Suppression of host defense in compatible plantâ€"Pset

Current Opinion in Plant Biology 8, 361-368 DOI: 10.1016/j.pbi.2005.05.005

Citation Report

#	Article	IF	CITATIONS
1	The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Molecular Plant Pathology, 2005, 6, 629-639.	4.2	319
2	Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Current Opinion in Plant Biology, 2005, 8, 361-368.	7.1	259
3	Plant-Associated Bacteria. , 2006, , .		50
4	Closing the Circle on the Discovery of Genes Encoding Hrp Regulon Members and Type III Secretion System Effectors in the Genomes of Three Model Pseudomonas syringae Strains. Molecular Plant-Microbe Interactions, 2006, 19, 1151-1158.	2.6	138
5	Subterfuge and Manipulation: Type III Effector Proteins of Phytopathogenic Bacteria. Annual Review of Microbiology, 2006, 60, 425-449.	7.3	374
6	Comparative Genomics of Host-Specific Virulence in Pseudomonas syringae. Genetics, 2006, 174, 1041-1056.	2.9	139
7	Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 2006, 124, 803-814.	28.9	2,467
8	Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 2006, 125, 749-760.	28.9	1,658
9	Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 2006, 126, 969-980.	28.9	1,653
10	Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 2006, 44, 135-162.	7.8	2,754
11	Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana. PLoS ONE, 2006, 1, e123.	2.5	33
12	Bioinformatics-Enabled Identification of the HrpL Regulon and Type III Secretion System Effector Proteins of Pseudomonas syringae pv. phaseolicola 1448A. Molecular Plant-Microbe Interactions, 2006, 19, 1193-1206.	2.6	81
13	The Internal Glycine-Rich Motif and Cysteine Suppress Several Effects of the HpaGXooc Protein in Plants. Phytopathology, 2006, 96, 1052-1059.	2.2	52
14	Eukaryotic cyclophilin as a molecular switch for effector activation. Molecular Microbiology, 2006, 61, 1485-1496.	2.5	64
15	The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Molecular Microbiology, 2006, 62, 26-44.	2.5	212
16	Different versions of Pseudomonas syringae pv. tomato DC3000 exist due to the activity of an effector transposon. Molecular Plant Pathology, 2006, 7, 355-364.	4.2	24
17	mlo-based powdery mildew immunity: silver bullet or simply non-host resistance?. Molecular Plant Pathology, 2006, 7, 605-610.	4.2	94
18	Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant Journal, 2006, 46, 14-33.	5.7	220

ATION RE

#	Article	IF	Citations
19	Pseudomonas syringaeeffector AvrPtoB suppresses basal defence in Arabidopsis. Plant Journal, 2006, 47, 368-382.	5.7	153
20	Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology, 2006, 7, 601-611.	37.0	370
21	The plant immune system. Nature, 2006, 444, 323-329.	27.8	10,939
22	Genome-wide transcriptional analysis of theArabidopsis thalianainteraction with the plant pathogenPseudomonas syringaepv.tomatoDC3000 and the human pathogenEscherichia coliO157:H7. Plant Journal, 2006, 46, 34-53.	5.7	349
23	Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 2006, 171, 699-718.	7.3	265
24	The rolC gene induces expression of a pathogenesis-related β-1,3-glucanase in transformed ginseng cells. Phytochemistry, 2006, 67, 2225-2231.	2.9	46
25	The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defence. Plant Biology, 2006, 8, 307-313.	3.8	156
26	Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. Plant Molecular Biology, 2006, 62, 561-578.	3.9	42
27	Type III effector proteins: doppelgangers of bacterial virulence. Current Opinion in Plant Biology, 2006, 9, 376-382.	7.1	64
28	Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 2006, 9, 383-390.	7.1	360
29	PAMP recognition and the plant–pathogen arms race. BioEssays, 2006, 28, 880-889.	2.5	106
30	Plant Communication from Biosemiotic Perspective. Plant Signaling and Behavior, 2006, 1, 169-178.	2.4	39
31	A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease. Science, 2006, 313, 220-223.	12.6	438
32	Pseudomonas syringae HrpJ Is a Type III Secreted Protein That Is Required for Plant Pathogenesis, Injection of Effectors, and Secretion of the HrpZ1 Harpin. Journal of Bacteriology, 2006, 188, 6060-6069.	2.2	39
33	Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition. Plant Physiology, 2006, 141, 178-187.	4.8	121
34	Pseudomonas syringae Lytic Transglycosylases Coregulated with the Type III Secretion System Contribute to the Translocation of Effector Proteins into Plant Cells. Journal of Bacteriology, 2007, 189, 8277-8289.	2.2	71
35	Arabidopsissystemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1075-1080.	7.1	384
36	ARGONAUTE4 Is Required for Resistance to <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3778-3790.	6.6	175

