On the limits of infants' quantification of small object an

Cognition 97, 295-313 DOI: 10.1016/j.cognition.2004.09.010

Citation Report

#	Article	IF	CITATIONS
1	Analog number representations in mongoose lemurs (Eulemur mongoz): evidence from a search task. Animal Cognition, 2005, 8, 247-252.	0.9	54
2	Children's Early Understanding of Mass-Count Syntax: Individuation, Lexical Content, and the Number Asymmetry Hypothesis. Language Learning and Development, 2006, 2, 163-194.	0.7	61
3	Acquisition of English Number Marking: The Singular-Plural Distinction. Language Learning and Development, 2006, 2, 1-25.	0.7	172
4	Interrupting infants' persisting object representations: an object-based limit?. Developmental Science, 2006, 9, F50-F58.	1.3	33
5	Quantity discrimination in female mosquitofish. Animal Cognition, 2006, 10, 63-70.	0.9	117
6	Overflow, access, and attention. Behavioral and Brain Sciences, 2007, 30, 530-548.	0.4	26
7	Sortal concepts, object individuation, and language. Trends in Cognitive Sciences, 2007, 11, 400-406.	4.0	142
8	Evolutionary Linguistics: A New Look at an Old Landscape. Language Learning and Development, 2007, 3, 101-132.	0.7	36
9	On the relation between the acquisition of singular–plural morphoâ€syntax and the conceptual distinction between one and more than one. Developmental Science, 2007, 10, 365-373.	1.3	138
10	One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 2007, 105, 395-438.	1.1	605
11	From grammatical number to exact numbers: Early meanings of â€~one', â€~two', and â€~three' in En Russian, and Japanese. Cognitive Psychology, 2007, 55, 136-168.	glish,	189
12	Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 2008, 11, 495-503.	0.9	250
13	Changes in the Ability to Detect Ordinal Numerical Relationships Between 9 and 11 Months of Age. Infancy, 2008, 13, 308-337.	0.9	58
14	Quantitative competencies in infancy. Developmental Science, 2008, 11, 803-808.	1.3	87
15	In Defense of Qualitative Changes in Development. Child Development, 2008, 79, 1606-1624.	1.7	85
16	Free-ranging rhesus monkeys spontaneously individuate and enumerate small numbers of non-solid portions. Cognition, 2008, 106, 207-221.	1.1	62
17	Parallel non-verbal enumeration is constrained by a set-based limit. Cognition, 2008, 107, 1-18.	1.1	34
18	Why the verbal counting principles are constructed out of representations of small sets of individuals: A reply to Gallistel. Cognition, 2008, 107, 650-662.	1.1	21

#	Article	IF	CITATIONS
19	Evidence for a non-linguistic distinction between singular and plural sets in rhesus monkeys. Cognition, 2008, 107, 603-622.	1.1	85
20	Establishing object correspondence across eye movements: Flexible use of spatiotemporal and surface feature information. Cognition, 2008, 109, 66-88.	1.1	57
21	Detecting impossible changes in infancy: a three-system account. Trends in Cognitive Sciences, 2008, 12, 17-23.	4.0	54
22	Innate Ideas Revisited: For a Principle of Persistence in Infants' Physical Reasoning. Perspectives on Psychological Science, 2008, 3, 2-13.	5.2	127
23	Conceptual knowledge increases infants' memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9926-9930.	3.3	101
24	What is still needed? On nativist proposals for acquiring concepts of natural numbers. Behavioral and Brain Sciences, 2008, 31, 646-647.	0.4	0
25	Distinct Cerebral Pathways for Object Identity and Number in Human Infants. PLoS Biology, 2008, 6, e11.	2.6	190
26	Discrimination of small numerosities in young chicks Journal of Experimental Psychology, 2008, 34, 388-399.	1.9	127
27	The development of language and abstract concepts: The case of natural number Journal of Experimental Psychology: General, 2008, 137, 22-38.	1.5	221
28	Number-Based Visual Generalisation in the Honeybee. PLoS ONE, 2009, 4, e4263.	1.1	164
29	One vs. more than one: antecedents to plural marking in early language acquisition. Linguistics, 2009, 47, .	0.5	50
30	Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2451-2460.	1.2	169
31	How Humans Count: Numerosity and the Parietal Cortex. Neuroscientist, 2009, 15, 261-273.	2.6	120
32	Spontaneous number representation in mosquitofish. Cognition, 2009, 112, 343-348.	1.1	85
33	Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface feature cues. Cognition, 2009, 113, 150-166.	1.1	67
34	Finding one's meaning: A test of the relation between quantifiers and integers in language developmentâ~†. Cognitive Psychology, 2009, 58, 195-219.	0.9	153
35	Young infants' reasoning about physical events involving inert and self-propelled objects. Cognitive Psychology, 2009, 58, 441-486.	0.9	104
36	Representation of Principled Connections: A Window Onto the Formal Aspect of Common Sense Conception. Cognitive Science, 2009, 33, 401-448.	0.8	131

