Protein Sorting to the Storage Vacuoles of Plants: A Crit

Traffic 6, 615-625 DOI: 10.1111/j.1600-0854.2005.00303.x

Citation Report

#	Article	IF	CITATIONS
1	The role of mRNA and protein sorting in seed storage protein synthesis, transport, and deposition. Biochemistry and Cell Biology, 2005, 83, 728-737.	0.9	48
2	Autophagy and Non-Classical Vacuolar Targeting in Tobacco BY-2 Cells. , 2006, , 167-180.		7
3	Plant Prevacuolar/Endosomal Compartments. International Review of Cytology, 2006, 253, 95-129.	6.2	31
4	The Proteolytic Processing of Seed Storage Proteins in Arabidopsis Embryo Cells Starts in the Multivesicular Bodies. Plant Cell, 2006, 18, 2567-2581.	3.1	188
5	Localization of Green Fluorescent Protein Fusions with the Seven Arabidopsis Vacuolar Sorting Receptors to Prevacuolar Compartments in Tobacco BY-2 Cells. Plant Physiology, 2006, 142, 945-962.	2.3	125
6	Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen. Nature Protocols, 2006, 1, 2439-2447.	5.5	30
7	Complementation and Expression Analysis of SoRab1A and SoRab2A in Sugarcane Demonstrates Their Functional Diversification. Journal of Integrative Plant Biology, 2006, 48, 1450-1457.	4.1	5
9	PnCcp, aPhytophthora nicotianaeprotein containing a single complement control protein module, is sorted into large peripheral vesicles in zoospores. Australasian Plant Pathology, 2006, 35, 593.	0.5	10
10	Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. Current Opinion in Plant Biology, 2006, 9, 601-609.	3.5	74
11	AtVPS29, a Putative Component of a Retromer Complex, is Required for the Efficient Sorting of Seed Storage Proteins. Plant and Cell Physiology, 2006, 47, 1187-1194.	1.5	135
12	Multiple Vacuolar Sorting Determinants Exist in Soybean 11S Globulin. Plant Cell, 2006, 18, 1253-1273.	3.1	38
13	A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria ParasitePlasmodium falciparum. Journal of Biological Chemistry, 2006, 281, 31995-32003.	1.6	58
14	Targeting of the Plant Vacuolar Sorting Receptor BP80 Is Dependent on Multiple Sorting Signals in the Cytosolic Tail. Plant Cell, 2006, 18, 1477-1497.	3.1	86
15	Plant Retromer, Localized to the Prevacuolar Compartment and Microvesicles in Arabidopsis, May Interact with Vacuolar Sorting Receptors. Plant Cell, 2006, 18, 1239-1252.	3.1	143
16	The Intracellular Fate of a Recombinant Protein Is Tissue Dependent. Plant Physiology, 2006, 141, 578-586.	2.3	77
17	The Type IV Secretion System of Sinorhizobium meliloti Strain 1021 Is Required for Conjugation but Not for Intracellular Symbiosis. Journal of Bacteriology, 2007, 189, 2133-2138.	1.0	23
18	Protein storage vacuole acidification as a control of storage protein mobilization in soybeans. Journal of Experimental Botany, 2007, 58, 1059-1070.	2.4	40
19	The Arabidopsis AAA ATPase SKD1 Is Involved in Multivesicular Endosome Function and Interacts with Its Positive Regulator LYST-INTERACTING PROTEIN5. Plant Cell, 2007, 19, 1295-1312.	3.1	195

