Health risks of heavy metals to the general public in Tia vegetables and fish

Science of the Total Environment 350, 28-37 DOI: 10.1016/j.scitotenv.2004.09.044

Citation Report

#	Article	IF	CITATIONS
1	Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences, 2006, 18, 1124-1134.	3.2	233
2	Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Science of the Total Environment, 2007, 383, 81-89.	3.9	270
3	Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Science of the Total Environment, 2007, 387, 96-104.	3.9	458
4	Metals Contamination in Soils and Vegetables in Metal Smelter Contaminated Sites in Huangshi, China. Bulletin of Environmental Contamination and Toxicology, 2007, 79, 361-366.	1.3	28
5	Mercury contamination and health risk to crops around the zinc smelting plant in Huludao City, northeastern China. Environmental Geochemistry and Health, 2007, 29, 385-393.	1.8	26
6	Metal Concentrations of Common Freshwater and Marine Fish from the Pearl River Delta, South China. Archives of Environmental Contamination and Toxicology, 2008, 54, 705-715.	2.1	122
7	Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study. Chemistry Central Journal, 2008, 2, 13.	2.6	52
8	Heavy metal ions in wines: meta-analysis of target hazard quotients reveal health risks. Chemistry Central Journal, 2008, 2, 22.	2.6	60
9	Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials, 2008, 152, 506-515.	6.5	235
10	Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 2008, 111, 811-815.	4.2	586
11	Health Risk Evaluation for the Inhabitants of a Typical Mining Town in a Mountain Area, South China. Annals of the New York Academy of Sciences, 2008, 1140, 263-273.	1.8	14
12	Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of the Total Environment, 2008, 405, 54-61.	3.9	308
13	Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 2008, 152, 686-692.	3.7	1,712
14	Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 2008, 69, 513-524.	2.9	696
15	Site-specific risk assessment in contaminated vegetable gardens. Chemosphere, 2008, 71, 1301-1307.	4.2	140
16	Non-Carcinogenic Risk Assessment of Heavy Metals and Fluoride in Some Water Wells in the Al-Baha Region, Saudi Arabia. Human and Ecological Risk Assessment (HERA), 2008, 14, 1306-1317.	1.7	53
17	Cadmium accumulation in pak choi (<i>Brassica chinensis</i> L.) and estimated dietary intake in the suburb of Hangzhou city, China. Food Additives and Contaminants: Part B Surveillance, 2009, 2, 74-78.	1.3	22
18	Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. Journal of Environmental Sciences, 2009, 21, 168-172.	3.2	50

#	Article	IF	CITATIONS
19	Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. Journal of Environmental Sciences, 2009, 21, 1702-1709.	3.2	158
20	Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management, 2009, 90, 1117-1122.	3.8	180
21	Risk to humans of consuming metals in anchovy (Coilia sp.) from the Yangtze River Delta. Environmental Geochemistry and Health, 2009, 31, 727-740.	1.8	21
22	Health Risk of Consuming Heavy Metals in Farmed Tilapia in Central Taiwan. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 558-564.	1.3	28
23	Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel. Journal of Hazardous Materials, 2009, 164, 876-883.	6.5	82
24	Radioactivity and fluoride contamination derived from a phosphate fertilizer plant in Egypt. Applied Radiation and Isotopes, 2009, 67, 1259-1268.	0.7	43
25	Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 2009, 157, 2542-2549.	3.7	267
26	Mercury, cadmium and lead contamination in seafood: A comparative study to evaluate the usefulness of Target Hazard Quotients. Food and Chemical Toxicology, 2009, 47, 298-302.	1.8	56
27	Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food and Chemical Toxicology, 2009, 47, 583-591.	1.8	254
28	Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere, 2009, 77, 368-375.	4.2	73
29	Do heavy metals counter the potential health benefits of wine?. Journal of Endocrinology Metabolism and Diabetes of South Africa, 2009, 14, 77-79.	0.4	10
30	Levels, Spatial Distribution and Possible Sources of Heavy Metals Contamination of Suburban Soils in Tianjin, China. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 287-290.	1.3	16
31	Mercury and Cadmium Contamination of Irrigation Water, Sediment, Soil and Shallow Groundwater in a Wastewater-Irrigated Field in Tianjin, China. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 336-341.	1.3	35
32	Micronutrient status of calcareous paddy soils and rice products: implication for human health. Biology and Fertility of Soils, 2010, 46, 317-322.	2.3	22
33	Assessment of daily intake of trace elements by Kakrapar adult population through ingestion pathway. Environmental Monitoring and Assessment, 2010, 169, 267-272.	1.3	14
34	Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Journal of Environmental Sciences, 2010, 22, 1792-1799.	3.2	286
35	Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop. Science of the Total Environment, 2010, 409, 9-18.	3.9	26
36	Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environmental Pollution, 2010, 158, 820-826.	3.7	208

#	Article	IF	CITATIONS
37	Health risks of heavy metals in sewageâ€irrigated soils and edible seeds in Langfang of Hebei province, China. Journal of the Science of Food and Agriculture, 2010, 90, 314-320.	1.7	34
38	Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. Journal of Environmental Management, 2010, 91, 2248-2253.	3.8	34
39	Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). Journal of Hazardous Materials, 2010, 173, 62-70.	6.5	67
40	Accumulation of Lead and Cadmium in Soil and Vegetable Crops along Major Highways in Agra (India). E-Journal of Chemistry, 2010, 7, 1174-1183.	0.4	31
41	Lead distribution and its potential risk to the environment: Lesson learned from environmental monitoring of abandon mine. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1702-1714.	0.9	13
42	Monitoring exposure to heavy metals among children in Lake Victoria, Kenya: Environmental and fish matrix. Ecotoxicology and Environmental Safety, 2010, 73, 1797-1803.	2.9	53
43	Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 2010, 73, 1820-1827.	2.9	303
44	Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 2010, 48, 611-619.	1.8	648
45	Treated municipal wastewater irrigation effect on lead content and health risks of nickel in soil and pepper in Shahrekord, Iran. Desalination and Water Treatment, 2011, 28, 42-45.	1.0	2
46	Distribution, accumulation and mobility of mercury in superficial sediment samples from Tianjin, northern China. Journal of Environmental Monitoring, 2011, 13, 2488.	2.1	9
47	Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Applied Geochemistry, 2011, 26, 182-187.	1.4	25
48	Chemical and bioanalytical characterization of dioxins in indoor dust in Hong Kong. Ecotoxicology and Environmental Safety, 2011, 74, 947-952.	2.9	12
49	Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environment International, 2011, 37, 637-643.	4.8	66
50	Migration and transfer of chromium in soil-vegetable system and associated health risks in vicinity of ferro-alloy manufactory. Transactions of Nonferrous Metals Society of China, 2011, 21, 2520-2527.	1.7	21
51	Dimethylglyoxime based ion-imprinted polymer for the determination of Ni(II) ions from aqueous samples. Water S A, 2011, 37, .	0.2	15
52	Spatial Variations of Heavy Metals in the Soils of Vegetable-Growing Land along Urban-Rural Gradient of Nanjing, China. International Journal of Environmental Research and Public Health, 2011, 8, 1805-1816.	1.2	24
53	Assessment of Daily Intake of Toxic Elements Due to Consumption of Vegetables, Fruits, Meat, and Seafood by Inhabitants of Xiamen, China. Journal of Food Science, 2011, 76, T181-8.	1.5	78
54	Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. Journal of Hazardous Materials, 2011, 193, 264-271.	6.5	163

#	Article	IF	CITATIONS
55	Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution, 2011, 159, 1730-1736.	3.7	104
56	Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 2011, 159, 2575-2585.	3.7	1,091
57	Neutron activation analysis of wheat samples. Applied Radiation and Isotopes, 2011, 69, 1596-1604.	0.7	9
58	Mercury species of sediment and fish in freshwater fish ponds around the Pearl River Delta, PR China: Human health risk assessment. Chemosphere, 2011, 83, 443-448.	4.2	45
59	Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environmental Monitoring and Assessment, 2011, 172, 353-365.	1.3	68
60	Accumulation and remobilization of metals in superficial sediments in Tianjin, China. Environmental Monitoring and Assessment, 2011, 173, 917-928.	1.3	17
61	Investigation of trace elements in agricultural soils by BCR sequential extraction method and its transfer to wheat plants. Environmental Monitoring and Assessment, 2011, 175, 303-314.	1.3	76
62	Assessment of trace metal toxicity in soils of Raniganj Coalfield, India. Environmental Monitoring and Assessment, 2011, 177, 63-71.	1.3	39
63	Spatial distribution, bioavailability, and health risk assessment of soil Hg in Wuhu urban area, China. Environmental Monitoring and Assessment, 2011, 179, 255-265.	1.3	31
64	Elemental composition of vegetables cultivated in illegal mining towns in Ghana using neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289, 1-6.	0.7	4
65	Health Risk Associated to Dietary Intake of Mercury in Selected Coastal Areas of Mexico. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 180-188.	1.3	20
66	Total and Organic Mercury in Ten Fish Species for Human Consumption from the Mexican Pacific. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 679-683.	1.3	10
67	Application of health risk assessment method for geological environment at national and regional scales. Environmental Earth Sciences, 2011, 64, 513-521.	1.3	44
68	Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environmental Science and Pollution Research, 2011, 18, 1623-1632.	2.7	156
69	Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China. Environmental Toxicology and Chemistry, 2011, 30, 1997-2003.	2.2	19
70	Responses of Different Chinese Flowering Cabbage (<i>Brassica parachinensis</i> L.) Cultivars to Cadmium and Lead Exposure: Screening for Cd + Pb Pollution‣afe Cultivars. Clean - Soil, Air, Water, 2011, 39, 925-932.	0.7	38
71	Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China. Journal of Hazardous Materials, 2011, 190, 980-985.	6.5	91
72	Application of Rhizosphere Interaction of HyperaccumulatorNoccaea Caerulescensto Remediate Cadmium-Contaminated Agricultural Soil. International Journal of Phytoremediation, 2011, 13, 933-945.	1.7	4

#	Article	IF	CITATIONS
73	Perfluorinated Compounds in Aquatic Products from Bohai Bay, Tianjin, China. Human and Ecological Risk Assessment (HERA), 2011, 17, 1279-1291.	1.7	17
74	Notice of Retraction: Evaluation of Heavy Metals Contaminative Features of a Sewage River Sediment. , 2011, , .		0
75	HEALTH RISK ASSESSMENT OF ARSENIC AND OTHER HEAVY METALS FROM VEGETABLES GROWN IN BANGLISH VILLAGE, BANGLADESH. International Journal of PIXE, 2012, 22, 287-298.	0.4	1
76	Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China. PLoS ONE, 2012, 7, e46793.	1.1	206
77	Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia (Poland), 2012, 67, 827-836.	0.8	45
78	Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. , 2012, , 1-27.		62
79	Concentration of some heavy metals in organically grown primitive, old and modern wheat genotypes: Implications for human health. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 751-758.	0.7	16
80	Heavy metal accumulation in vegetables grown in a long-term wastewater-irrigated agricultural land of tropical India. Environmental Monitoring and Assessment, 2012, 184, 6673-6682.	1.3	90
81	Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. Journal of Hazardous Materials, 2012, 227-228, 148-154.	6.5	188
82	Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation. Ecotoxicology and Environmental Safety, 2012, 76, 200-208.	2.9	63
83	Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicology and Environmental Safety, 2012, 81, 55-64.	2.9	280
84	Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria. Chemistry Central Journal, 2012, 6, 77.	2.6	135
85	Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. Journal of Environmental Sciences, 2012, 24, 1647-1654.	3.2	66
86	Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 2012, 69, 54-60.	0.6	209
87	Would Aluminum and Nickel Content of Apricot Pose Health Risk to Human?. Notulae Scientia Biologicae, 2012, 4, 91-94.	0.1	1
88	Metal Contamination in Market Based Vegetables in an Industrial Region, India. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 129-132.	1.3	7
89	Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environmental Monitoring and Assessment, 2012, 184, 3503-3513.	1.3	83
90	Can a Single and Unique Cu Soil Quality Standard be Valid for Different Mediterranean Agricultural Soils under an Accumulator Crop?. Water, Air, and Soil Pollution, 2012, 223, 1503-1517.	1.1	12

		CITATION R	EPORT	
#	ARTICLE	-76.22	IF	CITATIONS
91	Dietary intake of Cadmium from Bangladeshi Foods. Journal of Food Science, 2012, 77, 1	20-33.	1.5	42
92	Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated Beijing-Tianjin city cluster, China. Journal of Environmental Sciences, 2012, 24, 690-698.	area,	3.2	166
93	Role of living environments in the accumulation characteristics of heavy metals in fishes the Yangtze River Estuary, China. Marine Pollution Bulletin, 2012, 64, 1163-1171.	and crabs in	2.3	199
94	Risk–benefit evaluation of fish from Chinese markets: Nutrients and contaminants in 2 from five big cities and related assessment for human health. Science of the Total Enviro 416, 187-199.	4 fish species nment, 2012,	3.9	58
95	A human health risk assessment of mercury species in soil and food around compact fluc factories in Zhejiang Province, PR China. Journal of Hazardous Materials, 2012, 221-222,	prescent lamp 28-34.	6.5	50
96	An eco-sustainable green approach for heavy metals management: two case studies of d industrial region. Environmental Monitoring and Assessment, 2012, 184, 421-448.	eveloping	1.3	56
97	Mercury concentration in the muscle of seven fish species from Chagan Lake, Northeast Environmental Monitoring and Assessment, 2012, 184, 1299-1310.	China.	1.3	26
98	Potentially toxic contamination of sediments, water and two animal species in Lake Kalin Macedonia: Relevance to human health. Environmental Pollution, 2013, 180, 92-100.	nanci, FYR	3.7	42
99	Current views on EDDS use for ex situ washing of potentially toxic metal contaminated s in Environmental Science and Biotechnology, 2013, 12, 391-398.	oils. Reviews	3.9	28
100	Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation risk assessment. Environmental Science and Pollution Research, 2013, 20, 4484-4495.	and health	2.7	34
101	Human health risk assessment of heavy metals in soil–vegetable system: A multi-mediu Science of the Total Environment, 2013, 463-464, 530-540.	um analysis.	3.9	634
102	Residues of persistent organic pollutants in frequently-consumed vegetables and assess human health risk based on consumption of vegetables in Huizhou, South China. Chemo 93, 2254-2263.	nent of sphere, 2013,	4.2	35
103	Cadmium contamination in Tianjin agricultural soils and sediments: relative importance of atmospheric deposition from coal combustion. Environmental Geochemistry and Health, 405-416.	of 2013, 35,	1.8	15
104	Investigating the efficiency of constructed wetlands in the removal of heavy metals and pathogens from wastewater. Environmental Technology Reviews, 2013, 2, 1-16.	enteric	2.1	26
105	Differential accumulation of trace elements in ventral and dorsal muscle tissues in tilapia milkfish with different feeding habits from the same cultured fishery pond. Ecotoxicology Environmental Safety, 2013, 89, 222-230.	and y and	2.9	26
106	Distribution of environmentally sensitive elements in residential soils near a coal-fired po Potential risks to ecology and children's health. Chemosphere, 2013, 93, 2473-2479	wer plant: ·	4.2	74
107	Heavy metal pollution in coastal areas of South China: A review. Marine Pollution Bulletir 7-15.	ι, 2013, 76,	2.3	376
108	All the Lead in China. Critical Reviews in Environmental Science and Technology, 2013, 4	3, 1869-1944.	6.6	60

