Evaluation of cell penetrating peptides fused to elastin-

Journal of Controlled Release 108, 396-408

DOI: 10.1016/j.jconrel.2005.08.007

Citation Report

#	Article	IF	CITATIONS
1	The development of molecular clamps as drugs. Drug Discovery Today, 2006, 11, 819-824.	3.2	9
2	Efficient Synthesis of Protein-Drug Conjugates Using a Functionalizable Recombinant Elastin-Mimetic Polypeptide. Macromolecular Bioscience, 2006, 6, 952-958.	2.1	13
3	Synthetic Histidine-Rich Peptides Inhibit Candida Species and Other Fungi In Vitro: Role of Endocytosis and Treatment Implications. Antimicrobial Agents and Chemotherapy, 2006, 50, 2797-2805.	1.4	37
4	A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells. Journal of Drug Targeting, 2007, 15, 611-622.	2.1	32
5	Biomedical and Biotechnological Applications of Elastin-Like Polypeptides. Polymer Reviews, 2007, 47, 121-154.	5.3	73
6	Design and application of stimulus-responsive peptide systems. Protein Engineering, Design and Selection, 2007, 20, 155-161.	1.0	89
7	How to address CPP and AMP translocation? Methods to detect and quantify peptide internalizationin vitroandin vivo (Review). Molecular Membrane Biology, 2007, 24, 173-184.	2.0	34
8	Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent, diethylenetriamine pentaacetic acid gadolinium. Chinese Medical Journal, 2007, 120, 50-55.	0.9	11
9	Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochemical Pharmacology, 2007, 73, 620-631.	2.0	118
10	A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Investigational New Drugs, 2007, 25, 313-326.	1.2	89
11	Evaluation of Conformation and Association Behavior of Multivalent Alanine-Rich Polypeptides. Pharmaceutical Research, 2008, 25, 700-708.	1.7	16
12	Intelligent Biosynthetic Nanobiomaterials (IBNs) for Hyperthermic Gene Delivery. Pharmaceutical Research, 2008, 25, 683-691.	1.7	77
13	Release and activity of antiâ€₹NFα therapeutics from injectable chitosan preparations for local drug delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 319-326.	1.6	18
14	Peptide-based biopolymers in biomedicine and biotechnology. Materials Science and Engineering Reports, 2008, 62, 125-155.	14.8	264
15	Creation of a bi-directional protein transduction system for suppression of HIV-1 expression by p27SJ. Antiviral Research, 2008, 79, 136-141.	1.9	19
16	Synthesis and characterization of a thermally-responsive tumor necrosis factor antagonist. Journal of Controlled Release, 2008, 129, 179-186.	4.8	52
17	Thermo-responsive systems for controlled drug delivery. Expert Opinion on Drug Delivery, 2008, 5, 1077-1091.	2.4	143
18	Thermally targeted delivery of chemotherapeutics and anti-cancer peptides by elastin-like polypeptide. Expert Opinion on Drug Delivery, 2008, 5, 353-369.	2.4	28

#	Article	IF	Citations
19	Secondary Structure Formation and LCST Behavior of Short Elastin-Like Peptides. Biomacromolecules, 2008, 9, 2755-2763.	2.6	122
20	Polystyrene microbeads modified with an elastin-like biopolymer for stimuli-responsive immunodetection. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 863-873.	1.9	1
21	An Injectable and In Situ-Gelling Biopolymer for Sustained Drug Release Following Perineural Administration. Spine, 2008, 33, 748-754.	1.0	50
22	Application of Thermally Responsive Elastin-like Polypeptide Fused to a Lactoferrin-derived Peptide for Treatment of Pancreatic Cancer. Molecules, 2009, 14, 1999-2015.	1.7	60
23	Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring. American Journal of Physiology - Cell Physiology, 2009, 296, C306-C316.	2.1	36
24	Effect of cell-penetrating peptides on the nasal absorption of insulin. Journal of Controlled Release, 2009, 133, 103-108.	4.8	117
25	Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides. Journal of Controlled Release, 2009, 135, 2-10.	4.8	79
26	Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP. Clinical and Experimental Metastasis, 2009, 26, 251-260.	1.7	35
27	Therapeutic peptides for cancer therapy. Part II – cell cycle inhibitory peptides and apoptosis-inducing peptides. Expert Opinion on Drug Delivery, 2009, 6, 1049-1064.	2.4	41
28	Bifunctional chimeric fusion proteins engineered for DNA delivery: Optimization of the protein to DNA ratio. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 198-207.	1.1	15
29	Therapeutic peptides for cancer therapy. Part I – peptide inhibitors of signal transduction cascades. Expert Opinion on Drug Delivery, 2009, 6, 1033-1047.	2.4	67
30	Cell penetrating elastin-like polypeptides for therapeutic peptide delivery. Advanced Drug Delivery Reviews, 2010, 62, 1486-1496.	6.6	97
31	PEGylated PAMAM Dendrimer-Doxorubicin Conjugates: In Vitro Evaluation and In Vivo Tumor Accumulation. Pharmaceutical Research, 2010, 27, 161-174.	1.7	189
32	Structural requirements of penetratin absorption enhancement efficiency for insulin delivery. Journal of Controlled Release, 2010, 143, 302-310.	4.8	48
33	Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. International Journal of Cancer, 2010, 126, 533-544.	2.3	65
34	Elastinâ€like polypeptides: Biomedical applications of tunable biopolymers. Biopolymers, 2010, 94, 60-77.	1.2	352
35	Enlarging the Scope of Cellâ€Penetrating Prenylated Peptides to Include Farnesylated  CAAX' Box Sequences and Diverse Cell Types. Chemical Biology and Drug Design, 2010, 76, 107-115.	1.5	9
36	Building Cell Selectivity into CPP-Mediated Strategies. Pharmaceuticals, 2010, 3, 1456-1490.	1.7	46

