Novel powder formulations for controlled delivery of period Application and investigation of TPGS and PEG in spray

Journal of Controlled Release 103, 565-575 DOI: 10.1016/j.jconrel.2004.12.023

Citation Report

IF

ARTICLE

CITATIONS

1	Atomic Force Microscopy. , 2006, , 1-86.		0
2	New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now?. Nanomedicine, 2006, 1, 297-309.	1.7	1,240
3	Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids and Surfaces B: Biointerfaces, 2006, 50, 97-103.	2.5	195
4	The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)‑tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials, 2006, 27, 4025-4033.	5.7	363
5	Preparation of prolonged release clarithromycin microparticles for oral use and theirin vitro evaluation. Archives of Pharmacal Research, 2006, 29, 921-927.	2.7	3
6	Paclitaxel distribution in poly(ethylene glycol)/poly(lactide-co-glycolic acid) blends and its release visualized by coherent anti-Stokes Raman scattering microscopy. Journal of Controlled Release, 2007, 122, 261-268.	4.8	59
7	Scanning probe microscopy in the field of drug delivery. Advanced Drug Delivery Reviews, 2007, 59, 1453-1473.	6.6	44
8	Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials, 2007, 28, 1889-1899.	5.7	231
9	Biodegradable Films Developed by Electrospray Deposition for Sustained Drug Delivery. Journal of Pharmaceutical Sciences, 2008, 97, 3109-3122.	1.6	33
10	Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)â€vitamin E TPGS nanoparticles for cellular and molecular imaging. Biotechnology and Bioengineering, 2008, 101, 622-633.	1.7	41
11	Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 2008, 364, 298-327.	2.6	672
12	Are Inhaled Systemic Therapies a Viable Option for the Treatment of the Elderly Patient?. Drugs and Aging, 2008, 25, 89-94.	1.3	16
13	Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine, 2008, 3, 367-393.	1.7	81
14	Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials, 2009, 30, 1176-1183.	5.7	224
15	Time-of-flight secondary-ion mass spectrometry for the surface characterization of solid-state pharmaceuticals. Journal of Pharmacy and Pharmacology, 2010, 59, 251-259.	1.2	19
16	Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids and Surfaces B: Biointerfaces, 2010, 81, 521-529.	2.5	108
17	PolÃmeros sintéticos biodegradÃ;veis: matérias-primas e métodos de produção de micropartÃculas para uso em drug delivery e liberação controlada. Polimeros, 2011, 21, 286-292.	0.2	4
18	Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydrate Polymers. 2011. 86. 505-512.	5.1	116

#	Article	IF	CITATIONS
19	Docetaxel-Loaded Pluronic P123 Polymeric Micelles: in Vitro and in Vivo Evaluation. International Journal of Molecular Sciences, 2011, 12, 1684-1696.	1.8	97
20	Investigation of a novel 3-fluid nozzle spray drying technology for the engineering of multifunctional layered microparticles. Expert Opinion on Drug Delivery, 2012, 9, 1463-1474.	2.4	22
21	A Novel Monomethoxy Polyethylene Glycol–Polylactic Acid Polymeric Micelles with Higher Loading Capacity for Docetaxel and Well-Reconstitution Characteristics and Its Anti-metastasis Study. Chemical and Pharmaceutical Bulletin, 2012, 60, 1146-1154.	0.6	9
22	Ultrasound-promoted tosylation of oligo(ethylene glycols). Ultrasonics Sonochemistry, 2012, 19, 1201-1204.	3.8	4
23	Preparation and evaluation of a sustained-release suspension containing theophylline microcapsules. African Journal of Pharmacy and Pharmacology, 2012, 6, .	0.2	2
24	Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012, 33, 4889-4906.	5.7	493
25	Preparation and evaluation of polymer based microcarriers for all-trans-retinoic acid. Pharmaceutical Development and Technology, 2013, 18, 1017-1025.	1.1	3
26	Critical Solvent Properties Affecting the Particle Formation Process and Characteristics of Celecoxib-Loaded PLGA Microparticles via Spray-Drying. Pharmaceutical Research, 2013, 30, 1065-1076.	1.7	59
27	Improved anti-tumor efficiency against prostate cancer by docetaxel-loaded PEG-PCL micelles. Journal of Huazhong University of Science and Technology [Medical Sciences], 2014, 34, 66-75.	1.0	8
28	Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration. Colloids and Surfaces B: Biointerfaces, 2014, 114, 20-27.	2.5	97
29	Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, 2015, 223, 40-54.	7.0	447
30	Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity. International Journal of Pharmaceutics, 2015, 485, 249-260.	2.6	39
31	A comparative study on the effect of docetaxel-albumin nanoparticles and docetaxel-loaded PEG-albumin nanoparticles against non-small cell lung cancer. International Journal of Oncology, 2015, 47, 1945-1953.	1.4	9
32	<i>In vitro</i> and <i>in vivo</i> study of Baicalin-loaded mixed micelles for oral delivery. Drug Delivery, 2016, 23, 1-7.	2.5	21
33	New Oral Formulation and in Vitro Evaluation of Docetaxel-Loaded Nanomicelles. Molecules, 2016, 21, 1265.	1.7	11
34	Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor. Pancreas, 2016, 45, 1158-1166.	0.5	19
35	Docetaxel-loaded PEG-albumin nanoparticles with improved antitumor efficiency against non-small cell lung cancer. Oncology Reports, 2016, 36, 871-876.	1.2	7
36	<scp>d</scp> -α-Tocopheryl polyethylene glycol 1000 succinate conjugated folic acid nanomicelles: towards enhanced bioavailability, stability, safety, prolonged drug release and synergized anticancer effect of plumbagin. RSC Advances, 2016, 6, 78106-78121.	1.7	23