#	Article	IF	Citations
20	Proteins in food microstructure formation. , 2007, , 40-66.		1
21	Coated vesicles in plant cells. Seminars in Cell and Developmental Biology, 2007, 18, 471-478.	2.3	32
22	Golgi-mediated vacuolar sorting in plant cells: RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway. Plant Science, 2007, 172, 728-745.	1.7	50
23	A bioinformatic approach to the identification of a conserved domain in a sugarcane legumain that directs GFP to the lytic vacuole. Functional Plant Biology, 2007, 34, 633.	1.1	29
24	Function and Evolution of the Vacuolar Compartment in Green Algae and Land Plants (Viridiplantae). International Review of Cytology, 2007, 264, 1-24.	6.2	49
25	A patatin-like protein protectsToxoplasma gondiifrom degradation in activated macrophages. Molecular Microbiology, 2007, 63, 482-496.	1.2	46
26	Ectopic expression of phosphoenolpyruvate carboxylase in <i>Vicia narbonensis</i> seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Plant Journal, 2007, 51, 819-839.	2.8	36
27	Localization of Vacuolar Transport Receptors and Cargo Proteins in the Golgi Apparatus of Developing Arabidopsis Embryos. Traffic, 2007, 8, 1452-1464.	1.3	73
28	Protein dynamics and proteolysis in plant vacuoles. Journal of Experimental Botany, 2007, 58, 2391-2407.	2.4	130
29	Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta, 2008, 227, 649-658.	1.6	20
30	Lack of a Vacuolar Sorting Receptor Leads to Non-Specific Missorting of Soluble Vacuolar Proteins in Arabidopsis Seeds. Traffic, 2008, 9, 408-416.	1.3	35
31	Intermediate Organelles of the Plant Secretory Pathway: Identity and Function. Traffic, 2008, 9, 1599-1612.	1.3	75
32	Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnology Journal, 2008, 6, 633-648.	4.1	211
33	The Endosomal System of Plants: Charting New and Familiar Territories. Plant Physiology, 2008, 147, 1482-1492.	2.3	223
34	The Golgi Apparatus. , 2008, , .		16
35	Peripheral membrane proteins mediate binding of vacuolar storage proteins to membranes of the secretory pathway of developing pea cotyledons. Journal of Experimental Botany, 2008, 59, 1327-1340.	2.4	6
36	Sorting and Anterograde Trafficking at the Golgi Apparatus: Figure 1 Plant Physiology, 2008, 148, 673-683.	2.3	36
37	Gene Families Encoding 11S Globulin and 2S Albumin Isoforms of Jelly Fig (Ficus awkeotsang) Achenes. Bioscience, Biotechnology and Biochemistry, 2008, 72, 506-513.	0.6	10

#	Article	IF	CITATIONS
38	Production and Localization of Recombinant Pharmaceuticals in Transgenic Seeds. Methods in Molecular Biology, 2009, 483, 69-87.	0.4	14
39	Plant vacuoles: where did they come from and where are they heading?. Current Opinion in Plant Biology, 2009, 12, 677-684.	3.5	61
40	Plant seeds as bioreactors for recombinant protein production. Biotechnology Advances, 2009, 27, 1015-1022.	6.0	144
41	Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants. Transgenic Research, 2009, 18, 943-951.	1.3	17
42	Organelle Identification and Characterization in Plant Cells: Using a Combinational Approach of Confocal Immunofluorescence and Electron Microscope. Journal of Plant Biology, 2009, 52, 1-9.	0.9	15
43	Postâ€Golgi Traffic in Plants. Traffic, 2009, 10, 819-828.	1.3	89
44	The plant endoplasmic reticulum: a cell-wide web. Biochemical Journal, 2009, 423, 145-155.	1.7	107
45	Sorting of plant vacuolar proteins is initiated in the ER. Plant Journal, 2010, 62, 601-614.	2.8	79
46	Seedâ€based expression systems for plant molecular farming. Plant Biotechnology Journal, 2010, 8, 588-606.	4.1	217
47	MAC4/Atp115 is a Golgi-Localized Tethering Factor that Mediates Efficient Anterograde Transport in Arabidopsis. Plant and Cell Physiology, 2010, 51, 1777-1787.	1.5	33
48	Auxin-Mediated Ribosomal Biogenesis Regulates Vacuolar Trafficking in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 143-158.	3.1	82
49	Understanding Plant Vacuolar Trafficking from a Systems Biology Perspective. Plant Physiology, 2010, 154, 545-550.	2.3	1
50	Tonoplast intrinsic proteins and vacuolar identity. Biochemical Society Transactions, 2010, 38, 769-773.	1.6	29
51	The Synthesis of Ricinus communis Lectins. Plant Cell Monographs, 2010, , 191-205.	0.4	1
52	Toxic Plant Proteins. Plant Cell Monographs, 2010, , .	0.4	12
53	The Development of Transgenic Crops to Improve Human Health by Advanced Utilization of Seed Storage Proteins. Bioscience, Biotechnology and Biochemistry, 2011, 75, 823-828.	0.6	15
55	Products of nitrate assimilation are deposited in plants as storage proteins. , 2011, , 349-357.		0
56	Subcellular targeting and biosynthesis of cyclotides in plant cells. American Journal of Botany, 2011, 98, 2018-2026.	0.8	40

