Aromatase Inhibitors as Adjuvant Therapy for Postmen Breast Cancer

Ca-A Cancer Journal for Clinicians 55, 145-163 DOI: 10.3322/canjclin.55.3.145

Citation Report

#	Article	IF	CITATIONS
1	Exemestane. American Journal of Cancer, 2006, 5, 259-272.	0.4	5
2	Chemoprevention of breast cancer. Lancet, The, 2006, 367, 1382-1383.	6.3	9
3	Adjuvant trials: Aromatase inhibitors in early breast cancer – Are they alike?. Cancer Treatment Reviews, 2006, 32, 532-540.	3.4	2
4	Hormonal breast cancer agents: Implications for the primary care provider. Journal of the American Academy of Nurse Practitioners, 2006, 18, 518-523.	1.4	3
5	The extended adjuvant NCIC CTG MA.17 trials: Initial and rerandomization studies. Breast, 2006, 15, 14-20.	0.9	8
6	Inhibidores de la aromatasa y osteoporosis. Revista Española De Enfermedades Metabólicas Óseas, 2006, 15, 55-56.	0.0	1
7	Update on COX-2 inhibitor patents with a focus on optimised formulation and therapeutic scope of drug combinations making use of COX-2 inhibitors. Expert Opinion on Therapeutic Patents, 2006, 16, 403-430.	2.4	7
8	The Influence of Endocrine Effects of Adjuvant Therapy on Quality of Life Outcomes in Younger Breast Cancer Survivors. Oncologist, 2006, 11, 96-110.	1.9	129
9	New agents in development for breast cancer. Current Opinion in Obstetrics and Gynecology, 2007, 19, 68-74.	0.9	7
10	Advances in Hormonal Therapy for Breast Cancer. Seminars in Oncology Nursing, 2007, 23, 46-54.	0.7	27
12	Aromatase Inhibitors in Early Hormone Receptor-Positive Breast Cancer. Drugs, 2008, 68, 1-15.	4.9	5
13	The breast cancer continuum in hormone-receptor–positive breast cancer in postmenopausal women: evolving management options focusing on aromatase inhibitors. Annals of Oncology, 2008, 19, 16-27.	0.6	60
14	CYP1B1 Is Not a Major Determinant of the Disposition of Aromatase Inhibitors in Epithelial Cells of Invasive Ductal Carcinoma. Drug Metabolism and Disposition, 2008, 36, 963-970.	1.7	6
15	Growth Factor Receptors and Apoptosis Regulators: Signaling Pathways, Prognosis, Chemosensitivity and Treatment Outcomes of Breast Cancer. Breast Cancer: Basic and Clinical Research, 2009, 3, BCBCR.S2492.	0.6	13
16	Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCFâ€7 cells overexpressing aromatase. International Journal of Cancer, 2009, 124, 1028-1036.	2.3	56
17	Systemic Metabolic Radiopharmaceutical Therapy in the Treatment of Metastatic Bone Pain. Seminars in Nuclear Medicine, 2010, 40, 89-104.	2.5	137
18	Molecular therapy of breast cancer: progress and future directions. Nature Reviews Endocrinology, 2010, 6, 485-493.	4.3	104
19	Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Molecular and Cellular Endocrinology, 2011, 344, 51-58.	1.6	48

ATION REDO

	CITATION R	tion Report	
#	Article	IF	CITATIONS
20	Internal radiotherapy of painful bone metastases. Methods, 2011, 55, 258-270.	1.9	27
21	The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. Journal of Nutritional Biochemistry, 2012, 23, 1230-1237.	1.9	56
22	Genetic determinants of aromatase inhibitor-related arthralgia: the B-ABLE cohort study. Breast Cancer Research and Treatment, 2013, 140, 385-395.	1.1	37
23	Breast cancer in the elderly—Should it be treated differently?. Reports of Practical Oncology and Radiotherapy, 2013, 18, 26-33.	0.3	62
24	The citrus flavonone hesperetin prevents letrozole-induced bone loss in a mouse model of breast cancer. Journal of Nutritional Biochemistry, 2013, 24, 1112-1116.	1.9	22
25	Radionuclide Therapy of Painful Bone Metastases—A Comparative Study Between Consecutive Radionuclide Infusions, Combination With Chemotherapy, and Radionuclide Infusions Alone. American Journal of Hospice and Palliative Medicine, 2013, 30, 745-751.	0.8	11
26	Screening of aromatase inhibitors in traditional Chinese medicines by electrophoretically mediated microanalysis in a partially filled capillary. Journal of Separation Science, 2013, 36, 2691-2697.	1.3	24
27	Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines. BMC Complementary and Alternative Medicine, 2014, 14, 252.	3.7	36
28	Comparative study on individual aromatase inhibitors on cardiovascular safety profile: a network meta-analysis. OncoTargets and Therapy, 2015, 8, 2721.	1.0	6
29	The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients, 2016, 8, 581.	1.7	118
31	Mechanism of Bushen Jianpi decoction in preventing and treating osteoporosis caused by aromatase inhibitors in breast cancer treatment. Cancer Biomarkers, 2017, 18, 183-190.	0.8	3
32	Current Strategies of Endocrine Therapy in Elderly Patients with Breast Cancer. BioMed Research International, 2018, 2018, 1-12.	0.9	12
33	Single Nucleotide Polymorphisms in 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase (CYP27B1) Gene: The Risk of Malignant Tumors and Other Chronic Diseases. Nutrients, 2020, 12, 801.	1.7	16
34	Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. European Journal of Medicinal Chemistry, 2021, 213, 113037.	2.6	33
35	188Re-HEDP therapy in the therapy of painful bone metastases. World Journal of Nuclear Medicine, 2018, 17, 133.	0.3	9
36	Targeting Aromatase and Estrogen Signaling for Breast Cancer. Journal of Nanomedicine & Biotherapeutic Discovery, 2014, 04, .	0.6	0