#	Article	IF	CITATIONS
37	Bacterial Cyclic β-(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses. Plant Cell, 2007, 19, 2077-2089.	6.6	81
38	Inhibition of Fungal and Bacterial Plant Pathogens In Vitro and In Planta with Ultrashort Cationic Lipopeptides. Applied and Environmental Microbiology, 2007, 73, 6629-6636.	3.1	93
39	Mechanisms of Defence to Pathogens: Biochemistry and Physiology. , 0, , 109-132.		15
40	Basal Resistance Against <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> Involves WRKY53 and a Protein with Homology to a Nematode Resistance Protein. Molecular Plant-Microbe Interactions, 2007, 20, 1431-1438.	2.6	141
41	The HopX (AvrPphE) Family of Pseudomonas syringae Type III Effectors Require a Catalytic Triad and a Novel N-Terminal Domain for Function. Molecular Plant-Microbe Interactions, 2007, 20, 346-357.	2.6	53
42	Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science, 2007, 12, 564-569.	8.8	399
43	Global virulence regulation networks in phytopathogenic bacteria. Trends in Microbiology, 2007, 15, 363-371.	7.7	138
44	Intercepting Host MAPK Signaling Cascades by Bacterial Type III Effectors. Cell Host and Microbe, 2007, 1, 167-174.	11.0	77
45	Plant pathogenic Pseudomonas species. , 2007, , 507-533.		32
46	Phytotoxins produced by microbial plant pathogens. Natural Product Reports, 2007, 24, 127-144.	10.3	95
48	Functional Interplay Between Two Xanthomonas oryzae pv. oryzae Secretion Systems in Modulating Virulence on Rice. Molecular Plant-Microbe Interactions, 2007, 20, 31-40.	2.6	124
49	Dual Regulation Role of <i>GH3.5</i> in Salicylic Acid and Auxin Signaling during Arabidopsis- <i>Pseudomonas syringae</i> Interaction. Plant Physiology, 2007, 145, 450-464.	4.8	268
51	Networks of Transcriptional Regulation Underlying Plant Defense Responses Toward Phytopathogens. , 0, , 266-284.		0
52	Role of plant stomata in bacterial invasion. Cellular Microbiology, 2007, 9, 1621-1629.	2.1	142
53	Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant?microbe interactions. Cellular Microbiology, 2007, 9, 1385-1396.	2.1	156
54	New insights into innate immunity in Arabidopsis. Cellular Microbiology, 2007, 9, 1902-1908.	2.1	93
55	Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. Plant Journal, 2007, 50, 253-264.	5.7	38
56	A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant Journal, 2007, 51, 32-46.	5.7	278