3

#	Article	IF	CITATIONS
37	Aromaticâr'Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels. Journal of the American Chemical Society, 2010, 132, 2719-2728.	6.6	328
38	Recombinamers: Combining Molecular Complexity with Diverse Bioactivities for Advanced Biomedical and Biotechnological Applications. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 145-179.	0.6	9
39	Quantitative Model of the Phase Behavior of Recombinant pH-Responsive Elastin-Like Polypeptides. Biomacromolecules, 2010, 11, 2873-2879.	2.6	116
40	A thermally targeted peptide inhibitor of symmetrical dimethylation inhibits cancer-cell proliferation. Peptides, 2010, 31, 834-841.	1.2	31
41	Emerging applications of multifunctional elastin-like recombinamers. Nanomedicine, 2011, 6, 111-122.	1.7	63
42	Elastin Biopolymers., 2011,, 329-346.		3
43	Thermoresponsive multilayer films based on ionic elastin-like recombinamers. Soft Matter, 2011, 7, 9402.	1.2	11
44	A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. Chemical Communications, 2011, 47, 5259.	2.2	44
45	A genetically synthetic protein-based cationic polymer for siRNA delivery. Medical Hypotheses, 2011, 76, 239-240.	0.8	5
46	Elastomeric Polypeptides. Topics in Current Chemistry, 2011, 310, 71-116.	4.0	60
47	Peptides or Small Molecules? Different Approaches to Develop More Effective CDK Inhibitors. Current Medicinal Chemistry, 2011, 18, 2854-2866.	1.2	40
49	Recombinant protein-based polymers for advanced drug delivery. Chemical Society Reviews, 2012, 41, 2696.	18.7	93
50	Oral biodrug delivery using cell-penetrating peptide. Advanced Drug Delivery Reviews, 2012, 64, 531-539.	6.6	160
51	Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. International Journal of Pharmaceutics, 2012, 436, 825-832.	2.6	62
52	Peptides for cancer therapy: a drug-development opportunity and a drug-delivery challenge. Therapeutic Delivery, 2012, 3, 609-621.	1.2	29
53	Strategies for non-invasive delivery of biologics. Journal of Drug Targeting, 2012, 20, 481-501.	2.1	48
55	Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. Journal of Controlled Release, 2012, 162, 286-294.	4.8	51
56	Cell-penetrating Peptide-biodrug Strategy for Oral and Nasal Delivery: Review of Recent Findings. Journal of Experimental and Clinical Medicine, 2012, 4, 198-202.	0.2	7