#	Article	IF	Citations
37	PLA micro- and nano-particles. Advanced Drug Delivery Reviews, 2016, 107, 176-191.	6.6	241
38	Biotinylated N-palmitoyl chitosan for design of drug loaded self-assembled nanocarriers. European Polymer Journal, 2016, 81, 284-294.	2.6	26
39	Increasing the affinity of cationized polyacrylamide-paclitaxel nanoparticles towards colon cancer cells by a surface recognition peptide. International Journal of Pharmaceutics, 2017, 531, 281-291.	2.6	25
40	Investigation of Polymer/Surfactant Interactions and Their Impact on Itraconazole Solubility and Precipitation Kinetics for Developing Spray-Dried Amorphous Solid Dispersions. Molecular Pharmaceutics, 2018, 15, 962-974.	2.3	57
41	Preparation and <i>in vitro</i> and <i>in vivo</i> evaluation of quercetin-loaded mixed micelles for oral delivery. Bioscience, Biotechnology and Biochemistry, 2018, 82, 238-246.	0.6	27
42	Impact of polymer geometry on the interactions of protein-PEG conjugates. Biophysical Chemistry, 2018, 236, 22-30.	1.5	13
43	Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting. Advanced Healthcare Materials, 2019, 8, e1900352.	3.9	23
44	Optimisation of the microencapsulation of lavender oil by spray drying. Journal of Microencapsulation, 2019, 36, 250-266.	1.2	31
45	Spray drying as an advantageous strategy for enhancing pharmaceuticals bioavailability. Drug Delivery and Translational Research, 2020, 10, 1-12.	3.0	45
46	Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech, 2021, 22, 111.	1.5	11
47	Formulation, Solubilization, and In Vitro Characterization of Quercetin-Incorporated Mixed Micelles of PEO-PPO-PEO Block Copolymers. Applied Biochemistry and Biotechnology, 2022, 194, 445-463.	1.4	15
48	Polymeric Nanoparticles forÂTargeted Delivery ofÂBioactive Agents and Drugs. , 2013, , 593-616.		0
49	Solid solutions vs. solid dispersions: the impact of formulation parameters. Biomedical and Biopharmaceutical Research, 2013, 10, 235-248.	0.0	1
50	Vitamin E TPGS as a Molecular Biomaterial for Drug Delivery. , 2014, , 939-981.		0
51	Supramolecular aggregates of myricetin improve its bioavailability and its role in counteracting alcoholism. Journal of Drug Delivery Science and Technology, 2022, 74, 103515.	1.4	2
52	Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin. Food Hydrocolloids for Health, 2023, 3, 100113.	1.6	2

CITATION REPORT