#	Article	IF	CITATIONS
37	The relative salience of discrete and continuous quantity in young infants. Developmental Science, 2009, 12, 453-463.	1.3	110
38	THIS ARTICLE HAS BEEN RETRACTED: Enumeration of objects and substances in nonâ€human primates: experiments with brown lemurs (<i>Eulemur fulvus</i>). Developmental Science, 2009, 12, 920-928.	1.3	12
39	Limits on Infants' Ability to Dynamically Update Object Representations. Infancy, 2009, 14, 244-262.	0.9	15
40	Levels of number knowledge during early childhood. Journal of Experimental Child Psychology, 2009, 103, 325-337.	0.7	124
41	Does the conceptual distinction between singular and plural sets depend on language?. Developmental Psychology, 2009, 45, 1644-1653.	1.2	59
42	Understanding Mathematical Giftedness: Integrating Self, Action Repertoires and the Environment. , 2009, , 671-698.		8
43	Acquisition of singular-plural morphology Developmental Psychology, 2009, 45, 202-206.	1.2	39
44	Crossing the divide: Infants discriminate small from large numerosities Developmental Psychology, 2009, 45, 1583-1594.	1.2	128
46	Binding objects to locations: The relationship between object files and visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 543-564.	0.7	85
47	"Counting" by pigeons: Discrimination of the number of biologically relevant sequential events. Learning and Behavior, 2010, 38, 169-176.	0.5	10
48	A modular geometric mechanism for reorientation in children. Cognitive Psychology, 2010, 61, 152-176.	0.9	79
49	Spontaneous analog number representations in 3â€yearâ€old children. Developmental Science, 2010, 13, 289-297.	1.3	51
50	Developmental profiles for multiple object tracking and spatial memory: typically developing preschoolers and people with Williams syndrome. Developmental Science, 2010, 13, 430-440.	1.3	33
51	Imprinted numbers: newborn chicks' sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 2010, 13, 790-797.	1.3	69
52	Beyond Fast Mapping. Language Learning and Development, 2010, 6, 184-205.	0.7	114
53	Are number gestures easier than number words for preschoolers?. Cognitive Development, 2010, 25, 247-261.	0.7	34
54	Small subitizing range in people with Williams syndrome. Visual Cognition, 2011, 19, 289-312.	0.9	22
55	Spatial Attention Determines the Nature of Nonverbal Number Representation. Journal of Cognitive	1.1	57

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
56	Two Systems of Non-Symbolic Numerical Cognition. Frontiers in Human Neuroscience, 2011, 5, 150.	1.0	125
57	Neural signatures of number processing in human infants: evidence for two core systems underlying numerical cognition. Developmental Science, 2011, 14, 360-371.	1.3	125
58	The origin of counting: A study of the early meaning of â€~one', â€~two' and â€~three' among Basqu Spanish-speaking children. Educational Studies in Mathematics, 2011, 76, 345-361.	e- and 1.8	8
59	Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Animal Cognition, 2011, 14, 103-115.	0.9	96
60	Spontaneous discrimination of small quantities: shoaling preferences in angelfish (Pterophyllum) Tj ETQq0 0 0 rg	gBT/Qverlo	ock 10 Tf 50 5

