Membrane curvature and mechanisms of dynamic cell i

Nature 438, 590-596

DOI: 10.1038/nature04396

Citation Report

#	Article	IF	CITATIONS
2	Laser damage resistance of a lithium niobate-tantalate bicrystal system. Quantum Electronics, 1993, 23, 981-982.	0.3	2
3	Synthesis, Monolayer Formation, and Control of Electrical Characteristics of 3-nm-Diameter Gold Nanoparticles. Japanese Journal of Applied Physics, 2005, 44, 5667-5669.	0.8	6
4	Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Molecular Membrane Biology, 2006, 23, 277-288.	2.0	82
5	Coupling between Lipid Shape and Membrane Curvature. Biophysical Journal, 2006, 91, 487-495.	0.2	168
6	Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes. Biophysical Journal, 2006, 91, 4464-4477.	0.2	261
7	Chapter 5 Curvature-Induced Sorting of Bilayer Membrane Constituents and Formation of Membrane Rafts. Behavior Research Methods, 2006, 5, 129-149.	2.3	9
8	Inverse lyotropic phases of lipids and membrane curvature. Journal of Physics Condensed Matter, 2006, 18, S1105-S1124.	0.7	160
9	Mitochondrial Fusion and Fission in Mammals. Annual Review of Cell and Developmental Biology, 2006, 22, 79-99.	4.0	855
10	Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir, 2006, 22, 5095-5099.	1.6	222
11	The Interface Width of Separated Two-Component Lipid Membranes. Journal of Physical Chemistry B, 2006, 110, 21981-21986.	1.2	26
12	Metabolic Control of Elastic Properties of the Inner Mitochondrial Membrane. Journal of Physical Chemistry B, 2006, 110, 22903-22909.	1.2	12
13	Spontaneous Membrane Fusion Induced by Chemical Formation of Ceramides in a Lipid Bilayer. Journal of the American Chemical Society, 2006, 128, 14452-14453.	6.6	28
14	Toxoplasma: Guess Who's Coming to Dinner. Cell, 2006, 125, 226-228.	13.5	3
15	Rough Sheets and Smooth Tubules. Cell, 2006, 126, 435-439.	13.5	383
16	BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane–cytosol interfaces and membrane curvature. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 897-912.	1.2	319
17	Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy. Optics Letters, 2006, 31, 2873.	1.7	17
18	Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory. Neuron, 2006, 52, 403-407.	3.8	236
19	Molecular mechanisms for regulation of AMPAR trafficking by PICK1. Biochemical Society Transactions, 2006, 34, 931-935.	1.6	31

#	Article	IF	CITATIONS
20	The physical chemistry of biological membranes. , 2006, 2, 564-567.		85
21	Topographic control of lipid-raft reconstitution in model membranes. Nature Materials, 2006, 5, 281-285.	13.3	79
22	Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO Journal, 2006, 25, 2898-2910.	3.5	489
23	Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO Journal, 2006, 25, 2889-2897.	3.5	248
24	Finite element modeling of lipid bilayer membranes. Journal of Computational Physics, 2006, 220, 394-408.	1.9	112
25	Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life, 2006, 58, 457-461.	1.5	97
26	Polymer genomics: An insight into pharmacology and toxicology of nanomedicinesa˜†. Advanced Drug Delivery Reviews, 2006, 58, 1597-1621.	6.6	189
27	Electromechanical Models of the Outer Hair Cell Composite Membrane. Journal of Membrane Biology, 2006, 209, 135-152.	1.0	43
28	Membrane deformation by protein coats. Current Opinion in Cell Biology, 2006, 18, 386-394.	2.6	137
29	Endoplasmic reticulum architecture: structures in flux. Current Opinion in Cell Biology, 2006, 18, 358-364.	2.6	188
30	Lipids and lipid domains in the peroxisomal membrane of the yeast Yarrowia lipolytica. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1688-1696.	1.9	5
31	Assessment of prestin self-association using fluorescence resonance energy transfer. Brain Research, 2006, 1091, 140-150.	1.1	37
32	The multiple activities of CtBP/BARS proteins: the Golgi view. Trends in Cell Biology, 2006, 16, 167-173.	3.6	111
33	Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends in Cell Biology, 2006, 16, 493-498.	3.6	215
34	Dynasore puts a new spin on dynamin: a surprising dual role during vesicle formation. Trends in Cell Biology, 2006, 16, 607-609.	3.6	24
35	Synaptic proteins as multi-sensor devices of neurotransmission. BMC Neuroscience, 2006, 7, S4.	0.8	9
36	Dynamic and reversible restructuring of the ER induced by PDMP in cultured cells. Journal of Cell Science, 2006, 119, 3249-3260.	1.2	33
37	Amphipathic Helices as Mediators of the Membrane Interaction of Amphitropic Proteins, and as Modulators of Bilayer Physical Properties. Current Protein and Peptide Science, 2006, 7, 539-552.	0.7	121

#	ARTICLE	IF	CITATIONS
38	Hyaluronan Synthesis Induces Microvillus-like Cell Surface Protrusions*. Journal of Biological Chemistry, 2006, 281, 15821-15828.	1.6	127
39	Stacked, Folded, and Bent Lipid Membranes. MRS Bulletin, 2006, 31, 521-526.	1.7	5
40	Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 951-968.	1.8	316
42	Bending a membrane: How clathrin affects budding. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8715-8720.	3.3	107
43	The plant ER-Golgi interface: a highly structured and dynamic membrane complex. Journal of Experimental Botany, 2006, 58, 49-64.	2.4	47
44	Very Long-chain Fatty Acid-containing Lipids rather than Sphingolipids per se Are Required for Raft Association and Stable Surface Transport of Newly Synthesized Plasma Membrane ATPase in Yeast. Journal of Biological Chemistry, 2006, 281, 34135-34145.	1.6	79
45	How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis. Physical Review E, 2006, 74, 061914.	0.8	39
46	Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15068-15072.	3.3	218
47	Connecdenn, A Novel DENN Domain-Containing Protein of Neuronal Clathrin-Coated Vesicles Functioning in Synaptic Vesicle Endocytosis. Journal of Neuroscience, 2006, 26, 13202-13212.	1.7	59
48	Vesicle Formation at the Plasma Membrane and Trans-Golgi Network: The Same but Different. Science, 2006, 313, 1591-1594.	6.0	112
49	Synthetic protocell biology: from reproduction to computation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1727-1739.	1.8	100
50	New Insights into Membrane Trafficking and Protein Sorting. International Review of Cytology, 2007, 261, 47-116.	6.2	93
51	The Non-structural Protein 4A of Dengue Virus Is an Integral Membrane Protein Inducing Membrane Alterations in a 2K-regulated Manner. Journal of Biological Chemistry, 2007, 282, 8873-8882.	1.6	374
52	Inactivation of the Phosphoinositide Phosphatases Sac1p and Inp54p Leads to Accumulation of Phosphatidylinositol 4,5-Bisphosphate on Vacuole Membranes and Vacuolar Fusion Defects. Journal of Biological Chemistry, 2007, 282, 16295-16307.	1.6	14
53	Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. Journal of Cell Biology, 2007, 179, 627-633.	2.3	53
54	Effects of amino acid substitutions at glycine 420 on SR-BI cholesterol transport function. Journal of Lipid Research, 2007, 48, 1386-1395.	2.0	7
55	Sequestration Revisited: Integrating Traditional Electron Microscopy, De Novo Assembly and New Results. Autophagy, 2007, 3, 655-662.	4.3	65
56	Proteomic Analysis of Membrane-Associated Proteins from Rat Liver Autophagosomes. Autophagy, 2007, 3, 300-322.	4.3	151

#	Article	IF	CITATIONS
57	Cell investigation of nanostructures: zero-mode waveguides for plasma membrane studies with single molecule resolution. Nanotechnology, 2007, 18, 195101.	1.3	48
58	Chemistry across scales: from molecules to cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2921-2934.	1.6	11
59	Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations. Physical Review E, 2007, 76, 011921.	0.8	54
60	Cargos and genes: insights into vesicular transport from inherited human disease. Journal of Medical Genetics, 2007, 44, 545-555.	1.5	43
61	Receptor Complexes Cotransported via Polarized Endocytic Pathways Form Clusters with Distinct Organizations. Molecular Biology of the Cell, 2007, 18, 2226-2243.	0.9	35
62	Actin Filaments Mediate Mechanical Gating during Osmosensory Transduction in Rat Supraoptic Nucleus Neurons. Journal of Neuroscience, 2007, 27, 4008-4013.	1.7	64
63	Function of the Caenorhabditis elegans ABC Transporter PGP-2 in the Biogenesis of a Lysosome-related Fat Storage Organelle. Molecular Biology of the Cell, 2007, 18, 995-1008.	0.9	102
64	Annexin B12 Is a Sensor of Membrane Curvature and Undergoes Major Curvature-dependent Structural Changes. Journal of Biological Chemistry, 2007, 282, 9996-10004.	1.6	22
65	Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. Journal of Cell Biology, 2007, 179, 793-804.	2.3	41
66	THEORETICAL AND PRACTICAL ASPECTS OF COLLOID SCIENCE AND SELF-ASSEMBLY PHENOMENA REVISITED. Reviews in Chemical Engineering, 2007, 23, .	2.3	19
67	Curvature-driven lateral segregation of membrane constituents in Golgi cisternae. Physical Biology, 2007, 4, 317-324.	0.8	43
68	Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Developmental Biology, 2007, 304, 317-325.	0.9	185
69	Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts. Progress in Neurobiology, 2007, 82, 11-32.	2.8	155
70	Vesicle shape, molecular tilt, and the suppression of necks. Physical Review E, 2007, 76, 031908.	0.8	31
71	Binding of the dystrophin second repeat to membrane di-oleyl phospholipids is dependent upon lipid packing. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 648-654.	1.4	10
72	Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis. Cell, 2007, 129, 761-772.	13.5	366
73	Lipid rafts and membrane traffic. FEBS Letters, 2007, 581, 2098-2104.	1.3	271
74	Unsolved Mysteries in Membrane Traffic. Annual Review of Biochemistry, 2007, 76, 629-645.	5.0	168

#	Article	IF	Citations
75	Formation, Stability, and Mobility of One-Dimensional Lipid Bilayers on Polysilicon Nanowires. Nano Letters, 2007, 7, 3355-3359.	4.5	37
76	Endosomal Membrane Dynamics. Journal of Oral Biosciences, 2007, 49, 231-243.	0.8	3
78	Origin of Eukaryotic Endomembranes: A Critical Evaluation of Different Model Scenarios. Advances in Experimental Medicine and Biology, 2007, 607, 38-51.	0.8	40
79	Maintaining Peroxisome Populations: A Story of Division and Inheritance. Annual Review of Cell and Developmental Biology, 2007, 23, 321-344.	4.0	107
80	Bending Mechanics and Molecular Organization in Biological Membranes. Annual Review of Physical Chemistry, 2007, 58, 697-717.	4.8	78
81	Helical α-Synuclein Forms Highly Conductive Ion Channels. Biochemistry, 2007, 46, 14369-14379.	1.2	125
82	Formation and Activity of Template-Assembled Receptor Signaling Complexes. Langmuir, 2007, 23, 3280-3289.	1.6	21
83	Crystalline Protein Domains and Lipid Bilayer Vesicle Shape Transformations. Journal of Physical Chemistry B, 2007, 111, 880-885.	1.2	19
84	Sensing Lipid Bilayer Formation and Expansion with a Microfabricated Cantilever Array. Langmuir, 2007, 23, 1543-1547.	1.6	24
85	Characterization of Physical Properties of Supported Phospholipid Membranes Using Imaging Ellipsometry at Optical Wavelengths. Biophysical Journal, 2007, 92, 1306-1317.	0.2	104
86	Membrane Remodeling from N-BAR Domain Interactions: Insights from Multi-Scale Simulation. Biophysical Journal, 2007, 92, 3595-3602.	0.2	91
87	Imaging and Shape Analysis of GUVs as Model Plasma Membranes: Effect of Trans DOPC on Membrane Properties. Biophysical Journal, 2007, 93, 2011-2023.	0.2	31
88	Application of fluorescence polarization microscopy to measure fluorophore orientation in the outer hair cell plasma membrane. Journal of Biomedical Optics, 2007, 12, 021002.	1.4	12
89	Molecular Mechanisms of Magnetosome Formation. Annual Review of Biochemistry, 2007, 76, 351-366.	5.0	152
90	Membrane Structure and the Study of Solute Transport Across Plant Membranes., 0,, 47-74.		2
91	Curvature and spatial organization in biological membranes. Soft Matter, 2007, 3, 24-33.	1.2	111
92	The p11/S100A10 Light Chain of Annexin A2 Is Dispensable for Annexin A2 Association to Endosomes and Functions in Endosomal Transport. PLoS ONE, 2007, 2, e1118.	1.1	60
93	A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane. Journal of Cell Biology, 2007, 177, 289-303.	2.3	60

#	Article	IF	Citations
95	Nanopore Arrays for Stable and Functional Freeâ€6tanding Lipid Bilayers. Advanced Materials, 2007, 19, 4466-4470.	11.1	111
96	Interrogating the T cell synapse with patterned surfaces and photoactivated proteins. Current Opinion in Immunology, 2007, 19, 722-727.	2.4	14
97	Infectious disease: Connecting innate immunity to biocidal polymers. Materials Science and Engineering Reports, 2007, 57, 28-64.	14.8	243
98	On the role of anisotropy of membrane constituents in formation of a membrane neck during budding of a multicomponent membrane. Journal of Biomechanics, 2007, 40, 579-585.	0.9	38
99	Bending over to attract. Nature, 2007, 447, 387-389.	13.7	15
100	Sheets, ribbons and tubules — how organelles get their shape. Nature Reviews Molecular Cell Biology, 2007, 8, 258-264.	16.1	136
101	A neuroscientist's guide to lipidomics. Nature Reviews Neuroscience, 2007, 8, 743-754.	4.9	327
102	Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature, 2007, 447, 461-464.	13.7	690
103	Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature, 2007, 450, 670-675.	13.7	538
104	Clathrin-Mediated Endocytosis at Synapses. Traffic, 2007, 8, 1129-1136.	1.3	93
105	Endocytosis: clathrin-mediated membrane budding. Current Opinion in Cell Biology, 2007, 19, 417-425.	2.6	212
106	Structural design of cage and coat scaffolds that direct membrane traffic. Current Opinion in Structural Biology, 2007, 17, 221-228.	2.6	69
107	Structure and Analysis of FCHo2 F-BAR Domain: A Dimerizing and Membrane Recruitment Module that Effects Membrane Curvature. Structure, 2007, 15, 839-852.	1.6	261
108	Pombe Cdc15 homology (PCH) proteins: coordinators of membrane–cytoskeletal interactions. Trends in Cell Biology, 2007, 17, 145-156.	3.6	81
109	Perturbation of the vesicle cycle in reticulospinal synapses of lamprey after presynaptic microinjections of $GTP^{\hat{1}3}S$. Cell and Tissue Biology, 2007, 1, 560-569.	0.2	0
110	The role of lipids in the biogenesis of integral membrane proteins. Applied Microbiology and Biotechnology, 2007, 73, 1224-1232.	1.7	22
111	White Matter Rafting––Membrane Microdomains in Myelin. Neurochemical Research, 2007, 32, 213-228.	1.6	79
112	Regulation of endothelial cell migration by amphiphilesâ€"are changes in cell membrane physical properties involved?. Angiogenesis, 2007, 10, 13-22.	3.7	15

#	ARTICLE	IF	Citations
113	Elastic properties of biological membranes influenced by attached proteins. Journal of Biomechanics, 2007, 40, 2492-2500.	0.9	47
114	Coexistent Fluid-Phase Equilibria in Biomembranes withÂBending Elasticity. Journal of Elasticity, 2008, 93, 63-80.	0.9	37
115	Attachment of \hat{l}^2 2-glycoprotein I to negatively charged liposomes may prevent the release of daughter vesicles from the parent membrane. European Biophysics Journal, 2008, 37, 1085-1095.	1.2	21
116	The influence of curvature on membrane domains. European Biophysics Journal, 2008, 37, 665-671.	1.2	20
117	Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels. Cell Biochemistry and Biophysics, 2008, 52, 59-84.	0.9	103
118	Molecular Mechanics of Cells and Tissues. Cellular and Molecular Bioengineering, 2008, 1, 24-32.	1.0	19
119	Shapes of Red Blood Cells: Comparison of 3D Confocal Images with the Bilayer-Couple Model. Cellular and Molecular Bioengineering, 2008, $1,173-181$.	1.0	98
120	Lowâ€Dimensional, Hinged Barâ€code Metal Oxide Layers and Freeâ€Standing, Ordered Organic Nanostructures from Turbostratic Vanadium Oxide. Small, 2008, 4, 990-1000.	5.2	13
121	Quantitative analysis of cell adhesion on aligned micro―and nanofibers. Journal of Biomedical Materials Research - Part A, 2008, 84A, 291-299.	2.1	160
122	Life as a Nanoscale Phenomenon. Angewandte Chemie - International Edition, 2008, 47, 5306-5320.	7.2	264
123	Controlled Selfâ€Assembly Manipulated by Chargeâ€Transfer Interactions: From Tubes to Vesicles. Angewandte Chemie - International Edition, 2008, 47, 9049-9052.	7.2	198
126	Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy minimization. Medical Image Analysis, 2008, 12, 217-227.	7.0	22
127	Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Materialia, 2008, 56, 4255-4266.	3.8	232
128	X-ray diffraction measurement of the monolayer spontaneous curvature of dioleoylphosphatidylglycerol. Chemistry and Physics of Lipids, 2008, 154, 64-67.	1.5	57
129	Mediation, Modulation, and Consequences of Membrane-Cytoskeleton Interactions. Annual Review of Biophysics, 2008, 37, 65-95.	4.5	307
130	Membrane geometry and protein functions. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2008, 2, 83-95.	0.3	1
131	Yeast Arf3p Modulates Plasma Membrane PtdIns(4,5)P2 Levels to Facilitate Endocytosis. Traffic, 2008, 9, 559-573.	1.3	31
132	The Lysophospholipid Acyltransferase Antagonist CI-976 Inhibits a Late Step in COPII Vesicle Budding. Traffic, 2008, 9, 786-797.	1.3	36

#	Article	IF	CITATIONS
133	Membrane Localization is Critical for Activation of the PICK1 BAR Domain. Traffic, 2008, 9, 1327-1343.	1.3	46
134	The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO Journal, 2008, 27, 2363-2374.	3.5	21
135	EFC/F-BAR proteins and the N-WASP–WIP complex induce membrane curvature-dependent actin polymerization. EMBO Journal, 2008, 27, 2817-2828.	3.5	169
136	Mechanics of membrane fusion. Nature Structural and Molecular Biology, 2008, 15, 675-683.	3.6	853
137	Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nature Cell Biology, 2008, 10, 259-271.	4.6	196
138	A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nature Cell Biology, 2008, 10, 1146-1153.	4.6	147
139	Membrane-induced bundling of actinÂfilaments. Nature Physics, 2008, 4, 789-793.	6.5	196
140	Membrane nanotubes: dynamic long-distance connections between animal cells. Nature Reviews Molecular Cell Biology, 2008, 9, 431-436.	16.1	341
141	Endosomal sorting and signalling: an emerging role for sorting nexins. Nature Reviews Molecular Cell Biology, 2008, 9, 574-582.	16.1	359
142	Building the cell: design principles of cellular architecture. Nature Reviews Molecular Cell Biology, 2008, 9, 593-602.	16.1	102
143	Modification of intracellular membrane structures for virus replication. Nature Reviews Microbiology, 2008, 6, 363-374.	13.6	632
144	Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane. EMBO Journal, 2008, 27, 27-37.	3.5	102
145	Nuclear pore complex assembly through the cell cycle: Regulation and membrane organization. FEBS Letters, 2008, 582, 2004-2016.	1.3	118
146	Role of the carboxyl terminal di-leucine in phosphorylation and internalization of C5a receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1261-1270.	1.9	16
147	Biophysical approaches to protein-induced membrane deformations in trafficking. Current Opinion in Cell Biology, 2008, 20, 476-482.	2.6	123
148	ICA69 is a novel Rab2 effector regulating ER–Golgi trafficking in insulinoma cells. European Journal of Cell Biology, 2008, 87, 197-209.	1.6	48
149	Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. International Journal for Parasitology, 2008, 38, 757-773.	1.3	55
150	PICK1: A multi-talented modulator of AMPA receptor trafficking. , 2008, 118, 152-160.		109

#	ARTICLE	IF	CITATIONS
151	Itinerant exosomes: emerging roles in cell and tissue polarity. Trends in Cell Biology, 2008, 18, 199-209.	3.6	351
152	High Fluidity and Soft Elasticity of the Inner Membrane of <i>Escherichia coli</i> Revealed by the Surface Rheology of Model Langmuir Monolayers. Langmuir, 2008, 24, 4065-4076.	1.6	34
153	Chapter 7 Multiscale Simulation of Membranes and Membrane Proteins: Connecting Molecular Interactions to Mesoscopic Behavior. Current Topics in Membranes, 2008, 60, 181-225.	0.5	15
154	Role of Helix O of the N-BAR Domain in Membrane Curvature Generation. Biophysical Journal, 2008, 94, 3065-3073.	0.2	58
155	Binding and Clustering of Glycosaminoglycans: A Common Property of Mono- and Multivalent Cell-Penetrating Compounds. Biophysical Journal, 2008, 94, 2142-2149.	0.2	111
156	Factors Influencing Local Membrane Curvature Induction by N-BAR Domains as Revealed by Molecular Dynamics Simulations. Biophysical Journal, 2008, 95, 1866-1876.	0.2	102
157	A Fluorescence-Based Technique to Construct Size Distributions from Single-Object Measurements: Application to the Extrusion of Lipid Vesicles. Biophysical Journal, 2008, 95, 1176-1188.	0.2	133
158	Four-Scale Description of Membrane Sculpting by BAR Domains. Biophysical Journal, 2008, 95, 2806-2821.	0.2	251
159	Intrinsic Curvature Properties of Photosynthetic Proteins in Chromatophores. Biophysical Journal, 2008, 95, 2822-2836.	0.2	73
160	The Hydrophobic Insertion Mechanism of Membrane Curvature Generation by Proteins. Biophysical Journal, 2008, 95, 2325-2339.	0.2	347
161	Structure and Dynamics of Helix-O of the N-BAR Domain in Lipid Micelles and Bilayers. Biophysical Journal, 2008, 95, 4315-4323.	0.2	47
162	Systematic Multiscale Parameterization of Heterogeneous Elastic Network Models of Proteins. Biophysical Journal, 2008, 95, 4183-4192.	0.2	148
163	Membrane-substrate interface: Phospholipid bilayers at chemically and topographically structured surfaces. Biointerphases, 2008, 3, FA22-FA32.	0.6	16
164	Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies. PLoS Biology, 2008, 6, e214.	2.6	87
165	Unconventional Mechanisms of Protein Transport to the Cell Surface of Eukaryotic Cells. Annual Review of Cell and Developmental Biology, 2008, 24, 287-308.	4.0	227
166	Structural And Functional Organization Of The Synapse. , 2008, , .		8
167	Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. Journal of Physical Chemistry B, 2008, 112, 16647-16653.	1.2	238
168	Synthesis of magnetosome chain-like structures. Nanotechnology, 2008, 19, 475603.	1.3	23

#	ARTICLE	IF	CITATIONS
169	Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria. Journal of Structural Biology, 2008, 161, 401-410.	1.3	176
170	Fusogenicity of membranes: The impact of acid sphingomyelinase on innate immune responses. Immunobiology, 2008, 213, 307-314.	0.8	92
171	Accurate Determination of Elastic Parameters for Multicomponent Membranes. Physical Review Letters, 2008, 100, 088101.	2.9	116
172	Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry. Applied Optics, 2008, 47, 2458.	2.1	7
173	Binding of bovine seminal plasma protein BSP-A1/-A2 to model membranes: Lipid specificity and effect of the temperature. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 502-513.	1.4	19
174	How lipid flippases can modulate membrane structure. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1591-1600.	1.4	136
175	Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2480-2486.	1.4	37
176	Flexible Scaffolding Made of Rigid BARs. Cell, 2008, 132, 727-729.	13.5	6
177	Structure and Function of Salmonella SifA Indicate that Its Interactions with SKIP, SseJ, and RhoA Family GTPases Induce Endosomal Tubulation. Cell Host and Microbe, 2008, 4, 434-446.	5.1	159
178	Reorganisation of the dendritic actin network during cancer cell migration and invasion. Seminars in Cancer Biology, 2008, 18, 12-22.	4.3	106
180	Molecular dynamics simulations of Dil-C18(3) in a DPPC lipid bilayer. Physical Chemistry Chemical Physics, 2008, 10, 3548.	1.3	88
181	Diffusion of Macromolecules on Lipid Vesicles. Langmuir, 2008, 24, 12458-12468.	1.6	12
182	Lipid Nanotube Formation from Streptavidinâ^'Membrane Binding. Langmuir, 2008, 24, 3686-3689.	1.6	18
183	Real-Time QCM-D Monitoring of Electrostatically Driven Lipid Transfer between Two Lipid Bilayer Membranes. Journal of Physical Chemistry B, 2008, 112, 14069-14074.	1.2	34
184	Determination of the Oligomeric States of Human and Rat Monoamine Oxidases in the Outer Mitochondrial Membrane and Octyl β- <scp>d</scp> -Glucopyranoside Micelles Using Pulsed Dipolar Electron Spin Resonance Spectroscopy. Biochemistry, 2008, 47, 1554-1566.	1.2	57
185	Modulation of the Spontaneous Curvature and Bending Rigidity of Lipid Membranes by Interfacially Adsorbed Amphipathic Peptides. Journal of Physical Chemistry B, 2008, 112, 6988-6996.	1.2	92
186	Influence of Lipid Composition on Membrane Activity of Antimicrobial Phenylene Ethynylene Oligomers. Journal of Physical Chemistry B, 2008, 112, 3495-3502.	1.2	105
187	Bending Membranes on Demand: Fluid Phospholipid Bilayers on Topographically Deformable Substrates. Nano Letters, 2008, 8, 866-871.	4.5	54

#	Article	IF	CITATIONS
188	Arf1-GTP-induced Tubule Formation Suggests a Function of Arf Family Proteins in Curvature Acquisition at Sites of Vesicle Budding. Journal of Biological Chemistry, 2008, 283, 27717-27723.	1.6	100
189	Polyunsaturated Fatty Acids Influence Synaptojanin Localization to Regulate Synaptic Vesicle Recycling. Molecular Biology of the Cell, 2008, 19, 833-842.	0.9	49
190	The mouth of a dense-core vesicle opens and closes in a concerted action regulated by calcium and amphiphysin. Journal of Cell Biology, 2008, 183, 169-169.	2.3	8
191	Lipid Composition Alters Drug Action at the Nicotinic Acetylcholine Receptor. Molecular Pharmacology, 2008, 73, 880-890.	1.0	39
192	Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning. Journal of Virology, 2008, 82, 12392-12405.	1.5	138
193	Evolutionary analysis and molecular dissection of caveola biogenesis. Journal of Cell Science, 2008, 121, 2075-2086.	1.2	110
194	COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16946-16951.	3.3	92
195	Molecular Mechanisms of Neurotransmitter Release. , 2008, , .		4
196	HELIQUEST: a web server to screen sequences with specific \hat{l}_{\pm} -helical properties. Bioinformatics, 2008, 24, 2101-2102.	1.8	928
197	Conditional Lethality, Division Defects, Membrane Involution, and Endocytosis in <i>mre</i> and <i>mrd</i> Shape Mutants of <i>Escherichia coli</i> Journal of Bacteriology, 2008, 190, 1792-1811.	1.0	199
198	The Golgi Apparatus. , 2008, , .		16
199	Membrane shape as a reporter for applied forces. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19253-19257.	3.3	25
200	Three-dimensional Reconstruction of a Membrane-bending Complex. Journal of Biological Chemistry, 2008, 283, 14002-14011.	1.6	92
201	Role of Amphipathic Helix of a Herpesviral Protein in Membrane Deformation and T Cell Receptor Downregulation. PLoS Pathogens, 2008, 4, e1000209.	2.1	24
202	Fusion-pore expansion during syncytium formation is restricted by an actin network. Journal of Cell Science, 2008, 121, 3619-3628.	1.2	47
203	The mouth of a dense-core vesicle opens and closes in a concerted action regulated by calcium and amphiphysin. Journal of Cell Biology, 2008, 182, 1017-1028.	2.3	25
204	Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches. Pharmacological Reviews, 2008, 60, 43-78.	7.1	92
205	Ca ²⁺ -dependent Calmodulin Binding to FcRn Affects Immunoglobulin G Transport in the Transcytotic Pathway. Molecular Biology of the Cell, 2008, 19, 414-423.	0.9	47