#	Article	IF	CITATIONS
109	Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicology and Environmental Safety, 2013, 93, 45-51.	2.9	148
110	The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environmental Science and Pollution Research, 2013, 20, 1181-1188.	2.7	39
111	Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China. Ecotoxicology and Environmental Safety, 2013, 90, 76-81.	2.9	48
112	Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environmental Monitoring and Assessment, 2013, 185, 1825-1831.	1.3	37
113	The Characters and Health Risk Assessment of Vegetable Pb in Jilin Suburb. Procedia Environmental Sciences, 2013, 18, 221-226.	1.3	10
114	Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere, 2013, 91, 455-461.	4.2	166
115	Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere, 2013, 90, 2142-2148.	4.2	82
116	Health risk from As contaminated fish consumption by population living around River Chenab, Pakistan. Environmental Toxicology and Pharmacology, 2013, 36, 579-587.	2.0	25
117	Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environmental Monitoring and Assessment, 2013, 185, 3867-3878.	1.3	220
118	Heavy metal concentration in sediment, benthic, benthopelagic, and pelagic fish species from Musa Estuary (Persian Gulf). Environmental Monitoring and Assessment, 2013, 185, 215-222.	1.3	86
119	Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environmental Monitoring and Assessment, 2013, 185, 3665-3680.	1.3	160
120	Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. Journal of Environmental Management, 2013, 129, 324-332.	3.8	51
121	Phytoremediation for Defending Heavy Metal Stress in Weed Flora. International Journal of Agriculture Environment and Biotechnology, 2013, 6, 647.	0.1	2
122	Health Risk Assessment of Pesticide Residues via Dietary Intake of Market Vegetables from Dhaka, Bangladesh. Foods, 2013, 2, 64-75.	1.9	20
123	Accumulation of Chromium in Pak Choi (<i>Brassica chinensis</i> L.) Grown on Representative Chinese Soils. Journal of Environmental Quality, 2013, 42, 758-765.	1.0	15
124	Assessment of radioactive pollution around a fertilizer factory complex in the North-Eastern part of Bangladesh. Radioprotection, 2013, 48, 575-591.	0.5	0
125	The Dynamic Growth Exhibition and Accumulation of Cadmium of Pak Choi (Brassica campestris L. ssp.) Tj ETQqC Health, 2013, 10, 5284-5298.	0 0 rgBT 1.2	Overlock 10 15

126 H Ka	leavy Metal Contamination in Green Leafy Vegetables Collected From Different Market Sites of athmandu and Their Associated Health Risks. Scientific World, 2013, 11, 37-42.	0.1	21
-------------	---	-----	----

#	Article	IF	CITATIONS
127	Multiple Exposure and Effects Assessment of Heavy Metals in the Population near Mining Area in South China. PLoS ONE, 2014, 9, e94484.	1.1	112
128	Phytoavailability of Cadmium (Cd) to Pak Choi (Brassica chinensis L.) Grown in Chinese Soils: A Model to Evaluate the Impact of Soil Cd Pollution on Potential Dietary Toxicity. PLoS ONE, 2014, 9, e111461.	1.1	49
129	Potential Human Health Risk by Metal(loid)s, 234,238U and 210Po due to Consumption of Fish from the "Luis L. Leon―Reservoir (Northern MA©xico). International Journal of Environmental Research and Public Health, 2014, 11, 6612-6638.	1.2	10
130	Changes of Heavy Metals in Pollutant Release and Transfer Registers (PRTRs) in Korea. International Journal of Environmental Research and Public Health, 2014, 11, 2381-2394.	1.2	5
131	Characteristics of a manganese-rich soil and metal accumulation in edible parts of plants in the region of Moanda, Gabon. African Journal of Agricultural Research Vol Pp, 2014, 9, 1952-1960.	0.2	0
132	Urban Market Gardening in Africa: Foliar Uptake of Metal(loid)s and Their Bioaccessibility in Vegetables; Implications in Terms of Health Risks. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	28
133	Spatial distribution of heavy metals in soil, water, and vegetables of farms in Sanandaj, Kurdistan, Iran. Journal of Environmental Health Science & Engineering, 2014, 12, 136.	1.4	48
134	Accumulation of Lead, Zinc, and Copper in Scalp Hair of Residents in a Long-Term Irrigation Area Downstream of the Second Songhua River, Northeast China. Human and Ecological Risk Assessment (HERA), 2014, 20, 137-149.	1.7	7
135	Heavy metal hazards of Nigerian smokeless tobacco. Tobacco Control, 2014, 23, 513-517.	1.8	13
136	Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (<i>Oryza sativa</i> L.) at the East Coast of India. BioMed Research International, 2014, 2014, 1-11.	0.9	122
137	The Health Risk Assessment and Characters of Vegetable Pb in Jiutai Suburb. Applied Mechanics and Materials, 0, 644-650, 5183-5187.	0.2	0
138	A survey on the heavy metal contents in Chinese traditional egg products and their potential health risk assessment. Food Additives and Contaminants: Part B Surveillance, 2014, 7, 99-105.	1.3	31
139	Human nail usage as a Bio-indicator in contamination monitoring of heavy metals in Dizajabaad, Zanjan province-Iran. Journal of Environmental Health Science & Engineering, 2014, 12, 147.	1.4	21
140	Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control, 2014, 36, 248-252.	2.8	142
141	Food survey: Levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food and Chemical Toxicology, 2014, 70, 48-53.	1.8	111
142	Lead in Chinese coals: distribution, modes of occurrence, and environmental effects. Environmental Geochemistry and Health, 2014, 36, 563-581.	1.8	49
143	Heavy Metals Bioconcentration from Soil to Vegetables and Assessment of Health Risk Caused by Their Ingestion. Biological Trace Element Research, 2014, 157, 256-265.	1.9	84
144	Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China. Environmental Monitoring and Assessment, 2014, 186, 2185-2194.	1.3	16

#	Article	IF	CITATIONS
145	A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant and Soil, 2014, 375, 289-301.	1.8	92
146	Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environmental Monitoring and Assessment, 2014, 186, 1547-1560.	1.3	305
147	Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety, 2014, 103, 101-107.	2.9	147
148	Development and validation of an analytical method for the determination of arsenic, cadmium and lead content in powdered infant formula by means of quadrupole Inductively Coupled Plasma Mass Spectrometry. Food Control, 2014, 44, 159-165.	2.8	37
149	Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Science of the Total Environment, 2014, 468-469, 654-662.	3.9	315
150	Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chemistry, 2014, 147, 147-151.	4.2	213
151	Exposure assessment of heavy metals (Cd, Hg, and Pb) by the intake of local foods from Zhejiang, China. Environmental Geochemistry and Health, 2014, 36, 765-771.	1.8	28
152	Uptake of heavy metals by some edible vegetables irrigated using wastewater: a preliminary study in Accra, Ghana. Environmental Monitoring and Assessment, 2014, 186, 621-634.	1.3	30
153	Arsenic and lead in foods: a potential threat to human health in Bangladesh. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1982-1992.	1.1	69
154	Environmental impact of some cement manufacturing plants in Saudi Arabia. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 1103-1117.	0.7	14
155	Pesticide residues in fruits and vegetables from Pakistan: a review of the occurrence and associated human health risks. Environmental Science and Pollution Research, 2014, 21, 13367-13393.	2.7	81
157	Cadmium–zinc exchange and their binary relationship in the structure of Zn-related proteins: a mini review. Metallomics, 2014, 6, 1313-1323.	1.0	70
158	Heavy Metals in Cereals and Pulses: Health Implications in Bangladesh. Journal of Agricultural and Food Chemistry, 2014, 62, 10828-10835.	2.4	79
159	Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Science of the Total Environment, 2014, 497-498, 448-458.	3.9	57
160	Heavy metals in jujubes and their potential health risks to the adult consumers in Xinjiang province, China. Environmental Monitoring and Assessment, 2014, 186, 6039-6046.	1.3	8
161	Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters. Food Additives and Contaminants: Part B Surveillance, 2014, 7, 213-219.	1.3	55
162	Concentration and health risk evaluation of heavy metals in market-sold vegetables and fishes based on questionnaires in Beijing, China. Environmental Science and Pollution Research, 2014, 21, 11401-11408.	2.7	21
163	Heavy metals in surface sediments from nine estuaries along the coast of Bohai Bay, Northern China. Marine Pollution Bulletin, 2014, 82, 194-200.	2.3	54

#	Article	IF	CITATIONS
164	Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China. , 2014, , 129-153.		3
165	5 Metal lons Affecting the Gastrointestinal System Including the Liver. , 2015, , 107-132.		0
166	Health risk assessment of heavy metals in water, air, soil and fish. African Journal of Pure and Applied Chemistry, 2015, 9, 204-210.	0.1	65
167	Growth and Heavy Metal Accumulation of Koelreuteria Paniculata Seedlings and Their Potential for Restoring Manganese Mine Wastelands in Hunan, China. International Journal of Environmental Research and Public Health, 2015, 12, 1726-1744.	1.2	9
168	Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China. International Journal of Environmental Research and Public Health, 2015, 12, 7100-7117.	1.2	92
169	Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks. International Journal of Environmental Research and Public Health, 2015, 12, 8811-8827.	1.2	48
170	Detection of Residual Levels and Associated Health Risk of Seven Pesticides in Fresh Eggplant and Tomato Samples from Narayanganj District, Bangladesh. Journal of Chemistry, 2015, 2015, 1-7.	0.9	14
171	Determination of Five Heavy Metals in White Yam (Dioscorea Rotundata) and Three- Leaved Yam (Dioscorea Dumetorum) from Farms in Khana, Rivers State. Environment and Pollution, 2015, 4, .	0.2	2
172	Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environmental Monitoring and Assessment, 2015, 187, 378.	1.3	62
173	Cadmium contamination of rice from various polluted areas of China and its potential risks to human health. Environmental Monitoring and Assessment, 2015, 187, 408.	1.3	73
174	Uptake of manganese, iron, copper, zinc and chromium by Amaranthus cruentus L. irrigated with untreated dye industrial effluent in low land field. Journal of Environmental Chemical Engineering, 2015, 3, 2875-2881.	3.3	5
175	Influence of airborne dust on the metal concentrations in crop plants cultivated in a rooftop garden in Seoul. Soil Science and Plant Nutrition, 2015, 61, 88-97.	0.8	21
176	Occurrence, distribution, and risk assessment of the metals in sediments and fish from the largest reservoir in China. RSC Advances, 2015, 5, 60322-60329.	1.7	22
177	Concentrations of Heavy Metals and Arsenic in Market Rice Grain and Their Potential Health Risks to the Population of Fuzhou, China. Human and Ecological Risk Assessment (HERA), 2015, 21, 117-128.	1.7	40
178	Wild Edible Vegetables of Lesser Himalayas. , 2015, , .		23
179	Distribution and bioaccumulation of heavy metals in food web of Nansi Lake, China. Environmental Earth Sciences, 2015, 73, 2429-2439.	1.3	31
180	Spatial uncertainty of joint health risk of multiple trace metals in rice grain in Jiaxing city, China. Environmental Sciences: Processes and Impacts, 2015, 17, 120-130.	1.7	5
181	Combining spatial distribution with oral bioaccessibility of metals in smelter-impacted soils: implications for human health risk assessment. Environmental Geochemistry and Health, 2015, 37, 49-62.	1.8	14

#	Article	IF	CITATIONS
182	Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environmental Geochemistry and Health, 2015, 37, 287-304.	1.8	53
183	Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius) Tj ETQq1 1 0.7843 Chemosphere, 2015, 128, 284-292.	14 rgBT /C 4.2)verlock 10 165
184	The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 2015, 22, 13772-13799.	2.7	600
185	Determination of mercury and vanadium concentration in Johnius belangerii (C) fish in Musa estuary in Persian Gulf. Marine Pollution Bulletin, 2015, 97, 499-505.	2.3	30
186	Elemental and Isotopic Mass Spectrometry. Comprehensive Analytical Chemistry, 2015, 68, 131-243.	0.7	28
187	Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environmental Monitoring and Assessment, 2015, 187, 410.	1.3	51
188	Health Risks of Heavy Metals Uptake by Crops Grown in a Sewage Irrigation Area in China. Polish Journal of Environmental Studies, 2015, 24, 1379-1386.	0.6	29
189	Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans. Environmental Science and Pollution Research, 2015, 22, 15449-15458.	2.7	66
190	Bioconcentration Factors and Potential Human Health Risks of Heavy Metals in Cultivated Lentinus edodes in Chengdu, People's Republic of China. Journal of Food Protection, 2015, 78, 390-395.	0.8	9
191	Risk assessment of heavy metals in air, water, vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin, China. Environmental Science and Pollution Research, 2015, 22, 7794-7807.	2.7	49
192	Immobilization of copper, lead, and nickel in two arid soils amended with biosolids: effect of drinking water treatment residuals. Journal of Soils and Sediments, 2015, 15, 1937-1946.	1.5	29
193	Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environmental Monitoring and Assessment, 2015, 187, 326.	1.3	89
194	Lead in soil and agricultural products in the Huainan Coal Mining Area, Anhui, China: levels, distribution, and health implications. Environmental Monitoring and Assessment, 2015, 187, 152.	1.3	33
195	Risk Evaluation of Heavy Metals and Metalloids Toxicity through Polluted Vegetables from Waste Water Irrigated Area of Punjab, Pakistan: Implications for Public Health. Human and Ecological Risk Assessment (HERA), 2015, 21, 2062-2076.	1.7	7
196	Health risk assessment of heavy metals through consumption of vegetables irrigated with reclaimed urban wastewater in Algeria. Chemical Engineering Research and Design, 2015, 98, 245-252.	2.7	69
197	Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology, 2015, 24, 2115-2124.	1.1	64
198	Health risk assessment of metals in food crops and related soils amended with biogas slurry in Taihu Basin: perspective from field experiment. Environmental Science and Pollution Research, 2015, 22, 14358-14366.	2.7	17
199	Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Science of the Total Environment, 2015, 508, 29-36.	3.9	64