61	Number words, quantifiers, and principles of word learning. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 639-645.	1.4	10
62	Memory for multiple visual ensembles in infancy Journal of Experimental Psychology: General, 2011, 140, 141-158.	1.5	40
63	Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology, 2012, 29, 213-236.	0.4	140
64	Bootstrapping Numeral Meanings and the Origin of Exactness. Language Learning and Development, 2012, 8, 177-185.	0.7	15
65	Object Function Facilitates Infants' Object Individuation in a Manual Search Task. Journal of Cognition and Development, 2012, 13, 152-173.	0.6	4
66	Object Individuation and Physical Reasoning in Infancy: An Integrative Account. Language Learning and Development, 2012, 8, 4-46.	0.7	104
67	Where the Sidewalk Ends: The Limits of Social Constructionism. Journal for the Theory of Social Behaviour, 2012, 42, 465-484.	0.8	5
68	Seven-month-old infants chunk items in memory. Journal of Experimental Child Psychology, 2012, 112, 361-377.	0.7	28
69	Toddlers Use the Number Feature in Determiners During Online Noun Comprehension. Child Development, 2012, 83, 2007-2018.	1.7	8
70	Memory load affects object individuation in 18-month-old infants. Journal of Experimental Child Psychology, 2012, 113, 322-336.	0.7	31
71	The Importance of Being Relevant. Frontiers in Psychology, 2012, 3, 309.	1.1	7
72	Prosimian Primates Show Ratio Dependence in Spontaneous Quantity Discriminations. Frontiers in Psychology, 2012, 3, 550.	1.1	25
73	Aquisição da linguagem e habilidades cognitivas superiores: o papel da lÃngua no desenvolvimento da cognição numérica. ALFA: Revista De LinguÃstica, 2012, 56, 557-581.	0.1	0

#	Article	IF	CITATIONS
74	Physics for infants: characterizing the origins of knowledge about objects, substances, and number. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 19-27.	1.4	86
75	Individuation of multiple targets during visual enumeration: New insights from electrophysiology. Neuropsychologia, 2012, 50, 754-761.	0.7	60
76	Small and large number discrimination in guppies. Animal Cognition, 2012, 15, 215-221.	0.9	74
77	Infants hierarchically organize memory representations. Developmental Science, 2013, 16, 610-621.	1.3	31
78	One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animal Cognition, 2013, 16, 557-564.	0.9	77
79	Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition, 2013, 128, 331-352.	1.1	150
80	Factors influencing infants' ability to update object representations in memory. Cognitive Development, 2013, 28, 272-289.	0.7	11
81	The foundations of object permanence: Does perceived cohesion determine infants' appreciation of the continuous existence of material objects?. Cognition, 2013, 128, 397-406.	1.1	31
82	What's the object of object working memory in infancy? Unraveling â€~what' and â€~how many'. Coş Psychology, 2013, 66, 380-404.	gnitiye 0.9	41
83	Training Planning and Working Memory in Third Graders. Mind, Brain, and Education, 2013, 7, 136-146.	0.9	23
84	Infants use different mechanisms to make small and large number ordinal judgments. Journal of Experimental Child Psychology, 2013, 114, 102-110.	0.7	51
85	Discrimination of small quantities by fish (redtail splitfin, Xenotoca eiseni). Animal Cognition, 2013, 16, 307-312.	0.9	57
86	The Limit of Mental Structures. Journal of General Psychology, 2013, 140, 243-250.	1.6	9
87	The development of individuation in autism Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 494-509.	0.7	22
88	Evolution of working memory. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10371-10378.	3.3	89
89	Infants Show Ratioâ€dependent Number Discrimination Regardless of Set Size. Infancy, 2013, 18, 927-941.	0.9	54
90	Grounded object individuation by a humanoid robot. , 2013, , .		7
91	How Children Determine the Size of 3D Structures: Investigating Factors Influencing Strategy Choice. Cognition and Instruction, 2013, 31, 29-61.	1.9	13