#	Article	IF	CITATIONS
57	Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytologist, 2007, 175, 131-139.	7.3	82
58	Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?. FEMS Microbiology Reviews, 2007, 31, 239-277.	8.6	149
59	Endless Hide-and-Seek: Dynamic Co-evolution in Plant-Bacterium Warfare. Journal of Integrative Plant Biology, 2007, 49, 105-111.	8.5	15
60	A J Domain Virulence Effector of Pseudomonas syringae Remodels Host Chloroplasts and Suppresses Defenses. Current Biology, 2007, 17, 499-508.	3.9	266
61	Pathogen virulence factors as molecular probes of basic plant cellular functions. Current Opinion in Plant Biology, 2007, 10, 580-586.	7.1	90
62	Evolution of microbial virulence: the benefits of stress. Trends in Genetics, 2007, 23, 293-300.	6.7	77
63	The Plant Host Pathogen Interface: Cell Wall and Membrane Dynamics of Pathogen-Induced Responses. Annals of the New York Academy of Sciences, 2007, 1113, 123-134.	3.8	22
64	AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta, 2007, 225, 1431-1445.	3.2	78
65	Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. European Journal of Plant Pathology, 2008, 122, 19-30.	1.7	50
66	Cross Talk in Defense Signaling. Plant Physiology, 2008, 146, 839-844.	4.8	878
66 67	Cross Talk in Defense Signaling. Plant Physiology, 2008, 146, 839-844. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445.	4.8 12.0	878 95
	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen		
67	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445.	12.0	95
67 68	 Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445. Influence of environmental pH modulation on efficiency of apoplastic PR proteins during <i>Fusarium culmorum </i> A highâ€throughput chemical screen for resistance to <i>Pseudomonas syringae</i>	12.0 2.4	95 7
67 68 69	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445. Influence of environmental pH modulation on efficiency of apoplastic PR proteins during <i>Fusarium culmorum</i> – wheat seedling interaction. Plant Pathology, 2008, 57, 1017-1025. A highâ€throughput chemical screen for resistance to <i>Pseudomonas syringae</i> in Arabidopsis. Plant Journal, 2008, 54, 522-531. The oomycete response gene <i>LURP1</i> is required for defense against <i>Hyaloperonospora</i>	12.0 2.4 5.7	95 7 59
67 68 69 70	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445. Influence of environmental pH modulation on efficiency of apoplastic PR proteins during <i>Fusarium culmorum</i> i>â€" wheat seedling interaction. Plant Pathology, 2008, 57, 1017-1025. A highâ€throughput chemical screen for resistance to <i>Pseudomonas syringae</i> in Arabidopsis. Plant Journal, 2008, 54, 522-531. The oomycete response gene <i>LURP1</i> is required for defense against <i>Hyaloperonospora parasitica parasitica</i>	12.0 2.4 5.7 5.7	95 7 59 88
67 68 69 70 71	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445. Influence of environmental pH modulation on efficiency of apoplastic PR proteins during <i>Fusarium culmorum </i> >Fusarium A highâ€throughput chemical screen for resistance to <i>Pseudomonas syringae</i> in Arabidopsis. Plant Journal, 2008, 54, 522-531. The oomycete response gene <i>LURP1</i> is required for defense against <i>Hyaloperonospora parasitica Durable resistance to wheat stem rust needed. Current Opinion in Plant Biology, 2008, 11, 187-192. Phytopathogen type III effector weaponry and their plant targets. Current Opinion in Plant Biology,</i>	12.0 2.4 5.7 5.7 7.1	95 7 59 88 87

#	Article	IF	CITATIONS
75	Induced Resistance– Orchestrating Defence Mechanisms through Crosstalk and Priming. , 0, , 334-370.		4
76	Molecular Biology of Plant Disease Development. , 2008, , 7-195.		0
78	Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics. , 2008, , .		9
79	Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annual Review of Phytopathology, 2008, 46, 101-122.	7.8	582
80	Induced Plant Resistance to Herbivory. , 2008, , .		93
81	Molecular diversity at the plant–pathogen interface. Developmental and Comparative Immunology, 2008, 32, 736-744.	2.3	78
82	<i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 Uses Constitutive and Apoplast-Induced Nutrient Assimilation Pathways to Catabolize Nutrients That Are Abundant in the Tomato Apoplast. Molecular Plant-Microbe Interactions, 2008, 21, 269-282.	2.6	213
83	High Diversity of Genes for Nonhost Resistance of Barley to Heterologous Rust Fungi. Genetics, 2008, 178, 2327-2339.	2.9	77
84	Molecular Biology in Plant Pathogenesis and Disease Management. , 2008, , .		0
85	Eukaryotic Translation Initiation Factor 5A Is Involved in Pathogen-Induced Cell Death and Development of Disease Symptoms in Arabidopsis. Plant Physiology, 2008, 148, 479-489.	4.8	75
86	Kinetics of Salicylate-Mediated Suppression of Jasmonate Signaling Reveal a Role for Redox Modulation. Plant Physiology, 2008, 147, 1358-1368.	4.8	331
87	The <i>Pseudomonas syringae</i> Type III Effector HopAM1 Enhances Virulence on Water-Stressed Plants. Molecular Plant-Microbe Interactions, 2008, 21, 361-370.	2.6	116
88	Expression of a Class 1 Hemoglobin Gene and Production of Nitric Oxide in Response to Symbiotic and Pathogenic Bacteria in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1175-1183.	2.6	109
89	Roadmap to New Virulence Determinants in <i>Pseudomonas syringae</i> : Insights from Comparative Genomics and Genome Organization. Molecular Plant-Microbe Interactions, 2008, 21, 685-700.	2.6	109
90	Molecular Aspects of Plant Disease Resistance. , 2008, , .		6
91	The MossPhyscomitrella patens. , 2009, , .		1
93	Interaction of the <i>Tobacco Mosaic Virus</i> Replicase Protein with a NAC Domain Transcription Factor Is Associated with the Suppression of Systemic Host Defenses. Journal of Virology, 2009, 83, 9720-9730.	3.4	96
94	Chapter 15 Ecological Consequences of Plant Defence Signalling. Advances in Botanical Research, 2009, , 667-716.	1.1	23

