813.	6.6	291
485	Electron spin resonance. Annual Reports on the Progress of Chemistry Section C, 2011, 107, 47.	4.4	9
486	Photoinduced Electron Transfer in a Quantum Dotâ^'Cucurbituril Supramolecular Complex. Journal of Physical Chemistry C, 2011, 115, 1824-1830.	1.5	32
487	Molecular host–guest complexes: Shielding of guests on semiconductor surfaces. Energy and Environmental Science, 2011, 4, 2482-2494.	15.6	53
489	Cyclic polyesters: synthetic approaches and potential applications. Polymer Chemistry, 2011, 2, 289-299.	1.9	135
490	Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects. Chemical Communications, 2011, 47, 9959.	2.2	168
491	Supramolecular gold nanoparticle–polymer composites formed in water with cucurbit[8]uril. Chemical Communications, 2011, 47, 164-166.	2.2	89
492	Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[⟨i⟩n⟨/i⟩]uril "Glue― ACS Nano, 2011, 5, 3878-3887.	7.3	322
493	Peptide Separation through a CB[8]-Mediated Supramolecular Trap-and-Release Process. Langmuir, 2011, 27, 1387-1390.	1.6	50
495	A new photo-switchable "on-off―host–guest system. Photochemical and Photobiological Sciences, 2011, 10, 1415.	1.6	37
496	Photophysical aspects of 6-methylcoumarin–cucurbit[8]uril host–guest complexes. Canadian Journal of Chemistry, 2011, 89, 310-316.	0.6	29
497	Supramolecular photocatalysis: insights into cucurbit[8]uril catalyzed photodimerization of 6-methylcoumarin. Chemical Communications, 2011, 47, 6323.	2.2	75
498	Nanomolar Binding of Peptides Containing Noncanonical Amino Acids by a Synthetic Receptor. Journal of the American Chemical Society, 2011, 133, 17087-17092.	6.6	107

#	Article	IF	CITATIONS
499	Charge and Size Selective Molecular Transport by Amphiphilic Organic Nanotubes. Journal of the American Chemical Society, 2011, 133, 16726-16729.	6.6	76
500	Towards biocompatible nanovalves based on mesoporous silica nanoparticles. MedChemComm, 2011, 2, 1033.	3.5	170
501	Effect of cucurbit[n]urils on tropicamide and potential application in ocular drug delivery. Supramolecular Chemistry, 2011, 23, 650-656.	1.5	40
502	Cucurbit[<i>n</i>)]urils (<i>n</i> = 5â€"8): A Comprehensive Solid State Study. Crystal Growth and Design, 2011, 11, 5598-5614.	1.4	160
503	<scp> </scp> -Cysteine as a Chiral Linker in Lanthanide–Cucurbit[6]uril One-Dimensional Assemblies. Inorganic Chemistry, 2011, 50, 10558-10560.	1.9	62
504	Novel Supramolecular Assemblies Based on Coordination of Samarium Cation to Cucurbit[5]uril. Inorganic Chemistry, 2011, 50, 7754-7760.	1.9	42
506	Selective catalysis for the oxidation of alcohols to aldehydes in the presence of cucurbit[8]uril. Catalysis Communications, 2011, 12, 1127-1130.	1.6	43
507	Electronic structure, vibrational spectra and 1H NMR of halide ion (Fâ^', Clâ^' and Brâ^') encapsulated bambus[6]uril from density functional theory. Computational and Theoretical Chemistry, 2011, 976, 76-82.	1.1	16
508	A supramolecular route for reversible protein-polymer conjugation. Chemical Science, 2011, 2, 279-286.	3.7	111
509	Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution. Chemical Reviews, 2011, 111, 7941-7980.	23.0	975
510	Cucurbit[8]uril Rotaxanes. Organic Letters, 2011, 13, 4898-4901.	2.4	39
511	The Literature of Heterocyclic Chemistry, Part X, 2005–2007. Advances in Heterocyclic Chemistry, 2011, , 1-137.	0.9	19
512	Interaction between Encapsulated Excited Organic Molecules and Free Nitroxides: Communication Across a Molecular Wall. Langmuir, 2011, 27, 10548-10555.	1.6	33
513	Microwave-assisted synthesis of novel cyclodextrin–cucurbituril complexes. Supramolecular Chemistry, 2011, 23, 819-828.	1.5	15
514	Cucurbituril-resisted acylation of the anti-tuberculosis drug isoniazidvia a supramolecular strategy. Organic and Biomolecular Chemistry, 2011, 9, 1041-1046.	1.5	41
515	Nitroxide biradicals as thread units in paramagnetic cucurbituril-based rotaxanes. Organic and Biomolecular Chemistry, 2011, 9, 2920.	1.5	25
517	Redox Control of Molecular Motion in Switchable Artificial Nanoscale Devices. Antioxidants and Redox Signaling, 2011, 14, 1119-1165.	2.5	21
519	Ionic Liquid Molecules (ILs) as Novel Guests for Pillar[5]arene: 1:2 Host–Guest Complexes between Pillar[5]arene and ILs in Organic Media. Chemistry Letters, 2011, 40, 96-98.	0.7	54

#	Article	IF	Citations
520	Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host–guest binding pair. Nature Chemistry, 2011, 3, 154-159.	6.6	208
521	1,6-Dibenzylglycoluril for synthesis of deprotected glycoluril dimer. Tetrahedron, 2011, 67, 8937-8941.	1.0	9
522	Synthesis and binding behaviors of monomethyl cucurbit[6]uril. Tetrahedron Letters, 2011, 52, 4646-4649.	0.7	15
523	A coumarin-based fluorescent PET sensor utilizing supramolecular pKa shifts. Tetrahedron Letters, 2011, 52, 5249-5254.	0.7	33
524	Three cucurbit[5]uril-based heterometallic complexes. Journal of Molecular Structure, 2011, 1006, 87-90.	1.8	9
525	Tuning of the nitronyl nitroxide radical magnetic and electronic properties by inclusion in cucurbit[n]urils. Polyhedron, 2011, 30, 3083-3087.	1.0	4
526	Cucurbiturils as containers for medicinal compounds. Nanotechnologies in Russia, 2011, 6, 773-779.	0.7	14
527	Specific molecular container for dioxane. Inorganic Chemistry Communication, 2011, 14, 1868-1870.	1.8	5
528	Host–guest inclusion complexes of viologen derivative and tetramethyl cucurbit[6]uril with multiple interaction models. Chemical Physics Letters, 2011, 514, 317-320.	1.2	14
529	Molecular Selective Binding and Nanofabrication of Cucurbituril/Cyclodextrin Pairs. Israel Journal of Chemistry, 2011, 51, 515-524.	1.0	29
530	The Mechanism of Cucurbituril Formation. Israel Journal of Chemistry, 2011, 51, 578-591.	1.0	44
531	Fluorescence Response of Alkaloids and DAPI on Inclusion in Cucurbit[7]uril: Utilization for the Study of the Encapsulation of Ionic Liquid Cations. Israel Journal of Chemistry, 2011, 51, 625-633.	1.0	19
532	Gas Phase Cucurbit[<i>n</i>]uril Chemistry. Israel Journal of Chemistry, 2011, 51, 551-558.	1.0	29
533	The Potential of Cucurbit[<i>n</i>]urils in Drug Delivery. Israel Journal of Chemistry, 2011, 51, 616-624.	1.0	249
534	Molecular Recognition of Amino Acids, Peptides, and Proteins by Cucurbit[<i>n</i>]uril Receptors. Israel Journal of Chemistry, 2011, 51, 664-678.	1.0	164
535	From Small Cucurbituril Complexes to Large Ordered Networks. Israel Journal of Chemistry, 2011, 51, 533-536.	1.0	12
536	Supramolecular Assemblies of Thioflavin T with Cucurbiturils: Prospects of Cooperative and Competitive Metal Ion Binding. Israel Journal of Chemistry, 2011, 51, 634-645.	1.0	47
537	Encapsulation of Drug Molecules by Cucurbiturils: Effects on their Chemical Properties in Aqueous Solution. Israel Journal of Chemistry, 2011, 51, 600-615.	1.0	141

#	Article	IF	Citations
538	Ultrastable Host–Guest Complexes and Their Applications. Israel Journal of Chemistry, 2011, 51, 506-514.	1.0	57
539	Cucurbiturils as Versatile Receptors for Redox Active Substrates. Israel Journal of Chemistry, 2011, 51, 496-505.	1.0	43
540	Deep Inside Cucurbiturils: Physical Properties and Volumes of their Inner Cavity Determine the Hydrophobic Driving Force for Host–Guest Complexation. Israel Journal of Chemistry, 2011, 51, 559-577.	1.0	319
541	Cucurbituril: At the Interface of Small Molecule Host–Guest Chemistry and Dynamic Aggregates. Israel Journal of Chemistry, 2011, 51, 537-550.	1.0	85
542	The World of Cucurbiturils â€" From Peculiarity to Commodity. Israel Journal of Chemistry, 2011, 51, 492-494.	1.0	31
543	Supramolecular Assembly and Binding in Aqueous Solution: Useful Tips Regarding the Hofmeister and Hydrophobic Effects. Israel Journal of Chemistry, 2011, 51, 798-806.	1.0	32
544	Chemistry in Restricted Spaces: Select Photodimerizations in Cages, Cavities, and Capsules. Israel Journal of Chemistry, 2011, 51, 817-829.	1.0	45
545	Reactivity of Redoxâ€Active Guests Trapped Inside Molecular Capsules. Israel Journal of Chemistry, 2011, 51, 830-839.	1.0	7
546	Guest Binding Dynamics with Cucurbit[7]uril in the Presence of Cations. Journal of the American Chemical Society, 2011, 133, 20623-20633.	6.6	179
547	Determination of the Purity of Cucurbit $[\langle i \rangle n \langle i \rangle]$ uril $(\langle i \rangle n \langle i \rangle) = 7, 8$ Host Samples. Journal of Organic Chemistry, 2011, 76, 10275-10278.	1.7	82
548	Recognition Properties of Cucurbit[7]uril Self-Assembled Monolayers Studied with Force Spectroscopy. Langmuir, 2011, 27, 11508-11513.	1.6	46
549	"Supramolecular Circuitry†Three Chemiluminescent, Cucurbit[7]uril-Controlled On/Off Switches. Organic Letters, 2011, 13, 3872-3875.	2.4	25
550	Unusual Incorporation of Neutral and Low Water-Soluble Guest Molecules into Layered Double Hydroxides: The Case of Cucurbit[6 and 7]uril Inclusion Hosts. Chemistry of Materials, 2011, 23, 1350-1352.	3.2	17
551	Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Canadian Journal of Chemistry, 2011, 89, 139-147.	0.6	133
552	Hydroquinone-induced framework based on direct coordination of rubidium ions to cucurbit[7]uril. CrystEngComm, 2011, 13, 5105.	1.3	31
553	Inclusion complex formation of sanguinarinealkaloid with cucurbit[7]uril: inhibition of nucleophilic attack and photooxidation. Organic and Biomolecular Chemistry, 2011, 9, 1061-1070.	1.5	84
554	Mechanism of the fast exchange between bound and free guests in cucurbit[7]uril–guest systems. Physical Chemistry Chemical Physics, 2011, 13, 3638.	1.3	16
555	Supramolecular assembly of hoechst-33258 with cucurbit[7]uril macrocycle. Physical Chemistry Chemical Physics, 2011, 13, 13117.	1.3	44

#	Article	IF	CITATIONS
556	Guanidinium-capped cucurbit[7]uril molecular cages in the gas phase. Supramolecular Chemistry, 2011, 23, 53-58.	1.5	12
557	Controlled Molecular Self-Assembly Behaviors between Cucurbituril and Bispyridinium Derivatives. Journal of Organic Chemistry, 2011, 76, 4682-4685.	1.7	68
558	Controlling the Extent of Spin Exchange Coupling in 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) Biradicals via Molecular Recognition with Cucurbit[n]uril Hosts. Langmuir, 2011, 27, 5624-5632.	1.6	48
559	Uâ€Shaped Conformation of Alkyl Chains Bound to a Synthetic Receptor Cucurbit[8]uril. Chemistry - an Asian Journal, 2011, 6, 652-657.	1.7	44
560	Interconversion between [5]Pseudorotaxane and [3]Pseudorotaxane by Pasting/Detaching Two Axle Molecules. Journal of Organic Chemistry, 2011, 76, 8270-8276.	1.7	47
561	Monofunctionalized Pillar[5]arene as a Host for Alkanediamines. Journal of the American Chemical Society, 2011, 133, 5668-5671.	6.6	468
562	Water-soluble, self-assembling container molecules: an update. Chemical Society Reviews, 2011, 40, 363-386.	18.7	165
563	Formation and Stabilization of Silver Nanoparticles with Cucurbit[<i>n</i>]urils (<i>n</i> = 5â^8) and Cucurbituril-Based Pseudorotaxanes in Aqueous Medium. Langmuir, 2011, 27, 3051-3058.	1.6	68
564	Synthesis and crystal structure of (H3O)2{(Na2(OH)CB[5])2[HV4O12]}Cl \hat{A} · 14H2O. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 137-142.	0.3	12
565	Inclusion compounds of cucurbit[n]urils with metal complexes. Russian Journal of Inorganic Chemistry, 2011, 56, 2025-2046.	0.3	17
566	Biomimetic Catalysis. ACS Catalysis, 2011, 1, 1090-1118.	5.5	217
567	Acetate anion-selective encapsulation in the ellipsoidal cavity of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril. Supramolecular Chemistry, 2011, 23, 829-834.	1.5	4
568	The Beauty of Knots at the Molecular Level. Topics in Current Chemistry, 2011, 323, 107-125.	4.0	28
569	Self-Sorting Phenomena in Complex Supramolecular Systems. Chemical Reviews, 2011, 111, 5784-5814.	23.0	703
570	Templated Synthesis of Glycoluril Hexamer and Monofunctionalized Cucurbit[6]uril Derivatives. Journal of the American Chemical Society, 2011, 133, 17966-17976.	6.6	159
571	Voltammetric studies of the interaction of 6-mercaptopurine with cucurbit[7]uril and DNA. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 131-137.	1.6	7
572	Improvement of antifungal activity of carboxin by inclusion complexation with cucurbit[8]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 583-587.	1.6	14
573	Substituted cucurbit[n]uril rings, catenanes and channels. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 281-286.	1.6	8

#	Article	IF	CITATIONS
574	Cucurbit[7]uril Disrupts Aggregate Formation Between Rhodamine B Dyes Covalently Attached to Glass Substrates. Journal of Fluorescence, 2011, 21, 1467-1478.	1.3	9
575	Theoretical study on the complexation of bambus[6]uril with the chloride, bromide, and iodide anions. Monatshefte Fýr Chemie, 2011, 142, 881-884.	0.9	19
576	Theoretical study on the protonation of cucurbit[6]uril. Monatshefte Fýr Chemie, 2011, 142, 993-996.	0.9	3
577	Deciphering the host–guest chemistry of Acridine Yellow and Cucurbit[7]uril: An integrated spectroscopic and calorimetric study. Chemical Physics Letters, 2011, 507, 74-79.	1.2	15
578	Supramolecular Au Nanoparticle Assemblies as Optical Probes for Enzymeâ€Linked Immunoassays. Small, 2011, 7, 66-69.	5.2	39
580	Cucurbit[7]uril: Surfactant Host–Guest Complexes in Equilibrium with Micellar Aggregates. ChemPhysChem, 2011, 12, 1342-1350.	1.0	14
581	Host–Guest Interaction of Hoechst 34580 and Cucurbit[7]uril. ChemPhysChem, 2011, 12, 2933-2940.	1.0	19
586	Transitionâ€Metalâ€Promoted Chemoselective Photoreactions at the Cucurbituril Rim. Angewandte Chemie - International Edition, 2011, 50, 545-548.	7.2	103
587	High and Highly Anisotropic Proton Conductivity in Organic Molecular Porous Materials. Angewandte Chemie - International Edition, 2011, 50, 7870-7873.	7.2	191
588	The Urea Renaissance. Angewandte Chemie - International Edition, 2011, 50, 12148-12155.	7.2	116
589	Strong Binding of Hydrocarbons to Cucurbituril Probed by Fluorescent Dye Displacement: A Supramolecular Gasâ€Sensing Ensemble. Angewandte Chemie - International Edition, 2011, 50, 9338-9342.	7.2	157
590	Isolated Supramolecular [Ru(bpy) ₃]–Viologen–[Ru(bpy) ₃] Complexes with Trapped CB[7,8] and Photoinduced Electronâ€Transfer Study in Nonaqueous Solution. Chemistry - A European Journal, 2011, 17, 11604-11612.	1.7	15
591	Enzymeâ€Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica. Chemistry - A European Journal, 2011, 17, 810-815.	1.7	67
592	Selfâ€Sorting of Waterâ€Soluble Cucurbituril Pseudorotaxanes. Chemistry - A European Journal, 2011, 17, 2344-2348.	1.7	79
593	Triptyceneâ€Derived Oxacalixarenes as New Wheels for the Synthesis of [2]Rotaxanes: Acid–Base―and Metalâ€Ionâ€Switchable Complexation Processes. Chemistry - A European Journal, 2011, 17, 5424-5431.	1.7	39
594	Cucurbit[6]uril nanocavity as an enhanced spectrofluorimetric method for the determination of pyrene. Analytica Chimica Acta, 2011, 689, 97-102.	2.6	25
595	Pseudorotaxane complexes between viologen vinylogues and cucurbit[7]uril: New prototype of photocontrolled molecular machine. Journal of Molecular Structure, 2011, 989, 114-121.	1.8	10
596	Crystal structures of supramolecular assemblies based on a para-dicyclohexanocucurbit[6]uil with metal ions. Journal of Molecular Structure, 2011, 996, 12-16.	1.8	2

#	Article	IF	Citations
597	Hemisphere-shaped calixarenes and their analogs: synthesis, structure, and chiral recognition ability. Tetrahedron, 2011, 67, 4716-4722.	1.0	4
598	Fluorimetric detection and discrimination of $\hat{l}\pm$ -amino acids based on tricyclic basic dyes and cucurbiturils supramolecular assembly. Tetrahedron Letters, 2011, 52, 1418-1421.	0.7	37
599	Kinetically and thermodynamically controlled syntheses of covalent molecular capsules. Advances in Physical Organic Chemistry, 2011, 45, 1-37.	0.5	15
600	Nanopumpkins and a sunscreen agent: the inclusion complex of cucurbituril and Tinosorb S. Supramolecular Chemistry, 2011, 23, 337-341.	1.5	3
601	Cooperative binding of an anticancer drug in a guest–host–protein assembly. Supramolecular Chemistry, 2012, 24, 658-664.	1.5	2
602	Ketoprofen encapsulated cucurbit[6]uril nanoparticles: a new exploration of macrocycles for drug delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012, 3, 045004.	0.7	1
603	Glycoluril Dimer Isomerization under Aqueous Acidic Conditions Related to Cucurbituril Formation. Journal of Organic Chemistry, 2012, 77, 10945-10948.	1.7	16
604	Supramolecular Sensor for Cancer-Associated Nitrosamines. Journal of the American Chemical Society, 2012, 134, 20021-20024.	6.6	143
605	Daisy Chain Assembly Formed from a Cucurbit[6]uril Derivative. Organic Letters, 2012, 14, 3072-3075.	2.4	82
606	How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assembled Metallic Clusters of Nanoparticles. Langmuir, 2012, 28, 8881-8890.	1.6	77
607	Cucurbituril Slippage: Cations as Supramolecular Lubricants. Organic Letters, 2012, 14, 4866-4869.	2.4	29
608	"Liquid-like―type (COOâ^')2(H2O)10 anion water clusters in three-dimensional supramolecular structure of cucurbit[6]uril. CrystEngComm, 2012, 14, 8525.	1.3	12
609	Selective and Effective Binding of Pillar[5,6] arenes toward Secondary Ammonium Salts with a Weakly Coordinating Counteranion. Organic Letters, 2012, 14, 4126-4129.	2.4	100
610	<i>Ipso</i> -Nitration of Calix[6]azacryptands: Intriguing Effect of the Small Rim Capping Pattern on the Large Rim Substitution Selectivity. Journal of Organic Chemistry, 2012, 77, 3838-3845.	1.7	13
611	Aggregation behavior and in vitro biocompatibility study of octopus-shaped macromolecules based on tert-butylcalix[4]arenes. International Journal of Pharmaceutics, 2012, 436, 410-417.	2.6	11
612	One-pot synthesis of pillar[n]arenes catalyzed by a minimum amount of TfOH and a solution-phase mechanistic study. Organic and Biomolecular Chemistry, 2012, 10, 9405.	1.5	88
613	Regioselective photodimerization of pyridyl-butadienes within cucurbit[8]uril cavities. Organic and Biomolecular Chemistry, 2012, 10, 9219.	1.5	18
614	A cucurbit[8]uril sponge. Organic and Biomolecular Chemistry, 2012, 10, 8587.	1.5	6

#	Article	IF	CITATIONS
615	Cucurbit[6]uril as a Fire Retardant Material. ACS Symposium Series, 2012, , 69-82.	0.5	0
616	Probing the stability of multicomponent self-assembled architectures based on cucurbit[8]uril in the gas phase. Organic and Biomolecular Chemistry, 2012, 10, 2447.	1.5	13
617	Stimulus-Responsive Supramolecular p <i>K</i> _a Tuning of Cucurbit[7]uril Encapsulated Coumarin 6 Dye. Journal of Physical Chemistry B, 2012, 116, 3683-3689.	1.2	78
618	Cyclic Host Liquids for Facile and High-Yield Synthesis of [2]Rotaxanes. Journal of the American Chemical Society, 2012, 134, 20322-20325.	6.6	96
619	Cucurbit[<i>7</i>)]urilâ€Based Vesicles Formed by Selfâ€assembly of Supramolecular Amphiphiles. Chinese Journal of Chemistry, 2012, 30, 2085-2090.	2.6	11
621	Chiral Supramolecular Switches Based on (<i>R</i>)â€Binaphthalene–Bipyridinium Guests and Cucurbituril Hosts. Chemistry - A European Journal, 2012, 18, 16911-16921.	1.7	53
622	Determination of amantadine and rimantadine using a sensitive fluorescent probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 275-281.	2.0	20
624	Acyclic Cucurbit[<i>n</i>]urilâ€Type Molecular Containers Bind Neuromuscular Blocking Agents Inâ€Vitro and Reverse Neuromuscular Block Inâ€Vivo. Angewandte Chemie - International Edition, 2012, 51, 11358-11362.	7.2	138
625	Supramolecular Polymerization at Low Monomer Concentrations: Enhancing Intermolecular Interactions and Suppressing Cyclization by Rational Molecular Design. Chemistry - A European Journal, 2012, 18, 15650-15654.	1.7	72
626	Bending Rigid Molecular Rods: Formation of Oligoproline Macrocycles. Chemistry - A European Journal, 2012, 18, 15612-15617.	1.7	24
627	Appropriate choice of event length in sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments: Activated ion collision-induced dissociation. International Journal of Mass Spectrometry, 2012, 330-332, 241-245.	0.7	2
628	Unusual Complex Formation and Chemical Reaction of Haloacetate Anion on the Exterior Surface of Cucurbit[6]uril in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2012, 23, 1786-1793.	1.2	18
632	Bambus[6]uril as a novel macrocyclic receptor for the cyanide anion. Chemical Physics Letters, 2012, 547, 63-65.	1.2	13
633	Homochiral 1D-helical coordination polymers from achiral cucurbit[5]uril: hydroquinone-induced spontaneous resolution. RSC Advances, 2012, 2, 3217.	1.7	38
634	A new strategy for effective construction of protein stacks by using cucurbit[8]uril as a glue molecule. Chemical Communications, 2012, 48, 10633.	2.2	25
635	Photochromic hybrid materials of cucurbituril and polyoxometalates as photocatalysts under visible light. Chemical Communications, 2012, 48, 669-671.	2.2	209
636	Synthesis of palladium nanocatalysts with cucurbit[n]uril as both a protecting agent and a support for Suzuki and Heck reactions. Catalysis Science and Technology, 2012, 2, 156-163.	2.1	37
637	p-Hydroxybenzoic acid-assisted homochiral 1D-helical coordination polymers from calcium cations and cucurbit[5]uril. CrystEngComm, 2012, 14, 8049.	1.3	33

#	Article	IF	Citations
638	Highly effective binding of neutral dinitriles by simple pillar[5] arenes. Chemical Communications, 2012, 48, 2967.	2.2	301
639	Pronounced pH effects on the kinetics of cucurbit[7]uril-based pseudorotaxane formation and dissociation. Chemical Communications, 2012, 48, 6693.	2.2	77
640	Spectrofluorometry determination of chelerythrine by TAIL-DLPME: ionic liquid serves as both extractant and solvent. Analytical Methods, 2012, 4, 1117.	1.3	0
641	Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study. Physical Chemistry Chemical Physics, 2012, 14, 4935.	1.3	24
642	Inclusion of methylviologen in symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril. RSC Advances, 2012, 2, 77	⁷ 5 4 7	14
643	lonic radius-dependent self-assembly of closed/opened molecular capsules based on pentacyclopentanocucurbit[5]uril. RSC Advances, 2012, 2, 5663.	1.7	18
644	Non-covalent interactions of coumarin dyes with cucurbit[7]uril macrocycle: modulation of ICT to TICT state conversion. Organic and Biomolecular Chemistry, 2012, 10, 5055.	1.5	50
645	Uranyl–lanthanide heterometallic assemblies with 1,2-ethanedisulfonate and cucurbit[6]uril ligands. CrystEngComm, 2012, 14, 3363.	1.3	40
646	Coordination complexes based on pentacyclohexanocucurbit[5]uril and lanthanide(iii) ions: lanthanide contraction effect induced structural variation. CrystEngComm, 2012, 14, 6983.	1.3	28
647	Complexations of the hydrophilic and hydrophobic moieties of benzethonium chloride by cucurbit[7]uril in aqueous solution. Canadian Journal of Chemistry, 2012, 90, 851-857.	0.6	6
648	Guest Inclusion in Cucurbiturils Studied by ESR and DFT: The Case of Nitroxide Radicals and Spin Adducts of DMPO and MNP. Journal of Physical Chemistry A, 2012, 116, 8475-8483.	1.1	13
649	Lanthanide Ion Complexes with 2-, 3-, or 4-Sulfobenzoate and Cucurbit[6]uril. Crystal Growth and Design, 2012, 12, 1632-1640.	1.4	40
650	Interaction between tetramethylcucurbit [6] uril with \hat{l} ±-furaldehyde-isonicotinyl-hydrazone hydrochloride. Supramolecular Chemistry, 2012, 24, 392-398.	1.5	1
651	Uranyl Ion Complexes with Ammoniobenzoates as Assemblers for Cucurbit[6]uril Molecules. Crystal Growth and Design, 2012, 12, 499-507.	1.4	48
652	A new synthetic strategy to prepare throne and calix diastereoisomers of parallel tris-Tröger's bases. Supramolecular Chemistry, 2012, 24, 127-134.	1.5	10
653	Supramolecular polymeric hydrogels. Chemical Society Reviews, 2012, 41, 6195.	18.7	988
654	Fluorescence-On Response via CB7 Binding to Viologen–Dye Pseudorotaxanes. Organic Letters, 2012, 14, 4046-4049.	2.4	33
655	Monofunctionalised cucurbit[6]uril synthesis using imidazolium host–guest complexation. Chemical Communications, 2012, 48, 3070.	2.2	126

#	Article	IF	CITATIONS
656	Combining Proton and Electron Transfer to Modulate the Stability of Cucurbit[7]uril Complexes. Langmuir, 2012, 28, 15075-15079.	1.6	17
657	Theoretical study on the complexation of bambus[6]uril with the fluoride anion. Computational and Theoretical Chemistry, 2012, 989, 97-99.	1.1	10
658	Cucurbit[8]uril Mediated Donor–Acceptor Ternary Complexes: A Model System for Studying Charge-Transfer Interactions. Journal of Physical Chemistry B, 2012, 116, 2842-2849.	1.2	134
659	Quantitative SERS Using the Sequestration of Small Molecules Inside Precise Plasmonic Nanoconstructs. Nano Letters, 2012, 12, 5924-5928.	4.5	142
660	Slipping synthesis of cucurbit[7]uril-based [2]rotaxane in organic environment. Tetrahedron Letters, 2012, 53, 6414-6417.	0.7	18
662	Supramolecular Peptide Amphiphile Vesicles through Host–Guest Complexation. Angewandte Chemie - International Edition, 2012, 51, 9633-9637.	7.2	191
663	βâ€Cyclodextrin Duplexes That Are Connected through Two Disulfide Bonds: Potent Hosts for the Complexation of Organic Molecules. Chemistry - A European Journal, 2012, 18, 12292-12304.	1.7	11
664	Determination of Intrinsic Binding Modes by Mass Spectrometry: Gasâ€Phase Behavior of Adamantylated Bisimidazolium Guests Complexed to Cucurbiturils. Chemistry - A European Journal, 2012, 18, 13633-13637.	1.7	15
665	Platinum Nanoparticles Stabilized by Cucurbit[6]uril with Enhanced Catalytic Activity and Excellent Poisoning Tolerance for Methanol Electrooxidation. Chemistry - A European Journal, 2012, 18, 12978-12985.	1.7	46
666	From Containers to Catalysts: Supramolecular Catalysis within Cucurbiturils. Chemistry - A European Journal, 2012, 18, 12178-12190.	1.7	159
667	Switching Properties of a Spiropyran–Cucurbit[7]uril Supramolecular Assembly: Usefulness of the Anchor Approach. ChemPhysChem, 2012, 13, 3691-3699.	1.0	23
668	Orthogonal switching of a single supramolecular complex. Nature Communications, 2012, 3, 1207.	5.8	164
669	Halogen Bonding inside a Molecular Container. Journal of the American Chemical Society, 2012, 134, 19935-19941.	6.6	119
670	Supramolecular assemblies built from lanthanide ammoniocarboxylates and cucurbit[6]uril. CrystEngComm, 2012, 14, 8128.	1.3	24
672	Alkylammonium Cation Complexation into the Narrow Cavity of Dihomooxacalix[4]arene Macrocycle. Journal of Organic Chemistry, 2012, 77, 10285-10293.	1.7	38
673	Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]uril. Chemical Communications, 2012, 48, 9843.	2.2	80
674	Ultrahigh-Water-Content Supramolecular Hydrogels Exhibiting Multistimuli Responsiveness. Journal of the American Chemical Society, 2012, 134, 11767-11773.	6.6	409
675	Independent Pathway Formation of Guest–Host in Host Ternary Complexes Made of Ammonium Salt, Calixarene, and Cyclodextrin. Journal of Organic Chemistry, 2012, 77, 10764-10772.	1.7	18

#	Article	IF	Citations
677	Light-Controllable Cucurbit[7]uril-Based Molecular Shuttle. Journal of Organic Chemistry, 2012, 77, 10168-10175.	1.7	68
679	Bambus[6]uril as a ditopic ion-pair molecular receptor for Cs+lâ°'. Monatshefte FÃ⅓r Chemie, 2012, 143, 1365-1368.	0.9	5
680	Cucurbituril chemistry: a tale of supramolecular success. RSC Advances, 2012, 2, 1213-1247.	1.7	848
682	New supramolecular interactions for electrochemical sensors development: different cucurbit[8]uril sensing platform designs. Analyst, The, 2012, 137, 4302.	1.7	11
683	A novel supramolecular ternary polymer with two orthogonal host–guest interactions. Chemical Communications, 2012, 48, 11319.	2.2	36
684	Pillar[n]arenes (n = $8\hat{a} \in 10$) with two cavities: synthesis, structures and complexing properties. Chemical Communications, 2012, 48, 10999.	2.2	193
685	Supramolecular control during triplet sensitized geometric isomerization of stilbenes encapsulated in a water soluble organic capsule. Photochemical and Photobiological Sciences, 2012, 11, 1652-1660.	1.6	27
687	Synthesis and Self-Assembly Processes of Monofunctionalized Cucurbit[7]uril. Journal of the American Chemical Society, 2012, 134, 13133-13140.	6.6	212
688	Fluorescence Enhancement of Di- <i>p</i> -tolyl Viologen by Complexation in Cucurbit[7]uril. Journal of the American Chemical Society, 2012, 134, 3358-3366.	6.6	109
689	Hydroquinone-assisted assembly of coordination polymers from lanthanides and cucurbit[5]uril. CrystEngComm, 2012, 14, 7994.	1.3	41
690	Solid-State Supramolecular Assemblies of Tryptophan and Tryptamine with Cucurbit[6]Uril. Crystal Growth and Design, 2012, 12, 550-555.	1.4	50
691	Effects of cucurbituril size on the binding of a lutidine guest. New Journal of Chemistry, 2012, 36, 1721.	1.4	8
692	Reversibly Tunable Lower Critical Solution Temperature Utilizing Host–Guest Complexation of Pillar[5]arene with Triethylene Oxide Substituents. Journal of the American Chemical Society, 2012, 134, 4577-4580.	6.6	156
693	Influence of Solvents in Assembling Tris(4-halophenyl)benzene-1,3,5-tricarboxamides: Interplay of N–H···O and Halogen···Halogen Interactions. Crystal Growth and Design, 2012, 12, 5773-5782.	1.4	21
694	A new cucurbit[6]uril-based ion-selective electrode for acetylcholine with high selectivity over choline and related quaternary ammonium ions. Supramolecular Chemistry, 2012, 24, 487-491.	1.5	16
695	Cucurbituril Adamantanediazirine Complexes and Consequential Carbene Chemistry. Journal of Organic Chemistry, 2012, 77, 5155-5160.	1.7	19
696	Fluorescent Uranyl Ion Lidded Cucurbit[5]uril Capsule. Inorganic Chemistry, 2012, 51, 267-273.	1.9	28
697	Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[<i>n</i>)urils. Journal of the American Chemical Society, 2012, 134, 15318-15323.	6.6	471

#	ARTICLE	IF	CITATIONS
698	Monitoring Stepwise Proteolytic Degradation of Peptides by Supramolecular Domino Tandem Assays and Mass Spectrometry for Trypsin and Leucine Aminopeptidase. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	10
699	Cucurbit[8]uril as Building Block for Facile Fabrication of Wellâ€Defined Organic Crystalline Nanoâ€objects with Multiple Morphologies and Compositions. Small, 2012, 8, 562-568.	5.2	13
700	New guests for the cucurbit[8]uril host. Formation of G ₂ H ternary complexes. Journal of Physical Organic Chemistry, 2012, 25, 592-596.	0.9	14
701	Direct Visualization of Symmetry Breaking During Janus Nanoparticle Formation. Small, 2012, 8, 2698-2703.	5.2	18
702	Deca-heterosubstituted corannulenes. Chemical Communications, 2012, 48, 5425.	2.2	17
703	Recognition-Mediated Light-Up of Thiazole Orange with Cucurbit[8]uril: Exchange and Release by Chemical Stimuli. Journal of Physical Chemistry B, 2012, 116, 130-135.	1.2	66
704	Isolation of cucurbit[n]uril homologues with imidazolium salts in a recyclable manner. Green Chemistry, 2012, 14, 2445.	4.6	10
705	Two-dimensional nanoarchitectonics: organic and hybrid materials. Nanoscale, 2012, 4, 6102.	2.8	131
706	Can Functionalized Cucurbituril Bind Actinyl Cations Efficiently? A Density Functional Theory Based Investigation. Journal of Physical Chemistry A, 2012, 116, 4388-4395.	1.1	50
707	Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar[6]arene. Chemical Science, 2012, 3, 3221.	3.7	153
708	Selective recognition induced nanostructures in a cucurbit[7]uril-based host–guest system: micelles, nanorods and nanosheets. Physical Chemistry Chemical Physics, 2012, 14, 8506.	1.3	13
709	Hydrogen bonding of excited states in supramolecular host–guest inclusion complexes. Physical Chemistry Chemical Physics, 2012, 14, 8825.	1.3	45
710	Self-assembly of a ternary architecture driven by cooperative Hg2+ ion binding between cucurbit[7]uril and crown ether macrocyclic hosts. Chemical Communications, 2012, 48, 7256.	2.2	27
712	Strongly Fluorescent, Switchable Perylene Bis(diimide) Host–Guest Complexes with Cucurbit[8]uril In Water. Angewandte Chemie - International Edition, 2012, 51, 7739-7743.	7.2	199
713	Tris(spiroborate)â€Type Anionic Nanocycles. Chemistry - an Asian Journal, 2012, 7, 1529-1532.	1.7	17
714	Cucurbiturilâ€Modulated Supramolecular Assemblies: From Cyclic Oligomers to Linear Polymers. Chemistry - A European Journal, 2012, 18, 5087-5095.	1.7	62
715	Evidence of Higher Complexes Between Cucurbit[7]uril and Cationic Surfactants. Chemistry - A European Journal, 2012, 18, 7931-7940.	1.7	14
716	Restricted Conformational Flexibility of a Triphenylamine Derivative on the Formation of Host–Guest Complexes with Various Macrocyclic Hosts. Chemistry - A European Journal, 2012, 18, 3906-3917.	1.7	27