#	Article	IF	CITATIONS
200	Evaluation and Potential Health Hazard of Selected Metals in Water, Sediments, and Fish from the Gomti River. Human and Ecological Risk Assessment (HERA), 2015, 21, 227-240.	1.7	40
201	Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicology and Environmental Safety, 2015, 112, 122-131.	2.9	84
202	Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and Environmental Safety, 2015, 111, 160-167.	2.9	160
203	Determination of 28 trace elements in three farmed cyprinid fish species from Northeast China. Food Control, 2015, 50, 1-8.	2.8	79
204	The Lusitanian toadfish as bioindicator of estuarine sediment metal burden: The influence of gender and reproductive metabolism. Ecological Indicators, 2015, 48, 370-379.	2.6	8
205	Determination of Heavy Metals in Fish and Vegetables in Bangladesh and Health Implications. Human and Ecological Risk Assessment (HERA), 2015, 21, 986-1006.	1.7	106
206	Human health risk and ecological risk assessment of metals in fishes, shrimps and sediment from a tropical river. International Journal of Environmental Science and Technology, 2015, 12, 2349-2362.	1.8	36
207	Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 2015, 148, 71-78.	1.5	242
208	Target hazard quotient evaluation of cadmium and lead in fish from Caspian Sea. Toxicology and Industrial Health, 2016, 32, 215-220.	0.6	14
209	Potential human health risk assessment of heavy metals intake via consumption of some leafy vegetables obtained from four market in Lagos Metropolis, Nigeria. Journal of Applied Sciences and Environmental Management, 2016, 20, 530.	0.1	11
210	Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. International Journal of Environmental Research and Public Health, 2016, 13, 289.	1.2	298
211	Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 2016, 13, 663.	1.2	331
212	Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications. International Journal of Environmental Research and Public Health, 2016, 13, 820.	1.2	31
213	The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China. International Journal of Environmental Research and Public Health, 2016, 13, 832.	1.2	41
214	Modelling the kinetics of hexavalent molybdenum (Mo6+) reduction by the Serratia sp. strain MIE2 in batch culture. Rendiconti Lincei, 2016, 27, 653-663.	1.0	3
215	Health Risk Assessment of Heavy Metals in Irrigated Agricultural Crops, Elâ€ S aff Wastewater Canal, Egypt. Clean - Soil, Air, Water, 2016, 44, 1174-1183.	0.7	14
216	Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific Reports, 2016, 6, 20317.	1.6	78
217	Metal residues in flesh of edible blue crab, <i>Callinectes amnicola</i> , from a tropical coastal lagoon: Health implications. Human and Ecological Risk Assessment (HERA), 2016, 22, 1708-1725.	1.7	12

#	Article	IF	CITATIONS
218	Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 232-243.	1.1	27
219	Accumulation of Heavy Metals in Potatoes Grown on Calcareous Soils of the Hamedan, Western Iran. Soil and Sediment Contamination, 2016, 25, 365-377.	1.1	8
220	Accumulation of toxic metals in fish raised from sewage-fed aquaculture and estimated health risks associated with their consumption. Cogent Environmental Science, 2016, 2, 1190116.	1.6	15
221	Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China. Environmental Science and Pollution Research, 2016, 23, 9082-9092.	2.7	15
222	Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosa) Tj ETQqO	0.0 rgBT	Overlock 10
223	Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environmental Science and Pollution Research, 2016, 23, 13954-13963.	2.7	55
	Assessment of essential and nonessential dietary exposure to trace elements from homegrown		

224	Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the KoÄani region (FYRM). Science of the Total Environment, 2016, 559, 204-211.	3.9	12
225	Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems. Science of the Total Environment, 2016, 560-561, 204-211.	3.9	56
226	Health risk assessment due to heavy metal exposure from commonly consumed fish and vegetables. Environment Systems and Decisions, 2016, 36, 253-265.	1.9	59
227	Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages. Environmental Monitoring and Assessment, 2016, 188, 291.	1.3	2
228	Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agricultural Water Management, 2016, 171, 153-161.	2.4	142
229	Exposure, Toxicity, Health Impacts, and Bioavailability of Heavy Metal Mixtures. Advances in Agronomy, 2016, , 175-234.	2.4	42
230	Leachate and Surface Water Characterization and Heavy Metal Health Risk on Cockles in Kuala Selangor. Procedia, Social and Behavioral Sciences, 2016, 222, 263-271.	0.5	21
231	Vortex-assisted ionic liquid-based dispersive liquid–liquid microextraction for assessment of chromium species in artificial saliva extract of different chewing tobacco products. Environmental Science and Pollution Research, 2016, 23, 25288-25298.	2.7	20
232	Heavy metals in tissues of scorpionfish (Scorpaena porcus) caught from Black Sea (Turkey) and potential risks to human health. Environmental Science and Pollution Research, 2016, 23, 20882-20892.	2.7	28
233	Toxic Metal Pollution in Pakistan and Its Possible Risks to Public Health. Reviews of Environmental Contamination and Toxicology, 2016, 242, 1-60.	0.7	35
234	Heavy metal content and potential health risk of geophagic white clay from the Kumasi Metropolis in Ghana. Toxicology Reports, 2016, 3, 644-651.	1.6	35
235	Methylmercury and Total Mercury in Eels, Anguilla anguilla, from Lakes in Northeastern Poland: Health Risk Assessment. EcoHealth, 2016, 13, 582-590.	0.9	9

ARTICLE IF CITATIONS Assessing the concentration and potential health risk of heavy metals in China's main deciduous 236 1.7 24 fruits. Journal of Integrative Agriculture, 2016, 15, 1645-1655. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood 1.6 safety. Scientific Reports, 2016, 6, 20197. Probabilistic ecological risk assessment of heavy metals in sediments from China's major aquatic 238 1.9 44 bodies. Stochastic Environmental Research and Risk Assessment, 2016, 30, 271-282. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish. Environmental Science and Pollution Research, 2016, 2.7 23, 7195-7203. Mercury Fractionation in Superficial Sediment and Paddy Soil Samples from Tianjin, Northern China. 240 1.35 Bulletin of Environmental Contamination and Toxicology, 2016, 97, 225-231. Mercury bioaccumulation by Suillus bovinus mushroom and probable dietary intake with the mushroom meal. Environmental Science and Pollution Research, 2016, 23, 14549-14559. Bioaccumulation of Trace Metals in Selected Plants within Amin Bazar Landfill Site, Dhaka, 242 1.7 20 Bangladesh. Environmental Processes, 2016, 3, 179-194. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. SpringerPlus, 2016, 5, 1.2 397. Seafood consumption among Chinese coastal residents and health risk assessment of heavy metals in 244 2.7 40 seafood. Environmental Science and Pollution Research, 2016, 23, 16834-16844. Risk Assessment of Some Selected Vegetables Grown in Metal Contaminated Soil Supplements. 245 0.4 Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2016, 86, 585-593. Major and minor element contents of calabash clay (nzu) from Abia State, Nigeria: evaluation of 246 2 0.6 potential intake benefits and risks. Toxicological and Environmental Chemistry, 2016, 98, 149-166. Health risk assessment of trace elements via dietary intake of †non-piscine protein source' foodstuffs 2.7 98 (meat, milk and egg) in Bangladesh. Environmental Science and Pollution Research, 2016, 23, 7794-7806. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy 248 metal/metalloid contaminated soil using pakchoi. Ecotoxicology and Environmental Safety, 2016, 124, 2.9 33 239-247. Risk assessment of heavy metal and metalloid toxicity through a contaminated vegetable (Cucurbita) Tj ETQq1 1 0.784314 rgBT /Ove 249 1.7 24 Pakistan. Human and Ecological Risk Assessment (HERA), 2016, 22, 86-98. Health risk assessment of hazardous metals for population via consumption of seafood from Ogoniland, Rivers State, Nigeria; a case study of Kaa, B-Dere, and Bodo City. Environmental Monitoring 250 1.3 51 and Assessment, 2016, 188, 9. Bioaccessibility of heavy metals in vegetables and its association with the physicochemical characteristics. Environmental Science and Pollution Research, 2016, 23, 5335-5341. Risk assessment of heavy metals contamination in sediment and aquatic animals in downstream waters 252 affected by historical gold extraction in Northeast China. Human and Ecological Risk Assessment 1.7 20 (HERA), 2016, 22, 693-705. Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. 4.2 Chemosphere, 2016, 152, 431-438.

#	Article	IF	CITATIONS
254	Reliability of stable Pb isotopes to identify Pb sources and verifying biological fractionation of Pb isotopes in goats and chickens. Environmental Pollution, 2016, 208, 395-403.	3.7	28
255	Apportionment of heavy metals in soil and vegetables and associated health risks assessment. Stochastic Environmental Research and Risk Assessment, 2016, 30, 365-377.	1.9	69
256	Risk assessment of heavy metals via consumption of vegetables collected from different supermarkets in La Rochelle, France. Environmental Monitoring and Assessment, 2016, 188, 136.	1.3	32
257	Trace elements in farmed fish (<i>Cyprinus carpio, Ctenopharyngodon idella</i> and <i>Oncorhynchus) Tj ETQq1 2016, 9, 132-141.</i>	l 0.78431 1.3	4 rgBT /Ove 22
258	Reduction of Cr(VI) utilizing biogenic sulfide: an experimental and mathematical modeling approach. Desalination and Water Treatment, 2016, 57, 13056-13065.	1.0	8
259	The importance of evaluating metal exposure and predicting human health risks in urban–periurban environments influenced by emerging industry. Chemosphere, 2016, 150, 79-89.	4.2	83
260	Health risk assessment of heavy metals and metalloids via dietary intake of a potential vegetable (<i>Coriandrum sativum</i> L.) grown in contaminated water irrigated agricultural sites of Sargodha, Pakistan. Human and Ecological Risk Assessment (HERA), 2016, 22, 597-610.	1.7	38
261	A content analysis of Internet resources about the risks of seafood consumption. International Journal of Environmental Health Research, 2016, 26, 433-447.	1.3	4
262	Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Environmental Geochemistry and Health, 2016, 38, 1283-1301.	1.8	90
263	Seasonal Variations and Health Risk of Heavy Metals in the Muscle of Crucian Carp (Carassius) Tj ETQq1 1 0.7843 79-91.	814 rgBT 2.8	Overlock 10 9
264	Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences, 2016, 116, 182-189.	0.9	126
265	Concentrations and health risk assessment of trace elements in animal-derived food in southern China. Chemosphere, 2016, 144, 564-570.	4.2	43
266	Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. Journal of Hazardous Materials, 2016, 301, 145-152.	6.5	162
267	Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environmental Science and Pollution Research, 2016, 23, 6062-6073.	2.7	117
268	Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena, 2017, 148, 92-100.	2.2	128
269	Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh. Archives of Environmental and Occupational Health, 2017, 72, 26-38.	0.7	33
270	Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Science of the Total Environment, 2017, 583, 421-431.	3.9	330
271	Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous â€~Ganges' in field trials. Environmental Science and Pollution Research, 2017, 24, 8176-8188.	2.7	30

#	Article	IF	CITATIONS
272	Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environmental Science and Pollution Research, 2017, 24, 6532-6542.	2.7	27
273	Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere, 2017, 174, 613-627.	4.2	84
274	Study on preferential adsorption of cationic-style heavy metals using amine-functionalized magnetic iron oxide nanoparticles (MIONPs-NH 2) as efficient adsorbents. Applied Surface Science, 2017, 407, 29-35.	3.1	38
275	Spatial distribution, sources and ecological risk assessment of heavy metals in Shenjia River watershed of the Three Gorges Reservoir Area. Journal of Mountain Science, 2017, 14, 325-335.	0.8	10
276	Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. Science of the Total Environment, 2017, 584-585, 942-949.	3.9	35
277	Using amine-functionalized magnetite hollow nanospheres (AMHNs) as adsorbents for heavy metal ions. Water Science and Technology, 2017, 76, 452-458.	1.2	2
278	Heavy metals levels in shellfish from Bodo City and B-Dere, Ogoniland, Rivers State, Nigeria, and evaluation of possible health risks to consumers. Sustainable Water Resources Management, 2017, 3, 83-91.	1.0	10
279	Metals contamination in sediment and their bioaccumulation in plants and three fish species from freshwater ecosystem. Toxin Reviews, 2017, 36, 297-305.	1.5	16
280	Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environmental Science and Pollution Research, 2017, 24, 14945-14956.	2.7	46
281	Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Scientific Reports, 2017, 7, 46545.	1.6	132
282	Methylmercury in fish species used in preparing sashimi: A case study in Brazil. Food Control, 2017, 80, 104-112.	2.8	8
283	Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Caraharinus) Tj ETQq1 1	0.78431	4 rgBT /Ove
284	Arsenic in vegetables poses a health risk in the vicinity of a mining area in the southern Hunan Province, China. Human and Ecological Risk Assessment (HERA), 2017, 23, 1315-1329.	1.7	17
285	Uptake of hazardous elements by spring onion (Allium fistulosum L.) from soil irrigated with different types of water and possible health risk. Environmental Earth Sciences, 2017, 76, 1.	1.3	7
286	Heavy Metals in the Blue Crab (Callinectes sapidus) in Mersin Bay, Turkey. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 824-829.	1.3	43
287	Heavy metal and arsenic concentrations in rainbow trout (Oncorhynchus mykiss) farmed in a dam reservoir on the Firat (Euphrates) River: Risk-based consumption advisories. Science of the Total Environment, 2017, 599-600, 1288-1296.	3.9	126
288	Ecological Risk Evaluation of Biological and Geochemical Trace Metals in Okrika Estuary. International Journal of Environmental Research, 2017, 11, 149-173.	1.1	7
289	Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicology and Environmental Safety, 2017, 144, 236-244.	2.9	48

#	Article	IF	CITATIONS
290	Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment, 2017, 601-602, 1591-1605.	3.9	430
291	Distribution of Dissolved, Suspended, and Sedimentary Heavy Metals along a Salinized River Continuum. Journal of Coastal Research, 2017, 335, 1189-1195.	0.1	11
292	The origin, historical variations, and distribution of heavy metals in the Qiongzhou Strait and nearby marine areas. Journal of Ocean University of China, 2017, 16, 262-268.	0.6	5
293	Ecological and human health risk assessment of agricultural soils based on heavy metals in mining areas of Singhbhum copper belt, India. Human and Ecological Risk Assessment (HERA), 2017, 23, 1008-1027.	1.7	27
294	Evaluation of Green Waste and Popular Twigs Biochar Produced at Low and High Pyrolytic Temperature for Efficient Removal of Metals from Water. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	3
295	Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicology Reports, 2017, 4, 574-579.	1.6	138
296	Accumulation and health risk assessment of trace elements in Carassius auratus gibelio from subsidence pools in the Huainan coalfield in China. Environmental Monitoring and Assessment, 2017, 189, 479.	1.3	5
297	Investigating the uptake and acquisition of potentially toxic elements in plants and health risks associated with the addition of fresh biowaste amendments to industrially contaminated soil. Land Degradation and Development, 2017, 28, 2596-2607.	1.8	30
298	Heavy Metal Contamination in Fish (Callinectis amnicola) From an Estuarine Creek in the Niger Delta, Nigeria and Health Risk Evaluation. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 506-510.	1.3	17
299	Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria: Health risk assessment. Environmental Technology and Innovation, 2017, 8, 164-171.	3.0	5
300	Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (<i>Oryza sativa</i>) from Iran and associated risk assessment: a systematic review. Toxin Reviews, 2017, 36, 331-341.	1.5	115
301	An epidemiological approach to characterise the human exposure pathways in a contaminated estuarine environment. Science of the Total Environment, 2017, 601-602, 1753-1761.	3.9	3
302	Public health risk of mercury in China through consumption of vegetables, a modelling study. Environmental Research, 2017, 159, 152-157.	3.7	21
303	Elemental Analysis and Metal Intake of Romanian Vegetables. Analytical Letters, 2017, 50, 2755-2771.	1.0	4
304	Bioaccessibility and risk assessment of essential and non-essential elements in vegetables commonly consumed in Swaziland. Ecotoxicology and Environmental Safety, 2017, 144, 396-401.	2.9	18
305	Trace Metals in Phosphate Fertilizers Used in Eastern Mediterranean Countries. Clean - Soil, Air, Water, 2017, 45, .	0.7	33
306	Determination of nickel and thallium concentration in Cynoglossus arel fish in Musa estuary, Persian Gulf, Iran. Environmental Science and Pollution Research, 2017, 24, 2936-2945.	2.7	15
307	Health risk assessment of heavy metals in wheat using different water qualities: implication for human health. Environmental Science and Pollution Research, 2017, 24, 947-955.	2.7	49