#	Article	IF	CITATIONS
92	The New Puzzle of Theory of Mind Development. , 2013, , 107-112.		16
95	Development of numerical concepts. South African Journal of Childhood Education, 2013, 3, .	0.2	0
96	Numerical Abstraction in Young Domestic Chicks (Gallus gallus). PLoS ONE, 2013, 8, e65262.	1.1	50
97	Working Memory Capacity as a Dynamic Process. Frontiers in Psychology, 2012, 3, 567.	1.1	54
98	1ââ,¬â€°<ââ,¬â€°2 and 2ââ,¬â€°<ââ,¬â€°3: Non-Linguistic Appreciations of Numerical Order. Frontiers Psychology, 2013, 4, 5.	in 1.1	13
99	Inherently Analog Quantity Representations in Olive Baboons (Papio anubis). Frontiers in Psychology, 2013, 4, 253.	1.1	48
100	Counting on the motor system: Rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. Journal of Vision, 2014, 14, 30-30.	0.1	19
101	Young children's spontaneous attention to exact quantity and verbal quantification skills. European Journal of Developmental Psychology, 2014, 11, 608-623.	1.0	9
102	Social Knowledge Facilitates Chunking in Infancy. Child Development, 2014, 85, 1477-1490.	1.7	34
103	Visual Shortâ€Term Memory for Complex Objects in 6―and 8â€Monthâ€Old Infants. Child Development, 2014, 85, 564-577.	1.7	30
104	Dissociation between small and large numerosities in newborn infants. Developmental Science, 2014, 17, 11-22.	1.3	60
105	Non-visual numerical discrimination in a blind cavefish (<i>Phreatichthys andruzzii</i>). Journal of Experimental Biology, 2014, 217, 1902-1909.	0.8	25
106	Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Animal Cognition, 2014, 17, 307-316.	0.9	41
107	Deictic Imaginings: Semiosis at Work and at Play. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2014, , .	0.2	13
108	Developmental origins of recoding and decoding in memory. Cognitive Psychology, 2014, 75, 55-79.	0.9	20
109	Brain dynamics of attention and working memory engagement in subitizing. Brain Research, 2014, 1543, 244-252.	1.1	34
110	Two core systems of numerical representation in infants. Developmental Review, 2014, 34, 1-25.	2.6	44
111	From small to large: Numerical discrimination by young domestic chicks (Gallus gallus) Journal of Comparative Psychology (Washington, D C: 1983), 2014, 128, 163-171.	0.3	50

#	Article	IF	CITATIONS
112	Angelfish (Pterophyllum scalare) discriminate between small quantities: A role of memory Journal of Comparative Psychology (Washington, D C: 1983), 2015, 129, 78-83.	0.3	19
113	The development of adaptive conformity in young children: effects of uncertainty and consensus. Developmental Science, 2015, 18, 511-524.	1.3	86
114	Numerical representations and intuitions of probabilities at 12Âmonths. Developmental Science, 2015, 18, 183-193.	1.3	23
115	Crossmodal Discrimination of 2 vs. 4 Objects across Touch and Vision in 5-Month-Old Infants. PLoS ONE, 2015, 10, e0120868.	1.1	8
116	Memory Development from Early Childhood Through Emerging Adulthood. , 2015, , .		56
117	Array heterogeneity prevents catastrophic forgetting in infants. Cognition, 2015, 136, 365-380.	1.1	22
118	Gesture as a window onto children's number knowledge. Cognition, 2015, 144, 14-28.	1.1	59
119	The sense of small number discrimination: The predictive value in infancy and toddlerhood for numerical competencies in kindergarten. Learning and Individual Differences, 2015, 39, 150-157.	1.5	4
120	At the Root of Math. Advances in Mathematical Cognition and Learning, 2015, 1, 3-33.	0.5	6
121	Foundations of Number and Space Representations in Non-Human Species. Advances in Mathematical Cognition and Learning, 2015, 1, 35-66.	0.5	11
122	Numerical Cognition and Quantitative Abilities in Nonhuman Primates. Advances in Mathematical Cognition and Learning, 2015, 1, 91-119.	0.5	14
123	Evolutionary and Developmental Continuities in Numerical Cognition. Advances in Mathematical Cognition and Learning, 2015, 1, 123-144.	0.5	4
124	The Small–Large Divide. Advances in Mathematical Cognition and Learning, 2015, , 253-276.	0.5	5
125	Enumeration Processes under Attack: The Role of Working Memory in Subitizing and Serial Counting. Journal of Forensic Psychology, 2016, 01, .	0.1	2
126	Going for More: Discrete and Continuous Quantity Judgments by Nonhuman Animals. , 2016, , 175-192.		12
127	Oscillatory Activity in the Infant Brain and the Representation of Small Numbers. Frontiers in Systems Neuroscience, 2016, 10, 4.	1.2	5
128	Compositional Reasoning in Early Childhood. PLoS ONE, 2016, 11, e0147734.	1.1	7
129	Spontaneous nonâ€verbal counting in toddlers. Developmental Science, 2016, 19, 329-337.	1.3	26