#	Article	IF	Citations
717	Supramolecular Tandem Enzyme Assays. Chemistry - A European Journal, 2012, 18, 3444-3459.	1.7	130
718	Cucurbit[7]uril Pseudorotaxaneâ€Based Photoresponsive Supramolecular Nanovalve. Chemistry - A European Journal, 2012, 18, 9212-9216.	1.7	109
719	An Acidâ€Catalyzed Cyclialkylation that Provides Rapid Access to a Twisted Molecular Basket. Chemistry - A European Journal, 2012, 18, 8301-8305.	1.7	5
720	Pseudopolyrotaxanes of Cucurbit[6]uril: A Threeâ€Dimensional Network Selfâ€assembled by ClO ₄ ^{â^'} (H ₂ O) ₂ Water Clusters. Chinese Journal of Chemistry, 2012, 30, 941-946.	2.6	9
721	Threeâ€Component Cucurbit[6]uril Framework with 1:2 Hostâ€Guest Motif and Dimeric Boric Acid. Chinese Journal of Chemistry, 2012, 30, 1022-1026.	2.6	3
722	Endâ€toâ€End Distance Determination in a Cucurbit[6]urilâ€Based Rotaxane by PELDOR Spectroscopy. ChemPhysChem, 2012, 13, 2659-2661.	1.0	19
723	Supramolecular Interaction of Coumarin 1 Dye with Cucurbit[7]uril as Host: Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2012, 116, 5551-5558.	1.2	38
724	New types of hybrid solids of tetravanadate polyanions and cucurbituril. Dalton Transactions, 2012, 41, 10080.	1.6	23
725	Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics, 2012, 4, 561.	1.0	90
726	Determination of thiabendazole in aqueous solutions using a cucurbituril-enhanced fluorescence method. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 397-404.	1.6	30
727	Blind prediction of host–guest binding affinities: a new SAMPL3 challenge. Journal of Computer-Aided Molecular Design, 2012, 26, 475-487.	1.3	117
728	Synthesis of novel pillar-shaped cavitands "Pillar[5]arenes―and their application for supramolecular materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 247-262.	1.6	161
729	Theoretical study on the complexation of bambus [6] uril with the cyanate and thiocyanate anions. Monatshefte $F\tilde{A}^{1}/4r$ Chemie, 2012, 143, 985-988.	0.9	27
730	Synthesis and properties of copolymers containing cucurbit[6]uril-based pseudorotaxane structure. Chinese Journal of Polymer Science (English Edition), 2012, 30, 578-588.	2.0	4
731	The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Advanced Drug Delivery Reviews, 2012, 64, 764-783.	6.6	310
732	Large fluorescence enhancement of a hemicyanine by supramolecular interaction with cucurbit[6]uril and its application as resettable logic gates. Dyes and Pigments, 2012, 93, 1401-1407.	2.0	64
733	Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials, 2012, 33, 4646-4652.	5.7	139
734	Inclusion complex formation of ionic liquids with cucurbit[7]uril studied by competitive binding of methylene blue fluorescent probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 188-192.	2.0	7

#	Article	IF	Citations
735	Preference prediction for the stable inclusion complex formation between cucurbit [n=5–7]urils with anticancer drugs based on platinum (II): Computational study. Journal of Molecular Liquids, 2012, 166, 53-61.	2.3	23
736	Selective supramolecular bindings for stepwise signal output. Tetrahedron, 2012, 68, 79-84.	1.0	11
737	Influence of self-assembly of amphiphilic imidazolium ionic liquids on their host–guest complexes with cucurbit[n]urils. Tetrahedron, 2012, 68, 4296-4301.	1.0	16
738	\hat{l}^2 -Cyclodextrin as a mimetic of the natural GFP-chromophore environment. Tetrahedron Letters, 2012, 53, 973-976.	0.7	11
739	Cucurbit[6]uril as a potential catalyst for the acidic decomposition of azidoaminoalkanes. Tetrahedron Letters, 2012, 53, 4351-4353.	0.7	12
740	Complexation of decamethylcucurbit[5]uril with alkali metal ions. Polyhedron, 2012, 31, 632-637.	1.0	12
741	A Facile Synthesis of Dynamic Supramolecular Aggregates of Cucurbit[<i>n</i>)uril (<i>n</i> =5–8) Capped with Gold Nanoparticles in Aqueous Media. Chemistry - A European Journal, 2012, 18, 1628-1633.	1.7	79
742	Synthesis of βâ€Cyclodextrin Containing Copolymer via "Click―Chemistry and Its Selfâ€Assembly in the Presence of Guest Compounds. Macromolecular Rapid Communications, 2012, 33, 664-671.	2.0	9
744	Supramolecular Host–Guest Interaction for Labeling and Detection of Cellular Biomarkers. Angewandte Chemie - International Edition, 2012, 51, 450-454.	7.2	59
745	Host–guest complexes of various cucurbit[n]urils with the hydrochloride salt of 2,4-diaminoazobenzene. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 213-220.	1.6	5
746	Molecular-recognition-directed formation of supramolecular polymers. Polymer Journal, 2013, 45, 363-383.	1.3	64
747	Water Clusters: Through Which Water Capsules Were Connected to Form Supramolecular Chains. Journal of Cluster Science, 2013, 24, 969-977.	1.7	1
748	Ex2Box: Interdependent Modes of Binding in a Two-Nanometer-Long Synthetic Receptor. Journal of the American Chemical Society, 2013, 135, 12736-12746.	6.6	92
749	An aminonaphthalimide–putrescine conjugate as fluorescent probe for cucurbituril host–guest complexes. Supramolecular Chemistry, 2013, 25, 92-100.	1.5	11
750	Detection of Isomeric Microscopic Host–Guest Complexes. A Time-Evolving Cucurbit[7]uril Complex. Journal of the American Chemical Society, 2013, 135, 10804-10809.	6.6	47
751	In silico studies to probe the catalytic role of cucurbit[n]uril on [4+2] cycloaddition reaction between cyclopentadiene and methyl acrylate. Tetrahedron Letters, 2013, 54, 5246-5249.	0.7	6
752	Through-the-Annulus Threading of the Larger Calix[8] arene Macrocycle. Journal of Organic Chemistry, 2013, 78, 7627-7638.	1.7	37
753	Encapsulation of adefovir bis(<scp> </scp> -leucine propyl)ester pro-virucide in cucurbit[7]uril and its activity against tobacco mosaic virus. Supramolecular Chemistry, 2013, 25, 166-172.	1.5	6

#	Article	IF	Citations
754	Determination of Paraquat by Cucurbit[7]uril Sensitized Fluorescence Quenching Method. Analytical Letters, 2013, 46, 694-705.	1.0	22
755	Charge-transfer inclusion complex formation of tropylium cation with pillar[6]arenes. Chemical Communications, 2013, 49, 6343.	2.2	63
756	New Chiral Cyclohexylhemicucurbit[6]uril. Organic Letters, 2013, 15, 3786-3789.	2.4	69
757	A fluorescent guest used to determinate the effective content of CB[8] and to further detect methyl viologen. Chinese Chemical Letters, 2013, 24, 857-860.	4.8	6
758	Binding modes of cucurbit[6]uril and cucurbit[7]uril with a series of bis-pyridinium compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 333-344.	0.9	8
759	Survey on thermodynamic properties for the complexation behaviour of some calixarene and cucurbituril receptors. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 1-10.	1.6	13
760	Cucurbiturils as promising hydrogen storage materials: a case study of cucurbit[7]uril. New Journal of Chemistry, 2013, 37, 2492.	1.4	30
761	A Noncovalently Reversible Paramagnetic Switch in Water. Journal of the American Chemical Society, 2013, 135, 10594-10597.	6.6	62
762	Complexation of sym-bis(benzimidazole)-2,2′-ethylene salts with cucurbit[6]uril derivatives: A potential axle molecule for pseudorotaxanes. Chinese Chemical Letters, 2013, 24, 362-366.	4.8	3
763	Cucurbit[7]uril as a "protective agent― controlling photochemistry and detecting 1-adamantanamine. Chemical Communications, 2013, 49, 3905.	2.2	14
764	Rational Adjustment of Multicolor Emissions by Cucurbiturils-Based Host–Guest Chemistry and Photochemistry. Langmuir, 2013, 29, 12909-12914.	1.6	48
765	Homotropic Allosterism: Inâ€Depth Structural Analysis of the Gasâ€Phase Noncovalent Complexes Associating a Doubleâ€Cavity Cucurbit[⟨i⟩n⟨/i⟩]urilâ€Type Host and Sizeâ€Selected Protonated Amino Compounds. ChemPlusChem, 2013, 78, 959-969.	1.3	16
766	Synthesis of a cationic water-soluble pillar[6] arene and its effective complexation towards naphthalenesulfonate guests. Chemical Communications, 2013, 49, 7956.	2.2	79
767	On the protonation of cucurbit[5]uril. Monatshefte Fýr Chemie, 2013, 144, 813-816.	0.9	1
768	A twin-axial [5] pseudorotaxane based on cucurbit [8] uril and \hat{l} ±-cyclodextrin. Chinese Chemical Letters, 2013, 24, 949-952.	4.8	10
769	Supramolecular Hostâ€Inhibited Excitedâ€State Proton Transfer and Fluorescence Switching of the Antiâ€Cancer Drug, Topotecan. ChemPhysChem, 2013, 14, 3375-3383.	1.0	22
770	Cucurbit[7]uril Containers for Targeted Delivery of Oxaliplatin to Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 12033-12037.	7.2	149
771	The use of a near-infrared RNA fluorescent probe with a large Stokes shift for imaging living cells assisted by the macrocyclic molecule CB7. Biomaterials, 2013, 34, 6473-6481.	5.7	71

#	ARTICLE	IF	CITATIONS
772	Selective binding of unsaturated aliphatic hydrocarbons by a pillar[5] arene. Chinese Chemical Letters, 2013, 24, 707-709.	4.8	27
773	Influence of CB[n] complexation on the quenching of 2,4,6-triphenylpyrylium excited states by Fe2+ ions. Journal of Colloid and Interface Science, 2013, 410, 111-115.	5.0	1
774	Bi(OTf)3â€"a mild catalyst for the synthesis of difficult to obtain C-alkyl substituted glycolurils. Tetrahedron, 2013, 69, 9957-9965.	1.0	9
775	Composition- and Size-Controlled Cyclic Self-Assembly by Solvent- and C ₆₀ -Responsive Self-Sorting. Journal of the American Chemical Society, 2013, 135, 15263-15268.	6.6	30
776	Cucurbit[8]uril and Blue-Box: High-Energy Water Release Overwhelms Electrostatic Interactions. Journal of the American Chemical Society, 2013, 135, 14879-14888.	6.6	174
777	Pseudopolyrotaxanes based polyhedral oligomeric silsesquioxanes and cucurbit[7]uril. Dalton Transactions, 2013, 42, 16482.	1.6	5
778	pH-Mediated Stoichiometric Switching of Cucurbit[8]uril–Hoechst-33258 Complexes. Journal of Physical Chemistry B, 2013, 117, 13595-13603.	1.2	19
779	Variational Implicit-Solvent Modeling of Host–Guest Binding: A Case Study on Cucurbit[7]uril . Journal of Chemical Theory and Computation, 2013, 9, 4195-4204.	2.3	12
780	Enthalpic Signature of Methonium Desolvation Revealed in a Synthetic Host–Guest System Based on Cucurbit[7]uril. Journal of the American Chemical Society, 2013, 135, 6084-6091.	6.6	9
781	Host–Guest Chemistry from Solution to the Gas Phase: An Essential Role of Direct Interaction with Water for High-Affinity Binding of Cucurbit[⟨i⟩n⟨ i⟩]urils. Journal of Physical Chemistry B, 2013, 117, 8855-8864.	1.2	50
782	The Delivery of Triamterene by Cucurbit[7]uril: Synthesis, Structures and Pharmacokinetics Study. Molecular Pharmaceutics, 2013, 10, 4698-4705.	2.3	38
783	Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere. Chemical Society Reviews, 2013, 42, 8360.	18.7	189
784	The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 344-349.	2.0	14
785	Adsorption of H2S molecules by cucurbit[7]uril: an ab initio vdW-DF study. RSC Advances, 2013, 3, 22031.	1.7	22
786	Cucurbit[8]uril Supramolecular Assembly for Positively Charged Ultrathin Films as Nanocontainers. Langmuir, 2013, 29, 14101-14107.	1.6	20
787	A new supramolecular gel via host–guest complexation with cucurbit[8]uril and N-(4-diethylaminobenzyl)chitosan. Carbohydrate Polymers, 2013, 92, 429-434.	5.1	26
788	Effects of Chemical Modification on the Molecular Dynamics of Complex Polyrotaxanes Investigated by Solid-State NMR. Macromolecules, 2013, 46, 6898-6907.	2.2	22
789	Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chemical Society Reviews, 2013, 42, 9480.	18.7	354

#	Article	IF	CITATIONS
790	Multianalyte Sensing of Addictive Over-the-Counter (OTC) Drugs. Journal of the American Chemical Society, 2013, 135, 15238-15243.	6.6	116
791	Pillar[5]arene as a Co-Factor in Templating Rotaxane Formation. Journal of the American Chemical Society, 2013, 135, 17019-17030.	6.6	117
792	One-Dimensional Coordination Polymers of Lanthanide Cations to Cucurbit[7]uril Built Using a Range of Tetrachloride Transition-Metal Dianion Structure Inducers. Polymers, 2013, 5, 418-430.	2.0	29
793	Quantum Chemical Challenges for the Binding of Simple Alkanes to Supramolecular Hosts. Journal of Physical Chemistry B, 2013, 117, 13409-13417.	1.2	24
794	Toward a Single-Layer Two-Dimensional Honeycomb Supramolecular Organic Framework in Water. Journal of the American Chemical Society, 2013, 135, 17913-17918.	6.6	349
795	A facile method to immobilize cucurbituril on surfaces through photocrosslinking with azido groups. Chemical Communications, 2013, 49, 8093.	2.2	19
796	Cucurbit[8]uril inducing supramolecular hydrogels by adjusting pH. RSC Advances, 2013, 3, 3031.	1.7	26
797	A supramolecular switch based on three binding states of a pyrene derivate: a reversible three-state switch with only two stimuli. RSC Advances, 2013, 3, 13311.	1.7	13
798	Water-soluble supramolecular polymers fabricated through specific interactions between cucurbit[8]uril and a tripeptide of Phe-Gly-Gly. Polymer Chemistry, 2013, 4, 5378.	1.9	52
799	Dynamically crosslinked materials via recognition of amino acids by cucurbit[8]uril. Journal of Materials Chemistry B, 2013, 1, 2904.	2.9	55
800	Probing the tolerance of cucurbit[7]uril inclusion complexes to small structural changes in the guest. Organic and Biomolecular Chemistry, 2013, 11, 287-293.	1.5	22
801	Selective molecular recognition of methylated lysines and arginines by cucurbit[6]uril and cucurbit[7]uril in aqueous solution. Organic and Biomolecular Chemistry, 2013, 11, 488-495.	1.5	84
802	DFT study of caesium ion complexation by cucurbit[n]urils (n = $5\hat{a}\in$ "7). Dalton Transactions, 2013, 42, 6083-6091.	1.6	18
803	Host–guest complexes of cucurbit[7]uril with albendazole in solid state. Journal of Thermal Analysis and Calorimetry, 2013, 111, 385-392.	2.0	23
804	Coordination self-assembly of tetranuclear Pt(ii) macrocycles with an organometallic backbone for sensing of acyclic dicarboxylic acids. Dalton Transactions, 2013, 42, 2998-3008.	1.6	23
805	Guest Covalent Capture by a Host: A Biomimetic Strategy for the Selective Functionalization of a Cavity. Chemistry - A European Journal, 2013, 19, 642-653.	1.7	12
806	Guest-size determining the selective binding modes of cucurbit[8]uril, electron-rich guests and N-alkyl-N′-methyl-4,4′-bipyridinium. Tetrahedron Letters, 2013, 54, 1638-1644.	0.7	3
807	Atomic Force Microscopy Study of new Sensing Platforms: Cucurbit[<i>n</i>]uril (<i>n</i> =6, 7) on Gold. Electroanalysis, 2013, 25, 263-268.	1.5	25

#	Article	IF	Citations
808	On the encapsulation of halide anions by bambus [6] uril. Computational and Theoretical Chemistry, 2013, 1023, 5-9.	1.1	10
809	Substituent effect of substrates on cucurbit[8]uril-catalytic oxidation of aryl alcohols. Journal of Molecular Catalysis A, 2013, 374-375, 32-38.	4.8	12
810	Transformation of micelles into supramolecular vesicles triggered by the formation of [4]pseudorotaxanes. Journal of Colloid and Interface Science, 2013, 410, 131-139.	5.0	7
811	Porphyrin-cucurbituril organic molecular porous material: Structure and iodine adsorption properties. Inorganic Chemistry Communication, 2013, 35, 156-159.	1.8	26
812	Inclusion complex formation of ionic liquids with cucurbit [7]uril studied by competitive binding of berberine fluorescent probe. Journal of Luminescence, 2013, 137, 214-219.	1.5	1
813	Competitive supramolecular interaction of carbachol and berberine with cucurbit[7]uril and its analytical application. Microchemical Journal, 2013, 110, 285-291.	2.3	14
814	Host–guest complexes between cucurbit[n]urils and acetanilides having aminopropyl units. Journal of Colloid and Interface Science, 2013, 399, 54-61.	5.0	4
816	Supramolecular Ladders from Dimeric Cucurbit[6]uril. Angewandte Chemie - International Edition, 2013, 52, 3690-3694.	7.2	58
817	Synthesis of 2,4,6-trialkyl-8-(2,3-epoxypropyl)glycolurils. Mendeleev Communications, 2013, 23, 104-105.	0.6	6
818	Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene. Chemical Communications, 2013, 49, 1924.	2.2	197
819	Torsional barriers of substituted biphenyls calculated using density functional theory: a benchmarking study. Organic and Biomolecular Chemistry, 2013, 11, 2859.	1.5	51
820	Evaluating photodimerization of 6-methylcoumarin mediated by cucurbit[8] uril through mechanical grinding $\hat{a} \in ``Supramolecular effects of additives. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 255, 10-15.$	2.0	5
821	Autonomous Shuttling Driven by an Oscillating Reaction: Proof of Principle in a Cucurbit[7]uril-Bodipy Pseudorotaxane. Organic Letters, 2013, 15, 1012-1015.	2.4	37
822	Deep-Cavity Cavitand Octa Acid as a Hydrogen Donor: Photofunctionalization with Nitrenes Generated from Azidoadamantanes. Journal of Organic Chemistry, 2013, 78, 1824-1832.	1.7	21
823	Selfâ€Sorting of Four Organic Molecules into a Heterowheel Polypseudorotaxane. Chemistry - A European Journal, 2013, 19, 6498-6506.	1.7	25
824	Cucurbit[8]urilâ€Based Supramolecular Polymers. Chemistry - an Asian Journal, 2013, 8, 1626-1632.	1.7	185
825	Electrostatic Repulsion between Cucurbit[7]urils Can Be Overcome in [3]Pseudorotaxane without Adding Salts. Journal of Organic Chemistry, 2013, 78, 3886-3894.	1.7	12
826	Construction of Protein Nanowires through Cucurbit[8]urilâ€based Highly Specific Host–Guest Interactions: An Approach to the Assembly of Functional Proteins. Angewandte Chemie - International Edition, 2013, 52, 5590-5593.	7.2	145

#	Article	IF	CITATIONS
827	Supramolecular Interaction of Gliclazide with Cucurbit[7]uril and its Analytical Application. Australian Journal of Chemistry, 2013, 66, 701.	0.5	8
828	Subtle "supramolecular buttressing effects―in Cucurbit[7]uril/guest assemblies. Organic and Biomolecular Chemistry, 2013, 11, 3116.	1.5	11
829	Cucurbituril: A promising organic building block for the design of coordination compounds and beyond. Coordination Chemistry Reviews, 2013, 257, 1334-1356.	9.5	191
830	Chemistry inside molecular containers in the gas phase. Nature Chemistry, 2013, 5, 376-382.	6.6	144
831	Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/cucurbit[6]uril. Pure and Applied Chemistry, 2013, 85, 1633-1641.	0.9	28
832	Supramolecular interactions of bisbenzimidazolyl derivatives with cucurbit[7]uril, potential axle molecules bearing a novel fluorescent signal response. Tetrahedron, 2013, 69, 6219-6222.	1.0	9
833	Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination. Chemical Communications, 2013, 49, 5766.	2.2	116
834	Facile Syntheses of Cucurbit[6]uril-Anchored Polymers and Their Noncovalent Modification. Macromolecules, 2013, 46, 1274-1282.	2.2	13
835	An approach to networks based on coordination of alkyl-substituted cucurbit[5]urils and potassium ions. CrystEngComm, 2013, 15, 1994.	1.3	33
836	Cucurbit[5]uril–metal complex-induced room-temperature phosphorescence of α-naphthol and β-naphthol. Dalton Transactions, 2013, 42, 2608-2615.	1.6	24
837	Understanding Photophysical Effects of Cucurbituril Encapsulation: A Model Study with Acridine Orange in the Gas Phase. ChemPhysChem, 2013, 14, 1138-1148.	1.0	34
838	Twisted Cucurbit[14]uril. Angewandte Chemie - International Edition, 2013, 52, 7252-7255.	7.2	267
839	Extension of the Bambus[<i>n</i>]uril Family: Microwave Synthesis and Reactivity of Allylbambus[<i>n</i>]urils. Organic Letters, 2013, 15, 480-483.	2.4	47
840	Study on the supramolecular interaction of astemizole with cucurbit[7]uril and its analytical application. Analytical Methods, 2013, 5, 173-179.	1.3	9
841	Supramolecular ternary polymer mediated by cucurbituril and cyclodextrin. Polymer Chemistry, 2013, 4, 4192.	1.9	57
842	Protein binding by dinuclear polypyridyl ruthenium(ii) complexes and the effect of cucurbit[10]uril encapsulation. Dalton Transactions, 2013, 42, 8868.	1.6	58
843	Molecular Binding Behaviors of Pyromellitic and Naphthalene Diimide Derivatives by Tetrasulfonated 1,5-Dinaphtho- $(3n+8)$ -crown- $(i>n)$ ($(i>n)$ = 8, 10) in Aqueous Solution. Journal of Organic Chemistry, 2013, 78, 5357-5363.	1.7	25
844	Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation. Nanoscale, 2013, 5, 5299.	2.8	35

#	Article	IF	CITATIONS
845	On the Role of Dewetting Transitions in Host–Guest Binding Free Energy Calculations. Journal of Chemical Theory and Computation, 2013, 9, 46-53.	2.3	26
846	In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Letters, 2013, 13, 5985-5990.	4.5	85
847	Sequence-Specific Inhibition of a Nonspecific Protease. Journal of the American Chemical Society, 2013, 135, 11414-11416.	6.6	69
848	Hydrocarbons Depending on the Chain Length and Head Group Adopt Different Conformations within a Water-Soluble Nanocapsule: ¹ H NMR and Molecular Dynamics Studies. Journal of Physical Chemistry B, 2013, 117, 398-407.	1.2	48
849	Construction of Cucurbit[7]uril Based Tubular Nanochannels Incorporating Associated [CdCl ₄] ²⁻ and Lanthanide Ions. Inorganic Chemistry, 2013, 52, 1909-1915.	1.9	63
850	Prototropical and Photophysical Properties of Ellipticine inside the Nanocavities of Molecular Containers. Journal of Physical Chemistry B, 2013, 117, 14099-14107.	1.2	19
851	Role of Free Space and Conformational Control on Photoproduct Selectivity of Optically Pure \hat{l} ±-Alkyldeoxybenzoins within a Water-Soluble Organic Capsule. Journal of Organic Chemistry, 2013, 78, 942-949.	1.7	14
852	Electrokinetic Assembly of One-Dimensional Nanoparticle Chains with Cucurbit[7]uril Controlled Subnanometer Junctions. Nano Letters, 2013, 13, 6016-6022.	4.5	36
854	Quantitative Emergence of Hetero[4]rotaxanes by Templateâ€Directed Click Chemistry. Angewandte Chemie - International Edition, 2013, 52, 381-387.	7.2	105
855	pH Responsive Self-Assembly of Cucurbit[7]urils and Polystyrene-Block-Polyvinylpyridine Micelles for Hydrophobic Drug Delivery. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	4
856	Cucurbit[n]uril type hosts for the reversal of steroidal neuromuscular blocking agents. Future Medicinal Chemistry, 2013, 5, 2075-2089.	1.1	29
857	Self-Assembled Monolayers of Cucurbit[6]uril on a Gold Electrode for 4,4′-Oxydianiline Determination. Analytical Application. Electroanalysis, 2013, 25, 1217-1222.	1.5	6
858	Chameleonic Binding of the Dimethyldiazaperopyrenium Dication by Cucurbit[8]uril. Asian Journal of Organic Chemistry, 2013, 2, 225-229.	1.3	8
859	Effects of sequence context on the binding of tryptophan-containing peptides by the cucurbit[8]uril–methyl viologen complex. Supramolecular Chemistry, 2013, 25, 863-868.	1.5	13
860	Designing Novel Nanomaterials through Functionalization of Carbon Nanotubes with Supramolecules for Application in Nuclear Waste Management. Separation Science and Technology, 2013, 48, 2391-2396.	1.3	14
861	Using spin trapping electron spin resonance for determining the degradation mechanism of membranes used in fuel cells. Molecular Physics, 2013, 111, 2738-2745.	0.8	7
862	Differences in Cucurbit[7]uril: Surfactant Complexation Promoted by the Cationic Head Group. ChemPlusChem, 2013, 78, 1058-1064.	1.3	7
863	New Synthetic Host Pillararenes: Their Synthesis and Application to Supramolecular Materials. Bulletin of the Chemical Society of Japan, 2013, 86, 312-332.	2.0	56

#	ARTICLE	IF	CITATIONS
864	Cucurbit[7]uril Containers for Targeted Delivery of Oxaliplatin to Cancer Cells. Angewandte Chemie, 2013, 125, 12255-12259.	1.6	13
865	Modulation of Photophysics and p <i>K</i> _a Shift of the Anti ancer Drug Camptothecin in the Nanocavities of Supramolecular Hosts. ChemPhysChem, 2013, 14, 532-542.	1.0	44
869	Crystalline Hybrid Solid Materials of Palladium and Decamethylcucurbit[5]uril as Recoverable Precatalysts for Heck Crossâ€Coupling Reactions. Chemistry - A European Journal, 2013, 19, 15661-15668.	1.7	18
871	Binding of $\hat{l}\pm, j$ %-alkyldiammonium ions by cucurbit[<i>n</i>]urils in the gas phase. Supramolecular Chemistry, 2014, 26, 684-691.	1.5	4
872	Self-assembly of cucurbit[8]uril-based polypseudorotaxanes using host–guest interactions. RSC Advances, 2014, 4, 53665-53668.	1.7	17
874	The influence of equatorial substitution and K+ ion concentration: an encapsulation study of CH4, CH3F, CH3Cl, CH2F2 and CF4, in $Q[5]$, CyP5 $Q[5]$ and a CyP5 $Q[5]$ -carboxylate derivative. Supramolecular Chemistry, 2014, 26, 670-676.	1.5	14
875	One-dimensional channels constructed from per-hydroxylated pillar[6]arene molecules for gas and vapour adsorption. Chemical Communications, 2014, 50, 15209-15211.	2.2	72
876	Acyclic Cucurbit[<i>n</i>) uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs. Journal of Medicinal Chemistry, 2014, 57, 9554-9563.	2.9	94
877	Radicalâ€Cation Dimerization Overwhelms Inclusion in [<i>n</i>)Pseudorotaxanes. Chemistry - A European Journal, 2014, 20, 7334-7344.	1.7	26
878	Supramolecular Inhibition of Amyloid Fibrillation by Cucurbit[7]uril. Angewandte Chemie - International Edition, 2014, 53, 7461-7465.	7.2	128
880	Structural studies of diaminocyclohexane-containing aza-crown ether macrocycles and their Zn(II) complexes. Polyhedron, 2014, 67, 191-198.	1.0	2
881	Preparation, characterization, and inÂvitro phototoxic effect of zinc phthalocyanine cucurbit[7]uril complex encapsulated into liposomes. Dyes and Pigments, 2014, 100, 162-167.	2.0	26
882	Porphyrin-containing hyperbranched supramolecular polymers: enhancing ¹ O ₂ -generation efficiency by supramolecular polymerization. Polymer Chemistry, 2014, 5, 53-56.	1.9	70
883	Synthesis and Characterization of Mono-, Di-, and Tetranitrated 7,8-Disubstituted Glycolurils. Propellants, Explosives, Pyrotechnics, 2014, 39, 90-94.	1.0	6
884	Cucurbit[7]urilâ <guest -="" 2014,="" 53,="" 988-993.<="" an="" angewandte="" attomolar="" chemie="" constant.="" dissociation="" edition,="" international="" pair="" td="" with=""><td>7.2</td><td>356</td></guest>	7.2	356
885	Theoretical study on the complexation of bambus[6]uril with the hydrogen sulfide anion. Monatshefte Fýr Chemie, 2014, 145, 877-879.	0.9	6
886	Encapsulation of alkyl and aryl derivatives of quaternary ammonium cations within cucurbit[n]uril (n = 6,7) and their inverted diastereomers: density functional investigations. Journal of Molecular Modeling, 2014, 20, 2138.	0.8	13
887	Cucurbituril-Induced Supramolecular pK a Shift in Fluorescent Dyes and Its Prospective Applications. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 1-17.	0.8	27

#	Article	IF	CITATIONS
888	Supramolecular capsules of cucurbit[6]uril and controlled release. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 437-441.	0.9	3
889	Fabricating covalently attached hyperbranched polymers by combining photochemistry with supramolecular polymerization. Polymer Chemistry, 2014, 5, 1471-1476.	1.9	64
890	Hexachloroplatinate(IV) Anion Induced Cucurbituril Supramolecular Assembly with Linear Channels. European Journal of Inorganic Chemistry, 2014, 2014, 1435-1438.	1.0	35
891	Supramolecular Assistance for the Selective Monofunctionalization of a Calix[6]arene Tris-carboxylic Acid-Based Receptor. Journal of Organic Chemistry, 2014, 79, 1913-1919.	1.7	14
893	Cucurbit[6]uril in combination with guanidinium ionic liquid as a new type of stationary phase for capillary gas chromatography. Journal of Chromatography A, 2014, 1334, 112-117.	1.8	29
894	Cucurbit[n]urils as a new class of stationary phases for gas chromatographic separations. Journal of Chromatography A, 2014, 1334, 139-148.	1.8	34
895	Stabilization of Cucurbituril/Guest Assemblies via Long-Range Coulombic and CH···O Interactions. Journal of the American Chemical Society, 2014, 136, 6602-6607.	6.6	72
896	Fluorescence Enhancement of a Porphyrin–Viologen Dyad by Pseudorotaxane Formation with Cucurbit[7]uril. European Journal of Organic Chemistry, 2014, 2014, 2873-2877.	1.2	15
897	Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Threeâ€Component Recognition with Reinforcing Cellulose Nanorods. Advanced Functional Materials, 2014, 24, 2706-2713.	7.8	227
898	Dual Stimuliâ€Responsive Selfâ€Assembled Supramolecular Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 3400-3404.	7.2	136
899	Highly Stable, Waterâ€Dispersible Metalâ€Nanoparticleâ€Decorated Polymer Nanocapsules and Their Catalytic Applications. Angewandte Chemie - International Edition, 2014, 53, 6414-6418.	7.2	74
900	Synthetic versus Natural Receptors: Supramolecular Control of Chemical Sensing in Fish. ACS Chemical Biology, 2014, 9, 1432-1436.	1.6	21
901	Stimuli-Responsive Supramolecular Polymers in Aqueous Solution. Accounts of Chemical Research, 2014, 47, 1971-1981.	7.6	527
902	Flavylium Network of Chemical Reactions in Confined Media: Modulation of 3′,4′,7‶rihydroxyflavilium Reactions by Host–Guest Interactions with Cucurbit[7]uril. ChemPhysChem, 2014, 15, 2295-2302.	1.0	27
903	Fused Glycoluril-Tetrathiafulvalene Molecular Clips as Receptors for Neutral Electron Acceptor Guests. Organic Letters, 2014, 16, 2590-2593.	2.4	18
904	Cucurbit[7]uril hostâ~guest complexations of steroidal neuromuscular blocking agents in aqueous solution. Canadian Journal of Chemistry, 2014, 92, 243-249.	0.6	20
905	Synthesis and Electronic Properties of 1,2â∈Hemisquarimines and Their Encapsulation in a Cucurbit[7]uril Host. Chemistry - A European Journal, 2014, 20, 6412-6420.	1.7	4
906	Tetrachloridometallate Dianion-Induced Cucurbit[8]uril Supramolecular Assemblies with Large Channels and Their Potential Applications for Extraction Coating on Solid-Phase Microextraction Fibers. Inorganic Chemistry, 2014, 53, 21-23.	1.9	28