#	Article	IF	CITATIONS
308	Trace metal pollution and carbon and nitrogen isotope tracing through the Yongdingxin River estuary in Bohai Bay, Northern China. Marine Pollution Bulletin, 2017, 115, 451-458.	2.3	13
309	Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environmental Geochemistry and Health, 2017, 39, 565-589.	1.8	55
310	Distribution and risk assessment of trace metals in <i>Leptodius exarata</i> , surface water and sediments from Douglas Creek in the Qua Iboe Estuary. Journal of Taibah University for Science, 2017, 11, 434-449.	1.1	31
311	Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health?. Microchemical Journal, 2017, 130, 236-244.	2.3	93
312	Potential health risk assessment of potato (Solanum tuberosum L.) grown on metal contaminated soils in the central zone of Punjab, Pakistan. Chemosphere, 2017, 166, 157-162.	4.2	26
313	Evaluation of Concentrations and Human Health Risk of Cu, Zn, Fe in Two Periwinkles Species from Three Local Government Areas, Bayelsa State, Nigeria Journal of Applied Sciences and Environmental Management, 2017, 21, 323.	0.1	0
314	Zn, Pb, Cr and Cd concentrations in fish, water and sediment from the Azuabie Creek, Port Harcourt. Journal of Applied Sciences and Environmental Management, 2017, 21, 87.	0.1	3
315	Assessment of Typical Heavy Metals in Human Hair of Different Age Groups and Foodstuffs in Beijing, China. International Journal of Environmental Research and Public Health, 2017, 14, 914.	1.2	55
316	Chemical sensors based onÂhybrid nanomaterials for food analysis. , 2017, , 205-244.		12
317	Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria. Journal of Environmental and Public Health, 2017, 2017, 1-12.	0.4	43
318	Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. Journal of Healthcare Engineering, 2017, 2017, 1-9.	1.1	103
319	Metal Exposure and Associated Health Risk to Human Beings by Street Dust in a Heavily Industrialized City of Hunan Province, Central China. International Journal of Environmental Research and Public Health, 2017, 14, 261.	1.2	27
320	Evaluation of Heavy Metals Content and Human Health Risk Assessment via Consumption of Vegetables from Selected Markets in Bayelsa State, Nigeria. Biochemistry and Analytical Biochemistry: Current Research, 2017, 06, .	0.4	16
321	Health Risk Assessment of Trace Metals in Various Environmental Media, Crops and Human Hair from a Mining Affected Area. International Journal of Environmental Research and Public Health, 2017, 14, 1595.	1.2	37
322	Arsenic, cadmium, lead and chromium concentrations in irrigated and rain-fed rice and their dietary intake implications. Australian Journal of Crop Science, 2017, , 806-812.	0.1	21
323	Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana. Environmental Health and Toxicology, 2017, 32, e2017018.	1.8	18
324	Investigation of possible human exposure to metals concentration in vegetables. Journal of Toxicology and Environmental Health Sciences, 2017, 9, 66-72.	0.6	4
325	Reclaimed Water Irrigation Effect on Agricultural Soil and Maize (<i>Zea mays L</i> .) in Northern China. Clean - Soil, Air, Water, 2018, 46, 1800037.	0.7	8