#	Article	IF	CITATIONS
206	Sorting nexin-1 defines an early phase of <i>Salmonella</i> -containing vacuole-remodeling during <i>Salmonella</i> -contai	1.2	92
207	Kinetic regulation of coated vesicle secretion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14763-14768.	3.3	33
208	Landscape of finite-temperature equilibrium behaviour of curvature-inducing proteins on a bilayer membrane explored using a linearized elastic free energy model. Molecular Physics, 2008, 106, 1913-1923.	0.8	15
209	SHAPE TRANSFORMATIONS OF VESICLES BUILT OF AMPHIPHILIC MOLECULES. Biophysical Reviews and Letters, 2008, 03, 397-420.	0.9	6
210	Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. Journal of Cell Biology, 2008, 180, 389-402.	2.3	386
211	Chapter 5 Spatiotemporal Dynamics of the ERâ€derived Peroxisomal Endomembrane System. International Review of Cell and Molecular Biology, 2008, 272, 191-244.	1.6	25
212	Mechanotransduction by Membrane-Mediated Activation of G-Protein Coupled Receptors and G-Proteins. , 0, , 89-119.		0
213	Calculation of free energies in fluid membranes subject to heterogeneous curvature fields. Physical Review E, 2009, 80, 011925.	0.8	17
214	Shape deformation and fission route of the lipid domain in a multicomponent vesicle. Physical Review E, 2009, 79, 051924.	0.8	18
215	Massive Formation of Intracellular Membrane Vesicles in Escherichia coli by a Monotopic Membrane-bound Lipid Glycosyltransferase. Journal of Biological Chemistry, 2009, 284, 33904-33914.	1.6	46
216	Autotaxin/Lysophospholipase D-mediated Lysophosphatidic Acid Signaling Is Required to Form Distinctive Large Lysosomes in the Visceral Endoderm Cells of the Mouse Yolk Sac. Journal of Biological Chemistry, 2009, 284, 33561-33570.	1.6	46
217	Phosphatidylinositol-4,5-Bisphosphate and Phospholipase D-Generated Phosphatidic Acid Specify SNARE-Mediated Vesicle Fusion for Prospore Membrane Formation. Eukaryotic Cell, 2009, 8, 1094-1105.	3.4	16
218	Mechanisms of transport through the Golgi complex. Journal of Cell Science, 2009, 122, 443-452.	1.2	100
219	Morphology and interaction between lipid domains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13301-13306.	3.3	128
220	Golgi protein FAPP2 tubulates membranes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21121-21125.	3.3	52
221	The N-terminal Amphipathic α-Helix of Viperin Mediates Localization to the Cytosolic Face of the Endoplasmic Reticulum and Inhibits Protein Secretion. Journal of Biological Chemistry, 2009, 284, 4705-4712.	1.6	134
222	Curvature Dynamics of \hat{l}_{\pm} -Synuclein Familial Parkinson Disease Mutants. Journal of Biological Chemistry, 2009, 284, 7177-7189.	1.6	97
223	Autoinhibition of Arf GTPase-activating Protein Activity by the BAR Domain in ASAP1. Journal of Biological Chemistry, 2009, 284, 1652-1663.	1.6	63

#	Article	IF	CITATIONS
224	Plasma Membrane Fluidity Affects Transient Immobilization of Oxidized Phospholipids in Endocytotic Sites for Subsequent Uptake. Journal of Biological Chemistry, 2009, 284, 2258-2265.	1.6	24
225	Intracellular Phospholipase $A1\hat{l}^3$ (iPL $A1\hat{l}^3$) Is a Novel Factor Involved in Coat Protein Complex I- and Rab6-independent Retrograde Transport between the Endoplasmic Reticulum and the Golgi Complex. Journal of Biological Chemistry, 2009, 284, 26620-26630.	1.6	47
226	Membrane Insertion of the Pleckstrin Homology Domain Variable Loop 1 Is Critical for Dynamin-catalyzed Vesicle Scission. Molecular Biology of the Cell, 2009, 20, 4630-4639.	0.9	94
227	Divergent Bro1 Domains Share the Capacity To Bind Human Immunodeficiency Virus Type 1 Nucleocapsid and To Enhance Virus-Like Particle Production. Journal of Virology, 2009, 83, 7185-7193.	1.5	43
228	The Mechanochemistry of Endocytosis. PLoS Biology, 2009, 7, e1000204.	2.6	197
229	Encapsulation of small spherical liposome into larger flaccid liposome induced by human plasma proteins. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 147-150.	0.9	3
230	Group IV Phospholipase A2α Controls the Formation of Inter-Cisternal Continuities Involved in Intra-Golgi Transport. PLoS Biology, 2009, 7, e1000194.	2.6	81
231	The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding. PLoS Pathogens, 2009, 5, e1000339.	2.1	127
232	Computational Model of Membrane Fission Catalyzed by ESCRT-III. PLoS Computational Biology, 2009, 5, e1000575.	1.5	141
233	SNX9 – a prelude to vesicle release. Journal of Cell Science, 2009, 122, 5-11.	1.2	86
234	Eps15 Homology Domain 1-associated Tubules Contain Phosphatidylinositol-4-Phosphate and Phosphatidylinositol-(4,5)-Bisphosphate and Are Required for Efficient Recycling. Molecular Biology of the Cell, 2009, 20, 2731-2743.	0.9	77
235	Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. Journal of the Royal Society Interface, 2009, 6, 1153-1165.	1.5	134
236	A requirement for epsin in mitotic membrane and spindle organization. Journal of Cell Biology, 2009, 186, 473-480.	2.3	47
237	Syndapin Promotes Formation of a Postsynaptic Membrane System in <i>Drosophila</i> Biology of the Cell, 2009, 20, 2254-2264.	0.9	43
238	A signal comprising a basic cluster and an amphipathic \hat{l}_{\pm} -helix interacts with lipids and is required for the transport of lst2 to the yeast cortical ER. Journal of Cell Science, 2009, 122, 625-635.	1.2	46
239	Simulations of Membrane Tubulation by Lattices of Amphiphysin N-BAR Domains. Structure, 2009, 17, 882-892.	1.6	131
240	Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins. Current Biology, 2009, 19, 95-107.	1.8	273
241	Septin-Mediated Uniform Bracing of Phospholipid Membranes. Current Biology, 2009, 19, 140-145.	1.8	172

#	Article	IF	CITATIONS
242	Domain-Driven Morphogenesis of Cellular Membranes. Current Biology, 2009, 19, R772-R780.	1.8	33
243	Delivery of endocytosed membrane proteins to the lysosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 615-624.	1.9	106
244	Shaping tubular carriers for intracellular membrane transport. FEBS Letters, 2009, 583, 3847-3856.	1.3	22
245	Mechanisms of COPI vesicle formation. FEBS Letters, 2009, 583, 3758-3763.	1.3	39
246	Sizeâ€Dependent Endocytosis of Nanoparticles. Advanced Materials, 2009, 21, 419-424.	11.1	895
247	Reversible Control of <i>Exo</i> â•and <i>Endo</i> â€Budding Transitions in a Photosensitive Lipid Membrane. ChemBioChem, 2009, 10, 251-256.	1.3	80
248	Vesicle Budding and the Origin of Cellular Life. ChemPhysChem, 2009, 10, 2769-2776.	1.0	68
249	A comparative study of the COXâ€1 and COXâ€2 isozymes bound to lipid membranes. Journal of Computational Chemistry, 2009, 30, 1038-1050.	1.5	9
250	Recent advances in stucture-functional studies of mitochondrial factor B. Journal of Bioenergetics and Biomembranes, 2009, 41, 137-143.	1.0	14
251	Modeling morphological instabilities in lipid membranes with anchored amphiphilic polymers. Journal of Chemical Biology, 2009, 2, 65-80.	2.2	9
252	The annexins: spatial and temporal coordination of signaling events during cellular stress. Cellular and Molecular Life Sciences, 2009, 66, 2623-2642.	2.4	129
253	Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO Journal, 2009, 28, 3303-3314.	3.5	230
254	How curved membranes recruit amphipathic helices and protein anchoring motifs. Nature Chemical Biology, 2009, 5, 835-841.	3.9	352
255	Shaping biological matter. Nature Materials, 2009, 8, 173-174.	13.3	4
256	Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice. Nature Structural and Molecular Biology, 2009, 16, 1173-1177.	3.6	79
257	The molecular physiology of activityâ€dependent bulk endocytosis of synaptic vesicles. Journal of Neurochemistry, 2009, 111, 901-914.	2.1	146
258	Computer Simulations of Vesicle Fission Induced by External Amphipathic Inclusions. Journal of Physical Chemistry B, 2009, 113, 1048-1057.	1.2	16
259	Asymmetric Distribution of Cholesterol in Unilamellar Vesicles of Monounsaturated Phospholipids. Langmuir, 2009, 25, 13522-13527.	1.6	28

#	Article	IF	Citations
260	Charged Dendrimers on Lipid Bilayer Membranes: Insight through Dissipative Particle Dynamics Simulations. Macromolecules, 2009, 42, 6277-6283.	2.2	34
261	Observing Self-Assembled Lipid Nanoparticles Building Order and Complexity through Low-Energy Transformation Processes. ACS Nano, 2009, 3, 2789-2797.	7.3	64
262	Chapter 4 Multitasking by Exploitation of Intracellular Transport Functions. Advances in Immunology, 2009, 103, 77-115.	1.1	148
263	Double-Shell Giant Vesicles Mimicking Gram-Negative Cell Wall Behavior during Dehydration. Langmuir, 2009, 25, 5753-5761.	1.6	9
264	Block Liposomes from Curvature-Stabilizing Lipids: Connected Nanotubes, -rods, or -spheres. Langmuir, 2009, 25, 2979-2985.	1.6	32
265	Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22245-22250.	3.3	123
266	The Retromer Coat Complex Coordinates Endosomal Sorting and Dynein-Mediated Transport, with Carrier Recognition by the trans-Golgi Network. Developmental Cell, 2009, 17, 110-122.	3.1	252
267	Structure and Function of the ESCRT-II-III Interface in Multivesicular Body Biogenesis. Developmental Cell, 2009, 17, 234-243.	3.1	109
268	Modulation of phospholipase D activity in vitro. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 913-926.	1.2	29
269	Structural aspects of ganglioside-containing membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 202-208.	1.4	33
270	The effect of salt and pH on block liposomes studied by cryogenic transmission electron microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1869-1876.	1.4	15
271	Mechanisms of membrane deformation by lipid-binding domains. Progress in Lipid Research, 2009, 48, 298-305.	5.3	41
272	Biomimetic membrane systems to study cellular organization. Journal of Structural Biology, 2009, 168, 143-151.	1.3	61
273	Role of helix 8 in G protein-coupled receptors based on structure–function studies on the type 1 angiotensin receptor. Molecular and Cellular Endocrinology, 2009, 302, 118-127.	1.6	54
274	Spatial Localization of PtdInsP 2 in Phase-Separated Giant Unilamellar Vesicles with a Fluorescent PLC-delta 1 PH Domain. Methods in Molecular Biology, 2009, 462, 1-10.	0.4	4
275	Budding and vesiculation induced by conical membrane inclusions. Physical Review E, 2009, 80, 031901.	0.8	64
276	Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Physical Review E, 2009, 79, 031926.	0.8	157
277	Fusion Peptide from Influenza Hemagglutinin Increases Membrane Surface Order: An Electron-Spin Resonance Study. Biophysical Journal, 2009, 96, 4925-4934.	0.2	54

#	Article	IF	CITATIONS
278	Protein-Induced Membrane Curvature Investigated through Molecular Dynamics Flexible Fitting. Biophysical Journal, 2009, 97, 321-329.	0.2	68
279	Modeling Membrane Deformations and Lipid Demixing upon Protein-Membrane Interaction: The BAR Dimer Adsorption. Biophysical Journal, 2009, 97, 1626-1635.	0.2	63
280	Bending Stiffness Depends on Curvature of Ternary Lipid Mixture Tubular Membranes. Biophysical Journal, 2009, 97, 1636-1646.	0.2	80
281	Membrane Binding by the Endophilin N-BAR Domain. Biophysical Journal, 2009, 97, 2746-2753.	0.2	54
282	Membrane-Bending Mechanism of Amphiphysin N-BAR Domains. Biophysical Journal, 2009, 97, 2727-2735.	0.2	101
283	Membrane heterogeneity – from lipid domains to curvature effects. Soft Matter, 2009, 5, 3174.	1.2	92
284	Mechanisms Shaping the Membranes of Cellular Organelles. Annual Review of Cell and Developmental Biology, 2009, 25, 329-354.	4.0	368
285	Punching Holes in Membranes: How Oligomeric Pore-Forming Proteins and Lipids Cooperate to Form Aqueous Channels in Membranes. , 2009, , 223-262.		4
286	Chapter 14 Mechanisms of Polarized Sorting of GPI-anchored Proteins in Epithelial Cells. The Enzymes, 2009, , 289-319.	0.7	1
287	Structural Studies of Langerin and Birbeck Granule: A Macromolecular Organization Model. Biochemistry, 2009, 48, 2684-2698.	1.2	64
288	Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain. Virology Journal, 2009, 6, 62.	1.4	17
289	Lipid Signaling Protocols. Methods in Molecular Biology, 2009, , .	0.4	1
291	Synthetic biology of minimal systems. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 223-242.	2.3	111
292	Photochemical control on morphologies of a cell-sized synthetic vesicle. , 2009, , .		0
293	Shaping Membranes for Endocytosis. Reviews of Physiology, Biochemistry and Pharmacology, 2009, 161, 45-66.	0.9	15
294	GRAF1-dependent endocytosis. Biochemical Society Transactions, 2009, 37, 1061-1065.	1.6	38
295	Chapter two Shape Transformations of Amphiphilic Membranes. Behavior Research Methods, 2009, 10, 29-64.	2.3	1
296	Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochemical Journal, 2010, 430, 497-510.	1.7	52

#	Article	IF	CITATIONS
297	Extensive and Intimate Association of the Cytoskeleton with Forming Silica in Diatoms: Control over Patterning on the Meso- and Micro-Scale. PLoS ONE, 2010, 5, e14300.	1.1	99
298	Regulation of Actin Cytoskeleton Dynamics in Cells. Molecules and Cells, 2010, 29, 311-326.	1.0	312
299	Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape. Molecular Genetics and Genomics, 2010, 283, 519-530.	1.0	17
300	Engineering supported membranes for cell biology. Medical and Biological Engineering and Computing, 2010, 48, 955-963.	1.6	60
301	Protein-driven membrane stresses in fusion and fission. Trends in Biochemical Sciences, 2010, 35, 699-706.	3.7	197
302	At the junction of SNARE and SM protein function. Current Opinion in Cell Biology, 2010, 22, 488-495.	2.6	154
303	Interplay of proteins and lipids in generating membrane curvature. Current Opinion in Cell Biology, 2010, 22, 430-436.	2.6	194
304	Modeling membrane shaping by proteins: Focus on EHD2 and Nâ€BAR domains. FEBS Letters, 2010, 584, 1830-1839.	1.3	57
305	BAR domains, amphipathic helices and membraneâ€anchored proteins use the same mechanism to sense membrane curvature. FEBS Letters, 2010, 584, 1848-1855.	1.3	79
306	An allostatic control of membrane lipid composition by SREBP1. FEBS Letters, 2010, 584, 2689-2698.	1.3	117
307	Arf GAPs: Gatekeepers of vesicle generation. FEBS Letters, 2010, 584, 2646-2651.	1.3	74
308	Selfâ€Assembly of Photosynthetic Membranes. ChemPhysChem, 2010, 11, 1154-1159.	1.0	23
309	Lipid transport and signaling in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2010, 239, 1365-1377.	0.8	24
310	A Generalized System for Photoresponsive Membrane Rupture in Polymersomes. Advanced Functional Materials, 2010, 20, 2588-2596.	7.8	39
311	Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chemistry and Physics of Lipids, 2010, 163, 82-93.	1.5	102
312	Implications for lipids during replication of enveloped viruses. Chemistry and Physics of Lipids, 2010, 163, 449-459.	1.5	39
313	Morphological Transitions of Blockâ€Copolymer Bilayers via Nanoparticle Clustering. Small, 2010, 6, 48-51.	5.2	36
314	Liposome Destabilization by a 2,7â€Diazapyrenium Derivative Through Formation of Transient Pores in the Lipid Bilayer. Small, 2010, 6, 952-959.	5.2	14

#	Article	IF	CITATIONS
315	Stoninsâ€"Specialized Adaptors for Synaptic Vesicle Recycling and Beyond?. Traffic, 2010, 11, 8-15.	1.3	39
316	Membrane invagination in <i>Rhodobacter sphaeroides</i> is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Molecular Microbiology, 2010, 76, 833-847.	1.2	110
317	Endocytosis unplugged: multiple ways to enter the cell. Cell Research, 2010, 20, 256-275.	5.7	455
318	Joint effort bends membrane. Nature, 2010, 463, 439-440.	13.7	28
319	Division of labour in ESCRT complexes. Nature Cell Biology, 2010, 12, 422-423.	4.6	9
320	HIV-1 Nef membrane association depends on charge, curvature, composition and sequence. Nature Chemical Biology, 2010, 6, 46-53.	3.9	88
321	Monosodium urate crystals in inflammation and immunity. Immunological Reviews, 2010, 233, 203-217.	2.8	125
322	Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cellular Microbiology, 2010, 12, 1352-1367.	1.1	63
323	Signaling during Organelle Division and Inheritance. , 2010, , 2555-2561.		0
324	Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes. PLoS ONE, 2010, 5, e12811.	1.1	138
325	Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. Journal of Cell Science, 2010, 123, 756-766.	1.2	132
326	The Future of Golgi Research. Molecular Biology of the Cell, 2010, 21, 3776-3780.	0.9	28
327	Sar1 assembly regulates membrane constriction and ER export. Journal of Cell Biology, 2010, 190, 115-128.	2.3	75
328	Expression of the Salmonella Spp. Virulence Factor SifA in Yeast Alters Rho1 Activity on Peroxisomes. Molecular Biology of the Cell, 2010, 21, 3567-3577.	0.9	8
329	Roles of Amphipathic Helices and the Bin/Amphiphysin/Rvs (BAR) Domain of Endophilin in Membrane Curvature Generation. Journal of Biological Chemistry, 2010, 285, 20164-20170.	1.6	63
330	Dissecting BAR Domain Function in the Yeast Amphiphysins Rvs161 and Rvs167 during Endocytosis. Molecular Biology of the Cell, 2010, 21, 3054-3069.	0.9	73
331	Nbr1 Is a Novel Inhibitor of Ligand-Mediated Receptor Tyrosine Kinase Degradation. Molecular and Cellular Biology, 2010, 30, 5672-5685.	1.1	44
332	Regulation of IRSp53-Dependent Filopodial Dynamics by Antagonism between 14-3-3 Binding and SH3-Mediated Localization. Molecular and Cellular Biology, 2010, 30, 829-844.	1.1	56

#	Article	IF	CITATIONS
333	Thermal Fluctuation and Elasticity of Lipid Vesicles Interacting with Pore-Forming Peptides. Physical Review Letters, 2010, 105, 038101.	2.9	75
334	Fluctuations of the Casimir-like force between two membrane inclusions. Physical Review E, 2010, 81, 050903.	0.8	29
335	Fusion Dynamics of Aqueous Glutamic Acid/Aminodecane/Ibuprofen Vesicles. Journal of Dispersion Science and Technology, 2010, 31, 1370-1375.	1.3	0
336	Steady motion of hairpin-shaped vortex filaments in excitable systems. Physical Review E, 2010, 81, 055202.	0.8	10
337	Membrane Curvature Induction and Tubulation Are Common Features of Synucleins and Apolipoproteins. Journal of Biological Chemistry, 2010, 285, 32486-32493.	1.6	278
338	Molecular Basis of the Potent Membrane-remodeling Activity of the Epsin 1 N-terminal Homology Domain. Journal of Biological Chemistry, 2010, 285, 531-540.	1.6	59
339	Endocytic Sorting and Recycling Require Membrane Phosphatidylserine Asymmetry Maintained by TAT-1/CHAT-1. PLoS Genetics, 2010, 6, e1001235.	1.5	87
340	Sensing-Applications of Surface-Based Single Vesicle Arrays. Sensors, 2010, 10, 11352-11368.	2.1	47
341	PATTERN FORMATION IN NONEQUILIBRIUM LIPID MEMBRANES: FROM MEMBRANE UNDULATIONS TO LIPID RAFTS. Biophysical Reviews and Letters, 2010, 05, 1-34.	0.9	3
342	Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils. Cell Adhesion and Migration, 2010, 4, 32-38.	1.1	23
343	Regulation of the Actin Cytoskeleton-Plasma Membrane Interplay by Phosphoinositides. Physiological Reviews, 2010, 90, 259-289.	13.1	424
344	Membrane Lipids Influence Protein Complex Assemblyâ^Disassembly. Journal of the American Chemical Society, 2010, 132, 5596-5597.	6.6	26
345	Cell Membrane Tethers Generate Mechanical Force in Response toÂElectrical Stimulation. Biophysical Journal, 2010, 99, 845-852.	0.2	57
346	Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density. Biophysical Journal, 2010, 99, 1303-1310.	0.2	364
347	The Vesicle Trafficking Protein Sar1 Lowers Lipid Membrane Rigidity. Biophysical Journal, 2010, 99, 1539-1545.	0.2	44
348	Water under the BAR. Biophysical Journal, 2010, 99, 1783-1790.	0.2	25
349	Tensile Forces and Shape Entropy Explain Observed Crista Structure in Mitochondria. Biophysical Journal, 2010, 99, 3244-3254.	0.2	35
350	Sandwiched Grapheneâ°'Membrane Superstructures. ACS Nano, 2010, 4, 229-234.	7.3	252

#	ARTICLE	IF	CITATIONS
351	Cellular Remodeling During Plant Virus Infection. Annual Review of Phytopathology, 2010, 48, 69-91.	3.5	240
352	Lipids and Cholesterol as Regulators of Traffic in the Endomembrane System. Annual Review of Biophysics, 2010, 39, 559-578.	4.5	147
353	Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7781-7786.	3.3	191
354	Mechanical Properties of Bare and Protein-Coated Giant Unilamellar Phospholipid Vesicles. A Comparative Study of Micropipet Aspiration and Atomic Force Microscopy. Langmuir, 2010, 26, 11041-11049.	1.6	49
355	Quantifying Membrane Curvature Generation of Drosophila Amphiphysin N-BAR Domains. Journal of Physical Chemistry Letters, 2010, 1, 3401-3406.	2.1	37
356	Curvature Sensing by the Epsin N-Terminal Homology Domain Measured on Cylindrical Lipid Membrane Tethers. Journal of the American Chemical Society, 2010, 132, 1200-1201.	6.6	82
357	Membrane Mediated Sorting. Physical Review Letters, 2010, 104, 198102.	2.9	14
358	Physical aspects of COPI vesicle formation. Molecular Membrane Biology, 2010, 27, 428-442.	2.0	23
359	Stokesian jellyfish: viscous locomotion of bilayer vesicles. Soft Matter, 2010, 6, 1737.	1.2	13
360	Structure–activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Organic and Biomolecular Chemistry, 2010, 8, 4281.	1.5	31
361	The fight between the teleost fish immune response and aquatic viruses. Molecular Immunology, 2010, 47, 2525-2536.	1.0	126
362	Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiaeâ~†. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1314-1322.	1.2	52
363	Zebrafish fat-free, a novel Arf effector, regulates phospholipase D to mediate lipid and glucose metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1330-1340.	1.2	11
364	Templating membrane assembly, structure, and dynamics using engineered interfaces. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 839-850.	1.4	26
365	Membrane simulations mimicking acidic pH reveal increased thickness and negative curvature in a bilayer consisting of lysophosphatidylcholines and free fatty acids. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 938-946.	1.4	57
366	Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication. Cell, 2010, 141, 799-811.	13.5	591
367	Influenza Exits the Cell without an ESCRT. Cell, 2010, 142, 839-841.	13.5	3
368	Membrane Budding. Cell, 2010, 143, 875-887.	13.5	249

#	Article	IF	CITATIONS
369	Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends in Neurosciences, 2010, 33, 76-83.	4.2	43
370	SNX–BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Seminars in Cell and Developmental Biology, 2010, 21, 371-380.	2.3	150
371	Multiscale simulation of protein mediated membrane remodeling. Seminars in Cell and Developmental Biology, 2010, 21, 357-362.	2.3	39
372	Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. Seminars in Cell and Developmental Biology, 2010, 21, 363-370.	2.3	35
373	Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Seminars in Cell and Developmental Biology, 2010, 21, 340-349.	2.3	126
374	A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Seminars in Cell and Developmental Biology, 2010, 21, 381-390.	2.3	99
375	Structural characteristics of BAR domain superfamily to sculpt the membrane. Seminars in Cell and Developmental Biology, 2010, 21, 391-398.	2.3	73
376	Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17339-17344.	3.3	139
377	Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5593-5598.	3.3	287
378	PARP around the Clock. Cell, 2010, 142, 841-843.	13.5	10
379	Vortices on curved surfaces. Reviews of Modern Physics, 2010, 82, 1301-1348.	16.4	146
380	Role of Cellular Lipids in Positive-Sense RNA Virus Replication Complex Assembly and Function. Viruses, 2010, 2, 1055-1068.	1.5	47
381	Lipid membranes with transmembrane proteins in shear flow. Journal of Chemical Physics, 2010, 132, 025101.	1.2	11
382	Vesicle Budding Induced by a Pore-Forming Peptide. Journal of the American Chemical Society, 2010, 132, 195-201.	6.6	71
383	Helical Crystallization of Soluble and Membrane Binding Proteins. Methods in Enzymology, 2010, 481, 45-62.	0.4	9
384	A broad-spectrum antiviral targeting entry of enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3157-3162.	3.3	214
385	Intracellular Membrane Traffic at High Resolution. Methods in Cell Biology, 2010, 96, 619-648.	0.5	46
386	Droplet-induced budding transitions of membranes. Soft Matter, 2011, 7, 6914.	1.2	32