#	Article	IF	CITATIONS
907	Supramolecular catalysis. Part 2: artificial enzyme mimics. Chemical Society Reviews, 2014, 43, 1734-1787.	18.7	775
908	"Turn-on―fluorescent sensor array for basic amino acids in water. Chemical Communications, 2014, 50, 61-63.	2.2	122
909	Phototransformation of benzimidazole and thiabendazole inside cucurbit[8]uril. Photochemical and Photobiological Sciences, 2014, 13, 310-315.	1.6	17
910	Extended and Contorted Conformations of Alkanediammonium Ions in Symmetrical α,α′,δ;δ′-Tetramethylcucurbit[6]uril Cavity. Journal of Organic Chemistry, 2014, 79, 11194-11198.	1.7	33
911	Cucurbit[6]uril-Based Supramolecular Assemblies: Possible Application in Radioactive Cesium Cation Capture. Journal of the American Chemical Society, 2014, 136, 16744-16747.	6.6	82
912	Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography. Journal of Chromatography A, 2014, 1371, 237-243.	1.8	26
913	Synthesis, Structure, and Properties of Supramolecular Photoswitches Based on Ammonioalkyl Derivatives of Crown Ether Styryl Dyes. Journal of Organic Chemistry, 2014, 79, 11416-11430.	1.7	24
915	Bromine and iodine–cucurbit[6]uril complexes: preparation and applications in synthetic organic chemistry. New Journal of Chemistry, 2014, 38, 2262.	1.4	14
916	Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chemical Communications, 2014, 50, 12420-12433.	2.2	386
917	New lanthanide–CB[6] coordination compounds: relationships between the crystal structure and luminescent properties. Dalton Transactions, 2014, 43, 5435-5442.	1.6	25
918	Femtosecond to nanosecond dynamics of 2,2′-bipyridine-3,3′-diol inside the nano-cavities of molecular containers. Physical Chemistry Chemical Physics, 2014, 16, 933-939.	1.3	16
919	Host–guest accelerated photodimerisation of anthracene-labeled macromolecules in water. Polymer Chemistry, 2014, 5, 5375.	1.9	64
920	pH responsive supramolecular prodrug micelles based on cucurbit[8]uril for intracellular drug delivery. Chemical Communications, 2014, 50, 9390-9392.	2.2	45
921	Sequential inclusion of two berberine cations in cucurbit[8]uril cavity: kinetic and thermodynamic studies. Physical Chemistry Chemical Physics, 2014, 16, 20147-20156.	1.3	29
922	Efficient syntheses of pillar[6]arene-based hetero[4]rotaxanes using a cooperative capture strategy. Chemical Communications, 2014, 50, 6196-6199.	2,2	85
923	Cucurbit[7]uril: A Highâ€Affinity Host for Encapsulation of Amino Saccharides and Supramolecular Stabilization of Their αâ€Anomers in Water. Angewandte Chemie - International Edition, 2014, 53, 1003-1007.	7.2	75
924	Self-assembly and applications of poly(glycidyl methacrylate)s and their derivatives. Chemical Communications, 2014, 50, 13201-13215.	2.2	90
925	Mesoporous Silica Nanoparticles Coated by Layer-by-Layer Self-assembly Using Cucurbit[7]uril for in Vitro and in Vivo Anticancer Drug Release. Chemistry of Materials, 2014, 26, 6418-6431.	3.2	183

#	ARTICLE	IF	CITATIONS
926	Rotaxane Formation by Cucurbit[7]uril in Water and DMSO Solutions. Organic Letters, 2014, 16, 5834-5837.	2.4	35
927	Synthesis and supramolecular properties of glycoluril tetramer. Supramolecular Chemistry, 2014, 26, 168-172.	1.5	15
928	Interaction of a hemicyanine dye and its derivative with DNA and cucurbit[7]uril. New Journal of Chemistry, 2014, 38, 3600-3605.	1.4	25
929	Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host–guest interactions. Chemical Communications, 2014, 50, 4776-4787.	2.2	200
930	Anion concentration control in the self-assembly of symmetrical $\hat{l}_{\pm},\hat{l}_{\pm}\hat{a}\in^2,\hat{l}',\hat{l}'\hat{a}\in^2$ -tetramethyl-cucurbit[6]uril-based tubular architectures. RSC Advances, 2014, 4, 18323.	1.7	17
931	Cucurbit[7,8]urils binding to gefitinib and the effect of complex formation on the solubility and dissolution rate of the drug. RSC Advances, 2014, 4, 3348-3354.	1.7	26
932	Multifarenes: new modular cavitands. Chemical Communications, 2014, 50, 2494.	2.2	27
933	High field solid state 13C NMR spectroscopy of cucurbituril materials. CrystEngComm, 2014, 16, 3788.	1.3	6
934	Backbone-modified amphiphilic cyclic di- and tetrasaccharides. Chemical Communications, 2014, 50, 8554-8557.	2.2	15
935	Discovery of a cyclic 6 + 6 hexamer of <scp>d</scp> -biotin and formaldehyde. Chemical Science, 2014, 5, 2647-2650.	3.7	97
936	Dithienylethene-based rotaxanes: synthesis, characterization and properties. Organic and Biomolecular Chemistry, 2014, 12, 7712-7720.	1.5	34
937	Light Control of Stoichiometry and Motion in Pseudorotaxanes Comprising a Cucurbit[7]uril Wheel and an Azobenzeneâ€Bipyridinium Axle. Chemistry - A European Journal, 2014, 20, 10737-10744.	1.7	44
938	Kinetics and Thermodynamics of Berberine Inclusion in Cucurbit[7]uril. Journal of Physical Chemistry B, 2014, 118, 2499-2505.	1.2	53
939	Synthetic and bioinspired cage nanoparticles for drug delivery. Nanomedicine, 2014, 9, 1545-1564.	1.7	40
940	Cucurbituril: Chiral Applications. Chirality, 2014, 26, 712-723.	1.3	29
941	Experimental Study of Cucurbit[7]uril Derivatives Modified Acrylamide Polymer for Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, 2014, 53, 7570-7578.	1.8	33
942	Enhanced catalytic electrochemical reduction of dissolved oxygen with ultraclean cucurbituril [7]-capped gold nanoparticles. Nanoscale, 2014, 6, 9550-9553.	2.8	21
943	Tetrathiafulvalene Terminal-Decorated PAMAM Dendrimers for Triggered Release Synergistically Stimulated by Redox and CB[7]. Langmuir, 2014, 30, 718-726.	1.6	12

#	Article	IF	CITATIONS
944	The Hydrophobic Effect Revisited—Studies with Supramolecular Complexes Imply Highâ€Energy Water as a Noncovalent Driving Force. Angewandte Chemie - International Edition, 2014, 53, 11158-11171.	7.2	502
945	Synergistic Effect of Intramolecular Charge Transfer toward Supramolecular p <i>K</i> _a Shift in Cucurbit[7]uril Encapsulated Coumarin Dyes. Journal of Physical Chemistry B, 2014, 118, 7136-7146.	1.2	58
946	Detailed Scenario of the Acid–Base Behavior of Prototropic Molecules in the Subdomain-IIA Pocket of Serum Albumin: Results and Prospects in Drug Delivery. Journal of Physical Chemistry B, 2014, 118, 12153-12167.	1.2	10
947	Host–guest interaction manipulated self-assembly of pyridinium-tailored naphthalene. Chemical Communications, 2014, 50, 11950-11953.	2.2	8
948	New homologues of chiral cyclohexylhemicucurbit[n]urils. Supramolecular Chemistry, 2014, 26, 698-703.	1.5	13
949	Gold Nanorods with Subâ€Nanometer Separation using Cucurbit[<i>n</i>]uril for SERS Applications. Small, 2014, 10, 4298-4303.	5.2	50
950	Anion Driven [Cu ^{II} L ₂] _{<i>n</i>} Frameworks: Crystal Structures, Guest-Encapsulation, Dielectric, and Possible Ferroelectric Properties. Chemistry of Materials, 2014, 26, 3811-3817.	3.2	38
951	Variational Implicit Solvation with Poisson–Boltzmann Theory. Journal of Chemical Theory and Computation, 2014, 10, 1454-1467.	2.3	45
952	Supramolecular control of phthalocyanine dye aggregation. Supramolecular Chemistry, 2014, 26, 642-647.	1.5	13
953	Tailored Functionalization of Polyphenol-Based Molecular Platforms. Journal of Organic Chemistry, 2014, 79, 6563-6570.	1.7	20
954	Cucurbiturils as fluorophilic receptors. Supramolecular Chemistry, 2014, 26, 657-669.	1.5	45
955	Cucurbit[8]uril recognition of rapidly interconverting diastereomers. Supramolecular Chemistry, 2014, 26, 632-641.	1.5	9
956	Chemical factors affecting cucurbit[<i>n</i>]uril formulation into ocular dosage forms: excipient binding, solubility, corneal permeability and antibiotic encapsulation. Supramolecular Chemistry, 2014, 26, 648-656.	1.5	10
957	The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials, 2014, 35, 9897-9903.	5.7	77
958	Theoretical study of the inclusion complexation of TCDD with cucurbit[n]urils. RSC Advances, 2014, 4, 52415-52422.	1.7	5
959	Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol. Materials Chemistry and Physics, 2014, 148, 772-777.	2.0	15
960	Predicting the properties of a new class of host–guest complexes: C ₆₀ fullerene and CB[9] cucurbituril. Physical Chemistry Chemical Physics, 2014, 16, 22823-22829.	1.3	20
961	Acyclic CB[n]-type molecular containers: effect of solubilizing group on their function as solubilizing excipients. Organic and Biomolecular Chemistry, 2014, 12, 2413-2422.	1.5	47

#	Article	IF	CITATIONS
962	Bambus[6]uril as a novel example of a ditopic ion-pair molecular receptor for sodium iodide. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 721-724.	0.9	3
963	Theoretical study on the interaction of the ammonium cation with decamethylcucurbit[5]uril. Monatshefte Fýr Chemie, 2014, 145, 1243-1246.	0.9	0
964	One-pot synthesis–assembly–separation of cucurbit[6]uril via SO3H-functionalized ionic liquids. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 457-461.	0.9	5
965	Self-Assemblies Based on the "Outer-Surface Interactions―of Cucurbit[<i>n</i>) Jurils: New Opportunities for Supramolecular Architectures and Materials. Accounts of Chemical Research, 2014, 47, 1386-1395.	7.6	353
966	pH-controlled release of auxin plant hormones from cucurbit[7]uril macrocycle. Chemical and Biological Technologies in Agriculture, 2014, 1, 2.	1.9	11
967	Supramolecular dynamics. Chemical Society Reviews, 2014, 43, 4037-4050.	18.7	96
968	Excited-state properties of fluorenones: influence of substituents, solvent and macrocyclic encapsulation. Physical Chemistry Chemical Physics, 2014, 16, 16436-16445.	1.3	38
969	Hostâ€"Guest Chemistry in the Gas Phase: Complex Formation of Cucurbit[6]uril with Proton-bound Water Dimer. Journal of the American Society for Mass Spectrometry, 2014, 25, 410-421.	1.2	17
971	Physicochemical Analysis of Mixed Micelles of a Viologen Surfactant: Extended to Water-in-Oil (w/o) Microemulsion and Cucurbit[8]uril-Assisted Vesicle Formation. Langmuir, 2014, 30, 8290-8299.	1.6	28
972	The cucurbituril â€~portal' effect. Supramolecular Chemistry, 2014, 26, 677-683.	1.5	12
974	Threading of a double-calix[6]arene system with dialkylammonium axles. Supramolecular Chemistry, 2014, 26, 569-578.	1.5	8
975	Thermodynamics and Structures of Complexation between Tetrasulfonated 1,5-Dinaphtho-38-crown-10 and Diquaternary Salts in Aqueous Solution. Journal of Physical Chemistry B, 2014, 118, 2433-2441.	1.2	13
976	Stimuli-responsive supramolecular micellar assemblies of cetylpyridinium chloride with cucurbit [5/7] urils. Soft Matter, 2014, 10, 3485.	1.2	45
977	Host–Guest Chemistry of 1D Suprachannels and Dihalomethane Molecules: Metallacyclodimeric Ensembles Consisting of Zinc(II)-2,7-bis(nicotinoyloxy)naphthalene Complexes. Crystal Growth and Design, 2014, 14, 4461-4467.	1.4	11
978	Cucurbituril/hydroxyapatite based nanoparticles for potential use in theranostic applications. CrystEngComm, 2014, 16, 6929-6936.	1.3	18
979	Endo-Complexation of Alkylammonium Ions by Calix[4]arene Cavity: Facilitating Cationâ⁻'Ï€ Interactions through the Weakly Coordinating Anion Approach. Journal of Organic Chemistry, 2014, 79, 9842-9846.	1.7	15
980	Monodispersed Ag Nanoparticles as Catalyst: Preparation Based on Crystalline Supramolecular Hybrid of Decamethylcucurbit[5]uril and Silver Ions. Inorganic Chemistry, 2014, 53, 5692-5697.	1.9	19
981	Dual Self-Sorting by Cucurbit[8]uril To Transform a Mixed Micelle to Vesicle. Langmuir, 2014, 30, 11528-11534.	1.6	28

#	ARTICLE	IF	CITATIONS
982	The Origin of the Room-Temperature Stability of [TTF].+â‹â‹â‹[TTF].+Long, Multicenter Bonds Found in Functionalized Ï€-[R-TTF]22+Dimers Included in the Cucurbit[8]uril Cavity. Chemistry - A European Journal, 2014, 20, 7784-7795.	1.7	12
983	Mass Spectrometric Detection of Nanoparticle Host–Guest Interactions in Cells. Analytical Chemistry, 2014, 86, 6710-6714.	3.2	19
984	Synthesis, electrochemistry and photo-induced electron transfer of unsymmetrical dinuclear ruthenium osmium 2,2′-bipyridine complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 287, 40-48.	2.0	2
985	Theoretical investigation of inclusion complex formation of Gold (III) $\hat{a} \in \text{``Dimethyldithiocarbamate}$ anticancer agents with cucurbit [n=5,6] urils. Arabian Journal of Chemistry, 2014, 7, 425-435.	2.3	8
986	Synthesis of novel 2,4,6,8,10-pentaaza [3.3.3] propellane derivatives. Tetrahedron, 2014, 70, 1617-1620.	1.0	22
987	Stability or flexibility: Metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Applied Catalysis A: General, 2014, 481, 54-63.	2.2	14
988	Recent developments in polypseudorotaxanes and polyrotaxanes. Progress in Polymer Science, 2014, 39, 1043-1073.	11.8	194
989	Toward Reversible Control of Cucurbit[<i>n</i>]uril Complexes. Accounts of Chemical Research, 2014, 47, 2160-2167.	7.6	212
990	Design, Synthesis, and Xâ€ray Structural Analyses of Diamantane Diammonium Salts: Guests for Cucurbit[xi>n) uril (CB[⟨i>n)) Hosts. European Journal of Organic Chemistry, 2014, 2014, 2533-2542.	1,2	22
991	The template effect of solvents on high yield synthesis, co-cyclization of pillar[6]arenes and interconversion between pillar[5]- and pillar[6]arenes. Chemical Communications, 2014, 50, 5774-5777.	2.2	59
993	Separation performance of cucurbit[8]uril and its coordination complex with cadmium (II) in capillary gas chromatography. Journal of Chromatography A, 2014, 1343, 167-173.	1.8	23
995	Spontaneous formation of giant vesicles with tunable sizes based on jellyfish-like graft copolymers. RSC Advances, 2014, 4, 59323-59330.	1.7	3
997	Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis. Angewandte Chemie, 2015, 127, 13199-13203.	1.6	20
998	Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2015, 54, 13007-13011.	7.2	71
999	A thermally stable pH-responsive "supramolecular buckle―based on the encapsulation of 4-(4-aminophenyl)-N-methylpyridinium by cucurbit[8]uril. Organic Chemistry Frontiers, 2015, 2, 1030-1034.	2.3	4
1001	Supramolecular Polymers Constructed through Self-sorting Host–Guest Interactions. Chemistry Letters, 2015, 44, 1040-1046.	0.7	26
1002	Study of complexation of styrylheterocycles with cavitands by spectroscopic methods. Russian Chemical Bulletin, 2015, 64, 2459-2472.	0.4	3
1003	Second‧phere Complexation of Thorium(IV) by Cucurbit[6]uril with Included Perrhenate Counterions – Crystal Structure and Hirshfeld Surface Analysis. European Journal of Inorganic Chemistry, 2015, 2015, 2037-2040.	1.0	8

#	Article	IF	CITATIONS
1004	Application of the Generalized Molarâ€Ratio Method to the Determination of the Stoichiometry and Apparent Binding Constant of Nanoparticleâ€Organic Capping Systems. Electroanalysis, 2015, 27, 2302-2312.	1.5	3
1006	Supramolecular Assays for Mapping Enzyme Activity by Displacementâ€Triggered Change in Hyperpolarized ¹²⁹ Xe Magnetization Transfer NMR Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 13444-13447.	7.2	55
1007	Comparative Effectiveness of Calabadion and Sugammadex to Reverse Non-depolarizing Neuromuscular-blocking Agents. Anesthesiology, 2015, 123, 1337-1349.	1.3	71
1008	Supramolecular Polymerization Engineered with Molecular Recognition. Chemical Record, 2015, 15, 837-853.	2.9	21
1009	Highly Sensitive and Selective Biosensors Based on Organic Transistors Functionalized with Cucurbit[6]uril Derivatives. Advanced Functional Materials, 2015, 25, 4882-4888.	7.8	66
1010	Macrocyclic Weakly Coordinating Anions. Chemistry - A European Journal, 2015, 21, 14258-14267.	1.7	5
1011	Aggregation Control of Hemicyanine Fluorescent Dye by Using of Cucurbit[7]uril and Pillar[6]arene. Chinese Journal of Chemistry, 2015, 33, 351-355.	2.6	13
1012	Host–Guest Complexes of Flavylium Cations and Cucurbit[7]uril: The Influence of Flavylium Substituents on the Structure and Stability of the Complex. ChemPlusChem, 2015, 80, 1779-1785.	1.3	25
1013	A Fluorescent 1,5â€Naphthalenedisulfonate Anion‣inked Cucurbit[6]uril Framework. European Journal of Organic Chemistry, 2015, 2015, 6806-6810.	1.2	7
1014	Photoresponsive Cucurbit[8]urilâ€Mediated Adhesion of Bacteria on Supported Lipid Bilayers. Small, 2015, 11, 6187-6196.	5.2	42
1015	A Tetraferrocenylâ€Resorcinarene Cavitand as a Redoxâ€Switchable Host of Ammonium Salts. Chemistry - A European Journal, 2015, 21, 10558-10565.	1.7	19
1016	Supramolecular Selfâ€Assembly of Cucurbit[6]uil and Ionic Liquid in Nonâ€aqueous System. Chinese Journal of Chemistry, 2015, 33, 413-417.	2.6	1
1017	Coordination of Alkalineâ∈Earth Metal Ions in Inverted Cucurbit[6]uril Supramolecular Assemblies Formed in the Presence of Tetrachloride Zincates. European Journal of Inorganic Chemistry, 2015, 2015, 318-323.	1.0	19
1018	The Host $\hat{a}\in$ Guest Interaction Between Cucurbit[7]uril and Ferrocenemonocarboxylic Acid for Electrochemically Catalytic Determination of Glucose. Electroanalysis, 2015, 27, 1387-1393.	1.5	7
1020	Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon. Nanomaterials, 2015, 5, 2019-2053.	1.9	57
1021	Time-resolved fluorescence anisotropy as a tool to study guest–cucurbit[n]uril—protein ternary supramolecular interactions. Photochemical and Photobiological Sciences, 2015, 14, 842-852.	1.6	29
1022	Deciphering the Specific High-Affinity Binding of Cucurbit[7]uril to Amino Acids in Water. Journal of Physical Chemistry B, 2015, 119, 4628-4636.	1.2	103
1023	Molecular dynamics simulation of a cucurbituril based molecular switch triggered by pH changes. Computational and Theoretical Chemistry, 2015, 1066, 104-112.	1.1	16

#	Article	IF	CITATIONS
1024	Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation. Chemical Communications, 2015, 51, 9987-9990.	2.2	27
1025	Self-Assembly Process of Dodecanuclear Pt(II)-Linked Cyclic Hexagon. Journal of the American Chemical Society, 2015, 137, 7664-7667.	6.6	40
1026	Molecular dynamics of nor-Seco-cucurbit[10]uril complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 323-333.	0.9	17
1027	A novel switchable [2]rotaxane driven by light energy with Rhodamine B as a stopper. Tetrahedron, 2015, 71, 4116-4123.	1.0	4
1028	Synthesis of conjugates combining macromolecular brushes and rigid macrocycles. Polymer, 2015, 72, 422-427.	1.8	2
1029	Cucurbit[6]uril: A Possible Host for Noble Gas Atoms. Journal of Physical Chemistry B, 2015, 119, 10962-10974.	1.2	50
1030	pH and Glutathione Dual-Responsive Dynamic Cross-Linked Supramolecular Network on Mesoporous Silica Nanoparticles for Controlled Anticancer Drug Release. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28656-28664.	4.0	128
1031	Inclusion compounds based on nickel(II) dimethylglyoxymate and cucurbit[8]uril: A quantum chemical prediction of the structure and thermodynamic parameters of formation. Journal of Structural Chemistry, 2015, 56, 1449-1457.	0.3	3
1032	Inclusion compound based on Bis(ethylenediamine)copper(II) complex and cucurbit[8]uril: Quantum chemical prediction for structure and formation thermodynamic parameters. Russian Journal of Inorganic Chemistry, 2015, 60, 1247-1252.	0.3	7
1033	Determination of the kinetics underlying the pKa shift for the 2-aminoanthracenium cation binding with cucurbit[7]uril. Faraday Discussions, 2015, 185, 381-398.	1.6	30
1034	Preparation and chromatographic performance evaluation of cucurbit[7]uril immobilized silica. Journal of Chromatography A, 2015, 1376, 64-73.	1.8	11
1035	Dualâ€Functional Semithiobambusurils. Chemistry - A European Journal, 2015, 21, 536-540.	1.7	60
1036	Controlling the Reactivity of the SeSe Bond by the Supramolecular Chemistry of Cucurbituril. ChemPhysChem, 2015, 16, 523-527.	1.0	33
1037	A simple modular aptasensor platform utilizing cucurbit[7]uril and a ferrocene derivative as an ultrastable supramolecular linker. Chemical Communications, 2015, 51, 3098-3101.	2.2	27
1038	Host–Guest Complexation of a Pyrogallol[4]arene Derivative at the Air–Water Interface. Langmuir, 2015, 31, 1368-1375.	1.6	4
1039	Cucurbit[<i>n</i>]uril-capped upconversion nanoparticles as highly emissive scaffolds for energy acceptors. Nanoscale, 2015, 7, 5140-5146.	2.8	17
1040	X-ray studies of conformation: observation of conformational polymorphism of a glycoluril clip. CrystEngComm, 2015, 17, 2245-2249.	1.3	5
1041	Triggered Exchange of Anionic for Neutral Guests inside a Cationic Coordination Cage. Journal of the American Chemical Society, 2015, 137, 1060-1063.	6.6	166

#	Article	IF	CITATIONS
1042	Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils. Coordination Chemistry Reviews, 2015, 287, 89-113.	9.5	106
1043	Electrochemistry of Viologen Dications in Cholate Media and Competition between the Cholate Assemblies and the Cucurbit[7]uril Host. Langmuir, 2015, 31, 2997-3002.	1.6	10
1044	Pressocucurbit[5]uril. Organic Letters, 2015, 17, 1022-1025.	2.4	18
1045	Reversible Morphological Transformation between Polymer Nanocapsules and Thin Films through Dynamic Covalent Selfâ€Assembly. Angewandte Chemie, 2015, 127, 2731-2735.	1.6	11
1046	Adsorption of methylene blue from an aqueous solution using a cucurbituril polymer. Environmental Progress and Sustainable Energy, 2015, 34, 512-519.	1.3	11
1047	Coordination of Alkaline Earth Metal lons in the Inverted Cucurbit[7]uril Supramolecular Assemblies Formed in the Presence of [ZnCl ₄] ^{2â°'} and [CdCl ₄] ^{2â°'} . Chemistry - an Asian Journal, 2015, 10, 1159-1164.	1.7	26
1048	Molecular Recognition in Chemical and Biological Systems. Angewandte Chemie - International Edition, 2015, 54, 3290-3327.	7.2	491
1049	Differentiation of small alkane and alkyl halide constitutional isomers via encapsulation. Organic and Biomolecular Chemistry, 2015, 13, 1869-1877.	1.5	10
1050	Formation of ring-in-ring complexes between crown ethers and rigid TVBox ⁸⁺ . Chemical Communications, 2015, 51, 1432-1435.	2.2	19
1051	Complexation (cucurbit[6]uril-pyrene): Thermodynamic and spectroscopic properties. Journal of Luminescence, 2015, 158, 435-440.	1.5	4
1052	Efficient Synthesis, Structure, and Complexation Studies of Electronâ€Donating Thiacalix[⟨i⟩n⟨/i⟩]dithienothiophene. Angewandte Chemie, 2015, 127, 2772-2776.	1.6	5
1053	Efficient Synthesis, Structure, and Complexation Studies of Electronâ€Donating Thiacalix[<i>n</i>]dithienothiophene. Angewandte Chemie - International Edition, 2015, 54, 2734-2738.	7.2	27
1054	Photophysical and Quantum Chemical Studies on the Interactions of Oxazine-1 Dye with Cucurbituril Macrocycles. Journal of Physical Chemistry B, 2015, 119, 3046-3057.	1.2	34
1055	Cucurbiturils as supramolecular inhibitors of DNA restriction by type II endonucleases. Organic and Biomolecular Chemistry, 2015, 13, 2866-2869.	1.5	32
1056	Reversible Morphological Transformation between Polymer Nanocapsules and Thin Films through Dynamic Covalent Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 2693-2697.	7.2	36
1057	From Ring-in-Ring to Sphere-in-Sphere: Self-Assembly of Discrete 2D and 3D Architectures with Increasing Stability. Journal of the American Chemical Society, 2015, 137, 1556-1564.	6.6	144
1058	Molecular recognition and self-assembly of pillarenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 13-33.	0.9	61
1059	Noncovalent assemblies of cationic porphyrins with cage macrocycles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 35-48.	0.9	15

#	Article	IF	CITATIONS
1060	Primary amine recognition in water by a calix[6]aza-cryptand incorporated in dodecylphosphocholine micelles. Organic and Biomolecular Chemistry, 2015, 13, 2931-2938.	1.5	15
1061	Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Organic and Biomolecular Chemistry, 2015, 13, 3048-3057.	1.5	21
1062	An ultrafast molecular rotor based ternary complex in a nanocavity: a potential "turn on― fluorescence sensor for the hydrocarbon chain. Physical Chemistry Chemical Physics, 2015, 17, 5691-5703.	1.3	5
1063	Sequence-Specific, Nanomolar Peptide Binding via Cucurbit[8]uril-Induced Folding and Inclusion of Neighboring Side Chains. Journal of the American Chemical Society, 2015, 137, 3663-3669.	6.6	146
1064	Aggregation and thermal gelation of N-isopropylacrylamide based cucurbit[7]uril side-chain polypseudorotaxanes with low pseudorotaxane content. RSC Advances, 2015, 5, 20684-20690.	1.7	10
1065	Competitive recognition between 1:2 ternary complex of zwitterion and H3PO4 towards 3D cucurbit[8]uril frameworks. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 509-516.	0.9	O
1066	A supramolecular assembly of methyl-substituted cucurbit[5]uril and its potential applications in selective absorption. RSC Advances, 2015, 5, 17354-17357.	1.7	31
1067	Supramolecular assembly of a methyl-substituted cucurbit[6]uril and its potential applications in selective sorption. New Journal of Chemistry, 2015, 39, 2433-2436.	1.4	26
1068	Macrocycle-based metal-organic frameworks. Coordination Chemistry Reviews, 2015, 292, 74-90.	9.5	103
1069	Switching of emission of a styryl dye in cucurbit[7]uril: A comprehensive experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 140, 241-247.	2.0	5
1070	Theoretical study on the complexation of bambus [6] uril with the methanesulfonate and trifluoromethanesulfonate anions. Monatshefte FA $\frac{1}{4}$ r Chemie, 2015, 146, 1609-1612.	0.9	3
1072	Dimeric packing of molecular clips induced by interactions between π-systems. CrystEngComm, 2015, 17, 2486-2495.	1.3	6
1073	High binding yet accelerated guest rotation within a cucurbit[7]uril complex. Toward paramagnetic gyroscopes and rolling nanomachines. Nanoscale, 2015, 7, 12143-12150.	2.8	17
1074	Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chemical Reviews, 2015, 115, 8736-8834.	23.0	346
1075	Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics. Journal of Physical Chemistry B, 2015, 119, 10145-10155.	1.2	30
1076	Redox Control of the Binding Modes of an Organic Receptor. Journal of the American Chemical Society, 2015, 137, 11057-11068.	6.6	55
1077	Comprehensive Synthesis of Monohydroxy–Cucurbit[<i>n</i>) urils (<i>n</i> = 5, 6, 7, 8): High Purity and High Conversions. Journal of the American Chemical Society, 2015, 137, 10238-10245.	6.6	95
1078	Effects of the molecular weight and the valency of guest-modified poly(ethylene glycol)s on the stability, size and dynamics of supramolecular nanoparticles. Journal of Materials Chemistry B, 2015, 3, 6945-6952.	2.9	13

#	Article	IF	CITATIONS
1079	Synthesis and Recognition Properties of Enantiomerically Pure Acyclic Cucurbit[<i>n</i>)uril-Type Molecular Containers. Organic Letters, 2015, 17, 4038-4041.	2.4	13
1080	Preparation and Supramolecular Recognition of Multivalent Peptide–Polysaccharide Conjugates by Cucurbit[8]uril in Hydrogel Formation. Biomacromolecules, 2015, 16, 2436-2443.	2.6	80
1081	Detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA ⟨i⟩via⟨/i⟩ host–guest interactions inside α-hemolysin nanopores. Chemical Science, 2015, 6, 5628-5634.	3.7	45
1082	Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions. International Journal of Molecular Sciences, 2015, 16, 7428-7444.	1.8	12
1083	Catalytic polymeric nanocomposites via cucurbit[n]uril host–guest interactions. Nanoscale, 2015, 7, 13416-13419.	2.8	20
1084	Synthesis and molecular assembly of benzenoid ring-mounted U-shaped septuple-bridged [7,7]orthocyclophanes walled by cofacial quinoxaline rings. Tetrahedron, 2015, 71, 5620-5633.	1.0	4
1085	Mixed behavior of p-phenylenediaminium guest binding with the inverted cucurbit[6]uril host. Organic and Biomolecular Chemistry, 2015, 13, 8330-8334.	1.5	8
1086	Activation-Enabled Syntheses of Functionalized Pillar[5] arene Derivatives. Organic Letters, 2015, 17, 3260-3263.	2.4	33
1087	Comprehensive Benchmark of Association (Free) Energies of Realistic Host–Guest Complexes. Journal of Chemical Theory and Computation, 2015, 11, 3785-3801.	2.3	188
1088	Supramolecular effect of curcurbit[7]uril on the binding mode of 2-(4-(dimethylamino)) Tj ETQq1 1 0.784314 rgB Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 120-126.	T /Overloc 2.0	k 10 Tf 50 3 11
1089	Direct synthesis of cucurbit[5]uril-anchored polyacrylic acid microspheres and potential applications in selective sorption. RSC Advances, 2015, 5, 33809-33813.	1.7	10
1090	Host–Guest Behavior of a Heavy-Atom Heterocycle Re4(CO)16(μ-SbPh2)2(μ-H)2 Obtained from a Palladium-Assisted Ring Opening Dimerization of Re2(CO)8(μ-SbPh2)(μ-H). Inorganic Chemistry, 2015, 54, 3536-3544.	1.9	6
1091	A new family of anionic organic–inorganic hybrid doughnut-like nanostructures. Chemical Communications, 2015, 51, 9223-9226.	2.2	40
1092	Toward the Design of Highly Stable Small Colloidal SERS Substrates with Supramolecular Host–Guest Interactions for Ultrasensitive Detection. Journal of Physical Chemistry C, 2015, 119, 8876-8888.	1.5	30
1093	A study of the Fenton-mediated oxidation of methylene blueâ€"cucurbit[n]uril complexes. Photochemical and Photobiological Sciences, 2015, 14, 686-692.	1.6	10
1094	Cucurbit[6]uril is an ultrasensitive < sup > 129 < /sup > Xe NMR contrast agent. Chemical Communications, 2015, 51, 8982-8985.	2.2	68
1095	Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chemical Reviews, 2015, 115, 7240-7303.	23.0	869
1096	Surface-immobilised micelles via cucurbit[8]uril-rotaxanes for solvent-induced burst release. Chemical Communications, 2015, 51, 4858-4860.	2.2	10

#	Article	IF	CITATIONS
1097	Perhydroxylcucurbit[6]uril as a highly selective gas chromatographic stationary phase for analytes of wideâ€ranging polarity. Journal of Separation Science, 2015, 38, 821-824.	1.3	11
1098	Mixed-metal metallocavitands: a new approach to tune their electrostatic potentials for controllable selectivity towards substituted benzene derivatives. Dalton Transactions, 2015, 44, 9370-9374.	1.6	6
1099	Computational Study on the Mechanism of the Acceleration of 1,3-Dipolar Cycloaddition inside Cucurbit[6]uril. ACS Catalysis, 2015, 5, 2445-2451.	5.5	60
1100	Supramolecular Assistance for the Selective Demethylation of Calixarene-Based Receptors. Journal of Organic Chemistry, 2015, 80, 5084-5091.	1.7	28
1101	Reversible deformation–formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile. Soft Matter, 2015, 11, 4912-4920.	1.2	46
1102	Influence of hydrophobic residues on the binding of CB[7] toward diammonium ions of common ammoniumâc ammonium distance. Organic and Biomolecular Chemistry, 2015, 13, 6249-6254.	1.5	18
1103	Supramolecular Polymer Networks and Gels. Advances in Polymer Science, 2015, , .	0.4	39
1104	Supramolecular Polymer Networks: Preparation, Properties, and Potential. Advances in Polymer Science, 2015, , 1-46.	0.4	25
1105	Synthesis of linear cucurbit[7]uril pendent copolymers through radical polymerization: Polymers with ultraâ€high binding affinity. Journal of Polymer Science Part A, 2015, 53, 1748-1752.	2.5	13
1106	One-pot solvothermal synthesis of biocompatible magnetic nanoparticles mediated by cucurbit[n]urils. Journal of Materials Chemistry C, 2015, 3, 3517-3521.	2.7	30
1107	Relative affinity of bambus[6]uril towards halide ions: A DFT/GIAO approach in the gas phase, and in the presence of the solvent employing discrete and discrete-continuum models. Computational and Theoretical Chemistry, 2015, 1064, 35-44.	1.1	6
1108	Identification of Guest–Host Inclusion Complexes in the Gas Phase by Electrospray Ionization–Mass Spectrometry. Journal of Chemical Education, 2015, 92, 1091-1094.	1.1	8
1109	Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions. ACS Nano, 2015, 9, 3579-3586.	7.3	49
1110	An Ag2O-responsive [2]pseudorotaxane based on the pillar[5]arene/bis(imidazolium) dication molecular recognition motif. Tetrahedron Letters, 2015, 56, 2091-2093.	0.7	7
1111	Phototautomerization in Pyrrolylphenylpyridine Terphenyl Systems. Journal of Organic Chemistry, 2015, 80, 4430-4442.	1.7	9
1112	Associative chemosensing by fluorescent macrocycle–dye complexes – a versatile enzyme assay platform beyond indicator displacement. Chemical Communications, 2015, 51, 4977-4980.	2.2	57
1113	TD-DFT calculations of visible spectra and structural studies of carbendazim inclusion complex with cucurbit[7]uril. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 37-42.	2.7	9
1114	Encapsulation of haloalkane 1-(3-chlorophenyl)-4-(3-chloropropyl)-piperazinium in symmetrical α,α′,δ,Î′-tetramethyl-cucurbit[6]uril. Physical Chemistry Chemical Physics, 2015, 17, 8618-8621.	1.3	13