#	Article	IF	CITATIONS
326	Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicology and Environmental Safety, 2018, 158, 204-212.	2.9	59
~~~	Seasonal variation of heavy metals in water, sediment, and highly consumed cultured fish (Labeo) Tj ETQq1 1 0.7	84314 rg	BT /Overlock
327	Dhanbad (India). Environmental Science and Pollution Research, 2018, 25, 12464-12480.	2.7	55
328	Evaluation of heavy metals uptake by wheat growing in sewage water irrigated soil. Human and Ecological Risk Assessment (HERA), 2018, 24, 1409-1420.	1.7	13
329	Content and health risk assessment of selected elements in commercially available fish and fish products. Human and Ecological Risk Assessment (HERA), 2018, 24, 1623-1641.	1.7	6
330	Health risk assessment of instant noodles commonly consumed in Port Harcourt, Nigeria. Environmental Science and Pollution Research, 2018, 25, 2580-2587.	2.7	22
331	Soil mercury speciation and accumulation in rice (Oryza sativa L.) grown in wastewater-irrigated farms. Applied Geochemistry, 2018, 89, 202-209.	1.4	15
332	Heavy metal contamination in the muscle of Aegean chub (Squalius fellowesii) and potential risk assessment. Environmental Science and Pollution Research, 2018, 25, 6928-6936.	2.7	12
333	Levels, temporal trend and health risk assessment of five heavy metals in fresh vegetables marketed in Guangdong Province of China during 2014–2017. Food Control, 2018, 92, 107-120.	2.8	38
334	Phthalate esters distribution in coastal mariculture of Hong Kong, China. Environmental Science and Pollution Research, 2018, 25, 17321-17329.	2.7	16
335	Metal accumulation in Raphanus sativus and Brassica rapa: an assessment of potential health risk for inhabitants in Punjab, Pakistan. Environmental Science and Pollution Research, 2018, 25, 16676-16685.	2.7	17
336	Distribution of radionuclides and heavy metals in the bituminous sand deposit in Ogun State, Nigeria – A multi-dimensional pollution, health and radiological risk assessment. Journal of Geochemical Exploration, 2018, 190, 187-199.	1.5	42
337	Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 2018, 115, 205-219.	4.8	241
338	The accumulation characteristics and potential health risks of heavy metals in vegetables from reclaimed area of China. Human and Ecological Risk Assessment (HERA), 2018, 24, 949-960.	1.7	7
339	Potential health risks due to heavy metal uptake via consumption of <i>Thunnus thynnus</i> from the northern Levantine Sea. Toxin Reviews, 2018, 37, 56-61.	1.5	8
340	Assessment of bioavailability and human health exposure risk to heavy metals in surface soils (Klang) Tj ETQq0 0	0 rgBT /Ov	verlgck 10 Tf
341	Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids. Advanced Structured Materials, 2018, , 73-95.	0.3	2
342	Investigation of Heavy Metal Hazards Status and Their Potential Health Risks in Vegetables Irrigated with Treated Wastewater in Oodi Gardens. , 2018, , 57-67.		2
343	Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste. Research on Chemical Intermediates, 2018, 44, 135-154.	1.3	63

#	Article	IF	CITATIONS
344	In Situ Synthesized Hydroxyapatite—Cellulose Nanofibrils as Biosorbents for Heavy Metal Ions Removal. Journal of Polymers and the Environment, 2018, 26, 2130-2141.	2.4	38
345	Concentrations and Exposure Evaluation of Metals in Diverse Food Items from Chengdu, China. Archives of Environmental Contamination and Toxicology, 2018, 74, 131-139.	2.1	13
346	Heavy metal contamination and health risk assessment in Critical Zone of Luan River Catchment in the North China Plain. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 47-57.	0.5	4
347	Heavy metal distribution in Tiaoxi River's sediment. Environmental Science and Pollution Research, 2018, 25, 2603-2613.	2.7	11
348	Risk assessment of heavy metals pollution at Zagazig University, Zagazig, Egypt. International Journal of Environmental Science and Technology, 2018, 15, 1393-1410.	1.8	5
349	The Impact of Soil and Water Conservation on Agricultural Economic Growth and Rural Poverty Reduction in China. Sustainability, 2018, 10, 4444.	1.6	13
350	Health Risk from the Consumption of Freshwater Prawn and Crab Exposed to Heavy Metals in a Tropical River, Southern Nigeria. Journal of Heavy Metal Toxicity and Diseases, 2018, 03, .	1.4	7
351	Heavy Metals in Selected Vegetables from Markets of Faisalabad, Pakistan. Journal of Food Protection, 2018, 81, 806-809.	0.8	7
352	Characterization of chemical elements in common spices of Bangladesh for dietary intake and possible health risk assessment by INAA and AAS techniques. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1347-1357.	0.7	22
353	Multivariate linear regression model for source apportionment and health risk assessment of heavy metals from different environmental media. Ecotoxicology and Environmental Safety, 2018, 165, 555-563.	2.9	33
354	Trace metals, organic carbon and nutrients in the Beidagang Wetland Nature Reserve, northern China. PLoS ONE, 2018, 13, e0204812.	1.1	3
355	Assessment of Trace Metal and Metalloid Accumulation and Human Health Risk from Vegetables Consumption through Spinach and Coriander Specimens Irrigated with Wastewater. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 787-795.	1.3	40
356	Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: their potential health risk to the general population in Shiraz, Iran. Environmental Monitoring and Assessment, 2018, 190, 650.	1.3	29
357	Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. International Journal of Environmental Research and Public Health, 2018, 15, 2281.	1.2	62
358	Effect of distillery spentwash fertigation on crop growth, yield, and accumulation of potentially toxic elements in rice. Environmental Science and Pollution Research, 2018, 25, 31113-31124.	2.7	5
359	Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. International Journal of Food Contamination, 2018, 5, .	2.2	83
360	Quantitative assessment of heavy metal effects on sperm function using computer-aided sperm analysis and cytotoxicity assays. Andrologia, 2018, 50, e13141.	1.0	23
361	Heavy metal contamination of some vegetables from pesticides and the potential health risk in Bauchi, northern Nigeria. AFRREV STECH an International Journal of Science and Technology, 2018, 7, 1-11.	0.1	7

#	Article	IF	CITATIONS
362	Tracking pollutants in dietary fish oil: From ocean to table. Environmental Pollution, 2018, 240, 733-744.	3.7	21
363	Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. International Journal of Phytoremediation, 2018, 20, 839-846.	1.7	25
364	Source identification and spatial distribution of metals in soils in a typical area of the lower Yellow River, eastern China. Environmental Science and Pollution Research, 2018, 25, 21106-21117.	2.7	10
365	A causation-based method developed for an integrated risk assessment of heavy metals in soil. Science of the Total Environment, 2018, 642, 1396-1405.	3.9	12
366	Levels and Health Risk Assessment of Heavy Metals in Soil, Water, and Vegetables of Dar es Salaam, Tanzania. Journal of Chemistry, 2018, 2018, 1-9.	0.9	98
367	Assessment of trace metals contamination in surficial sediments along Lebanese Coastal Zone. Marine Pollution Bulletin, 2018, 133, 881-890.	2.3	21
368	Regional risk assessment of trace elements in farmland soils associated with improper e-waste recycling activities in Southern China. Journal of Geochemical Exploration, 2018, 192, 112-119.	1.5	18
369	Concentrations, dietary exposure, and human health risk assessment of heavy metals in market vegetables of Peshawar, Pakistan. Environmental Monitoring and Assessment, 2018, 190, 505.	1.3	26
370	Determination of levels of some metal contaminants in the freshwater environments of Osun State, Southwest Nigeria: A risk assessment approach to predict health threat. Chemosphere, 2018, 211, 834-843.	4.2	48
371	Potentially Toxic Elements and Health Risk Assessment in Farmland Systems around High-Concentrated Arsenic Coal Mining in Xingren, China. Journal of Chemistry, 2018, 2018, 1-10.	0.9	11
372	Trace Elements in Soils and Selected Agricultural Plants in the Tongling Mining Area of China. International Journal of Environmental Research and Public Health, 2018, 15, 202.	1.2	49
373	Irrigation with Treated Municipal Wastewater on Artichoke Crop: Assessment of Soil and Yield Heavy Metal Content and Human Risk. Water (Switzerland), 2018, 10, 255.	1.2	30
374	Potentially toxic elements in freshwater (Alburnus spp.) and marine (Sardina pilchardus) sardines from the Western Balkan Peninsula: An assessment of human health risk and management. Science of the Total Environment, 2018, 644, 899-906.	3.9	10
375	Bioaccumulation of As, Hg, and Se in tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific: tissue distribution and As speciation. Environmental Science and Pollution Research, 2018, 25, 19499-19509.	2.7	21
376	The impact of strain and feed intake on egg toxic trace elements deposition in laying hens and its health risk assessment. Environmental Monitoring and Assessment, 2018, 190, 540.	1.3	8
377	Effect of <i>Glomus mosseae</i> on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal(loid) Stress. International Journal of Phytoremediation, 2018, 20, 885-894.	1.7	25
378	Risk of heavy metal ingestion from the consumption of two commercially valuable species of fish from the fresh and coastal waters of Ghana. PLoS ONE, 2018, 13, e0194682.	1.1	57
379	Human health risk assessment of heavy metals in soils and commonly consumed food crops from quarry sites located at Isiagwu, Ebonyi State. Analele UniversitÄfÈ>ii Ovidius ConstanÈ>a: Seria Chimie, 2018, 29, 8-24.	0.2	34

#	Article	IF	CITATIONS
380	Assessment of heavy metals pollution of soybean grains in North Anhui of China. Science of the Total Environment, 2019, 646, 914-922.	3.9	49
381	Effect of biochar on the nutrient contents and metal recovery efficiency in sorghum planted on landfill soils. International Journal of Environmental Science and Technology, 2019, 16, 2259-2270.	1.8	9
382	Bioaccumulation of heavy metals in local edible plants near a municipal landfill and the related human health risk assessment. Human and Ecological Risk Assessment (HERA), 2019, 25, 1760-1772.	1.7	8
383	Assessment of Potential Heavy Metal Contamination in the Peri-urban Agricultural Soils of 31 Provincial Capital Cities in China. Environmental Management, 2019, 64, 366-380.	1.2	23
384	Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model – Comparison of calculated human health risk from raw, cooked and digested rice. Food Chemistry, 2019, 299, 125126.	4.2	65
385	Human health risk from consumption of two common crops grown in polluted soils. Science of the Total Environment, 2019, 691, 195-204.	3.9	25
386	Hydrogeochemical characteristics, source identification and health risks of surface water and groundwater in mining and non-mining areas of Handan, China. Environmental Earth Sciences, 2019, 78, 1.	1.3	20
387	Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 2019, 6, 1642-1651.	0.7	257
388	Arsenic accumulation in edible vegetables and health risk reduction by groundwater treatment using an adsorption process. Environmental Science and Pollution Research, 2019, 26, 32505-32516.	2.7	6
389	Differences in cadmium absorption by 71 leaf vegetable varieties from different families and genera and their health risk assessment. Ecotoxicology and Environmental Safety, 2019, 184, 109593.	2.9	26
390	Transcriptome profiling analysis of the seagrass, Zostera muelleri under copper stress. Marine Pollution Bulletin, 2019, 149, 110556.	2.3	5
391	Heavy metals occurrence, assessment and distribution in water resources of the lead–zinc mining areas of Abakaliki, Southeastern Nigeria. International Journal of Environmental Science and Technology, 2019, 16, 8617-8638.	1.8	15
392	Modelling cadmium bioaccumulation in <i>Gammarus pulex</i> by using experimental design approach. Chemistry and Ecology, 2019, 35, 922-936.	0.6	1
393	Risk of Metal Contamination in Agriculture Crops by Reuse of Wastewater: An Ecological and Human Health Risk Perspective. , 2019, , 55-79.		6
394	Heavy Metal Residues in Some Fishes from Manzala Lake, Egypt, and Their Healthâ€Risk Assessment. Journal of Food Science, 2019, 84, 1957-1965.	1.5	30
395	Evaluation of toxic potential of metals in wheat crop grown in wastewater-contaminated soil in Punjab, Pakistan. Environmental Science and Pollution Research, 2019, 26, 24958-24966.	2.7	10
396	Exposure assessment of heavy metal residues in some Egyptian fruits. Toxicology Reports, 2019, 6, 538-543.	1.6	37
397	Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China. Environmental Monitoring and Assessment, 2019, 191, 428.	1.3	21

#	Article	IF	CITATIONS
398	Metal Contamination in Seven Tributaries of the Ganga River and Assessment of Human Health Risk from Fish Consumption. Archives of Environmental Contamination and Toxicology, 2019, 77, 263-278.	2.1	20
399	Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in wild marine fish from the coastal waters of the northern South China Sea: Risk assessment for human health. Ecotoxicology and Environmental Safety, 2019, 180, 742-748.	2.9	72
400	Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Science of the Total Environment, 2019, 686, 476-483.	3.9	73
401	Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 2019, 180, 43-52.	2.9	143
402	Heavy metal content and health risk assessment of commonly patronized herbal medicinal preparations from the Kumasi metropolis of Ghana. Journal of Environmental Health Science & Engineering, 2019, 17, 609-618.	1.4	24
403	Biota-sediment metal accumulation and human health risk assessment of freshwater bivalve Corbicula fluminea in Dongting Lake, China. Environmental Science and Pollution Research, 2019, 26, 14951-14961.	2.7	12
404	A systematic literature review for some toxic metals in widely consumed rice types (domestic and) Tj ETQq0 0 0 and Environmental Safety, 2019, 176, 64-75.	rgBT /Ove 2.9	rlock 10 Tf 50 89
405	A Mass Transfer Analysis of Competitive Binding of Pb, Cd, and Zn from Binary Systems onto a Fixed Zeolite Bed. International Journal of Environmental Research and Public Health, 2019, 16, 426.	1.2	8
406	Assessment of sequential extraction methods for the prediction of bioavailability of elements in plants grown on agricultural soils near to boron mines in Turkey. Talanta, 2019, 200, 41-50.	2.9	19
407	Analysis of Heavy Metals in Foodstuffs and an Assessment of the Health Risks to the General Public via Consumption in Beijing, China. International Journal of Environmental Research and Public Health, 2019, 16, 909.	1.2	66
408	Determination of concentration of some essential and heavy metals in roots of Moringa stenopetala using flame atomic absorption spectroscopy. Journal of Medicinal Plants Research, 2019, 13, 89-95.	0.2	1
409	Effects of a chronic exposure to different water temperatures and/or to an environmental cadmium concentration on the reproduction of the threespine stickleback (Gasterosteus aculeatus). Ecotoxicology and Environmental Safety, 2019, 174, 48-57.	2.9	26
410	Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong River. Environmental Science and Pollution Research, 2019, 26, 9490-9499.	2.7	13
411	A comparison of accumulation and depuration effect of dissolved hexavalent chromium (Cr6+) in head and muscle of bighead carp (Aristichthys nobilis) and assessment of the potential health risk for consumers. Food Chemistry, 2019, 286, 388-394.	4.2	22
412	Dietary Intake of Cadmium, Chromium, Copper, Nickel, and Lead through the Consumption of Meat, Liver, and Kidney and Assessment of Human Health Risk in Birjand, Southeast of Iran. Biological Trace Element Research, 2019, 191, 338-347.	1.9	46
413	Fermented food waste for culturing jade perch and Nile tilapia: Growth performance and health risk assessment based on metal/loids. Journal of Environmental Management, 2019, 236, 236-244.	3.8	13
414	Assessment of heavy metals contamination in selected tropical marine fish species in Bangladesh and their impact on human health. Environmental Nanotechnology, Monitoring and Management, 2019, 11, 100210.	1.7	28
415	Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environmental Monitoring and Assessment, 2019, 191, 191.	1.3	52

#	Article	IF	CITATIONS
416	Concentration Levels, Biological Enrichment Capacities and Potential Health Risk Assessment of Trace Elements in Eichhornia crassipes from Honghu Lake, China. Scientific Reports, 2019, 9, 2431.	1.6	16
417	Health risk assessment of potentially toxic elements via consumption of vegetables irrigated with polluted river water in Addis Ababa, Ethiopia. Environmental Systems Research, 2019, 8, .	1.5	21
418	Indicators of the ecological stress and environmental susceptibility of Keenjhar Lake, Sindh, Pakistan. Lakes and Reservoirs: Research and Management, 2019, 24, 394-401.	0.6	2
419	Implications of increasing pollution levels on commercially important fishes in Lake Victoria. Journal of Great Lakes Research, 2019, 45, 1274-1289.	0.8	7
420	Hazards assessment of the intake of trace metals by common mallow (Malva parviflora K.) growing in polluted soils. International Journal of Phytoremediation, 2019, 21, 1397-1406.	1.7	6
421	Assessment of metal concentrations in oysters and shrimp from Atlantic Coast of the Democratic Republic of the Congo. Heliyon, 2019, 5, e03049.	1.4	19
422	Simultaneous analysis of Pb2+ and Cd2+ at graphene/bismuth nanocomposite film-modified pencil graphite electrode using square wave anodic stripping voltammetry. Analytical and Bioanalytical Chemistry, 2019, 411, 8113-8121.	1.9	17
