Hyaluronic acid hydrogel as Nogo-66 receptor antibody of injured rat brain: in vitro

Journal of Controlled Release 102, 13-22 DOI: 10.1016/j.jconrel.2004.09.025

Citation Report

#	Article	IF	CITATIONS
1	Drug delivery strategies using polysaccharidic gels. Expert Opinion on Drug Delivery, 2006, 3, 395-404.	5.0	69
2	The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience, 2006, 137, 519-529.	2.3	59
3	Formulation and delivery issues for monoclonal antibody therapeutics. Advanced Drug Delivery Reviews, 2006, 58, 686-706.	13.7	308
4	An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials (Bristol), 2007, 2, 233-240.	3.3	59
5	Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Medical Hypotheses, 2007, 69, 1234-1237.	1.5	52
6	Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide. European Polymer Journal, 2007, 43, 2672-2681.	5.4	43
7	Electric-field-controlled synthesis of HPMA hydrogels containing self-organized arrays of micro-channels. Journal of Polymer Science Part A, 2007, 45, 2593-2600.	2.3	1
8	Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release, 2007, 119, 5-24.	9.9	855
9	Incorporation of cytochrome C with thin calcium phosphate film formed by electron-beam evaporation. Surface and Coatings Technology, 2008, 202, 5742-5745.	4.8	8
10	Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 2008, 57, 397-430.	3.1	829
11	Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcuszooepidemicus. Food Chemistry, 2008, 110, 923-926.	8.2	18
12	Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Letters in Applied Microbiology, 2008, 46, 383-388.	2.2	62
13	Drug Delivery and Medical Applications of Chemically Modified Hyaluronan. , 2008, , 333-357.		8
14	Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 2008, 109, 715-722.	1.6	40
15	Functionalization of Polymer Surface for Nerve Repair. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 231-244.	0.3	4
16	Hyaluronic Acid Hydrogel Modified with Nogo-66 Receptor Antibody and Poly(L-Lysine) Enhancement of Adherence and Survival of Primary Hippocampal Neurons. Journal of Bioactive and Compatible Polymers, 2009, 24, 205-219.	2.1	23
17	Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. Journal of Neuroscience Research, 2009, 87, 3207-3220.	2.9	97
18	Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomaterialia, 2009, 5, 2385-2397.	8.3	177

ATION REDO

#	Article	IF	CITATIONS
19	Fabrication and characterization of hyaluronic-acid-based antigen sensitive degradable hydrogel. Frontiers of Materials Science in China, 2009, 3, 353-358.	0.5	2
20	Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus. Bioresource Technology, 2009, 100, 362-367.	9.6	38
21	A quantitative ELISA for bioactive anti-Nogo-A, a promising regenerative molecule for spinal cord injury repair. Methods, 2009, 47, 104-108.	3.8	9
23	Interactions between neural stem cells and biomaterials combined with biomolecules. Frontiers of Materials Science in China, 2010, 4, 325-331.	0.5	1
24	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	4.0	35
25	Hyaluronic acid hydrogel modified with nogoâ€66 receptor antibody and polyâ€ <scp>L</scp> â€lysine to promote axon regrowth after spinal cord injury. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 110-117.	3.4	92
26	The repair of the injured adult rat hippocampus with NT-3-chitosan carriers. Biomaterials, 2010, 31, 2184-2192.	11.4	44
27	Colloidal drug carries from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications. Carbohydrate Polymers, 2010, 82, 997-1003.	10.2	41
28	Cell-Laden Hydrogel Constructs of Hyaluronic Acid, Collagen, and Laminin for Neural Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 1703-1716.	3.1	173
29	Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter, 2010, 6, 5120.	2.7	63
30	High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. Journal of Neural Engineering, 2011, 8, 046033.	3.5	174
31	Hydrogels in Spinal Cord Injury Repair Strategies. ACS Chemical Neuroscience, 2011, 2, 336-345.	3.5	142
32	Materials for central nervous system regeneration: bioactive cues. Journal of Materials Chemistry, 2011, 21, 7033.	6.7	42
33	Bioengineered Scaffolds for Spinal Cord Repair. Tissue Engineering - Part B: Reviews, 2011, 17, 177-194.	4.8	75
34	A Mini Review on Interactions Between Neural Stem Cells and Biomaterials. Recent Patents on Regenerative Medicine, 2011, 1, 19-29.	0.4	0
35	Neural stem cell niches: Roles for the hyaluronan-based extracellular matrix. Frontiers in Bioscience - Scholar, 2011, S3, 1165.	2.1	135
36	Biomaterials for Spinal Cord Repair. , 2011, , 483-494.		0
37	Combination of Hyaluronic Acid Hydrogel Scaffold and PLGA Microspheres for Supporting Survival of Neural Stem Cells. Pharmaceutical Research, 2011, 28, 1406-1414.	3.5	112