#	Article	IF	Citations
57	Injectable hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 881-903.	2.4	146
58	Biomimetic Scaffolds for Tissue Engineering. Advanced Functional Materials, 2012, 22, 2446-2468.	7.8	359
59	Multifunctional Materials through Modular Protein Engineering. Advanced Materials, 2012, 24, 3923-3940.	11.1	184
60	Elastin-like polypeptide modified liposomes for enhancing cellular uptake into tumor cells. Colloids and Surfaces B: Biointerfaces, 2012, 91, 130-136.	2.5	46
61	A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis. Investigational New Drugs, 2012, 30, 236-248.	1.2	61
62	Structural and Hydrodynamic Analysis of a Novel Drug Delivery Vector: ELP[V5G3A2-150]. Biophysical Journal, 2013, 104, 2009-2021.	0.2	26
63	Calcium Binding Peptide Motifs from Calmodulin Confer Divalent Ion Selectivity to Elastin-Like Polypeptides. Biomacromolecules, 2013, 14, 2347-2353.	2.6	21
64	Harnessing the power of cellâ€penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 31-48.	3.3	50
66	Thermally Targeted Delivery of a c-Myc Inhibitory Polypeptide Inhibits Tumor Progression and Extends Survival in a Rat Glioma Model. PLoS ONE, 2013, 8, e55104.	1.1	84
67	Construction and Application of Elastin Like Polypeptide Containing IL-4 Receptor Targeting Peptide. PLoS ONE, 2013, 8, e81891.	1.1	34
68	Enhanced Cellular Uptake of Albumin-Based Lyophilisomes when Functionalized with Cell-Penetrating Peptide TAT in HeLa Cells. PLoS ONE, 2014, 9, e110813.	1.1	17
69	Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer. Drug Design, Development and Therapy, 2014, 8, 1649.	2.0	19
70	Penetrating the cell membrane, thermal targeting and novel anticancer drugs: the development of thermally targeted, elastin-like polypeptide cancer therapeutics. Therapeutic Delivery, 2014, 5, 429-445.	1.2	16
71	The backbone stereochemistry influences the intracellular distribution and uptake mechanism of oligoarginines. Journal of Innovative Optical Health Sciences, 2014, 07, 1450019.	0.5	0
72	Peptide-Based Polymer Therapeutics. Polymers, 2014, 6, 515-551.	2.0	84
73	Maternally sequestered therapeutic polypeptides $\tilde{A}^{\varphi}\hat{a}, \neg \hat{a} \in \mathbb{C}$ a new approach for the management of preeclampsia. Frontiers in Pharmacology, 2014, 5, 201.	1.6	15
74	Oral insulin delivery – challenges and strategies. , 2014, , 113-168.		3
75	Thermally targeted p21 peptide enhances bortezomib cytotoxicity in androgen-independent prostate cancer cell lines. Anti-Cancer Drugs, 2014, 25, 189-199.	0.7	13

#	Article	IF	Citations
76	Designing protein-based biomaterials for medical applications. Acta Biomaterialia, 2014, 10, 1542-1557.	4.1	138
77	A polypeptide drug carrier for maternal delivery and prevention of fetal exposure. Journal of Drug Targeting, 2014, 22, 935-947.	2.1	24
78	Thermodriven Micrometerâ€Scale Aqueousâ€Phase Separation of Amphiphilic Oligoethylene Glycol Analogues. Chemistry - an Asian Journal, 2014, 9, 2778-2788.	1.7	14
79	Effect of Basic Cell-Penetrating Peptides on the Structural, Thermodynamic, and Hydrodynamic Properties of a Novel Drug Delivery Vector, ELP[V ₅ G ₃ A ₂ -150]. Biochemistry, 2014, 53, 1081-1091.	1.2	17
80	A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnology Advances, 2014, 32, 1269-1282.	6.0	240
81	Applications of elastin-like polypeptides in drug delivery. Journal of Controlled Release, 2014, 190, 314-330.	4.8	198
82	Elastin-like polypeptides: The influence of its molecular weight on local hyperthermia-induced tumor accumulation. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 382-389.	2.0	23
83	Solventâ€Free Liquid Crystals and Liquids Based on Genetically Engineered Supercharged Polypeptides with High Elasticity. Advanced Materials, 2015, 27, 2459-2465.	11.1	34
84	p21 Exploits Residue Tyr151 as a Tether for High-Affinity PCNA Binding. Biochemistry, 2015, 54, 3483-3493.	1.2	26
85	Thermo-responsive polymers. , 2015, , 3-43.		41
86	Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. Polymer Reviews, 2015, 55, 371-406.	5.3	109
87	Cell-penetrating peptides: strategies for anticancer treatment. Trends in Molecular Medicine, 2015, 21, 560-570.	3.5	185
88	Cancer cell surface induced peptide folding allows intracellular translocation of drug. Journal of Controlled Release, 2015, 209, 317-326.	4.8	29
89	Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs. Advances in Protein Chemistry and Structural Biology, 2015, 98, 169-221.	1.0	123
90	Stimuli-Responsive Nanomaterials for Biomedical Applications. Journal of the American Chemical Society, 2015, 137, 2140-2154.	6.6	442
91	Elastin-like polypeptide for improved drug delivery for anticancer therapy: preclinical studies and future applications. Expert Opinion on Drug Delivery, 2015, 12, 653-667.	2.4	25
92	Multi-Tissue Interface Bioengineering. , 2015, , 593-602.		1
93	Proteins without unique 3D structures: Biotechnological applications of intrinsically unstable/disordered proteins. Biotechnology Journal, 2015, 10, 356-366.	1.8	28