423	Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental Research, 2019, 168, 382-388.	3.7	90
424	Contemporary changes in structural dynamics and socioeconomic drivers of inland fishery in China. Science of the Total Environment, 2019, 648, 1527-1535.	3.9	11
425	Assessment of Human Health Risk of Toxic Elements Due to Cinnamon Ingestion in the Diet. Biological Trace Element Research, 2019, 189, 313-324.	1.9	7
426	Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility. Environmental Science and Pollution Research, 2019, 26, 20064-20078.	2.7	33
427	The Hazards of a Ubiquitary Metalloid, Arsenic, Hiding in Infant Diets: Detection, Speciation, Exposure, and Risk Assessment. Biological Trace Element Research, 2019, 190, 11-23.	1.9	10
428	Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Science of the Total Environment, 2019, 658, 614-625.	3.9	90
429	Evaluation of Possible Human Health Risk of Heavy Metals from the Consumption of Two Marine Fish Species Tenualosa ilisha and Dorosoma cepedianum. Biological Trace Element Research, 2019, 191, 485-494.	1.9	30
430	A Human Health Risk Assessment of Trace Elements Present in Chinese Wine. Molecules, 2019, 24, 248.	1.7	17
431	Human health risk assessment for some toxic metals in widely consumed rice brands (domestic and) Tj ETQq1	1 0.784314 4.2	f rg&T /Overlo
432	Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Science of the Total Environment, 2019, 651, 2927-2942.	3.9	253
433	From environmental data acquisition to assessment of gardeners' exposure: feedback in an urban context highly contaminated with metals. Environmental Science and Pollution Research, 2019, 26, 20107-20120.	2.7	15

#	Article	IF	CITATIONS
434	Health risk assessment by consumption of vegetables irrigated with reclaimed waste water: A case study in Thika (Kenya). Journal of Environmental Management, 2019, 231, 576-581.	3.8	46
435	Differences in the uptake and bioconcentration of dichlorodiphenyltrichloroethane by eight vegetable cultivars and their health risk assessments. Chemosphere, 2019, 215, 596-604.	4.2	3
436	Poly(ethylenimine) functionalized magnetic nanoparticles for sorption of Pb, Cu, and Ni: potential application in catalysis. Separation Science and Technology, 2019, 54, 1588-1598.	1.3	5
437	Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters. Journal of Environmental Sciences, 2019, 75, 247-254.	3.2	44
438	Potential health risk of heavy metals via consumption of rice and vegetables grown in the industrial areas of Bangladesh. Human and Ecological Risk Assessment (HERA), 2020, 26, 921-943.	1.7	92
439	Assessment of Polycyclic Aromatic Hydrocarbons and Heavy Metals Contamination in the Egyptian Smoked Herring ( <i>Clupea harengus</i> ). Polycyclic Aromatic Compounds, 2020, 40, 1434-1444.	1.4	4
440	Human health risk assessment of toxic elements in fish species collected from the river Buriganga, Bangladesh. Human and Ecological Risk Assessment (HERA), 2020, 26, 120-146.	1.7	14
441	Health risk assessments based on polycyclic aromatic hydrocarbons in freshwater fish cultured using food waste-based diets. Environmental Pollution, 2020, 256, 113380.	3.7	23
442	Wastewater as a Non-conventional Resource: Impact of Trace Metals and Bacteria on Soil, Plants, and Human Health. Human and Ecological Risk Assessment (HERA), 2020, 26, 2245-2265.	1.7	3
443	Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Human and Ecological Risk Assessment (HERA), 2020, 26, 2646-2662.	1.7	59
444	Trace Elements in Soils and Vegetables from Market Gardens of Urban Areas in Marrakech City. Biological Trace Element Research, 2020, 195, 301-316.	1.9	12
445	Human health hazards of wastewater. , 2020, , 125-139.		9
446	Translocation of potential toxic elements from soil to black cabbage (Brassica oleracea L.) growing in an abandoned mining district area of the Apuan Alps (Tuscany, Italy). Environmental Geochemistry and Health, 2020, 42, 2413-2423.	1.8	7
447	Spatial Distribution and Bio-accumulation of Cadmium and Lead in Soil, Rice and Vegetables in Typical Pollution Areas, China. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 307-313.	1.3	8
448	Assessment and bioaccumulation of arsenic and trace metals in two commercial fish species collected from three rivers of Côte d'Ivoire and health risks. Microchemical Journal, 2020, 154, 104604.	2.3	14
449	Application of multivariate statistical analysis and water quality index in health risk assessment by domestic use of river water. Case study of Tana River in Kenya. Chemical Engineering Research and Design, 2020, 133, 149-158.	2.7	62
450	An assessment of natural and anthropogenic trace elements in the atmospheric deposition during 1776–2004 A.D. using the Miaoergou ice core, eastern Tien Shan, China. Atmospheric Environment, 2020, 221, 117112.	1.9	2
451	The effects of climate change and groundwater exploitation on the spatial and temporal variations of heavy metal content in maize in the Luan River catchment of China. Environmental Science and Pollution Research, 2020, 27, 1035-1052.	2.7	3

#	Article	IF	CITATIONS
452	Composite assessment of human health risk from potentially toxic elements through multiple exposure routes: A case study in farmland in an important industrial city in East China. Journal of Geochemical Exploration, 2020, 210, 106443.	1.5	37
453	Accumulation of essential and non-essential trace elements in rice grain: Possible health impacts on rice consumers in West Bengal, India. Science of the Total Environment, 2020, 706, 135944.	3.9	50
454	Risk analysis by bioaccumulation of Cr, Cu, Ni, Pb and Cd from wastewater-irrigated soil to Brassica species. International Journal of Environmental Science and Technology, 2020, 17, 2889-2906.	1.8	11
455	Metal pollution index and daily dietary intake of metals through consumption of vegetables. International Journal of Environmental Science and Technology, 2020, 17, 3271-3278.	1.8	8
456	Health risk implications of lead, cadmium, zinc, and nickel for consumers of food items in Migori Gold mines, Kenya. Journal of Geochemical Exploration, 2020, 209, 106430.	1.5	16
457	Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites. Journal of Hazardous Materials, 2020, 388, 121776.	6.5	32
458	Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production. Journal of Cleaner Production, 2020, 276, 124208.	4.6	16
459	Effect of boiling and grilling on some heavy metal residues in crabs and shrimps from the Mediterranean Coast at Damietta region with their probabilistic health risk assessment. Journal of Food Composition and Analysis, 2020, 93, 103606.	1.9	36
460	Soil and banana crops (Musa paradisiaca L.) risk by chromium (Cr) accumulation through leachate and its health risk assessment. Journal of Physics: Conference Series, 2020, 1567, 042058.	0.3	1
461	Differences in absorption of cadmium and lead among fourteen sweet potato cultivars and health risk assessment. Ecotoxicology and Environmental Safety, 2020, 203, 111012.	2.9	25
462	Characteristics and health risk assessments of heavy metals in PM2.5 in Taiyuan and Yuci college town, China. Air Quality, Atmosphere and Health, 2020, 13, 909-919.	1.5	13
463	Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	8
464	Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. , 2020, , .		7
465	Ecological Risk Assessment of Heavy Metals along Three Main Drains in Nile Delta and Potential Phytoremediation by Macrophyte Plants. Plants, 2020, 9, 910.	1.6	12
466	Toxicity, uptake, potential ecological and health risks of Thallium (Tl) in environmental media around selected artisanal mining sites in Nigeria. International Journal of Environmental Analytical Chemistry, 2022, 102, 5391-5412.	1.8	3
467	Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Marine Pollution Bulletin, 2020, 159, 111496.	2.3	73
468	Diverse land uses and high coastal urbanisation do not always result in harmful environmental pollutants in fisheries species. Marine Pollution Bulletin, 2020, 159, 111487.	2.3	4
469	Accumulation of heavy metals and bacteriological indicators in spinach irrigated with further treated secondary wastewater. Heliyon, 2020, 6, e05241.	1.4	7

#	Article	IF	CITATIONS
470	Uptake and Distribution Characteristic and Health Risk Assessment of Heavy Metal(loid)s in Platycodon Grandiflorum (Jacq.) A.DC. with Growth from a Medicinal Herb Garden of Xi'an, China. Biological Trace Element Research, 2020, 199, 2770-2778.	1.9	7
471	Ecological and human health risk assessment of metals leached from end-of-life solar photovoltaics. Environmental Pollution, 2020, 267, 115393.	3.7	40
472	Nano-clay as a solid phase microextractor of copper, cadmium and lead for ultra-trace quantification by ICP-MS. Analytical Methods, 2020, 12, 4949-4955.	1.3	21
473	Evaluation of seasonal variation of heavy metal contamination and health risk assessment in Sabore field Adamawa State, Nigeria. International Journal of Environmental Analytical Chemistry, 2020, , 1-15.	1.8	1
474	A spatiotemporal analysis of water quality characteristics in the Klip river catchment, South Africa. Environmental Monitoring and Assessment, 2020, 192, 578.	1.3	5
475	Heavy metals concentration in native edible fish at upper Meghna River and its associated tributaries in Bangladesh: a prospective human health concern. SN Applied Sciences, 2020, 2, 1.	1.5	12
476	Analysis and health risk assessment of toxic (Cd and Pb) and essential (Cu and Zn) elements through consumption of potato ( <i>Solanum tuberosum</i> ) cultivated in Iran. International Journal of Environmental Analytical Chemistry, 2022, 102, 6310-6320.	1.8	8
477	Bioaccumulation and distribution pattern of heavy metals in aquaculture systems found in Arusha and Morogoro regions of Tanzania. International Journal of Environmental Analytical Chemistry, 2022, 102, 5961-5978.	1.8	3
478	Morphological and Physiological Changes of Broussonetia papyrifera Seedlings in Cadmium Contaminated Soil. Plants, 2020, 9, 1698.	1.6	19
479	Nutritional characterization of freshwater mud eel ( <i>Monopterus cuchia</i> ) muscle cooked by different thermal processes. Food Science and Nutrition, 2020, 8, 6247-6258.	1.5	11
480	Heavy Metals in Wastewater and Sewage Sludge from Selected Municipal Treatment Plants in Eastern Cape Province, South Africa. Water (Switzerland), 2020, 12, 2746.	1.2	138
481	Heavy metal intake and health risk implications from consumption of dried pulses in Trinidad and Tobago, W.I. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 207-214.	1.3	3
482	Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2020, 15, 205-217.	0.5	21
483	Bioaccumulation of lead in different varieties of wheat plant irrigated with wastewater in remote agricultural regions. Environmental Science and Pollution Research, 2020, 27, 27937-27951.	2.7	6
484	Contamination of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in rooftop vegetables and human health risks in Bangladesh. Toxin Reviews, 2021, 40, 736-751.	1.5	22
485	Heavy Metals and PAHs in Meat, Milk, and Seafood From Augusta Area (Southern Italy): Contamination Levels, Dietary Intake, and Human Exposure Assessment. Frontiers in Public Health, 2020, 8, 273.	1.3	67
486	Impact of Biochar Particle Sizes on the Bioaccumulation of the Heavy Metals and Their Target Hazard Assessment. Environmental Engineering Science, 2020, 37, 614-622.	0.8	6
487	Assessment of long-term effects from cage culture practices on heavy metal accumulation in sediment and fish. Ecotoxicology and Environmental Safety, 2020, 194, 110433.	2.9	33

#	Article	IF	CITATIONS
488	Evaluation of the environmental and human health risk related to metallic contamination in agricultural soils in the Mediterranean semi-arid area (Saiss plain, Morocco). Environmental Earth Sciences, 2020, 79, 1.	1.3	20
489	Assessment of Trace Elements in the Demersal Fishes of a Coastal River in Bangladesh: a Public Health Concern. Thalassas, 2020, 36, 641-655.	0.1	22
490	Ecology of industrial pollution in China. Ecosystem Health and Sustainability, 2020, 6, .	1.5	54
491	Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agronomy, 2020, 10, 815.	1.3	105
492	Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Applied Sciences, 2020, 2, 1.	1.5	23
493	Evaluation of trace metals concentration and human health implication by indigenous edible fish species consumption from Meghna River in Bangladesh. Environmental Toxicology and Pharmacology, 2020, 80, 103440.	2.0	12
494	Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. International Journal of Environmental Health Research, 2022, 32, 40-60.	1.3	44
495	Risk of cadmium, lead and zinc exposure from consumption of vegetables produced in areas with mining and smelting past. Scientific Reports, 2020, 10, 3363.	1.6	43
496	Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Reviews, 2021, 40, 1447-1460.	1.5	44
497	Chronic exposure to dietary antibiotics affects intestinal health and antibiotic resistance gene abundance in oriental river prawn (Macrobrachium nipponense), and provokes human health risk. Science of the Total Environment, 2020, 720, 137478.	3.9	48
498	Assessment of heavy metals contamination and human health risk in Clarias gariepinus [Burchell, 1822] collected from Jabi Lake, Abuja, Nigeria. Scientific African, 2020, 7, e00292.	0.7	5
499	Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry, 2020, 316, 126213.	4.2	189
500	Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Scientific African, 2020, 7, e00281.	0.7	23
501	Bioaccumulations and potential human health risks assessment of heavy metals in ppk-expressing transgenic rice. Science of the Total Environment, 2020, 710, 136496.	3.9	21
502	Fractionation analysis and health risk assessment of heavy metals in six traditional Chinese medicines. Environmental Science and Pollution Research, 2020, 27, 10308-10316.	2.7	10
503	Heavy Metals: Source, Toxicity Mechanisms, Health Effects, Nanotoxicology and Their Bioremediation. , 2020, , 117-141.		2
504	Health Risk Assessment and Source Apportionment of Mercury, Lead, Cadmium, Selenium, and Manganese in Japanese Women: An Adjunct Study to the Japan Environment and Children's Study. International Journal of Environmental Research and Public Health, 2020, 17, 2231.	1.2	18
505	Risk associated with spatio-temporal variations in trace metals and a metalloid in a major freshwater reservoir of Pakistan. Human and Ecological Risk Assessment (HERA), 2021, 27, 431-450.	1.7	5

#	Article	IF	CITATIONS
506	Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere, 2021, 267, 128910.	4.2	40
507	Application of DGT/DIFS to assess bioavailable Cd to maize and its release in agricultural soils. Journal of Hazardous Materials, 2021, 411, 124837.	6.5	19
508	Heavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, China. AEJ - Alexandria Engineering Journal, 2021, 60, 1885-1896.	3.4	12
509	Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran- Uncertainty and sensitivity analysis. Journal of Food Composition and Analysis, 2021, 96, 103697.	1.9	72
510	Pattern of Trace Metal Uptake in Pearl Millet as a Result of Application of Organic and Synthetic Fertilizers. International Journal of Environmental Research, 2021, 15, 33-44.	1.1	2
511	Bioaccumulation of cadmium in different genotypes of wheat crops irrigated with different sources of water in agricultural regions. Environmental Science and Pollution Research, 2021, 28, 2468-2478.	2.7	1
512	Evaluation, source apportionment and health risk assessment of heavy metal and polycyclic aromatic hydrocarbons in soil and vegetable of Ahvaz metropolis. Human and Ecological Risk Assessment (HERA), 2021, 27, 71-100.	1.7	30
513	Health risk assessment of Cd, Cr, Cu, Ni and Pb in the muscle, liver and gizzard of hen's marketed in East of Iran. Toxicology Reports, 2021, 8, 53-59.	1.6	27
514	Human health risk assessment from heavy metals in three dominant fish species of the Ankobra river, Ghana. Toxicology Reports, 2021, 8, 1081-1086.	1.6	18
515	Impact of Irrigation with Polluted River Water on the Accumulation of Toxic Metals in Soil and Crops in the Region of Dhaka, Bangladesh and Potential Effects on Health. Environmental Processes, 2021, 8, 219-237.	1.7	3
516	Multivariate correlation analysis of bio-accumulation with soil properties and potential health risks of cadmium and lead in rice seeds and cabbage in pollution zones, China. Environmental Geochemistry and Health, 2021, 43, 3485-3503.	1.8	3
517	Assessment of the Levels of Pollution and of Their Risks by Radioactivity and Trace Metals on Marine Edible Fish and Crustaceans at the Bay of Bengal (Chattogram, Bangladesh). Environments - MDPI, 2021, 8, 13.	1.5	9
518	Heavy Metals Accumulation and Health Risk Consumption in Some Vegetables, Isfahan, Iran. Annals of Military and Health Sciences Research, 2021, 19, .	0.1	0
519	Cadmium contamination in agricultural soils of Bangladesh and management by application of organic amendments: evaluation of field assessment and pot experiments. Environmental Geochemistry and Health, 2021, 43, 3557-3582.	1.8	13
520	Appraisal of probabilistic human health risks of heavy metals in vegetables from industrial, non-industrial and arsenic contaminated areas of Bangladesh. Heliyon, 2021, 7, e06309.	1.4	31
521	Risk assessment and elemental quantification of anthropogenic activities in soil. Environmental Geochemistry and Health, 2021, 43, 4891-4904.	1.8	7