#	Article	IF	CITATIONS
387	Systems biology and physical biology of clathrin-mediated endocytosis. Integrative Biology (United) Tj ETQq0 0 C	rgBT /Ove	erlggk 10 Tf 5
388	The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Physical Chemistry Chemical Physics, 2011, 13, 3115-3125.	1.3	75
389	Forming transmembrane channels using end-functionalized nanotubes. Nanoscale, 2011, 3, 240-250.	2.8	38
390	Anandamide and analogous endocannabinoids: a lipid self-assembly study. Soft Matter, 2011, 7, 5319.	1.2	17
391	Reconstructing protein remodeled membranes in molecular detail from mesoscopic models. Physical Chemistry Chemical Physics, 2011, 13, 10430.	1.3	23
392	Anisotropic Solvent Model of the Lipid Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in Membranes. Journal of Chemical Information and Modeling, 2011, 51, 930-946.	2.5	131
393	Engineering Polymersome Protocells. Journal of Physical Chemistry Letters, 2011, 2, 1612-1623.	2.1	122
394	Sorting Mechanisms and Communication in Phase-Separating Coupled Monolayers. Journal of Physical Chemistry B, 2011, 115, 11739-11745.	1.2	9
395	Lipid Composition Influences the Membrane-Disrupting Activity of Antimicrobial Methacrylate Co-polymers. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2041-2061.	1.9	13
396	Noise-Free Dual-Wavelength Difference Imaging of Plasmonic Resonant Nanoparticles in Living Cells. Analytical Chemistry, 2011, 83, 7340-7347.	3.2	46
397	Mechanism of Membrane Curvature Sensing by Amphipathic Helix Containing Proteins. Biophysical Journal, 2011, 100, 1271-1279.	0.2	184
398	Controlling the micellar morphology of binary PEO–PCL block copolymers in water–THF through controlled blending. Soft Matter, 2011, 7, 749-759.	1.2	37
399	Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nature Structural and Molecular Biology, 2011, 18, 902-907.	3.6	84
400	NMR-NOE and MD Simulation Study on Phospholipid Membranes: Dependence on Membrane Diameter and Multiple Time Scale Dynamics. Journal of Physical Chemistry B, 2011, 115, 9106-9115.	1.2	14
401	Phase field calculus, curvature-dependent energies, and vesicle membranes. Philosophical Magazine, 2011, 91, 165-181.	0.7	18
402	Nanotubes from asymmetrically decorated vesicles. Soft Matter, 2011, 7, 946-951.	1.2	2
403	Interleaflet Interaction and Asymmetry in Phase Separated Lipid Bilayers: Molecular Dynamics Simulations. Journal of the American Chemical Society, 2011, 133, 6563-6577.	6.6	160
404	Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine, 2011, 6, 423-436.	1.7	80

#	Article	IF	CITATIONS
405	The Minimal Cell., 2011,,.		23
406	Viperin: A Multifunctional, Interferon-Inducible Protein that Regulates Virus Replication. Cell Host and Microbe, 2011, 10, 534-539.	5.1	210
407	Notch Ligand Ubiquitylation: What Is It Good For?. Developmental Cell, 2011, 21, 134-144.	3.1	102
408	Effect of membrane tension on the electric field and dipole potential of lipid bilayer membrane. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2608-2617.	1.4	41
409	Applications of the molecular dynamics flexible fitting method. Journal of Structural Biology, 2011, 173, 420-427.	1.3	44
410	Thermodynamics and Mechanics of Membrane Curvature Generation and Sensing by Proteins and Lipids. Annual Review of Physical Chemistry, 2011, 62, 483-506.	4.8	336
411	Mechanisms of Membrane Curvature Sensing. Annual Review of Biochemistry, 2011, 80, 101-123.	5.0	384
412	Determinants of adipophilin function in milk lipid formation and secretion. Trends in Endocrinology and Metabolism, 2011, 22, 211-217.	3.1	83
413	Functional liposomes and supported lipid bilayers: towards the complexity of biological archetypes. Physical Chemistry Chemical Physics, 2011, 13, 8769.	1.3	21
414	Supported Lipid Bilayers With Controlled Curvature via Colloidal Lithography. IEEE Transactions on Nanobioscience, 2011, 10, 187-193.	2.2	2
416	Let's go bananas: revisiting the endocytic BAR code. EMBO Journal, 2011, 30, 3501-3515.	3.5	216
417	West Nile Virus Replication Requires Fatty Acid Synthesis but Is Independent on Phosphatidylinositol-4-Phosphate Lipids. PLoS ONE, 2011, 6, e24970.	1.1	136
418	Actin-Independent Behavior and Membrane Deformation Exhibited by the Four-Transmembrane Protein M6a. PLoS ONE, 2011, 6, e26702.	1.1	16
419	Programmed Bending Reveals Dynamic Mechanochemical Coupling in Supported Lipid Bilayers. PLoS ONE, 2011, 6, e28517.	1.1	9
420	Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Molecular Biology of the Cell, 2011, 22, 354-374.	0.9	53
421	Computational Modeling of Curvature Effects in Supported Lipid Bilayers. Current Nanoscience, 2011, 7, 716-720.	0.7	12
422	Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery. Current Nanoscience, 2011, 7, 727-735.	0.7	29
423	Characterization of the EFC/F-BAR domain protein, FCHO2. Genes To Cells, 2011, 16, 868-878.	0.5	26

#	Article	IF	Citations
424	Rac1 and Calmodulin Interactions Modulate Dynamics of ARF6â€Dependent Endocytosis. Traffic, 2011, 12, 1879-1896.	1.3	26
425	Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Reviews Molecular Cell Biology, 2011, 12, 104-117.	16.1	597
426	Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2011, 12, 517-533.	16.1	1,856
427	The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi. Microbiology, 2011, 80, 455-460.	0.5	27
428	Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nature Reviews Neuroscience, 2011, 12, 127-138.	4.9	497
429	Membrane curvature during peroxisome fission requires Pex11. EMBO Journal, 2011, 30, 5-16.	3.5	119
430	The Phe105 Loop of Alix Bro1 Domain Plays a Key Role in HIV-1 Release. Structure, 2011, 19, 1485-1495.	1.6	30
431	The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain. Experimental Cell Research, 2011, 317, 691-705.	1.2	13
432	Balancing ER dynamics: shaping, bending, severing, and mending membranes. Current Opinion in Cell Biology, 2011, 23, 435-442.	2.6	55
433	Gangliosides and the multiscale modulation of membrane structure. Chemistry and Physics of Lipids, 2011, 164, 796-810.	1.5	47
434	The ultrastructure of the compartmentalized anaerobic ammonium-oxidizing bacteria is linked to their energy metabolism. Biochemical Society Transactions, 2011, 39, 1805-1810.	1.6	12
435	Membrane Curvature Sensing by Amphipathic Helices. Journal of Biological Chemistry, 2011, 286, 42603-42614.	1.6	108
436	Lipidology and lipidomics––quo vadis? A new era for the physical chemistry of lipids. Physical Chemistry Chemical Physics, 2011, 13, 19195.	1.3	41
437	Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266.	3.9	113
438	Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cellular and Molecular Life Sciences, 2011, 68, 3983-3993.	2.4	91
439	Cell motility: the integrating role of the plasma membrane. European Biophysics Journal, 2011, 40, 1013-1027.	1.2	119
440	Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 269-280.	6.6	19
441	Modeling Anisotropic Elasticity of Fluid Membranes. Macromolecular Theory and Simulations, 2011, 20, 446-450.	0.6	23

#	Article	IF	Citations
442	Lipids, curvature, and nanoâ€medicine. European Journal of Lipid Science and Technology, 2011, 113, 1174-1187.	1.0	98
443	A variational approach to vesicle membrane reconstruction from fluorescence imaging. Pattern Recognition, 2011, 44, 2944-2958.	5.1	3
444	Dynamic Remodeling of Membranes Catalyzed by Dynamin. Current Topics in Membranes, 2011, 68, 33-47.	0.5	5
445	Dynamical membrane curvature instability controlled by intermonolayer friction. Journal of Physics Condensed Matter, 2011, 23, 284102.	0.7	17
446	Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique. Journal of Physics Condensed Matter, 2011, 23, 284104.	0.7	11
447	Myosin 1 controls membrane shape by coupling F-Actin to membrane. Bioarchitecture, 2011, 1, 230-235.	1.5	16
448	Curvature multiphase field model for phase separation on a membrane. Physical Review E, 2011, 84, 061922.	0.8	4
449	Membrane morphology induced by anisotropic proteins. Physical Review E, 2011, 84, 061909.	0.8	5
450	Vesicle deformations by clusters of transmembrane proteins. Journal of Chemical Physics, 2011, 134, 085106.	1.2	6
451	Fluid transport by active elastic membranes. Physical Review E, 2011, 84, 031924.	0.8	2
452	Microphase Separation in Nonequilibrium Biomembranes. Physical Review Letters, 2011, 106, 238101.	2.9	17
453	Tryptophan Residues Promote Membrane Association for a Plant Lipid Glycosyltransferase Involved in Phosphate Stress. Journal of Biological Chemistry, 2011, 286, 6669-6684.	1.6	27
454	Hepatitis c virus and host cell lipids: An intimate connection. RNA Biology, 2011, 8, 258-269.	1.5	140
455	PKD Regulates Membrane Fission to Generate TGN to Cell Surface Transport Carriers. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005280-a005280.	2.3	87
456	The Synaptic Ribbon Is a Site of Phosphatidic Acid Generation in Ribbon Synapses. Journal of Neuroscience, 2011, 31, 15996-16011.	1.7	51
457	Dual Regulation of RA-RhoGAP Activity by Phosphatidic Acid and Rap1 during Neurite Outgrowth. Journal of Biological Chemistry, 2011, 286, 6832-6843.	1.6	16
458	Functional characterization of the essential tail anchor of the herpes simplex virus type 1 nuclear egress protein pUL34. Journal of General Virology, 2011, 92, 2734-2745.	1.3	29
459	Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. Journal of Cell Biology, 2011, 194, 765-777.	2.3	70

#	Article	IF	CITATIONS
460	Endoplasmic Reticulum– and Golgi-Localized Phospholipase A2 Plays Critical Roles in <i>Arabidopsis</i> Pollen Development and Germination Â. Plant Cell, 2011, 23, 94-110.	3.1	76
461	Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7769-7774.	3.3	257
462	Association of Influenza Virus Proteins with Membrane Rafts. Advances in Virology, 2011, 2011, 1-14.	0.5	91
463	Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Reviews in Molecular Medicine, 2011, 13, e6.	1.6	41
464	Post-translational Membrane Insertion of Tail-anchored Transmembrane EF-hand Ca2+ Sensor Calneurons Requires the TRC40/Asna1 Protein Chaperone. Journal of Biological Chemistry, 2011, 286, 36762-36776.	1.6	28
465	SH3YL1 regulates dorsal ruffle formation by a novel phosphoinositide-binding domain. Journal of Cell Biology, 2011, 193, 901-916.	2.3	82
466	Formation of Essential Ultrastructural Interface between Cultured Hippocampal Cells and Gold Mushroom-Shaped MEA-Toward ?IN-CELL? Recordings from Vertebrate Neurons. Frontiers in Neuroengineering, 2011, 4, 14.	4.8	53
467	Immediate Early Proto-Oncoproteins and Membranes: Not Just An Innocent Liaison. Current Protein and Peptide Science, 2011, 12, 685-690.	0.7	3
468	α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. Journal of Cell Biology, 2011, 194, 89-103.	2.3	177
469	Coupled vesicle morphogenesis and domain organization. Applied Physics Letters, 2011, 98, .	1.5	13
470	Cholesterol- and Sphingolipid-rich Microdomains Are Essential for Microtubule-based Membrane Protrusions Induced by Clostridium difficile Transferase (CDT). Journal of Biological Chemistry, 2011, 286, 29356-29365.	1.6	52
471	Perforin activity at membranes leads to invaginations and vesicle formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21016-21021.	3.3	35
472	Determinants of endocytic membrane geometry, stability, and scission. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E979-88.	3.3	75
473	Lipid-Mediated Endocytosis. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004721-a004721.	2.3	154
474	Lipid Polymorphisms and Membrane Shape. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004747-a004747.	2.3	152
475	The Adipophilin C Terminus Is a Self-folding Membrane-binding Domain That Is Important for Milk Lipid Secretion. Journal of Biological Chemistry, 2011, 286, 23254-23265.	1.6	39
476	Shape transformation of lipid vesicles induced by diffusing macromolecules. Journal of Chemical Physics, 2011, 134, 024110.	1.2	13
477	Static retention of the lumenal monotopic membrane protein torsinA in the endoplasmic reticulum. EMBO Journal, 2011, 30, 3217-3231.	3.5	51

#	Article	IF	Citations
478	Phospholipase D2. Journal of Histochemistry and Cytochemistry, 2012, 60, 386-396.	1.3	10
479	The ESCRT Machinery Is Recruited by the Viral BFRF1 Protein to the Nucleus-Associated Membrane for the Maturation of Epstein-Barr Virus. PLoS Pathogens, 2012, 8, e1002904.	2.1	110
480	Milk lipid secretion: recent biomolecular aspects. Biomolecular Concepts, 2012, 3, 581-591.	1.0	31
481	Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO Journal, 2012, 31, 4072-4084.	3 . 5	104
482	Biogenesis and Dynamics of the Coronavirus Replicative Structures. Viruses, 2012, 4, 3245-3269.	1.5	64
483	Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Molecular Biology of the Cell, 2012, 23, 881-895.	0.9	75
484	Buckling Instability of Viral Capsids—A Continuum Approach. Multiscale Modeling and Simulation, 2012, 10, 82-110.	0.6	15
485	Distributions of lifetime and maximum size of abortive clathrin-coated pits. Physical Review E, 2012, 86, 031907.	0.8	2
486	Phosphatidylinositol 4,5-Bisphosphate (PtdIns(4,5)P2) Specifically Induces Membrane Penetration and Deformation by Bin/Amphiphysin/Rvs (BAR) Domains. Journal of Biological Chemistry, 2012, 287, 34078-34090.	1.6	44
487	Structure of the yeast $F < \text{sub} > 1 < \text{sub} > F < \text{sub} > 0 < \text{sub} > -ATP$ synthase dimer and its role in shaping the mitochondrial cristae. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13602-13607.	3.3	413
488	Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties. Microbiology and Molecular Biology Reviews, 2012, 76, 585-596.	2.9	220
489	Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins. Journal of Bacteriology, 2012, 194, 4494-4504.	1.0	279
490	Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (United Kingdom), 2012, 158, 1147-1161.	0.7	300
491	Manufacture of liposomes by isopropanol injection: characterization of the method. Journal of Liposome Research, 2012, 22, 18-30.	1.5	32
492	A simple guide to biochemical approaches for analyzing protein–lipid interactions. Molecular Biology of the Cell, 2012, 23, 2823-2830.	0.9	92
493	Mechanisms of Membrane Curvature Generation in Membrane Traffic. Membranes, 2012, 2, 118-133.	1.4	10
494	Viperin: a radical response to viral infection. Biomolecular Concepts, 2012, 3, 255-266.	1.0	43
495	Control of Innate Immune Signaling and Membrane Targeting by the Hepatitis C Virus NS3/4A Protease Are Governed by the NS3 Helix \hat{l}_{\pm} ₀ . Journal of Virology, 2012, 86, 3112-3120.	1.5	40

#	Article	IF	CITATIONS
496	Mesoscale simulations of curvature inducing protein partitioning in the presence of mean curvature gradients. , 2012, , .		0
497	Vesicle formation within endosomes: An ESCRT marks the spot. Communicative and Integrative Biology, 2012, 5, 50-56.	0.6	29
498	Molecular modeling of membrane curvature driven by epsin. , 2012, , .		0
499	Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields. Molecular Physics, 2012, 110, 1127-1137.	0.8	24
500	Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20455-20460.	3.3	162
501	Curvature sorting of proteins on a cylindrical lipid membrane tether connected to a reservoir. Physical Review E, 2012, 85, 051906.	0.8	43
502	To forge a solid immune recognition. Protein and Cell, 2012, 3, 564-570.	4.8	17
503	Circular, nanostructured and biofunctionalized hydrogel microchannels for dynamic cell adhesion studies. Lab on A Chip, 2012, 12, 3285.	3.1	35
504	Polarized sorting and trafficking in epithelial cells. Cell Research, 2012, 22, 793-805.	5.7	121
505	(+)RNA viruses rewire cellular pathways to build replication organelles. Current Opinion in Virology, 2012, 2, 740-747.	2.6	133
506	Ciliated sensory hair cell formation and function require the F-BAR protein syndapin I and the WH2 domain-based actin nucleator Cobl. Journal of Cell Science, 2013, 126, 196-208.	1.2	25
507	Dynamics of ESCRT proteins. Cellular and Molecular Life Sciences, 2012, 69, 4121-4133.	2.4	32
508	Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology, 2012, 13, 75-88.	16.1	807
509	Cellular Life Could Have Emerged from Properties of Vesicles. Origins of Life and Evolution of Biospheres, 2012, 42, 483-486.	0.8	6
510	Biogenesis and subcellular organization of the magnetosome organelles of magnetotactic bacteria. Current Opinion in Cell Biology, 2012, 24, 490-495.	2.6	36
511	SnapShot: Membrane Curvature Sensors and Generators. Cell, 2012, 150, 1300-1300.e2.	13.5	49
513	Phosphoinositide Metabolism in <i>Drosophila </i> Phototransduction: A Coffee Break Discussion Leads to 30 Years of History. Journal of Neurogenetics, 2012, 26, 34-42.	0.6	3
514	Enhanced activity of cyclic transporter sequences driven by phase behavior of peptide–lipid complexes. Soft Matter, 2012, 8, 6430.	1.2	15

#	Article	IF	Citations
515	Computer simulations of fusion, fission and shape deformation in lipid membranes. Soft Matter, 2012, 8, 606-618.	1.2	32
516	Membrane curvature recognition by C-reactive protein using lipoprotein mimics. Soft Matter, 2012, 8, 7909.	1.2	23
517	Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 173-178.	3.3	266
518	Bending membranes. Nature Cell Biology, 2012, 14, 906-908.	4.6	74
519	Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science, 2012, 37, 1130-1176.	11.8	82
520	Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13978-13983.	3.3	439
521	Science and politics: Picking a winner. Nature Cell Biology, 2012, 14, 891-891.	4.6	0
522	Model membrane platforms to study protein-membrane interactions /b>. Molecular Membrane Biology, 2012, 29, 144-154.	2.0	83
523	The role of feature curvature in contact guidance. Acta Biomaterialia, 2012, 8, 2595-2601.	4.1	43
524	Phospholipid flippases: Building asymmetric membranes and transport vesicles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1068-1077.	1.2	187
525	Elastic, electrostatic and electrokinetic forces influencing membrane curvature. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 411-424.	1.4	3
526	Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2271-2281.	1.4	97
527	Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes. Biochemical and Biophysical Research Communications, 2012, 417, 409-413.	1.0	12
528	Molecular basis for sculpting the endoplasmic reticulum membrane. International Journal of Biochemistry and Cell Biology, 2012, 44, 1436-1443.	1.2	48
529	Membrane Fission: Curvature-Sensitive Proteins Cut It Both Ways. Developmental Cell, 2012, 22, 691-692.	3.1	3
530	Notch Ligand Endocytosis Generates Mechanical Pulling Force Dependent on Dynamin, Epsins, and Actin. Developmental Cell, 2012, 22, 1299-1312.	3.1	208
531	Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains. Cell, 2012, 149, 124-136.	13.5	318
532	Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today, 2012, 17, 850-860.	3.2	668

#	ARTICLE	IF	CITATIONS
533	Notch Receptor-Ligand Interactions During T Cell Development, a Ligand Endocytosis-Driven Mechanism. Current Topics in Microbiology and Immunology, 2012, 360, 19-46.	0.7	9
534	The BAR Domain Protein Arfaptin-1 Controls Secretory Granule Biogenesis at the trans-Golgi Network. Developmental Cell, 2012, 23, 756-768.	3.1	85
535	Improving the CHARMM Force Field for Polyunsaturated Fatty Acid Chains. Journal of Physical Chemistry B, 2012, 116, 9424-9431.	1.2	140
536	Integrated Phospholipidomics and Transcriptomics Analysis of <i>Saccharomyces cerevisiae </i> With Enhanced Tolerance to a Mixture of Acetic Acid, Furfural, and Phenol. OMICS A Journal of Integrative Biology, 2012, 16, 374-386.	1.0	39
537	Curvature Changes of Bilayer Membranes Studied by Computer Simulations. Journal of Physical Chemistry B, 2012, 116, 7196-7202.	1.2	11
538	Curvature Forces in Membrane Lipid–Protein Interactions. Biochemistry, 2012, 51, 9782-9795.	1.2	149
539	Lysophosphatidylcholine inhibits membraneâ€associated SNARE complex disassembly. Journal of Cellular and Molecular Medicine, 2012, 16, 1701-1708.	1.6	6
540	5.17 Single Molecule Measurements in Membranes. , 2012, , 337-365.		0
541	Modulated phases of phospholipid bilayers induced by tocopherols. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2486-2493.	1.4	30
542	Modulation of membrane rigidity by the human vesicle trafficking proteins Sar1A and Sar1B. Biochemical and Biophysical Research Communications, 2012, 426, 585-589.	1.0	36
543	The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochemical Pharmacology, 2012, 84, 1400-1408.	2.0	61
544	Nonlinear Sorting, Curvature Generation, and Crowding of Endophilin N-BAR on Tubular Membranes. Biophysical Journal, 2012, 102, 1837-1845.	0.2	106
545	Regulation of Endocytic Clathrin Dynamics by Cargo Ubiquitination. Developmental Cell, 2012, 23, 519-532.	3.1	99
546	Membrane curvature and its generation by BAR proteins. Trends in Biochemical Sciences, 2012, 37, 526-533.	3.7	234
547	Quantifying Interactions of \hat{I}^2 -Synuclein and \hat{I}^3 -Synuclein with Model Membranes. Journal of Molecular Biology, 2012, 423, 528-539.	2.0	28
548	Membrane Binding and Self-Association of the Epsin N-Terminal Homology Domain. Journal of Molecular Biology, 2012, 423, 800-817.	2.0	55
549	Dynamic curvature control of rolled-up metal nanomembranes activated by magnesium. Journal of Materials Chemistry, 2012, 22, 12983.	6.7	6
550	Top-down Mesoscale Models and Free Energy Calculations of Multivalent Protein-Protein and Protein-Membrane Interactions in Nanocarrier Adhesion and Receptor Trafficking. RSC Biomolecular Sciences, 2012, , 272-292.	0.4	3

#	Article	IF	Citations
551	Size-Dependent Partitioning of Nano/Microparticles Mediated by Membrane Lateral Heterogeneity. Journal of the American Chemical Society, 2012, 134, 13990-13996.	6.6	56
552	Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, 2012, , .	0.7	2
553	Determining Biomembrane Bending Rigidities from Simulations of Modest Size. Physical Review Letters, 2012, 109, 028102.	2.9	122
554	Molecular Basis for Nanoscopic Membrane Curvature Generation from Quantum Mechanical Models and Synthetic Transporter Sequences. Journal of the American Chemical Society, 2012, 134, 19207-19216.	6.6	64
555	Lipid Domain Pixelation Patterns Imposed by E-beam Fabricated Substrates. Langmuir, 2012, 28, 7107-7113.	1.6	12
556	Lipid membrane curvature induced by distearoyl phosphatidylinositol 4-phosphate. Soft Matter, 2012, 8, 3090.	1.2	36
557	Curvature Sorting of Peripheral Proteins on Solid-Supported Wavy Membranes. Langmuir, 2012, 28, 12838-12843.	1.6	69
558	Tetraspanins and cell membrane tubular structures. Cellular and Molecular Life Sciences, 2012, 69, 2843-2852.	2.4	47
559	Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nature Cell Biology, 2012, 14, 634-639.	4.6	156
560	Enhancement of Cell Membrane Invaginations, Vesiculation and Uptake of Macromolecules by Protonation of the Cell Surface. PLoS ONE, 2012, 7, e35204.	1.1	23
561	SNX12 Role in Endosome Membrane Transport. PLoS ONE, 2012, 7, e38949.	1.1	25
562	Key Events in Synaptic Vesicle Endocytosis. , 0, , .		1
563	A Multi Time-Scale Approach of the Lipid Bilayer Dynamics. Behavior Research Methods, 2012, , 105-137.	2.3	1
564	GPR55 and its Interaction with Membrane Lipids: Comparison with Other Endocannabinoid-Binding Receptors. Current Medicinal Chemistry, 2012, 20, 64-78.	1.2	36
565	Fabrication of Lipid Tubules with Embedded Quantum Dots by Membrane Tubulation Protein. Small, 2012, 8, 1590-1595.	5 . 2	15
566	Out-of-surface vortices in spherical shells. Physical Review B, 2012, 85, .	1.1	59
567	Elucidating Driving Forces for Liposome Rupture: External Perturbations and Chemical Affinity. Langmuir, 2012, 28, 7417-7427.	1.6	6
568	Detection of Highly Curved Membrane Surfaces Using a Cyclic Peptide Derived from Synaptotagmin-I. ACS Chemical Biology, 2012, 7, 1629-1635.	1.6	31

#	Article	IF	CITATIONS
569	Electrodiffusion of lipids on membrane surfaces. Journal of Chemical Physics, 2012, 136, 205103.	1.2	8
570	The influence of membrane bound proteins on phase separation and coarsening in cell membranes. Physical Chemistry Chemical Physics, 2012, 14, 14509.	1.3	31
571	Membrane Fission: The Biogenesis of Transport Carriers. Annual Review of Biochemistry, 2012, 81, 407-427.	5.0	96
572	Rapid Mobilization of Membrane Lipids in Wheat Leaf Sheaths During Incompatible Interactions with Hessian Fly. Molecular Plant-Microbe Interactions, 2012, 25, 920-930.	1.4	25
573	Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes. Cellular and Molecular Life Sciences, 2012, 69, 1889-1901.	2.4	72
574	The exocyst complex in exocytosis and cell migration. Protoplasma, 2012, 249, 587-597.	1.0	84
575	Dissecting Tâ€cell activation with highâ€resolution liveâ€cell microscopy. Immunology, 2012, 135, 198-206.	2.0	5
576	Membrane Biology: Fission behind BARs. Current Biology, 2012, 22, R455-R457.	1.8	0
577	The early steps of endocytosis: From cargo selection to membrane deformation. European Journal of Cell Biology, 2012, 91, 226-233.	1.6	32
578	Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. European Polymer Journal, 2012, 48, 472-482.	2.6	47
579	On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach. Journal of Computational Physics, 2012, 231, 528-540.	1.9	38
580	Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience. Lab on A Chip, 2013, 13, 3613.	3.1	17
581	Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Microbiology, 2013, 164, 108-112.	2.1	82
582	Cell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies. Faraday Discussions, 2013, 161, 481-497.	1.6	27
583	Understanding the Role of Amphipathic Helices in N-BAR Domain Driven Membrane Remodeling. Biophysical Journal, 2013, 104, 404-411.	0.2	81
584	Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1065-1077.	1.9	30
585	Expression of flotillins in the human placenta: potential implications for placental transcytosis. Histochemistry and Cell Biology, 2013, 139, 487-500.	0.8	11
586	Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays. Analyst, The, 2013, 138, 6230.	1.7	65

#	Article	IF	CITATIONS
587	Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discussions, 2013, 161, 305-331.	1.6	241
588	A cost–benefit analysis of the physical mechanisms of membrane curvature. Nature Cell Biology, 2013, 15, 1019-1027.	4.6	194
589	Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration. Developmental Cell, 2013, 26, 266-278.	3.1	88
590	FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner. Scientific Reports, 2013, 3, 1565.	1.6	55
591	Polymersomes and Multicompartment Polymersomes Formed by the Interfacial Self-Assembly of Gold Nanoparticles and Amphiphilic Polymers. ACS Macro Letters, 2013, 2, 805-808.	2.3	31
592	Influenza Virus A M2 Protein Generates Negative Gaussian Membrane Curvature Necessary for Budding and Scission. Journal of the American Chemical Society, 2013, 135, 13710-13719.	6.6	101
593	Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains. Cell Reports, 2013, 4, 1213-1223.	2.9	134
594	Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Current Opinion in Solid State and Materials Science, 2013, 17, 151-163.	5.6	148
595	Curvature Engineering: Positive Membrane Curvature Induced by Epsin N-Terminal Peptide Boosts Internalization of Octaarginine. ACS Chemical Biology, 2013, 8, 1894-1899.	1.6	49
596	Membrane curvature in flaviviruses. Journal of Structural Biology, 2013, 183, 86-94.	1.3	39
597	Modeling and Computing of Deformation Dynamics of Inhomogeneous Biological Surfaces. SIAM Journal on Applied Mathematics, 2013, 73, 1768-1792.	0.8	23
598	Recent Developments in the Production, Analysis, and Applications of Cubic Phases Formed by Lipids. Behavior Research Methods, 2013, , 147-180.	2.3	2
599	Exploiting Endocytosis for Nanomedicines. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016980-a016980.	2.3	173
600	Plasma Membrane-Cortical Cytoskeleton Interactions: A Cell Biology Approach with Biophysical Considerations., 2013, 3, 1231-81.		52
601	Tubular Membrane Formation of Binary Giant Unilamellar Vesicles Composed of Cylinder and Inverse-Cone-Shaped Lipids. Biophysical Journal, 2013, 105, 2074-2081.	0.2	14
602	Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20396-20401.	3.3	144
603	Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis. Journal of Cell Science, 2013, 126, 4659-70.	1.2	45
604	Effect of sodium chloride concentration in the medium on the composition of the membrane lipids and carbohydrates in the cytosol of the fungus Fusarium sp Microbiology, 2013, 82, 600-608.	0.5	17