#	Article	IF	CITATIONS
95	Subcellular Localization and Functional Analysis of the Arabidopsis GTPase RabE Â Â. Plant Physiology, 2009, 149, 1824-1837.	4.8	115
96	Identification of novel Ralstonia solanacearum type III effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology (United Kingdom), 2009, 155, 2235-2244.	1.8	55
97	Involvement of coronatine-inducible reactive oxygen species in bacterial speck disease of tomato. Plant Signaling and Behavior, 2009, 4, 237-239.	2.4	18
98	The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato. Journal of Experimental Botany, 2009, 60, 1219-1230.	4.8	17
99	Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiology, 2009, 9, S5.	3.3	17
100	Antagonism between salicylic and abscisic acid reflects early host–pathogen conflict and moulds plant defence responses. Plant Journal, 2009, 59, 375-386.	5.7	292
101	Visualization of novel virulence activities of the <i>Xanthomonas</i> type III effectors AvrBs1, AvrBs3 and AvrBs4. Molecular Plant Pathology, 2009, 10, 175-188.	4.2	14
102	Rhizobia utilize pathogenâ€like effector proteins during symbiosis. Molecular Microbiology, 2009, 71, 92-106.	2.5	123
103	Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009, 5, 308-316.	8.0	1,987
104	The phytotoxin coronatine induces lightâ€dependent reactive oxygen species in tomato seedlings. New Phytologist, 2009, 181, 147-160.	7.3	66
105	The targeting of plant cellular systems by injected type III effector proteins. Seminars in Cell and Developmental Biology, 2009, 20, 1055-1063.	5.0	67
106	Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Current Opinion in Microbiology, 2009, 12, 53-60.	5.1	236
107	Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone. Annual Review of Plant Biology, 2009, 60, 183-205.	18.7	796
108	Response of Sweet Orange (<i>Citrus sinensis</i>) to â€~ <i>Candidatus</i> Liberibacter asiaticus' Infection: Microscopy and Microarray Analyses. Phytopathology, 2009, 99, 50-57.	2.2	283
109	The evolution of <i>Pseudomonas syringae</i> host specificity and type III effector repertoires. Molecular Plant Pathology, 2009, 10, 767-775.	4.2	97
110	<i>Xanthomonas campestris</i> Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor. Plant Physiology, 2009, 149, 1017-1027.	4.8	155
111	Ethylene Modulates the Role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in Cross Talk between Salicylate and Jasmonate Signaling Â. Plant Physiology, 2009, 149, 1797-1809.	4.8	269
112	Cascade Reactions during Coronafacic Acid Biosynthesis: Elongation, Cyclization, and Functionalization during Cfa7-Catalyzed Condensation. Journal of the American Chemical Society, 2009, 131, 2113-2115.	13.7	17

#	Article	IF	CITATIONS
113	Pathogenesis in Mosses. , 0, , 298-338.		1
114	Molecular and Evolutionary Analyses of <i>Pseudomonas syringae</i> pv. <i>tomato</i> Race 1. Molecular Plant-Microbe Interactions, 2010, 23, 415-424.	2.6	51
115	A chemical screen for suppressors of the avrRpm1-RPM1-dependent hypersensitive cell death response in Arabidopsis thaliana. Planta, 2010, 231, 1013-1023.	3.2	26
116	Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding, 2010, 25, 1-12.	2.1	300
117	OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 2010, 10, 199.	3.6	46
120	Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant Journal, 2010, 61, 698-712.	5.7	216
122	Molecular battles between plant and pathogenic bacteria in the phyllosphere. Brazilian Journal of Medical and Biological Research, 2010, 43, 698-704.	1.5	34
123	The type III effector HopF2 <i> _{Pto} </i> targets <i>Arabidopsis</i> RIN4 protein to promote <i>Pseudomonas syringae</i> virulence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2349-2354.	7.1	146
124	Transmission of Plant-Pathogenic Bacteria by Nonhost Seeds without Induction of an Associated Defense Reaction at Emergence. Applied and Environmental Microbiology, 2010, 76, 6787-6796.	3.1	70
125	Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annual Review of Cell and Developmental Biology, 2010, 26, 445-469.	9.4	93
126	Sequential Expression of Bacterial Virulence and Plant Defense Genes During Infection of Tomato with <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> . Phytopathology, 2010, 100, 252-261.	2.2	56
127	Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions. Briefings in Bioinformatics, 2011, 12, 151-162.	6.5	16
128	Specific Threonine Phosphorylation of a Host Target by Two Unrelated Type III Effectors Activates a Host Innate Immune Receptor in Plants. Cell Host and Microbe, 2011, 9, 125-136.	11.0	168
129	ANAC055 and ANAC092 contribute non-redundantly in an EIN2-dependent manner to Age-Related Resistance in Arabidopsis. Physiological and Molecular Plant Pathology, 2011, 76, 212-222.	2.5	20
130	Phytobacterial Type III Effectors HopX1, HopAB1 and HopF2 Enhance Sense-Post-Transcriptional Gene Silencing Independently of Plant R Gene-Effector Recognition. Molecular Plant-Microbe Interactions, 2011, 24, 907-917.	2.6	6
131	Genetic dissection of basal defence responsiveness in accessions of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2011, 34, 1191-1206.	5.7	46
132	Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nature Reviews Microbiology, 2011, 9, 344-355.	28.6	428
133	Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods, 2011, 7, 32.	4.3	145