#	Article	IF	CITATIONS
94	The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain. International Journal of Molecular Sciences, 2016, 17, 806.	1.8	66
95	An Intrinsically Disordered Peptide Facilitates Nonâ€Endosomal Cell Entry. Angewandte Chemie - International Edition, 2016, 55, 3369-3372.	7.2	57
96	Elastinâ∈like polypeptides: A strategic fusion partner for biologics. Biotechnology and Bioengineering, 2016, 113, 1617-1627.	1.7	69
97	Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnology and Bioengineering, 2016, 113, 913-929.	1.7	23
98	RGD-Targeted Liposome Binding and Uptake on Breast Cancer Cells Is Dependent on Elastin Linker Secondary Structure. Bioconjugate Chemistry, 2016, 27, 1813-1821.	1.8	32
99	Synergistic Enhancement of Antitumor Efficacy by PEGylated Multi-walled Carbon Nanotubes Modified with Cell-Penetrating Peptide TAT. Nanoscale Research Letters, 2016, 11, 452.	3.1	15
100	An Intrinsically Disordered Peptide Facilitates Nonâ€Endosomal Cell Entry. Angewandte Chemie, 2016, 128, 3430-3433.	1.6	8
101	LCST Behavior is Manifested in a Single Molecule: Elastin-Like polypeptide (VPGVG) _{<i>n</i>} . Biomacromolecules, 2016, 17, 111-118.	2.6	76
102	Membrane Translocation and Organelle-Selective Delivery Steered by Polymeric Zwitterionic Nanospheres. Biomacromolecules, 2016, 17, 1523-1535.	2.6	32
103	Corneal Penetrating Elastin-Like Polypeptide Carriers. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 163-171.	0.6	12
104	cRGDyK modified pH responsive nanoparticles for specific intracellular delivery of doxorubicin. Acta Biomaterialia, 2016, 30, 285-298.	4.1	53
105	Elastin-like polypeptides in drug delivery. Advanced Drug Delivery Reviews, 2016, 97, 85-100.	6.6	122
106	Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials, 2016, 83, 269-282.	5.7	105
107	Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. Journal of Controlled Release, 2016, 240, 93-108.	4.8	115
108	Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Advances in Colloid and Interface Science, 2017, 239, 97-114.	7.0	174
109	Fibrous Proteins: Structures and Mechanisms. Sub-Cellular Biochemistry, 2017, , .	1.0	13
110	Collagen-Like Peptide Bioconjugates. Bioconjugate Chemistry, 2017, 28, 816-827.	1.8	44
111	Recombinant Structural Proteins and Their Use in Future Materials. Sub-Cellular Biochemistry, 2017, 82, 491-526.	1.0	9

#	Article	IF	Citations
112	Evaluation of the use of therapeutic peptides for cancer treatment. Journal of Biomedical Science, 2017, 24, 21.	2.6	352
113	A kidney-selective biopolymer for targeted drug delivery. American Journal of Physiology - Renal Physiology, 2017, 312, F54-F64.	1.3	58
114	Thermoresponsive Elastin- <i>b</i> -Collagen-Like Peptide Bioconjugate Nanovesicles for Targeted Drug Delivery to Collagen-Containing Matrices. Biomacromolecules, 2017, 18, 2539-2551.	2.6	51
115	Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR. Langmuir, 2017, 33, 11733-11745.	1.6	5
116	CLIP6-PNA-Peptide Conjugates: Non-Endosomal Delivery of Splice Switching Oligonucleotides. Bioconjugate Chemistry, 2017, 28, 3036-3042.	1.8	21
117	2.5 Elastin-Like Polypeptides â~†. , 2017, , 90-108.		6
118	2.18 Elastin Biopolymers â~†., 2017, , 412-437.		0
119	Selfâ€Assembled Peptideâ€Based Nanomaterials for Biomedical Imaging and Therapy. Advanced Materials, 2018, 30, e1703444.	11.1	355
120	Application of Bld-1-Embedded Elastin-Like Polypeptides in Tumor Targeting. Scientific Reports, 2018, 8, 3892.	1.6	14
121	Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 2018, 19, 1732-1745.	2.6	102
122	Fast and effective mitochondrial delivery of ω-Rhodamine-B-polysulfobetaine-PEG copolymers. Scientific Reports, 2018, 8, 1128.	1.6	19
123	Secondary structure of cellâ€penetrating peptides during interaction with fungal cells. Protein Science, 2018, 27, 702-713.	3.1	32
124	Enhanced Uptake of Luminescent Quantum Dots by Live Cells Mediated by a Membrane-Active Peptide. ACS Omega, 2018, 3, 17164-17172.	1.6	12
125	Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide. ACS Omega, 2018, 3, 12754-12762.	1.6	22
126	Molecular Size Modulates Pharmacokinetics, Biodistribution, and Renal Deposition of the Drug Delivery Biopolymer Elastin-like Polypeptide. Scientific Reports, 2018, 8, 7923.	1.6	39
127	Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 8243-8254.	1.2	12
128	De novo Design of Selective Membraneâ€Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface. Angewandte Chemie - International Edition, 2019, 58, 13706-13710.	7.2	33
129	De novo Design of Selective Membraneâ€Active Peptides by Enzymatic Control of Their Conformational Bias on the Cell Surface. Angewandte Chemie, 2019, 131, 13844-13848.	1.6	6