#	Article	IF	CITATIONS
57	A continuum of research projects to improve extraction of oil and proteins in oilseed plants. Oleagineux Corps Gras Lipides, 2011, 18, 168-172.	0.2	2
58	Production of monoclonal antibodies with a controlled <i>N</i> â€glycosylation pattern in seeds of <i>Arabidopsis thaliana</i> . Plant Biotechnology Journal, 2011, 9, 179-192.	4.1	50
59	Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Research, 2011, 20, 811-826.	1.3	44
60	Expression of Antibody Fragments with a Controlled <i>N</i> -Glycosylation Pattern and Induction of Endoplasmic Reticulum-Derived Vesicles in Seeds of Arabidopsis Â. Plant Physiology, 2011, 155, 2036-2048.	2.3	50
61	Sub-Compartmental Organization of Golgi-Resident N-Glycan Processing Enzymes in Plants. Molecular Plant, 2011, 4, 220-228.	3.9	69
62	Functional Identification of Sorting Receptors Involved in Trafficking of Soluble Lytic Vacuolar Proteins in Vegetative Cells of Arabidopsis Â. Plant Physiology, 2012, 161, 121-133.	2.3	24
63	Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. Journal of Experimental Botany, 2012, 63, 1367-1380.	2.4	23
64	Trying to make sense of retromer. Trends in Plant Science, 2012, 17, 431-439.	4.3	44
65	Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds. BMC Research Notes, 2012, 5, 409.	0.6	15
66	Membrane Traffic and Fusion at Post-Golgi Compartments. Frontiers in Plant Science, 2011, 2, 111.	1.7	34
67	Rapid and massive green fluorescent protein production leads to formation of protein Y-bodies in plant cells. Biochemistry (Moscow), 2012, 77, 603-608.	0.7	13
68	Artificial ubiquitylation is sufficient for sorting of a plasma membrane ATPase to the vacuolar lumen of Arabidopsis cells. Planta, 2012, 236, 63-77.	1.6	38
69	Plant and Yeast NHX Antiporters: Roles in Membrane Trafficking ^F . Journal of Integrative Plant Biology, 2012, 54, 66-72.	4.1	38
70	Vacuolar protein sorting mechanisms in plants. FEBS Journal, 2013, 280, 979-993.	2.2	99
71	Do vacuolar peroxidases act as plant caretakers?. Plant Science, 2013, 199-200, 41-47.	1.7	50
72	Micropropagation of Hohenbergia penduliflora (A. Rich.) Mez. for sustainable production of plant proteases. Acta Physiologiae Plantarum, 2013, 35, 2525-2537.	1.0	6
73	Trafficking of Plant Vacuolar Invertases: From a Membrane-Anchored to a Soluble Status. Understanding Sorting Information in Their Complex N-Terminal Motifs. Plant and Cell Physiology, 2013, 54, 1263-1277.	1.5	14
74	Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews, 2013, 26, 109-120.	1.9	103

#	Article	IF	CITATIONS
75	OsVPS9A Functions Cooperatively with OsRAB5A to Regulate Post-Golgi Dense Vesicle-Mediated Storage Protein Trafficking to the Protein Storage Vacuole in Rice Endosperm Cells. Molecular Plant, 2013, 6, 1918-1932.	3.9	48
76	Synthesis of Storage Reserves. , 2013, , 85-131.		5
77	MAIGO5 Functions in Protein Export from Golgi-Associated Endoplasmic Reticulum Exit Sites in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 4658-4675.	3.1	53
78	Reprogramming cells to study vacuolar development. Frontiers in Plant Science, 2013, 4, 493.	1.7	4
79	The <i>Arabidopsis</i> exocyst subcomplex subunits involved in a golgi-independent transport into the vacuole possess consensus autophagy-associated atg8 interacting motifs. Plant Signaling and Behavior, 2013, 8, e26732.	1.2	18
80	N-Glycosylation of Plant-produced Recombinant Proteins. Current Pharmaceutical Design, 2013, 19, 5503-5512.	0.9	101
81	Delivering of Proteins to the Plant Vacuole—An Update. International Journal of Molecular Sciences, 2014, 15, 7611-7623.	1.8	36
82	Plant vacuole morphology and vacuolar trafficking. Frontiers in Plant Science, 2014, 5, 476.	1.7	83
83	Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 473.	1.7	26
84	Involvement of autophagy in the direct ER to vacuole protein trafficking route in plants. Frontiers in Plant Science, 2014, 5, 134.	1.7	32
85	<i>GLUTELIN PRECURSOR ACCUMULATION3</i> Encodes a Regulator of Post-Golgi Vesicular Traffic Essential for Vacuolar Protein Sorting in Rice Endosperm Â. Plant Cell, 2014, 26, 410-425.	3.1	113
86	Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. Protoplasma, 2014, 251, 247-264.	1.0	25
87	Plant Molecular Pharming for the Treatment of Chronic and Infectious Diseases. Annual Review of Plant Biology, 2014, 65, 743-768.	8.6	154
88	Towards Using Biotechnology to Modify Soybean Seeds as Protein Bioreactors. , 2015, , 193-212.		4
89	Engineering soya bean seeds as a scalable platform to produce cyanovirinâ€N, a nonâ€ <scp>ARV</scp> microbicide against <scp>HIV</scp> . Plant Biotechnology Journal, 2015, 13, 884-892.	4.1	44
90	Multiple internal sorting determinants can contribute to the trafficking of cruciferin to protein storage vacuoles. Plant Molecular Biology, 2015, 88, 3-20.	2.0	8
91	BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.	3.9	27
92	Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. , 2015, , .		6