#	Article	IF	CITATIONS
134	Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics, 2011, 12, 146.	2.8	167
135	Distal Transport of Exogenously Applied Jasmonoyl–Isoleucine with Wounding Stress. Plant and Cell Physiology, 2011, 52, 509-517.	3.1	60
136	Avoidance and suppression of plant defenses by herbivores and pathogens. Journal of Plant Interactions, 2011, 6, 221-227.	2.1	64
137	Specific Missense Alleles of the Arabidopsis Jasmonic Acid Co-Receptor COI1 Regulate Innate Immune Receptor Accumulation and Function. PLoS Genetics, 2012, 8, e1003018.	3.5	25
138	Type III Secretion and Effectors Shape the Survival and Growth Pattern of <i>Pseudomonas syringae</i> on Leaf Surfaces Â. Plant Physiology, 2012, 158, 1803-1818.	4.8	70
139	GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528. Biochemical and Biophysical Research Communications, 2012, 417, 665-672.	2.1	23
140	Comparative Transcriptional and Anatomical Analyses of Tolerant Rough Lemon and Susceptible Sweet Orange in Response to â€~ <i>Candidatus</i> Liberibacter asiaticus' Infection. Molecular Plant-Microbe Interactions, 2012, 25, 1396-1407.	2.6	80
141	Defence Signalling Triggered by Flg22 and Harpin Is Integrated into a Different Stilbene Output in Vitis Cells. PLoS ONE, 2012, 7, e40446.	2.5	58
142	Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum Infection. PLoS ONE, 2012, 7, e43161.	2.5	36
143	A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods, 2012, 8, 2.	4.3	199
144	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	9.4	2,396
145	The Impact of Induced Plant Volatiles on Plant-Arthropod Interactions. , 2012, , 15-73.		5
146			
	Compartment-Specific Antioxidative Defense in <i>Arabidopsis</i> Against Virulent and Avirulent <i>Pseudomonas syringae</i> . Phytopathology, 2012, 102, 662-673.	2.2	47
147	Compartment-Specific Antioxidative Defense in <i>Arabidopsis</i> Against Virulent and Avirulent <i>Pseudomonas syringae</i> . Phytopathology, 2012, 102, 662-673. Characterization of the early response of the orchid, <i>Phalaenopsis amabilis</i> , to <i>Erwinia chrysanthemi</i> infection using expression profiling. Physiologia Plantarum, 2012, 145, 406-425.	2.2 5.2	47
147 148	<i>Pseudomona's syringae</i> . Phytopathology, 2012, 102, 662-673. Characterization of the early response of the orchid, <i>Phalaenopsis amabilis</i> , to <i>Erwinia</i>		
	<i>Pseudomona's syringae</i> . Phytopathology, 2012, 102, 662-673. Characterization of the early response of the orchid, <i>Phalaenopsis amabilis</i> , to <i>Erwinia chrysanthemi</i> infection using expression profiling. Physiologia Plantarum, 2012, 145, 406-425. Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial	5.2	11
148	<i><i>Pseudomona's syringae </i>. Phytopathology, 2012, 102, 662-673. Characterization of the early response of the orchid, <i>Phalaenopsis amabilis </i>, to <i>Erwinia chrysanthemi</i> infection using expression profiling. Physiologia Plantarum, 2012, 145, 406-425. Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial pathogen in <i>Nicotiana tabacum</i>. Plant, Cell and Environment, 2012, 35, 1121-1136. Biotin deficiency causes spontaneous cell death and activation of defense signaling. Plant Journal,</i>	5.2 5.7	11 54