#	Article	IF	CITATIONS
605	Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature. Biomechanics and Modeling in Mechanobiology, 2013, 12, 997-1017.	1.4	22
606	Protein-Mediated Transformation of Lipid Vesicles into Tubular Networks. Biophysical Journal, 2013, 105, 711-719.	0.2	77
607	High yield formation of lipid bilayer shells around silicon nanowires in aqueous solution. Nanotechnology, 2013, 24, 355601.	1.3	6
608	Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Advanced Drug Delivery Reviews, 2013, 65, 1686-1698.	6.6	209
609	Decoding Information in Cell Shape. Cell, 2013, 154, 1356-1369.	13.5	151
610	Lipid metabolism in Aspergillus niger under conditions of heat shock. Microbiology, 2013, 82, 542-546.	0.5	5
611	Multivalency amplifies the selection and affinity of bradykinin-derived peptides for lipid nanovesicles. Molecular BioSystems, 2013, 9, 2005.	2.9	19
612	Influence of Ester-Modified Lipids on Bilayer Structure. Langmuir, 2013, 29, 14196-14203.	1.6	15
613	Compositional sorting dynamics in coexisting lipid bilayer phases with variations in underlying e-beam formed curvature pattern. Analyst, The, 2013, 138, 3719.	1.7	6
614	Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes. Soft Matter, 2013, 9, 9615.	1.2	5
615	Membrane-perturbing effect of fatty acids and lysolipids. Progress in Lipid Research, 2013, 52, 130-140.	5.3	113
616	Hybrid Approach for Highly Coarse-Grained Lipid Bilayer Models. Journal of Chemical Theory and Computation, 2013, 9, 750-765.	2.3	64
617	Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. Journal of Comparative Neurology, 2013, 521, 448-464.	0.9	113
618	Autoinhibition of Endophilin in Solution via Interdomain Interactions. Biophysical Journal, 2013, 104, 396-403.	0.2	24
619	The Anammoxosome Organelle Is Crucial for the Energy Metabolism of Anaerobic Ammonium Oxidizing Bacteria. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 104-117.	1.0	29
620	Generation and sensing of membrane curvature: Where materials science and biophysics meet. Current Opinion in Solid State and Materials Science, 2013, 17, 164-174.	5.6	19
621	Curvature-driven membrane lipid and protein distribution. Current Opinion in Solid State and Materials Science, 2013, 17, 143-150.	5.6	51
622	Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua). Chemosphere, 2013, 90, 2157-2171.	4.2	28

#	Article	IF	CITATIONS
623	Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients. Experimental Cell Research, 2013, 319, 2812-2821.	1.2	27
624	Mouse cytomegalovirus egress protein pM50 interacts with cellular endophilin-A2. Cellular Microbiology, 2013, 15, 335-351.	1.1	23
625	Conical Lipids in Flat Bilayers Induce Packing Defects Similar to that Induced by Positive Curvature. Biophysical Journal, 2013, 104, 585-593.	0.2	149
626	New and Notable: Key New Insights into Membrane Targeting by Proteins. Biophysical Journal, 2013, 104, 517-519.	0.2	3
627	Amphipathic Lipid Packing Sensor Motifs: Probing Bilayer Defects with Hydrophobic Residues. Biophysical Journal, 2013, 104, 575-584.	0.2	171
628	Stacking of short DNA induces the gyroid cubic-to-inverted hexagonal phase transition in lipid–DNA complexes. Soft Matter, 2013, 9, 795-804.	1.2	37
629	Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiological Reviews, 2013, 93, 69-106.	13.1	250
630	Computer simulation of cell entry of graphene nanosheet. Biomaterials, 2013, 34, 4296-4301.	5.7	89
631	Magnetosomes: How Do They Stay in Shape. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 81-94.	1.0	6
632	Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter, 2013, 9, 5473-5482.	1.2	109
633	Penetration of polymer-grafted nanoparticles through a lipid bilayer. Soft Matter, 2013, 9, 5594.	1.2	7
634	Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends in Biochemical Sciences, 2013, 38, 292-301.	3.7	63
635	Lipid-nanostructure hybrids and their applications in nanobiotechnology. NPG Asia Materials, 2013, 5, e48-e48.	3.8	46
636	On-Chip Cytometry using Plasmonic Nanoparticle Enhanced Lensfree Holography. Scientific Reports, 2013, 3, 1699.	1.6	66
637	Membrane and actin reorganization in electropulse-induced cell fusion. Journal of Cell Science, 2013, 126, 2069-78.	1.2	30
638	Illuminating the lipidome to advance biomedical research: peptide-based probes of membrane lipids. Future Medicinal Chemistry, 2013, 5, 947-959.	1.1	12
639	Membrane-Mediated Aggregation of Curvature-Inducing Nematogens andÂMembrane Tubulation. Biophysical Journal, 2013, 104, 1018-1028.	0.2	94
640	THE ROLE OF MITOCHONDRIA IN THE DEVELOPMENT AND PROGRESSION OF LUNG CANCER. Computational and Structural Biotechnology Journal, 2013, 6, e201303019.	1.9	29

#	Article	IF	CITATIONS
641	Robust Measurement of Membrane Bending Moduli Using Light Sheet Fluorescence Imaging of Vesicle Fluctuations. Langmuir, 2013, 29, 14588-14594.	1.6	35
642	An N-Terminal Amphipathic Helix in Dengue Virus Nonstructural Protein 4A Mediates Oligomerization and Is Essential for Replication. Journal of Virology, 2013, 87, 4080-4085.	1.5	57
643	Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers. Journal of the American Chemical Society, 2013, 135, 5545-5548.	6.6	23
644	Double-membraned Liposomes Sculpted by Poliovirus 3AB Protein. Journal of Biological Chemistry, 2013, 288, 27287-27298.	1.6	16
645	Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories. Frontiers in Plant Science, 2012, 3, 313.	1.7	18
646	Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis. Molecular Biology of the Cell, 2013, 24, 1776-1790.	0.9	87
647	Engineering Lipid Bilayer Membranes for Protein Studies. International Journal of Molecular Sciences, 2013, 14, 21561-21597.	1.8	92
648	Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers. Polymers, 2013, 5, 404-417.	2.0	1
649	Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's Disease. Frontiers in Physiology, 2013, 4, 168.	1.3	60
650	IFITM Proteins Restrict Viral Membrane Hemifusion. PLoS Pathogens, 2013, 9, e1003124.	2.1	310
651	Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. Journal of Cell Biology, 2013, 203, 985-1001.	2.3	257
652	The Bin/Amphiphysin/Rvs (BAR) Domain Protein Endophilin B2 Interacts with Plectin and Controls Perinuclear Cytoskeletal Architecture. Journal of Biological Chemistry, 2013, 288, 27619-27637.	1.6	15
653	Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation. Journal of Cell Science, 2013, 126, 2267-78.	1.2	30
654	Update of the 1972 Singer-Nicolson Fluid-Mosaic Model of Membrane Structure. Discoveries, 2013, 1, e3.	1.5	19
655	Clathrin Mediated Endocytosis and its Role in Viral Entry. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2013, , .	0.1	1
656	α-Synuclein Senses Lipid Packing Defects and Induces Lateral Expansion of Lipids Leading to Membrane Remodeling. Journal of Biological Chemistry, 2013, 288, 20883-20895.	1.6	183
657	Regulation of ubiquitin-dependent cargo sorting by multiple endocytic adaptors at the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11857-11862.	3.3	57
658	Polar Residues and Their Positional Context Dictate the Transmembrane Domain Interactions of Influenza A Neuraminidases. Journal of Biological Chemistry, 2013, 288, 10652-10660.	1.6	26

#	Article	IF	CITATIONS
659	Transient domain formation in membrane-bound organelles undergoing maturation. Physical Review E, 2013, 88, 062704.	0.8	4
660	Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7193-7198.	3.3	56
661	Fabrication of a 3D hair follicleâ€like hydrogel by soft lithography. Journal of Biomedical Materials Research - Part A, 2013, 101, 3159-3169.	2.1	27
662	Confined Bilayers Passively Regulate Shape and Stress. Physical Review Letters, 2013, 110, 028101.	2.9	59
663	Multiscale multiphysics and multidomain modelsâ€"Flexibility and rigidity. Journal of Chemical Physics, 2013, 139, 194109.	1.2	68
664	Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. Journal of Cell Biology, 2013, 202, 875-886.	2.3	124
665	Inactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants. Molecular Biology of the Cell, 2013, 24, 1163-1175.	0.9	9
666	Geometry-Property Relations in Physics on Curved Surfaces. Hyomen Kagaku, 2013, 34, 9-14.	0.0	0
667	Measuring the Spontaneous Curvature of Bilayer Membranes by Molecular Dynamics Simulations. Communications in Computational Physics, 2013, 13, 1093-1106.	0.7	10
668	Flotillin-1 promotes cell growth and metastasis in oral squamous cell carcinoma. Neoplasma, 2013, 60, 395-405.	0.7	15
669	Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering. International Journal of Nanomedicine, 0, , 677.	3.3	14
670	Physical Chemistry of Curvature and Curvature Stress in Membranes. Current Physical Chemistry, 2013, 3, 17-26.	0.1	6
671	Architecture and biogenesis of plus-strand RNA virus replication factories. World Journal of Virology, 2013, 2, 32.	1.3	227
672	Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations. PLoS Computational Biology, 2013, 9, e1002892.	1.5	104
673	Role for Chlamydial Inclusion Membrane Proteins in Inclusion Membrane Structure and Biogenesis. PLoS ONE, 2013, 8, e63426.	1.1	62
674	Identification of Diverse Lipid Droplet Targeting Motifs in the PNPLA Family of Triglyceride Lipases. PLoS ONE, 2013, 8, e64950.	1.1	40
675	Membrane Elastic Properties and Cell Function. PLoS ONE, 2013, 8, e67708.	1.1	120
676	Secretion and fluid transport mechanisms in the mammary gland. Human Health Handbooks, 2013, , 35-56.	0.1	1

#	Article	IF	CITATIONS
677	Cell Surface Engineering by Chemical Reaction and Remodeling. , 2014, , 27-41.		1
678	Recombinant Production of the Amino Terminal Cytoplasmic Region of Dengue Virus Non-Structural Protein 4A for Structural Studies. PLoS ONE, 2014, 9, e86482.	1.1	7
679	Mutations in BIN1 Associated with Centronuclear Myopathy Disrupt Membrane Remodeling by Affecting Protein Density and Oligomerization. PLoS ONE, 2014, 9, e93060.	1.1	43
680	GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate in tubular recycling endosome vesiculation. Frontiers in Cell and Developmental Biology, 2014, 2, 22.	1.8	30
682	Reshaping biological membranes in endocytosis: crossing the configurational space of membrane-protein interactions. Biological Chemistry, 2014, 395, 275-283.	1.2	13
683	Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites. Journal of Cell Biology, 2014, 204, 635-646.	2.3	386
684	The actin homologue MreB organizes the bacterial cell membrane. Nature Communications, 2014, 5, 3442.	5.8	223
685	Influence of different membrane environments on the behavior of cholesterol. RSC Advances, 2014, 4, 53090-53096.	1.7	2
686	Coarse-grained computer simulation of dynamics in thylakoid membranes: methods and opportunities. Frontiers in Plant Science, 2013, 4, 555.	1.7	10
687	Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus. PLoS Pathogens, 2014, 10, e1004166.	2.1	136
688	The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation. Molecules and Cells, 2014, 37, 753-758.	1.0	2
689	Supramolekulare Anordnungen mit Charge-Transfer-Wechselwirkungen zwischen Donor- und Akzeptor-Chromophoren. Angewandte Chemie, 2014, 126, 2068-2084.	1.6	82
690	An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers. Cellular Logistics, 2014, 4, e29087.	0.9	6
691	Heat shock response in the thermophilic fungus Rhizomucor miehei. Microbiology, 2014, 83, 498-504.	0.5	11
692	Function and Regulation of the Endosomal Fusion and Fission Machineries. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016832-a016832.	2.3	103
693	Solvent-Free, Highly Coarse-Grained Models for Charged Lipid Systems. Journal of Chemical Theory and Computation, 2014, 10, 4730-4744.	2.3	20
694	Insights into the Mechanisms of Membrane Curvature and Vesicle Scission by the Small GTPase Sar1 in the Early Secretory Pathway. Journal of Molecular Biology, 2014, 426, 3811-3826.	2.0	40
695	Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in regulating E-cadherin in epithelial morphogenesis. Journal of Cell Science, 2014, 128, 499-515.	1.2	21

#	Article	IF	CITATIONS
696	Protein crowding on biomembranes: Analysis of contour instabilities. Physical Review E, 2014, 90, 022713.	0.8	4
697	Peptide-induced membrane curvature in edge-stabilized open bilayers: A theoretical and molecular dynamics study. Journal of Chemical Physics, 2014, 141, 024901.	1.2	15
698	Fluorescence Recovery after Merging a Surfactant-Covered Droplet: A Novel Technique to Measure the Diffusion of Phospholipid Monolayers at Fluid/Fluid Interfaces. Langmuir, 2014, 30, 14369-14374.	1.6	7
699	Untangling Membrane Rearrangement in the <i>Nidovirales</i> . DNA and Cell Biology, 2014, 33, 122-127.	0.9	24
700	Nanomechanics of phospholipid LB film studied layer by layer with AFM. Chemistry Central Journal, 2014, 8, 71.	2.6	4
701	Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6982-6987.	3.3	79
702	A Complex Comprising Phosphatidylinositol 4-Kinase $III\hat{l}^2$, ACBD3, and Aichi Virus Proteins Enhances Phosphatidylinositol 4-Phosphate Synthesis and Is Critical for Formation of the Viral Replication Complex. Journal of Virology, 2014, 88, 6586-6598.	1.5	51
703	A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Molecular Biology of the Cell, 2014, 25, 1905-1915.	0.9	149
704	Measuring the composition-curvature coupling in binary lipid membranes by computer simulations. Journal of Chemical Physics, 2014, 141, 194902.	1.2	13
705	Remodeling of membrane compartments: some consequences of membrane fluidity. Biological Chemistry, 2014, 395, 253-274.	1.2	54
706	Impact of Transient Heat Stress on Polar Lipid Metabolism in Seedlings of Wheat Near-Isogenic Lines Contrasting in Resistance to Hessian Fly (Cecidomyiidae) Infestation. Journal of Economic Entomology, 2014, 107, 2196-2203.	0.8	4
707	Cytosolic phospholipase A2ε drives recycling in the clathrin-independent endocytic route. Journal of Cell Science, 2014, 127, 977-93.	1.2	26
708	Vesicle budding from polymersomes templated by microfluidically prepared double emulsions. Materials Horizons, 2014, 1, 96-101.	6.4	29
709	Dynamics and instabilities of lipid bilayer membrane shapes. Advances in Colloid and Interface Science, 2014, 208, 76-88.	7.0	44
710	Signaling networks and cell motility: a computational approach using a phase field description. Journal of Mathematical Biology, 2014, 69, 91-112.	0.8	50
711	Microphysical derivation of the Canham–Helfrich free-energy density. Journal of Mathematical Biology, 2014, 68, 647-665.	0.8	23
712	Reversible Membrane Pearling in Live Cells upon Destruction of the ActinÂCortex. Biophysical Journal, 2014, 106, 1079-1091.	0.2	27
713	Regulated Oligomerization Induces Uptake of a Membrane Protein into <scp>COPII</scp> Vesicles Independent of Its Cytosolic Tail. Traffic, 2014, 15, 531-545.	1.3	19

#	Article	IF	CITATIONS
714	Determination of the shape and curvature of nonplanar lipid bilayers that are bent in a single plane in molecular dynamics simulations. Journal of Molecular Modeling, 2014, 20, 2176.	0.8	10
715	Membrane Shape Modulates Transmembrane Protein Distribution. Developmental Cell, 2014, 28, 212-218.	3.1	197
716	Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Advances in Colloid and Interface Science, 2014, 208, 25-33.	7.0	77
717	Counterion-mediated pattern formation in membranes containing anionic lipids. Advances in Colloid and Interface Science, 2014, 208, 177-188.	7.0	33
718	Zooming in on the molecular mechanisms of endocytic budding by time-resolved electron microscopy. Cellular and Molecular Life Sciences, 2014, 71, 641-657.	2.4	21
719	Cellular Vimentin Regulates Construction of Dengue Virus Replication Complexes through Interaction with NS4A Protein. Journal of Virology, 2014, 88, 1897-1913.	1.5	113
720	Genetic Complementation of Hepatitis C Virus Nonstructural Protein Functions Associated with Replication Exhibits Requirements That Differ from Those for Virion Assembly. Journal of Virology, 2014, 88, 2748-2762.	1.5	8
721	Supramolecular Assemblies by Charge†Transfer Interactions between Donor and Acceptor Chromophores. Angewandte Chemie - International Edition, 2014, 53, 2038-2054.	7.2	414
722	Synaptic vesicle recycling: steps and principles. EMBO Journal, 2014, 33, 788-822.	3.5	240
723	Liposome-Based Assays to Study Membrane-Associated Protein Networks. Methods in Enzymology, 2014, 534, 223-243.	0.4	7
724	Measuring Lipid Membrane Viscosity Using Rotational and Translational Probe Diffusion. Physical Review Letters, 2014, 112, 188101.	2.9	82
725	Endophilin B is required for the <i>Drosophila</i> oocyte to endocytose yolk downstream of Oskar. Development (Cambridge), 2014, 141, 563-573.	1.2	6
726	KRas Localizes to the Plasma Membrane by Spatial Cycles of Solubilization, Trapping and Vesicular Transport. Cell, 2014, 157, 459-471.	13.5	206
727	Simulating defect textures on relaxing nematic shells. Physical Review E, 2014, 89, 052504.	0.8	7
728	Membrane Remodeling by Surface-Bound Protein Aggregates: Insights from Coarse-Grained Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2014, 5, 1457-1462.	2.1	15
729	Synaptic vesicle morphology: a case of protein sorting?. Current Opinion in Cell Biology, 2014, 26, 28-33.	2.6	9
730	The Fluidâ€"Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1451-1466.	1.4	513
731	Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chemical Communications, 2014, 50, 139-155.	2.2	256

#	Article	IF	CITATIONS
732	Geometrical Membrane Curvature as an Allosteric Regulator of Membrane Protein Structure and Function. Biophysical Journal, 2014, 106, 201-209.	0.2	44
733	The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1467-1476.	1.4	264
734	Electrostatically driven lipid–lysozyme mixed fibers display a multilamellar structure without amyloid features. Soft Matter, 2014, 10, 840-850.	1.2	7
7 35	The ESCRT machinery: From the plasma membrane to endosomes and back again. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 242-261.	2.3	115
736	Plasticity-related Gene 5 Promotes Spine Formation in Murine Hippocampal Neurons. Journal of Biological Chemistry, 2014, 289, 24956-24970.	1.6	17
737	Modification of biomaterials surface by mimetic cell membrane to improve biocompatibility. Frontiers of Materials Science, 2014, 8, 325-331.	1.1	12
738	pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. Journal of Cell Biology, 2014, 207, 419-432.	2.3	207
739	Dynamic morphologies of microscale droplet interface bilayers. Soft Matter, 2014, 10, 2530.	1.2	23
740	Membrane curvature based lipid sorting using a nanoparticle patterned substrate. Soft Matter, 2014, 10, 2016-2023.	1.2	37
741	Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins. Physics Reports, 2014, 543, 1-60.	10.3	71
742	Viral Manipulation of Plant Host Membranes. Annual Review of Virology, 2014, 1, 237-259.	3.0	68
743	Computational investigation of the influence of chain length on the shielding effect of PEGylated nanoparticles. RSC Advances, 2014, 4, 51022-51031.	1.7	17
744	Micro/-nanoscaled topography-coupled-mechanical action into functional biointerface. Science Bulletin, 2014, 59, 3523-3529.	1.7	1
745	Poisson property of the occurrence of flip-flops in a model membrane. Journal of Chemical Physics, 2014, 140, 064901.	1.2	15
746	Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor. Developmental Cell, 2014, 30, 610-624.	3.1	28
748	Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3137-3144.	1.4	15
749	Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers. Physical Review E, 2014, 90, 022717.	0.8	20
7 50	Bending "On the Rocks"A Cocktail of Biophysical Modules to Build Endocytic Pathways. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016741-a016741.	2.3	66

#	Article	IF	CITATIONS
751	Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology, 2014, 24, 108-124.	1.3	80
752	Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli. Journal of Bacteriology, 2014, 196, 3214-3220.	1.0	36
753	Free Energy Calculations for the Peripheral Binding of Proteins/Peptides to an Anionic Membrane. 1. Implicit Membrane Models. Journal of Chemical Theory and Computation, 2014, 10, 2845-2859.	2.3	25
754	Coupling of replication and assembly in flaviviruses. Current Opinion in Virology, 2014, 9, 134-142.	2.6	162
755	Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. Journal of Chemical Theory and Computation, 2014, 10, 691-702.	2.3	124
756	Reconstituting ring-rafts in bud-mimicking topography of model membranes. Nature Communications, 2014, 5, 4507.	5.8	41
757	ATR Mediates a Checkpoint at the Nuclear Envelope in Response to Mechanical Stress. Cell, 2014, 158, 633-646.	13.5	179
758	Membrane Remodeling Processes Induced by Phospholipase Action. Langmuir, 2014, 30, 4743-4751.	1.6	18
759	Interplay between Curvature and Lateral Organization of Lipids and Peptides/Proteins in Model Membranes. Langmuir, 2014, 30, 1116-1122.	1.6	23
760	Three dimensional (temperature–tension–composition) phase map of mixed DOPC–DPPC vesicles: Two solid phases and a fluid phase coexist on three intersecting planes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2788-2797.	1.4	14
761	Dynamic Shaping of Cellular Membranes by Phospholipids and Membrane-Deforming Proteins. Physiological Reviews, 2014, 94, 1219-1248.	13.1	194
762	A soy-based phosphatidylserine/ phosphatidic acid complex (PAS) normalizes the stress reactivity of hypothalamus-pituitary-adrenal-axis in chronically stressed male subjects: a randomized, placebo-controlled study. Lipids in Health and Disease, 2014, 13, 121.	1.2	22
763	Neutrons for the study of dynamics in soft matter systems. Colloid and Polymer Science, 2014, 292, 2053-2069.	1.0	30
764	Mechanical collapse of confined fluid membrane vesicles. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1277-1288.	1.4	20
765	Non-covalent assembly of meso-tetra-4-pyridyl porphine with single-stranded DNA to form nano-sized complexes with hydrophobicity-dependent DNA release and anti-tumor activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 451-461.	1.7	13
766	Determination of mean and Gaussian curvatures of highly curved asymmetric lipid bilayers: the case study of the influence of cholesterol on the membrane shape. Physical Chemistry Chemical Physics, 2014, 16, 17052.	1.3	26
767	Toward the assembly of a minimal divisome. Systems and Synthetic Biology, 2014, 8, 237-247.	1.0	20
768	Disseminated Neoplasia in the Softâ€Shell Clam <i>Mya arenaria</i> : Membrane Lipid Composition and Functional Parameters of Circulating Cells. Lipids, 2014, 49, 807-818.	0.7	22

#	Article	IF	CITATIONS
769	Shape and energy of a membrane bud induced by protein coats or viral protein assembly. European Physical Journal E, 2014, 37, 42.	0.7	30
770	Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape. Langmuir, 2014, 30, 7522-7532.	1.6	48
771	Anisotropic spontaneous curvatures in lipid membranes. Physical Review E, 2014, 89, 062715.	0.8	40
772	Formation of Inverse Topology Lyotropic Phases in Dioleoylphosphatidylcholine/Oleic Acid and Dioleoylphosphatidylethanolamine/Oleic Acid Binary Mixtures. Langmuir, 2014, 30, 3337-3344.	1.6	24
773	Cell Membrane-Anchored Biosensors for Real-Time Monitoring of the Cellular Microenvironment. Journal of the American Chemical Society, 2014, 136, 13090-13093.	6.6	142
774	Sorting of GPI-anchored proteins from yeast to mammals – common pathways at different sites?. Journal of Cell Science, 2014, 127, 2793-801.	1.2	63
775	Epileptic seizures induce structural and functional alterations on brain tissue membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3088-3096.	1.4	33
776	Synaptotagmin's Role in Neurotransmitter Release Likely Involves Ca 2+ -induced Conformational Transition. Biophysical Journal, 2014, 107, 1156-1166.	0.2	42
777	Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis. Molecular Biology of the Cell, 2014, 25, 2970-2983.	0.9	33
778	Genetic Dissection of the <i>mamAB</i> and <i>mms6</i> Operons Reveals a Gene Set Essential for Magnetosome Biogenesis in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 2014, 196, 2658-2669.	1.0	110
779	Bending lipid membranes: Experiments after W. Helfrich's model. Advances in Colloid and Interface Science, 2014, 208, 47-57.	7.0	74
780	Membrane-associated cargo recycling by tubule-based endosomal sorting. Seminars in Cell and Developmental Biology, 2014, 31, 40-47.	2.3	77
781	Effects of Phosphoinositides and their Derivatives on Endomembrane Morphology and Function. Biophysical Journal, 2014, 106, 2a.	0.2	0
782	Multicompartment Lipid Cubic Nanoparticles with High Protein Upload: Millisecond Dynamics of Formation. ACS Nano, 2014, 8, 5216-5226.	7.3	136
783	Curvature Enhances Binding and Aggregation of Huntingtin at Lipid Membranes. Biochemistry, 2014, 53, 2355-2365.	1.2	39
784	Coupling of bending and stretching deformations in vesicle membranes. Advances in Colloid and Interface Science, 2014, 208, 14-24.	7.0	78
786	Nonlamellar Lipid Aggregates. , 2014, , 48-65.		1
787	Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. Journal of Lipid Research, 2014, 55, 799-807.	2.0	260

#	Article	IF	CITATIONS
788	Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling. Cell Reports, 2015, 13, 2645-2652.	2.9	80
789	Dynamics of a single red blood cell in simple shear flow. Physical Review E, 2015, 92, 042710.	0.8	61
790	Coupling between pore formation and phase separation in charged lipid membranes. Physical Review E, 2015, 92, 062713.	0.8	14
791	Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins. Physical Review E, 2015, 92, 042715.	0.8	15
792	Curvature inducing macroion condensation driven shape changes of fluid vesicles. Journal of Chemical Physics, 2015, 143, 194902.	1.2	2
793	Structural insights into the cooperative remodeling of membranes by amphiphysin/BIN1. Scientific Reports, 2015, 5, 15452.	1.6	44
795	Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex. Scientific Reports, 2015, 5, 16432.	1.6	23
796	Investigation of penetration using atomic force microscope: potential biomarkers of cell membrane. Micro and Nano Letters, 2015, 10, 248-252.	0.6	3
797	Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis. Scientific Reports, 2015, 5, 14919.	1.6	13
798	Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus, 2015, 5, 20150038.	1.5	53
799	Electron paramagnetic resonance spectroscopy. Resonance, 2015, 20, 1017-1032.	0.2	0
800	Lipids under stress – a lipidomic approach for the study of mood disorders. BioEssays, 2015, 37, 1226-1235.	1.2	17
801	Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution; International Journal of Organic Evolution, 2015, 69, 2776-2784.	1.1	18
802	Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes. Viruses, 2015, 7, 4119-4130.	1.5	21
803	The Role of Electron Microscopy in Studying the Continuum of Changes in Membranous Structures during Poliovirus Infection. Viruses, 2015, 7, 5305-5318.	1.5	7
804	Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles. Pharmaceutics, 2015, 7, 74-89.	2.0	46
805	Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis. Frontiers in Microbiology, 2015, 6, 929.	1.5	9
806	Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BioMed Research International, 2015, 2015, 1-23.	0.9	105