#	Article	IF	CITATIONS
130	Delayed Match Retrieval: a novel anticipationâ€based visual working memory paradigm. Developmental Science, 2016, 19, 892-900.	1.3	21
131	Different Faces of Language in Numerical Development. , 2016, , 127-150.		5
132	Counting on your friends: The role of social environment on quantity discrimination. Behavioural Processes, 2016, 128, 9-16.	0.5	9
133	Cognitive and brain systems underlying early mathematical development. Progress in Brain Research, 2016, 227, 75-103.	0.9	20
135	Core mathematical abilities in infants. Progress in Brain Research, 2016, 227, 53-74.	0.9	13
136	Symbolic representation of the number three: a study with three-year-old children from contrasting socioeconomic environments. Journal of Cognitive Psychology, 2016, 28, 743-755.	0.4	6
137	Visual working memory capacity increases between ages 3 and 8 years, controlling for gains in attention, perception, and executive control. Attention, Perception, and Psychophysics, 2016, 78, 1556-1573.	0.7	18
138	Analog Magnitudes Support Large Number Ordinal Judgments in Infancy. Perception, 2016, 45, 32-43.	0.5	1
139	Discrimination of large quantities: Weber's law and short-term memory in angelfish, Pterophyllum scalare. Animal Behaviour, 2016, 112, 29-37.	0.8	20
140	What infants know about the unsaid: Phonological categorization in the absence of auditory input. Cognition, 2016, 152, 53-60.	1.1	5
141	Neural and Behavioral Signatures of Core Numerical Abilities and Early Symbolic Number Development. , 2016, , 51-77.		3
142	Capuchin monkeys (Cebus apella) treat small and large numbers of items similarly during a relative quantity judgment task. Psychonomic Bulletin and Review, 2016, 23, 1206-1213.	1.4	15
143	Infants use temporal regularities to chunk objects in memory. Cognition, 2016, 146, 251-263.	1.1	20
144	A dissociation between small and large numbers in young children's ability to "solve for x―in non-symbolic math problems. Cognition, 2017, 160, 82-90.	1.1	5
145	True Numerical Cognition in the Wild. Psychological Science, 2017, 28, 462-469.	1.8	29
146	Language, procedures, and the non-perceptual origin of number word meanings. Journal of Child Language, 2017, 44, 553-590.	0.8	37
147	The limits of early social evaluation: 9-month-olds fail to generate social evaluations of individuals who behave inconsistently. Cognition, 2017, 167, 255-265.	1.1	18
148	A strategy to improve arithmetical performance in four day-old domestic chicks (Gallus gallus). Scientific Reports, 2017, 7, 13900.	1.6	13