#	Article	IF	Citations
152	Mechanism of disease development caused by a multihost plant bacterium, Pseudomonas cichorii, and its virulence diversity. Journal of General Plant Pathology, 2013, 79, 379-389.	1.0	15
153	A pepper (<i><scp>C</scp>apsicum annuum</i> â€ <scp>L</scp> .) metacaspase 9 (<i><scp>C</scp>amc9</i>) plays a role in pathogenâ€induced cell death in plants. Molecular Plant Pathology, 2013, 14, 557-566.	4.2	33
154	Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 2013, 27, 587-598.	3.6	114
155	<i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annual Review of Phytopathology, 2013, 51, 473-498.	7.8	535
156	Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist, 2013, 198, 1001-1016.	7.3	233
157	Quantitative proteomics of tomato defense against <i>Pseudomonas syringae</i> infection. Proteomics, 2013, 13, 1934-1946.	2.2	40
158	Root-Based Innate Immunity and Its Suppression by the Mutualistic Fungus Piriformospora indica. Soil Biology, 2013, , 223-237.	0.8	3
159	Proteomic and Phytohormone Analysis of the Response of Maize (Zea mays L.) Seedlings to Sugarcane Mosaic Virus. PLoS ONE, 2013, 8, e70295.	2.5	33
160	Transcriptional and Microscopic Analyses of Citrus Stem and Root Responses to Candidatus Liberibacter asiaticus Infection. PLoS ONE, 2013, 8, e73742.	2.5	116
161	Genomic Analysis of Plant Pathogenic Bacteria. , 0, , 392-418.		1
164	Disease and Frost Damage of Woody Plants Caused by Pseudomonas syringae. Advances in Agronomy, 2014, , 235-295.	5.2	63
165	The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biology, 2014, 12, e1001792.	5.6	223
166	Involvement of HLK effectors in Ralstonia solanacearum disease development in tomato. Journal of General Plant Pathology, 2014, 80, 79-84.	1.0	28
167	Induced Defense in Plants: A Short Overview. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 669-679.	1.0	9
169	Eggplant and related species are promising genetic resources to dissect the plant immune response to <i><scp>P</scp>seudomonas syringae</i> and <i><scp>X</scp>anthomonas euvesicatoria</i> and to identify new resistance determinants. Molecular Plant Pathology, 2014, 15, 814-822.	4.2	6
170	Pepper Suppressor of the G2 Allele of <i>skp1</i> Interacts with the Receptor-Like Cytoplasmic Kinase1 and Type III Effector AvrBsT and Promotes the Hypersensitive Cell Death Response in a Phosphorylation-Dependent Manner Â. Plant Physiology, 2014, 165, 76-91.	4.8	32
171	Development of an Ultrahigh-Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry Method for the Simultaneous Determination of Salicylic Acid, Jasmonic Acid, and Abscisic Acid in Rose Leaves. Journal of Agricultural and Food Chemistry, 2014, 62, 6278-6284.	5.2	28
172	How Specific is Non-Hypersensitive Host and Nonhost Resistance of Barley to Rust and Mildew Fungi?. Journal of Integrative Agriculture, 2014, 13, 244-254.	3.5	19

#	ARTICLE	IF	CITATIONS
173	Pathogenicity and virulence factors of Pseudomonas syringae Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2014, 80, S97-S103.	0.1	0
174	Mechanism of disease development caused by a multihost plant bacterium, Pseudomonas cichorii, and its virulence diversity Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2014, 80, S111-S117.	0.1	0
175	Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches. BMC Bioinformatics, 2014, 15, S13.	2.6	41
176	Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses. Current Protein and Peptide Science, 2015, 16, 450-461.	1.4	223
177	Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective. International Journal of Molecular Sciences, 2015, 16, 28429-28448.	4.1	61
178	Polyphenol oxidase and lysozyme mediate induction of systemic resistance in tomato, when a bioelicitor is used. Journal of Plant Protection Research, 2015, 55, 343-350.	1.0	9
179	The role of thionins in rice defence against root pathogens. Molecular Plant Pathology, 2015, 16, 870-881.	4.2	33
180	Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. Journal of General Plant Pathology, 2015, 81, 331-350.	1.0	94
181	Green Light to Plant Responses to Pathogens: The Role of Chloroplast Lightâ€Dependent Signaling in Biotic Stress. Photochemistry and Photobiology, 2015, 91, 1004-1011.	2.5	33
182	Postharvest treatment with trans-2-hexenal induced resistance against Botrytis cinerea in tomato fruit. Australasian Plant Pathology, 2015, 44, 121-128.	1.0	22
183	Responsiveness of different citrus genotypes to the <i><scp>X</scp>anthomonas citri</i> ssp. <i>citri</i> â€derived pathogenâ€associated molecular pattern (<scp>PAMP</scp>) flg22 correlates with resistance to citrus canker. Molecular Plant Pathology, 2015, 16, 507-520.	4.2	43
184	Endophytic microorganisms from Bauhinia monandra leaves: Isolation, antimicrobial activities and interaction with galactose-specific lectin BmoLL. African Journal of Microbiology Research, 2016, 10, 600-607.	0.4	2
185	Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection. International Journal of Molecular Sciences, 2016, 17, 1063.	4.1	16
186	Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana. Frontiers in Plant Science, 2016, 7, 982.	3.6	93
187	Modulation of Legume Defense Signaling Pathways by Native and Non-native Pea Aphid Clones. Frontiers in Plant Science, 2016, 07, 1872.	3.6	26
188	<i>Pseudomonas syringae</i> pv. <i>tomato</i> OxyR Is Required for Virulence in Tomato and <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2016, 29, 119-131.	2.6	43
189	New <scp>BAR</scp> tools for mining expression data and exploring <i>Cis</i> â€elements in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 490-504.	5.7	75
190	Pseudomonas: Genome and Comparative Genomics. , 2016, , 127-191.		2