#	Article	IF	CITATIONS
1115	Identification, classification, and signal amplification capabilities of high-turnover gas binding hosts in ultra-sensitive NMR. Chemical Science, 2015, 6, 6069-6075.	3.7	72
1116	Preparation of an allyloxy-cucurbit[6]uril-modified polymer monolithic column for microextraction of estrogens in cosmetics. New Journal of Chemistry, 2015, 39, 9714-9721.	1.4	10
1117	Thermoresponsive gold nanoshell@mesoporous silica nano-assemblies: an XPS/NMR survey. Physical Chemistry Chemical Physics, 2015, 17, 28719-28728.	1.3	18
1118	Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83, 387-400.	0.9	29
1119	Cucurbit[8]uril as Nanocontainer in a Polyelectrolyte Multilayer Film: A Quantitative and Kinetic Study of Guest Uptake. Langmuir, 2015, 31, 10734-10742.	1.6	18
1120	Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics. Biomacromolecules, 2015, 16, 2743-2749.	2.6	34
1121	Supramolecular Inhibition of Neurodegeneration by a Synthetic Receptor. ACS Medicinal Chemistry Letters, 2015, 6, 1174-1178.	1.3	51
1122	Host–Guest Complexation of Perethylated Pillar[5]arene with Alkanes in the Crystal State. Angewandte Chemie - International Edition, 2015, 54, 9849-9852.	7.2	147
1123	Rotaxanes Capped with Host Molecules: Supramolecular Behavior of Adamantylated Bisimidazolium Salts Containing a Biphenyl Centerpiece. Chemistry - A European Journal, 2015, 21, 11712-11718.	1.7	15
1124	Isomerization of a lanthanide complex using a humming top guest template: a solid-to-solid reaction. CrystEngComm, 2015, 17, 7816-7819.	1.3	11
1125	Can we beat the biotin–avidin pair?: cucurbit[7]uril-based ultrahigh affinity host–guest complexes and their applications. Chemical Society Reviews, 2015, 44, 8747-8761.	18.7	357
1126	Binding of carboxylatopillar[5]arene with alkyl and aryl ammonium salts in aqueous medium. RSC Advances, 2015, 5, 85791-85798.	1.7	14
1127	Supramolecular Guest–Host Interactions for the Preparation of Biomedical Materials. Bioconjugate Chemistry, 2015, 26, 2279-2289.	1.8	162
1128	Coordination and recognition of lanthanide cations by a methyl-substituted cucurbit[6]uril derived from 3α-methyl-glycoluril. Supramolecular Chemistry, 2015, 27, 661-668.	1.5	4
1130	Cucurbit(6)uril immobilized on silica: A novel highâ€performance liquid chromatographic stationary phase. Journal of Separation Science, 2015, 38, 1082-1089.	1.3	8
1131	The Binding Interactions between Cyclohexanocucurbit[6]uril and Alkyl Viologens Give Rise to a Range of Diverse Structures in the Solid and the Solution Phases. Journal of Organic Chemistry, 2015, 80, 10505-10511.	1.7	22
1132	In silico studies on the origin of selective uptake of carbon dioxide with cucurbit[7]uril amorphous material. RSC Advances, 2015, 5, 72469-72475.	1.7	6
1133	Interactions of cucurbit[7]uril and \hat{l}^2 -cyclodextrin with some nucleobases. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83, 103-110.	0.9	13

#	Article	IF	Citations
1134	Supramolecular Surface Immobilization of Knottin Derivatives for Dynamic Display of High Affinity Binders. Bioconjugate Chemistry, 2015, 26, 1972-1980.	1.8	16
1135	Supramolecular interaction of a cancer cell photosensitizer in the nanocavity of cucurbit[7]uril: A spectroscopic and calorimetric study. International Journal of Pharmaceutics, 2015, 492, 103-108.	2.6	11
1136	Highly selective recognition of tryptophan in water by a poorly water-soluble scandium compound. Tetrahedron Letters, 2015, 56, 5557-5560.	0.7	1
1137	Selectivity of the binary stationary phase of cucurbit[7]uril with ionic liquid in gas chromatography. RSC Advances, 2015, 5, 76007-76013.	1.7	7
1138	Acyclic Cucurbit[<i>n</i>]uril Dendrimers. Organic Letters, 2015, 17, 5914-5917.	2.4	4
1139	Supramolecular Enhancement of Protein Analysis via the Recognition of Phenylalanine with Cucurbit[7]uril. Journal of the American Chemical Society, 2015, 137, 15322-15329.	6.6	44
1140	A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness. Chinese Chemical Letters, 2015, 26, 867-871.	4.8	29
1141	Cucurbituril-Based Molecular Recognition. Chemical Reviews, 2015, 115, 12320-12406.	23.0	1,467
1142	Synthesis of Star Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) with a Core of Cucurbit[6]uril via ATRP and Controlled Thermoresponsivity. Macromolecular Rapid Communications, 2015, 36, 311-318.	2.0	11
1143	Photoinduced guest transformation promotes translocation of guest from hydroxypropyl-l²-cyclodextrin to cucurbit[7]uril. Chemical Communications, 2015, 51, 1349-1352.	2.2	14
1144	Supramolecular Photochemistry in Solution and on Surfaces: Encapsulation and Dynamics of Guest Molecules and Communication between Encapsulated and Free Molecules. Langmuir, 2015, 31, 5554-5570.	1.6	41
1145	Regulating exocytosis of nanoparticles via host–guest chemistry. Organic and Biomolecular Chemistry, 2015, 13, 2474-2479.	1.5	40
1146	Molecular Popâ€up Toy: A Molecular Machine Based on Folding/Unfolding Motion of Alkyl Chains Bound to a Host. Chemistry - an Asian Journal, 2015, 10, 154-159.	1.7	16
1147	Gas-phase chemistry of molecular containers. Chemical Society Reviews, 2015, 44, 515-531.	18.7	57
1148	Coordination and supramolecular assemblies of meta-hexamethyl-substituted cucurbit[6]uril with alkali metal ions. Polyhedron, 2015, 87, 117-121.	1.0	7
1149	Molecular wire formation from poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene/cucurbit[7]uril)] polyrotaxane copolymer. European Polymer Journal, 2015, 62, 124-129.	2.6	13
1150	Direct syntheses of a series of cucurbit[<i>n</i>]uril-anchored polyacrylamides. Supramolecular Chemistry, 2015, 27, 4-12.	1.5	7
1151	Cucurbituril-based supramolecular engineered nanostructured materials. Organic and Biomolecular Chemistry, 2015, 13, 330-347.	1.5	98

#	Article	IF	CITATIONS
1152	Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chemical Reviews, 2015, 115, 7794-7839.	23.0	980
1153	Triple Emission from <i>p</i> à€Dimethylaminobenzonitrile–Cucurbit[8]uril Triggers the Elusive Excimer Emission. Chemistry - A European Journal, 2015, 21, 691-696.	1.7	44
1154	Functional Supramolecular Polymers for Biomedical Applications. Advanced Materials, 2015, 27, 498-526.	11.1	429
1155	Confinement of 1,8 naphthalimide by cucurbit[8]uril in micellar environment: a spectroscopic investigation. Indian Journal of Physics, 2015, 89, 479-483.	0.9	0
1156	Biphen[n]arenes. Chemical Science, 2015, 6, 197-202.	3.7	208
1157	Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chemical Society Reviews, 2015, 44, 394-418.	18.7	1,100
1158	Supramolecular interaction of labetalol with cucurbit[7]uril for its sensitive fluorescence detection. Analyst, The, 2015, 140, 230-235.	1.7	24
1159	An Electrochemical Study of Cucurbit[6]uril–Cadmium(II) Interactions and the Effect of Electrolyte Cations and Guest Molecules. Analytical Letters, 2015, 48, 783-795.	1.0	5
1160	Supramolecular Analytical Application of Cucurbit[<i>n</i>]urils Using Fluorescence Spectroscopy. Critical Reviews in Analytical Chemistry, 2015, 45, 52-61.	1.8	47
1161	Molecular dynamics simulation study of the structural features and inclusion capacities of cucurbit[6]uril derivatives in aqueous solutions. Supramolecular Chemistry, 2015, 27, 80-89.	1.5	13
1162	Synthesis of a disulfonated derivative of cucurbit[7]uril and investigations of its ability to solubilise insoluble drugs. Supramolecular Chemistry, 2015, 27, 288-297.	1.5	16
1163	Pyrene: The Guest of Honor. , 2016, , 421-461.		10
1164	Spectroscopy and Dynamics of Cryptolepine in the Nanocavity of Cucurbit[7]uril and DNA. ChemPhysChem, 2016, 17, 506-515.	1.0	15
1165	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie - International Edition, 2016, 55, 8933-8937.	7.2	69
1166	Kinetic and Thermodynamic Stabilization of Metal Complexes by Introverted Coordination in a Calix[6]azacryptand. Chemistry - A European Journal, 2016, 22, 4855-4862.	1.7	7
1167	Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance. Chemistry - A European Journal, 2016, 22, 11114-11121.	1.7	61
1168	Construction of a Graphene/Auâ€Nanoparticles/Cucurbit[7]urilâ€Based Sensor for Pb ²⁺ Sensing. Chemistry - A European Journal, 2016, 22, 5643-5648.	1.7	36
1169	A Cucurbit[7]uril Based Molecular Shuttle Encoded by Visible Roomâ€√emperature Phosphorescence. ChemPhysChem, 2016, 17, 1934-1938.	1.0	78

#	Article	IF	CITATIONS
1170	Influence of Equilibration Time in Solution on the Inclusion/Exclusion Topology Ratio of Host–Guest Complexes Probed by Ion Mobility and Collisionâ€Induced Dissociation. Chemistry - A European Journal, 2016, 22, 4528-4534.	1.7	15
1171	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 2016, 128, 9079-9083.	1.6	19
1172	Permselective 2D-polymer-based membrane tuneable by host–guest chemistry. Chemical Communications, 2016, 52, 9676-9678.	2.2	9
1173	Helical CulCull3 Metallocavitands with Sulfurâ€Containing Schiff Base Ligands Exhibiting Ferromagnetic or Antiferromagnetic Interactions. European Journal of Inorganic Chemistry, 2016, 2016, 2692-2695.	1.0	6
1174	Self-assembly of cucurbit[7]uril on the surface of graphene/gold modified electrode. Nanomaterials and Nanotechnology, 2016, 6, 184798041668244.	1.2	3
1175	Computational design of soft materials for the capture of Cs-137 in contaminated environments: From 2D covalent cucurbituril networks to 3D supramolecular materials. AIP Conference Proceedings, 2016, , .	0.3	1
1176	Controllable Supramolecular Polymerization Promoted by Host-Enhanced Photodimerization. ACS Macro Letters, 2016, 5, 1397-1401.	2.3	37
1178	Cucurbit[7]uril–Tetramethylrhodamine Conjugate for Direct Sensing and Cellular Imaging. Journal of the American Chemical Society, 2016, 138, 16549-16552.	6.6	85
1179	Doubly, Triply and Multiply Pleated Sheets of Bipyridinium Radical Cationâ€Incorporated Polymers Tuned by Four Cucurbiturils. ChemistrySelect, 2016, 1, 6792-6796.	0.7	9
1180	Controlled gelation kinetics of cucurbit[7]uril-adamantane cross-linked supramolecular hydrogels with competing guest molecules. Scientific Reports, 2016, 6, 20722.	1.6	36
1181	Halideâ€Anion Water Clusters in Cucurbit[6]uril Supramolecular Systems. Chinese Journal of Chemistry, 2016, 34, 1114-1120.	2.6	4
1182	Synthesis and Crystal Structure of a Novel Glycoluril Molecular Scaffold. Journal of Chemical Crystallography, 2016, 46, 208-212.	0.5	2
1183	Soft Supramolecular Nanoparticles by Noncovalent and Host–Guest Interactions. Small, 2016, 12, 96-119.	5.2	78
1184	Recent advances in development and characterization of stationary phases for hydrophilic interaction chromatography. TrAC - Trends in Analytical Chemistry, 2016, 81, 23-33.	5.8	96
1185	Energy-resolved collision-induced dissociation of non-covalent ions: charge- and guest-dependence of decomplexation reaction efficiencies. Physical Chemistry Chemical Physics, 2016, 18, 12557-12568.	1.3	16
1186	Hybrid nitrate-water cluster in the hydrophobic cavity of cucurbit[8]uril. Chemical Physics Letters, 2016, 651, 188-191.	1.2	2
1187	Molecular Shape and the Hydrophobic Effect. Annual Review of Physical Chemistry, 2016, 67, 307-329.	4.8	101
1188	Nano-supramolecular complex synthesis: Switch on/off enhanced fluorescence control and molecular release using a simple chemistry reaction. Microchemical Journal, 2016, 128, 297-304.	2.3	11

#	Article	IF	CITATIONS
1189	Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chemical Communications, 2016, 52, 6351-6362.	2.2	122
1190	Cucurbit[6]uril-OSO ₃ H: a novel acidic nanocatalyst for the one-pot preparation of 14-aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes. RSC Advances, 2016, 6, 25525-25530.	1.7	13
1191	High-efficiency cucurbit[7]uril capillary column for gas chromatographic separations of structural and positional isomers. RSC Advances, 2016, 6, 36163-36170.	1.7	5
1192	pH-Induced cucurbit[7]uril hydrogels: Understanding microenvironment of the aggregates through excited state reactivity of dibenzyl ketones. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 53-61.	2.0	2
1193	Cationic acyclic cucurbit[n]uril-type containers: synthesis and molecular recognition toward nucleotides. Supramolecular Chemistry, 2016, 28, 825-834.	1.5	13
1194	Functionalizing the glycocalyx of living cells with supramolecular guest ligands for cucurbit[8]uril-mediated assembly. Chemical Communications, 2016, 52, 7146-7149.	2.2	19
1195	Facile Cucurbit[8]uril-Based Supramolecular Approach To Fabricate Tunable Luminescent Materials in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 6177-6183.	6.6	268
1196	Self-healing supramolecular hydrogels fabricated by cucurbit[8]uril-enhanced π-π interaction. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 537-542.	1.8	18
1197	Threading the Needle: Fluorescent Poly- <i>pseudo</i> rotaxanes for Size-Exclusion Sensing. Chemistry of Materials, 2016, 28, 2685-2691.	3.2	20
1198	Photo-responsive supramolecular polymer based on a CB[5] analogue. Colloid and Polymer Science, 2016, 294, 1243-1249.	1.0	7
1199	Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chemical Communications, 2016, 52, 7588-7591.	2.2	76
1200	Engineering of Host–Guest Interactions To Tune the Assembly of Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 21790-21796.	1.5	4
1201	Encapsulation of AGEâ€Breaker Alagebrium by Cucurbit[7]uril Improved the Stability of Both Its Carbonyl αâ€Hydrogen and Thiazolium C2â€Hydrogen. Chemistry - an Asian Journal, 2016, 11, 3126-3133.	1.7	20
1202	Supramolecular organic frameworks of cucurbit[n]uril-based [2]pseudorotaxanes in the crystalline state. CrystEngComm, 2016, 18, 7929-7933.	1.3	11
1203	Using a novel adsorbent macrocyclic compound cucurbit[8]uril for Pb 2+ removal from aqueous solution. Journal of Environmental Sciences, 2016, 50, 3-12.	3.2	19
1204	Pillarplexes: A Metal–Organic Class of Supramolecular Hosts. Journal of the American Chemical Society, 2016, 138, 13171-13174.	6.6	78
1205	Encapsulation of Thiotepa and Altretamine as neurotoxic anticancer drugs in Cucurbit[n]uril (n=7, 8) nanocapsules: A DFT study. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650056.	1.8	10
1206	Coordination of cucurbit [6]uril and its alkyl-substituted derivatives with the lanthanum cation and the supramolecular assemblies formed with the aid of inorganic anions. Inorganic Chemistry Communication, 2016, 71, 109-112.	1.8	4

#	Article	IF	CITATIONS
1207	A cationic water-soluble biphen[3]arene: synthesis, host–guest complexation and fabrication of a supra-amphiphile. RSC Advances, 2016, 6, 77179-77183.	1.7	18
1208	Absorption properties of an inverted cucurbit[7]uril-based porous coordination polymer induced by [ZnCl 4] 2a^3 anions. Inorganic Chemistry Communication, 2016, 72, 50-53.	1.8	17
1209	A Nexus between Theory and Experiment: Nonâ€Empirical Quantum Mechanical Computational Methodology Applied to Cucurbit[<i>n</i>)]urilâ <guest -="" 17226-17238.<="" 2016,="" 22,="" a="" binding="" chemistry="" european="" interactions.="" journal,="" td=""><td>1.7</td><td>29</td></guest>	1.7	29
1210	Amplifying undetectable NMR signals to study host–guest interactions and exchange. Chemical Science, 2016, 7, 6905-6909.	3.7	29
1211	Investigation of the effect of cucurbit[7]uril complexation on the photophysical and acid–base properties of the antimalarial drug quinine. Physical Chemistry Chemical Physics, 2016, 18, 30520-30529.	1.3	23
1212	Nanomolar Binding of Steroids to Cucurbit[<i>n</i>]urils: Selectivity and Applications. Journal of the American Chemical Society, 2016, 138, 13022-13029.	6.6	143
1213	Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Accounts of Chemical Research, 2016, 49, 2115-2126.	7.6	741
1214	Naphthol-based macrocyclic receptors. Tetrahedron Letters, 2016, 57, 3978-3985.	0.7	38
1215	Supramolecular nanoreactors for catalysis. Coordination Chemistry Reviews, 2016, 324, 106-122.	9.5	111
1216	Coordination of alkali and alkaline-earth metal ions to perhydroxycucurbit[5]uril and formation of supramolecular self-assemblies in the presence of [SiW12O40]4â^' anions. Inorganica Chimica Acta, 2016, 453, 122-127.	1.2	9
1217	Water vs. cucurbituril rim: a fierce competition for guest solvation. Chemical Science, 2016, 7, 3569-3573.	3.7	32
1218	Cucurbit[8]uril Regulated Activatable Supramolecular Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22892-22899.	4.0	73
1219	Cation-Dependent Gold Recovery with α-Cyclodextrin Facilitated by Second-Sphere Coordination. Journal of the American Chemical Society, 2016, 138, 11643-11653.	6.6	71
1220	Alkylammonium Guest Inducedâ€Fit Recognition by a Flexible DihomoÂoxacalix[4]arene Derivative. European Journal of Organic Chemistry, 2016, 2016, 158-167.	1.2	37
1221	Cooperative Selfâ€Assembly of a Quaternary Complex Formed by Two Cucurbit[7]uril Hosts, Cyclobis(paraquat―p â€phenylene), and a "Designer―Guest. Angewandte Chemie, 2016, 128, 11679-1168	3 ^{1.6}	7
1222	Hyperbranched supramolecular polymer constructed from twisted cucurbit[14]uril and porphyrin via host–guest interactions. Organic Chemistry Frontiers, 2016, 3, 1144-1148.	2.3	27
1223	Calix[6]azacryptand-Based Receptors., 2016, , 113-140.		5
1225	Cooperative Selfâ€Assembly of a Quaternary Complex Formed by Two Cucurbit[7]uril Hosts, Cyclobis(paraquatâ€ <i>p</i> pfi>â€phenylene), and a "Designer―Guest. Angewandte Chemie - International Edition, 2016, 55, 11507-11511.	7.2	21

#	Article	IF	CITATIONS
1226	Highly Enhanced Fluorescence of Supramolecular Polymers Based on a Cyanostilbene Derivative and Cucurbit[8]uril in Aqueous Solution. Angewandte Chemie, 2016, 128, 16147-16151.	1.6	27
1227	The Use of Cucurbit[n]urils as Organic Nanoreactors. , 2016, , 43-84.		1
1228	How Does Solvation Affect the Binding of Hydrophilic Amino Saccharides to Cucurbit[7]uril with Exceptional Anomeric Selectivity?. Chemistry - A European Journal, 2016, 22, 15791-15799.	1.7	8
1229	Coordination of fully substituted cyclopentano cucurbit[5]uril with alkaline earth cations in the presence of tetrachlorozincate anions. Inorganica Chimica Acta, 2016, 453, 277-283.	1.2	17
1230	Polypseudorotaxane Constructed from Cationic Polymer with Cucurbit[7]uril for Controlled Antibacterial Activity. ACS Macro Letters, 2016, 5, 1109-1113.	2.3	53
1231	Cucurbit[7]uril-stabilized gold nanoparticles as catalysts of the nitro compound reduction reaction. RSC Advances, 2016, 6, 86309-86315.	1.7	15
1232	Propanediurea-Based Molecular Clips Bind Halide Anions: An Insight into the Mechanism of Cucurbituril Formation. Journal of Organic Chemistry, 2016, 81, 8906-8910.	1.7	6
1233	Coordination of lanthanide cations to a symmetrical dicyclohexanocucurbit[6]uril in the presence of tetrachlorozincate facilitates isolation of lighter lanthanides. Inorganica Chimica Acta, 2016, 450, 258-262.	1.2	5
1234	Preparative scale and convenient synthesis of a water-soluble, deep cavitand. Nature Protocols, 2016, 11, 1371-1387.	5 . 5	37
1235	Hydroxypropyl- \hat{l}^2 -CD vs. its $\hat{l}\pm$ -homologue for a 3D modified polyrotaxane network formation and properties: the relationship between modified CD and polymer revealed through comparison. Soft Matter, 2016, 12, 7089-7101.	1.2	9
1236	Synthesis, structure, and stereospecific cross-[2+2] photocycloaddition of pseudodimeric complexes based on ammonioalkyl derivatives of styryl dyes. New Journal of Chemistry, 2016, 40, 7542-7556.	1.4	4
1237	Cucurbit[7]uril inclusion complexation as a supramolecular strategy for color stabilization of anthocyanin model compounds. Photochemical and Photobiological Sciences, 2016, 15, 752-757.	1.6	27
1238	Complexation of clofazimine by macrocyclic cucurbit[7]uril reduced its cardiotoxicity without affecting the antimycobacterial efficacy. Organic and Biomolecular Chemistry, 2016, 14, 7563-7569.	1.5	57
1239	An Unprecedented Twoâ€Fold Nested Superâ€Polyrotaxane: Sulfateâ€Directed Hierarchical Polythreading Assembly of Uranyl Polyrotaxane Moieties. Chemistry - A European Journal, 2016, 22, 11329-11338.	1.7	15
1240	Highly Enhanced Fluorescence of Supramolecular Polymers Based on a Cyanostilbene Derivative and Cucurbit[8]uril in Aqueous Solution. Angewandte Chemie - International Edition, 2016, 55, 15915-15919.	7.2	100
1241	Interactions of cucurbit[6,7]urils with human serum albumin and their effects on zaltoprofen transportation. RSC Advances, 2016, 6, 85811-85819.	1.7	15
1242	Single crystal structures and complexing properties of some copillar[5] arene mono-Schiff bases. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 86, 231-240.	0.9	9
1244	Near-Quantitative Aqueous Synthesis of Rotaxanes via Bioconjugation to Oligopeptides and Proteins. Journal of the American Chemical Society, 2016, 138, 15307-15310.	6.6	28

#	Article	IF	CITATIONS
1245	From Packed "Sandwich―to "Russian Doll― Assembly by Chargeâ€Transfer Interactions in Cucurbit[10]uril. Chemistry - A European Journal, 2016, 22, 17612-17618.	1.7	50
1246	Polysaccharide Nanoparticles for Efficient siRNA Targeting in Cancer Cells by Supramolecular pKa Shift. Scientific Reports, 2016, 6, 28848.	1.6	34
1248	Mono- and Dihydroxylated Symmetrical Octamethylcucurbiturils and Allylated Derivatives. Organic Letters, 2016, 18, 5544-5547.	2.4	14
1250	Supramolecular Photoinduced Electron Transfer between a Redoxâ€Active Hexanuclear Metal–Organic Cylinder and an Encapsulated Ruthenium(II) Complex. Chemistry - A European Journal, 2016, 22, 5253-5260.	1.7	29
1251	Enhanced dSTORM imaging using fluorophores interacting with cucurbituril. Science China Chemistry, 2016, 59, 848-852.	4.2	9
1252	Interaction of a symmetrical $\hat{l}\pm,\hat{l}\pm\hat{a}\in \hat{l},\hat{l}\hat{a}\in \hat{l}^2$ -tetramethyl-cucurbit[6]uril with Ln ³⁺ : potential applications for isolation of lanthanides. CrystEngComm, 2016, 18, 5028-5035.	1.3	19
1253	A Cucurbituril Derivative That Exhibits Cation-Modulated Self-Assembly. Journal of Organic Chemistry, 2016, 81, 6075-6080.	1.7	6
1254	Selectivity in Gas Adsorption by Molecular Cucurbit[6]uril. Journal of Physical Chemistry C, 2016, 120, 13911-13921.	1.5	49
1255	Pillar-Shaped Macrocyclic Hosts Pillar[<i>n</i>]arenes: New Key Players for Supramolecular Chemistry. Chemical Reviews, 2016, 116, 7937-8002.	23.0	1,116
1256	Predictive recognition of native proteins by cucurbit[7] uril in a complex mixture. Chemical Communications, 2016, 52, 8537-8540.	2.2	65
1257	Supramolecular guest relay using host-protein nanocavities: an application of host-induced guest protonation. Molecular BioSystems, 2016, 12, 2859-2866.	2.9	17
1258	Supramolecular Photochemistry as a Potential Synthetic Tool: Photocycloaddition. Chemical Reviews, 2016, 116, 9914-9993.	23.0	350
1259	Dimensional effects of organic anion templates in modulating the assembly of water clusters in cucurbit[6]uril supramolecular systems. Chinese Chemical Letters, 2016, 27, 417-422.	4.8	5
1260	Redox controlled reversible transformation of a supramolecular alternating copolymer to a radical cation containing homo-polymer. Polymer Chemistry, 2016, 7, 4393-4401.	1.9	24
1261	Synthesis, Structure, and Molecular Recognition of S ₆ ―and (SO ₂) ₆ â€Corona[6](het)arenes: Control of Macrocyclic Conformation and Properties by the Oxidation State of the Bridging Heteroatoms. Chemistry - A European Journal, 2016, 22, 6947-6955.	1.7	42
1262	Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coordination Chemistry Reviews, 2016, 312, 67-98.	9.5	183
1263	Acyclic Cucurbit[<i>n</i>]uril-Type Molecular Container Enables Systemic Delivery of Effective Doses of Albendazole for Treatment of SK-OV-3 Xenograft Tumors. Molecular Pharmaceutics, 2016, 13, 809-818.	2.3	49
1264	Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. Journal of Molecular Liquids, 2016, 216, 309-317.	2.3	18

#	Article	IF	CITATIONS
1265	Density functional theory investigations on binding and spectral features of complexes of ferrocenyl derivatives with cucurbit [7]uril. Journal of Molecular Liquids, 2016, 216, 298-308.	2.3	17
1266	Cucurbit[7]uril–tetraphenylethene host–guest system induced emission activity. RSC Advances, 2016, 6, 4478-4482.	1.7	13
1267	Host–guest complexation of HMeQ[7] with alkyldiammonium ions and alkyldiamines: a comparative study. RSC Advances, 2016, 6, 11937-11942.	1.7	5
1268	The synthesis, structure, and molecular recognition properties of a [2]calix[1]biphenyl-type hybrid[3]arene. Chemical Communications, 2016, 52, 1622-1624.	2.2	39
1269	Efficient and Selective Enrichment of Ultratrace Cytokinins in Plant Samples by Magnetic Perhydroxy-Cucurbit[8]uril Microspheres. Analytical Chemistry, 2016, 88, 4055-4062.	3.2	35
1270	Redox-active host-guest supramolecular assemblies of peptides and proteins at surfaces. European Polymer Journal, 2016, 83, 380-389.	2.6	18
1271	Ring opening metathesis polymerization of cyclopentene using a ruthenium catalyst confined by a branched polymer architecture. Polymer Chemistry, 2016, 7, 2923-2928.	1.9	12
1272	Molecularly Responsive Binding through Co-occupation of Binding Space: A Lock–Key Story. Organic Letters, 2016, 18, 1650-1653.	2.4	21
1273	Triggering autocatalytic reaction by host–guest interactions. Chemical Communications, 2016, 52, 4191-4194.	2.2	20
1274	Syntheses, crystal structures and properties of metal–organic rotaxane frameworks with cucurbit[6]uril. CrystEngComm, 2016, 18, 2327-2336.	1.3	20
1275	Methyl-substituted cucurbit[6]uril-based microporous supramolecular frameworks for highly selective Et ₂ O/CH ₃ OH adsorption. CrystEngComm, 2016, 18, 2112-2118.	1.3	19
1276	Hexachloroplatinate(IV) anion-induced cucurbit[5]uril and cucurbit[8]uril supramolecular assemblies with linear channels. Inorganic Chemistry Communication, 2016, 66, 28-32.	1.8	7
1277	Light-Regulated Molecular Trafficking in a Synthetic Water-Soluble Host. Journal of the American Chemical Society, 2016, 138, 5745-5748.	6.6	75
1278	Sandwich-type Inorganic–Organic Hybrid Solids of Iso-polyvanadate Clusters and Decamethylcucurbit[5]uril. Crystal Growth and Design, 2016, 16, 1213-1217.	1.4	11
1279	Cluster-in-molecule local correlation method for post-Hartree–Fock calculations of large systems. Molecular Physics, 2016, 114, 1447-1460.	0.8	50
1280	Involvement of unusual noncovalent interactions in the self-assembly of cucurbit[6]uril with [CdCl4]2â^' anions. Chinese Chemical Letters, 2016, 27, 173-177.	4.8	12
1281	Synthesis and separation of cucurbit[n]urils and their derivatives. Organic and Biomolecular Chemistry, 2016, 14, 4335-4364.	1.5	141
1282	Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Langmuir, 2016, 32, 2410-2418.	1.6	25

#	Article	IF	Citations
1283	Computational design of cucurbituril-acene hybrids for the optical detection of cesium ions: DFT and TD-DFT studies. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	5
1284	Enhanced anion binding by heteroatom replacement in bambusurils. Physical Chemistry Chemical Physics, 2016, 18, 13180-13185.	1.3	24
1285	Supramolecularly assisted modulations in chromophoric properties and their possible applications: an overview. Journal of Materials Chemistry C, 2016, 4, 2685-2706.	2.7	77
1286	Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril. Chemical Communications, 2016, 52, 2589-2592.	2.2	30
1287	Acetylcholine induced interplay of proflavine between cucurbit[7]uril and DNA. Journal of Luminescence, 2016, 171, 234-237.	1.5	8
1288	Supramolecular Polymers in Aqueous Media. Chemical Reviews, 2016, 116, 2414-2477.	23.0	625
1289	Theoretical study on the complexation of the chloride, bromide, and iodide anions with dodecabenzylbambus[6]uril. Monatshefte Für Chemie, 2016, 147, 697-703.	0.9	3
1290	On-Demand Cyclophanes: Substituent-Directed Self-Assembling, Folding, and Binding. Journal of Organic Chemistry, 2016, 81, 654-661.	1.7	18
1291	Hemicucurbiturils as receptors in extraction and transport of some amino acids. Supramolecular Chemistry, 2016, 28, 727-732.	1.5	10
1292	Host–guest complexation of di-cyclohexanocucurbit[6]uril and hexa-cyclohexanocucurbit[6]uril with alkyldiammonium ions: a comparative study. Organic and Biomolecular Chemistry, 2016, 14, 674-679.	1.5	17
1293	Selective recognition of neutral guests in an aqueous medium by a biomimetic calix[6]cryptamide receptor. Organic and Biomolecular Chemistry, 2016, 14, 738-746.	1.5	27
1294	Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, 2016, 7, 418-429.	1.9	76
1295	Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2016, 27, 265-276.	1.2	34
1296	Separation performance of polydopamine-based cucurbit[7]uril stationary phase for capillary gas chromatography. Chinese Chemical Letters, 2016, 27, 88-90.	4.8	12
1297	Controlled Movement of Cucurbiturils in Host–Guest Systems. ChemPlusChem, 2017, 82, 30-41.	1.3	27
1298	Photoresponsive, reversible immobilization of virus particles on supramolecular platforms. Chemical Communications, 2017, 53, 1896-1899.	2.2	14
1299	Strategies for sensing neurotransmitters with responsive MRI contrast agents. Chemical Society Reviews, 2017, 46, 324-336.	18.7	38
1300	Mechanistic study of hemicucurbit[6]uril formation by step-growth oligomerization and end-to-end cyclization. Chemical Physics Letters, 2017, 669, 92-98.	1.2	3

#	Article	IF	CITATIONS
1301	Enrichment of Specifically Labeled Proteins by an Immobilized Host Molecule. Angewandte Chemie, 2017, 129, 2435-2438.	1.6	8
1302	Enrichment of Specifically Labeled Proteins by an Immobilized Host Molecule. Angewandte Chemie - International Edition, 2017, 56, 2395-2398.	7.2	36
1303	Host–guest interactions and controllable capture and release of proteins based on cationic perylene bisimides. Chemical Communications, 2017, 53, 2241-2244.	2.2	13
1304	Inhibition and Stabilization: Cucurbituril Induced Distinct Effects on the Schiff Base Reaction. Journal of Organic Chemistry, 2017, 82, 3298-3301.	1.7	23
1305	Interplay of Hydrophobic and Electrostatic Interactions in Modulation of Protonation–Deprotonation Equilibria of Two Positional Isomers in Their Complexes with Cucurbiturils. Journal of Physical Chemistry C, 2017, 121, 5379-5388.	1.5	8
1306	Alleviation of Hepatotoxicity of Arecoline (Areca Alkaloid) by a Synthetic Receptor. ChemistrySelect, 2017, 2, 2219-2223.	0.7	9
1307	Detection, inhibition and disintegration of amyloid fibrils: the role of optical probes and macrocyclic receptors. Chemical Communications, 2017, 53, 2789-2809.	2.2	49
1308	Assessment of Cooperativity in Ternary Peptideâ€Cucurbit[8]uril Complexes. Chemistry - A European Journal, 2017, 23, 4046-4050.	1.7	18
1309	Mining 2:2 Complexes from 1:1 Stoichiometry: Formation of Cucurbit[8]uril–Diarylviologen Quaternary Complexes Favored by Electron-Donating Substituents. Journal of the American Chemical Society, 2017, 139, 3202-3208.	6.6	75
1310	Crystalline nanotubular framework constructed by cucurbit[8]uril for selective CO ₂ adsorption. Chemical Communications, 2017, 53, 5503-5506.	2.2	21
1311	Calix[5]arene Through-the-Annulus Threading of Dialkylammonium Guests Weakly Paired to the TFPB Anion. Journal of Organic Chemistry, 2017, 82, 5162-5168.	1.7	23
1312	Co-grinding Effect on Crystalline Zaltoprofen with \hat{l}^2 -cyclodextrin/Cucurbit[7]uril in Tablet Formulation. Scientific Reports, 2017, 7, 45984.	1.6	12
1313	Uranyl Complexes as Scaffolding or Spacers for Cucurbit[6]uril Molecules in Homo―and Heterometallic Species, Including a Uranyl–Lanthanide Complex. European Journal of Inorganic Chemistry, 2017, 2017, 2876-2882.	1.0	10
1314	Cucurbit[10]uril-Based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement. Journal of Organic Chemistry, 2017, 82, 5590-5596.	1.7	53
1315	Corona[5]arenes Accessed by a Macrocycleâ€toâ€Macrocycle Transformation Route and a Oneâ€Pot Threeâ€Component Reaction. Angewandte Chemie, 2017, 129, 7257-7261.	1.6	13
1316	Corona[5]arenes Accessed by a Macrocycleâ€toâ€Macrocycle Transformation Route and a Oneâ€Pot Threeâ€Component Reaction. Angewandte Chemie - International Edition, 2017, 56, 7151-7155.	7.2	41
1317	Supramolecular Assembly Mediated by Metal Ions in Aqueous Solution and Its Application in Their Analysis. Chemistry - A European Journal, 2017, 23, 10092-10099.	1.7	14
1318	Competitive inclusion of molecular photo-switches in host cavities. Tetrahedron, 2017, 73, 4913-4917.	1.0	23