#	Article	IF	CITATIONS
807	Membrane Mechanics of Endocytosis in Cells with Turgor. PLoS Computational Biology, 2015, 11, e1004538.	1.5	88
808	SUMOylation of EHD3 Modulates Tubulation of the Endocytic Recycling Compartment. PLoS ONE, 2015, 10, e0134053.	1.1	6
809	13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans. PLoS ONE, 2015, 10, e0141850.	1.1	35
810	Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cellular and Molecular Immunology, 2015, 12, 154-169.	4.8	41
811	Structural and functional studies of membrane remodeling machines. Methods in Cell Biology, 2015, 128, 165-200.	0.5	7
812	Control of polarized assembly of actin filaments in cell motility. Cellular and Molecular Life Sciences, 2015, 72, 3051-3067.	2.4	96
813	Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics. Frontiers in Immunology, 2014, 5, 682.	2.2	188
814	Photo-triggered transformation from vesicles to branched nanotubes fabricated by a cholesterol-appended cyanostilbene. Chemical Communications, 2015, 51, 9309-9312.	2.2	57
815	Nuclear Pore Basket Proteins Are Tethered to the Nuclear Envelope and Can Regulate Membrane Curvature. Developmental Cell, 2015, 33, 285-298.	3.1	100
816	Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nature Materials, 2015, 14, 912-917.	13.3	71
817	A model of vesicle tubulation and pearling induced by adsorbing particles. Soft Matter, 2015, 11, 4054-4060.	1,2	7
819	Membrane tension controls the assembly of curvature-generating proteins. Nature Communications, 2015, 6, 7219.	5.8	141
820	From Vesicles to Protocells: The Roles of Amphiphilic Molecules. Life, 2015, 5, 651-675.	1.1	46
821	Interaction of <i>i^î²</i> ³ / <i>î²²</i> ² â€Peptides, Consisting of Valâ€Alaâ€Leu Segments, with POPC Giant Unilamellar Vesicles (GUVs) and White Blood Cancer Cells (U937) – A New Type of Cellâ€Penetrating Peptides, and a Surprising Chainâ€Length Dependence of Their Vesicle†and Cellâ€Lysing Activity. Chemistry and Biodiversity, 2015, 12, 697-732.	1.0	17
822	Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Current Opinion in Biotechnology, 2015, 36, 215-221.	3.3	9
823	PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Science Advances, 2015, 1, e1500615.	4.7	44
824	Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p. Journal of Virology, 2015, 89, 11372-11382.	1.5	15
825	Structural Characterization of Membrane-Curving Proteins. Methods in Enzymology, 2015, 564, 259-288.	0.4	2

#	ARTICLE	IF	CITATIONS
826	Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell, 2015, 163, 1692-1701.	13.5	180
827	<i>LipidBuilder:</i> A Framework To Build Realistic Models for Biological Membranes. Journal of Chemical Information and Modeling, 2015, 55, 2491-2499.	2.5	17
828	Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave. Annual Review of Virology, 2015, 2, 289-310.	3.0	154
829	Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15892-15897.	3.3	109
830	The Role of Phospholipase D in Regulated Exocytosis. Journal of Biological Chemistry, 2015, 290, 28683-28696.	1.6	15
831	Mechanisms of Virus Assembly. Annual Review of Physical Chemistry, 2015, 66, 217-239.	4.8	273
832	<i>Arabidopsis</i> ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E89-98.	3.3	45
833	A hybrid numerical method for the phaseâ€field model of fluid vesicles in threeâ€dimensional space. International Journal for Numerical Methods in Fluids, 2015, 78, 63-75.	0.9	3
834	Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. Journal of Experimental Botany, 2015, 66, 1721-1736.	2.4	146
835	Identification and Characterization of Rvs162/Rvs167-3, a Novel N-BAR Heterodimer in the Human Fungal Pathogen Candida albicans. Eukaryotic Cell, 2015, 14, 182-193.	3.4	7
836	Lysophosphatidic Acid Signaling in the Nervous System. Neuron, 2015, 85, 669-682.	3.8	211
837	Sinusoidal wavy surfaces for curvature-guided migration of TÂlymphocytes. Biomaterials, 2015, 51, 151-160.	5.7	52
838	Organization and Evolution of Brain Lipidome Revealed by Large-Scale Analysis of Human, Chimpanzee, Macaque, and Mouse Tissues. Neuron, 2015, 85, 695-702.	3.8	123
839	Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales. Soft Matter, 2015, 11, 600-607.	1.2	69
840	Dengue virus NS4A cytoplasmic domain binding to liposomes is sensitive to membrane curvature. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1119-1126.	1.4	20
841	Retromer and sorting nexins in endosomal sorting. Biochemical Society Transactions, 2015, 43, 33-47.	1.6	180
842	Simulations Show that Virus Assembly and Budding Are Facilitated by Membrane Microdomains. Biophysical Journal, 2015, 108, 585-595.	0.2	42
843	Biological interaction of living cells with COSAN-based synthetic vesicles. Scientific Reports, 2015, 5, 7804.	1.6	62

#	Article	IF	CITATIONS
844	An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Science, 2015, 231, 212-220.	1.7	70
845	Electrofusion of giant unilamellar vesicles to cells. Methods in Cell Biology, 2015, 125, 409-422.	0.5	8
846	The emerging role of the first 17 amino acids of huntingtin in Huntington's disease. Biomolecular Concepts, 2015, 6, 33-46.	1.0	52
847	Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Nature Communications, 2015, 6, 6561.	5.8	77
848	Broad-spectrum antiviral agents. Frontiers in Microbiology, 2015, 6, 517.	1.5	63
849	Phenomenology Based Multiscale Models as Tools to Understand Cell Membrane and Organelle Morphologies. Behavior Research Methods, 2015, 22, 129-175.	2.3	4
850	Electrostatically driven lipid–protein interaction: Answers from FRET. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1837-1848.	1.4	13
851	How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2992-3005.	1.9	35
852	Influence of High Pressure on the Bending Rigidity of Model Membranes. Journal of Physical Chemistry B, 2015, 119, 9805-9810.	1.2	32
853	Curvature-induced lipid segregation. Chinese Physics B, 2015, 24, 068701.	0.7	0
854	Lipidomics of Human Brain Aging and Alzheimer's Disease Pathology. International Review of Neurobiology, 2015, 122, 133-189.	0.9	139
855	Conformationally Switchable Water-Soluble Fluorescent Bischolate Foldamers as Membrane-Curvature Sensors. Langmuir, 2015, 31, 3919-3925.	1.6	9
856	Monte Carlo simulations of fluid vesicles. Journal of Physics Condensed Matter, 2015, 27, 273104.	0.7	16
857	High-Throughput Assessment of Cellular Mechanical Properties. Annual Review of Biomedical Engineering, 2015, 17, 35-62.	5.7	166
858	Biopolymer–Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure. Journal of Agricultural and Food Chemistry, 2015, 63, 7277-7285.	2.4	32
859	Intrinsically disordered proteins drive membrane curvature. Nature Communications, 2015, 6, 7875.	5.8	224
860	Membrane-Mediated Interaction between Strongly Anisotropic Protein Scaffolds. PLoS Computational Biology, 2015, 11, e1004054.	1.5	62
861	Investigating the Order Parameters of Saturated Lipid Molecules under Various Curvature Conditions on Spherical Supported Lipid Bilayers. Journal of Physical Chemistry B, 2015, 119, 4194-4202.	1.2	9

#	Article	IF	CITATIONS
862	Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State Nuclear Magnetic Resonance of Oriented Bicelles. Biochemistry, 2015, 54, 2214-2226.	1.2	29
864	Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases. Current Topics in Membranes, 2015, 75, 269-303.	0.5	35
865	Supramolecular Capsules from Bilayer Membrane Scission Driven by Corannulene. Chemistry - A European Journal, 2015, 21, 5736-5740.	1.7	17
866	Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles. Angewandte Chemie - International Edition, 2015, 54, 6501-6505.	7.2	107
867	Mimicking Membrane-Related Biological Events by DNA Origami Nanotechnology. ACS Nano, 2015, 9, 3418-3420.	7.3	32
868	Tunable high aspect ratio polymer nanostructures for cell interfaces. Nanoscale, 2015, 7, 8438-8450.	2.8	44
869	Celebrating Soft Matter's 10th anniversary: screening of the calcium-induced spontaneous curvature of lipid membranes. Soft Matter, 2015, 11, 5030-5036.	1.2	31
870	Membrane Composition Variation and Underdamped Mechanics near Transmembrane Proteins and Coats. Physical Review Letters, 2015, 114, 098101.	2.9	14
871	The effect of spontaneous curvature on a two-phase vesicle. Nonlinearity, 2015, 28, 773-793.	0.6	11
872	Lactation and its Hormonal Control. , 2015, , 2055-2105.		25
873	A Single Herpesvirus Protein Can Mediate Vesicle Formation in the Nuclear Envelope. Journal of Biological Chemistry, 2015, 290, 6962-6974.	1.6	70
874	Bending Membranes into Different Shapes. Structure, 2015, 23, 803-804.	1.6	2
875	Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level. Langmuir, 2015, 31, 11842-11850.	1.6	7
876	Curvature sensing MARCKSâ€ED peptides bind to membranes in a stereoâ€independent manner. Journal of Peptide Science, 2015, 21, 577-585.	0.8	9
877	Coordinated regulation of bidirectional COPI transport at the Golgi by CDC42. Nature, 2015, 521, 529-532.	13.7	78
878	Membrane curvature at a glance. Journal of Cell Science, 2015, 128, 1065-1070.	1.2	606
879	Z-scan fluorescence profile deconvolution of cytosolic and membrane-associated protein populations. Analytical Biochemistry, 2015, 480, 11-20.	1.1	18
880	Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using sup Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 4993-5001.	1.2	36

#	Article	IF	CITATIONS
881	Determinants of Dengue Virus NS4A Protein Oligomerization. Journal of Virology, 2015, 89, 6171-6183.	1. 5	48
882	Combining Nonadhesive Materials into Microstructured Composite Surfaces Induces Cell Adhesion and Spreading. ACS Biomaterials Science and Engineering, 2015, 1, 1163-1173.	2.6	6
883	Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter, 2015, 11, 8834-8847.	1.2	74
884	When Physics Takes Over: BAR Proteins and Membrane Curvature. Trends in Cell Biology, 2015, 25, 780-792.	3.6	247
885	Amphiphysin 2 Orchestrates Nucleus Positioning and Shape by Linking the Nuclear Envelope to the Actin and Microtubule Cytoskeleton. Developmental Cell, 2015, 35, 186-198.	3.1	65
886	Lipid bilayer control of nascent adhesion formation. Biomedical Engineering Letters, 2015, 5, 172-180.	2.1	4
887	Spherical Nanoparticle Supported Lipid Bilayers for the Structural Study of Membrane Geometry-Sensitive Molecules. Journal of the American Chemical Society, 2015, 137, 14031-14034.	6.6	17
888	Differential dependencies on [Ca ²⁺] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. Soft Matter, 2015, 11, 4041-4053.	1.2	36
889	A Model for Shaping Membrane Sheets by Protein Scaffolds. Biophysical Journal, 2015, 109, 564-573.	0.2	24
890	Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nature Communications, 2015, 6, 8162.	5.8	56
891	Viscoelastic deformation of lipid bilayer vesicles. Soft Matter, 2015, 11, 7385-7391.	1,2	28
892	Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces. Biointerphases, 2015, 10, 019014.	0.6	32
893	Exploiting Bacterial Pathways for BBB Crossing with PLGA Nanoparticles Modified with a Mutated Form of Diphtheria Toxin (CRM197): <i>In Vivo</i> Experiments. Molecular Pharmaceutics, 2015, 12, 3672-3684.	2.3	36
894	Imaging membrane remodeling during regulated exocytosis in live mice. Experimental Cell Research, 2015, 337, 219-225.	1.2	11
895	Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications. Advances in Colloid and Interface Science, 2015, 226, 65-77.	7.0	76
896	ATP-triggered biomimetic deformations of bioinspired receptor-containing polymer assemblies. Chemical Science, 2015, 6, 4343-4349.	3.7	34
897	Transmembrane protein sorting driven by membrane curvature. Nature Communications, 2015, 6, 8728.	5.8	56
898	Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica. Journal of Proteomics, 2015, 112, 125-140.	1.2	33

#	Article	IF	CITATIONS
899	Robust formation of biodegradable polymersomes by direct hydration. Polymer Chemistry, 2015, 6, 691-696.	1.9	39
900	Molecular dynamics simulations of negatively charged DPPC/DPPI lipid bilayers at two levels of resolution. Computational and Theoretical Chemistry, 2015, 1058, 61-66.	1.1	15
901	Bin/Amphiphysin/Rvs (BAR) family members bend membranes in cells. Scientific Reports, 2014, 4, 4693.	1.6	25
902	Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific Reports, 2014, 4, 4495.	1.6	227
903	Local Changes in Lipid Composition to Match Membrane Curvature. Computational and Mathematical Biophysics, $2016,4,.$	0.6	3
904	Lipid Reconstitution-Enabled Formation of Gold Nanoparticle Clusters for Mimetic Cellular Membrane. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	2
905	There Is No Simple Model of the Plasma Membrane Organization. Frontiers in Cell and Developmental Biology, 2016, 4, 106.	1.8	139
906	Lipophilic Fluorescent Probes: Guides to the Complexity of Lipid Membranes. , 2016, , 367-392.		O
907	Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions. PLoS Computational Biology, 2016, 12, e1004841.	1.5	23
908	Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition. PLoS Genetics, 2016, 12, e1005982.	1.5	53
909	Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis. PLoS Genetics, 2016, 12, e1006101.	1.5	51
910	BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts. PLoS ONE, 2016, 11, e0164829.	1.1	22
911	Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology. PLoS Pathogens, 2016, 12, e1005559.	2.1	57
912	Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins. Chinese Physics B, 2016, 25, 018707.	0.7	3
913	A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Molecular Biology of the Cell, 2016, 27, 2119-2132.	0.9	16
914	Lipid-Targeting Peptide Probes for Extracellular Vesicles. Journal of Cellular Physiology, 2016, 231, 2327-2332.	2.0	7
915	Measuring shape fluctuations in biological membranes. Journal Physics D: Applied Physics, 2016, 49, 243002.	1.3	89
916	Pointâ€ŧoâ€Plane Nonhomogeneous Electricâ€Fieldâ€Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Chemistry - A European Journal, 2016, 22, 2906-2909.	1.7	19

#	Article	IF	Citations
917	Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology, 2016, 85, 302-310.	0.5	21
918	Spontaneous Capture of Carbohydrate Guests through Folding and Zipping of Selfâ€Assembled Ribbons. Angewandte Chemie - International Edition, 2016, 55, 2382-2386.	7.2	39
919	Post-Golgi Transport – Cargo, Carriers, and Pathways. , 2016, , 363-370.		0
920	Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3. Scientific Reports, 2016, 6, 24029.	1.6	47
921	Multipole analysis of the strain-mediated coupling between proteins adsorbed at tubular lipid membrane surface. European Physical Journal E, 2016, 39, 128.	0.7	0
922	Vesicle Size Regulates Nanotube Formation in the Cell. Scientific Reports, 2016, 6, 24002.	1.6	27
923	Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways in yeast. Scientific Reports, 2016, 5, 18344.	1.6	20
924	Magnetism in curved geometries. Journal Physics D: Applied Physics, 2016, 49, 363001.	1.3	263
925	Septins recognize micron-scale membrane curvature. Journal of Cell Biology, 2016, 213, 5-6.	2.3	8
926	N-terminal amphipathic helix of Amphiphysin can change the spatial distribution of immunoglobulin E receptors (FclµRI) in the RBL-2H3 mast cell synapse. Results in Immunology, 2016, 6, 1-4.	2.2	3
927	On the Nuclear Pore Complex and Its Roles in Nucleo-Cytoskeletal Coupling and Mechanobiology. Cellular and Molecular Bioengineering, 2016, 9, 217-226.	1.0	12
928	Symmetry and Size of Membrane Protein Polyhedral Nanoparticles. Biophysical Journal, 2016, 110, 60a-61a.	0.2	0
929	Membrane Lipids in Presynaptic Function and Disease. Neuron, 2016, 90, 11-25.	3.8	158
930	Phospholipase A2-Induced Remodeling Processes on Liquid-Ordered/Liquid-Disordered Membranes Containing Docosahexaenoic or Oleic Acid: A Comparison Study. Langmuir, 2016, 32, 1756-1770.	1.6	14
931	Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Archives of Virology, 2016, 161, 1751-1760.	0.9	25
932	Discovery and Mechanism of Highly Efficient Cyclic Cell-Penetrating Peptides. Biochemistry, 2016, 55, 2601-2612.	1.2	232
933	Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Bioscience, 2016, 15, 1-10.	2.0	79
934	Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP. Journal of Structural Biology, 2016, 194, 191-198.	1.3	32

#	Article	IF	CITATIONS
935	Host Defense Peptides and Their Potential as Therapeutic Agents., 2016,,.		19
936	How to Teach Old Antibiotics New Tricks. , 2016, , 253-290.		2
937	Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides. Biophysical Journal, 2016, 110, 1980-1992.	0.2	8
938	The physics of lipid droplet nucleation, growth and budding. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 715-722.	1.2	97
939	The Membrane Bending Modulus in Experiments and Simulations. Advances in Biomembranes and Lipid Self-Assembly, 2016, , 117-143.	0.3	24
940	Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2882-2893.	1.4	19
941	Construction of Nuclear Envelope Shape by a High-Genus Vesicle with Pore-Size Constraint. Biophysical Journal, 2016, 111, 824-831.	0.2	9
942	Symmetry and Size of Membrane Protein Polyhedral Nanoparticles. Physical Review Letters, 2016, 117, 138103.	2.9	7
943	Delving into Lipid-Driven Endocytic Mechanisms Using Biomimetic Membranes. Springer Protocols, 2016, , 17-36.	0.1	19
944	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	2.3	53
945	How curvature-generating proteins build scaffolds on membrane nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11226-11231.	3.3	120
946	A Variational Approach to Particles in Lipid Membranes. Archive for Rational Mechanics and Analysis, 2016, 222, 1011-1075.	1.1	14
947	Env7p Associates with the Golgin Protein Imh1 at the <i>trans</i> -Golgi Network in Candida albicans. MSphere, 2016, 1, .	1.3	9
948	Structural characterization of coatomer in its cytosolic state. Protein and Cell, 2016, 7, 586-600.	4.8	12
949	Membrane stiffness is modified by integral membrane proteins. Soft Matter, 2016, 12, 7792-7803.	1.2	90
950	Stabilization of membrane necks by adhesive particles, substrate surfaces, and constriction forces. Soft Matter, 2016, 12, 8155-8166.	1.2	20
951	Membrane Lipids and Drug Transport. , 2016, , 289-308.		0
952	Membrane curvature in cell biology: An integration of molecular mechanisms. Journal of Cell Biology, 2016, 214, 375-387.	2.3	264

#	Article	IF	CITATIONS
953	Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Scientific Reports, 2016, 6, 36172.	1.6	16
954	Probing Hydronium Ion Histidine NH Exchange Rate Constants in the M2 Channel via Indirect Observation of Dipolar-Dephased ¹⁵ N Signals in Magic-Angle-Spinning NMR. Journal of the American Chemical Society, 2016, 138, 15801-15804.	6.6	14
955	Structural and functional damages of whole body ionizing radiation on rat brain homogenate membranes and protective effect of amifostine. International Journal of Radiation Biology, 2016, 92, 837-848.	1.0	27
956	Membrane Association for Plant Virus Replication and Movement. , 2016, , 67-85.		7
957	Shape deformation of lipid membranes by banana-shaped protein rods: Comparison with isotropic inclusions and membrane rupture. Physical Review E, 2016, 93, 052404.	0.8	17
958	Composition, Physical Properties, and Curvature. , 2016, , 201-207.		0
959	Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19.	9.5	8
960	Phase Separation on Bicontinuous Cubic Membranes: Symmetry Breaking, Reentrant, and Domain Faceting. Physical Review Letters, 2016, 117, 058101.	2.9	7
961	EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nature Communications, 2016, 7, 13307.	5.8	146
962	Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7077-E7086.	3.3	326
963	Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. Langmuir, 2016, 32, 10083-10092.	1.6	14
964	High cell-surface density of HER2 deforms cell membranes. Nature Communications, 2016, 7, 12742.	5.8	63
965	Lipid membrane-mediated attraction between curvature inducing objects. Scientific Reports, 2016, 6, 32825.	1.6	70
966	Analysis of Arf1 GTPase-Dependent Membrane Binding and Remodeling Using the Exomer Secretory Vesicle Cargo Adaptor. Methods in Molecular Biology, 2016, 1496, 41-53.	0.4	4
967	Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics. Biophysical Journal, 2016, 111, 1703-1713.	0.2	30
968	Coarse-grained molecular dynamics simulation of binary charged lipid membranes: Phase separation and morphological dynamics. Physical Review E, 2016, 94, 042611.	0.8	9
969	Physiological lipid composition is vital for homotypic ER membrane fusion mediated by the dynamin-related GTPase Sey1p. Scientific Reports, 2016, 6, 20407.	1.6	22
970	Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces. BMC Biology, 2016, 14, 97.	1.7	31

#	ARTICLE	IF	CITATIONS
971	Spontaneous Capture of Carbohydrate Guests through Folding and Zipping of Selfâ€Assembled Ribbons. Angewandte Chemie, 2016, 128, 2428-2432.	1.6	7
972	Controlling amphiphilic copolymer self-assembly morphologies based on macrocycle/anion recognition and nucleotide-induced payload release. Chemical Science, 2016, 7, 6006-6014.	3.7	42
973	Multiscale simulations of protein-facilitated membrane remodeling. Journal of Structural Biology, 2016, 196, 57-63.	1.3	14
974	Selective Metal-Ion-Mediated Vesicle Adhesion Based on Dynamic Self-Organization of a Pyrene-Appended Glutamic Acid. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17676-17684.	4.0	16
975	Molecular basis for photoreceptor outer segment architecture. Progress in Retinal and Eye Research, 2016, 55, 52-81.	7.3	156
976	Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts. Biomaterials, 2016, 76, 102-114.	5.7	35
977	Morphology study of DMPC/DHPC mixtures by solution-state 1H, 31P NMR, and NOE measurements. Journal of Molecular Liquids, 2016, 217, 62-69.	2.3	5
978	Gaussian vector fields on triangulated surfaces. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2016, 8, 121-125.	0.7	1
979	A particleâ€based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. International Journal for Numerical Methods in Engineering, 2016, 107, 923-946.	1.5	8
980	Tubular lipid membranes pulled from vesicles: Dependence of system equilibrium on lipid bilayer curvature. Journal of Experimental and Theoretical Physics, 2016, 122, 169-175.	0.2	3
981	Membrane remodelling in bacteria. Journal of Structural Biology, 2016, 196, 3-14.	1.3	51
982	Lipid-Mediated Targeting with Membrane-Wrapped Nanoparticles in the Presence of Corona Formation. ACS Nano, 2016, 10, 1189-1200.	7.3	62
983	Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 2016, 62, 55-74.	5.3	288
984	Interaction of α-synuclein with biomembranes in Parkinson's disease â€"role of cardiolipin. Progress in Lipid Research, 2016, 61, 73-82.	5.3	73
985	Shape-mediated margination and demargination in flowing multicomponent suspensions of deformable capsules. Soft Matter, 2016, 12, 1683-1700.	1.2	20
986	Self-assembly of size-controlled liposomes on DNA nanotemplates. Nature Chemistry, 2016, 8, 476-483.	6.6	222
987	Phosphatidic acid induces EHD3-containing membrane tubulation and is required for receptor recycling. Experimental Cell Research, 2016, 342, 1-10.	1.2	7
988	On the physiological/pathological link between $\hat{Al^2}$ peptide, cholesterol, calcium ions and membrane deformation: A molecular dynamics study. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1380-1389.	1.4	14

#	Article	IF	CITATIONS
989	Drugging Membrane Protein Interactions. Annual Review of Biomedical Engineering, 2016, 18, 51-76.	5.7	237
990	Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1556-1565.	1.4	69
991	Higher-order assemblies of BAR domain proteins for shaping membranes. Microscopy (Oxford,) Tj ETQq0 0 0 rgBT	/8verlock	10 Tf 50 66
992	Interaction of peptides with cell membranes: insights from molecular modeling. Journal of Physics Condensed Matter, 2016, 28, 083001.	0.7	13
993	Dynamic Remodeling of the Magnetosome Membrane Is Triggered by the Initiation of Biomineralization. MBio, 2016, 7, e01898-15.	1.8	40
994	Role of the capping agent in the interaction of hydrophilic Ag nanoparticles with DMPC as a model biomembrane. Environmental Science: Nano, 2016, 3, 462-472.	2.2	22
995	Osmotically-induced tension and the binding of N-BAR protein to lipid vesicles. Soft Matter, 2016, 12, 2465-2472.	1.2	8
996	Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reproduction, 2016, 29, 3-20.	1.3	50
997	Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 632-639.	1.4	106
998	The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility. Physical Chemistry Chemical Physics, 2016, 18, 149-155.	1.3	15
999	Interaction of C ₆₀ fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 278-284.	1.3	18
1000	Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. ACS Nano, 2016, 10, 463-474.	7.3	79
1001	Rapid and Efficient Formation of Reverse Vesicle on Carbon Fibers. Journal of Dispersion Science and Technology, 2016, 37, 245-250.	1.3	0
1002	Analytical solution of lipid membrane morphology subjected to boundary forces on the edges of rectangular membranes. Continuum Mechanics and Thermodynamics, 2016, 28, 305-315.	1.4	7
1003	A nano flow cytometer for single lipid vesicle analysis. Lab on A Chip, 2017, 17, 830-841.	3.1	66
1004	Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 518-523.	2.1	27
1005	The Matrix protein M1 from influenza C virus induces tubular membrane invaginations in an in vitro cell membrane model. Scientific Reports, 2017, 7, 40801.	1.6	21
1006	Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. Nanoscale, 2017, 9, 3774-3783.	2.8	70

#	Article	IF	CITATIONS
1007	RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. Biochemical Journal, 2017, 474, 1205-1220.	1.7	8
1008	Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme. MBio, 2017, 8, .	1.8	19
1009	Stem cell mechanical behaviour modelling: substrate's curvature influence during adhesion. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1295-1308.	1.4	35
1010	Budding of an Adhesive Elastic Particle out of a Lipid Vesicle. ACS Biomaterials Science and Engineering, 2017, 3, 2954-2961.	2.6	10
1011	Beyond Structural Biology to Functional Biology: Solid-State NMR Experiments and Strategies for Understanding the M2 Proton Channel Conductance. Journal of Physical Chemistry B, 2017, 121, 4799-4809.	1.2	7
1012	Membrane structure formation induced by two types of banana-shaped proteins. Soft Matter, 2017, 13, 4099-4111.	1.2	36
1013	The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annual Review of Biochemistry, 2017, 86, 637-657.	5.0	101
1014	Dynamics of a multicomponent vesicle in shear flow. Soft Matter, 2017, 13, 3521-3531.	1.2	15
1015	Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis. FEBS Letters, 2017, 591, 1333-1348.	1.3	11
1016	Curvature-Driven Migration of Colloids on Tense Lipid Bilayers. Langmuir, 2017, 33, 600-610.	1.6	16
1018	Computational Design of Membrane Curvature-Sensing Peptides. Methods in Molecular Biology, 2017, 1529, 417-437.	0.4	2
1019	Curvature variation controls particle aggregation on fluid vesicles. Soft Matter, 2017, 13, 4924-4930.	1.2	23
1020	Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 763-770.	0.5	11
1021	Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160226.	1.8	19
1022	Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 991-1000.	1.2	15
1023	Exosomes purified from a single cell type have diverse morphology. Journal of Extracellular Vesicles, 2017, 6, 1329476.	5.5	202
1024	Placing and shaping liposomes with reconfigurable DNA nanocages. Nature Chemistry, 2017, 9, 653-659.	6.6	178
1025	Solvent-Induced Molecular Folding and Self-Assembled Nanostructures of Tyrosine and Tryptophan Analogues in Aqueous Solution: Fascinating Morphology of High Order. Langmuir, 2017, 33, 6581-6594.	1.6	9