#	Article	IF	CITATIONS
191	Comparison of cellular responses to Xanthomonas perforans infection between resistant and susceptible tomato accessions. Journal of Plant Physiology, 2017, 209, 105-114.	3.5	8
192	Comparative proteomics analysis of young spikes of wheat in response to Fusarium graminearum infection. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	6
193	Arabidopsis thaliana as a Model Organism to Study Plant-Pathogen Interactions. , 2018, , 1-20.		1
194	Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000. Journal of Proteomics, 2018, 175, 114-126.	2.4	13
195	Novel <i>Seimatosporium</i> Species from Grapevine in Northern California and Their Interactions with Fungal Pathogens Involved in the Trunk-Disease Complex. Plant Disease, 2018, 102, 1081-1092.	1.4	27
196	AlgU contributes to the virulence of Pseudomonas syringae pv. tomato DC3000 by regulating production of the phytotoxin coronatine. Journal of General Plant Pathology, 2018, 84, 189-201.	1.0	25
197	Closedâ€reference metatranscriptomics enables <i>inÂplanta</i> profiling of putative virulence activities in the grapevine trunk disease complex. Molecular Plant Pathology, 2018, 19, 490-503.	4.2	36
198	Solar <scp>UVâ€B</scp> radiation and ethylene play a key role in modulating effective defenses against <scp><i>Anticarsia gemmatalis</i></scp> larvae in fieldâ€grown soybean. Plant, Cell and Environment, 2018, 41, 383-394.	5.7	20
200	Characterization of Callose Deposition and Analysis of the Callose Synthase Gene Family of Brassica napus in Response to Leptosphaeria maculans. International Journal of Molecular Sciences, 2018, 19, 3769.	4.1	10
201	Lipid Profile of Xylella fastidiosa Subsp. pauca Associated With the Olive Quick Decline Syndrome. Frontiers in Microbiology, 2018, 9, 1839.	3.5	7
204	Dynamic phytohormone profiling of rice upon rice black-streaked dwarf virus invasion. Journal of Plant Physiology, 2018, 228, 92-100.	3.5	19
205	Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene, 2019, 714, 144004.	2.2	33
206	Arabidopsis Flowers Unlocked the Mechanism of Jasmonate Signaling. Plants, 2019, 8, 285.	3.5	26
207	Induction of essential oil production in Mentha x piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant Physiology and Biochemistry, 2019, 141, 142-153.	5.8	54
208	Interactions of Tomato and <i>Botrytis cinerea</i> Genetic Diversity: Parsing the Contributions of Host Differentiation, Domestication, and Pathogen Variation. Plant Cell, 2019, 31, 502-519.	6.6	49
209	<i>Arabidopsis GDSL1</i> overexpression enhances rapeseed <i>Sclerotinia sclerotiorum</i> resistance and the functional identification of its homolog in <i>Brassica napus</i> . Plant Biotechnology Journal, 2020, 18, 1255-1270.	8.3	48
210	Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species. PLoS ONE, 2020, 15, e0239998.	2.5	11
211	Overexpression of <i>Arabidopsis microRNA167</i> induces salicylic acidâ€dependent defense against <i>Pseudomonas syringae</i> through the regulation of its targets <i>ARF6 and ARF8</i> . Plant Direct, 2020, 4, e00270.	1.9	22

