Effect of turbocharging system on the performance of a

Energy Conversion and Management 46, 11-32 DOI: 10.1016/j.enconman.2004.02.006

Citation Report

#	Article	IF	CITATIONS
1	Study on the design of inlet and exhaust system of a stationary internal combustion engine. Energy Conversion and Management, 2005, 46, 2258-2287.	9.2	52
2	Efficiency improvement and NOx emission reduction potentials of two-stage turbocharged Miller cycle for stationary natural gas engines. International Journal of Energy Research, 2005, 29, 189-216.	4.5	31
3	The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications. , 2007, , .		2
4	Modular multi-purpose pulse converter turbocharging system for four-stroke diesel engines. International Journal of Energy Research, 2008, 32, 569-580.	4.5	5
5	Controlling Backfire for a Hydrogen-Fueled Engine Using External Mixture Injection. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	1.1	25
6	The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications. Journal of Energy Resources Technology, Transactions of the ASME, 2009, 131, .	2.3	9
7	Review of the development and applications of the Wiebe function: A tribute to the contribution of Ivan Wiebe to engine research. International Journal of Engine Research, 2010, 11, 297-312.	2.3	221
8	Modeling of a 1MW cogenerative internal combustion engine for diagnostic scopes. Applied Energy, 2011, 88, 2702-2712.	10.1	3
9	Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Progress in Energy and Combustion Science, 2011, 37, 89-112.	31.2	574
10	Similarity Numbers in the Two-Zone Combustion Model. Journal of Middle European Construction and Design of Cars, 2012, 10, .	0.1	1
11	Engine turbocharger performance prediction: One-dimensional modeling of a twin entry turbine. Energy Conversion and Management, 2012, 57, 68-78.	9.2	75
12	The environmental impact and risk assessment of CO2 capture, transport and storage – An evaluation of the knowledge base. Progress in Energy and Combustion Science, 2012, 38, 62-86.	31.2	141
13	Diagnosis of a turbocharging system of 1MW internal combustion engine. Energy Conversion and Management, 2013, 68, 28-39.	9.2	12
14	Exergetic Analysis of Cogeneration Plants Through Integration of Internal Combustion Engine and Process Simulators. Heat Transfer Engineering, 2013, 34, 520-531.	1.9	4
15	Determination of the optimum temperatures and mass ratios of steam injected into turbocharged internal combustion engines. Journal of Renewable and Sustainable Energy, 2013, 5, 023119.	2.0	12
16	Impact of N2 dilution on combustion and emissions in a spark ignition CNG engine. Energy Conversion and Management, 2014, 85, 354-360.	9.2	35
17	Integration of meanline and one-dimensional methods for prediction of pulsating performance of a turbocharger turbine. Energy Conversion and Management, 2014, 81, 270-281.	9.2	35
18	An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging. Energy Conversion and Management, 2014, 85, 234-244.	9.2	35

#	Article	IF	CITATIONS
19	Experimental investigation of the thermal and diluent effects of EGR components on combustion and NOx emissions of a turbocharged natural gas SI engine. Energy Conversion and Management, 2014, 88, 1041-1050.	9.2	75
20	A combined air cycle used for IC engine supercharging based on waste heat recovery. Energy Conversion and Management, 2014, 87, 86-95.	9.2	16
21	Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle. Heat and Mass Transfer, 2014, 50, 1081-1090.	2.1	0
22	Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach. Energy Conversion and Management, 2015, 106, 1057-1070.	9.2	67
23	Steady and unsteady experimental analysis of a turbocharger for automotive applications. Energy Conversion and Management, 2015, 99, 72-80.	9.2	27
24	Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine. Energy Conversion and Management, 2015, 105, 1082-1095.	9.2	40
25	Second life of power supply unit as charge controller in PV system and environmental benefit assessment. , 2016, , .		7
26	The Influence of Exhaust Backpressure Upon the Turbocharger's Boost Pressure. , 2016, , 367-374.		1
27	Effect of Gravity on Near-Miscible CO2 Flooding. , 2017, , .		3
28	Optimization of 2‑Stage Turbocharged Gas SI Engine Under Steady State Operation. Journal of Middle European Construction and Design of Cars, 2017, 15, 9-36.	0.1	0
29	Experimental study of combustion performances and emissions of a spark ignition cogeneration engine operating in lean conditions using different fuels. International Journal of Hydrogen Energy, 2018, 43, 3586-3596.	7.1	9
30	A Study of Operating Characteristics of Old-Generation Diesel Engines Retrofitted with Turbochargers. Arabian Journal for Science and Engineering, 2018, 43, 4443-4452.	3.0	13
31	Effect of turbo A/R ratio on a high speed turbocharged automotive diesel engine. International Journal of Computer Aided Engineering and Technology, 2018, 10, 718.	0.2	0
32	Experimental study on improving performance and emission characteristics of used motorcycle fueled with ethanol by exhaust gas heating transfer system. Energy for Sustainable Development, 2019, 51, 56-62.	4.5	17
33	Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Conversion and Management, 2019, 193, 149-161.	9.2	74
34	Life cycle assessment for a solar energy system based on reuse components for developing countries. Journal of Cleaner Production, 2019, 208, 1459-1468.	9.3	42
35	Combustion and emission characteristics of n-butanol-gasoline blends in SI direct injection gasoline engine. Renewable Energy, 2020, 146, 267-279.	8.9	51
36	Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research, 2020, 21, 915-926.	2.3	4