	CITATION	Report	
#	Article	IF	CITATIONS
93	AtNHX5 and AtNHX6 Are Required for the Subcellular Localization of the SNARE Complex That Mediates the Trafficking of Seed Storage Proteins in Arabidopsis. PLoS ONE, 2016, 11, e0151658.	1.1	32
94	Where do Protein Bodies of Cereal Seeds Come From?. Frontiers in Plant Science, 2016, 7, 1139.	1.7	45
95	Plant Molecular Farming: Much More than Medicines. Annual Review of Analytical Chemistry, 2016, 9, 271-294.	2.8	147
96	High-level transient expression of the N-terminal domain of IpaD from Shigella dysenteriae in four plant species transformed with different construct configurations. In Vitro Cellular and Developmental Biology - Plant, 2016, 52, 293-302.	0.9	3
97	Plant Vacuolar Sorting: An Overview. Progress in Botany Fortschritte Der Botanik, 2016, , 67-94.	0.1	0
98	Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. Journal of Experimental Botany, 2016, 67, 4435-4449.	2.4	47
99	Production of recombinant proteins in plant cells. Russian Journal of Plant Physiology, 2016, 63, 26-37.	0.5	6
100	Genomeâ€wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. New Phytologist, 2017, 214, 1597-1613.	3.5	38
102	Sugarcane Biotechnology: Challenges and Prospects. , 2017, , .		3
103	Sugarcane: An Efficient Platform for Molecular Farming. , 2017, , 87-110.		2
104	Trafficking routes to the plant vacuole: connecting alternative and classical pathways. Journal of Experimental Botany, 2018, 69, 79-90.	2.4	38
105	Autophagy: The Master of Bulk and Selective Recycling. Annual Review of Plant Biology, 2018, 69, 173-208.	8.6	384
106	Ricin and RCA—The Enemies Within Castor (Ricinus communis L.): A Perspective on Their Biogenesis, Mechanism of Action, Detection Methods and Detoxification Strategies. Compendium of Plant Genomes, 2018, , 215-235.	0.3	7
107	The small GTPase Rab5a and its guanine nucleotide exchange factors are involved in post-Golgi trafficking of storage proteins in developing soybean cotyledon. Journal of Experimental Botany, 2020, 71, 808-822.	2.4	6
108	Plant Golgi ultrastructure. Journal of Microscopy, 2020, 280, 111-121.	0.8	21
109	Expression of <i>Ralstonia solanacearum</i> type III secretion system is dependent on a novel type 4 pili (T4P) assembly protein (TapV) but is T4P independent. Molecular Plant Pathology, 2020, 21, 777-793.	2.0	11
110	<i>GPA5</i> Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins. Plant Cell, 2020, 32, 758-777.	3.1	44
111	Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1–CCZ1. Plant Physiology, 2021, 187, 2174-2191.	2.3	17

ARTICLE IF CITATIONS # Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. Journal 112 4.1 41 of Integrative Plant Biology, 2021, 63, 1999-2019. Features of the plant Golgi apparatus., 2008,, 611-622. 114 Evolution of the Golgi complex., 2008,, 675-691. 2 High-Level Transient Expression of ER-Targeted Human Interleukin 6 in Nicotiana benthamiana. PLoS ONE, 2012, 7, e48938. Transient fusion and selective secretion of vesicle proteins in <i>Phytophthora 116 0.9 7 nicotianae</i>zoospores. PeerJ, 2013, 1, e221. Review: The multiple roles of plant lectins. Plant Science, 2021, 313, 111096. 1.7 A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria Parasite 118 1.6 13 Plasmodium falciparum. Journal of Biological Chemistry, 2006, 281, 31995-32003. SCAMP, VSR, and Plant Endocytosis., 2012, , 217-231. Mechanisms of membrane traffic in plant cells. Plant Physiology and Biochemistry, 2021, 169, 102-111. 120 2.8 4 Endomembrane Mediated-Trafficking Of Seed Storage Proteins: From Arabidopsis To Cereal Crops. 2.4 Journal of Experimental Botany, 2021, , . Structural insights into how vacuolar sorting receptors recognize the sorting determinants of seed storage proteins. Proceedings of the National Academy of Sciences of the United States of America, 122 3.3 8 2022, 119, . Endomembraneâ€mediated storage protein trafficking in plants: Golgiâ€dependent or Golgiâ€independent?. 1.3 FEBS Letters, 2022, 596, 2215-2230. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of 124 1.6 2 Transport Signal Peptides. Plants, 2022, 11, 2561. Seed-Based Production of Recombinant Proteins. Concepts and Strategies in Plant Sciences, 2023, , 185-208.

CITATION REPORT