#	Article	IF	CITATIONS
1026	Artificial cell mimics as simplified models for the study of cell biology. Experimental Biology and Medicine, 2017, 242, 1309-1317.	1.1	91
1027	Soft Matter in Lipid–Protein Interactions. Annual Review of Biophysics, 2017, 46, 379-410.	4.5	104
1028	Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes. Journal of Materials Chemistry A, 2017, 5, 16059-16104.	5.2	66
1029	A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6292-6297.	3.3	74
1030	Morphology of elastic nematic liquid crystal membranes. Soft Matter, 2017, 13, 5366-5380.	1.2	16
1031	Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles. Langmuir, 2017, 33, 4083-4089.	1.6	74
1032	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267.	3.3	142
1033	Beyond Media Composition: Cell Plasma Membrane Disruptions by Graphene Oxide. CheM, 2017, 2, 324-325.	5.8	2
1034	Conformational Changes in C-Reactive Protein Affect Binding to Curved Membranes in a Lipid Bilayer Model of the Apoptotic Cell Surface. Journal of Physical Chemistry B, 2017, 121, 2631-2639.	1.2	19
1035	Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation. Journal of Molecular Modeling, 2017, 23, 113.	0.8	6
1036	A single fluorescent probe enables clearly discriminating and simultaneously imaging liquid-ordered and liquid-disordered microdomains in plasma membrane of living cells. Biomaterials, 2017, 120, 46-56.	5.7	33
1037	Effects of cytoskeletal drugs on actin cortex elasticity. Experimental Cell Research, 2017, 351, 173-181.	1.2	30
1038	Distinct complexes of yeast Snx4 family <scp>SNXâ€BARs</scp> mediate retrograde trafficking of Snc1 and Atg27. Traffic, 2017, 18, 134-144.	1.3	56
1039	A stabilized finite element formulation for liquid shells and its application to lipid bilayers. Journal of Computational Physics, 2017, 330, 436-466.	1.9	54
1040	Variational Methods in Molecular Modeling. Molecular Modeling and Simulation, 2017, , .	0.2	8
1041	Spontaneous formation of nanometer scale tubular vesicles in aqueous mixtures of lipid and block copolymer amphiphiles. Soft Matter, 2017, 13, 1107-1115.	1.2	22
1042	Isoform-specific roles of NMII drive membrane remodeling <i>in vivo</i> . Cell Cycle, 2017, 16, 1851-1852.	1.3	1
1043	An evolutionarily conserved phosphatidate phosphatase maintains lipid droplet number and ER morphology but not nuclear morphology. Biology Open, 2017, 6, 1629-1643.	0.6	15

#	ARTICLE	IF	CITATIONS
1044	The Biophysics of Cell Membranes. Springer Series in Biophysics, 2017, , .	0.4	9
1045	Influence of a pH-sensitive polymer on the structure of monoolein cubosomes. Soft Matter, 2017, 13, 7571-7577.	1.2	22
1046	Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes. Chemistry of Materials, 2017, 29, 9120-9132.	3.2	21
1047	Membrane Lipid-Protein Interactions. Springer Series in Biophysics, 2017, , 61-84.	0.4	2
1048	Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures. Soft Matter, 2017, 13, 7771-7779.	1.2	21
1049	Small deformations of Helfrich energy minimising surfaces with applications to biomembranes. Mathematical Models and Methods in Applied Sciences, 2017, 27, 1547-1586.	1.7	12
1050	The Detection of Nanoscale Membrane Bending with Polarized Localization Microscopy. Biophysical Journal, 2017, 113, 1782-1794.	0.2	22
1051	Mapping Cell Membrane Fluctuations Reveals Their Active Regulation and Transient Heterogeneities. Biophysical Journal, 2017, 113, 1768-1781.	0.2	48
1052	A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity to Cholesterol, and Perturbed Interdomain Coupling. Biochemistry, 2017, 56, 5955-5963.	1.2	15
1053	Sorting nexin (MoVps17) is required for fungal development and plant infection by regulating endosome dynamics in the rice blast fungus. Environmental Microbiology, 2017, 19, 4301-4317.	1.8	16
1054	Outer membrane lipid homeostasis via retrograde phospholipid transport in <i>Escherichia coli</i> Molecular Microbiology, 2017, 106, 395-408.	1.2	67
1055	Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Scientific Reports, 2017, 7, 11431.	1.6	14
1056	Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in <i>Ganoderma lucidum</i> . Environmental Microbiology, 2017, 19, 4657-4669.	1.8	32
1057	Bin1 directly remodels actin dynamics through its <scp>BAR</scp> domain. EMBO Reports, 2017, 18, 2051-2066.	2.0	42
1058	Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity. Artificial Cells, Nanomedicine and Biotechnology, 2017, 46, 1-14.	1.9	8
1059	Substrate properties modulate cell membrane roughness by way of actin filaments. Scientific Reports, 2017, 7, 9068.	1.6	24
1060	Dissipative dynamics of fluid lipid membranes enriched in cholesterol. Advances in Colloid and Interface Science, 2017, 247, 514-520.	7.0	15
1061	Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes. Journal of Physical Chemistry Letters, 2017, 8, 3586-3594.	2.1	35

#	ARTICLE	IF	CITATIONS
1062	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
1063	Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture. Journal of Cell Biology, 2017, 216, 2827-2841.	2.3	7
1064	Lateral Organization of Host Heterogeneous Raftâ€like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase câ€6rc. Angewandte Chemie, 2017, 129, 10647-10651.	1.6	4
1065	On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components. European Biophysics Journal, 2017, 46, 705-718.	1.2	24
1066	â€~Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. Journal of Experimental Botany, 2017, 68, 3071-3089.	2.4	25
1067	Pulling Membrane Nanotubes from Giant Unilamellar Vesicles. Journal of Visualized Experiments, 2017,	0.2	31
1068	Biology and physics rendezvous at the membrane. Science, 2017, 358, 1265-1265.	6.0	1
1069	Long-Range Organization of Membrane-Curving Proteins. ACS Central Science, 2017, 3, 1246-1253.	5.3	36
1070	Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10112-E10121.	3.3	34
1071	Lipid Droplets Can Spontaneously Bud Off from a Symmetric Bilayer. Biophysical Journal, 2017, 113, 15-18.	0.2	34
1072	Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR. Journal of Magnetic Resonance, 2017, 280, 127-139.	1.2	9
1073	Lateral Organization of Host Heterogeneous Raftâ€like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase câ€5rc. Angewandte Chemie - International Edition, 2017, 56, 10511-10515.	7.2	10
1074	Role of molecular turnover in dynamic deformation of a three-dimensional cellular membrane. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1805-1818.	1.4	4
1075	Mechanoprofiling on membranes of living cells with atomic force microscopy and optical nano-profilometry. Advances in Physics: X, 2017, 2, 608-621.	1.5	3
1076	Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nature Nanotechnology, 2017, 12, 750-756.	15.6	242
1077	Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH. Extremophiles, 2017, 21, 743-754.	0.9	28
1078	Nanomechanical mapping of first binding steps of a virus to animal cells. Nature Nanotechnology, 2017, 12, 177-183.	15.6	170
1079	Mechanisms of protein nanoscale clustering. Current Opinion in Cell Biology, 2017, 44, 86-92.	2.6	45

#	ARTICLE	IF	CITATIONS
1080	Bud formation of lipid membranes in response to the surface diffusion of transmembrane proteins and line tension. Mathematics and Mechanics of Solids, 2017, 22, 2091-2107.	1.5	13
1081	The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Scientific Reports, 2017, 7, 16078.	1.6	67
1082	Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations. Journal of Physics Condensed Matter, 2017, 29, 504002.	0.7	14
1083	Pattern formation by curvature-inducing proteins on spherical membranes. New Journal of Physics, 2017, 19, 125013.	1.2	9
1084	On the nature and origin of cellular complexity: The combinatorial–eukaryogenetic scenario. Paleontological Journal, 2017, 51, 1422-1439.	0.2	0
1085	Lipobeads., 2017,,.		4
1086	Single-molecule force spectroscopy of protein-membrane interactions. ELife, 2017, 6, .	2.8	59
1087	Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Frontiers in Molecular Neuroscience, 2017, 10, 47.	1.4	32
1088	Curvature-Induced Spatial Ordering of Composition in Lipid Membranes. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-11.	0.7	6
1089	Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	14
1090	Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy. International Journal of Nanomedicine, 2017, Volume 12, 8867-8886.	3.3	6
1091	Single Molecule Measurements in Membranes â~†., 2017, , .		0
1092	Membrane sculpting by curved DNA origami scaffolds. Nature Communications, 2018, 9, 811.	5.8	173
1093	Lipid Cell Biology: A Focus on Lipids in Cell Division. Annual Review of Biochemistry, 2018, 87, 839-869.	5.0	64
1094	Cool views of membrane remodeling. Current Opinion in Colloid and Interface Science, 2018, 34, 17-31.	3.4	2
1095	Clustering on Membranes: Fluctuations and More. Trends in Cell Biology, 2018, 28, 405-415.	3.6	61
1096	Behavior: Oxytocin Promotes Fearless Motherhood. Current Biology, 2018, 28, R359-R361.	1.8	2
1097	Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1. Chinese Physics B, 2018, 27, 038703.	0.7	6

#	Article	IF	CITATIONS
1098	A lecithin phosphatidylserine and phosphatidic acid complex (PAS) reduces symptoms of the premenstrual syndrome (PMS): Results of a randomized, placebo-controlled, double-blind clinical trial. Clinical Nutrition ESPEN, 2018, 24, 22-30.	0.5	7
1099	Reversible Hydrophobicity–Hydrophilicity Transition Modulated by Surface Curvature. Journal of Physical Chemistry Letters, 2018, 9, 2346-2352.	2.1	22
1100	Controlling Cargo Trafficking in Multicomponent Membranes. Nano Letters, 2018, 18, 5350-5356.	4.5	19
1101	Vesicle Tubulation with Selfâ€Assembling DNA Nanosprings. Angewandte Chemie, 2018, 130, 5428-5432.	1.6	10
1102	Vesicle Tubulation with Selfâ€Assembling DNA Nanosprings. Angewandte Chemie - International Edition, 2018, 57, 5330-5334.	7.2	85
1103	Structure Versus Stochasticity—The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. Journal of Molecular Biology, 2018, 430, 2293-2308.	2.0	18
1104	Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170115.	1.8	74
1105	The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Accounts of Chemical Research, 2018, 51, 1046-1053.	7.6	124
1106	Membrane shape-mediated wave propagation of cortical protein dynamics. Nature Communications, 2018, 9, 136.	5.8	77
1107	Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. Nanoscale, 2018, 10, 5133-5139.	2.8	13
1108	Deformation Modes of Giant Unilamellar Vesicles Encapsulating Biopolymers. ACS Synthetic Biology, 2018, 7, 739-747.	1.9	27
1109	Interaction of Tyrosine Analogues with Quaternary Ammonium Head Groups at the Micelle/Water Interface and Contrasting Effect of Molecular Folding on the Hydrophobic Outcome and End-Cap Geometry. Journal of Physical Chemistry B, 2018, 122, 2355-2367.	1.2	11
1110	Assembly of COPI and COPII Vesicular Coat Proteins on Membranes. Annual Review of Biophysics, 2018, 47, 63-83.	4.5	111
1111	Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling. Journal of Chemical Theory and Computation, 2018, 14, 1643-1655.	2.3	19
1112	Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1262-1267.	3.3	51
1113	Dengue virus induced changes in Ca 2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Research, 2018, 245, 17-28.	1.1	31
1114	3D super-localization of intracellular organelle contacts at live single cell by dual-wavelength synchronized fluorescence-free imaging. Analytical and Bioanalytical Chemistry, 2018, 410, 1551-1560.	1.9	9
1115	Detection of Curvature-Radius-Dependent Interfacial pH/Polarity for Amphiphilic Self-Assemblies: Positive versus Negative Curvature. Langmuir, 2018, 34, 6271-6284.	1.6	16

#	Article	IF	CITATIONS
1116	Structural Biology: Piezo Senses Tension through Curvature. Current Biology, 2018, 28, R357-R359.	1.8	31
1117	Organizing membrane-curving proteins: the emerging dynamical picture. Current Opinion in Structural Biology, 2018, 51, 99-105.	2.6	34
1118	Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization. Annual Review of Analytical Chemistry, 2018, 11, 101-126.	2.8	66
1119	Membrane properties that shape the evolution of membrane enzymes. Current Opinion in Structural Biology, 2018, 51, 80-91.	2.6	17
1120	Effect of Temperature on the Morphometrical and Physical Parameters of Erythrocytes and Polymorphonuclear Leucocytes in Carassius gibelio (Bloch). Inland Water Biology, 2018, 11, 92-96.	0.2	0
1121	Shaping up synthetic cells. Physical Biology, 2018, 15, 041001.	0.8	32
1122	Mechanics of a lipid bilayer subjected to thickness distension and membrane budding. Mathematics and Mechanics of Solids, 2018, 23, 67-84.	1.5	7
1123	Machine learning-enabled discovery and design of membrane-active peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 2708-2718.	1.4	60
1124	Evidence of evolutionary optimization of fatty acid length and unsaturation. Journal of Evolutionary Biology, 2018, 31, 172-176.	0.8	2
1125	Do lipids shape the eukaryotic cell cycle?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 9-19.	1.2	17
1126	Phospholipid composition of packed red blood cells and that of extracellular vesicles show a high resemblance and stability during storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1-8.	1.2	28
1127	Antivirals acting on viral envelopes via biophysical mechanisms of action. Antiviral Research, 2018, 149, 164-173.	1.9	35
1128	Coupling of exocytosis and endocytosis at the presynaptic active zone. Neuroscience Research, 2018, 127, 45-52.	1.0	43
1129	Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation. Journal of Biomaterials Applications, 2018, 32, 906-919.	1.2	17
1130	The Molecular Mechanism of Substrate Recognition and Catalysis of the Membrane Acyltransferase PatA from Mycobacteria. ACS Chemical Biology, 2018, 13, 131-140.	1.6	10
1131	Excess area dependent scaling behavior of nano-sized membrane tethers. Physical Biology, 2018, 15, 026002.	0.8	15
1132	Investigations of Cellular and Molecular Biophysical Properties by Atomic Force Microscopy Nanorobotics. Springer Theses, 2018, , .	0.0	0
1134	DNA mediated self-assembly of multicellular microtissues. Microphysiological Systems, 0, 1, 1-1.	2.0	21

#	Article	IF	CITATIONS
1135	Directed Supramolecular Organization of N-BAR Proteins through Regulation of HO Membrane Immersion Depth. Scientific Reports, 2018, 8, 16383.	1.6	5
1137	A Membrane Burial Potential with H-Bonds and Applications to Curved Membranes and Fast Simulations. Biophysical Journal, 2018, 115, 1872-1884.	0.2	9
1138	Intracellular Membrane Trafficking: Modeling Local Movements in Cells. Modeling and Simulation in Science, Engineering and Technology, 2018, , 259-301.	0.4	4
1139	Cell Movement. Modeling and Simulation in Science, Engineering and Technology, 2018, , .	0.4	2
1140	A Tethered Vesicle Assay for High-Throughput Quantification of Membrane Fission. Methods in Enzymology, 2018, 611, 559-582.	0.4	6
1141	BAR domain proteins—a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophysical Reviews, 2018, 10, 1587-1604.	1.5	110
1142	Asymmetric Ionic Conditions Generate Large Membrane Curvatures. Nano Letters, 2018, 18, 7816-7821.	4.5	63
1143	Simulating Protein-Mediated Membrane Remodeling at Multiple Scales. , 2018, , 351-384.		0
1144	Lateral Diffusion in Heterogeneous Cell Membranes. , 2018, , 169-189.		1
1145	Mechanosensitivity of Membrane Budding and Trafficking. , 2018, , 385-419.		0
1146	Membrane-Mediated Interactions. , 2018, , 311-350.		3
1147	Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Research Letters, 2018, 13, 339.	3.1	872
1148	ATP-dependent membrane remodeling links EHD1 functions to endocytic recycling. Nature Communications, 2018, 9, 5187.	5.8	40
1149	Active Tuning of Synaptic Patterns Enhances Immune Discrimination. Physical Review Letters, 2018, 121, 238101.	2.9	13
1150	Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape. Nature Communications, 2018, 9, 4154.	5.8	78
1151	Double diamond phase in pear-shaped nanoparticle systems with hard sphere solvent. Journal Physics D: Applied Physics, 2018, 51, 464003.	1.3	3
1152	Balancing presynaptic release and endocytic membrane retrieval at hair cell ribbon synapses. FEBS Letters, 2018, 592, 3633-3650.	1.3	11
1153	Membrane curvature allosterically regulates the phosphatidylinositol cycle, controlling its rate and acyl-chain composition of its lipid intermediates. Journal of Biological Chemistry, 2018, 293, 17780-17791.	1.6	47

#	Article	IF	CITATIONS
1154	Biomembrane Adhesion to Substrates Topographically Patterned with Nanopits. Biophysical Journal, 2018, 115, 1292-1306.	0.2	7
1155	Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic, 2018, 19, 965-974.	1.3	33
1156	ABPP and Host–Virus Interactions. Current Topics in Microbiology and Immunology, 2018, 420, 131-154.	0.7	9
1157	Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nature Communications, 2018, 9, 4152.	5.8	102
1158	Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochemical and Biophysical Research Communications, 2018, 506, 361-371.	1.0	26
1159	Modeling Membrane Curvature Generation due to Membrane–Protein Interactions. Biomolecules, 2018, 8, 120.	1.8	71
1160	Membrane Lipid Nanodomains. Chemical Reviews, 2018, 118, 11259-11297.	23.0	152
1161	Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nature Communications, 2018, 9, 4450.	5.8	24
1162	Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels. Biophysical Journal, 2018, 115, 1498-1508.	0.2	54
1163	Carboxypeptidase O is a lipid droplet-associated enzyme able to cleave both acidic and polar C-terminal amino acids. PLoS ONE, 2018, 13, e0206824.	1.1	3
1164	The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. MBio, 2018, 9, .	1.8	83
1165	Papillomaviruses and Endocytic Trafficking. International Journal of Molecular Sciences, 2018, 19, 2619.	1.8	27
1166	The Actomyosin Cytoskeleton Drives Micronâ€Scale Membrane Remodeling In Vivo Via the Generation of Mechanical Forces to Balance Membrane Tension Gradients. BioEssays, 2018, 40, e1800032.	1.2	9
1167	Molecular details on the intermediate states of melittin action on a cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2234-2241.	1.4	39
1168	Membrane remodeling in clathrin-mediated endocytosis. Journal of Cell Science, 2018, 131, .	1.2	96
1169	Three-dimensional multicomponent vesicles: dynamics and influence of material properties. Soft Matter, 2018, 14, 7690-7705.	1.2	8
1170	Emerging Roles of Air Gases in Lipid Bilayers. Small, 2018, 14, e1802133.	5.2	7
1171	Molecular Mechanism of Modified Clay Controlling the Brown Tide Organism <i>Aureococcus anophagefferens</i> Revealed by Transcriptome Analysis. Environmental Science & Environmental & Environmental Science & Environmental Science & Environmental	4.6	23

#	Article	IF	CITATIONS
1172	Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells. Annals of Botany, 2018, 122, 303-313.	1.4	29
1173	How alternative splicing affects membrane-trafficking dynamics. Journal of Cell Science, 2018, 131, .	1.2	17
1174	Aggregationâ€Enhanced Emission of Fluorescentâ€Gemini Surfactants with High Photostability for Cellâ€Membrane Imaging. Journal of Surfactants and Detergents, 2018, 21, 433-440.	1.0	2
1175	Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chemical Reviews, 2018, 118, 5392-5487.	23.0	61
1176	Specific binding of human C-reactive protein towards supported monolayers of binary and engineered phospholipids. Colloids and Surfaces B: Biointerfaces, 2018, 161, 662-669.	2.5	7
1177	Large PAMAM Dendron Induces Formation of Unusual <i>P</i> 4 ₃ 32 Mesophase in Monoolein/Water Systems. Langmuir, 2018, 34, 6827-6834.	1.6	3
1178	Shape Control of Vesicle by Reverse Process Method of Relaxation. Journal of the Physical Society of Japan, 2018, 87, 034003.	0.7	0
1179	Entropic elasticity based coarse-grained model of lipid membranes. Journal of Chemical Physics, 2018, 148, 164705.	1.2	3
1180	Baseline sensitivity and biochemical responses of Valsa mali to propamidine. Pesticide Biochemistry and Physiology, 2018, 147, 90-95.	1.6	9
1181	Inward Budding and Endocytosis of Membranes Regulated by de Novo Designed Peptides. Langmuir, 2018, 34, 6183-6193.	1.6	8
1182	Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales. Journal of Physics Condensed Matter, 2018, 30, 273001.	0.7	35
1183	Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS Pathogens, 2018, 14, e1006988.	2.1	20
1184	Co-protoporphyrin IX and Sn-protoporphyrin IX inactivate Zika, Chikungunya and other arboviruses by targeting the viral envelope. Scientific Reports, 2018, 8, 9805.	1.6	45
1185	Bypassing Border Control: Nuclear Envelope Rupture in Disease. Physiology, 2018, 33, 39-49.	1.6	12
1186	Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Plant Virus Replication. Frontiers in Plant Science, 2018, 9, 57.	1.7	43
1187	Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy. Frontiers in Plant Science, 2018, 9, 371.	1.7	49
1188	Functional and Biomimetic DNA Nanostructures on Lipid Membranes. Langmuir, 2018, 34, 14721-14730.	1.6	19
1189	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	1.3	212

#	Article	IF	CITATIONS
1190	The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Frontiers in Immunology, 2018, 9, 155.	2.2	192
1191	Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Frontiers in Cellular Neuroscience, 2018, 12, 27.	1.8	72
1192	Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis–Endocytosis Coupling. Frontiers in Cellular Neuroscience, 2018, 12, 66.	1.8	27
1194	Lateral Membrane Heterogeneity Regulates Viral-Induced Membrane Fusion during HIV Entry. International Journal of Molecular Sciences, 2018, 19, 1483.	1.8	22
1195	Lipids and pathogenic flaviviruses: An intimate union. PLoS Pathogens, 2018, 14, e1006952.	2.1	41
1197	Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide. Biophysical Journal, 2018, 114, 2152-2164.	0.2	22
1198	Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular Architecture. Langmuir, 2018, 34, 5454-5463.	1.6	18
1199	Correlative Microscopy of Vitreous Sections Provides Insights into BAR-Domain Organization In Situ. Structure, 2018, 26, 879-886.e3.	1.6	43
1200	Stearoly-CoA desaturase 1 differentiates early and advanced dengue virus infections and determines virus particle infectivity. PLoS Pathogens, 2018, 14, e1007261.	2.1	36
1201	Grazing-Angle Neutron Diffraction Study of the Water Distribution in Membrane Hemifusion: From the Lamellar to Rhombohedral Phase. Journal of Physical Chemistry Letters, 2018, 9, 5778-5784.	2.1	9
1202	The role of traction in membrane curvature generation. Molecular Biology of the Cell, 2018, 29, 2024-2035.	0.9	34
1203	Homodimerisation-independent cleavage of dsRNA by a pestiviral nicking endoribonuclease. Scientific Reports, 2018, 8, 8226.	1.6	13
1204	Area Increase and Budding in Giant Vesicles Triggered by Light: Behind the Scene. Advanced Science, 2018, 5, 1800432.	5.6	37
1205	Betaherpesvirus Virion Assembly and Egress. Advances in Experimental Medicine and Biology, 2018, 1045, 167-207.	0.8	33
1206	Curvatureâ€Induced Sorting of Lipids in Plasma Membrane Tethers. Advanced Theory and Simulations, 2018, 1, 1800034.	1.3	54
1207	A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biology, 2018, 16, e2004929.	2.6	50
1208	The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathogens, 2018, 14, e1006876.	2.1	56
1209	Experimental and Theoretical Study of Curvature Effects in Parabolic Nanostripes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800309.	1.2	11

#	Article	IF	CITATIONS
1210	Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & DNA Nanotechnology. ACS Applied Materials & DNA Nanotechnology. 11, 13859-13873.	4.0	43
1211	Cell–Cell Adhesion and Myosin Activity Regulate Cortical Actin Assembly in Mammary Gland Epithelium on Concaved Surface. Cells, 2019, 8, 813.	1.8	6
1212	Assembling of Topological Defects at Neckâ€Shaped Membrane Parts. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800722.	0.8	3
1213	Clustering in the Golgi apparatus governs sorting and function of GPIâ€APs in polarized epithelial cells. FEBS Letters, 2019, 593, 2351-2365.	1.3	18
1214	Flexible lipid nanomaterials studied by NMR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 18422-18457.	1.3	19
1215	Transcriptome profiling and phytohormone responses of <i>Arabidopsis</i> roots to different ambient temperatures. Journal of Plant Interactions, 2019, 14, 314-323.	1.0	5
1216	Out-of-equilibrium mechanochemistry and self-organization of fluid membranes interacting with curved proteins. New Journal of Physics, 2019, 21, 093004.	1.2	36
1217	Protein-protein interaction analysis highlights the role of septins in membrane enclosed lumen and mRNA processing. Advances in Biological Regulation, 2019, 73, 100635.	1.4	7
1219	ACAP1 assembles into an unusual protein lattice for membrane deformation through multiple stages. PLoS Computational Biology, 2019, 15, e1007081.	1.5	2
1220	Stochastic geometry sensing and polarization in a lipid kinase–phosphatase competitive reaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15013-15022.	3.3	41
1221	A bioactivity and biochemical analysis of iminoctadine tris (albesilate) as a fungicide against Corynespora cassiicola. Pesticide Biochemistry and Physiology, 2019, 158, 121-127.	1.6	22
1222	Reconstitution reveals how myosin-VI self-organises to generate a dynamic mechanism of membrane sculpting. Nature Communications, 2019, 10, 3305.	5.8	8
1223	Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides. Nanoscale, 2019, 11, 19751-19762.	2.8	18
1224	Unusual Organization of I-BAR Proteins on Tubular and Vesicular Membranes. Biophysical Journal, 2019, 117, 553-562.	0.2	27
1225	The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nature Communications, 2019, 10, 3409.	5.8	11
1226	Higher-order assembly of Sorting Nexin 16 controls tubulation and distribution of neuronal endosomes. Journal of Cell Biology, 2019, 218, 2600-2618.	2.3	12
1227	ATP11B deficiency leads to impairment of hippocampal synaptic plasticity. Journal of Molecular Cell Biology, 2019, 11, 688-702.	1.5	16
1228	Against Expectations: Unassisted RNA Adsorption onto Negatively Charged Lipid Bilayers. Langmuir, 2019, 35, 14704-14711.	1.6	12