#	Article	IF	Citations
1319	Theoretical study on complexation of the perchlorate, permanganate, pertechnate and perrhenate anions with dodecabenzylbambus[6]uril. Molecular Physics, 2017, 115, 1467-1474.	0.8	1
1320	H ₃ BTC-Induced Supramolecular Assembly Based on Cucurbit[6]uril: Possible Application for Sensing Small Molecules. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 717-720.	0.6	2
1321	Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chemical Society Reviews, 2017, 46, 2459-2478.	18.7	639
1322	Supramolecular Assemblies of Cucurbit[10]uril Based on Outer Surface Interactions. Australian Journal of Chemistry, 2017, 70, 637.	0.5	12
1323	Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles. Journal of Nanoparticle Research, 2017, 19, 71.	0.8	29
1324	Electrochemical properties of cucurbit[7]uril complexes of ferrocenyl derivatives. Inorganica Chimica Acta, 2017, 468, 77-81.	1.2	11
1325	Polymeric Nanocarriers Based on Cyclodextrins for Drug Delivery: Host–Guest Interaction as Stimuli Responsive Linker. Molecular Pharmaceutics, 2017, 14, 2475-2486.	2.3	98
1326	A photocontrollable supramolecular hyperbranched polymer based on host-guest recognition in aqueous solution. Dyes and Pigments, 2017, 143, 211-216.	2.0	12
1327	Chemical and biological properties of a supramolecular complex of tuftsin and cucurbit[7]uril. International Immunopharmacology, 2017, 47, 199-205.	1.7	23
1328	Encapsulation of Mitoxantrone within Cucurbit[8]uril Decreases Toxicity and Enhances Survival in a Mouse Model of Cancer. ACS Medicinal Chemistry Letters, 2017, 8, 538-542.	1.3	30
1329	Application of a novel organic nucleating agent: Cucurbit[6]uril to improve polypropylene injection foaming behavior and their physical properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
1330	Carboxylatopillar[n]arenes: a versatile class of water soluble synthetic receptors. Organic and Biomolecular Chemistry, 2017, 15, 762-772.	1.5	35
1331	Cucurbit[7]uril Enables Multi-Stimuli-Responsive Release from the Self-Assembled Hydrophobic Phase of a Metal Organic Polyhedron. Journal of the American Chemical Society, 2017, 139, 9066-9074.	6.6	156
1332	Dimeric molecular clips based on glycoluril. New Journal of Chemistry, 2017, 41, 6105-6111.	1.4	4
1333	3D fluorescent cucurbit[7]uril framework linked by anion fluorophore. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 88, 247-252.	0.9	6
1334	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Physical Chemistry Chemical Physics, 2017, 19, 23658-23676.	1.3	56
1335	Inclusion complexation abilities of cucurbit[6]uril for various aromatic amines in the presence of alkali metal cations. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 88, 253-257.	0.9	6
1336	Attractive Interactions between Heteroallenes and the Cucurbituril Portal. Journal of the American Chemical Society, 2017, 139, 8138-8145.	6.6	22

#	Article	IF	CITATIONS
1337	Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst. ACS Macro Letters, 2017, 6, 625-631.	2.3	69
1338	Coordination-cyclodimeric array containing both channels and cages: photoluminescence recognition of diiodomethane. CrystEngComm, 2017, 19, 3117-3123.	1.3	3
1339	Selective Recognition of Acidic Amino Acids in Water by Calixpyridinium. Asian Journal of Organic Chemistry, 2017, 6, 1385-1389.	1.3	20
1340	Inverted cucurbit[6]uril supramolecular assemblies formed in the presence of tetrachlorozincate anions. Journal of Molecular Structure, 2017, 1146, 402-408.	1.8	11
1341	Perturbation of cationic equilibrium by cucurbit-7-uril. Physical Chemistry Chemical Physics, 2017, 19, 19234-19242.	1.3	6
1342	Endo/exo binding of alkyl and aryl diammonium ions by cyclopentanocucurbit[6]uril. Organic Chemistry Frontiers, 2017, 4, 1799-1805.	2.3	13
1343	Polyrotaxanes based on PEG-amine with cucurbit [7] uril, \hat{l}_{\pm} -cyclodextrin and its tris-O-methylated derivative. European Polymer Journal, 2017, 93, 323-333.	2.6	15
1344	Molecular recognition of cyclodecapeptides to ibuprofen and naproxen enantiomers: a theoretical study. Structural Chemistry, 2017, 28, 1631-1644.	1.0	7
1345	Pillararene-based fluorescent indicator displacement assay for the selective recognition of ATP. Sensors and Actuators B: Chemical, 2017, 248, 305-310.	4.0	55
1346	Direct Selfâ€Assembly of a 2D and 3D Star of David. Angewandte Chemie - International Edition, 2017, 56, 5258-5262.	7.2	44
1347	A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril-encapsulation-enhanced donor–acceptor interaction. Chinese Chemical Letters, 2017, 28, 1167-1171.	4.8	26
1348	Selfâ€Healable Supramolecular Hydrogel Formed by Norâ€Secoâ€Cucurbit[10]uril as a Supramolecular Crosslinker. Chemistry - an Asian Journal, 2017, 12, 1461-1464.	1.7	22
1349	The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chemical Society Reviews, 2017, 46, 2479-2496.	18.7	473
1350	Direct Selfâ€Assembly of a 2D and 3D Star of David. Angewandte Chemie, 2017, 129, 5342-5346.	1.6	36
1351	Supramolecular coordination assemblies of a symmetrical octamethyl-substituted cucurbituril with alkali metal ions based on the outer-surface interactions of cucurbit[n]urils. CrystEngComm, 2017, 19, 2464-2474.	1.3	20
1352	Site selective reading of epigenetic markers by a dual-mode synthetic receptor array. Chemical Science, 2017, 8, 3960-3970.	3.7	30
1353	Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Materials Horizons, 2017, 4, 450-455.	6.4	38
1354	Host–Guest Interaction at Molecular Interfaces: Binding of Cucurbit[7]uril on Ferrocenyl Self-Assembled Monolayers on Gold. Journal of Physical Chemistry C, 2017, 121, 7985-7992.	1.5	12

#	Article	IF	CITATIONS
1355	Supramolecular chemistry of pillar[n]arenes functionalised by a copper(<scp>i</scp>)-catalysed alkyne–azide cycloaddition "click―reaction. Chemical Communications, 2017, 53, 5250-5266.	2.2	71
1356	Adsorption of reactive yellow X-RG and reactive brilliant red X-3B onto cucurbit[8]uril and cucurbit[6]uril: Effect factors, adsorption behavior and mechanism study. Journal of Colloid and Interface Science, 2017, 498, 31-46.	5.0	33
1357	Ultrafast photoresponsive materials for all-optical light modulation by polymer thin films. Polymer, 2017, 116, 523-533.	1.8	3
1358	Fiveâ€Component Selfâ€Assembly of Cucurbiturilâ€Based Heteroâ€pseudorotaxanes. ChemistryOpen, 2017, 6, 288-294.	0.9	7
1359	Host-guest complexation of cucurbit[8]uril with two enantiomers. Scientific Reports, 2017, 7, 44717.	1.6	10
1360	Pillararene-Based Aggregation-Induced-Emission-Active Supramolecular System for Simultaneous Detection and Removal of Mercury(II) in Water. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11889-11894.	4.0	91
1361	Practical applications of supramolecular chemistry. Chemical Society Reviews, 2017, 46, 2385-2390.	18.7	233
1362	Alkyl Substituted Cucurbit[6]uril Assisted Competitive Fluorescence Recognition of Lysine and Methionine in Aqueous Solution. ChemistrySelect, 2017, 2, 2569-2573.	0.7	23
1363	Differences between the Interactions of Linear and Tetrahedronâ€like Ditopic Guests with Cucurbit[8]uril: Steric Hindrance and Molecular Structure Play Dominant Roles. Chemistry - an Asian Journal, 2017, 12, 476-483.	1.7	3
1364	Biological and related applications of pillar[n]arenes. Chemical Communications, 2017, 53, 677-696.	2.2	148
1365	Cucurbit[7]uril-modified intelligent polymer as acid thickening agent for unconventional reservoir recovery. Journal of Petroleum Science and Engineering, 2017, 149, 65-74.	2.1	13
1366	Controlled release from cucurbituril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 1-12.	0.9	24
1367	Modulating the oxidation of cucurbit[n]urils. Organic and Biomolecular Chemistry, 2017, 15, 998-1005.	1.5	14
1368	pH Control on the Sequential Uptake and Release of Organic Cations by Cucurbit[7]uril. Chemistry - A European Journal, 2017, 23, 2350-2355.	1.7	21
1370	Cucurbit[7]uril-Driven Host–Guest Chemistry for Reversible Intervention of 5-Formylcytosine-Targeted Biochemical Reactions. Journal of the American Chemical Society, 2017, 139, 16903-16912.	6.6	55
1371	Multiple Efficient Fluorescence Emission from Cucurbit[10]uril-[Cd ₄ Cl ₁₆] ^{8–} -Based Pillared Diamond Porous Supramolecular Frameworks. ACS Applied Materials & Diamond Porous Supramolecular Frameworks. ACS Applied Materials & Diamond Porous Prameworks. ACS Applied Materials & Diamond Porous Prameworks. ACS Applied Materials & Diamond Porous Prameworks.	4.0	41
1372	Cucurbit[6]uril-Stabilized Palladium Nanoparticles as a Highly Active Catalyst for Chemoselective Hydrogenation of Various Reducible Groups in Aqueous Media. ChemistrySelect, 2017, 2, 9911-9919.	0.7	35
1373	Force Measurement for the Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn ²⁺ Studied with Atomic Force Microscopy. Langmuir, 2017, 33, 11884-11892.	1.6	8

#	Article	IF	Citations
1374	Cucurbit[n]uril-based host–guest-metal ion chemistry: an emerging branch in cucurbit[n]uril chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89, 1-14.	0.9	21
1375	Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors. CheM, 2017, 3, 641-651.	5.8	76
1376	Europium Doped Calcium Deficient Hydroxyapatite as Theranostic Nanoplatforms: Effect of Structure and Aspect Ratio. ACS Biomaterials Science and Engineering, 2017, 3, 3588-3595.	2.6	24
1377	Anionâ€Functionalized Pillararenes for Efficient Sulfur Dioxide Capture: Significant Effect of the Anion and the Cavity. Chemistry - A European Journal, 2017, 23, 14143-14148.	1.7	9
1378	Expanding the Pillararene Chemistry: Synthesis and Application of a 10 + 1 Functionalized Pillar[5] arene. Organic Letters, 2017, 19, 4528-4531.	2.4	29
1379	Modulation of Protolytic Equilibrium of Bichromophoric Coumarinâ€30 Dye with Cucurbit[8]uril Encapsulation. ChemistrySelect, 2017, 2, 7387-7393.	0.7	4
1380	Light-induced piston nanoengines: ultrafast shuttling of a styryl dye inside cucurbit[7]uril. Physical Chemistry Chemical Physics, 2017, 19, 25834-25839.	1.3	24
1381	Supramolecular Reversible On–Off Switch for Singlet Oxygen Using Cucurbit[<i>n</i>)uril Inclusion Complexes. Journal of Physical Chemistry C, 2017, 121, 21782-21789.	1.5	29
1382	Photo-induced interfacial electron transfer of ZnO nanocrystals to control supramolecular assembly in water. Nanoscale, 2017, 9, 16128-16132.	2.8	23
1383	Chameleonic Dye Adapts to Various Environments Shining on Macrocycles or Peptide and Polysaccharide Aggregates. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33220-33228.	4.0	15
1384	Oxidation State-Dependent Intramolecular Electronic Interaction of Carbazole-Based Azacyclophanes with 9,10-Anthrylene Units. Journal of Organic Chemistry, 2017, 82, 10699-10703.	1.7	5
1385	Host–Guest Tethered DNA Transducer: ATP Fueled Release of a Protein Inhibitor from Cucurbit[7]uril. Journal of the American Chemical Society, 2017, 139, 13916-13921.	6.6	72
1386	Modulation in the acidity constant of acridine dye with cucurbiturils: stimuli-responsive pK _a tuning and dye relocation into live cells. Organic and Biomolecular Chemistry, 2017, 15, 8448-8457.	1.5	22
1387	Template-directed synthesis of cucurbituril analogues using propanediurea as a building block. New Journal of Chemistry, 2017, 41, 7857-7860.	1.4	21
1388	Inclusion and exclusion complexes of cucurbit[7]uril with silver cations. Inorganic Chemistry Communication, 2017, 84, 72-76.	1.8	9
1389	Nanoscale Control of Amyloid Self-Assembly Using Protein Phase Transfer by Host-Guest Chemistry. Scientific Reports, 2017, 7, 5710.	1.6	20
1390	Ferrocene and ferrocenium inclusion compounds with cucurbiturils: a study of metal atom dynamics probed by M¶ssbauer spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 21548-21555.	1.3	8
1391	Container <scp>C</scp> hemistry: <scp>M</scp> anipulating excited state behavior of organic guests within cavitands that form capsules in water. Journal of Physical Organic Chemistry, 2017, 30, e3728.	0.9	5

#	Article	IF	CITATIONS
1392	Supramolecular alleviation of cardiotoxicity of a small-molecule kinase inhibitor. Organic and Biomolecular Chemistry, 2017, 15, 8046-8053.	1.5	17
1393	Probing Interactions between Hydrocarbons and Auxiliary Guests inside Cucurbit[8]uril. Organic Letters, 2017, 19, 4303-4306.	2.4	12
1394	Endohedral gas adsorption by cucurbit[7]uril: a theoretical study. Physical Chemistry Chemical Physics, 2017, 19, 24448-24452.	1.3	13
1395	Viologens and Their Application as Functional Materials. Chemistry - A European Journal, 2017, 23, 16924-16940.	1.7	220
1396	Development of hydroxylated cucurbit[n]urils, their derivatives and potential applications. Coordination Chemistry Reviews, 2017, 348, 1-24.	9.5	82
1397	Construction of a Molecular Switch and Selector under Electrochemical Control. ACS Omega, 2017, 2, 4575-4580.	1.6	8
1398	Supramolecular Sensors for Opiates and Their Metabolites. Journal of the American Chemical Society, 2017, 139, 14954-14960.	6.6	76
1401	Supramolecular Nanomedicine Constructed from Cucurbit[8]uril-Based Amphiphilic Brush Copolymer for Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 44392-44401.	4.0	71
1402	Synthesis, Anion Recognition, and Transmembrane Anionophoric Activity of Tripodal Diaminocholoyl Conjugates. Journal of Organic Chemistry, 2017, 82, 13368-13375.	1.7	15
1403	Comparison of Complexation-Induced p <i>K</i> _a Shifts in the Ground and Excited States of Dyes as Well as Different Macrocyclic Hosts and Their Manifestation in Host-Retarded Excited-Dye Deprotonation. Journal of Physical Chemistry B, 2017, 121, 11390-11398.	1.2	24
1404	Postmodification of a supramolecular organic framework: visible-light-induced recyclable heterogeneous photocatalysis for the reduction of azides to amines. Chemical Communications, 2017, 53, 13367-13370.	2.2	42
1405	HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. Journal of Physical Chemistry B, 2017, 121, 11144-11162.	1.2	62
1406	Thermal responsiveness and binding affinity of cucurbit[7]uril terminal poly(<i>N</i> -isopropylacrylamide). New Journal of Chemistry, 2017, 41, 14831-14834.	1.4	1
1407	Thermosensitive Phase Behavior of Benzo-21-crown-7 and Its Derivatives. Langmuir, 2017, 33, 13861-13866.	1.6	26
1408	Facile Detection of Cucurbit[7]uril by Rhodamine B-decorated Nanoparticles. Chemistry Letters, 2017, 46, 1300-1303.	0.7	6
1409	A synthesis of oxo-thioxo[3.3.3]propellanes from dithiocarbamates and ninhydrin–malononitrile adduct. Molecular Diversity, 2017, 21, 849-854.	2.1	4
1410	Acyclic cucurbit[n]uril conjugated dextran for drug encapsulation and bioimaging. Chemical Communications, 2017, 53, 8739-8742.	2.2	29
1411	The Langmuir–Hinshelwood approach for kinetic evaluation of cucurbit[7]uril-capped gold nanoparticles in the reduction of the antimicrobial nitrofurantoin. Physical Chemistry Chemical Physics, 2017, 19, 18913-18923.	1.3	15

#	Article	IF	Citations
1412	Decoupled Associative and Dissociative Processes in Strong yet Highly Dynamic Host–Guest Complexes. Journal of the American Chemical Society, 2017, 139, 12985-12993.	6.6	56
1413	Helianthus-like cucurbit[4]uril and cucurbit[5]uril analogues. New Journal of Chemistry, 2017, 41, 6991-6994.	1.4	6
1414	Enhanced Interface Stability of Polymer Electrolytes Using Organic Cage-Type Cucurbit[6]uril for Lithium Metal Batteries. Journal of the Electrochemical Society, 2017, 164, A1834-A1840.	1.3	17
1415	On the fly estimation of host–guest binding free energies using the movable type method: participation in the SAMPL5 blind challenge. Journal of Computer-Aided Molecular Design, 2017, 31, 47-60.	1.3	13
1416	Perhydroxycucurbit[6]uril-induced self-assembly of a double-hydrophilic block copolymer in aqueous solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 67-74.	0.9	2
1417	Bromination of N -phenyloxypropyl- N ′-ethyl-4,4′-bipyridium in cucurbit[8]uril molecular reactor. Chinese Chemical Letters, 2017, 28, 463-466.	4.8	7
1418	The synthesis of a rigid conjugated viologen and its cucurbituril pseudorotaxanes. Dyes and Pigments, 2017, 137, 229-235.	2.0	28
1419	Supramolecular assemblies of moroxydine hydrochloride and cucurbit[7,8]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 21-28.	0.9	7
1420	Macrocycles for the complexation of radiocesium: a concise review of crystallographic and computational studies. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1251-1263.	0.7	11
1421	Overview of the SAMPL5 host–guest challenge: Are we doing better?. Journal of Computer-Aided Molecular Design, 2017, 31, 1-19.	1.3	140
1422	Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand. Journal of Solid State Chemistry, 2017, 245, 45-49.	1.4	13
1423	Molecular photonics of polymethine dyes in complexes with cucurbit[7, 8]urils. High Energy Chemistry, 2017, 51, 440-448.	0.2	6
1424	The influence of the N-Ammonioalkyl substituent length on the structure and spectra of styryl dye complexes with cucurbit[7]uril. Doklady Physical Chemistry, 2017, 476, 169-172.	0.2	5
1425	Nanocellulose-Based Materials in Supramolecular Chemistry. , 2017, , 351-364.		1
1426	Advances in the Development of Supramolecular Polymeric Biomaterials., 2017,, 255-282.		1
1427	Self-Assembly in Aqueous Media. , 2017, , 241-268.		3
1428	Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry. Molecules, 2017, 22, 1640.	1.7	36
1429	Cucurbiturils: Synthesis, Structures, Formation Mechanisms, and Nomenclature., 2017,, 203-220.		4

#	ARTICLE	IF	CITATIONS
1430	Shape-Persistent Anion Receptors. , 2017, , 329-348.		2
1431	Cucurbit[n]urils. , 2017, , 405-434.		7
1432	Pillar[n]arenes: Versatile Macrocyclic Receptors for Supramolecular Chemistry., 2017,, 237-265.		2
1433	Cucurbiturils in Drug Binding and Delivery â~†., 2017, , 479-494.		3
1434	Extraction and Transport. , 2017, , 369-379.		1
1435	Solvation Effects in Supramolecular Chemistry. , 2017, , 11-60.		10
1436	Mechanistic Aspects of Host–Guest Binding in Cucurbiturils: Physicochemical Properties. , 2017, , 435-457.		6
1437	Receptors Based on van der Waals Forces. , 2017, , 73-102.		2
1438	Electrochemically Controlled Supramolecular Switches and Machines. , 2017, , 343-368.		3
1439	Hemicucurbit[n]urils. , 2017, , 221-236.		5
1440	2:2 Complexes from Diphenylpyridiniums and Cucurbit[8]uril: Encapsulationâ€Promoted Dimerization of Electrostatically Repulsing Pyridiniums. Chemistry - an Asian Journal, 2018, 13, 1312-1317.	1.7	17
1441	Anion encapsulation and complexation by cucurbit[n]urils and their derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 173-187.	0.9	16
1442	Are cucurbiturils better drug carriers for bent metallocenes? Insights from theory. Journal of Biological Inorganic Chemistry, 2018, 23, 413-423.	1.1	12
1443	A new cucurbit[6]uril based supramolecular assembly for sensing small organic solvents and rapid adsorption of Reactive Blue 19 Dye. Inorganic Chemistry Communication, 2018, 90, 78-81.	1.8	2
1444	Host–Guest Interaction at Molecular Interfaces: Cucurbit[7]uril as a Sensitive Probe of Structural Heterogeneity in Ferrocenyl Self-Assembled Monolayers on Gold. Journal of Physical Chemistry C, 2018, 122, 15986-15995.	1.5	11
1445	Modulation of Twisted Intramolecular Charge Transfer Emission of $2\hat{a} \in (4\hat{a} \in 2\hat{a} \in 1)N,N \le 1$ and $1 \in 1$ and $1 \in 1$ are the contraction of ChemistrySelect, 2018, 3, 4147-4155.	0.7	4
1446	Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules. Chemical and Pharmaceutical Bulletin, 2018, 66, 207-216.	0.6	38
1447	Synthesis, Structure, and Anion Binding Properties of Electronâ€Deficient Tetrahomocorona[4]arenes: Shape Selectivity in Anion–π Interactions. Angewandte Chemie, 2018, 130, 6646-6650.	1.6	14

#	Article	IF	CITATIONS
1448	Synthesis and Binding Properties of Monohydroxycucurbit[7]uril: A Key Derivative for the Functionalization of Cucurbituril Hosts. Journal of Organic Chemistry, 2018, 83, 5467-5473.	1.7	35
1449	Shapeâ€Controllable and Fluorescent Supramolecular Organic Frameworks Through Aqueous Host–Guest Complexation. Angewandte Chemie, 2018, 130, 737-741.	1.6	31
1450	Synthesis, Structure, and Anion Binding Properties of Electronâ€Deficient Tetrahomocorona[4]arenes: Shape Selectivity in Anion–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 6536-6540.	7.2	48
1451	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie, 2018, 130, 6185-6189.	1.6	11
1452	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6077-6081.	7.2	44
1453	A CB[5] analogue based supramolecular polymer with AIE behaviors. New Journal of Chemistry, 2018, 42, 8320-8324.	1.4	10
1454	Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation. Journal of the American Chemical Society, 2018, 140, 2705-2717.	6.6	113
1455	pH-Gated photoresponsive shuttling in a water-soluble pseudorotaxane. Chemical Communications, 2018, 54, 2743-2746.	2.2	25
1456	Enhanced chiral recognition by γ-cyclodextrin–cucurbit[6]uril-cowheeled [4]pseudorotaxanes. Chemical Communications, 2018, 54, 2643-2646.	2.2	39
1457	Polyaromatic molecular tubes: from strategic synthesis to host functions. Chemical Communications, 2018, 54, 3195-3206.	2.2	48
1458	Cucurbit[10]uril-based chemistry. Chinese Chemical Letters, 2018, 29, 1560-1566.	4.8	56
1459	A General Approach to Synthesize Metal Nanostructures by Using Cucurbit[7]uril. Nano, 2018, 13, 1850007.	0.5	3
1460	Novel Supramolecular Nanoparticles Derived from Cucurbit[7]uril and Zwitterionic Surfactants. Langmuir, 2018, 34, 3485-3493.	1.6	5
1461	Autophagy Caught in the Act: A Supramolecular FRET Pair Based on an Ultrastable Synthetic Host–Guest Complex Visualizes Autophagosome–Lysosome Fusion. Angewandte Chemie, 2018, 130, 2142-2147.	1.6	20
1462	Interaction of a Triaryl Methane Dye with Cucurbit[7]uril and Bovine Serum Albumin: A Perspective of Cooperative versus Competitive Bindings. ChemistrySelect, 2018, 3, 1088-1096.	0.7	8
1463	Synthesis of glycolurils and their analogues. Russian Chemical Reviews, 2018, 87, 89-108.	2.5	41
1464	Chemical Sensors Based on Cucurbit[<i>n</i>)uril Macrocycles. Israel Journal of Chemistry, 2018, 58, 357-412.	1.0	69
1465	Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions. Inorganic Chemistry Frontiers, 2018, 5, 806-813.	3.0	32

#	Article	IF	CITATIONS
1466	Enhancement of metal–metal interactions inside a large-cavity synthetic host in water. Chemical Communications, 2018, 54, 2169-2172.	2.2	26
1467	A study of the inclusion of 1-hexyl-4-(4-pyridyl)pyridinium bromide in cucurbit[6]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 357-363.	0.9	8
1468	Dye-Cucurbit[<i>n</i>)uril Complexes as Sensor Elements for Reliable Pattern Recognition of Biogenic Polyamines. Bulletin of the Chemical Society of Japan, 2018, 91, 95-99.	2.0	31
1469	Alkylationâ€, Heatingâ€, and Dopingâ€Induced Emission Enhancement of a Polyaromatic Tube in the Solid State. Chemistry - an Asian Journal, 2018, 13, 515-519.	1.7	4
1470	Selfâ€Assembled Magnetic Gold Catalysts from Dualâ€Functional Boron Clusters. ChemCatChem, 2018, 10, 2285-2290.	1.8	21
1471	Stimulusâ€Responsive Assembly of Nanoparticles using Host–Guest Interactions of Cyclodextrins. Chemistry - A European Journal, 2018, 24, 4741-4748.	1.7	47
1472	Cucurbit[7]uril-Directed Assembly of Colloidal Membrane and Stimuli-Responsive Microcapsules at the liquid–liquid Interface. Langmuir, 2018, 34, 693-699.	1.6	11
1473	Portal Effects on the Stability of Cucurbituril Complexes. Israel Journal of Chemistry, 2018, 58, 244-249.	1.0	16
1474	Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nature Chemistry, 2018, 10, 8-16.	6.6	143
1475	Pyrene-box capsules for adaptive encapsulation and structure determination of unstable or non-crystalline guest molecules. CrystEngComm, 2018, 20, 261-270.	1.3	7
1476	Understanding the complexation of aliphatic and aromatic acids guests with octa acid. Journal of Physical Organic Chemistry, 2018, 31, e3795.	0.9	7
1477	Autophagy Caught in the Act: A Supramolecular FRET Pair Based on an Ultrastable Synthetic Host–Guest Complex Visualizes Autophagosome–Lysosome Fusion. Angewandte Chemie - International Edition, 2018, 57, 2120-2125.	7.2	61
1478	Solubilization of Hydrophobic Catalysts Using Nanoparticle Hosts. Small, 2018, 14, 1702198.	5.2	21
1479	Cucurbit[8]uril-Based Giant Supramolecular Vesicles: Highly Stable, Versatile Carriers for Photoresponsive and Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4603-4613.	4.0	75
1480	Highly Luminescent and Waterâ€Soluble Twoâ€Dimensional Supramolecular Organic Framework: Allâ€Organic Photosensitizer Template for Visibleâ€Lightâ€Driven Hydrogen Evolution from Water. Chemistry - an Asian Journal, 2018, 13, 390-394.	1.7	30
1481	Inclusion Complexes of Hymexazol with Three Different Cucurbit[<i>n</i>) uril: Preparation, and Physicochemical and Antifungal Characterization. Israel Journal of Chemistry, 2018, 58, 466-471.	1.0	5
1482	The chaotropic effect as an orthogonal assembly motif for multi-responsive dodecaborate-cucurbituril supramolecular networks. Chemical Communications, 2018, 54, 2098-2101.	2.2	62
1483	Coordination supramolecular assemblies of a monohydroxycucurbit[7]uril and their potential applications in gas sorption. Dalton Transactions, 2018, 47, 1942-1947.	1.6	5

#	Article	IF	CITATIONS
1484	Calorimetric and spectroscopic investigations of interactions between cucurbituril Q7 and gemcitabine in aqueous solutions. Journal of Thermal Analysis and Calorimetry, 2018, 134, 595-607.	2.0	9
1485	Cucurbit[n]urils (n = 6–8) used as host molecules on supramolecular complexes formed with two different drugs: Emodin and indomethacin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 66-75.	2.3	9
1486	A novel water soluble pillar[5]arene and phenazine derivative self-assembled pseudorotaxane sensor for the selective detection of Hg ²⁺ and Ag ⁺ with high selectivity and sensitivity. New Journal of Chemistry, 2018, 42, 10148-10152.	1.4	13
1487	Effects of cucurbit[$\langle i \rangle n \langle i \rangle$] uril ($\langle i \rangle n \langle i \rangle$ = 7, 8, 10) hosts on the formation and stabilization of a naphthalenediimide (NDI) radical anion. Organic and Biomolecular Chemistry, 2018, 16, 3809-3815.	1.5	25
1488	Catalytic efficiency of macrocyclic-capped gold nanoparticles: cucurbit[n]urils versus cyclodextrins. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	10
1489	Supramolecular Complexation between Porphyrinâ€Viologen Dyad and Cucurbit[7]uril. ChemistrySelect, 2018, 3, 256-261.	0.7	11
1490	Applications of biological urea-based catalysts in chemical processes. Molecular Catalysis, 2018, 452, 192-246.	1.0	51
1491	Coordination networks and supramolecular assemblies based on barium cation complexes with cucurbit[6]uril. Polyhedron, 2018, 144, 158-165.	1.0	19
1492	Unresolved Issues that Remain in Molecular Self-Assembly. Bulletin of the Chemical Society of Japan, 2018, 91, 957-978.	2.0	54
1493	A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chemical Communications, 2018, 54, 3851-3854.	2.2	33
1494	Hemicucurbit[<i>n</i>)urils and Their Derivatives – Synthesis and Applications. Israel Journal of Chemistry, 2018, 58, 435-448.	1.0	26
1495	Cucurbit[n]uril Hostâ€Guest Complexes of Acids, Photoacids, and Super Photoacids. Israel Journal of Chemistry, 2018, 58, 230-243.	1.0	19
1496	Flying Cages in Traveling Wave Ion Mobility: Influence of the Instrumental Parameters on the Topology of the Host–Guest Complexes. Journal of the American Society for Mass Spectrometry, 2018, 29, 121-132.	1.2	9
1497	Guestâ€responsive, Nonâ€proteolytic Harvest of a Cellâ€sheet using Controllable Hostâ€guest Chemistry. Israel Journal of Chemistry, 2018, 58, 461-465.	1.0	2
1498	Shapeâ€Controllable and Fluorescent Supramolecular Organic Frameworks Through Aqueous Host–Guest Complexation. Angewandte Chemie - International Edition, 2018, 57, 729-733.	7.2	161
1499	lmidazolium p-tert-Butylthiacalix[4]arene Amphiphiles—Aggregation in Water Solutions and Binding with Adenosine 5′-Triphosphate Dipotassium Salt. BioNanoScience, 2018, 8, 337-343.	1.5	4
1500	Highly selective absorption of polychloromethanes in perhydroxylated cucurbit[6]uril-based supramolecular assemblies. New Journal of Chemistry, 2018, 42, 802-806.	1.4	1
1501	Adsorption behavior and mechanism of acidic blue 25 dye onto cucurbit[8]uril: A spectral and DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 125-132.	2.0	24

#	Article	IF	CITATIONS
1502	A pH-responsive Self-healing Gel with Crosslinking of Cucurbituril (CB[<i>n</i>)) via Hydrogen Bonding. Chemistry Letters, 2018, 47, 192-195.	0.7	9
1503	Potential Applications of Cucurbit[<i>n</i>)urils Inclusion Complexes in Photodynamic Therapy. Israel Journal of Chemistry, 2018, 58, 199-214.	1.0	26
1504	Supramolecular polymeric biomaterials. Biomaterials Science, 2018, 6, 10-37.	2.6	129
1505	Synthesis and characterization of host–guest inclusion complex of m-cresol with β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 61-73.	0.9	5
1506	Self-Assembly of Tetrameric and Hexameric Terpyridine-Based Macrocycles Using Cd(II), Zn(II), and Fe(II). Inorganic Chemistry, 2018, 57, 3548-3558.	1.9	21
1507	Hydrogen-bonded self-assembly, spectral properties and structure of supramolecular complexes of thiamonomethine cyanines with cucurbit[5,7]urils. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 34-45.	2.0	5
1508	<i>In situ</i> synthesis of ultrafine metal clusters triggered by dodecaborate supramolecular organic frameworks. Nanoscale, 2018, 10, 19846-19853.	2.8	27
1509	Photodeamination to quinone methides in cucurbit[<i>n</i>]urils: potential application in drug delivery. Organic and Biomolecular Chemistry, 2018, 16, 8908-8912.	1.5	8
1510	Nature of cucurbiturilâ \in "halogen encapsulation. Structural and interaction energy consideration in the X sub>2 (sub>@CB[si>n s] (X = Cl, Br, l,si>n s=6, 7, 8) from relativistic DFT calculations. Physical Chemistry Chemical Physics, 2018, 20, 29325-29332.	1.3	7
1511	Fabrication of Supramolecular Sensor Arrays Using Intramolecular/Intermolecular Interactions. Bunseki Kagaku, 2018, 67, 519-529.	0.1	1
1512	Barriers for Extrusion of a Guest from the Interior Binding Cavity of a Host: Gas Phase Experimental and Computational Results for Ion-Capped Decamethylcucurbit[5]uril Complexes. Journal of Physical Chemistry A, 2018, 122, 9224-9232.	1.1	7
1513	Cucurbituril-Mediated Catalytic Hydrolysis: A Kinetic and Computational Study with Neutral and Cationic Dioxolanes in CB7 . ACS Catalysis, 2018, 8, 12067-12079.	5.5	37
1514	Eukaryotic Cell Toxicity and HSA Binding of [Ru(Me4phen)(bb7)]2+ and the Effect of Encapsulation in Cucurbit[10]uril. Frontiers in Chemistry, 2018, 6, 595.	1.8	9
1515	Metallonanobelt: A Kinetically Stable Shape-Persistent Molecular Belt Prepared by Reversible Self-Assembly Processes. Inorganic Chemistry, 2018, 57, 15500-15506.	1.9	17
1516	Cavitation energies can outperform dispersion interactions. Nature Chemistry, 2018, 10, 1252-1257.	6.6	60
1517	Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review. Polymers, 2018, 10, 130.	2.0	13
1518	Molecular Recognition of Hydrophilic Molecules in Water by Combining the Hydrophobic Effect with Hydrogen Bonding. Journal of the American Chemical Society, 2018, 140, 13466-13477.	6.6	130
1519	Synthesis of new <i>p-tert</i> -butylcalix[4]arene-based polyammonium triazolyl amphiphiles and their binding with nucleoside phosphates. Beilstein Journal of Organic Chemistry, 2018, 14, 1980-1993.	1.3	16