522	Human health risk associated with heavy metals from consumption of Asiatic Clam, Corbicula fluminea, from Laguna de Bay, Philippines. Environmental Science and Pollution Research, 2021, 28, 36626-36639.	2.7	8
523	Dietary nutrients and health risks from exposure to some heavy metals through the consumption of the farmed common carp (CYPRINUS CARPIO). Journal of Environmental Health Science & Engineering, 2021, 19, 793-804.	1.4	2

#	Article	IF	CITATIONS
524	Risk assessment of heavy metals in drinking water on the human health, Assiut City, and its environs, Egypt. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	9
525	Combined Iron-Loaded Zeolites and Ozone-Based Process for the Purification of Drinking Water in a Novel Hybrid Reactor: Removal of Faecal Coliforms and Arsenic. Catalysts, 2021, 11, 373.	1.6	13
526	Residual contents and health risk assessment of mercury, lead and cadmium in sardine and mackerel from the Mediterranean Sea Coast, Egypt. Journal of Food Composition and Analysis, 2021, 96, 103749.	1.9	5
527	Concentration of cadmium, arsenic, and lead in rice ( <i>Oryza sativa</i> ) and probabilistic health risk assessment: A case study in Hormozgan province, Iran. Environmental Health Engineering and Management, 2021, 8, 67-75.	0.3	3
528	Potentially toxic metal accumulation in grains of wheat variety Galaxy-2013 irrigated with sugar industry wastewater and human health risk assessment. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	0.6	9
529	Oceanic karma? Eco-ethical gaps in African EEE metal cycle may hit back through seafood contamination. Science of the Total Environment, 2021, 762, 143098.	3.9	8
530	Bioaccumulation of metals in selected cultured fish species and human health risk assessment: a study in Mymensingh Sadar Upazila, Bangladesh. Stochastic Environmental Research and Risk Assessment, 2021, 35, 2287-2301.	1.9	3
531	Lead exposure through eggs in Iran: health risk assessment. Foods and Raw Materials, 2021, 9, 184-191.	0.8	5
532	Probabilistic health risk assessment of toxic metals in chickens from the largest production areas of Dhaka, Bangladesh. Environmental Science and Pollution Research, 2021, 28, 51329-51341.	2.7	18
533	Distribution Characteristics, Pollution Assessment, and Source Identification of Heavy Metals in Soils Around a Landfill-Farmland Multisource Hybrid District. Archives of Environmental Contamination and Toxicology, 2021, 81, 77-90.	2.1	11
534	Health significant alarms of toxic carcinogenic risk consumption of blood meal metals contamination in poultry at a gold mining neighborhood, northern Thailand. Environmental Geochemistry and Health, 2022, 44, 783-797.	1.8	4
535	Sex-specific elemental accumulation and histopathology of pikeperch (Sander lucioperca) from GaraÅji reservoir (Serbia) with human health risk assessment. Environmental Science and Pollution Research, 2021, 28, 53700-53711.	2.7	7
536	Assessing the distribution of cadmium under different land-use types and its effect on human health in different gender and age groups. Environmental Science and Pollution Research, 2021, 28, 49258-49267.	2.7	7
537	Impacts of the linear flowing industrial wastewater on the groundwater quality and human health in Swabi, Pakistan. Environmental Science and Pollution Research, 2021, 28, 56741-56757.	2.7	15
538	Evaluation of trace metal accumulation in six vegetable crops intercropped with phytostabilizing plant species, in a French urban wasteland. Environmental Science and Pollution Research, 2021, 28, 56795-56807.	2.7	4
539	Trace elements concentration in soil and plant within the vicinity of abandoned tanning sites in Bangladesh: an integrated chemometric approach for health risk assessment. Toxin Reviews, 2022, 41, 752-767.	1.5	19
540	Association between Pb, Cd, and Hg Exposure and Liver Injury among Korean Adults. International Journal of Environmental Research and Public Health, 2021, 18, 6783.	1.2	33
541	Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: The main mechanisms, concerns, and risks. Science of the Total Environment, 2021, 771, 144776.	3.9	54

	CITATION REF	PORT	
#	Article	IF	CITATIONS
542	Source apportionment based on the comparative approach of two receptor models in a large-scale region in China. Environmental Science and Pollution Research, 2021, 28, 56696-56710.	2.7	7
543	Appraisal of Health Risk Assessment of Potentially Toxic Metals in Edible Fruits in Ile-Ife, Nigeria. Chemistry Africa, 2021, 4, 895-904.	1.2	3
544	Comprehensive Assessment and Potential Ecological Risk of Trace Element Pollution (As, Ni, Co and) Tj ETQq0 0 0 Environmental Research and Public Health, 2021, 18, 7348.	rgBT /Ove 1.2	erlock 10 Tf 4
545	Health Risk Assessment of Trace Elements in Soil for People Living and Working in a Mining Area. Journal of Environmental and Public Health, 2021, 2021, 1-10.	0.4	5
546	Risk Assessment of Heavy Metals in Basmati Rice: Implications for Public Health. Sustainability, 2021, 13, 8513.	1.6	37
547	Heavy metals assessment in the major stages of winemaking: Chemometric analysis and impacts on human health and environment. Journal of Food Composition and Analysis, 2021, 100, 103935.	1.9	9
548	Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). Environmental Pollution, 2021, 282, 117010.	3.7	44
549	Metal Contamination and Health Risks in West African Mud Creeper (Tympanotonos fuscatus var) Tj ETQq1 1 0.78 2022, 108, 351-358.	34314 rg[ 1.3	BT /Overlock 1
550	Farmlands degradation with conventional agricultural practices and human health risk assessment: A caseâ€study of Punjab Province, Pakistan. Land Degradation and Development, 2021, 32, 4546-4561.	1.8	5
551	Effect of hydrogel based soil amendments on heavy metal uptake by spinach grown with wastewater irrigation. Journal of Cleaner Production, 2021, 311, 127644.	4.6	20
552	Analysis of the soil to food crops transfer factor and risk assessment of multi-elements at the suburban area of Ho Chi Minh city, Vietnam using instrumental neutron activation analysis (INAA). Journal of Environmental Management, 2021, 291, 112637.	3.8	12
553	Health risks connected with ingestion of vegetables harvested from heavy metals contaminated farms in Western Nigeria. Heliyon, 2021, 7, e07716.	1.4	9
554	Tilapia from Most of the Sources in Bangladesh are Safe for Human Consumption: A Hazard Index (HI) Based Study on Heavy Metals. Journal of Aquatic Food Product Technology, 2021, 30, 1017-1027.	0.6	3
555	Health risk assessment of trace metals in selected food crops at Abuakwa South Municipal, Ghana. Environmental Monitoring and Assessment, 2021, 193, 609.	1.3	13
556	Dietary risk of milk contaminated with lead and cadmium in areas near mining-metallurgical industries in the Central Andes of Peru. Ecotoxicology and Environmental Safety, 2021, 220, 112382.	2.9	12
557	Multi-metric Ecosystem Health Assessment of Three Inland Water Bodies in South-west, Nigeria, with Varying Levels of Sand Mining Activities and Heavy Metal Pollution. Biological Trace Element Research, 2022, 200, 3355-3376.	1.9	4
558	Geochemical partitioning and possible heavy metal(loid) bioaccumulation within aquaculture shrimp ponds. Science of the Total Environment, 2021, 788, 147777.	3.9	15
559	River pollution and social inequalities in Dhaka, Bangladesh. Environmental Research Communications, 2021, 3, 095003.	0.9	8

#	Article	IF	CITATIONS
560	Analysis and health risk assessment of heavy metals in some onion varieties. Arabian Journal of Chemistry, 2021, 14, 103364.	2.3	9
561	Assessment of heavy metal(loid)s in selected small indigenous species of industrial area origin freshwater fish and potential human health risk implications in Bangladesh. LWT - Food Science and Technology, 2021, 150, 112041.	2.5	6
562	Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya. Journal of Environmental Management, 2021, 297, 113410.	3.8	52
563	Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne). Science of the Total Environment, 2021, 798, 149222.	3.9	34
564	Heavy metal pollution in the soil-vegetable system of Tannery Estate. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100557.	1.7	7
565	Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100469.	1.7	19
566	Health risk assessment and heavy metal accumulation in fish species (Clarias gariepinus and) Tj ETQq0 0 0 rgBT Reports, 2021, 8, 1445-1460.	/Overlock 1.6	10 Tf 50 507 33
567	Continental-scale spatial distribution, sources, and health risks of heavy metals in seafood: challenge for the water-food-energy nexus sustainability in coastal regions?. Environmental Science and Pollution Research, 2021, 28, 63815-63828.	2.7	38
568	Profiles and Risk Assessment of Heavy Metals in Great Rift Lakes, Kenya. Clean - Soil, Air, Water, 2017, 45, 1600825.	0.7	21
569	Mercury in the Atmospheric and Coastal Environments of Mexico. Reviews of Environmental Contamination and Toxicology, 2013, 226, 65-99.	0.7	9
570	Metal Levels in Wild Edible Vegetables. , 2015, , 169-235.		1
571	Toxic Metals in Crops: A Burgeoning Problem. , 2020, , 273-301.		3
572	The human impacts level and migration of heavy metals in original inshore sediments of Dongying, China. Journal of Coastal Conservation, 2020, 24, 1.	0.7	18
573	Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environmental Pollution, 2020, 264, 114791.	3.7	46
574	Cadmium (II) removal from aqueous solution using magnetic spent coffee ground biochar: Kinetics, isotherm and thermodynamic adsorption. Materials Research Express, 2020, 7, 085503.	0.8	18
575	Physicochemical quality of water and health risks associated with consumption of African lung fish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers, Rwanda. BMC Research Notes, 2020, 13, 66.	0.6	14
576	Level of heavy metals in sliced watermelon fruits in selected markets in Akure, Nigeria. Bulletin of the National Research Centre, 2020, 44, .	0.7	1
578	Application of a combined approach including contamination indexes, geographic information system and multivariate statistical models in levels, distribution and sources study of metals in soils in Northern China, PLoS ONE, 2018, 13, e0190906	1.1	11

#	Article	IF	CITATIONS
579	Trace metals contamination potential and health risk assessment of commonly consumed fish of Perak River, Malaysia. PLoS ONE, 2020, 15, e0241320.	1.1	12
580	Human Health Risk Assessment of Heavy Metal Contamination for Population via Consumption of Selected Vegetables and Tubers Grown in Farmlands in Rivers State, South-South Nigeria. Journal of Analytical & Pharmaceutical Research, 2016, 3, .	0.3	9
581	Health risk assessment of selected heavy metals in gari (cassava flake) sold in some major markets in Yenagoa metropolis, Nigeria. MOJ Toxicology, 2018, 4, .	0.2	7
582	Assessment of Heavy Metal in Self-caught Saltwater Fish from Port Dickson Coastal Water, Malaysia. Sains Malaysiana, 2015, 44, 91-99.	0.3	8
583	Monitoring of Pesticide Residues in Cucumber Samples Marketed in Egypt. Journal of Plant Protection and Pathology, 2019, 10, 225-228.	0.1	4
584	Effect of Foliar Zno and Feo Nanoparticles Application on Growth and Nutritional Quality of Red Radish and Assessment of Their Accumulation on Human Health. Agriculture, 2019, 65, 16-29.	0.2	34
585	Risk Assessment of Non-Carcinogenic Effects of Heavy Metals from Dez River Fish. UlÅ«m-i BihdÄshtÄ«-i ĪrÄn, 2017, 5, 10-25.	0.1	4
586	Levels of Some Heavy Metals in Fishes From Pahang River Estuary, Pahang, Malaysia. Journal of Biological Sciences, 2010, 10, 157-161.	0.1	24
587	Geophagy and Heavy Metals (Pb, Cd and Hg) Content of Local Kaolin Varieties in the Cameroon Market: Assessment Indices for Contamination and Risk of Consumption or Toxicity to the Population. Journal of Medical Sciences (Faisalabad, Pakistan), 2014, 15, 1-9.	0.0	6
588	Potential Health Impacts of Heavy Metal Concentrations in Fresh and Marine Water Fishes Consumed in Southeast, Nigeria. Pakistan Journal of Nutrition, 2018, 17, 647-653.	0.2	7
589	Assessment of Heavy Metal Contamination in Different Vegetables Grown in and Around Urban Areas. Research Journal of Environmental Toxicology, 2011, 5, 162-179.	1.0	118
590	Trace metals concentration in vegetables of a sub-urban industrial area of Bangladesh and associated health risk assessment. AIMS Environmental Science, 2018, 5, 130-142.	0.7	16
591	Dynamics of Metal Distribution in Cultivated Soil and Vegetables in Vicinity to Industrial Deposition. International Journal of Chemoinformatics and Chemical Engineering, 2013, 3, 117-124.	0.1	1
592	Ecotoxicological evaluation of leachate from the Limeira sanitary landfill with a view to identifying acute toxicity. Revista Ambiente & Āgua, 2006, 2, 34-43.	0.1	3
593	Optimized Synthesis of Multicomponent Nanoparticles for Removing Heavy Metals from Artificial Mine Tailings. Biology and Medicine (Aligarh), 2016, 08, .	0.3	4
594	Evaluation of Potential Dietary Toxicity of Heavy Metals of Vegetables. , 2012, 02, .		23
595	Macro-nutrients in edible parts of food crops in the region of Moanda, Gabon. Agricultural Sciences, 2012, 03, 697-701.	0.2	4
596	Heavy Metals Concentration in Mullet Fish, <i>Liza abu</i> from Petrochemical Waste Receiving Creeks, Musa Estuary (Persian Gulf). Journal of Environmental Protection, 2011, 02, 1218-1226.	0.3	16

#	Article	IF	CITATIONS
597	Trace and Macro Elements Concentrations in Selected Fresh Fruits, Vegetables, Herbs, and Processed Foods in North Carolina, USA. Journal of Environmental Protection, 2015, 06, 573-583.	0.3	17
598	Metals toxicity and its bioaccumulation in purslane seedlings grown in controlled environment. Natural Science, 2013, 05, 573-579.	0.2	11
599	Health Risk Assessment of Exposure to Heavy Metals from Sheep Meat and Offal in Kuwait. Journal of Food Protection, 2020, 83, 503-510.	0.8	17
600	Heavy Metals Bioaccumulation and Health Risks with Associated Histopathological Changes in <i>Clarias gariepinus</i> from the Kado Fish Market, Abuja, Nigeria. Journal of Health and Pollution, 2020, 10, 200602.	1.8	21
601	Public Health Risk Assessment of Heavy Metal Uptake by Vegetables Grown at a Waste-water-Irrigated Site in Dhaka, Bangladesh. Journal of Health and Pollution, 2015, 5, 78-85.	1.8	18
602	Health Risk Assessment of Some Heavy Metals from Canned Tuna and Fish in Tijuana, Mexico. Health Scope, 2019, In Press, .	0.4	9
604	Mercuric pollution of surface water, superficial sediments, Nile tilapia ( <i>Oreochromis nilotica</i> ) Tj ETQq0 0 0 i Syanyonja, Busia, Uganda. PeerJ, 2019, 7, e7919.	rgBT /Ove 0.9	rlock 10 Tf 5 23
605	Evaluation of Genotypic Variation in Lead and Cadmium Accumulation of Rice (Oryza sativa) in Different Water Conditions in Egypt. International Journal of Plant & Soil Science, 2014, 3, 911-933.	0.2	5
606	Assessment of heavy metals uptake in leafy vegetables grown on long term wastewater irrigated soil across Vrishabhavathi River, Bangalore, Karnataka IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 7, 52-55.	0.1	4
607	Geochemical speciation and bioaccumulation of trace elements in different tissues of pumpkin in the abandoned soils: Health hazard perspective in a developing country. Toxin Reviews, 2022, 41, 1124-1138.	1.5	12
608	Mineral and proximate composition of the meat and shell of three snail species. Heliyon, 2021, 7, e08149.	1.4	12
610	Municipal Solid Waste Processing: Materials Recovery Facilities. , 2014, , 203-246.		0
611	Evaluation of Toxic and Essential Metals in Some Selected Chewing Food Products and their Daily Intake by the Population of Karachi, Pakistan. Mediterranean Journal of Chemistry, 2017, 6, 223-230.	0.3	0
612	Phytochemicals and Nutraceuticals. , 2015, , 31-65.		4
613	PLANEJAMENTO EXPERIMENTAL DA REMOÇÃO DE (Zn2+) DE EFLUENTE AQUOSO USANDO POLIACRILAMIDA IÔNICA. , 0, , .		0
615	Heavy metal accumulation in Celery from Sarchnar and Kalar in Kurdistan of Iraq Region. Journal of Zankoy Sulaimani - Part A, 2015, 18, 29-36.	0.1	0
616	Synthesis of Multicomponent Nanoparticles for Immobilization of Heavy Metals in Aqueous Phase. NanoWorld Journal, 2016, 1, .	0.8	0
617	Dietary Intake of Potential Pesticide Residues in Tomato Samples Marketed in Egypt. Research Journal of Environmental Toxicology, 2016, 10, 213-219.	1.0	3