\sim	 ON	D -		
			DO	12
		IVL	10	IX I

#	Article	IF	CITATIONS
38	Preparation of Cross-Linked Sodium Hyaluronate Gels with Different Molecular Weights of PEG and Research for its Viscoelasticity and Enzyme-Resistant Properties <i>In Vitro</i> . Advanced Materials Research, 0, 399-401, 1552-1558.	0.3	0
39	The Comparison of Physicochemical Properties of Four Cross-Linked Sodium Hyaluronate Gels with Different Cross-Linking Agents. Advanced Materials Research, 2011, 396-398, 1506-1512.	0.3	0
40	Scaffolds to promote spinal cord regeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 575-594.	1.8	56
41	Preparation and Characterization of Hyaluronic Acid Hydrogel Blends with Gelatin. Journal of Macromolecular Science - Physics, 2012, 51, 2392-2400.	1.0	18
42	Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus, 2012, 2, 278-291.	3.0	114
43	Using polymeric materials to control stem cell behavior for tissue regeneration. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 63-81.	3.6	40
44	Scaffolds for central nervous system tissue engineering. Frontiers of Materials Science, 2012, 6, 1-25.	2.2	41
45	Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering. Frontiers of Materials Science, 2013, 7, 269-284.	2.2	45
46	A novel family of biodegradable hybrid hydrogels from arginine-based poly(ester amide) and hyaluronic acid precursors. Soft Matter, 2013, 9, 3965.	2.7	46
47	Acid-degradable polymers for drug delivery: a decade of innovation. Chemical Communications, 2013, 49, 2082.	4.1	352
48	Directing neural stem cell fate with biomaterial parameters for injured brain regeneration. Progress in Natural Science: Materials International, 2013, 23, 103-112.	4.4	36
49	Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 2013, 14, 1085-1092.	5.4	269
50	Effect of Chemical Cross-linking on Properties of Gelatin/Hyaluronic Acid Composite Hydrogels. Polymer-Plastics Technology and Engineering, 2013, 52, 45-50.	1.9	50
51	Neural ECM mimetics. Progress in Brain Research, 2014, 214, 391-413.	1.4	19
52	Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35, 4969-4985.	11.4	629
53	Influence of Process Variables on the Physical Properties of Gelatin/SA/HYA Composite Hydrogels. Polymer-Plastics Technology and Engineering, 2014, 53, 935-940.	1.9	5
54	Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain?. Materials Today, 2014, 17, 332-340.	14.2	77
55	Hydrogels for tissue engineering and regenerative medicine. Journal of Materials Chemistry B, 2014, 2, 5319-5338.	5.8	289

CITATION REPORT

#	Article	IF	CITATIONS
56	Controlled release of therapeutic antibody formats. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 291-309.	4.3	40
57	Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. Journal of Controlled Release, 2014, 190, 219-227.	9.9	94
58	Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. International Journal of Nanomedicine, 2014, 9, 2539.	6.7	143
59	The Experimental Therapy on Brain Ischemia by Improvement of Local Angiogenesis with Tissue Engineering in the Mouse. Cell Transplantation, 2014, 23, 83-95.	2.5	60
60	Stabilizing Hepatocellular Phenotype Using Optimized Synthetic Surfaces. Journal of Visualized Experiments, 2014, , 51723.	0.3	2
61	Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. International Journal of Energy Production and Management, 2015, 2, 31-45.	3.7	133
62	In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale, 2015, 7, 5468-5475.	5.6	53
63	Mimicking biological phenomena in hydrogel-based biomaterials to promote dynamic cellular responses. Journal of Materials Chemistry B, 2015, 3, 7867-7880.	5.8	27
64	Hyaluronic acid and neural stem cells: implications for biomaterial design. Journal of Materials Chemistry B, 2015, 3, 7850-7866.	5.8	50
66	Controlled release of an anthrax toxinâ€neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels. Journal of Biomedical Materials Research - Part A, 2016, 104, 113-123.	4.0	20
67	Production of hyaluronicâ€acidâ€based cellâ€enclosing microparticles and microcapsules via enzymatic reaction using a microfluidic system. Journal of Applied Polymer Science, 2016, 133, .	2.6	34
68	Controlled delivery of antibodies from injectable hydrogels. Materials Science and Engineering C, 2016, 59, 801-806.	7.3	30
69	Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 2016, 83, 233-248.	11.4	103
70	A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomaterialia, 2017, 51, 304-316.	8.3	117
71	Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks. Biomacromolecules, 2017, 18, 683-694.	5.4	17
72	Antibodies and associates: Partners in targeted drug delivery. , 2017, 177, 129-145.		52
73	Recent advances to accelerate re-endothelialization for vascular stents. Journal of Tissue Engineering, 2017, 8, 204173141773154.	5.5	69
74	7.31 Biomaterials for Spinal Cord Repair. , 2017, , 628-641.		0