#	Article	IF	CITATIONS
1520	Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Materials Chemistry Frontiers, 2018, 2, 2152-2174.	3.2	102
1522	Cucurbit[7]uril Inclusion Complexes with Benzimidazole Derivatives: A Computational Study. Journal of Solution Chemistry, 2018, 47, 1768-1778.	0.6	3
1523	Self-assembled biomaterials using host-guest interactions. , 2018, , 205-231.		6
1524	Molecular Recognition of Methionine-Terminated Peptides by Cucurbit[8]uril. Journal of the American Chemical Society, 2018, 140, 12263-12269.	6.6	62
1525	Chiral Cyclodimeric Zinc(II) Complexes: Enantio-recognition via Differential Pulse Voltammetry. Crystal Growth and Design, 2018, 18, 6266-6272.	1.4	6
1526	The pH-controlled[2]or [3]pseudorotaxanes based on stilbene dye SDâŠ,CB[7]. Supramolecular Chemistry, 2018, 30, 955-959.	1.5	O
1527	Guanidiniocarbonyl Pyrrole Cation (GCP) – A New Guest for Cucurbit[8]uril: Application to the Synthesis of Supramolecular Polymers Based on CB[8]@2GCP Complex Formation. European Journal of Organic Chemistry, 2018, 2018, 6515-6518.	1.2	3
1528	Biochemical sensing with macrocyclic receptors. Chemical Society Reviews, 2018, 47, 7006-7026.	18.7	136
1529	Cucurbit[8]urilâ€Based Polymers and Polymer Materials. Small, 2018, 14, e1802234.	5.2	49
1530	Synthesis and investigation of new cyclic molecules using the stilbene scaffold. RSC Advances, 2018, 8, 30678-30682.	1.7	4
1531	Enhancing Hydrogen Generation Through Nanoconfinement of Sensitizers and Catalysts in a Homogeneous Supramolecular Organic Framework. Small, 2018, 14, e1801037.	5.2	44
1532	Probing guest compounds enabling the facile isolation of cucurbit[10]uril. Science China Chemistry, 2018, 61, 787-791.	4.2	18
1533	Synergistic host–guest hydrophobic and hydrogen bonding interactions in the complexation between endo-functionalized molecular tube and strongly hydrophilic guest molecules in aqueous solution. Physical Chemistry Chemical Physics, 2018, 20, 16540-16550.	1.3	30
1534	An Electrochemical Biosensor for Detection of DNA Species Related to Oral Cancer Based on a Particular Host-Guest Recognition-Assisted Strategy for Signal Tag In Situ. Journal of the Electrochemical Society, 2018, 165, B289-B295.	1.3	6
1535	The Cucurbit[7]Urilâ€Based Supramolecular Chemistry for Reversible B/Zâ€DNA Transition. Advanced Science, 2018, 5, 1800231.	5.6	26
1536	Molecular-Scale Porous Materials Based on Pillar[n]arenes. CheM, 2018, 4, 2029-2053.	5.8	236
1537	An Insight into Adaptive Deformation of Rigid Cucurbit[6]uril Host in Symmetric [2]Pseudorotaxanes. European Journal of Organic Chemistry, 2018, 2018, 4426-4430.	1.2	5
1538	Cs+–π interactions and the design of macrocycles for the capture of environmental radiocesium (Cs-137): DFT, QTAIM, and CSD studies. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	7

#	Article	IF	CITATIONS
1539	A Multiâ€Component Sensor System for Detection of Amphiphilic Compounds. Angewandte Chemie - International Edition, 2018, 57, 12741-12744.	7.2	52
1540	Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril. Beilstein Journal of Organic Chemistry, 2018, 14, 1961-1971.	1.3	14
1542	Encapsulation of Chemotherapeutic Drug Melphalan in Cucurbit[7]uril: Effects on Its Alkylating Activity, Hydrolysis, and Cytotoxicity. ACS Omega, 2018, 3, 8337-8343.	1.6	22
1543	Hybrid Molecular Container Based on Glycoluril and Triptycene: Synthesis, Binding Properties, and Triggered Release. Chemistry - A European Journal, 2018, 24, 14101-14110.	1.7	13
1544	Inhibition of the fibrillation of highly amyloidogenic human calcitonin by cucurbit[7]uril with improved bioactivity. Acta Biomaterialia, 2018, 78, 178-188.	4.1	24
1545	Hydrogenation of Furfural with Nickel Nanoparticles Stabilized on Nitrogen-Rich Carbon Core–Shell and Its Transformations for the Synthesis of γ-Valerolactone in Aqueous Conditions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24480-24490.	4.0	55
1546	An Electric Trap: Electronâ€Rich Carbonyl Axis Ends Slow Threading/Dethreading Exchange Dynamics of Pillar[5]arene Ring along Axis. Israel Journal of Chemistry, 2018, 58, 1246-1250.	1.0	4
1547	A Highly Selective and Strong Anti-Interference Host-Guest Complex as Fluorescent Probe for Detection of Amantadine by Indicator Displacement Assay. Molecules, 2018, 23, 947.	1.7	13
1548	Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry. Science China Chemistry, 2018, 61, 993-1003.	4.2	60
1549	Theoretical evaluation of symmetrical α,α′,δ,δ′-tetramethyl cucurbit[6]uril for haloalkane 1-(3-chlorophenyl)-4-(3-chloropropyl)-piperazinium and chloroform encapsulation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 103-114.	0.9	2
1550	Metal Actuated Ring Translocation Switches in Water. Organic Letters, 2018, 20, 3187-3191.	2.4	31
1551	pH-responsive molecular assemblies of pyridylbutadiene derivative with cucurbit[7]uril. RSC Advances, 2018, 8, 16738-16745.	1.7	10
1552	Layer-by-layer assembly of anionic-/cationic-pillar[5] arenes multilayer films as chiral interface for electrochemical recognition of tryptophan isomers. Electrochimica Acta, 2018, 277, 1-8.	2.6	41
1553	Alkaline earth cation-mediated photoluminescent complexes of thioflavin T with twisted cucurbit [14] uril. New Journal of Chemistry, 2018, 42, 9244-9251.	1.4	11
1554	Supramolecular Assemblies with Nearâ€Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosomeâ€Targeted Cell Imaging. Angewandte Chemie, 2018, 130, 12699-12703.	1.6	24
1555	Prediction of CB[8] host–guest binding free energies in SAMPL6 using the double-decoupling method. Journal of Computer-Aided Molecular Design, 2018, 32, 1059-1073.	1.3	13
1556	Supramolecular Assemblies with Nearâ€Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosomeâ€Targeted Cell Imaging. Angewandte Chemie - International Edition, 2018, 57, 12519-12523.	7.2	125
1557	A glycoluril dimer–triptycene hybrid receptor: synthesis and molecular recognition properties. Organic and Biomolecular Chemistry, 2018, 16, 6499-6506.	1.5	8

#	Article	IF	CITATIONS
1558	Manipulating Aggregationâ€Induced Emission with Supramolecular Macrocycles. Advanced Optical Materials, 2018, 6, 1800668.	3.6	105
1559	Solvent―and Heatâ€Dependent Binding Behaviors of HMeQ[6] with Alkyldiammonium Ions. ChemistrySelect, 2018, 3, 9211-9217.	0.7	3
1560	Characterization of inclusion complexation of various tetraalkylammonium chlorides with cucurbit [7] uril by external high-pressure studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 205-210.	0.9	3
1561	Self-assembled (pseudo)rotaxane and polyrotaxane through host–guest chemistry based on the cucurbituril family. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 81-101.	0.9	13
1562	A Multiâ€Component Sensor System for Detection of Amphiphilic Compounds. Angewandte Chemie, 2018, 130, 12923-12926.	1.6	4
1563	An Optimized Sensor Array Identifies All Natural Amino Acids. ACS Sensors, 2018, 3, 1562-1568.	4.0	51
1564	Gabriel Synthesis of Hexakis(aminomethyl)benzene and Its Derivatization. ChemistrySelect, 2018, 3, 6112-6115.	0.7	3
1565	Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[<i>n</i>]arenes. Accounts of Chemical Research, 2018, 51, 1656-1666.	7.6	246
1566	Cucurbituril mediated single molecule detection and identification via recognition tunneling. Nanotechnology, 2018, 29, 365501.	1.3	26
1567	J-type dimer of Auramine O dye upon encapsulation in cucurbit[8]uril host showing intense excimer emission. Dyes and Pigments, 2018, 159, 331-336.	2.0	9
1568	Understanding the details of aggregation-induced emission (AIE) effect in D-Ï∈-A type imidazolium-based compounds through the stepwise change of rotatable moieties. Dyes and Pigments, 2019, 160, 909-914.	2.0	25
1569	Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. Industrial & Engineering Chemistry Research, 2019, 58, 16894-16900.	1.8	12
1570	Interactions between acyclic CB[n]-type receptors and nitrated explosive materials. Chemical Communications, 2019, 55, 10635-10638.	2.2	5
1571	Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation. Nano Research, 2019, 12, 2628-2633.	5.8	14
1572	Emerging Two-Dimensional Crystallization of Cucurbit[8]uril Complexes: From Supramolecular Polymers to Nanofibers. Journal of the American Chemical Society, 2019, 141, 14021-14025.	6.6	29
1573	Acyclic cucurbit[n]uril type receptors: secondary versus tertiary amide arms. Supramolecular Chemistry, 2019, 31, 685-694.	1.5	2
1574	Geminiarene: Molecular Scale Dual Selectivity for Chlorobenzene and Chlorocyclohexane Fractionation. Journal of the American Chemical Society, 2019, 141, 12280-12287.	6.6	121
1575	Use of Cucurbit[6]uril as Ionophore in Ion Selective Electrodes for Etilefrine Determination in Pharmaceuticals. Electroanalysis, 2019, 31, 2171-2178.	1.5	5

#	Article	IF	CITATIONS
1576	Ultra-small Pd nanoparticles derived from a supramolecular assembly for enhanced electrochemical reduction of CO ₂ to CO. Chemical Communications, 2019, 55, 9805-9808.	2.2	18
1577	Host-Guest Chemistry ofÂa Tetracationic Cyclophane, Namely, Cyclobis (paraquat-p-phenylene)., 2019, , 1-33.		1
1578	A Cucurbit[8]uril 2:2 Complex with a Negative p <i>K</i> _a Shift. Chemistry - A European Journal, 2019, 25, 12552-12559.	1.7	22
1579	Anion influence on metallosupramolecular architectures of Cucurbit[6]uril with calcium cation. Inorganica Chimica Acta, 2019, 495, 118990.	1.2	2
1580	Metal and Organic Templates Together Control the Size of Covalent Macrocycles and Cages. Journal of the American Chemical Society, 2019, 141, 12147-12158.	6.6	54
1581	Cyclotris(paraquatâ€ <i>p</i> â€phenylenes). Angewandte Chemie - International Edition, 2019, 58, 13778-13783.	7.2	7
1582	Identification of Ferric Ions Using a Palmatine $@Q[8]$ Fluorescent Probe. Chemistry Select, 2019, 4, 8344-8349.	0.7	4
1583	An Eco- and User-Friendly Herbicide. Journal of Agricultural and Food Chemistry, 2019, 67, 7783-7792.	2.4	21
1584	Molecular recognition of planar and non-planar aromatic hydrocarbons through multipoint Ag–݀ bonding in a dinuclear metallo-macrocycle. Chemical Science, 2019, 10, 7172-7176.	3.7	12
1585	Chemotherapy Based on Supramolecular Chemistry: A Promising Strategy in Cancer Therapy. Pharmaceutics, 2019, 11, 292.	2.0	48
1586	Superacid-Mediated Functionalization of Hydroxylated Cucurbit[<i>n</i>]urils. Journal of the American Chemical Society, 2019, 141, 17503-17506.	6.6	33
1587	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17342-17350.	7.2	16
1588	Radial Hetero[5]catenanes: Peripheral Isomer Sequences of the Interlocked Macrocycles. Angewandte Chemie - International Edition, 2019, 58, 17375-17382.	7.2	21
1589	Fuelâ€Driven Transient Crystallization of a Cucurbit[8]urilâ€Based Host–Guest Complex. Angewandte Chemie, 2019, 131, 17006-17009.	1.6	20
1590	Fuelâ€Driven Transient Crystallization of a Cucurbit[8]urilâ€Based Host–Guest Complex. Angewandte Chemie - International Edition, 2019, 58, 16850-16853.	7.2	45
1591	String Method for Protein–Protein Binding Free-Energy Calculations. Journal of Chemical Theory and Computation, 2019, 15, 5829-5844.	2.3	33
1592	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17503-17511.	1.6	11
1593	A fluorescent pillarene coordination polymer. Polymer Chemistry, 2019, 10, 2980-2985.	1.9	38

#	Article	IF	CITATIONS
1594	Cyclotris(paraquat―p â€phenylenes). Angewandte Chemie, 2019, 131, 13916-13921.	1.6	2
1595	Regioselective Oxidation of C–H Bonds in Unactivated Alkanes by a Vanadium Superoxo Catalyst Bound to a Supramolecular Host. Inorganic Chemistry, 2019, 58, 16250-16255.	1.9	4
1596	Ternary Complex Formation by Cucurbit[7]uril Leads to Large Shifts in the Reduction Potentials of Suitable Viologens. ChemElectroChem, 2019, 6, 5610-5616.	1.7	9
1597	Specific Recognition of Hg (sup) 2+ (sup) and other Cations by a Hoechst33258@inverted Cucurbit[7]uril Fluorescence Probe Using Different pH Media. ChemistrySelect, 2019, 4, 9433-9439.	0.7	4
1598	A Selective Cucurbit[8]urilâ€Peptide Beacon Ensemble for the Ratiometric Fluorescence Detection of Peptides. Chemistry - A European Journal, 2019, 25, 13088-13093.	1.7	18
1599	Study of the hostâ \in guest interaction between N,Nâ \in 2-bis[4-(dimethylaminophenyl)methyl]butane-1,4-diamine and the cucuribit[n]urils (n = 6, 7). New Journal of Chemistry, 2019, 43, 14938-14943.	1.4	2
1600	Cucurbit[5]uril derivatives as oxygen carriers. Supramolecular Chemistry, 2019, 31, 668-675.	1.5	5
1601	Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Frontiers in Chemistry, 2019, 7, 619.	1.8	118
1602	Heterofunctionalized Cavitands by Macrocyclization of Sequence-Defined Foldamers. Organic Letters, 2019, 21, 7763-7767.	2.4	10
1603	Cucurbit[7]uril-anchored polymer vesicles enhance photosensitization in the nucleus. Journal of Materials Chemistry B, 2019, 7, 5966-5971.	2.9	16
1604	A near infrared light-triggerable modular formulation for the delivery of small biomolecules. Journal of Nanobiotechnology, 2019, 17, 97.	4.2	10
1605	Acyclic Cucurbit[n]uril-Type Containers as Receptors for Neuromuscular Blocking Agents. Croatica Chemica Acta, 2019, 92, 163-171.	0.1	5
1606	Red-light-responsive molecular encapsulation in water: an ideal combination of photochemistry and host–guest interaction. Organic Chemistry Frontiers, 2019, 6, 498-505.	2.3	14
1607	Dynamic hydrogels mediated by macrocyclic host–guest interactions. Journal of Materials Chemistry B, 2019, 7, 1526-1540.	2.9	87
1608	Specific recognition of formaldehyde by a cucurbit [10] uril-based porous supramolecular assembly incorporating adsorbed 1,8-diaminonaphthalene. Journal of Materials Chemistry C, 2019, 7, 1597-1603.	2.7	39
1609	Tetraphenylethene-based tetracationic cyclophanes and their selective recognition for amino acids and adenosine derivatives in water. Chemical Communications, 2019, 55, 2372-2375.	2.2	40
1610	Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. Molecular Catalysis, 2019, 467, 1-8.	1.0	7
1611	Self-assembly of cucurbiturils and cyclodextrins to supramolecular millstones with naphthalene derivatives capable of translocations in the host cavities. New Journal of Chemistry, 2019, 43, 3673-3689.	1.4	2

#	Article	IF	CITATIONS
1612	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2019, 131, 5017-5021.	1.6	7
1613	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2019, 58, 4963-4967.	7.2	59
1614	Supramolecular crowns: a new class of cyclic hydrogen-bonded cavitands. Organic Chemistry Frontiers, 2019, 6, 611-617.	2.3	6
1615	Host–Guest Complexation Using Pillar[5]arene Crystals: Crystalâ€Structure Dependent Uptake, Release, and Molecular Dynamics of an Alkane Guest. Chemistry - A European Journal, 2019, 25, 2497-2502.	1.7	14
1616	Turn-On Supramolecular Host-Guest Nanosystems as Theranostics for Cancer. CheM, 2019, 5, 553-574.	5.8	87
1617	A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging. Journal of Materials Chemistry B, 2019, 7, 1435-1441.	2.9	40
1618	New opportunities in synthetic macrocyclic arenes. Chemical Communications, 2019, 55, 1533-1543.	2.2	119
1619	Multivalency in Heteroternary Complexes on Cucurbit[8]urilâ€Functionalized Surfaces: Selfâ€assembly, Patterning, and Exchange Processes. ChemPlusChem, 2019, 84, 1324-1330.	1.3	5
1620	Host-Guest Chemistry in Supramolecular Theranostics. Theranostics, 2019, 9, 3041-3074.	4.6	140
1621	Spectroscopic and calorimetric studies of interactions between mitoxantrone and cucurbituril Q7 in aqueous solutions. Journal of Molecular Liquids, 2019, 290, 111190.	2.3	11
1622	Calixarenes containing supramolecular vehicles for drug delivery., 2019,, 477-495.		4
1623	Zinc and Cobalt Aqua Complexes with Cucurbit[6]uril: Syntheses and Crystal Structures. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 433-438.	0.3	1
1624	Functionalized metallonanobelt derivatives having quinoxaline scaffold prepared from a common precursor. Tetrahedron Letters, 2019, 60, 2049-2053.	0.7	4
1625	Shape-Controlled Dodecaborate Supramolecular Organic-Framework-Supported Ultrafine Trimetallic PtCoNi for Catalytic Hydrolysis of Ammonia Borane. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23445-23453.	4.0	45
1628	Cucurbit[7]uril encapsulated dye-sensitized enhanced solar photocatalysis using positively charged sheet-like anatase TiO2 mesocrystals. Applied Surface Science, 2019, 488, 911-920.	3.1	16
1629	Stable suprachannels <i>via</i> a columnar cyclodimeric ensemble: exchange and matrix of various liquid guests in SCSC fashion. Dalton Transactions, 2019, 48, 10927-10932.	1.6	4
1630	Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Theranostics, 2019, 9, 3341-3364.	4.6	86
1631	Rational design and implementation of a cucurbit[8]uril-based indicator-displacement assay for application in blood serum. Chemical Science, 2019, 10, 6584-6593.	3.7	42

#	Article	IF	CITATIONS
1632	Standard Redox Potentials of Fe(III) Aqua Complexes Included into the Cavities of Cucurbit[$\langle i \rangle n \langle i \rangle$] urils ($\langle i \rangle n \langle i \rangle$ = 6â \in "8): A DFT Forecast. Journal of Physical Chemistry A, 2019, 123, 5341-5346.	1.1	7
1633	Porous supramolecular assemblies and functional properties of perhydroxylated cucurbit[6]uril and polyoxometallates. New Journal of Chemistry, 2019, 43, 10297-10304.	1.4	13
1634	Bambusuril analogs based on alternating glycoluril and xylylene units. Beilstein Journal of Organic Chemistry, 2019, 15, 1268-1274.	1.3	3
1635	Modulation of Reduction Potentials of Bis(pyridinium)alkane Dications through Encapsulation within Cucurbit[7]uril. Journal of Organic Chemistry, 2019, 84, 8759-8765.	1.7	15
1636	Fabrication, characterization and adsorption properties of cucurbit[7]uril-functionalized polycaprolactone electrospun nanofibrous membranes. Beilstein Journal of Organic Chemistry, 2019, 15, 992-999.	1.3	4
1637	Syntheses, crystal structures and physico-chemical properties of supramolecular assemblies based on cucurbit[6]uril and mono- and polynuclear bismuth(III) and mercury(II) halides. Journal of Molecular Structure, 2019, 1193, 357-364.	1.8	4
1638	Photo/redox-responsive 2D-Supramolecular assembly involving Cucurbit[8]uril and a star-shaped porphyrin tecton. Electrochimica Acta, 2019, 316, 79-92.	2.6	14
1639	Trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium Iodide@Hemimethylcucurbit[6]uril Fluorescent Probe for Anion Recognition. Australian Journal of Chemistry, 2019, 72, 533.	0.5	4
1640	IM-MS for Supramolecular Systems: Structures and Dynamics of Noncovalent Complexes From Solution to Gas Phase. Comprehensive Analytical Chemistry, 2019, 83, 197-236.	0.7	2
1641	Paclitaxel interaction with cucurbit [7]uril and acyclic Cucurbit[4]uril nanocontainers: A computational approach. Journal of Molecular Graphics and Modelling, 2019, 90, 210-218.	1.3	3
1642	\hat{l}^2 -Cyclodextrin grafted gold nanoparticles with short molecular spacers applied for nanosensors based on plasmonic effects. Microchemical Journal, 2019, 148, 277-284.	2.3	8
1643	Interaction of a Macrocycle with an Aggregation-Prone Region of a Monoclonal Antibody. Molecular Pharmaceutics, 2019, 16, 3100-3108.	2.3	7
1644	Selective Detection of Nitroexplosives Using Molecular Recognition within Self-Assembled Plasmonic Nanojunctions. Journal of Physical Chemistry C, 2019, 123, 15769-15776.	1.5	31
1645	A pore-expanded supramolecular organic framework and its enrichment of photosensitizers and catalysts for visible-light-induced hydrogen production. Organic Chemistry Frontiers, 2019, 6, 1698-1704.	2.3	22
1646	Host-Guest Complexations of Amine Boranes and Isoelectronic/Isostructural Quaternary Alkylammonium Cations by Cucurbit[7]uril in Aqueous Solution. Heteroatom Chemistry, 2019, 2019, 1-7.	0.4	4
1647	Cyclodextrin-Based Molecular Accessories for Drug Discovery and Drug Delivery. Chemical and Pharmaceutical Bulletin, 2019, 67, 289-298.	0.6	33
1648	Comparative studies on the effect of CB[8] on the charge transfer interaction. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	2
1649	Highly Active and Stable Water Splitting in Acidic Media Using a Bifunctional Iridium/Cucurbit[6]uril Catalyst. ACS Energy Letters, 2019, 4, 1301-1307.	8.8	54

#	Article	IF	CITATIONS
1650	Strategies for binding multiple guests in metal–organic cages. Nature Reviews Chemistry, 2019, 3, 204-222.	13.8	308
1651	Oligopeptide-CB[8] complexation with switchable binding pathways. Organic and Biomolecular Chemistry, 2019, 17, 3514-3520.	1.5	22
1652	Reversible Shapeâ€Morphing and Fluorescenceâ€Switching in Supramolecular Nanomaterials Consisting of Amphiphilic Cyanostilbene and Cucurbit[7]uril. Chemistry - an Asian Journal, 2019, 14, 1457-1461.	1.7	6
1653	Naphthol-Based Macrocycles. , 2019, , 1-21.		1
1654	Insights into the synthesis of pillar[5] arene and its conversion into pillar[6] arene. Organic Chemistry Frontiers, 2019, 6, 1044-1051.	2.3	9
1655	Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis. Catalysts, 2019, 9, 163.	1.6	22
1656	Topological Aspects of the Design of Nanocarriers for Therapeutic Peptides and Proteins. Pharmaceutics, 2019, 11, 91.	2.0	26
1657	Investigation of inclusion complexes of ametryne and atrazine with cucurbit[n]urils (n = 6–8) using experimental and theoretical techniques. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 94, 31-43.	0.9	5
1658	How does the complexation ability between host endo-functionalized molecular tube and strongly hydrophilic guest molecules in water depend on guest concentration?. Journal of Molecular Liquids, 2019, 283, 507-514.	2.3	13
1659	Humidity- and Temperature-Tunable Multicolor Luminescence of Cucurbit[8]uril-Based Supramolecular Assembly. ACS Applied Materials & Supramolecular Assembly.	4.0	55
1660	Inclusion Complexes in Drug Delivery and Drug Targeting: Formation, Characterization, and Biological Applications. ACS Symposium Series, 2019, , 187-221.	0.5	6
1661	Double-Circularly Connected Saloph-Belt Macrocycles Generated from a Bis-Armed Bifunctional Monomer. Journal of the American Chemical Society, 2019, 141, 6462-6467.	6.6	30
1662	Supramolecular catalytic synthesis of a novel bis(salicylaldehyde hydrazone) ligand for ratiometric recognition of AT-DNA. Chemical Communications, 2019, 55, 5491-5494.	2.2	7
1663	LCST behavior controlled by size-matching selectivity from low molecular weight monomer systems. New Journal of Chemistry, 2019, 43, 6890-6896.	1.4	5
1664	Cucurbituril-mediated quantum dot aggregates formed by aqueous self-assembly for sensing applications. Chemical Communications, 2019, 55, 5495-5498.	2.2	11
1665	Self-sorting processes in a stimuli-responsive supramolecular systems based on cucurbituril, cyclodextrin and bisstyryl guests. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 94, 201-210.	0.9	5
1666	19F-GEST NMR: studying dynamic interactions in host–guest systems. Organic Chemistry Frontiers, 2019, 6, 1503-1512.	2.3	17
1667	Mono- and Hexanuclear Zinc Halide Complexes with Soft Thiopyridazine Based Scorpionate Ligands. Inorganics, 2019, 7, 24.	1.2	2

#	Article	IF	Citations
1668	A Synthetic Receptor as a Specific Antidote for Paraquat Poisoning. Theranostics, 2019, 9, 633-645.	4.6	50
1669	Supramolekulare Schalter auf der Basis von Cucurbit[8]uril (CB[8]). Angewandte Chemie, 2019, 131, 409-422.	1.6	31
1671	Triangular Regulation of Cucurbit[8]uril 1:1 Complexes. Journal of the American Chemical Society, 2019, 141, 5897-5907.	6.6	23
1672	Recognition of Different Metal Cations by a <i>trans</i> å€4â€[4â€(Dimethylamino)styryl]â€1â€methylpyridinium lodide@Tetramethylcucurbit[6]uril Probe. European Journal of Inorganic Chemistry, 2019, 2019, 1212-1219.	1.0	5
1673	Rotational isomerism of the amide units in rotaxanes based on a cyclic tetraamide and secondary ammonium ions. Organic Chemistry Frontiers, 2019, 6, 1002-1009.	2.3	7
1674	Pseudo[<i>n</i> , <i>m</i>]rotaxanes of Cucurbit[7/8]uril and Viologenâ€Naphthalene Derivative: A Precise Definition of Rotaxane. Chinese Journal of Chemistry, 2019, 37, 269-275.	2.6	16
1675	In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS Chemistry, 2019, 1, 156-165.	4.6	50
1676	Radial Hetero[5]catenanes: Peripheral Isomer Sequences of the Interlocked Macrocycles. Angewandte Chemie, 2019, 131, 17536-17543.	1.6	5
1677	Dynamic host–guest interaction enables autonomous single molecule blinking and super-resolution imaging. Chemical Communications, 2019, 55, 14430-14433.	2.2	15
1678	Cucurbit[8]uril-based supramolecular polymer nanocapsules as an effective siRNA delivery platform for gene therapy. Polymer Chemistry, 2019, 10, 5659-5664.	1.9	10
1679	Nanoparticle-Based Contrast Agents for < sup > 129 < /sup > Xe HyperCEST NMR and MRI Applications. Contrast Media and Molecular Imaging, 2019, 2019, 1-25.	0.4	10
1680	Encapsulation and controlled release characteristics of ethylene gas in cucurbit[<i>n</i>)urils. Polymer Chemistry, 2019, 10, 6021-6030.	1.9	4
1681	Dual-cross-linked dynamic hydrogels with cucurbit[8]uril and imine linkages. Soft Matter, 2019, 15, 9797-9804.	1.2	16
1682	Binding affinities of cucurbit[<i>n</i>]urils with cations. Chemical Communications, 2019, 55, 14131-14134.	2.2	64
1683	Cucurbit[7]uril host-guest complexations of aza-, diaza-, and oxa, azaspirocycloalkanes in aqueous solution. Supramolecular Chemistry, 2019, 31, 172-183.	1.5	1
1684	A multi-color and white-light emissive cucurbituril/terpyridine/lanthanide supramolecular nanofiber. Chinese Chemical Letters, 2019, 30, 949-952.	4.8	22
1685	Supramolecular coordination assemblies of 1,2,3-hexamethylcucurbit[5]uril with alkali metal ions based on the outer-surface interactions of cucurbit[n]urils. Journal of Molecular Structure, 2019, 1181, 220-227.	1.8	6
1686	Deciphering ephedrine inclusion complexes with \hat{l}^2 -cyclodextrin, 18-crown-6 and cucurbit[7]uril using spectral and molecular modeling methods. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 157-172.	0.9	4

#	Article	IF	CITATIONS
1687	Cucurbit[8]uril (CB[8])â€Based Supramolecular Switches. Angewandte Chemie - International Edition, 2019, 58, 403-416.	7. 2	129
1688	Tuning surfaceâ€crossâ€linking of molecularly imprinted crossâ€linked micelles for molecular recognition in water. Journal of Molecular Recognition, 2019, 32, e2769.	1.1	6
1689	A Study of the Interaction Between Cucurbit[8]uril and Alkylâ€Substituted 4â€Pyrrolidinopyridinium Salts. Chemistry - an Asian Journal, 2019, 14, 235-242.	1.7	20
1691	Terminal Carboxylate Effects on the Thermodynamics and Kinetics of Cucurbit[7]uril Binding to Guests Containing a Central Bis(Pyridinium)-Xylylene Site. Journal of Organic Chemistry, 2019, 84, 2325-2329.	1.7	20
1692	The steric hindrance controlled [2]pseudorotaxanes constructed by V-type stilbene dyesâŠ,CB[7]. Supramolecular Chemistry, 2019, 31, 69-79.	1.5	0
1693	Untersuchungen zu Grenzen der Bivalenz mit DNAâ€basierter rämlicher Rasterung. Angewandte Chemie, 2019, 131, 918-923.	1.6	9
1694	Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catalysis, 2019, 9, 168-187.	5.5	96
1695	Exploring the Limits of Bivalency by DNAâ€Based Spatial Screening. Angewandte Chemie - International Edition, 2019, 58, 907-911.	7.2	26
1696	Stoichiometry and thermodynamics of gemcitabine and cucurbituril Q7 supramolecular complexes in high acidic aqueous solution. Journal of Molecular Structure, 2019, 1178, 554-563.	1.8	11
1697	Applications of Pillar[<i>n</i>]areneâ€Based Supramolecular Assemblies. Angewandte Chemie - International Edition, 2019, 58, 2197-2206.	7.2	201
1698	Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks. Sensors and Actuators B: Chemical, 2019, 283, 290-297.	4.0	53
1699	Organic additives induced coordination complexes of cucurbit[5]uril with strontium(II). Inorganica Chimica Acta, 2019, 487, 58-62.	1.2	3
1700	Semi-Rigid Molecular-Clip-Based Molecular Crystal Gearshift. ACS Applied Materials & Samp; Interfaces, 2019, 11, 998-1003.	4.0	21
1701	Cucurbit[6]uril-based supramolecular assemblies incorporating metal complexes with multiaromatic ligands as structure-directing agent for detection of aromatic amines and nitroaromatic compounds. Sensors and Actuators B: Chemical, 2019, 282, 844-853.	4.0	50
1702	Supramolekulare Pillar[n]arenâ€Aggregate und ihre Anwendungen. Angewandte Chemie, 2019, 131, 2219-2229.	1.6	34
1703	Dynamic supramolecular polymers built from cucurbit[<i>n</i>]urils and viologens. Polymer International, 2019, 68, 572-588.	1.6	36
1704	Stepwise Selfâ€Assembly and Dynamic Exchange of Supramolecular Snowflakes. Israel Journal of Chemistry, 2019, 59, 237-247.	1.0	2
1705	Stimuli-responsive perallyloxycucurbit[6]uril-based nanoparticles for selective drug delivery in melanoma cells. Materials Chemistry Frontiers, 2019, 3, 199-202.	3.2	17

#	Article	IF	CITATIONS
1706	Cucurbit[7]uril/CuCl promoting decomposition of 4-nitrobenzenediazonium in aqueous solution. Chinese Chemical Letters, 2019, 30, 337-339.	4.8	10
1707	Aqueous highly emissive host-guest systems by host enhanced intramolecular charge transfer. Dyes and Pigments, 2020, 173, 107919.	2.0	11
1708	Utilization of Cucurbit[6]uril as an effective adsorbent for the remediation of Phthalocyanine and Procion golden yellow dyes. Journal of Molecular Structure, 2020, 1202, 127278.	1.8	11
1709	Tunable fluorescent pseudorotaxane from axle-length-dependent cucurbit[7]uril complexation. Dyes and Pigments, 2020, 172, 107785.	2.0	9
1710	Binding interactions of bisbenzimidazolyl derivatives with cyclohexanocucurbit[6]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 125-135.	0.9	5
1711	Host–Guest Recognition and Fluorescence of a Tetraphenyletheneâ€Based Octacationic Cage. Angewandte Chemie - International Edition, 2020, 59, 10101-10110.	7.2	98
1712	Cucurbiturils in supramolecular catalysis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 1-27.	0.9	30
1713	Orthogonal Supramolecular Assembly Triggered by Inclusion and Exclusion Interactions with Cucurbit[7]uril for Photocatalytic H 2 Evolution. ChemSusChem, 2020, 13, 394-399.	3.6	13
1714	Insight into anion effects on catechol oxidation catalysis: cyclodimeric Cu(II) complexes containing 1,3,5-tris(nicotinoyloxy-methyl)benzene. Transition Metal Chemistry, 2020, 45, 65-70.	0.7	3
1715	Selective recognition of small hydrogen bond acceptors by a calix[6]arene-based molecular container. Supramolecular Chemistry, 2020, 32, 23-29.	1.5	1
1716	Introducing Seven Transition Metal Ions into Terpyridine-Based Supramolecules: Self-Assembly and Dynamic Ligand Exchange Study. Journal of the American Chemical Society, 2020, 142, 1811-1821.	6.6	53
1717	Rotaxanes comprising cyclic phenylenedioxydiacetamides and secondary mono- and bis-dialkylammonium ions: effect of macrocyclic ring size on pseudorotaxane formation. Organic Chemistry Frontiers, 2020, 7, 513-524.	2.3	2
1718	A guide to supramolecular polymerizations. Polymer Chemistry, 2020, 11, 1083-1110.	1.9	99
1719	A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. Journal of Materials Chemistry B, 2020, 8, 1182-1190.	2.9	47
1720	Electrochemical Quantitation of Supramolecular Excipient@Drug Complexation: A General Assay Strategy Based on Competitive Host Binding with Surface-Immobilized Redox Guest. Analytical Chemistry, 2020, 92, 2168-2175.	3.2	9
1721	Synthesis of Butadiynyl-Strapped Corona [6] arenes and Their Selective Anion Binding Properties. Journal of Organic Chemistry, 2020, 85, 2312-2320.	1.7	6
1722	Hierarchical Selfâ€Assembly of Polyâ€Pseudorotaxanes into Artificial Microtubules. Angewandte Chemie, 2020, 132, 3488-3492.	1.6	3
1723	Hierarchical Selfâ€Assembly of Polyâ€Pseudorotaxanes into Artificial Microtubules. Angewandte Chemie - International Edition, 2020, 59, 3460-3464.	7.2	16

#	Article	IF	CITATIONS
1724	"Dual Layer―Self-Sorting with Cucurbiturils. Journal of the American Chemical Society, 2020, 142, 867-873.	6.6	16
1725	Cucurbit[7]urilâ€Based Metal–Organic Rotaxane Framework for Dualâ€Capture of Molecular Iodine and Cationic Potassium Ion. Chemistry - A European Journal, 2020, 26, 2154-2158.	1.7	18
1726	Host–Guest Recognition and Fluorescence of a Tetraphenyletheneâ€Based Octacationic Cage. Angewandte Chemie, 2020, 132, 10187-10196.	1.6	14
1727	Improved Physical Stability of an Antibody–Drug Conjugate Using Host–Guest Chemistry. Bioconjugate Chemistry, 2020, 31, 123-129.	1.8	6
1728	The supramolecular host-guest complexation of Vemurafenib with \hat{l}^2 -cyclodextrin and cucurbit[7]uril as drug photoprotecting systems: A DFT/TD-DFT study. Computational and Theoretical Chemistry, 2020, 1191, 113026.	1.1	8
1729	ANALYSIS OF XRD STRUCTURAL PARAMETERS OF GLYCOLURIL AND ITS DERIVATIVES. Journal of Structural Chemistry, 2020, 61, 1315-1355.	0.3	5
1730	Electrochemical aspects of cyclodextrin, calixarene and cucurbituril inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 98, 149-170.	0.9	5
1731	Covalent cucurbit[7]uril–dye conjugates for sensing in aqueous saline media and biofluids. Chemical Science, 2020, 11, 11142-11153.	3.7	33
1732	Amino acid recognition by a fluorescent chemosensor based on cucurbit[8]uril and acridine hydrochloride. Analytica Chimica Acta, 2020, 1135, 142-149.	2.6	25
1733	Elongatedâ€Geminiarene: Syntheses, Solidâ€State Conformational Investigations, and Application in Aromatics/Cyclic Aliphatics Separation. Small, 2020, 16, 2003490.	5.2	18
1734	Self-healing materials utilizing supramolecular interactions. , 2020, , 293-367.		2
1735	Host–guest interaction of cucurbit[8]uril with oroxin A and its effect on the properties of oroxin A. Beilstein Journal of Organic Chemistry, 2020, 16, 2332-2337.	1.3	7
1736	Porous Liquids: The Next Frontier. CheM, 2020, 6, 3263-3287.	5.8	57
1737	Supramolecular Assemblies Constructed from Cucurbit[8]uril and <i>N</i> â€Alkyl Carboxymethylbenzotriazole through Hostâ€Guest Interactions. ChemistrySelect, 2020, 5, 12477-12480.	0.7	2
1738	Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction. Nanoscale, 2020, 12, 17103-17112.	2.8	16
1739	Supramolecular chemistry of substituted cucurbit[<i>n</i>]urils. Inorganic Chemistry Frontiers, 2020, 7, 3217-3246.	3.0	32
1740	Complexation of biologically essential (mono- and divalent) metal cations to cucurbiturils: a DFT/SMD evaluation of the key factors governing the host–guest recognition. RSC Advances, 2020, 10, 28139-28147.	1.7	10
1741	A study on the self-assembly mode and supramolecular framework of complexes of cucurbit[6]urils and 1-(4-methoxyphenyl)piperazine. RSC Advances, 2020, 10, 37369-37373.	1.7	16