# 212	ARTICLE Trichoderma in the rhizosphere. , 2020, , 3-38.	IF	Citations
213	Pathogen Genetic Control of Transcriptome Variation in the <i>Arabidopsis thaliana</i> – <i>Botrytis cinerea</i> Pathosystem. Genetics, 2020, 215, 253-266.	2.9	18
214	Initiating plant herbivory response increases impact of fungal pathogens on a clonal thistle. Biological Control, 2020, 143, 104207.	3.0	3
215	Metabolomics as an Emerging Tool for the Study of Plant–Pathogen Interactions. Metabolites, 2020, 10, 52.	2.9	126
216	Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics, 2020, 21, 296.	2.8	11
217	Microbial Influence on Plant–Insect Interaction. , 2021, , 337-363.		8
218	Functional Defense Signals in Plants. , 2021, , 543-556.		0
219	RNA-Sequencing Reveals Differentially Expressed Rice Genes Functionally Associated with Defense against BPH and WBPH in RILs Derived from a Cross between RP2068 and TN1. Rice, 2021, 14, 27.	4.0	6
221	Role of Jasmonates in Beneficial Microbe–Root Interactions. Methods in Molecular Biology, 2020, 2085, 43-67.	0.9	9
222	Exploring the Functions of Proteins Secreted by the Hrp Type III Secretion System of Pseudomonas syringae. , 2008, , 229-237.		1
223	Caterpillar Secretions and Induced Plant Responses. , 2008, , 369-387.		42
224	Plant Associated Soil Micro-organisms. Soil Biology, 2008, , 3-51.	0.8	14
225	Plant Communication. , 2010, , 27-51.		1
229	Plant Pathogenic Bacteria: An Overview. , 2015, , 1-16.		6
230	Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads. PLoS ONE, 2011, 6, e16451.	2.5	52
231	WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS ONE, 2017, 12, e0183731.	2.5	69
232	Bacterial Pathogens in Plants. Journal of Bacteriology & Mycology Open Access, 2017, 4, .	0.2	4
233	Uniform categorization of biocommunication in bacteria, fungi and plants. World Journal of Biological Chemistry, 2010, 1, 160.	4.3	11

#	Article	IF	Citations
237	PAMPs-triggered immunity targeted by pathogen effectors Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2013, 79, 263-268.	0.1	0
238	Comparative Genomics of Herbaspirillum Species. , 2014, , 171-198.		4
241	Biological Host Response: A Paradigm and Strategy to Overcome Biotic Stress Caused by Powdery Mildew Causal Agents in Plants. , 2020, , 389-425.		0
242	Host-Parasite Interaction during Development of Major Seed-Borne Bacterial Diseases. , 2020, , 245-264.		0
244	Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. , 2008, , 19-30.		1
245	The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64, 230-243.	8.5	99
246	Molecular and Genomic Characterization of the Pseudomonas syringae Phylogroup 4: An Emerging Pathogen of Arabidopsis thaliana and Nicotiana benthamiana. Microorganisms, 2022, 10, 707.	3.6	3
250	Activation of plant immunity by exposure to dinitrogen pentoxide gas generated from air using plasma technology. PLoS ONE, 2022, 17, e0269863.	2.5	4
251	Fungal and bacterial oxylipins are signals for intra- and inter-cellular communication within plant disease. Frontiers in Plant Science, 0, 13, .	3.6	9
252	Virulence-related regulatory network of Pseudomonas syringae. Computational and Structural Biotechnology Journal, 2022, 20, 6259-6270.	4.1	4
253	Effector-Dependent and -Independent Molecular Mechanisms of Soybean–Microbe Interaction. International Journal of Molecular Sciences, 2022, 23, 14184.	4.1	0
254	The main fungal pathogens and defense-related hormonal signaling in crops. , 2023, , 307-331.		0
255	Inoculation of <scp>ACC</scp> deaminaseâ€producing endophytic bacteria downâ€regulates ethyleneâ€induced <scp>pathogenesisâ€related</scp> signaling in red pepper (<scp><i>Capsicum) Tj ETQq0 0</i></scp>	0 r g B2T /O	ver la ck 10 Tf
256	Importance of omics approaches in plant-microbe interaction for plant disease control. Physiological and Molecular Plant Pathology, 2023, 128, 102153.	2.5	0
257	The rhizobacterial strain, Pseudomonas putida AKMP7, causes conditional pathogenesis in Arabidopsis thaliana via negative regulation of salicylic acid signaling, under water stress. Plant Physiology and Biochemistry, 2024, 206, 108262.	5.8	0
258	Lipoxygenases regulate digestive enzyme inhibitor activities in developing seeds of field-grown soybean against the southern green stink bug (Nezara viridula). Functional Plant Biology, 2024, 51, .	2.1	0
259	Insect-plant-pathogens: toxicity, dependence, and defense dynamics. , 2024, , 385-411.		0