#	Article	IF	CITATIONS
1229	Winding number selection on merons by Gaussian curvature's sign. Scientific Reports, 2019, 9, 14309.	1.6	20
1230	A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells. Nature Communications, 2019, 10, 4644.	5.8	13
1231	Receptorâ€Free Signaling at Curved Cellular Membranes. BioEssays, 2019, 41, e1900068.	1.2	9
1232	Artificial Signal Transduction across Membranes. ChemBioChem, 2019, 20, 2569-2580.	1.3	16
1233	Dynamic Curvature Nanochannelâ€Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch. Advanced Materials, 2019, 31, e1805130.	11.1	114
1234	Emergent membrane morphologies in relaxed and tense membranes in presence of reversible adhesive pinning interactions. Physical Biology, 2019, 16, 066011.	0.8	10
1235	Shape transition from elliptical to cylindrical membrane tubes induced by chiral crescent-shaped protein rods. Scientific Reports, 2019, 9, 11721.	1.6	17
1236	Non-localized Increase in Lipid Content and Striation Pattern Formation Characterize the Sonoporated Plasma Membrane. Ultrasound in Medicine and Biology, 2019, 45, 3005-3017.	0.7	3
1237	Cellular Blebs and Membrane Invaginations Are Coupled through Membrane Tension Buffering. Biophysical Journal, 2019, 117, 1485-1495.	0.2	11
1238	Ankyrin repeat-containing N-Ank proteins shape cellular membranes. Nature Cell Biology, 2019, 21, 1191-1205.	4.6	35
1239	Cup-to-vesicle transition of a fluid membrane with spontaneous curvature. Journal of Chemical Physics, 2019, 151, 094903.	1.2	12
1240	Curvature sensing by cardiolipin in simulated buckled membranes. Soft Matter, 2019, 15, 792-802.	1.2	54
1241	Interactions between model inclusions on closed lipid bilayer membranes. Current Opinion in Colloid and Interface Science, 2019, 40, 58-69.	3.4	19
1242	Intrinsically disordered proteins in synaptic vesicle trafficking and release. Journal of Biological Chemistry, 2019, 294, 3325-3342.	1.6	56
1243	α-Synuclein: A Multifunctional Player in Exocytosis, Endocytosis, and Vesicle Recycling. Frontiers in Neuroscience, 2019, 13, 28.	1.4	76
1244	Transition from curvature sensing to generation in a vesicle driven by protein binding strength and membrane tension. Soft Matter, 2019, 15, 2071-2080.	1.2	14
1245	PEG Bottle Brush Copolymers as Antimicrobial Mimics: Role of Entropic Templating in Membrane Lysis. Langmuir, 2019, 35, 3372-3382.	1.6	8
1246	Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers. Journal of Membrane Biology, 2019, 252, 317-329.	1.0	20

#	Article	IF	CITATIONS
1247	Cellular uptake of self-assembled phytantriol-based hexosomes is independent of major endocytic machineries. Journal of Colloid and Interface Science, 2019, 553, 820-833.	5.0	21
1248	Theoretical study of vesicle shapes driven by coupling curved proteins and active cytoskeletal forces. Soft Matter, 2019, 15, 5319-5330.	1.2	51
1249	Loosening of Lipid Packing by Cellâ€Surface Recruitment of Amphiphilic Peptides by Coiledâ€Coil Tethering. ChemBioChem, 2019, 20, 2151-2159.	1.3	5
1250	Stiffness and Membrane Anchor Density Modulate DNA-Nanospring-Induced Vesicle Tubulation. ACS Applied Materials & December 2019, 11, 22987-22992.	4.0	23
1251	Mitochondrial-membrane association of \hat{l}_{\pm} -synuclein: Pros and cons in consequence of Parkinson's disease pathophysiology. Gene Reports, 2019, 16, 100423.	0.4	4
1252	Interdigitation of Lipids Induced by Membrane–Active Proteins. Journal of Membrane Biology, 2019, 252, 331-342.	1.0	13
1253	Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein. Journal of the American Chemical Society, 2019, 141, 10361-10371.	6.6	64
1254	Division plane placement in pleomorphic archaea is dynamically coupled to cell shape. Molecular Microbiology, 2019, 112, 785-799.	1.2	38
1255	Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization. Journal of the American Chemical Society, 2019, 141, 9837-9853.	6.6	60
1256	Membrane binding proteins of coronaviruses. Future Virology, 2019, 14, 275-286.	0.9	173
1257	Shape and Size Control of Artificial Cells for Bottom-Up Biology. ACS Nano, 2019, 13, 5439-5450.	7.3	68
1258	Lipids and soluble carbohydrates in the mycelium and ascomata of alkaliphilic fungus Sodiomyces alkalinus. Extremophiles, 2019, 23, 487-494.	0.9	7
1259	A nanostructure platform for live-cell manipulation of membrane curvature. Nature Protocols, 2019, 14, 1772-1802.	5.5	78
1260	Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. Journal of Membrane Biology, 2019, 252, 261-272.	1.0	47
1261	Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: investigation of merocyanine-stacking effects on liposome–fiber assembly-transition. Soft Matter, 2019, 15, 3740-3750.	1.2	18
1262	Mutation of key lysine residues in the Insert B region of the yeast dynamin Vps1 disrupts lipid binding and causes defects in endocytosis. PLoS ONE, 2019, 14, e0215102.	1.1	3
1263	A unique role for clathrin light chain a in cell spreading and migration. Journal of Cell Science, 2019, 132, .	1.2	22
1264	Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials, 2019, 209, 54-66.	5.7	15

#	Article	IF	CITATIONS
1265	Detection and Structural Characterization of Ether Glycerophosphoethanolamine from Cortical Lysosomes Following Traumatic Brain Injury Using UPLCâ€HDMS ^E . Proteomics, 2019, 19, e1800297.	1.3	9
1266	Visualizing Biological Membrane Organization and Dynamics. Journal of Molecular Biology, 2019, 431, 1889-1919.	2.0	18
1267	Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annual Review of Biophysics, 2019, 48, 93-119.	4.5	97
1268	Redox lipidomics to better understand brain aging and function. Free Radical Biology and Medicine, 2019, 144, 310-321.	1.3	28
1269	Binding constant of membrane-anchored receptors and ligands that induce membrane curvatures. Soft Matter, 2019, 15, 3507-3514.	1,2	9
1270	Host Lipids in Positive-Strand RNA Virus Genome Replication. Frontiers in Microbiology, 2019, 10, 286.	1.5	106
1271	Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends in Biotechnology, 2019, 37, 838-854.	4.9	107
1272	Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomaterialia, 2019, 90, 21-36.	4.1	34
1273	Characterization of Lipid–Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chemical Reviews, 2019, 119, 6086-6161.	23.0	176
1274	On the duality of complex geometry and material heterogeneities in linear elastodynamics. International Journal of Solids and Structures, 2019, 168, 203-210.	1.3	O
1275	Hybrid Live Cell–Supported Membrane Interfaces for Signaling Studies. Annual Review of Biophysics, 2019, 48, 537-562.	4.5	27
1276	Emerging Nanoâ€/Microapproaches for Cancer Immunotherapy. Advanced Science, 2019, 6, 1801847.	5. 6	136
1277	Biological Membrane Organization and Cellular Signaling. Chemical Reviews, 2019, 119, 5849-5880.	23.0	112
1278	The Role of Water in the Responsive Properties in Lipid Interphase of Biomimetic Systems. , 0, , .		4
1280	Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Frontiers in Cell and Developmental Biology, 2019, 7, 291.	1.8	50
1281	Quantitative investigation of negative membrane curvature sensing and generation by I-BARs in filopodia of living cells. Soft Matter, 2019, 15, 9829-9839.	1.2	15
1282	Detachment of a fluid membrane from a substrate and vesiculation. Soft Matter, 2019, 15, 8741-8748.	1,2	6
1283	An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.	5.8	50

#	Article	IF	CITATIONS
1284	Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach. Physical Review E, 2019, 100, 063306.	0.8	7
1285	Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature. Soft Matter, 2019, 15, 8706-8717.	1.2	25
1286	Remodeling of Cellular Surfaces via Fast Disulfide–Thiol Exchange To Regulate Cell Behaviors. ACS Applied Materials & Company (1997)	4.0	5
1287	Structural Dynamics of Lipid Bilayer Membranes Explored by Magnetic Field Effect Based Fluorescence Microscopy. Journal of Physical Chemistry B, 2019, 123, 10896-10902.	1.2	2
1288	Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. Scientific Reports, 2019, 9, 17214.	1.6	34
1289	Simultaneous Two-Angle Axial Ratiometry for Fast Live and Long-Term Three-Dimensional Super-Resolution Fluorescence Imaging. Journal of Physical Chemistry Letters, 2019, 10, 7811-7816.	2.1	3
1290	Temperature-Dependent Dynamics of Giant Vesicles Composed of Hydrolysable Lipids Having an Amide Linkage. Langmuir, 2019, 35, 17075-17081.	1.6	5
1291	Mechanical conditions for stable symmetric cell constriction. Physical Review E, 2019, 100, 052408.	0.8	1
1292	A Model of Piezo1-Based Regulation of Red Blood Cell Volume. Biophysical Journal, 2019, 116, 151-164.	0.2	34
1293	FAM92A1 is a BAR domain protein required for mitochondrial ultrastructure and function. Journal of Cell Biology, 2019, 218, 97-111.	2.3	15
1294	Geometric instability catalyzes mitochondrial fission. Molecular Biology of the Cell, 2019, 30, 160-168.	0.9	10
1295	Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiology Reviews, 2019, 43, 273-303.	3.9	289
1296	Drug-Phospholipid Complexâ€"a Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech, 2019, 20, 43.	1.5	57
1297	Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chemical Reviews, 2019, 119, 5537-5606.	23.0	184
1298	Dissecting the effects of free fatty acids on the thermodynamic stability of complex model membranes mimicking insulin secretory granules. Colloids and Surfaces B: Biointerfaces, 2019, 176, 167-175.	2.5	9
1299	TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. International Journal of Molecular Sciences, 2019, 20, 371.	1.8	55
1300	Formation of Autophagosomes Coincides with Relaxation of Membrane Curvature. Methods in Molecular Biology, 2019, 1880, 173-188.	0.4	5
1301	Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Advances in Experimental Medicine and Biology, 2019, 1111, 77-137.	0.8	32

#	Article	IF	CITATIONS
1302	Interplay between \hat{l}_{\pm} -synuclein amyloid formation and membrane structure. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 483-491.	1.1	49
1303	Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR. Journal of Structural Biology, 2019, 206, 20-28.	1.3	10
1304	Hepatitis C Virus Replication. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037093.	2.9	36
1305	Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. Journal of Liposome Research, 2020, 30, 313-335.	1.5	11
1306	Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments. Biophysical Chemistry, 2020, 256, 106276.	1.5	2
1307	Retrograde trafficking and plasma membrane recycling pathways of the budding yeast <i>Saccharomyces cerevisiae </i> Traffic, 2020, 21, 45-59.	1.3	53
1308	Principles and Applications of Biological Membrane Organization. Annual Review of Biophysics, 2020, 49, 19-39.	4.5	24
1309	Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 2020, 232, 119739.	5.7	191
1310	How a lipid bilayer membrane responds to an oscillating nanoparticle: Promoted membrane undulation and directional wave propagation. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110651.	2.5	2
1311	Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers. Journal of Colloid and Interface Science, 2020, 561, 318-326.	5.0	23
1312	Engineering Lipid Membranes with Programmable DNA Nanostructures. Advanced Biology, 2020, 4, 1900215.	3.0	34
1313	Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metabolic Engineering, 2020, 57, 203-216.	3.6	29
1314	Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Frontiers in Immunology, 2020, 11, 2187.	2.2	41
1315	Nonaxisymmetric Shapes of Biological Membranes from Locally Induced Curvature. Biophysical Journal, 2020, 119, 1065-1077.	0.2	9
1316	Cholesterol Efflux Efficiency of Reconstituted HDL Is Affected by Nanoparticle Lipid Composition. Biomedicines, 2020, 8, 373.	1.4	11
1317	Zn ²⁺ Binds to Phosphatidylserine and Induces Membrane Blebbing. Journal of the American Chemical Society, 2020, 142, 18679-18686.	6.6	14
1318	Supramolecular Twoâ€Dimensional Systems and Their Biological Applications. Advanced Materials, 2020, 32, e2002405.	11.1	32
1319	Lipid-Dependent Interaction of Human N-BAR Domain Proteins with Sarcolemma Mono- and Bilayers. Langmuir, 2020, 36, 8695-8704.	1.6	3

#	Article	IF	CITATIONS
1320	Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective. Viruses, 2020, 12, 745.	1.5	21
1321	Rat Auditory Inner Hair Cell Mechanotransduction and Stereociliary Membrane Diffusivity Are Similarly Modulated by Calcium. IScience, 2020, 23, 101773.	1.9	10
1322	Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sensors, 2020, 5, 3739-3769.	4.0	73
1323	Three-Dimensional Packing Defects in Lipid Membrane as a Function of Membrane Order. Journal of Chemical Theory and Computation, 2020, 16, 7800-7816.	2.3	15
1324	Comparative Study of Curvature Sensing Mediated by F-BAR and an Intrinsically Disordered Region of FBP17. IScience, 2020, 23, 101712.	1.9	18
1325	Interactions of Anisotropic Inclusions on a Fluid Membrane. SIAM Journal on Applied Mathematics, 2020, 80, 2448-2471.	0.8	2
1326	Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology, 2020, 89, 405-412.	0.5	2
1327	Formation and function of bacterial organelles. Nature Reviews Microbiology, 2020, 18, 677-689.	13.6	112
1328	DDHD1, but Not DDHD2, Suppresses Neurite Outgrowth in SH-SY5Y and PC12 Cells by Regulating Protein Transport From Recycling Endosomes. Frontiers in Cell and Developmental Biology, 2020, 8, 670.	1.8	1
1329	BK Polyomavirus Evades Innate Immune Sensing by Disrupting the Mitochondrial Network and Promotes Mitophagy. IScience, 2020, 23, 101257.	1.9	32
1330	The antiviral protein viperin interacts with the viral N protein to inhibit proliferation of porcine epidemic diarrhea virus. Archives of Virology, 2020, 165, 2279-2289.	0.9	10
1331	The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183397.	1.4	7
1332	Detection of sub-degree angular fluctuations of the local cell membrane slope using optical tweezers. Soft Matter, 2020, 16, 7606-7612.	1.2	19
1333	Nonlocal chiral symmetry breaking in curvilinear magnetic shells. Communications Physics, 2020, 3, .	2.0	49
1334	Mechanical Characterization of Liposomes and Extracellular Vesicles, a Protocol. Frontiers in Molecular Biosciences, 2020, 7, 139.	1.6	40
1335	Using stable isotope tracers to monitor membrane dynamics in C. elegans. Chemistry and Physics of Lipids, 2020, 233, 104990.	1.5	3
1336	Evolutionary Biology—A Transdisciplinary Approach. , 2020, , .		5
1337	Diffuso-kinetic membrane budding dynamics. Soft Matter, 2020, 16, 10889-10899.	1.2	6

#	Article	IF	CITATIONS
1338	Transport phenomena in fluid films with curvature elasticity. Journal of Fluid Mechanics, 2020, 905, .	1.4	10
1339	Domain formation via phase separation for spherical biomembranes with small deformations. European Journal of Applied Mathematics, 2021, 32, 1127-1152.	1.4	4
1340	Geometric pinning and antimixing in scaffolded lipid vesicles. Nature Communications, 2020, 11, 4314.	5.8	17
1341	Anomalies of Ionic/Molecular Transport in Nano and Sub-Nano Confinement. Nano Letters, 2020, 20, 6937-6946.	4.5	112
1342	Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. Advanced Materials, 2020, 32, e2001668.	11.1	45
1343	The RUFYs, a Family of Effector Proteins Involved in Intracellular Trafficking and Cytoskeleton Dynamics. Frontiers in Cell and Developmental Biology, 2020, 8, 779.	1.8	16
1344	Phase transitions on non-uniformly curved surfaces: coupling between phase and location. Soft Matter, 2020, 16, 8069-8077.	1,2	7
1345	Pattern formation in reaction–diffusion system on membrane with mechanochemical feedback. Scientific Reports, 2020, 10, 19582.	1.6	21
1346	Wrapping of Microparticles by Floppy Lipid Vesicles. Physical Review Letters, 2020, 125, 198102.	2.9	29
1347	Spontaneous Membrane Nanodomain Formation in the Absence or Presence of the Neurotransmitter Serotonin. Frontiers in Cell and Developmental Biology, 2020, 8, 601145.	1.8	17
1348	Membrane Shape and the Regulation of Biological Processes. Journal of Molecular Biology, 2020, 432, 5124-5136.	2.0	23
1349	Combined mutagenesis and metabolic regulation to enhance <scp>d</scp> -arabitol production from <i>Candida parapsilosis</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 425-435.	1.4	18
1350	Compression, Rupture, and Puncture of Model Membranes at the Molecular Scale. Langmuir, 2020, 36, 5709-5716.	1.6	20
1351	Existence of varifold minimizers for the multiphase Canham $\hat{a}\in Helfrich$ functional. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	0.9	11
1352	An Artificial Amphiphilic Peptide Promotes Endocytic Uptake by Inducing Membrane Curvature. Bioconjugate Chemistry, 2020, 31, 1611-1615.	1.8	9
1353	Deformation Dynamics of Giant Unilamellar Vesicles in the Large Surface-to-Volume Ratio Regime: The Emergence of Neuron-like Morphology. Langmuir, 2020, 36, 6238-6244.	1.6	6
1354	Artificial chaperones: From materials designs to applications. Biomaterials, 2020, 254, 120150.	5.7	20
1355	Effect of tetracaine on dynamic reorganization of lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183351.	1.4	8

#	Article	IF	CITATIONS
1356	Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chemical Science, 2020, 11, 5637-5649.	3.7	21
1357	Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. Journal of Materials Chemistry B, 2020, 8, 7076-7120.	2.9	34
1358	Theoretical Bases for the Role of Red Blood Cell Shape in the Regulation of Its Volume. Frontiers in Physiology, 2020, 11, 544.	1.3	6
1359	The New Age of Cell-Free Biology. Annual Review of Biomedical Engineering, 2020, 22, 51-77.	5.7	48
1360	Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Science, 2020, 29, 1473-1485.	3.1	13
1361	Osmolytes and membrane lipids in adaptive response of thermophilic fungus Rhizomucor miehei to cold, osmotic and oxidative shocks. Extremophiles, 2020, 24, 391-401.	0.9	12
1362	Light-Inducible Generation of Membrane Curvature in Live Cells with Engineered BAR Domain Proteins. ACS Synthetic Biology, 2020, 9, 893-901.	1.9	14
1363	Structure of RyR1 in native membranes. EMBO Reports, 2020, 21, e49891.	2.0	32
1364	Models for membrane curvature sensing of curvature generating proteins. Pramana - Journal of Physics, 2020, 94, 1.	0.9	5
1365	Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. Biochip Journal, 2020, 14, 110-123.	2.5	11
1366	Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein Journal of Nanotechnology, 2020, 11, 338-353.	1.5	80
1367	Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183241.	1.4	5
1368	Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics, 2020, 12, 559.	2.0	23
1369	Cytoskeletal Drugs Modulate Off-Target Protein Folding Landscapes Inside Cells. Biochemistry, 2020, 59, 2650-2659.	1.2	10
1370	How Membrane Geometry Regulates Protein Sorting Independently of Mean Curvature. ACS Central Science, 2020, 6, 1159-1168.	5.3	29
1371	Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nature Protocols, 2020, 15, 2443-2469.	5 . 5	12
1372	Numerical Model for the Determination of Erythrocyte Mechanical Properties and Wall Shear Stress in vivo From Intravital Microscopy. Frontiers in Physiology, 2020, 10, 1562.	1.3	6
1373	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathogens, 2020, 16, e1008359.	2.1	28

#	Article	IF	CITATIONS
1374	Membrane rolling induced by bacterial toxins. Soft Matter, 2020, 16, 1614-1626.	1.2	11
1375	Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Virology, 2020, 544, 31-41.	1.1	14
1376	Anionic food color tartrazine enhances antibacterial efficacy of histatin-derived peptide DHVAR4 by fine-tuning its membrane activity. Quarterly Reviews of Biophysics, 2020, 53, e5.	2.4	11
1377	WHI-2 Regulates Intercellular Communication via a MAP Kinase Signaling Complex. Frontiers in Microbiology, 2020, 10, 3162.	1.5	4
1378	Highâ€Aspectâ€Ratio Nanostructured Surfaces as Biological Metamaterials. Advanced Materials, 2020, 32, e1903862.	11.1	161
1379	The lipid raft markers stomatin, prohibitin, flotillin, and HflK/C (SPFH)-domain proteins form an operon with NfeD proteins and function with apolar polyisoprenoid lipids. Critical Reviews in Microbiology, 2020, 46, 38-48.	2.7	23
1380	The membrane binding and deformation property of vaccinia virus K1 ankyrin repeat domain protein. Genes To Cells, 2020, 25, 187-196.	0.5	3
1381	Molecular Simulation of Mechanical Properties and Membrane Activities of the ESCRT-III Complexes. Biophysical Journal, 2020, 118, 1333-1343.	0.2	14
1382	The dynamics of shapes of vesicle membranes with time dependent spontaneous curvature. PLoS ONE, 2020, 15, e0227562.	1.1	6
1383	The Dynll1-Cox4i1 Complex Regulates Intracellular Pathogen Clearance via Release of Mitochondrial Reactive Oxygen Species. Infection and Immunity, 2020, 88, .	1.0	12
1384	Enhancing the activity of membrane remodeling epsin-peptide by trimerization. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127190.	1.0	12
1385	Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infection and Immunity, 2020, 88, .	1.0	56
1386	Biomimetic Models to Investigate Membrane Biophysics Affecting Lipid–Protein Interaction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 270.	2.0	30
1387	Membrane Thinning Induces Sorting of Lipids and the Amphipathic Lipid Packing Sensor (ALPS) Protein Motif. Frontiers in Physiology, 2020, 11, 250.	1.3	20
1388	Interdisciplinary Synergy to Reveal Mechanisms of Annexin-Mediated Plasma Membrane Shaping and Repair. Cells, 2020, 9, 1029.	1.8	28
1389	Biophysical forces in membrane bending and traffic. Current Opinion in Cell Biology, 2020, 65, 72-77.	2.6	12
1390	Strategic Trastuzumab Mediated Crosslinking Driving Concomitant HER2 and HER3 Endocytosis and Degradation in Breast Cancer. Journal of Cancer, 2020, 11, 3288-3302.	1.2	11
1391	Membranes as the third genetic code. Molecular Biology Reports, 2020, 47, 4093-4097.	1.0	5

#	Article	IF	CITATIONS
1392	Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 2021, 17, 276-287.	1.2	38
1393	ENTH domain-dependent membrane remodelling. Soft Matter, 2021, 17, 233-240.	1.2	12
1394	Effect of humic acid on the composition of osmolytes and lipids in a melanin-containing phytopathogenic fungus Alternaria alternata. Environmental Research, 2021, 193, 110395.	3.7	5
1395	Unraveling topology-induced shape transformations in dendrimersomes. Soft Matter, 2021, 17, 254-267.	1.2	18
1396	Interplay between membrane curvature and the actin cytoskeleton. Current Opinion in Cell Biology, 2021, 68, 10-19.	2.6	30
1397	Deformation of an elastic membrane interacting electrostatically with a rigid curved domain: implications to biosystems. Archive of Applied Mechanics, 2021, 91, 509-525.	1.2	4
1398	Protein assemblages and tight curves in the plasma membranes of photosynthetic eukaryotes. Journal of Plant Physiology, 2021, 256, 153330.	1.6	0
1399	Division and Regrowth of Phaseâ€ S eparated Giant Unilamellar Vesicles**. Angewandte Chemie, 2021, 133, 10756-10764.	1.6	10
1400	Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. Journal of Cellular Physiology, 2021, 236, 3317-3335.	2.0	6
1401	Nanoparticle-Mediated Adsorption of Pollutants: A Way Forward to Mitigation of Environmental Pollution. Microorganisms for Sustainability, 2021, , 317-348.	0.4	1
1402	Curvature-driven feedback on aggregation–diffusion of proteins in lipid bilayers. Soft Matter, 2021, 17, 8373-8386.	1.2	14
1403	A theory of ordering of elongated and curved proteins on membranes driven by density and curvature. Soft Matter, 2021, 17, 3367-3379.	1.2	12
1404	Binding of thermalized and active membrane curvature-inducing proteins. Soft Matter, 2021, 17, 5560-5573.	1.2	20
1406	Effective Medium Theory Application to Molecular Movement in Cell Membranes. Lecture Notes in Physics, 2021, , 297-315.	0.3	0
1407	Avidity and surface mobility in multivalent ligand–receptor binding. Nanoscale, 2021, 13, 12602-12612.	2.8	17
1408	Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst, The, 2021, 146, 6064-6083.	1.7	23
1410	Phase seperation of lipids in supported membranes on patterned PDMS substrate. Materials Today: Proceedings, 2021, 46, 2515-2519.	0.9	1
1411	Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins. Soft Matter, 2021, 17, 4254-4265.	1.2	16

#	Article	IF	CITATIONS
1412	Fatty acid synthesis and prostate cancer., 2021, , 175-209.		0
1413	Sterols Lower Energetic Barriers of Membrane Bending and Fission Necessary for Efficient Clathrin Mediated Endocytosis. SSRN Electronic Journal, 0, , .	0.4	1
1414	EnCurv: Simple Technique of Maintaining Global Membrane Curvature in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2021, 17, 1181-1193.	2.3	18
1415	Optimizing GŕMARTINI Coarse-Grained Model for F-BAR Protein on Lipid Membrane. Frontiers in Molecular Biosciences, 2021, 8, 619381.	1.6	32
1416	The phosphatidylinositol 3-phosphate-binding protein SNX4 controls ATG9A recycling and autophagy. Journal of Cell Science, 2021, 134, .	1.2	27
1417	On the Role of Curved Membrane Nanodomains and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding. International Journal of Molecular Sciences, 2021, 22, 2348.	1.8	22
1418	Membrane nanotubes are ancient machinery for cell-to-cell communication and transport. Their interference with the immune system. Biologia Futura, 2021, 72, 25-36.	0.6	9
1419	Recurrent dynamics of rupture transitions of giant lipid vesicles at solid surfaces. Biophysical Journal, 2021, 120, 586-597.	0.2	10
1420	Protein-dependent membrane remodeling in mitochondrial morphology and clathrin-mediated endocytosis. European Biophysics Journal, 2021, 50, 295-306.	1.2	6
1421	Mechanobiology of Autophagy: The Unexplored Side of Cancer. Frontiers in Oncology, 2021, 11, 632956.	1.3	26
1422	Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nature Chemistry, 2021, 13, 335-342.	6.6	34
1423	Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 629888.	1.6	29
1425	A Modular, Dynamic, DNA-Based Platform for Regulating Cargo Distribution and Transport between Lipid Domains. Nano Letters, 2021, 21, 2800-2808.	4.5	27
1426	A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Communications Biology, 2021, 4, 306.	2.0	19
1430	Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports, 2021, 34, 108873.	2.9	76
1431	Division and Regrowth of Phaseâ€Separated Giant Unilamellar Vesicles**. Angewandte Chemie - International Edition, 2021, 60, 10661-10669.	7.2	66
1432	Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS Nano, 2021, 15, 8155-8170.	7.3	50
1433	Liposomal Encapsulation of Carvacrol to Obtain Active Poly (Vinyl Alcohol) Films. Molecules, 2021, 26, 1589.	1.7	7