#	Article	IF	CITATIONS
1742	Influence of <i>exo</i> -Adamantyl Groups and <i>endo</i> -OH Functions on the Threading of Calix[6] arene Macrocycle. Journal of Organic Chemistry, 2020, 85, 12585-12593.	1.7	2
1743	Editorial: Host-Guest Chemistry of Macrocycles. Frontiers in Chemistry, 2020, 8, 628200.	1.8	8
1744	Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 8211-8240.	2.3	11
1745	Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules, 2020, 25, 4627.	1.7	19
1746	Adaptive Seâ€Te Metathesis Controlled by Cucurbiturilâ€Based Hostâ€Guest Interaction. Chemistry - an Asian Journal, 2020, 15, 4321-4326.	1.7	8
1747	Energy transfer process in an unsymmetrical crown-containing bisstyryl dye incorporated in the cavities of CB[7] and 2-hydroxypropyl- \hat{l}^2 -CD. New Journal of Chemistry, 2020, 44, 9344-9354.	1.4	4
1748	Dual-triggered nanoaggregates of cucurbit[7]uril and gold nanoparticles for multi-spectroscopic quantification of creatinine in urinalysis. Journal of Materials Chemistry C, 2020, 8, 7051-7058.	2.7	16
1749	Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta, 2020, 219, 121213.	2.9	18
1750	ESR, STESR, DFT, and MD Study of the Dynamical Structure of Cucurbituril[7]–Spin Probe Guest–Host Complexes. ACS Omega, 2020, 5, 11901-11914.	1.6	3
1751	The inclusion behavior of 8-Anilino-1-naphthalene sulfonate into Cucurbit[7]uril: A DFT approach. Journal of Molecular Structure, 2020, 1217, 128390.	1.8	4
1752	Holding of planar chirality of pillar[5]arene by kinetic trapping using host–guest interactions with achiral guest solvents. Chemical Communications, 2020, 56, 8424-8427.	2.2	19
1753	Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Angewandte Chemie - International Edition, 2020, 59, 21280-21292.	7.2	58
1754	Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Angewandte Chemie, 2020, 132, 21464-21476.	1.6	7
1755	Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Crossâ€Linker. Angewandte Chemie, 2020, 132, 18179-18184.	1.6	1
1756	Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Crossâ€Linker. Angewandte Chemie - International Edition, 2020, 59, 18023-18028.	7.2	23
1757	Photophysical Activity and Host–Guest Behavior of Ruthenium Polypyridyl Catalysts Encapsulated in Cucurbit[10]uril. Inorganic Chemistry, 2020, 59, 9135-9142.	1.9	13
1758	Quantitative Supramolecular Heterodimerization for Efficient Energy Transfer. Angewandte Chemie, 2020, 132, 16097-16101.	1.6	4
1759	Quantitative Supramolecular Heterodimerization for Efficient Energy Transfer. Angewandte Chemie - International Edition, 2020, 59, 15963-15967.	7.2	47

#	ARTICLE	IF	CITATIONS
1760	Molecular mechanism for the encapsulation of the doxorubicin in the cucurbit[n]urils cavity and the effects of diameter, protonation on loading and releasing of the anticancer drug:Mixed quantum mechanical/ molecular dynamics simulations. Computer Methods and Programs in Biomedicine, 2020, 196, 105563.	2.6	9
1761	Ultrasensitive Detection of Hepatitis C Virus DNA Subtypes Based on Cucurbituril and Graphene Oxide Nano-composite. Chemical Research in Chinese Universities, 2020, 36, 307-312.	1.3	9
1762	Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through $[3+2]$ cycloaddition of azomethine ylides. RSC Advances, 2020, 10, 10263-10276.	1.7	4
1763	Supramolecular Nano-Encapsulation of Anabasine Reduced Its Developmental Toxicity in Zebrafish. Frontiers in Chemistry, 2020, 8, 134.	1.8	2
1764	Supramolecular Modulation of Antibacterial Activity of Ambroxol by Cucurbit[7]uril. ChemPlusChem, 2020, 85, 679-683.	1.3	7
1765	Host–guest inclusion systems of nedaplatin with cucurbit[7]uril for improved in vitro antitumour activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 97, 99-107.	0.9	8
1766	Host–guest interaction-mediated fabrication of a hybrid microsphere-structured supramolecular hydrogel showing high mechanical strength. Soft Matter, 2020, 16, 3416-3424.	1.2	17
1767	Probing Reversible Guest Binding with Hyperpolarized 129Xe-NMR: Characteristics and Applications for Cucurbit[n]urils. Molecules, 2020, 25, 957.	1.7	9
1768	Encapsulation of ionic liquids inside cucurbiturils. Organic and Biomolecular Chemistry, 2020, 18, 2120-2128.	1.5	4
1769	Hybrid Plasmonic Fiber-Optic Sensors. Sensors, 2020, 20, 3266.	2.1	24
1769 1770	Hybrid Plasmonic Fiber-Optic Sensors. Sensors, 2020, 20, 3266. Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227.	2.1	24
	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare		
1770	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227. Host-guest complexes – Boosting the performance of photosensitizers. International Journal of	1.5	5
1770 1771	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227. Host-guest complexes – Boosting the performance of photosensitizers. International Journal of Pharmaceutics, 2020, 586, 119595. Ultrafine Ru nanoclusters anchored on cucurbit[6]uril/rGO for efficient hydrogen evolution in a	1.5 2.6	5 28
1770 1771 1772	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227. Host-guest complexes – Boosting the performance of photosensitizers. International Journal of Pharmaceutics, 2020, 586, 119595. Ultrafine Ru nanoclusters anchored on cucurbit[6]uril/rGO for efficient hydrogen evolution in a broad pH range. Chemical Communications, 2020, 56, 9392-9395. High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Ditterfaces, 2020, 12,	1.5 2.6 2.2	5 28 9
1770 1771 1772 1773	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227. Host-guest complexes – Boosting the performance of photosensitizers. International Journal of Pharmaceutics, 2020, 586, 119595. Ultrafine Ru nanoclusters anchored on cucurbit[6]uril/rGO for efficient hydrogen evolution in a broad pH range. Chemical Communications, 2020, 56, 9392-9395. High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Department of Physical Chemistry B, 2020, 12, 38768-38777.	1.5 2.6 2.2 4.0	5 28 9 41
1770 1771 1772 1773	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227. Host-guest complexes – Boosting the performance of photosensitizers. International Journal of Pharmaceutics, 2020, 586, 119595. Ultrafine Ru nanoclusters anchored on cucurbit[6]uril/rGO for efficient hydrogen evolution in a broad pH range. Chemical Communications, 2020, 56, 9392-9395. High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Department of Physical Chemistry B, 2020, 12, 38768-38777. Exploring pH Dependent Host/Guest Binding Affinities. Journal of Physical Chemistry B, 2020, 124, 6520-6528. TetrazineBox: A Structurally Transformative Toolbox. Journal of the American Chemical Society, 2020,	1.5 2.6 2.2 4.0	5 28 9 41 6

#	Article	IF	CITATIONS
1778	Dynamics in Cellulose-Based Hydrogels with Reversible Cross-Links. Advances in Polymer Science, 2020, , 319-354.	0.4	3
1779	Interaction of the Large Host Q[10] with Metal Polypyridyl Complexes: Binding Modes and Effects on Luminescence. Inorganic Chemistry, 2020, 59, 3942-3953.	1.9	10
1780	An enhanced recyclable 3D adsorbent for diverse bio-applications using biocompatible magnetic nanomulberry and cucurbituril composites. Scientific Reports, 2020, 10, 443.	1.6	8
1781	Symmetrical-Tetramethyl-Cucurbit[6]uril-Driven Movement of Cucurbit[7]uril Gives Rise to Heterowheel [4]Pseudorotaxanes. Journal of Organic Chemistry, 2020, 85, 3568-3575.	1.7	19
1782	EPR Spectroscopy: A Powerful Tool to Analyze Supramolecular Host•Guest Complexes of Stable Radicals with Cucurbiturils. Molecules, 2020, 25, 776.	1.7	8
1783	Control of Guest Binding Kinetics in Macrocycles and Molecular Cages. Chemistry Letters, 2020, 49, 428-441.	0.7	23
1784	Synthesis of Heatâ€resistant Polymers by Thiol–Ene Reaction of <i>N</i> â€Allylmaleimide Copolymers Using Glycoluril Crosslinkers with Rigid Molecular Structures. Journal of Polymer Science, 2020, 58, 923-931.	2.0	2
1785	Synthesis of Electronâ€Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–π Interactions. Angewandte Chemie - International Edition, 2020, 59, 8078-8083.	7.2	22
1786	Evaluation of the supramolecular interaction of Congo red with cucurbiturils using mass spectrometry and spectroscopic methods. New Journal of Chemistry, 2020, 44, 2587-2596.	1.4	7
1787	Emission enhancement of cationic tetraphenylethylene derivatives by encapsulation in a cucurbit[10]uril host in water. New Journal of Chemistry, 2020, 44, 3185-3188.	1.4	6
1788	Simplicity in the Design, Operation, and Applications of Mechanically Interlocked Molecular Machines. ACS Central Science, 2020, 6, 117-128.	5.3	122
1789	Kinetics and Mechanism of Cationâ€Induced Guest Release from Cucurbit[7]uril. Chemistry - A European Journal, 2020, 26, 7433-7441.	1.7	24
1790	Hexanoateâ€Cucurbit[7]uril: Highly Soluble with Controlled Release Ability. Chemistry - A European Journal, 2020, 26, 9445-9448.	1.7	11
1791	Supramolecular adsorbents in extraction and separation techniques - A review. Analytica Chimica Acta, 2020, 1122, 97-113.	2.6	40
1792	Study on the Interaction and Properties of Cucurbit[8]uril with Oroxin B. Chemical Research in Chinese Universities, 2020, 36, 804-809.	1.3	9
1793	Highly sensitive chemosensor for detection of methamphetamine by the combination of AIE luminogen and cucurbit[7]uril. Dyes and Pigments, 2020, 180, 108413.	2.0	19
1794	Alkyl-Substituted Cucurbit[6]uril Bridged β-Cyclodextrin Dimer Mediated Intramolecular FRET Behavior. Journal of Organic Chemistry, 2020, 85, 6131-6136.	1.7	16
1795	Injectable Cucurbit[8]uril-Based Supramolecular Gelatin Hydrogels for Cell Encapsulation. ACS Macro Letters, 2020, 9, 619-626.	2.3	30

#	ARTICLE	IF	CITATIONS
1796	Construction of pH sensitive smart glutathione peroxidase (GPx) mimics based on pH responsive pseudorotaxanes. Organic and Biomolecular Chemistry, 2020, 18, 3125-3134.	1.5	1
1797	A Study of the Interaction between Cucurbit[7]uril and Alkyl Substituted 4-Pyrrolidinopyridinium Salts. Chemistry, 2020, 2, 262-273.	0.9	4
1798	Expected and unexpected photoreactions of 9-(10-)substituted anthracene derivatives in cucurbit $[\langle i \rangle n \langle j \rangle]$ uril hosts. Chemical Science, 2020, 11, 4779-4785.	3.7	30
1799	What are the effects of cucurbit[n]uril on CTMS loading? Insights from QM calculations and MD simulations. Computational Materials Science, 2020, 181, 109751.	1.4	5
1800	<scp>Waterâ€Soluble Threeâ€Dimensional</scp> Polymers: <scp>Nonâ€Covalent</scp> and Covalent Synthesis and Functions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 970-980.	2.6	18
1801	Physicochemical and in vitro cytotoxicity studies of inclusion complex between gemcitabine and cucurbit[7]uril host. Bioorganic Chemistry, 2020, 99, 103843.	2.0	7
1802	Cucurbiturils for environmental and analytical chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 1-12.	0.9	15
1803	Supramolecular nano drug delivery systems mediated via host-guest chemistry of cucurbit[n]uril (n = 6)	Γj₄EŢQq1 I	1 <u>0</u> ,784314
1804	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie, 2021, 133, 2004-2013.	1.6	18
1805	Fluorescence enhancement and cytotoxicity reduction of bis-viologen biphenyl by complexation of cucurbit[7]uril. Chinese Chemical Letters, 2021, 32, 725-728.	4.8	9
1806	Host–Guest Exchange of Viologen Guests in Porphyrin Cage Compounds as Studied by Selective Exchange Spectroscopy (1D EXSY) NMR. Angewandte Chemie - International Edition, 2021, 60, 1254-1262.	7.2	11
1807	Cucurbiturilsâ€Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis. Advanced Functional Materials, 2021, 31, .	7.8	79
1808	A Selfâ€Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angewandte Chemie - International Edition, 2021, 60, 706-710.	7.2	97
1809	A Selfâ€Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angewandte Chemie, 2021, 133, 716-720.	1.6	25
1810	Temozolomide binding to Cucurbit[7]uril: QTAIM, NCI-RDG and NBO analyses. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 61-77.	0.9	16
1811	Thermodynamic study of ethanol impact on gemcitabine binding to cucurbit[7]uril in aqueous solutions. Journal of Chemical Thermodynamics, 2021, 153, 106317.	1.0	1
1812	Cucurbituril-assisted formation of tunable carbon dots from single organic precursors in water. Organic Chemistry Frontiers, 2021, 8, 224-230.	2.3	11
1813	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 1976-1985.	7.2	55

#	Article	IF	CITATIONS
1814	Effective Enantioselective Recognition by Chiral Aminoâ€Phosphonium Salts**. Angewandte Chemie - International Edition, 2021, 60, 4023-4027.	7.2	13
1815	Effective Enantioselective Recognition by Chiral Aminoâ€Phosphonium Salts**. Angewandte Chemie, 2021, 133, 4069-4073.	1.6	1
1816	Unmasking Arene Ruthenium Building Blocks. Chemical Record, 2021, 21, 460-468.	2.9	5
1817	Recent advances in supramolecular antidotes. Theranostics, 2021, 11, 1513-1526.	4.6	53
1818	Reversible covalent locking of a supramolecular hydrogel <i>via</i> UV-controlled anthracene dimerization. Polymer Chemistry, 2021, 12, 307-315.	1.9	17
1819	Recent Advances of Photoresponsive Supramolecular Switches. Asian Journal of Organic Chemistry, 2021, 10, 74-90.	1.3	33
1820	Potential Applications of Cucurbit $[\langle i \rangle n \langle j \rangle]$ urils and Their Derivatives in the Capture of Hazardous Chemicals. Chemistry - A European Journal, 2021, 27, 5107-5119.	1.7	11
1821	Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioactive Materials, 2021, 6, 1375-1387.	8.6	90
1822	Redox Flow Battery Membranes: Improving Battery Performance by Leveraging Structure–Property Relationships. ACS Energy Letters, 2021, 6, 158-176.	8.8	73
1823	Guest Exchange by a Partial Energy Ratchet in Water. Angewandte Chemie - International Edition, 2021, 60, 6617-6623.	7.2	21
1824	Assemblies of cucurbit[6]uril-based coordination complexes with disulfonate ligands: from discrete complexes to one- and two-dimensional polymers. CrystEngComm, 2021, 23, 465-481.	1.3	6
1825	Experimental characterization of the association of \hat{l}^2 -cyclodextrin and eight novel cyclodextrin derivatives with two guest compounds. Journal of Computer-Aided Molecular Design, 2021, 35, 95-104.	1.3	9
1826	Host–Guest Exchange of Viologen Guests in Porphyrin Cage Compounds as Studied by Selective Exchange Spectroscopy (1D EXSY) NMR. Angewandte Chemie, 2021, 133, 1274-1282.	1.6	3
1827	Efficient synthesis of cucurbiturils and their derivatives using mechanochemical high-speed ball milling (HSBM). High Performance Polymers, 2021, 33, 509-518.	0.8	3
1828	Supramolecular Hydrogels via Light-Responsive Homoternary Cross-Links. Biomacromolecules, 2021, 22, 171-182.	2.6	22
1829	Cucurbiturilâ€Based Biomacromolecular Assemblies. Angewandte Chemie, 2021, 133, 3914-3924.	1.6	69
1830	Cucurbiturilâ€Based Biomacromolecular Assemblies. Angewandte Chemie - International Edition, 2021, 60, 3870-3880.	7.2	96
1831	Synthesis of Urease Inhibitory 2, 4-bis (4-cyanobenzyl)glycoluril using Sandmeyer Reaction and Density Functional Theory Investigation. Current Organic Synthesis, 2021, 18, 592-597.	0.7	0

#	Article	IF	CITATIONS
1832	Cucurbitimines – imine cages with concave walls. Organic Chemistry Frontiers, 2021, 8, 3668-3674.	2.3	5
1833	Supramolecular tuning of thioflavin-T aggregation hosted by polystyrene sulfonate. Physical Chemistry Chemical Physics, 2021, 23, 14716-14724.	1.3	2
1834	Solid-Supported Amplification of Aggregation Emission: A Tetraphenylethylene–Cucurbit[6]uril@Hydroxyapatite-Based Supramolecular Sensing Assembly for the Detection of Spermine and Spermidine in Human Urine and Blood. ACS Applied Bio Materials, 2021, 4, 1813-1822.	2.3	23
1835	Progress in Design and Application of Supramolecular Fluorescent Systems Based on Difluoroboron-Dipyrromethene and Macrocyclic Compounds. Chinese Journal of Organic Chemistry, 2021, 41, 2946.	0.6	2
1836	Elucidating dissociation activation energies in host–guest assemblies featuring fast exchange dynamics. Chemical Science, 2021, 12, 865-871.	3.7	17
1837	Supramolecular Selfâ€Assembly of Cyclopentylâ€Substituted Cucurbit[<i>n</i>) uril with Fe ³⁺ , Fe ²⁺ , and HClO ₄ Based on Outer Surface Interaction. Crystal Research and Technology, 2021, 56, 2000183.	0.6	9
1838	Design and recognition of cucurbituril-secured platinum-bound oligopeptides. Chemical Science, 2021, 12, 9962-9968.	3.7	10
1839	Synthesis of an AlEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy. Chemical Science, 2021, 12, 7727-7734.	3.7	52
1840	A cucurbituril–pillararene ring-on-ring complex. Chemical Communications, 2021, 57, 6562-6565.	2.2	7
1841	Chiroptical sensing of amino acids, amines, amino alcohols, alcohols and terpenes with π-extended acyclic cucurbiturils. Organic and Biomolecular Chemistry, 2021, 19, 4248-4253.	1.5	12
1842	Light driven molecular lock comprises a Ru(bpy) ₂ (hpip) complex and cucurbit[8]uril. RSC Advances, 2021, 11, 8444-8449.	1.7	1
1843	The mechanism of the selective binding ability between opiate metabolites and acyclic cucurbit[4]uril: an MD/DFT study. Physical Chemistry Chemical Physics, 2021, 23, 2186-2192.	1.3	1
1844	Enhanced selectivity and stability towards CO ₂ reduction of sub-5 nm Au NPs derived from supramolecular assembly. Chemical Communications, 2021, 57, 2491-2494.	2.2	6
1845	Supramolecular spectral/visual detection of urinary polyamines through synergetic/competitive complexation with \hat{I}^3 -CD and CB[7]. Chemical Communications, 2021, 57, 1806-1809.	2.2	10
1846	Guest Exchange by a Partial Energy Ratchet in Water. Angewandte Chemie, 2021, 133, 6691-6697.	1.6	6
1847	Chromic Properties of Carboxyphenyl Viologen Induced by Complexation in Cucurbit[7]uril. ChemistrySelect, 2021, 6, 1699-1704.	0.7	7
1848	Photoconversions of 15-crown-5-containing styryl dye and its complex with barium cation in the presence of cucurbit[7,8]urils. Russian Chemical Bulletin, 2021, 70, 350-358.	0.4	4
1849	Pyridine Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS Applied Materials & Detection Using Supramolecular Organic Frameworks Incorporation Using Supramolecular Organic Frameworks Incorpo	4.0	63

#	Article	IF	CITATIONS
1850	Self assembled cages with mechanically interlocked cucurbiturils. Supramolecular Chemistry, 2021, 33, 8-32.	1.5	0
1851	Rapid Estimation of Binding Constants for Cucurbit[8]uril Ternary Complexes Using Electrochemistry. Analytical Chemistry, 2021, 93, 4223-4230.	3.2	6
1853	The Role of Chain Length in Cucurbit[8]uril Complexation of Methyl Alkyl Viologens. European Journal of Organic Chemistry, 2021, 2021, 1547-1552.	1.2	4
1854	Permselective Two-Dimensional Polymer Film-Based Chemical Sensors. Bulletin of the Chemical Society of Japan, 2021, 94, 869-871.	2.0	7
1855	Cucurbit[<i>n</i>]uril-Immobilized Sensor Arrays for Indicator-Displacement Assays of Small Bioactive Metabolites. ACS Applied Nano Materials, 2021, 4, 4676-4687.	2.4	17
1856	The binding behaviours between cyclopentanocucurbit[6]uril and three amino acids. Royal Society Open Science, 2021, 8, 202120.	1.1	4
1857	Synthesis of cucurbit <scp>[6]</scp> uril pendent <scp>upper critical solution temperature</scp> type copolymers: selfâ€assembly and multiâ€stimuliâ€responsive behavior. Polymer International, 2021, 70, 1376-1385.	1.6	3
1858	Suppression of Malachite Green-Induced Toxicity to Human Liver Cells Utilizing Host-Guest Chemistry of Cucurbit[7]uril. Analytical Sciences, 2021, 37, 525-528.	0.8	0
1859	Supramolecular Frameworks Constructed by Exclusion Complexes of Symmetric Dicyclohexanocucurbit[6]uril with Benzene Ring-Containing Guests. Crystal Growth and Design, 2021, 21, 2977-2985.	1.4	7
1860	Triple stimulation-responsive behavior of pseudorotaxane polymer assembled by amphiphilic polymer and cucurbit[7]uril in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126271.	2.3	2
1861	Supramolecular engineering of hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2021, 171, 240-256.	6.6	164
1862	Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Frontiers in Chemistry, 2021, 9, 616815.	1.8	36
1864	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
1865	Supramolecular Control on the Optical Properties of a Dyeâ€Polyelectrolyte Assembly. ChemPhysChem, 2021, 22, 975-984.	1.0	2
1866	Aromatic hydrocarbon belts. Nature Chemistry, 2021, 13, 402-419.	6.6	102
1867	Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Frontiers in Chemistry, 2021, 9, 658548.	1.8	12
1868	Host–Guest Induced Peptide Folding with Sequence-Specific Structural Chirality. Journal of the American Chemical Society, 2021, 143, 6323-6327.	6.6	23
1869	Macrocycles as drug-enhancing excipients in pharmaceutical formulations. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 100, 55-69.	0.9	34

#	Article	IF	CITATIONS
1870	Use of rigid cucurbit[6]uril mediating selective water transport as a potential remedy to improve the permselectivity and durability of reverse osmosis membranes. Journal of Membrane Science, 2021, 623, 119017.	4.1	18
1871	Determination of biogenic amines in tomato by ion-pair chromatography coupled to an amine-selective potentiometric detector. Electrochimica Acta, 2021, 378, 138134.	2.6	6
1872	Methyl Hexadecyl Viologen Inclusion in Cucurbit[8]uril: Coexistence of Three Host–Guest Complexes with Different Stoichiometry in a Highly Hydrated Crystal. Crystal Growth and Design, 2021, 21, 3650-3655.	1.4	6
1873	Effect of Oxime Encapsulation on Acetylcholinesterase Reactivation: Pharmacokinetic Study of the Asoxime–Cucurbit[7]uril Complex in Mice Using Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry. Molecular Pharmaceutics, 2021, 18, 2416-2427.	2.3	3
1874	Host-guest interactions directed the morphology transformation of a charge-transfer complex of a naphthalene-tailored amphiphile/methyl viologen: From thin-films into diamond-like assemblies. Chinese Chemical Letters, 2021, 32, 3998-4001.	4.8	3
1875	Combating antibiotic resistance: current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. Giant, 2021, , 100066.	2.5	58
1876	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie - International Edition, 2021, 60, 17587-17594.	7.2	30
1877	Enabling Clinical Technologies for Hyperpolarized ¹²⁹ Xenon Magnetic Resonance Imaging and Spectroscopy. Angewandte Chemie, 2021, 133, 22298-22319.	1.6	3
1878	Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics. Angewandte Chemie - International Edition, 2021, 60, 22332-22338.	7.2	28
1879	Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics. Angewandte Chemie, 2021, 133, 22506-22512.	1.6	4
1880	Preparation and characterization of a new type of symmetrical dicyclopentyl substituted cucurbit[6]uril. High Performance Polymers, 2021, 33, 1109-1115.	0.8	2
1881	Selective synthesis of a novel glycoluril-based hybrid compound with high application potential. Chemistry of Heterocyclic Compounds, 2021, 57, 700.	0.6	1
1882	Binding Between Cyclohexanohemicucurbit[n]urils and Polar Organic Guests. Frontiers in Chemistry, 2021, 9, 701028.	1.8	2
1883	Enabling Clinical Technologies for Hyperpolarized ¹²⁹ Xenon Magnetic Resonance Imaging and Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 22126-22147.	7.2	26
1884	Cucurbiturilâ€verkapselnde metallorganische Gerüstverbindung über Mechanochemie: Adsorbentien mit verbesserter Leistung. Angewandte Chemie, 2021, 133, 15493-15498.	1.6	2
1885	Cucurbit[8]uril-derived porous carbon as high-performance electrode material for ionic liquid-based supercapacitor. Journal of Energy Storage, 2021, 38, 102527.	3.9	11
1886	Cucurbiturilâ€Encapsulating Metal–Organic Framework via Mechanochemistry: Adsorbents with Enhanced Performance. Angewandte Chemie - International Edition, 2021, 60, 15365-15370.	7.2	19
1887	Recyclable Supramolecular Assemblyâ€Induced Emission System for Selective Detection and Efficient Removal of Mercury(II). Chemistry - A European Journal, 2021, 27, 11879-11887.	1.7	22

#	Article	IF	CITATIONS
1888	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie, 2021, 133, 17728-17735.	1.6	5
1889	Stimuli Responsive Confinement of a Molecular Rotor Based BODIPY Dye inside a Cucurbit[7]uril Nanocavity. Journal of Physical Chemistry B, 2021, 125, 7946-7957.	1.2	21
1890	Cucurbituril Based Luminescent Materials in Aqueous Media and Solid State. Chemistry - an Asian Journal, 2021, 16, 2195-2210.	1.7	13
1891	From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angewandte Chemie, 2021, 133, 20095-20101.	1.6	4
1892	Supramolecular Regulation of Catalytic Activity for an Amphiphilic Pyreneâ€Ruthenium Complex in Water. Chemistry - A European Journal, 2021, 27, 11567-11573.	1.7	4
1893	From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angewandte Chemie - International Edition, 2021, 60, 19942-19948.	7.2	18
1894	Cucurbit[7]uril as a matrix solid-phase dispersion for the extraction of quaternary ammonium pesticides from vegetables and their determination using HPLC–UV. Food Chemistry, 2021, 350, 129236.	4.2	13
1895	Antitumor activity of supramolecular complexes of cucurbituril with platinum(II) compounds. Inorganica Chimica Acta, 2021, 522, 120370.	1.2	3
1896	Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding. Chinese Chemical Letters, 2021, 32, 2301-2304.	4.8	9
1897	Supramolecular self-assemblies of perhydroxycucurbit[5]uril with Keggin-type heteropolyacids. Inorganic Chemistry Communication, 2021, 130, 108706.	1.8	1
1898	Atomic Clusters: Structure, Reactivity, Bonding, and Dynamics. Frontiers in Chemistry, 2021, 9, 730548.	1.8	14
1899	Selective detection of Zn2+ and Cd2+ ions in water using a host-guest complex between chromone and Q[7]. Chinese Chemical Letters, 2021, 32, 2572-2576.	4.8	12
1900	A recyclable cucurbit[6]uril-supported silicotungstic acid catalyst used in the esterification reaction. Inorganica Chimica Acta, 2021, 523, 120418.	1.2	6
1902	Supramolecular "Click Chemistry―for Targeting in the Body. Bioconjugate Chemistry, 2021, 32, 1935-1946.	1.8	20
1904	Supramolecular properties of amphiphilic adamantylated azo dyes. Dyes and Pigments, 2021, 192, 109420.	2.0	4
1905	A Pseudorotaxane System Containing γâ€Cyclodextrin Formed via Chiral Recognition with an Aul6Agl3Cull3 Molecular Cap. Chemistry - A European Journal, 2021, 27, 15981-15985.	1.7	1
1906	Molecular Confinement Effects by Self-Assembled Coordination Cages. Bulletin of the Chemical Society of Japan, 2021, 94, 2351-2369.	2.0	63
1907	Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry - A European Journal, 2021, 27, 13280-13305.	1.7	15

#	Article	IF	CITATIONS
1908	Supramolecular self-assembling strategy for constructing cucurbit[6]uril derivative-based amorphous pure organic room-temperature phosphorescence complex featuring extra-high efficiency. Chinese Chemical Letters, 2022, 33, 877-880.	4.8	7
1909	Supramolecular Atropine Potentiometric Sensor. Sensors, 2021, 21, 5879.	2.1	4
1910	Selfâ€Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angewandte Chemie, 0, , .	1.6	2
1911	Cucurbiturils Monofunctionalized on the Methylene Bridge and Their Hostâ€Guest Properties. European Journal of Organic Chemistry, 2021, 2021, 4733-4736.	1.2	1
1912	Synthesis of symmetric dicyclohexanocucurbit[6]uril and its interaction with glycine. Tetrahedron, 2021, 97, 132409.	1.0	2
1913	Longâ€Range Charge Transportation Induced Organic Host–Guest Dual Color Long Persistent Luminescence. Advanced Optical Materials, 2021, 9, 2101337.	3.6	17
1914	Prediction of multiple dry–wet transition pathways with a mesoscale variational approach. Journal of Chemical Physics, 2021, 155, 124110.	1.2	0
1915	Achieving Enhanced Photochromic Properties of Diarylethene through Hostâ€Guest Interaction in Aqueous Solution. Chemistry - A European Journal, 2021, 27, 16153-16160.	1.7	10
1916	Selfâ€Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angewandte Chemie - International Edition, 2021, 60, 26268-26275.	7.2	37
1917	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	2.5	93
1918	Preparation, Characterization, and In-Vitro Assessment of Calixarene Nanovesicles: A Supramolecular Based Nano-Carrier for Paclitaxel Drug Delivery. Pharmaceutical Chemistry Journal, 2021, 55, 570-579.	0.3	7
1919	Study of Cucurbit[7]uril nanocoating on epitaxial graphene to design a versatile sensing platform. Applied Surface Science, 2021, 563, 150096.	3.1	2
1920	Ronald C.D. Breslow (1931–2017): A career in review. Bioorganic Chemistry, 2021, 115, 104868.	2.0	1
1921	Cucurbit[7]uril: Synthesis and quenching the quorum sensing in bacteria. Journal of Molecular Structure, 2022, 1248, 131505.	1.8	0
1922	Recent advances in chiral discrimination on host–guest functionalized interfaces. Chemical Communications, 2021, 57, 7480-7492.	2.2	25
1923	Dynamics of mechanically bonded macrocycles in radial hetero [4] catenane isomers. Organic Chemistry Frontiers, 2021, 8, 2182-2189.	2.3	7
1924	Molecular Recognition in Water Using Macrocyclic Synthetic Receptors. Chemical Reviews, 2021, 121, 2445-2514.	23.0	158
1925	SERS multiplexing of methylxanthine drug isomers <i>via</i> host–guest size matching and machine learning. Journal of Materials Chemistry C, 2021, 9, 12624-12632.	2.7	15

#	Article	IF	CITATIONS
1926	Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from?. Chemical Communications, 2021, 57, 8856-8884.	2.2	14
1927	Synthesis of Electronâ€Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–π Interactions. Angewandte Chemie, 2020, 132, 8155-8160.	1.6	5
1928	Stimuliâ€Responsive Cucurbit[n]urilâ€Mediated Hostâ€Guest Complexes on Surfaces. Israel Journal of Chemistry, 2018, 58, 314-325.	1.0	22
1929	Encapsulation Effects., 2013, , 1-63.		3
1930	Nanomaterial for the Management of Radioactive Waste. , 2018, , 1-18.		4
1931	Cucurbit[6]uril-based Polymer Nanocapsules. RSC Smart Materials, 2019, , 217-234.	0.1	1
1932	Chapter 11. Cucurbituril-functionalized Supramolecular Assemblies: Gateways to Diverse Applications. RSC Smart Materials, 2019, , 235-257.	0.1	3
1933	Chapter 11. Machines, Switches and Delivery Devices Based on Cucurbit[6]uril and Bambus[6]uril. Monographs in Supramolecular Chemistry, 2019, , 283-323.	0.2	1
1934	Cucurbiturils in Drug Delivery And For Biomedical Applications. Monographs in Supramolecular Chemistry, 2013, , 164-212.	0.2	23
1935	Formation of the non-classical interhalide anion [I ₂ Cl] ^{â°'} in methyl-bambus[6]uril cavity. New Journal of Chemistry, 2020, 44, 2697-2700.	1.4	4
1936	Access to molecular complexity. Multicomponent reactions involving five or more components. Russian Chemical Reviews, 2020, 89, 1274-1336.	2.5	26
1937	Topical Cream-Based Dosage Forms of the Macrocyclic Drug Delivery Vehicle Cucurbit[6]uril. PLoS ONE, 2014, 9, e85361.	1.1	10
1938	A Study on Factors Affecting the Reproducibility of a Chemical Tongue Analysis Responding to Amino Acids. Combinatorial Chemistry and High Throughput Screening, 2013, 16, 572-583.	0.6	3
1939	One-, Two-, and Three-Dimensional Supramolecular Assemblies Based on Tubular and Regular Polygonal Structures of Pillar[n]arenes. CCS Chemistry, 0, , 50-63.	4.6	41
1940	Use of Cucurbit [6] Uril as a Modifier in the Electrochemical Determination of Antitumor Platinum (II) Complex: & amp; t; & amp; & amp; t; & amp; & amp;	0.3	4
1941	04, 314-322. Use of Graphene and Cucurbit[7]uril Electrodes for the Determination of Amantadine in Biological Fluids. American Journal of Analytical Chemistry, 2015, 06, 623-630.	0.3	3
1942	Preparation of Cucurbituril Anchored Silica Gel by Cross Polymerization and Its Chromatographic Applications. Bulletin of the Korean Chemical Society, 2008, 29, 1941-1945.	1.0	22
1943	Binding Modes of a trans-Vinylbipyridinium Surfactant Bearing a Hexadecyl Chain to Cucurbit[n]uril (n = 6-8) in Aqueous Solution. Bulletin of the Korean Chemical Society, 2008, 29, 2043-2046.	1.0	6