#	Article	IF	CITATIONS
149	Primitive Concepts of Number and the Developing Human Brain. Language Learning and Development, 2017, 13, 191-214.	0.7	11
150	Detailed Visual Memory Capacity Is Present Early in Childhood. Open Mind, 2017, 2, 14-25.	0.6	8
151	Infants' agent individuation: It's what's on the insides that counts. Cognition, 2018, 175, 11-19.	1.1	13
152	Infants Use Category Label Knowledge to Interpret Absent Reference. Infancy, 2018, 23, 650-673.	0.9	2
153	Neuroscience of Mathematical Cognitive Development. , 2018, , .		1
154	Limits on Composition of Conceptual Operations in 9â€Monthâ€Olds. Infancy, 2018, 23, 310-324.	0.9	5
155	Quantity Representation. , 2018, , 43-58.		0
156	Infants use linguistic group distinctions to chunk items in memory. Journal of Experimental Child Psychology, 2018, 172, 149-167.	0.7	11
157	Towards numerical cognition's origin: insights from day-old domestic chicks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160509.	1.8	23
158	Numerical assessment in the wild: insights from social carnivores. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160508.	1.8	28
159	Cognitive access to numbers: the philosophical significance of empirical findings about basic number abilities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160520.	1.8	6
160	Young Children Show Little Sensitivity to the Iconicity in Number Gestures. Language Learning and Development, 2018, 14, 297-319.	0.7	9
161	Attaching meaning to the number words: contributions of the object tracking and approximate number systems. Developmental Science, 2018, 21, e12495.	1.3	46
162	Ontogenetic Origins of Human Integer Representations. Trends in Cognitive Sciences, 2019, 23, 823-835.	4.0	81
163	Infantsâ \in ^{IM} Individuation of Faces by Gender. Brain Sciences, 2019, 9, 163.	1.1	2
165	Infants recognize counting as numerically relevant. Developmental Science, 2019, 22, e12805.	1.3	14
166	One-to-one correspondence without language. Royal Society Open Science, 2019, 6, 190495.	1.1	4
167	Persistence and Accumulation of Visual Memories for Objects in Scenes in 12-Month-Old Infants. Frontiers in Psychology, 2019, 10, 2454.	1.1	1

#	Article	IF	CITATIONS
168	How many fingers am I holding up? The answer depends on children's language background. Developmental Science, 2019, 22, e12781.	1.3	1
169	The Acquisition of Modal Concepts. Trends in Cognitive Sciences, 2020, 24, 65-78.	4.0	50
170	Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks. Scientific Reports, 2020, 10, 16408.	1.6	8
171	Coding of featural information in visual working memory in 2.5-year-old toddlers. Cognitive Development, 2020, 55, 100892.	0.7	5
172	Can Children with Down Syndrome Judge Relative Quantity?. International Journal of Disability Development and Education, 2020, , 1-15.	0.6	0
173	The Effect of Languageâ€Specific Characteristics on English and Japanese Speakers' Ability to Recall Number Information. Cognitive Science, 2020, 44, e12923.	0.8	1
174	Sequential Presentation Protects Working Memory From Catastrophic Interference. Cognitive Science, 2020, 44, e12828.	0.8	4
175	Mathematical Cognition. , 2020, , 311-318.		2
176	Infants' use of motion cues in object individuation processes. Journal of Experimental Child Psychology, 2020, 197, 104868.	0.7	8
177	Receptive number morphosyntax in children with Down syndrome. Language and Cognition, 2020, 12, 679-704.	0.2	1
178	Visual shortâ€ŧerm memory for overtly attended objects during infancy. Infancy, 2020, 25, 347-370.	0.9	7
181	Quantity discrimination in a spontaneous task in a poison frog. Animal Cognition, 2022, 25, 27-32.	0.9	5
182	Small-range numerical representations of linguistic sounds in 9- to 10-month-old infants. Cognition, 2021, 213, 104637.	1.1	5
183	The role of redundant verbal labels in 8- and 10-month-olds' working memory. , 2021, 64, 101617.		1
184	Negative mental representations in infancy. Cognition, 2021, 213, 104599.	1.1	11
185	Children's understanding of the abstract logic of counting. Cognition, 2021, 214, 104790.	1.1	2
187	Evidence-Based Assessment and Intervention for Dyscalculia and Maths Disabilities in School Psychology. , 2017, , 197-213.		5
188	Entwicklung begrifflichen Wissens: Kernwissenstheorien. , 2014, , 122-147.		5