ARTICLE IF CITATIONS Determination of Heavy Metal Concentration in Cultivated Vegetables - A Case Study of Mysore 618 0.1 1 District. IOSR Journal of Agriculture and Veterinary Science, 2016, 09, 104-108. Health Risk Assessment of Heavy Metals for Population via Consumption of Vegetables Collected from Khassa River, Kirkuk City, Northern Iraq. International Journal of Current Research and Academic 0.1 Review, 2017, 5, 104-110. Heavy Metal Speciation and Health Risk Assessment of Soil and Jute Mallow (Corchorus Olitorus) Collected From a Farm Settlement in Ikorodu, Lagos, Nigeria. Journal of Agricultural Chemistry and 620 0.2 0 Environment, 2019, 08, 201-223. Health Risks due to Consumption of <i&gt;Malus domestica&lt;/i&gt; Golden Delicious Containing 0.3 Heavy Metals. Journal of Environmental Protection, 2019, 10, 577-594. Heavy Metal Speciation and Health Risk Assessment of Soil and Jute Mallow (Corchorus Olitorus) Collected From a Farm Settlement in Ikorodu, Lagos, Nigeria. Journal of Agricultural Chemistry and 622 0.2 1 Environment, 2019, 08, 201-223. AYDIN İLİNDE TÜKETİLEN SEBZE VE MEYVELERİN ESER ELEMENT DERİŞİMLERİNİN TAYİNİ. Gıdat 0, , 30 b 308. Risk Assessment of some Heavy Metals from Claris gariepinus (African catfish) Consumed in Sharkia 624 0.1 4 Governorate, Egypt. Zagazig Veterinary Journal, 2019, 47, 193-202. An Overview of Pollution Dynamics along the Pakistan Coast with Special Reference of Nutrient 0.1 Pollution. Marine Ecology, 2019, , 136-172. Nitrite Quantification in Processed Meat Products Commonly Consumed in Mansoura City with Their 626 0.0 0 Health Risk Assessment. Alexandria Journal of Veterinary Sciences, 2020, 65, 50. Occurrence of priority trace metals in tomatoes (Solanum lycopersicum L.) from some areas of Uasin 0.1 Gishu County, Kenya. French-Ukrainian Journal of Chemistry, 2020, 8, 83-92. Determination of Essential Elements in Indian Rice Samples Before and After Washing by ICP-MS. Asian 628 0 0.1 Journal of Chemistry, 2020, 32, 2971-2976. Ecological and Human Health Risk Assessment of Toxic Metals in Water, Sediment and Fish from Lower Usuma Dam, Abuja, Nigeria. Journal of Geoscience and Environment Protection, 2020, 08, 82-106. Assessment of the Heavy Metals Pollution and Ecological Risk in Sediments of Mediterranean Sea Drain Estuaries in Egypt and Phytoremediation Potential of Two Emergent Plants. Sustainability, 2021, 630 1.6 6 13, 12244. Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. Journal of Food Composition and Analysis, 2022, 105, 104259. Economic Analysis of Fish Farming in the Northern Region of Iraq. Kahramanmaraş Sütçü İmam 632 0.2 2 Üniversitesi Ťarım Ve DoÄŸa Ďergisi, 2020, 23, 1257-1269. Heavy Metals in Seafood and Farm Produce from Uyo, Nigeria: Levels and health implications. Sultan Qabóos University Medical Journal, 2015, 15, e275-82. Mercury Exposure in Artisanal and Small-Scale Gold Mining Communities in Sukabumi, Indonesia. 634 1.8 3 Journal of Health and Pollution, 2020, 10, 201209. Role of sugarcane industrial byproducts on soil physicochemical properties and metal accumulation in rice. Environmental Science and Pollution Research, 2022, 29, 24726-24736.

#	Article	IF	CITATIONS
636	Concentration, source identification, and potential human health risk assessment of heavy metals in chicken meat and egg in Bangladesh. Environmental Science and Pollution Research, 2022, 29, 22031-22042.	2.7	10
637	Potential Health Risks Associated with the Heavy Metal Content in Commonly Consumed Food from Prakasam District of Andhra Pradesh, India. Biological Trace Element Research, 2021, , 1.	1.9	2
638	Heavy metals in fish nearby electronic waste may threaten consumer's health. Examples from Accra, Ghana. Marine Pollution Bulletin, 2022, 175, 113162.	2.3	19
639	Human health risk assessment of toxic elements in soils and crops around Xiaoqinling gold-mining area, Northwestern China. Energy and Environment, 0, , 0958305X2110569.	2.7	1
640	Appraising growth, daily intake, health risk index, and pollution load of Zn in wheat (Triticum) Tj ETQq0 0 0 rgBT Research, 2022, 29, 34685-34700.	/Overlock 2.7	10 Tf 50 587 6
641	Soil contamination and health risk assessment from heavy metals exposure near mining area in Bac Kan province, Vietnam. Environmental Geochemistry and Health, 2022, 44, 1189-1202.	1.8	19
642	Bioaccumulation and health risks of some heavy metals in Oreochromis niloticus, sediment and water of Challawa river, Kano, Northwestern Nigeria. Environmental Advances, 2022, 7, 100172.	2.2	16
643	Assessment of trace metals in soil and vegetable samples irrigated from Borkena river, South Wollo Zone, Amhara Region, Ethiopia. Sustainable Environment, 2022, 8, .	1.2	5
644	Poultry Litter Biochar as a Gentle Soil Amendment in Multi-Contaminated Soil: Quality Evaluation on Nutrient Preservation and Contaminant Immobilization. Agronomy, 2022, 12, 405.	1.3	6
645	Comparative evaluation of groundwater, wastewater and canal water for irrigation on toxic metal accumulation in soil and vegetable: Pollution load and health risk assessment. Agricultural Water Management, 2022, 264, 107515.	2.4	19
646	A comparative study of heavy metal exposure risk from the consumption of some common species of cultured and captured fishes of Bangladesh. Journal of Food Composition and Analysis, 2022, 108, 104455.	1.9	11
647	Trace Metal Accumulation in Rice Variety Kainat Irrigated with Canal Water. Sustainability, 2021, 13, 13739.	1.6	9
648	Mercury Exposure in Artisanal and Small-Scale Gold Mining Communities in Sukabumi, Indonesia. Journal of Health and Pollution, 2020, 10, 201209.	1.8	9
649	Lead induced-toxicity in vegetables, its mitigation strategies, and potential health risk assessment: a review. International Journal of Environmental Science and Technology, 0, , 1.	1.8	2
650	Assessment of Contents and Health Impacts of Four Metals in Chongming Asparagus—Geographical and Seasonal Aspects. Foods, 2022, 11, 624.	1.9	3
651	Accumulation of Heavy Metals in Rice (Oryza sativa. L) Grains Cultivated in Three Major Industrial Areas of Bangladesh. Journal of Environmental and Public Health, 2022, 2022, 1-8.	0.4	10
652	Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Scientific Reports, 2022, 12, 4634.	1.6	24
653	Cadmium and lead levels in muscle tissue of blue shark (Prionace glauca) in the Southeastern Pacific Waters. Marine Pollution Bulletin, 2022, 177, 113523.	2.3	5

#	Article	IF	CITATIONS
654	Ecological and Human Health Risk Assessment of Heavy Metals in Cultured Shrimp and Aquaculture Sludge. Toxics, 2022, 10, 175.	1.6	27
655	Distribution and risk assessment of heavy metals in the economic fish of the Southern Fujian Province. Environmental Toxicology and Pharmacology, 2022, 92, 103834.	2.0	9
656	Heavy element contents of vegetables and health-risk assessment in China. Science of the Total Environment, 2022, 828, 154552.	3.9	8
657	Seasonal hydrocarbon and metal assessment of water and fish from oil producing communities along Orashi River, Nigeria. Environmental Monitoring and Assessment, 2022, 194, 32.	1.3	0
658	On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia. Environments - MDPI, 2022, 9, 4.	1.5	4
659	Heavy Metals Contaminants in Watercress (Nasturtium officinale R. BR.): Toxicity and Risk Assessment for Humans along the Swat River Basin, Khyber Pakhtunkhwa, Pakistan. Sustainability, 2022, 14, 4690.	1.6	4
660	Estimations of potential risk of carcinogenic arsenic in smokeless tobacco products. New Journal of Chemistry, 2022, 46, 10716-10721.	1.4	2
661	Nutritional value and bioaccumulation of heavy metals in nine commercial fish species from Dachen Fishing Ground, East China Sea. Scientific Reports, 2022, 12, 6927.	1.6	15
662	Evaluation of nutrients, toxicity and hazard quotient associates of artificially ripened humid tropical banana (musa. spp). , 2022, 1, 100045.		3
663	Fish as a bioindicator of polycyclic aromatic hydrocarbon pollution in aquatic ecosystem of Ogun and Eleyele Rivers, Nigeria, and risk assessment for consumer's health. Journal of Hazardous Materials Advances, 2022, 7, 100096.	1.2	5
664	Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Frontiers in Microbiology, 2022, 13, .	1.5	52
665	Assessing the health risk of cadmium to the local population through consumption of contaminated vegetables grown in municipal solid waste–amended soil. Environmental Monitoring and Assessment, 2022, 194, .	1.3	3
666	Ecological risk assessment and bioaccumulation of trace element, copper, in wheat varieties irrigated with non-conventional water resources in a semi-arid tropics. Agricultural Water Management, 2022, 269, 107711.	2.4	4
667	Assessing the human health risk of Baltic Sea sea trout ( <i>Salmo trutta</i> L.) consumption. Fisheries & Aquatic Life, 2022, 30, 27-43.	0.2	1
668	Health Risks for a Rural Community in Bokkos, Plateau State, Nigeria, Exposed to Potentially Toxic Elements from an Abandoned Tin Mine. Archives of Environmental Contamination and Toxicology, 2022, 83, 47-66.	2.1	2
669	Risk of heavy metal(loid)s, morphology, and mineral composition in atmospheric dustfall from university campuses in Wuhan, China. International Journal of Environmental Science and Technology, 0, , .	1.8	0
670	Mobility pattern,Ârisk assessment of heavy metals in soil-dust and hazardsÂof consuming vegetablesÂat auto-body workshops. International Journal of Environmental Science and Technology, 2023, 20, 4943-4958.	1.8	2
671	Determination of heavy metal accumulation in wastewater irrigated pumpkin (Cucurbita maxima) Tj ETQq1 1 0.7	784314 rg	BT ¦Overlock

#	Article	IF	CITATIONS
672	Accumulation of As and Pb in vegetables grown in agricultural soils polluted by historical mining in Zacatecas, Mexico. Environmental Earth Sciences, 2022, 81, .	1.3	3
673	Risk assessment of human exposure to lead and cadmium in tissues of Blackchin Tilapia (Sarotherodon) Tj ETQq1	1 0.78431	14 rgBT /O
	Communications, 2022, 4, 075007.	0.9	0
674	Risk Assessment of Chlorothalonil as a Probable Human Carcinogen on Selected Vegetables in an Eastern China Province. Frontiers in Public Health, 0, 10, .	1.3	1
675	Characterization and ecotoxicological risk assessment of sewage sludge from industrial and non-industrial cities. Environmental Science and Pollution Research, 2023, 30, 116567-116583.	2.7	7
676	Spatial variation, sources, and potential ecological risk of metals in sediment in the northern South China Sea. Marine Pollution Bulletin, 2022, 181, 113929.	2.3	7
677	Appraisal of Heavy Metal Concentrations in Edible Vegetable Abelmoschus esculentus (Lady finger) Grown in Soil Irrigated with Domestic Sewage Water in Sargodha, Pakistan. Arab Gulf Journal of Scientific Research, 2014, , 169-177.	0.3	0
679	Assessing risk to human health for potentially toxic elements in farmed and wild giant tiger prawn ( <i>Paeneas monodon</i> ) in the coastal area of Bangladesh. International Journal of Environmental Analytical Chemistry, 0, , 1-14.	1.8	2
680	Prediction of Hazardous Effect of Heavy Metals of Point-Source Wastewater on Fish (Anabas) Tj ETQq1 1 0.78431	.4 rgBT /O 1.9	vgrlock 10
681	Assessment and Awareness of Health Risks Posed by Mercury in Artisanal Gold Mining in the Ashanti Region of Ghana. Chemistry Africa, 2022, 5, 1765-1775.	1.2	5
682	Assessment of health risks associated with the consumption of wastewater-irrigated vegetables in urban areas. International Journal of Environmental Science and Technology, 0, , .	1.8	3
683	Assessment of Heavy Metal Uptake in Potatoes Cultivated in a Typical Karst Landform, Weining County, China. Foods, 2022, 11, 2379.	1.9	2
684	The European Chub (Squalius cephalus) as an indicator of reservoirs pollution and human health risk assessment associated with its consumption. Environmental Pollution, 2022, 310, 119871.	3.7	2
685	Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agricultural Water Management, 2022, 272, 107833.	2.4	20
686	The Impact of Pollution Events on the Productivity of Related Industries:A Case Study of Cadmium-Contaminated Industry. Applied Economics, 2023, 55, 3238-3254.	1.2	0
687	Bio-accumulation and health risk assessment of heavy metals in different edible fish species from Hurghada City, Red Sea, Egypt. Environmental Toxicology and Pharmacology, 2022, 95, 103969.	2.0	10
688	Heavy Metal Accumulation in Fruits and Vegetables and Human Health Risk Assessment: Findings From Maharashtra, India. Environmental Health Insights, 2022, 16, 117863022211191.	0.6	25
689	A review on heavy metal and metalloid contamination of vegetables: addressing the global safe food security concern. International Journal of Environmental Analytical Chemistry, 0, , 1-22.	1.8	3
690	Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland. Journal of Environmental Sciences, 2023, 129, 202-212.	3.2	5

#	Article	IF	CITATIONS
691	Potential of Organic Amendments for Heavy Metal Contamination in Soil–Coriander System: Environmental Fate and Associated Ecological Risk. Sustainability, 2022, 14, 11374.	1.6	2
693	Uptake of heavy metal in wheat from application of different phosphorus fertilizers. Journal of Food Composition and Analysis, 2023, 115, 104958.	1.9	6
694	Carpet industry irrigational sources risk assessment: Heavy metal contaminated vegetables and cereal crops in northern India. Toxicology Reports, 2022, 9, 1906-1919.	1.6	6
696	Heavy Metal Accumulation in Vegetables Grown in Rock Soils of Kilembe Copper Mine, Kasese, Western Uganda. Asian Journal of Applied Chemistry Research, 0, , 30-40.	0.0	1
697	Meta-analysis of public health risks of lead accumulation in wastewater, irrigated soil, and crops nexus. Frontiers in Public Health, 0, 10, .	1.3	2
699	Risk Assessment of Potentially Toxic Metals and Metalloids in Soil, Water and Plant Continuum of Fragrant Rice. Agronomy, 2022, 12, 2480.	1.3	4
700	Dynamics impacts of oxytetracycline on growth performance, intestinal health and antibiotic residue of grouper in exposure and withdrawal treatment. Ecotoxicology and Environmental Safety, 2022, 247, 114203.	2.9	3
701	Assessment of trace elements in canned fish and health risk appraisal. Foods and Raw Materials, 2022, , 43-56.	0.8	1
702	Eco-Environmental, Human Health Risk Assessment of Soils and Crops Heavy Metals in the Typical Black-Rock Series Area in the Northern Daba Mountains, China. Doklady Earth Sciences, 2022, 506, 839-848.	0.2	0
703	Quantification and Reduction in Heavy Metal Residues in Some Fruits and Vegetables: A Case Study Galați County, Romania. Horticulturae, 2022, 8, 1034.	1.2	3
704	Arsenic in the foodstuffs: potential health appraisals in a developing country, Bangladesh. Environmental Science and Pollution Research, 2023, 30, 26938-26951.	2.7	6
705	Assessment of the vertical characteristics and contamination levels of toxic metals in sediment cores from typical Chinese intertidal zones. Marine Pollution Bulletin, 2022, 185, 114307.	2.3	1
706	Health risk and heavy metal assessment in soils and vegetables sourced from Amaonye forest Farmland, Eastern Nigeria. International Journal of Environmental Science and Technology, 0, , .	1.8	1
707	Evaluation of the Levels of Nine Heavy Metals in Five Crops Using AAS and XRF. , 2023, , 33-57.		0
708	Human Health Risk Assessment due to Heavy Metals in Ground and Surface Water and Association of Diseases With Drinking Water Sources: A Study From Maharashtra, India. Environmental Health Insights, 2022, 16, 117863022211460.	0.6	11
709	Various indices to find out pollution and toxicity impact of metals. , 2023, , 21-38.		3
710	Assessment of potential toxicological risk for public health of heavy metal iron in diverse wheat varieties irrigated with various types of waste water in South Asian country. Agricultural Water Management, 2023, 276, 108044.	2.4	5
711	Mosses as bioindicators of atmospheric deposition of Tl, Hg and As in Kosovo. Chemistry and Ecology, 0, , 1-14.	0.6	1

#	Article	IF	CITATIONS
712	Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability, 2022, 14, 15878.	1.6	7
713	Metals Assessments and Health Risk Associated with Consumption of Some Selected Fruits Obtained from Angwan Rukumba Market in Jos, Plateau State, Nigeria. Journal of Advances in Biology & Biotechnology, 0, , 44-51.	0.2	0
714	Heavy Metals in Four Marine Fish and Shrimp Species from a Subtropical Coastal Area: Accumulation and Consumer Health Risk Assessment. Biology, 2022, 11, 1780.	1.3	13
715	Contamination levels and health risk assessment of heavy metals in food crops in Ishiagu area, lower Benue trough South-eastern Nigeria. International Journal of Environmental Science and Technology, 2023, 20, 12069-12088.	1.8	2
716	REMOVED: Metallic trace element dynamics in Paracentrotus lividus fromÂAlgeria: Environmental and human health risk assessment. Marine Pollution Bulletin, 2023, 187, 114485.	2.3	1
717	Groundwater quality index and potential human health risk assessment of heavy metals in water: A case study of Calabar metropolis, Nigeria. Environmental Nanotechnology, Monitoring and Management, 2023, 19, 100780.	1.7	3
718	Validity of Primary Treated Wastewater for Irrigation and Assessment of their Potential Health Risk. IOP Conference Series: Earth and Environmental Science, 2022, 1120, 012043.	0.2	0
719	Evaluation of trace metallic element levels in coffee by icp-ms: a comparative study among different origins, forms, and packaging types and consumer risk assessment. Biological Trace Element Research, 2023, 201, 5455-5467.	1.9	9
720	Metal(Loid)s in Aquatic Products and Their Potential Health Risk. Exposure and Health, 2024, 16, 57-70.	2.8	2
722	Effects of Culinary Procedures on Concentrations and Bioaccessibility of Cu, Zn, and As in Different Food Ingredients. Foods, 2023, 12, 1653.	1.9	1
724	Assessments of radiological and toxicological risks from the use of groundwater and surface water in the zone of influence of the uranium production legacy site. Nuclear Physics and Atomic Energy, 2022, 23, 271-279.	0.2	0
726	Human health risk assessment of edible body parts of chicken through heavy metals and trace elements quantitative analysis. PLoS ONE, 2023, 18, e0279043.	1.1	4
727	Appraisal and health risk assessment of potential toxic element in fruits and vegetables from three markets in Anambra state, Nigeria. ChemistrySelect, 2022, .	0.7	0
728	Heavy metals concentration in food crops irrigated with pesticides and their associated human health risks in Paki, Kaduna State, Nigeria. Cogent Food and Agriculture, 2023, 9, .	0.6	3
730	Biochar and nano-ferric oxide synergistically alleviate cadmium toxicity of muskmelon. Environmental Science and Pollution Research, 2023, 30, 57945-57959.	2.7	5
756	Alternative construction materials from industrial side streams: Are they safe?. Energy, Ecology and Environment, 0, , .	1.9	0
772	Heavy metal concentration in some commercially important fishes and their contribution from Subarnarekha River of Jharkhand, Odisha, and West Bengal state, India. , 2024, , 359-370.		0