CITATION REPORT

#	Article	IF	CITATIONS
37	Optimization and study of performance parameters in an engine fueled with hydrogen. International Journal of Hydrogen Energy, 2020, 45, 322-336.	7.1	46
38	Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation. Energy, 2020, 192, 116653.	8.8	32
39	Methods for Low Engine Speed Torque Improvement of Natural Gas Engine for Commercial Vehicles: Experimental Observations with Turbocharger and Supercharger. IOP Conference Series: Materials Science and Engineering, 2020, 810, 012050.	0.6	2
40	Development of an algorithm code concept to match the diesel engine and turbocharger. IOP Conference Series: Materials Science and Engineering, 2020, 830, 042036.	0.6	1
41	Low Engine Speed Torque Improvement in Natural Gas Engine: Experimental Observations. Process Integration and Optimization for Sustainability, 2020, 4, 429-444.	2.6	1
42	Parametric Knocking Performance Investigation of Spark Ignition Natural Gas Engines and Dual Fuel Engines. Journal of Marine Science and Engineering, 2020, 8, 459.	2.6	13
43	DEM study on the undrained mechanical behavior of gassy sand. Acta Geotechnica, 2020, 15, 2179-2193.	5.7	19
44	An approach for waste heat recovery of internal combustion engine: In-cylinder steam-air expansion. Applied Thermal Engineering, 2021, 197, 117394.	6.0	6
45	Experimental investigation of combustion characteristics and emissions in a spark ignition engine fuelled with gas in lean operation. , 2010, , .		0
46	Investigation on Performance of Turbocharged Spark-Ignition Engine Equipped With Antisurge Valve and Bypass Flow Control Mechanism at Various Working Conditions. , 2015, , 37-58.		0
47	Effect Of Speeds and Under Inlet Pulsating Flow Conditions onthePerformance ofthe Twin-Entry Mixed Flow Turbine. , 2020, 15, 174-183.		0
48	Energy Balance of Turbocharged Engines Operating in a WWTP with Thermal Hydrolysis. Co-Digestion Provides the Full Plant Energy Demand. Applied Sciences (Switzerland), 2021, 11, 11103.	2.5	6
49	Natural Gas as a Clean Fuel for Mobility. Energy, Environment, and Sustainability, 2022, , 215-241.	1.0	2
50	Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines. Energy, 2023, 268, 126733.	8.8	4
51	Study on the altitude adaptability of single-stage and two-stage turbocharging systems for a heavy-duty diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702311719.	1.9	0
52	Control design-oriented modeling and µ-synthesis-based robust multivariate control of a turbocharged natural gas genset engine. International Journal of Engine Research, 0, , .	2.3	0
53	Pre-matching study of the natural gas engine turbocharging system based on the coupling of experiments and numerical simulation. Mechanics and Industry, 2024, 25, 2.	1.3	0
54	Design and analysis of a nozzle-less twin-entry turbine volute for automobile application. E-Prime, 2024, 7, 100468.	2.0	0