#	Article	IF	CITATIONS
189	Original Knowledge and the Two Cultures. , 2009, , 125-145.		6
190	The Probable and the Possible atÂ12 Months. Advances in Child Development and Behavior, 2012, 43, 1-25.	0.7	13
191	Apes' Tracking of Objects and Collections. Swiss Journal of Psychology, 2014, 73, 47-52.	0.9	1
192	Interference and memory capacity limitations Psychological Review, 2017, 124, 551-571.	2.7	14
193	Catastrophic individuation failures in infancy: A new model and predictions Psychological Review, 2019, 126, 196-225.	2.7	23
194	Beyond â€~what' and â€~how many':. , 2009, , 25-52.		27
196	What Does Knowledge Explain? Commentary on Jennifer Nagel, â€ [~] Knowledge as a Mental State'. , 2013, , 309-320.		6
197	How Counting Leads to Childrenâ \in Ms First Representations of Exact, Large Numbers. , 2014, , .		12
198	Ontogeny of Numerical Abilities in Fish. PLoS ONE, 2010, 5, e15516.	1.1	81
199	Does Grammatical Structure Accelerate Number Word Learning? Evidence from Learners of Dual and Non-Dual Dialects of Slovenian. PLoS ONE, 2016, 11, e0159208.	1.1	59
200	Short-Term Memory Effects on Crossing the Boundary: Discrimination between Large and Small Quantities in Angelfish (Pterophyllum scalare). PLoS ONE, 2016, 11, e0162923.	1.1	9
201	The semantics and pragmatics of plurals. Semantics and Pragmatics, 0, 3, .	0.4	48
202	Where Our Number Concepts Come From. The Journal of Philosophy, 2009, 106, 220-254.	0.3	115
203	Conceptual correlates of counting: Children's spontaneous matching and tracking of large sets reflects their knowledge of the cardinal principle. Journal of Numerical Cognition, 2017, 3, 1-30.	0.6	8
204	Parallel individuation supports numerical comparisons in preschoolers. Journal of Numerical Cognition, 2018, 4, 380-409.	0.6	7
205	3 Conceptual Representation and Some Forms of Genericity. , 2009, , 36-59.		1
206	Children's Developing Understanding of Number: Mind, Brain, and Culture. , 2010, , 129-148.		0
208	9 Origins. , 2010, , 367-436.		0

#	Article	IF	CITATIONS
209	2 Terminology: What the Questions Mean. , 2010, , 30-60.		0
210	6 Neoâ€Kantian Individual Representationalism: Strawson and Evans. , 2010, , 154-210.		0
211	10 Origins of Some Representational Categories. , 2010, , 437-531.		0
212	8 Biological and Methodological Backgrounds. , 2010, , 291-366.		0
213	5 Individual Representationalism after Mid entury: Preliminaries. , 2010, , 137-153.		1
214	Antiâ€Individualism. , 2010, , 61-108.		0
215	Language Interpretation and Individual Representationalism: Quine and Davidson. , 2010, , 211-288.		0
216	Individual Representationalism in the Twentieth Century's First Half. , 2010, , 111-136.		0
217	Glimpses Forward. , 2010, , 532-551.		0
218	Constructions with and without Articles. , 2015, , 126-156.		36
220	Approximate Number System (ANS). , 2017, , 1-6.		0
221	Origen y desarrollo del pensamiento numérico: una perspectiva multidisciplinar. Electronic Journal of Research in Educational Psychology, 2017, 7, .	0.2	5
222	Estimating on the fly: The approximate number system in rufous hummingbirds (Selasphorus rufus). Learning and Behavior, 2021, 49, 67-75.	0.5	3
223	Numerical Abilities in Nonhumans: The Perspective of Comparative Studies. , 2021, , 1-33.		0
225	Counting and the ontogenetic origins of exact equality. Cognition, 2022, 218, 104952.	1.1	9
226	Testing the role of symbols in preschool numeracy: An experimental computer-based intervention study. PLoS ONE, 2021, 16, e0259775.	1.1	4
227	ChapterÂ10. Prediction on the basis of gender and number in Mandarin-Italian bilingual children. Studies in Bilingualism, 2022, , 243-272.	0.1	2
228	Repulsion Effect: An Eye-Tracking Study. Palgrave Studies in Democracy, Innovation, and Entrepreneurship for Growth, 2022, , 223-237.	0.3	1