#	Article	IF	CITATIONS
130	Utilizing a Kidney-Targeting Peptide to Improve Renal Deposition of a Pro-Angiogenic Protein Biopolymer. Pharmaceutics, 2019, 11, 542.	2.0	12
131	Evaluation of Elastin-Like Polypeptides for Tumor Targeted Delivery of Doxorubicin to Glioblastoma. Molecules, 2019, 24, 3242.	1.7	14
132	Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules, 2019, 20, 1514-1521.	2.6	23
133	Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expression and Purification, 2019, 153, 114-120.	0.6	45
134	Designing heparan sulfate-based biocompatible polymers and their application for intracellular stimuli-sensitive drug delivery. Materials Science and Engineering C, 2019, 94, 465-476.	3.8	4
135	The effect of turn residues on the folding and cellâ€penetrating activity of βâ€hairpin peptides and applications toward protein delivery. Peptide Science, 2020, 112, e24125.	1.0	4
136	Targeting PCNA with Peptide Mimetics for Therapeutic Purposes. ChemBioChem, 2020, 21, 442-450.	1.3	24
137	Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Advanced Drug Delivery Reviews, 2020, 160, 186-198.	6.6	56
138	Control of Mitochondrial Localization Using Thermoresponsive Sulfobetaine Polymer. Macromolecular Bioscience, 2020, 20, e2000205.	2.1	3
139	Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. Small, 2020, 16, e1907671.	5.2	91
140	Engineering the Architecture of Elastinâ€Like Polypeptides: From Unimers to Hierarchical Selfâ€Assembly. Advanced Therapeutics, 2020, 3, 1900164.	1.6	47
141	FT-IR Spectroscopic Analysis of the Secondary Structures Present during the Desiccation Induced Aggregation of Elastin-Like Polypeptide on Silica. ACS Omega, 2020, 5, 8403-8413.	1.6	42
143	Genetically Encoded Elastinâ€Like Polypeptides for Drug Delivery. Advanced Healthcare Materials, 2021, 10, e2100209.	3.9	30
144	Novel Protein Therapeutics Created Using the Elastin-Like Polypeptide Platform. Physiology, 2021, 36, 367-381.	1.6	10
145	The Internalization Mechanisms and Bioactivity of the Cell-Penetrating Peptides., 0,, 125-143.		3
146	Contribution of lysine-containing cationic domains to thermally-induced phase transition of elastin-like proteins and their sensitivity to different stimuli. BMB Reports, 2011, 44, 22-27.	1.1	5
148	Genetically encoded elastin-like polypeptide nanoparticles for drug delivery. Current Opinion in Biotechnology, 2022, 74, 146-153.	3.3	18
150	Effect of the elastin-derived peptides (VGVAPG and VVGPGA) on breast (MCF-7) and lung (A549) cancer cell lines in vitro. Biomedicine and Pharmacotherapy, 2022, 151, 113149.	2.5	2

#	Article	IF	CITATIONS
151	Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics, 2022, 14, 2512.	2.0	3
152	Engineered elastin-like polypeptides: An efficient platform for enhanced cancer treatment. Frontiers in Pharmacology, 0, 13, .	1.6	1
153	Thermo-responsive functionalized polymeric nanocomposites. , 2023, , 219-240.		2
154	Tailoring the formation and stability of self-assembled structures from precisely engineered intrinsically disordered protein polymers: A comprehensive review. Giant, 2023, 14, 100158.	2.5	0
157	Protein Nanocarriers for the Delivery of Phytoconstituents. , 2024, , 229-264.		0