#	Article	IF	CITATIONS
1944	Fluorescence Enhancement of 7-Diethylamino-4-methylcoumarin by Noncovalent Dipolar Interactions with Cucurbiturils. Bulletin of the Korean Chemical Society, 2013, 34, 1378-1382.	1.0	7
1945	Para-Bridged Macrocyclic Host Molecules Pillar[5]arenes: Their Synthesis and Application for Supramolecular Materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 842-851.	0.0	3
1946	Initial Biological Assessment of Upconversion Nanohybrids. Biomedicines, 2021, 9, 1419.	1.4	10
1947	Macrocycle Dynamics in a Branched [8] Catenane Controlled by Three Different Stimuli in Three Different Regions. Angewandte Chemie, 2022, 134, .	1.6	3
1948	Macrocycle Dynamics in a Branched [8]Catenane Controlled by Three Different Stimuli in Three Different Regions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
1949	Supramolecular Host–Guest Hydrogels for Corneal Regeneration. Gels, 2021, 7, 163.	2.1	10
1950	Matrix solid-phase dispersion based on cucurbit[7]uril-assisted dispersive liquid–liquid microextraction coupled with high performance liquid chromatography for the determination of benzimidazole fungicides from vegetables. Journal of Chromatography A, 2021, 1658, 462592.	1.8	12
1951	Computational studies of the encapsulation of ibuprofen and paracetamol into cucurbit[7]uril. Computational and Theoretical Chemistry, 2021, 1206, 113465.	1.1	1
1952	Supramolecular Structural Chemistry. , 2008, , 733-810.		0
1953	Chapter 4. Enzyme Models Classified by Reaction. , 2009, , 61-194.		0
1954	Pulsed Gradient Spin-Echo NMR. , 2011, , 159-185.		1
1955	Inclusion Complex of Malachite Green with Cucurbit[7]uril and Detection of Malachite Green using Cucurbit[7]uril. Advances in Analytical Chemistry, 2012, 02, 7-13.	0.1	1
1956	Stimuli-Responsive Drug Delivery Systems Based on Mesoporous Silica. , 2012, , 105-134.		0
1957	Organic Macrocycles., 2013,,.		0
1958	Cucurbiturils-Based Supramolecular Polymers. , 2013, , 1-8.		0
1960	Chapter 2. Synthesis of Pillar[n]arenes. Monographs in Supramolecular Chemistry, 2015, , 23-43.	0.2	0
1961	Chapter 1. Historical Background of Macrocyclic Compounds. Monographs in Supramolecular Chemistry, 2015, , 1-22.	0.2	1
1962	Chapter 4. Conformation and Planar Chirality of Pillar[n]arenes. Monographs in Supramolecular Chemistry, 2015, , 71-89.	0.2	0

#	Article	IF	CITATIONS
1964	Molecular Mapping of Periodontal Tissues Using Infrared Microspectroscopy., 2016,, 264-277.		0
1966	Chapter 1. Introduction: History and Development. Monographs in Supramolecular Chemistry, 2019, , 1-14.	0.2	1
1967	Functionalisation and Self-assembly of Nanoparticles through Cucurbit[<i>n</i>) uril-based Binding Motifs. Monographs in Supramolecular Chemistry, 2019, , 362-406.	0.2	1
1968	Chapter 15. Cucurbit[6]uril-based Polymer Nanocapsules and Thin Films. Monographs in Supramolecular Chemistry, 2019, , 426-441.	0.2	0
1969	Chapter 8. Cucurbit[8]uril-based 2D and 3D Regular Porous Frameworks. RSC Smart Materials, 2019, , 175-192.	0.1	0
1970	Chapter 3. Key Roles of Cavity Portals in Host–Guest Binding Interactions by Cucurbituril Hosts. RSC Smart Materials, 2019, , 40-55.	0.1	0
1971	Chapter 19. Cucurbit[n]uril-type Receptors: Influence of Building Block Exchange, Deletion, and Augmentation. Monographs in Supramolecular Chemistry, 2019, , 505-526.	0.2	0
1972	Chapter 2. Cucurbituril Homologues and Derivatives: Syntheses and Functionalization. RSC Smart Materials, 2019, , 7-39.	0.1	0
1973	Hybrid Supramolecular Assemblies of Cucurbit $[\langle i \rangle n \langle i \rangle]$ uril-supported Metal and Other Inorganic Nanoparticles. RSC Smart Materials, 2019, , 95-119.	0.1	2
1974	Fabrications and Applications of Cucurbit[8]uril-Based Supramolecular Polymer., 2019,, 1-40.		0
1975	Chapter 16. Cucurbiturils on Surfaces. Monographs in Supramolecular Chemistry, 2019, , 442-463.	0.2	0
1976	Nanomaterial for the Management of Radioactive Waste. , 2019, , 3603-3619.		0
1977	Biological Systems Involving Cucurbituril. , 2019, , 1-28.		0
1978	Host–Guest Chemistry of the Cucurbituril Family. Monographs in Supramolecular Chemistry, 2019, , 31-53.	0.2	1
1979	Cucurbituril Properties and the Thermodynamic Basis of Host–Guest Binding. Monographs in Supramolecular Chemistry, 2019, , 54-85.	0.2	3
1980	Chapter 7. Cucurbituril Complexes of Redox Active Guests. Monographs in Supramolecular Chemistry, 2019, , 150-174.	0.2	0
1981	The Host–Guest Properties Observed Between the Viologens and Cyclopentanocucurbit[6]uril. Australian Journal of Chemistry, 2020, 73, 601.	0.5	1
1982	Hybrid Fiber-Optic Sensors. Progress in Optical Science and Photonics, 2020, , 13-38.	0.3	1

#	Article	IF	CITATIONS
1983	Naphthol-Based Macrocycles., 2020,, 975-995.		1
1984	Cucurbituril-mediated AIE: An unconventional indicator displacement assay for ketamine detection. Dyes and Pigments, 2022, 197, 109875.	2.0	12
1985	Thermodynamic study of pH and sodium chloride impact on gemcitabine binding to cucurbit[7]uril in aqueous solutions. Journal of Molecular Liquids, 2022, 345, 117857.	2.3	4
1986	Fabrications and Applications of Cucurbit[8]uril-Based Supramolecular Polymer., 2020,, 787-826.		0
1987	Biological Systems Involving Cucurbituril. , 2020, , 731-757.		1
1988	Host-Guest Chemistry of a Tetracationic Cyclophane, Namely, Cyclobis (paraquat-p-phenylene)., 2020,, 49-81.		2
1989	Molecular Recognition of Zwitterions with Artificial Receptors. Chemistry - an Asian Journal, 2020, 15, 986-994.	1.7	6
1990	Cucurbiturils as Effectors on the Self-Assembly of Pd(II) and Pt(II) Metallacycles. Journal of Organic Chemistry, 2021, 86, 14608-14616.	1.7	6
1991	Aggregation Mode, Hostâ€Guest Chemistry in Water, and Extraction Capability of an Uncharged, Waterâ€Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen, 2021, 10, 1111-1115.	0.9	1
1992	Column-free matrix solid-phase dispersion extraction based on cucurbit[8]uril used for the determination of the flavonoid content in Oroxylum indicum (L.) Vent Industrial Crops and Products, 2022, 175, 114277.	2.5	1
1993	Highly compressible glass-like supramolecular polymer networks. Nature Materials, 2022, 21, 103-109.	13.3	117
1994	Expanding peptide-cucurbit[7]uril interactions through selective N-terminal reductive alkylation. Current Research in Chemical Biology, 2022, 2, 100013.	1.4	4
1995	Controllable fabrication of a supramolecular polymer incorporating twisted cucurbit[14]uril and cucurbit[8]uril via self-sorting. Chinese Chemical Letters, 2022, 33, 2455-2458.	4.8	29
1996	Cucurbit[8]uril-Assisted Nucleophilic Reaction: A Unique Supramolecular Approach for Cyanide Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection for Cyanide Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection and Removal from Aqueous Solution. ACS Applied Materials & Detection & De	4.0	13
1997	Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chemical Reviews, 2022, 122, 1416-1481.	23.0	95
1998	On-off-on fluorescence detection for biomolecules by a fluorescent cage through host-guest complexation in water. Chinese Chemical Letters, 2022, 33, 2459-2463.	4.8	27
1999	tQ[14]-based AIE supramolecular network polymers as potential bioimaging agents for the detection of Fe3+ in live HeLa cells. Sensors and Actuators B: Chemical, 2022, 354, 131189.	4.0	22
2000	Electron transfer photochromism of solid-state supramolecules constructed by cucurbit[<i>n</i> (<i>n</i> = 5â€"8) and 1-(4-carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium chloride. New Journal of Chemistry, 2021, 45, 22249-22254.	1.4	7

#	Article	IF	CITATIONS
2001	Cucurbituril hosts as promoters of aggregation induced emission of triphenylamine derivatives. Physical Chemistry Chemical Physics, 2022, 24, 2403-2411.	1.3	2
2002	"Useless Channels―in a Molecular Crystal Formed via F···F and F···π Halogen Bonds. Crystal Growth and Design, 0, , .	1.4	4
2003	lon-pore size match effects and high-performance cucurbit[8]uril-carbon-based supercapacitors. Electrochimica Acta, 2022, 405, 139827.	2.6	9
2004	Immuno-affinitive supramolecular magnetic nanoparticles incorporating cucurbit[8]uril-mediated ternary host-guest complexation structures for high-efficient small extracellular vesicle enrichment. Journal of Colloid and Interface Science, 2022, 611, 462-471.	5.0	8
2005	ESIPT-active hydroxybenzothiazole-picolinium@CB[7]-HAp NPs based supramolecular sensing assembly for spermine, spermidine and cadaverine: Application in monitoring cancer biomarkers and food spoilage. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113770.	2.0	11
2006	A study on the coordination of cyclohexanocucurbit[6]uril with copper, zinc, and magnesium ions. Green Processing and Synthesis, 2021, 10, 835-841.	1.3	1
2007	Selective recognition of aluminum ions using an esculetin@Q[8] host–guest supramolecular fluorescent probe. New Journal of Chemistry, 2021, 46, 97-102.	1.4	4
2008	Preparation and recognition property of an acyclic cucurbit $[n]$ uril dimer. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0 , 1 .	0.9	1
2009	Supramolecular CRISPR-OFF switches with host–guest chemistry. Nucleic Acids Research, 2022, 50, 1241-1255.	6.5	6
2010	Supramolecular Catalysis of a Catalysis-Resistant Diels–Alder Reaction: Almost Theoretical Acceleration of Cyclopentadiene Dimerization inside Cucurbit[7]uril. ACS Catalysis, 2022, 12, 2261-2269.	5.5	21
2011	Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. Exploration, 2022, 2, .	5.4	19
2012	External complexation of BODIPYs by CB[7] improves in-cell fluorescence imaging. Materials Advances, 2022, 3, 547-553.	2.6	5
2013	A light-responsive molecular switch based on cucurbit[7]uril and 1,1′-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium dibromide displaying white light emission. Organic and Biomolecular Chemistry, 2022, 20, 1253-1259.	1.5	6
2014	Cobalt Nanocluster-Decorated N-Rich Hierarchical Carbon Architectures Efficiently Catalyze Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 2001-2009.	3.2	8
2015	Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. Journal of the American Chemical Society, 2022, 144, 3162-3173.	6.6	24
2016	Supramolecular self-assembly based on Cucurbit[8]urils with sulfanilamide and sulfamethoxazole. Journal of Chemical Sciences, 2022, 134, 1.	0.7	2
2017	Cinnamaldehyde–cucurbituril complex: investigation of loading efficiency and its role in enhancing cinnamaldehyde <i>in vitro</i> anti-tumor activity. RSC Advances, 2022, 12, 7540-7549.	1.7	14
2018	Cucurbiturils mimicked by low polarizability solvents with pre-formed cavities: an empirical model to predict hydrocarbon selectivity. Chemical Science, 2022, 13, 4388-4396.	3.7	5

#	ARTICLE	IF	CITATIONS
2019	Complexation of trivalent metal cations (Al ³⁺ , Ga ³⁺ , In ³⁺ ,) Tj ETQq0 0 0 rg	gBT /Overl 1.3	lock 10 Tf 50 4
	governing the host–guest recognition. Physical Chemistry Chemical Physics, 2022, 24, 6274-6281. Controllable synthesis of Co nanoparticles with the assistance of cucurbit[6]uril and its efficient		
2020	photoelectrochemical catalysis in water splitting on a g-C ₃ N\sub>4 photoanode. New Journal of Chemistry, 2022, 46, 6738-6746.	1.4	3
2021	A combined crystallography and DFT study on ring-shaped Cucurbit[⟨i⟩n⟨ i⟩]urils: structures, surface character, and host–guest recognition. RSC Advances, 2022, 12, 10014-10019.	1.7	4
2022	Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt. Zeitschrift Fur Kristallographie - Crystalline Materials, 2022, 237, 167-177.	0.4	1
2023	From Light to Structure: Photo Initiators for Radical Twoâ€Photon Polymerization. Chemistry - A European Journal, 2022, 28, .	1.7	20
2024	Mechanisms of Efficient Desalination by a Two-Dimensional Porous Nanosheet Prepared via Bottom-Up Assembly of Cucurbit[6]urils. Membranes, 2022, 12, 252.	1.4	1
2025	Voltage-Gated Membranes Incorporating Cucurbit[<i>n</i>) Juril Molecular Containers for Molecular Nanofiltration. Journal of the American Chemical Society, 2022, 144, 6483-6492.	6.6	49
2026	Au/Boron organic frameworks for efficient removal and degradation of azo dye pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128884.	2.3	6
2027	Circular Dichroism Based Chirality Sensing with Supramolecular Host–Guest Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
2028	Cucurbit[8]uril-Based Potentiometric Sensor Coupled to HPLC for Determination of Tetracycline Residues in Milk Samples. Chemosensors, 2022, 10, 98.	1.8	2
2029	The Construction of Cucurbit[7]uril-Based Supramolecular Nanomedicine for Glioma Therapy. Frontiers in Chemistry, 2022, 10, 867815.	1.8	3
2030	Theoretical study on the interaction of flutamide anticancer drug with cucurbit[<i>n</i>]uril () Tj ETQq1 1 0.784	314 rgBT /	'Qverlock 10
2031	Circular Dichroism Based Chirality Sensing with Supramolecular Host–Guest Chemistry. Angewandte Chemie, 2022, 134, .	1.6	9
2032	Study on geometry and chemical activity of twisted cucurbit $[13]$ uril based on density functional theory. Chemical Papers, 0 , 1 .	1.0	O
2033	Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chemical Reviews, 2022, 122, 9032-9077.	23.0	157
2034	Lanthanides Singing the Blues: Their Fascinating Role in the Assembly of Gigantic Molybdenum Blue Wheels. ACS Nanoscience Au, 2022, 2, 179-197.	2.0	6
2035	When Molecules Meet in Waterâ€Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen, 2022, 11, e202200028.	0.9	15
2036	Host–Guest chemistry based on solid-state pillar[n]arenes. Coordination Chemistry Reviews, 2022, 462, 214503.	9.5	67

#	Article	IF	CITATIONS
2037	Molecular Recognition by Pillar[5] arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics, 2022, 14, 60.	2.0	5
2038	Study on the host–guest complex of dicyclohexanocucurbit[6]uril and 2-phenylbenzimidazole, and its recognition effect toward Fe ³⁺ . Royal Society Open Science, 2021, 8, 211280.	1.1	2
2039	Peptide Amphiphile Hydrogels Based on Homoternary Cucurbit[8]uril Host-Guest Complexes. Bioconjugate Chemistry, 2022, 33, 111-120.	1.8	6
2040	Synthesis of Glycoluril using Urea Phosphate. Russian Journal of Organic Chemistry, 2021, 57, 1988-1992.	0.3	2
2041	Hydrophilic Tetraphenylethene-Based Tetracationic Cyclophanes: NADPH Recognition and Cell Imaging With Fluorescent Switch. Frontiers in Chemistry, 2021, 9, 817720.	1.8	4
2042	Fine-tuning macrocycle cavity to selectively bind guests in water for near-infrared photothermal conversion. Organic Chemistry Frontiers, 2022, 9, 2902-2909.	2.3	6
2043	Noncovalently bound and mechanically interlocked systems using pillar[<i>n</i>]arenes. Chemical Society Reviews, 2022, 51, 3648-3687.	18.7	59
2044	Cucurbit[7]uril recognition of glucosamine anomers in water. Journal of Molecular Liquids, 2022, 358, 119178.	2.3	5
2045	Cucurbit[8]uril triggered fluorescence visualization of concentration-dependent interconversion of supramolecular polymer and dimer assemblies. Dyes and Pigments, 2022, 203, 110335.	2.0	3
2046	Detection of heterocyclic amine (PhIP) by fluorescently labelled cucurbit[7]uril. Analyst, The, 2022, 147, 2477-2483.	1.7	1
2047	Noninvasive and Individual entered Monitoring of Uric Acid for Precaution of Hyperuricemia via Optical Supramolecular Sensing. Advanced Science, 2022, 9, e2104463.	5.6	15
2048	Cucurbituril-Based Supramolecular Assemblies: Prospective on Drug Delivery, Sensing, Separation, and Catalytic Applications. Langmuir, 2022, 38, 6249-6264.	1.6	23
2049	Cyclodextrin-based catenanes and polycatenanes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 569-575.	0.9	3
2050	Cucurbit[7]uril Inhibits IAPP Aggregation by Targeting Nâ€terminus Hot Segments and Attenuates Cytotoxicity. Chemistry - A European Journal, 2022, , .	1.7	2
2051	Cucurbit(n)uril-functionalized magnetic composite for the dispersive solid-phase extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental samples with determination by ultra-high performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry. Journal of Chromatography A, 2022, 1674, 463151.	1.8	5
2052	Supramolecular chain-like polymers based on Ln(III) aqua complexes and cucurbit[6]uril. Inorganica Chimica Acta, 2022, 539, 121021.	1.2	3
2053	The Role of Packing, Dispersion, Electrostatics, and Solvation in Highâ€Affinity Complexes of Cucurbit[<i>n</i>]urils with Uncharged Polar Guests. Chemistry - A European Journal, 2022, 28, .	1.7	15
2054	Obtaining QM/MM binding free energies in the SAMPL8 drugs of abuse challenge: indirect approaches. Journal of Computer-Aided Molecular Design, 2022, 36, 263-277.	1.3	4

#	Article	IF	CITATIONS
2055	The role of water molecular structuring in the formation of the inclusion compounds based on cucurbit [8] uril and trans-[Co(en)2Cl2]+, trans-[Ru(en)2Cl2]+ complexes: a DFT examination. Journal of Inclusion Phenomena and Macrocyclic Chemistry, $0,$	0.9	1
2056	Photochromic and electrochromic properties of a viologen-based multifunctional Cd-MOF. Chemical Communications, 2022, 58, 7753-7756.	2.2	18
2057	Editorial: Suprastars of Chemistry. Frontiers in Chemistry, 0, 10, .	1.8	0
2058	Liquid-Liquid Extraction and Transport of Amino Acids through Membrane by Cucurbit[6]uril and its Derivatives. Asian Journal of Chemistry, 2022, 34, 2141-2146.	0.1	0
2059	Engineering living cells with cucurbit[7]uril-based supramolecular polymer chemistry: from cell surface engineering to manipulation of subcellular organelles. Chemical Science, 2022, 13, 8885-8894.	3.7	7
2060	Molecular insights into the complex formation between dodecamethylcucurbit[6]uril and phenylenediamine isomers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 637-651.	0.9	2
2061	Investigation of the Complexation between 4-Aminoazobenzene and Cucurbit[7]uril through a Combined Spectroscopic, Nuclear Magnetic Resonance, and Molecular Simulation Studies. ACS Omega, 0, , .	1.6	3
2062	Multivalent Cucurbituril Dendrons for Cell Membrane Engineering with Supramolecular Receptors. Bioconjugate Chemistry, 2022, 33, 2262-2268.	1.8	1
2063	Synthesis of Glycoluril Dimers with the Ability to Form Polymeric Self-Associates in Water. Chemistry, 2022, 4, 753-764.	0.9	2
2064	Host–guest complexation of APP ⁺ with cucurbit[7]uril. Theoretical and experimental studies on the supramolecular inhibition of its cytotoxicity on SERT. New Journal of Chemistry, 2022, 46, 15732-15739.	1.4	3
2065	A supramolecular strategy for gated photochromism in aqueous solution and solid state. Materials Chemistry Frontiers, 2022, 6, 2929-2934.	3.2	3
2066	Cucurbit[6]uril-based carbon dots for recognizing <scp>l</scp> -tryptophan and capecitabine. Materials Chemistry Frontiers, 2022, 6, 2859-2868.	3.2	7
2067	Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies. Journal of the American Chemical Society, 2022, 144, 14363-14379.	6.6	19
2068	Hierarchically structured flower-like Ru nanoparticles-cucurbit[6]uril/multiwalled carbon nanotubes as efficient pH-universal hydrogen evolution electrocatalyst. Chinese Chemical Letters, 2023, 34, 107717.	4.8	2
2069	Anion Binding Based on Hg ₃ Anticrowns as Multidentate Lewis Acidic Hosts. Inorganic Chemistry, 2022, 61, 12526-12533.	1.9	1
2070	Supramolecular Selfâ€Assembled Structure of Symmetrical Dicyclopentyl Substituted Cucurbit[6]uril with Calcium and Erbium Ions. Crystal Research and Technology, 0, , 2200121.	0.6	1
2071	Pillarareneâ€Based Supramolecular Vesicles for Stimuliâ€Responsive Drug Delivery. Chemistry - A European Journal, 2022, 28, .	1.7	10
2072	Identification of Lithocholic Acid as a Molecular Glass Host for Roomâ€√emperature Phosphorescent Materials. ChemPhotoChem, 0, , .	1.5	0

#	Article	IF	CITATIONS
2073	Sequential Formation of Heteroternary Cucurbit $[10]$ uril (CB $[10]$) Complexes. Chemistry - A European Journal, 2022, 28, .	1.7	6
2074	Acyclic cucurbiturils and their applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 723-733.	0.9	4
2075	Cucurbit[n]urils (n = 7, 8) can strongly bind neutral hydrophilic molecules in water. Science China Chemistry, 2022, 65, 1733-1740.	4.2	9
2076	A simple AlEgen photosensitizer with cucurbit[7]uril selective detection amantadine and application in mitochondrion imaging. Microchemical Journal, 2022, 182, 107942.	2.3	4
2077	Renewable supramolecular assembly-induced emission enhancement system for efficient detection and removal of silver(I). Dyes and Pigments, 2022, 207, 110712.	2.0	6
2078	Recent progress on the construction of supramolecular organic frameworks based on macrocyclic hosts. Molecular Systems Design and Engineering, 2022, 7, 1570-1587.	1.7	8
2079	Molecular recognition and spectral tuning of organic dyes in water by amide naphthotubes. Chemical Communications, 2022, 58, 9413-9416.	2,2	6
2080	An inclusion complex of cucurbit[7]uril with benzimidazolyl benzyl viologen exhibits fluorescence and photochromic properties. Physical Chemistry Chemical Physics, 2022, 24, 25930-25936.	1.3	10
2081	CB[10]-driven self-assembly of a homotrimer from a symmetric organic dye: tunable multicolor fluorescence and higher solid-state stability than that of a CB[8]-included homodimer. Organic Chemistry Frontiers, 2022, 9, 6281-6289.	2.3	7
2082	Supramolecular Self-assembly of Symmetric Tetramethyl Cucurbit[6]uril and Catechol. Results in Chemistry, 2022, 4, 100510.	0.9	0
2083	Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chemical Engineering Journal, 2023, 452, 139477.	6.6	22
2084	Precise heteroatom doping determines aqueous solubility and self-assembly behaviors for polycyclic aromatic skeletons. Communications Chemistry, 2022, 5, .	2.0	3
2085	Supramolecular Selfâ€Assembly Modes of Cyclopentanocucurbit[6]uril and Aromatic Amines. ChemistrySelect, 2022, 7, .	0.7	0
2086	The Story of the Little Blue Box: A Tribute to Siegfried HÃ $^1\!\!/\!4$ nig. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
2087	Supramolecular hybrid hydrogels as rapidly on-demand dissoluble, self-healing, and biocompatible burn dressings. Bioactive Materials, 2023, 25, 415-429.	8.6	10
2088	The Contributions of Supramolecular Kinetics to Dynamics of Supramolecular Polymers. ChemPlusChem, 0, , .	1.3	0
2089	The Story of the Little Blue Box: A Tribute to Siegfried H $\tilde{A}^{1}\!\!/\!4$ nig. Angewandte Chemie, 2023, 135, .	1.6	0
2090	Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review. Analytica Chimica Acta, 2022, 1232, 340475.	2.6	8

#	Article	IF	CITATIONS
2091	Energyâ€Efficient Iodine Uptake by a Molecular Hostâ <guest .<="" 134,="" 2022,="" angewandte="" chemie,="" crystal.="" td=""><td>1.6</td><td>0</td></guest>	1.6	0
2092	Energyâ€Efficient Iodine Uptake by a Molecular Hostâ <guest -="" .<="" 2022,="" 61,="" angewandte="" chemie="" crystal.="" edition,="" international="" td=""><td>7.2</td><td>13</td></guest>	7.2	13
2093	An amphiphilic water-soluble biphen[3] arene with a tunable lower critical solution temperature behavior. New Journal of Chemistry, 2022, 46, 21453-21457.	1.4	5
2094	Facile and rapid synthesis of novel hybrid pigments and their application as colorants in high-performance polymer. Journal of Molecular Structure, 2023, 1273, 134354.	1.8	1
2095	Noble metal nanoparticles meet molecular cages: A tale of integration and synergy. Current Opinion in Colloid and Interface Science, 2023, 63, 101660.	3.4	4
2096	Assessing the use of host-guest chemistry in conjunction with cyclic ion mobility separations for the linkage-specific characterization of human milk oligosaccharides. International Journal of Mass Spectrometry, 2022, , 116977.	0.7	1
2097	A modular and efficient synthetic platform for the construction of supramolecular mono-telechelic polymers. Giant, 2022, 12, 100128.	2.5	2
2098	Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coordination Chemistry Reviews, 2023, 476, 214921.	9.5	29
2099	Aqueous-phase tunable multi-color luminescent supramolecular assemblies based on cucurbit $[10]$ uril-enhanced intermolecular charge-transfer interactions. Organic Chemistry Frontiers, 0 , , .	2.3	4
2100	A highly selective supramolecular fluorescent probe for detection of Au3+ based on supramolecular complex of pillar[5]arene with 3, 3′-dihydroxybenzidine. Journal of Molecular Liquids, 2023, 370, 121018.	2.3	6
2101	New Molecular Scaffolds Based on 2,8-Xylylene-2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione. Russian Journal of Organic Chemistry, 2022, 58, 1451-1454.	0.3	0
2102	Advancement in supramolecular control of organic reactivity induced by cucurbit[n]urils. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2023, 103, 1-20.	0.9	2
2103	Synthesis of Nitro- and Acetyl Derivatives of 3,7,10-Trioxo-2,4,6,8,9,11-hexaaza[3.3.3]propellane. Materials, 2022, 15, 8320.	1.3	2
2104	Fluorescence Sensor for Water in Organic Solvent Using Graphene Oxide- Rhodamine B and Cucurbit[7]uril. Journal of Fluorescence, 2023, 33, 911-921.	1.3	4
2105	Recent Photosensitizer Developments, Delivery Strategies and Combinationâ€based Approaches for Photodynamic Therapy ^{â€} . Photochemistry and Photobiology, 2023, 99, 469-497.	1.3	6
2106	Bioinspired Macrocyclic Molecule Supported Twoâ€Dimensional Lamellar Membrane with Robust Interlayer Structure for Highâ€Efficiency Nanofiltration. Advanced Science, 2023, 10, .	5.6	5
2107	Highly Water-Soluble Cucurbit[8]uril Derivative as a Broad-Spectrum Neuromuscular Block Reversal Agent. Journal of Medicinal Chemistry, 2022, 65, 16893-16901.	2.9	9
2108	Semisynthesis of Aminomethyl-Insulin: An Atom-Economic Strategy to Increase the Affinity and Selectivity of a Protein for Recognition by a Synthetic Receptor. Bioconjugate Chemistry, 2023, 34, 212-217.	1.8	1

#	Article	IF	Citations
2109	Host–Guest Complexes. International Journal of Molecular Sciences, 2022, 23, 15730.	1.8	1
2110	Supramolecular assemblies of cucurbit[n]urils and 4-aminopyridine controlled by cucurbit[n]uril size ($n\hat{a}\in \hat{a}\in \hat{b}$, 6, 7 and 8). Chinese Chemical Letters, 2023, 34, 108040.	4.8	8
2111	Cucurbituril—assisted sensitive fluorescence detection and quantitation of naproxen drug in wastewater samples: Guest-host characterization and HPLC investigation. Frontiers in Chemistry, 0, 10, .	1.8	2
2112	Transient and Dissipative Host–Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
2113	A study of the supramolecular assembly formed by cucurbit[7]uril and 4-cyanophenol. Journal of Molecular Structure, 2023, 1278, 134969.	1.8	1
2114	Transient and Dissipative Host–Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel. Angewandte Chemie, 0, , .	1.6	0
2115	The Materials and Application of Artificial Light Harvesting System Based on Supramolecular Selfâ \in assembly. ChemistrySelect, 2023, 8, .	0.7	0
2116	A High-Affinity and Removable Iminium Dication Guest for Recycling of Cucurbit[7]uril Materials. Organic Letters, 2023, 25, 246-250.	2.4	1
2117	Fluorophore-based host–guest assembly complexes for imaging and therapy. Chemical Communications, 2023, 59, 3024-3039.	2.2	5
2118	4,4′-Biphenyldisulfonic acid induced coordination polymers of symmetrical tetramethyl cucurbit[6]uril with alkaline-earth metals for detection of antibiotics. CrystEngComm, 2023, 25, 961-970.	1.3	4
2119	Supramolecular Self-Assembly Based on Symmetric Tetramethyl-Substituted Cucurbit[6]uril and Small Aromatic Amines. Heterocycles, 2023, 106, 277.	0.4	0
2120	Recognition Site Modifiable Macrocycle: Synthesis, Functional Group Variation and Structural Inspection. Molecules, 2023, 28, 1338.	1.7	0
2121	Sulfonate ligand-induced formation of alkali metal–cucurbit[5]uril-based assemblies. CrystEngComm, 2023, 25, 1529-1540.	1.3	2
2122	Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[<i>n</i>) uril homologues and derivatives. Chemical Society Reviews, 2023, 52, 1428-1455.	18.7	34
2123	Computerâ€Aided Design and Analysis of Spectrally Aligned Hybrid Plasmonic Nanojunctions for SERS Detection of Nucleobases. Advanced Materials Technologies, 2023, 8, .	3.0	6
2124	High-affinity single and double helical pseudofoldaxanes with cationic guests. Chemical Science, 2023, 14, 4759-4768.	3.7	4
2125	Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition. Molecules, 2023, 28, 1540.	1.7	5
2126	A cucurbit[8]uril-based supramolecular polymer constructed via outer surface interactions: Use as a sensor, in cellular imaging and beyond. Journal of Molecular Liquids, 2023, 379, 121593.	2.3	5

#	Article	IF	CITATIONS
2127	Coaxial electrospun nanofibrous substrates with tunable wettability for constructing cucurbit[n]uril-embedded organic solvent nanofiltration membranes. Chemical Engineering Journal, 2023, 465, 142880.	6.6	10
2128	Recent Advances in Supramolecular-Macrocycle-Based Nanomaterials in Cancer Treatment. Molecules, 2023, 28, 1241.	1.7	2
2129	Organic macrocycle-polyoxometalate hybrids. Coordination Chemistry Reviews, 2023, 481, 215039.	9.5	14
2130	Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest–Host Electron and Vibrational Energy Transfer. Journal of the American Chemical Society, 2023, 145, 5191-5202.	6.6	13
2131	Fluorescence Detection of the Persistent Organic Pollutant Chlordecone in Water at Environmental Concentrations. Chemistry - A European Journal, 2023, 29, .	1.7	3
2132	Editorial: Host–guest chemistry of macrocycles— Volume II. Frontiers in Chemistry, 0, 11, .	1.8	0
2133	Host-Guest Complex of Cucurbituril with 5-Fluorouracil: Structural Study, Effect on Cytotoxicity, and Intracellular ROS Generation. Pharmaceutical Chemistry Journal, 2023, 56, 1526-1534.	0.3	0
2134	Supramolecular Assembly of Tetramethylcucurbit[6]uril and 2-Picolylamine. ACS Omega, 2023, 8, 9919-9924.	1.6	1
2135	Supramolecularly assisted chlorhexidine-bacterial membrane interaction with enhanced antibacterial activity and reduced side effects. Journal of Colloid and Interface Science, 2023, 641, 146-154.	5.0	2
2136	Structure and thermodynamic properties of adducts based on cucurbit[6]uril and $$\langle scp\rangle Fe(III)/Fe(II)\langle scp\rangle aqua complexes: A \langle scp\rangle DFT\langle scp\rangle examination. International Journal of Quantum Chemistry, 0, , .$	1.0	0
2137	Selective and reversible chemical sensor for methamphetamine detection using AlEgen and cucurbit[7]uril. Chinese Journal of Analytical Chemistry, 2023, 51, 100275.	0.9	1
2138	A pH―and Metalâ€Actuated Molecular Shuttle in Water. Chemistry - A European Journal, 2023, 29, .	1.7	2
2139	Cucurbit[8]uril-mediated SERS plasmonic nanostructures with sub-nanometer gap for the identification and determination of estrogens. Mikrochimica Acta, 2023, 190, .	2.5	1
2140	Theoretical Analysis of the Role of Water in Ligand Binding to Cucurbit[<i>n</i>) Juril of Different Sizes. Journal of Physical Chemistry B, 2023, 127, 3651-3662.	1.2	1
2141	Efficiently enhancing aqueous fluorescence of diketopyrrolopyrrole-derived dye via facile cucurbit[8]uril inclusion. Dyes and Pigments, 2023, 216, 111315.	2.0	4
2156	Supramolecular Chemotherapy with Cucurbit $[\langle i \rangle n \langle i \rangle]$ urils as Encapsulating Hosts. ACS Applied Bio Materials, 2023, 6, 2089-2101.	2.3	6
2158	Application of Nanotechnology in Wastewater Cleaning Process. , 2023, , 120-133.		0
2159	Stabilization of Carbocation Intermediate by Cucurbit[7]uril Enables High Photolysis Efficiency. Organic Letters, 2023, 25, 5291-5296.	2.4	0

#	Article	IF	CITATIONS
2160	Sumanene-stacked supramolecular polymers. Dynamic, solvation-directed control. Chemical Communications, 2023, 59, 9595-9598.	2.2	4
2167	Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Archives of Toxicology, 2023, 97, 2839-2860.	1.9	2
2168	Supramolecular assemblies and polymer recognition based on polygonal and pillar-shaped macrocycles "pillar[n]arenes― Polymer Journal, 2023, 55, 1247-1260.	1.3	2
2177	Self-assembling hydrogels based on polymer networks. , 2024, , 265-291.		O
2196	Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[<i>n</i>]uril assemblies for medical applications. RSC Medicinal Chemistry, 2024, 15, 433-471.	1.7	0