#	Article	IF	CITATIONS
229	On the working memory of humans and great apes: Strikingly similar or remarkably different?. Neuroscience and Biobehavioral Reviews, 2022, 134, 104496.	2.9	17
230	Characterizing ontogeny of quantity discrimination in zebrafish. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212544.	1.2	9
231	The development of reasoning by exclusion in infancy. Cognitive Psychology, 2022, 135, 101473.	0.9	13
232	Predicting children's emerging understanding of numbers. Developmental Science, 2022, 25, .	1.3	2
235	Environmental influences on mathematics performance in early childhood. , 2022, 1, 407-418.		6
236	When eleven does not equal 11: Investigating exactness at a number's upper bound. PLoS ONE, 2022, 17, e0266920.	1.1	2
237	Approximate Number System (ANS). , 2022, , 381-386.		0
238	"Yay! Yuck!―toddlers use others' emotional responses to reason about hidden objects. Journal of Experimental Child Psychology, 2022, 221, 105464.	0.7	2
239	Why does visual working memory ability improve with age: More objects, more feature detail, or both? A registered report. Developmental Science, 2023, 26, .	1.3	4
240	Abstract representations of small sets in newborns. Cognition, 2022, 226, 105184.	1.1	1
241	â€~But what is the mechanism?': Demystifying the ever elusive â€~developmental mechanism'. Infant and Child Development, 2023, 32, .	0.9	2
242	The elusive "Developmental Mechanism― What they are and how to study and test them. Developmental Review, 2022, 65, 101034.	2.6	2
244	Becoming a Cognitive Scientist. Annual Review of Developmental Psychology, 2022, 4, .	1.4	2
245	Processing Individually Distinctive Schematic-Faces Supports Proto-Arithmetical Counting in the Young Domestic Chicken. Animals, 2022, 12, 2322.	1.0	3
246	Numerical Abilities in Nonhumans: The Perspective of Comparative Studies. , 2022, , 469-500.		0
249	What aspects of counting help infants attend to numerosity?. Infancy, 2023, 28, 218-239.	0.9	1
250	Early understanding of ownership helps infants efficiently organize objects in memory. Cognitive Development, 2023, 65, 101274.	0.7	4
251	Representations of Abstract Relations in Infancy. Open Mind, 2022, 6, 291-310.	0.6	5

#	Article	IF	CITATIONS
252	The importance of awareness of our human limits: A view from cognitive psychology and beyond. , 2020, 1, 9-16.		0
253	The importance of awareness of our human limits: A view from cognitive psychology and beyond. , 2020, 1, 12-21.		0
254	Stuck on the Last: The Last-Presented Benefit as an Index of Attentional Refreshing in Adolescents. Journal of Intelligence, 2023, 11, 4.	1.3	2
255	Visual Short-Term Memory Persists Across Multiple Fixations: An <i>n</i> -Back Approach to Quantifying Capacity in Infants and Adults. Psychological Science, 2023, 34, 370-383.	1.8	0
256	Asymmetric number–space association leads to more efficient processing of congruent information in domestic chicks. Frontiers in Behavioral Neuroscience, 0, 17, .	1.0	1
258	Objects in a social world: Infants' object representational capacity limits are shaped by objects' social relevance. Advances in Child Development and Behavior, 2023, , 69-97.	0.7	1