\mathbf{C}	TAT		DEDC	NDT.
C.	IAI	ION.	REPC	лкт

#	Article	IF	CITATIONS
75	Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Engineering and Regenerative Medicine, 2018, 15, 531-546.	3.7	101
76	Controlled release of monoclonal antibodies from poly-l-lysine-coated alginate spheres within a scaffolded implant mitigates autoimmune responses to transplanted islets and limits systemic antibody toxicity. Materials Science and Engineering C, 2018, 93, 390-398.	7.3	15
77	Hydrogel Scaffolds: Towards Restitution of Ischemic Stroke-Injured Brain. Translational Stroke Research, 2019, 10, 1-18.	4.2	41
78	Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics, 2019, 11, 407.	4.5	177
79	Injectable in situ dual-crosslinking hyaluronic acid and sodium alginate based hydrogels for drug release. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 995-1007.	3.5	31
80	Hydrogel systems and their role in neural tissue engineering. Journal of the Royal Society Interface, 2020, 17, 20190505.	3.4	112
81	Effects of oxygen generating scaffolds on cell survival and functional recovery following acute spinal cord injury in rats. Journal of Materials Science: Materials in Medicine, 2020, 31, 115.	3.6	5
82	Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells, 2020, 9, 1074.	4.1	32
83	Temperature-dependent formulation of a hydrogel based on Hyaluronic acid-polydimethylsiloxane for biomedical applications. Heliyon, 2020, 6, e03494.	3.2	24
84	Progress toward finding the perfect match: hydrogels for treatment of central nervous system injury. Materials Today Advances, 2020, 6, 100039.	5.2	22
85	Modified biopolymer-based systems for drug delivery to the brain. , 2021, , 571-611.		2
86	Hydrogel-based local drug delivery strategies for spinal cord repair. Neural Regeneration Research, 2021, 16, 247.	3.0	20
87	Wielding the Doubleâ€Edged Sword of Inflammation: Building Biomaterialâ€Based Strategies for Immunomodulation in Ischemic Stroke Treatment. Advanced Functional Materials, 2021, 31, 2010674.	14.9	10
88	Design Challenges in Polymeric Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617141.	4.1	82
89	Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 6758.	4.1	73
90	Extracellular Matrixâ€Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastinâ€Like Polypeptide Hydrogels. Advanced Healthcare Materials, 2021, 10, e2101329.	7.6	41
91	Formulation and Delivery Issues for Monoclonal Antibody Therapeutics. , 2010, , 103.		5
92	Spinal Cord Repair by Means of Tissue Engineered Scaffolds. , 2013, , 485-547.		1

CITATION REPORT

#	Article	IF	CITATIONS
93	Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering. Neural Regeneration Research, 2020, 15, 783.	3.0	25
94	The application of hydrogels to spinal cord injury. European Journal of BioMedical Research, 2016, 2, 57.	0.2	0
96	Injectable immunogel based on polymerized phenylboronic acid and mannan for cancer immunotherapy. Journal of Controlled Release, 2022, 345, 138-146.	9.9	7
97	Evaluation of bone regeneration ability of Mg mesh coated with calcium phosphate by cyclic precalcification treatment. Korean Journal of Dental Materials, 2021, 48, 229-244.	0.1	0
98	Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. Journal of Pharmaceutical Sciences, 2022, 111, 2968-2982.	3.3	6
99	Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury. Nanoscale, 2022, 14, 18217-18230.	5.6	9
100	Advancements in Hydrogel Application for Ischemic Stroke Therapy. Gels, 2022, 8, 777.	4.5	6
101	Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels, 2023, 9, 588.	4.5	8
102	Monoclonal antibodies: recent development in drug delivery. , 2024, , 79-102.		0
103	Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. International Journal of Biological Macromolecules, 2024, 254, 127708.	7.5	1
104	Bicomponent hydrogel laden with TGF-β3-nucleus pulposus stem cells for disc degeneration repair. Chemical Engineering Journal, 2024, 479, 147788.	12.7	1
105	A Promising Application of Injectable Hydrogels in Nerve Repair and Regeneration for Ischemic Stroke. International Journal of Nanomedicine, 0, Volume 19, 327-345.	6.7	1
106	Perspective insights into versatile hydrogels for stroke: From molecular mechanisms to functional applications. Biomedicine and Pharmacotherapy, 2024, 173, 116309.	5.6	0