#	Article	IF	CITATIONS
1435	An imaging mass spectrometry atlas of lipids in the human neurologically normal and Huntington's disease caudate nucleus. Journal of Neurochemistry, 2021, 157, 2158-2172.	2.1	18
1436	Organization and Self-Assembly Away from Equilibrium: Toward Thermodynamic Design Principles. Annual Review of Condensed Matter Physics, 2021, 12, 273-290.	5.2	13
1437	Enzymatic trans-bilayer lipid transport: Mechanisms, efficiencies, slippage, and membrane curvature. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183534.	1.4	14
1438	Transportation of AIE-visualized nanoliposomes is dominated by the protein corona. National Science Review, 2021, 8, nwab068.	4.6	18
1439	Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure. Biophysical Journal, 2021, 120, 1343-1356.	0.2	23
1440	Dynamic interplay between cell membrane tension and clathrinâ€mediated endocytosis. Biology of the Cell, 2021, 113, 344-373.	0.7	33
1441	Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion. Nature Communications, 2021, 12, 2235.	5.8	20
1442	Compartmentalized replication organelle of flavivirus at the ER and the factors involved. Cellular and Molecular Life Sciences, 2021, 78, 4939-4954.	2.4	22
1443	Lysophosphatidic acid (LPA)-antibody (504B3) engagement detected by interferometry identifies off-target binding. Lipids in Health and Disease, 2021, 20, 32.	1.2	1
1446	Membrane Remodeling by DNA Origami Nanorods: Experiments Exploring the Parameter Space for Vesicle Remodeling. Langmuir, 2021, 37, 6219-6231.	1.6	5
1447	Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation. Langmuir, 2021, 37, 5753-5762.	1.6	6
1448	New insights into human prefrontal cortex aging with a lipidomics approach. Expert Review of Proteomics, 2021, 18, 333-344.	1.3	12
1449	Polymer brush-induced depletion interactions and clustering of membrane proteins. Journal of Chemical Physics, 2021, 154, 214901.	1.2	7
1450	How Photoswitchable Lipids Affect the Order and Dynamics of Lipid Bilayers and Embedded Proteins. Journal of the American Chemical Society, 2021, 143, 9515-9528.	6.6	29
1451	Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Frontiers in Immunology, 2021, 12, 585412.	2.2	10
1452	Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury. Scientific Reports, 2021, 11, 12468.	1.6	10
1453	Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Reports, 2021, 35, 109219.	2.9	25
1454	Vesicle budding induced by binding of curvature-inducing proteins. Physical Review E, 2021, 104, 014410.	0.8	12

#	Article	IF	CITATIONS
1455	Functional Peptides That Target Biomembranes: Design and Modes of Action. Chemical and Pharmaceutical Bulletin, 2021, 69, 601-607.	0.6	10
1456	Study of Uptake Mechanisms of Halloysite Nanotubes in Different Cell Lines. International Journal of Nanomedicine, 2021, Volume 16, 4755-4768.	3.3	14
1458	Aggregation of Lysozyme in the Presence of a Mixed Bilayer of POPC and POPG. ACS Omega, 2021, 6, 17861-17869.	1.6	1
1459	Determining structure and action mechanism of LBF14 by molecular simulation. Journal of Biomolecular Structure and Dynamics, 2021, , 1-12.	2.0	2
1460	Protein-induced membrane curvature in coarse-grained simulations. Biophysical Journal, 2021, 120, 3211-3221.	0.2	16
1461	Enhanced Biomechanically Mediated "Phagocytosis―in Detached Tumor Cells. Biomedicines, 2021, 9, 947.	1.4	1
1463	Acidic pH Is Required for the Multilamellar Assembly of Skin Barrier Lipids InÂVitro. Journal of Investigative Dermatology, 2021, 141, 1915-1921.e4.	0.3	11
1464	2D Black Phosphorus-Based Cytomembrane Mimics with Stimuli-Responsive Antibacterial Action Inspired by Endotoxin-Associated Toxic Behavior. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43820-43829.	4.0	3
1465	Lipid monolayer spontaneous curvatures: A collection of published values. Chemistry and Physics of Lipids, 2021, 239, 105117.	1.5	21
1466	From plants to antimicrobials: Natural products against bacterial membranes. Phytotherapy Research, 2022, 36, 33-52.	2.8	32
1467	An overview of the synaptic vesicle lipid composition. Archives of Biochemistry and Biophysics, 2021, 709, 108966.	1.4	32
1468	Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Advanced Science, 2021, 8, e2100460.	5.6	34
1469	Lipids: An Atomic Toolkit for the Endless Frontier. ACS Nano, 2021, 15, 15429-15445.	7.3	11
1470	Nucleic acid delivery for therapeutic applications. Advanced Drug Delivery Reviews, 2021, 178, 113834.	6.6	122
1471	Hybrid labeling system for dSTORM imaging of endoplasmic reticulum for uncovering ultrastructural transformations under stress conditions. Biosensors and Bioelectronics, 2021, 189, 113378.	5.3	4
1472	Recent developments in membrane curvature sensing and induction by proteins. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129971.	1.1	29
1473	Intrinsic lipid curvatures of mammalian plasma membrane outer leaflet lipids and ceramides. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183709.	1.4	17
1475	Reaction-diffusion waves coupled with membrane curvature. Soft Matter, 2021, 17, 6589-6596.	1.2	15

#	Article	IF	CITATIONS
1476	Evolution of mechanical stability from lipid layers to complex bacterial envelope structures. Advances in Biomembranes and Lipid Self-Assembly, 2021, , 207-251.	0.3	1
1477	Micromycete Lipids and Stress. Microbiology, 2021, 90, 37-55.	0.5	7
1478	Pattern formation, localized and running pulsation on active spherical membranes. Soft Matter, 2021, 17, 10614-10627.	1.2	3
1479	Advancements in the preparation methods of artificial cell membranes with lipids. Materials Chemistry Frontiers, 2021, 5, 5233-5246.	3.2	18
1480	Triggered interactions between nanoparticles and lipid membranes: design principles for gel formation or disruption-and-release. Soft Matter, 2021, 17, 7069-7075.	1.2	1
1481	New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. Advanced Materials, 2022, 34, e2101758.	11.1	65
1482	Formalizing Spherical Membrane Structures and Membrane Proteins Populations. Lecture Notes in Computer Science, 2006, , 18-41.	1.0	2
1483	The Molecular Machinery for Synaptic Vesicle Endocytosis. , 2008, , 111-146.		1
1484	Clathrin-Mediated Endocytosis. , 2009, , 159-182.		9
1486	Nanocones to Study Initial Steps of Endocytosis. Methods in Molecular Biology, 2014, 1174, 275-284.	0.4	4
1487	The Anammoxosome Organelle: The Power Plant of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria. Microbiology Monographs, 2020, , 107-123.	0.3	1
1488	Small G Proteins: Arf Family GTPases in Vesicular Transport. , 2014, , 181-214.		2
1489	On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 221-286.	0.3	5
1490	Onsager's Variational Principle in Soft Matter: Introduction and Application to the Dynamics of Adsorption of Proteins onto Fluid Membranes. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 287-332.	0.3	13
1491	Giant Unilamellar Vesicles: From Minimal Membrane Systems to Minimal Cells?., 2011,, 231-253.		4
1492	Effects of Phosphoinositides and Their Derivatives on Membrane Morphology and Function. Current Topics in Microbiology and Immunology, 2012, 362, 99-110.	0.7	7
1493	Membrane Interactions and Cellular Effects of MACPF/CDC Proteins. Sub-Cellular Biochemistry, 2014, 80, 119-144.	1.0	7
	00, 119-144.		

#	Article	IF	CITATIONS
1495	Variational Methods for Biomolecular Modeling. Molecular Modeling and Simulation, 2017, , 181-221.	0.2	1
1496	Lipid Domains and Membrane (Re)Shaping: From Biophysics to Biology. Springer Series in Biophysics, 2017, , 121-175.	0.4	7
1497	Structure and Thermotropic Behavior of Bovine- and Porcine-Derived Exogenous Lung Surfactants. Langmuir, 2020, 36, 14514-14529.	1.6	8
1498	Interactions of an Anionic Antimicrobial Peptide with Zinc(II): Application to Bacterial Mimetic Membranes. Langmuir, 2020, 36, 14554-14562.	1.6	14
1499	Multi-scale Simulations of Membrane Sculpting by N-BAR Domains. RSC Biomolecular Sciences, 2010, , 146-176.	0.4	1
1500	RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochemical Journal, 2020, 477, 2893-2919.	1.7	12
1501	Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization. Bioscience Reports, $2019,39,1$	1.1	19
1502	The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochemical Society Transactions, 2020, 48, 837-851.	1.6	9
1503	The role of membrane-shaping BAR domain proteins in caveolar invagination: from mechanistic insights to pathophysiological consequences. Biochemical Society Transactions, 2020, 48, 137-146.	1.6	5
1504	Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochemical Society Transactions, 2020, 48, 155-163.	1.6	35
1505	Force-control at cellular membranes. Bioarchitecture, 2014, 4, 164-8.	1.5	7
1506	Zika NS1–induced ER remodeling is essential for viral replication. Journal of Cell Biology, 2020, 219, .	2.3	39
1507	Caveolae and lipid sorting: Shaping the cellular response to stress. Journal of Cell Biology, 2020, 219, .	2.3	47
1508	Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology (United Kingdom), 2016, 162, 989-999.	0.7	37
1509	Combinatorial impact of osmotic and heat shocks on the composition of membrane lipids and osmolytes in Aspergillus niger. Microbiology (United Kingdom), 2019, 165, 554-562.	0.7	8
1510	The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid : cholesterol acyltransferase activity. Microbiology (United Kingdom), 2008, 154, 2680-2688.	0.7	64
1519	The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. Journal of Biomechanical Engineering, 2020, 142, .	0.6	24
1520	Functions of Anionic Lipids in Plants. Annual Review of Plant Biology, 2020, 71, 71-102.	8.6	111

#	Article	IF	CITATIONS
1521	Differential physiological role of BIN1 isoforms in skeletal muscle development, function and regeneration. DMM Disease Models and Mechanisms, $2020,13,.$	1.2	13
1522	A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biology, 2017, 15, e2002978.	2.6	44
1523	Functional Reconstitution of a Voltage-Gated Potassium Channel in Giant Unilamellar Vesicles. PLoS ONE, 2011, 6, e25529.	1.1	96
1524	Shapes of Discoid Intracellular Compartments with Small Relative Volumes. PLoS ONE, 2011, 6, e26824.	1.1	10
1525	Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding. PLoS ONE, 2011, 6, e27466.	1.1	28
1526	Curvature of Double-Membrane Organelles Generated by Changes in Membrane Size and Composition. PLoS ONE, 2012, 7, e32753.	1.1	54
1527	Regulation of Signaling at Regions of Cell-Cell Contact by Endoplasmic Reticulum-Bound Protein-Tyrosine Phosphatase 1B. PLoS ONE, 2012, 7, e36633.	1.1	64
1528	Versatile Membrane Deformation Potential of Activated Pacsin. PLoS ONE, 2012, 7, e51628.	1.1	25
1529	Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature. PLoS ONE, 2013, 8, e84143.	1.1	35
1530	Plasma Membrane Mechanical Stress Activates TRPC5 Channels. PLoS ONE, 2015, 10, e0122227.	1.1	40
1531	The Energy of COPI for Budding Membranes. PLoS ONE, 2015, 10, e0133757.	1.1	7
1532	Mitochondrial membrane lipidome defines yeast longevity. Aging, 2013, 5, 551-574.	1.4	35
1533	Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget, 2017, 8, 30672-30691.	0.8	15
1536	Vesicular Transport Machinery in Brain Endothelial Cells: What We Know and What We Do not. Current Pharmaceutical Design, 2020, 26, 1405-1416.	0.9	31
1537	Molecular Dynamics Simulation of Saposin C-Membrane Binding. The Open Structural Biology Journal, 2008, 2, 21-30.	0.1	7
1538	Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Science Alliance, 2019, 2, e201900343.	1.3	35
1539	Zooxanthellae that open calcium channels: implications for reef corals. Marine Ecology - Progress Series, 2012, 460, 277-287.	0.9	12
1540	Secretion and fluid transport mechanisms in the mammary gland. Human Health Handbooks, 2013, , 35-56.	0.1	3

#	Article	IF	CITATIONS
1541	Membrane-induced interactions between curvature-generating protein domains: the role of area perturbation. AIMS Biophysics, 2017, 4, 107-120.	0.3	2
1542	Molecular Modeling and Simulation of Human Stomatin and Predictions for its Membrane Association. Journal of Data Mining in Genomics & Proteomics, 2018, 09, .	0.5	1
1543	Sphingomyelin metabolism controls the shape and function of the Golgi cisternae. ELife, 2017, 6, .	2.8	33
1544	Mechanics and dynamics of translocating MreB filaments on curved membranes. ELife, 2019, 8, .	2.8	31
1545	A novel cell membrane-targeting fluorescent probe for imaging endogenous/exogenous formaldehyde in live cells and zebrafish. Analyst, The, 2021, 146, 7554-7562.	1.7	7
1547	Roles of Non-Structural Protein 4A in Flavivirus Infection. Viruses, 2021, 13, 2077.	1.5	19
1548	Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner. Plant Molecular Biology, 2022, 108, 31-49.	2.0	1
1550	Membraneâ€Mediated Selfâ€Organization of Rodâ€Like DNA Origami on Supported Lipid Bilayers. Advanced Materials Interfaces, 2021, 8, 2101094.	1.9	4
1551	Visualizing Super-Diffusion, Oligomerization, and Fibrillation of Amyloid-Î ² Peptide Chains along Tubular Membranes. ACS Macro Letters, 2021, 10, 1295-1299.	2.3	5
1552	Phytosterol metabolism in plant positive-strand RNA virus replication. Plant Cell Reports, 2021, , 1.	2.8	3
1553	Morphological principles of neuronal mitochondria. Journal of Comparative Neurology, 2022, 530, 886-902.	0.9	14
1554	Questions of Cell Shape., 2008, , 115-132.		0
1555	Synaptic Vesicle Endocytosis., 2008,, 207-238.		0
1556	Coupling Membrane Dynamics to Actin Polymerization. , 2010, , 35-57.		0
1557	Membrane deformation and separation. F1000 Biology Reports, 2010, 2, .	4.0	1
1558	Vesicle Arrays as Model-Membranes and Biochemical Reactor Systems. Biological and Medical Physics Series, 2011, , 87-112.	0.3	0
1559	Towards a Minimal System for Cell Division. The Frontiers Collection, 2011, , 281-293.	0.1	0
1560	Enzymology and Regulation of ArfGAPs and ArfGEFs. , 0, , .		0

#	Article	IF	CITATIONS
1561	Mophogenesis and Dynamics of Post-Golgi Transport Carriers. , 0, , .		0
1564	Mechanobiology of the Cell Membrane. , 2014, , 35-62.		0
1566	Evidence for a Link of SDPR and Cytoskeleton. Lecture Notes in Electrical Engineering, 2015, , 165-172.	0.3	1
1567	Biological Impact of Membranous Nanostructures. , 2015, , 401-464.		O
1569	Introduction to Molecular Computation. Advances in Computational Intelligence and Robotics Book Series, 2016, , 719-743.	0.4	0
1576	Applications of AFM Cellular and Molecular Biophysical Detection in Clinical Lymphoma Rituximab Treatment. Springer Theses, 2018, , 79-128.	0.0	0
1577	An Evolutionarily Conserved Phosphatidate Phosphatase Maintains Lipid Droplet Number and ER Morphology But Not Nuclear Morphology. SSRN Electronic Journal, 0, , .	0.4	0
1582	Actin Polymerization: A Cellular Perspective for Motility. , 2019, , 1-14.		O
1589	Freeze-Fracture Replica Immunolabeling of Cryopreserved Membrane Compartments, Cultured Cells and Tissues. Methods in Molecular Biology, 2020, 2169, 11-25.	0.4	1
1592	Binding of curvature-inducing proteins onto tethered vesicles. Soft Matter, 2021, 17, 10469-10478.	1.2	7
1593	On the Origin of Life and Evolution of Living Systems from a World of Biological Membranes. , 2020, , 169-201.		1
1596	Lysine acetylation regulates the interaction between proteins and membranes. Nature Communications, 2021, 12, 6466.	5.8	27
1597	Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nature Communications, 2021, 12, 6426.	5.8	12
1599	The geometry of organelles of the secretory pathway. , 2008, , 314-330.		1
1600	Solvent-Free Lipid-Bilayer Simulations: From Physics to Biology. Springer Proceedings in Physics, 2009, , 134-148.	0.1	0
1602	Dynamic Light Scattering Measurements for Soft Materials on Solid Substrates: Employing Evanescent-wave Illumination and Dark-field Collection with a High Numerical Aperture Microscope Objective. Analytical Sciences, 2020, 36, 1211-1215.	0.8	0
1604	Virtual bending method to calculate bending rigidity, saddle-splay modulus, and spontaneous curvature of thin fluid membranes. Physical Review E, 2020, 102, 053315.	0.8	2
1605	Design and Creation of Functional Membrane-Interacting Peptides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1058-1065.	0.0	1

#	Article	IF	CITATIONS
1606	Lipid metabolism in Trypanosoma cruzi: A review. Molecular and Biochemical Parasitology, 2020, 240, 111324.	0.5	18
1608	BAR proteins in cancer and blood disorders. International Journal of Biochemistry and Molecular Biology, 2012, 3, 198-208.	0.1	9
1609	The amino acids of Autographa californica multiple nucleopolyhedrovirus P48 critical for the association with Ac93 are important for the nuclear egress of nucleocapsids and efficient formation of intranuclear microvesicles. Virus Research, 2022, 308, 198644.	1.1	2
1610	Biomembranes undergo complex, non-axisymmetric deformations governed by Kirchhoff–Love kinematicsand revealed by a three-dimensional computational framework. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210246.	1.0	4
1611	Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Reports, 2021, 37, 110008.	2.9	20
1612	Effect of Phosphatidylethanolamine and Oleic Acid on Membrane Fusion: Phosphatidylethanolamine Circumvents the Classical Stalk Model. Journal of Physical Chemistry B, 2021, 125, 13192-13202.	1.2	15
1613	Detecting water-protein chemical exchange in membrane-bound proteins/peptides by solid-state NMR spectroscopy. Magnetic Resonance Letters, 2021, 1, 99-111.	0.7	4
1614	Free Energy Computation of Particles with Membrane-Mediated Interactions Via Langevin Dynamics. SSRN Electronic Journal, 0, , .	0.4	0
1615	Simulation and prediction of membrane fusion dynamics. Theoretical and Applied Mechanics Letters, 2022, 12, 100321.	1.3	2
1616	Cubosomes in cancer drug delivery: A review. Colloids and Interface Science Communications, 2022, 46, 100561.	2.0	34
1617	Evaluating the cross-membrane dynamics of a charged molecule on lipid films with different surface curvature. Journal of Colloid and Interface Science, 2022, 610, 376-384.	5.0	8
1618	Full scale structural, mechanical and dynamical properties of HIV-1 liposomes. PLoS Computational Biology, 2022, 18, e1009781.	1.5	9
1619	Bifurcation of elastic curves with modulated stiffness. European Journal of Applied Mathematics, 0, , 1-27.	1.4	0
1620	Chirality Inversion in Selfâ€Assembled Nanocomposites Directed by Curvatureâ€Mediated Interactions. Angewandte Chemie - International Edition, 2022, 61, e202117406.	7.2	18
1621	A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels. Molecules, 2022, 27, 578.	1.7	8
1622	Membrane rigidity regulates E. coli proliferation rates. Scientific Reports, 2022, 12, 933.	1.6	7
1623	A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum. Reproduction, 2022, 163, 45-56.	1.1	3
1624	Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes, 2022, 13, 219.	1.0	7

#	Article	IF	Citations
1625	Chirality Inversion in Selfâ€Assembled Nanocomposites Directed by Curvatureâ€Mediated Interactions. Angewandte Chemie, 2022, 134, .	1.6	5
1626	Avian Hepatitis E Virus ORF2 Protein Interacts with Rap1b to Induce Cytoskeleton Rearrangement That Facilitates Virus Internalization. Microbiology Spectrum, 2022, 10, e0226521.	1.2	4
1628	Multispherical shapes of vesicles highlight the curvature elasticity of biomembranes. Advances in Colloid and Interface Science, 2022, 301, 102613.	7.0	19
1629	Dunking into the Lipid Bilayer: How Direct Membrane Binding of Nucleoporins Can Contribute to Nuclear Pore Complex Structure and Assembly. Cells, 2021, 10, 3601.	1.8	13
1630	Binding of anisotropic curvature-inducing proteins onto membrane tubes. Soft Matter, 2022, 18, 3384-3394.	1.2	9
1631	Largely Tuning Geometrical and Mechanical Properties of Tpms-Based Lattices Independent of Volume Fraction. SSRN Electronic Journal, 0, , .	0.4	1
1632	Lipid Packing in Cell Membrane and Intracellular Delivery. Oleoscience, 2022, 22, 115-120.	0.0	0
1633	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	7.3	12
1634	Phosphatidylcholine Enhances Homeostasis in Peach Seedling Cell Membrane and Increases Its Salt Stress Tolerance by Phosphatidic Acid. International Journal of Molecular Sciences, 2022, 23, 2585.	1.8	15
1635	Structural and functional insights into ABHD5, a ligand-regulated lipase co-activator. Scientific Reports, 2022, 12, 2565.	1.6	8
1636	The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles inÂvivo. Developmental Cell, 2022, 57, 750-766.e5.	3.1	4
1637	Oocyte ERM and EWI Proteins Are Involved in Mouse Fertilization. Frontiers in Cell and Developmental Biology, 2022, 10, 863729.	1.8	3
1638	Recycling of autophagosomal components from autolysosomes by the recycler complex. Nature Cell Biology, 2022, 24, 497-512.	4.6	42
1639	A dog model for centronuclear myopathy carrying the most common $\langle i \rangle$ DNM2 $\langle i \rangle$ mutation. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	4
1640	Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annual Review of Biophysics, 2022, 51, 473-497.	4.5	16
1641	Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells. Nano Letters, 2022, 22, 3118-3124.	4.5	14
1642	Tuning surface curvatures and young's moduli of TPMS-based lattices independent of volume fraction. Materials and Design, 2022, 216, 110542.	3.3	13
1643	Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Computer Methods in Biomechanics and Biomedical Engineering, 2022, , 1-10.	0.9	3

#	Article	IF	Citations
1644	Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. Journal of Chemical Theory and Computation, 2021, 17, 7850-7861.	2.3	4
1645	Active nanomotors surpass passive nanomedicines: current progress and challenges. Journal of Materials Chemistry B, 2022, 10, 7099-7107.	2.9	5
1646	Endogenous Peptide Inhibitors of HIV Entry. Advances in Experimental Medicine and Biology, 2022, 1366, 65-85.	0.8	1
1647	Recent advances in optical label-free characterization of extracellular vesicles. Nanophotonics, 2022, 11, 2827-2863.	2.9	9
1648	A Comparative Analysis of the Membrane Binding and Remodeling Properties of Two Related Sorting Nexin Complexes Involved in Autophagy. Biochemistry, 2023, 62, 657-668.	1.2	3
1649	Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. Journal of Membrane Biology, 2022, 255, 211-224.	1.0	29
1650	Hierarchical Structures in Macromoleculeâ€Assembled Synthetic Cells. Macromolecular Rapid Communications, 2022, 43, e2100926.	2.0	4
1651	Small deformations of spherical biomembranes. , 0, , .		2
1671	Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. Journal of Membrane Biology, 2022, 255, 237-259.	1.0	14
1672	Structure and Morphogenesis of the Frustule. , 2022, , 287-312.		4
1675	Expansion Microscopy for Imaging the Cell–Material Interface. ACS Nano, 2022, 16, 7559-7571.	7.3	10
1676	Combination of Oleic Acid and the gp41 Fusion Peptide Switches the Phosphatidylethanolamine-Induced Membrane Fusion Mechanism from a Nonclassical to a Classical Stalk Model. Journal of Physical Chemistry B, 2022, 126, 3673-3684.	1.2	4
1677	Phosphatidylinositol Phosphates Modulate Interactions between the StarD4 Sterol Trafficking Protein and Lipid Membranes. Journal of Biological Chemistry, 2022, , 102058.	1.6	9
1678	Investigating the Lipid Selectivity of Membrane Proteins in Heterogeneous Nanodiscs. Analytical Chemistry, 2022, 94, 8497-8505.	3.2	14
1679	Crowding-induced membrane remodeling: Interplay of membrane tension, polymer density, architecture. Biophysical Journal, 2022, 121, 3674-3683.	0.2	6
1681	Trans and Saturated Alkyl Impurities in Technical-Grade Oleylamine: Limited Miscibility and Impacts on Nanocrystal Growth. Chemistry of Materials, 2022, 34, 5273-5282.	3.2	7
1683	Colloidal clusters on curved surfaces. Frontiers of Nanoscience, 2022, , 129-150.	0.3	0
1684	Lipid Membrane Flexibility in Protic Ionic Liquids. Journal of Physical Chemistry Letters, 2022, 13, 5240-5245.	2.1	7

#	Article	IF	CITATIONS
1685	Mem3DG: Modeling membrane mechanochemical dynamics in 3D using discrete differential geometry. Biophysical Reports, 2022, 2, 100062.	0.7	6
1686	Nanoliposomes as a Model for Teaching Nanochemistry. Advances in Chemistry Education, 2022, , 118-141.	0.2	O
1687	Molecular mechanics underlying flat-to-round membrane budding in live secretory cells. Nature Communications, 2022, 13 , .	5.8	5
1688	Insights into intercellular receptor-ligand binding kinetics in cell communication. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	3
1689	Membrane shape deformation induced by curvature-inducing proteins consisting of chiral crescent binding and intrinsically disordered domains. Journal of Chemical Physics, 2022, 157, .	1.2	8
1690	Binding of curvature-inducing proteins onto biomembranes. International Journal of Modern Physics B, 2022, 36, .	1.0	8
1691	Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Progress in Lipid Research, 2022, 87, 101179.	5.3	13
1692	Super-resolution analysis of PACSIN2 and EHD2 at caveolae. PLoS ONE, 2022, 17, e0271003.	1.1	4
1693	Totally decoupled implicit–explicit linear scheme with corrected energy dissipation law for the phase-field fluid vesicle model. Computer Methods in Applied Mechanics and Engineering, 2022, 399, 115330.	3.4	10
1694	Heterologous Expressed NbSWP12 from Microsporidia Nosema bombycis Can Bind with Phosphatidylinositol 3-Phosphate and Affect Vesicle Genesis. Journal of Fungi (Basel, Switzerland), 2022, 8, 764.	1.5	4
1695	Chapter 10. Curvature Mechanobiology. Biomaterials Science Series, 2022, , 213-238.	0.1	1
1696	Lens Nucleation and Droplet Budding in a Membrane Model for Lipid Droplet Biogenesis. Langmuir, 2022, 38, 9247-9256.	1.6	5
1697	Role of Binâ€Amphiphysinâ€Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse, 2022, 76, .	0.6	4
1698	Electrostatic interaction with a rigid curved domain causes nonlinear deformation of a thin elastic sheet: Implications for biosystems. Physica B: Condensed Matter, 2022, 646, 414274.	1.3	1
1699	Controlling the shape and topology of two-component colloidal membranes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
1702	In Situ Visualization of Dynamic Cellular Effects of Phospholipid Nanoparticles via Highâ€5peed Scanning Ion Conductance Microscopy. Small, 2022, 18, .	5.2	7
1703	New horizons in developing cell lysis methods: A review. Biotechnology and Bioengineering, 2022, 119, 3007-3021.	1.7	20
1705	Enhancing physicochemical, mechanical, and bioactive performances of monetite nanoparticles reinforced <scp>chitosanâ€PEO</scp> electrospun scaffold for bone tissue engineering. Journal of Applied Polymer Science, 2022, 139, .	1.3	3

#	Article	IF	CITATIONS
1706	Illuminating membrane structural dynamics of fusion and endocytosis with advanced light imaging techniques. Biochemical Society Transactions, 2022, 50, 1157-1167.	1.6	4
1707	CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Frontiers in Immunology, 0, 13, .	2.2	9
1708	Membrane area gain and loss during cytokinesis. Physical Review E, 2022, 106, .	0.8	0
1709	The bending rigidity of the red blood cell cytoplasmic membrane. PLoS ONE, 2022, 17, e0269619.	1.1	14
1710	Excitable reaction-diffusion waves of curvature-inducing proteins on deformable membrane tubes. Physical Review E, 2022, 106, .	0.8	3
1711	Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. Journal of Molecular Biology, 2022, , 167787.	2.0	13
1712	Loss of function of VdDrs2, a P4-ATPase, impairs the toxin secretion and microsclerotia formation, and decreases the pathogenicity of Verticillium dahliae. Frontiers in Plant Science, 0, 13 , .	1.7	1
1713	Length and Unsaturation of Fatty Acids of Phosphatidic Acid Determines the Aggregation Rate of Insulin and Modifies the Structure and Toxicity of Insulin Aggregates. ACS Chemical Neuroscience, 2022, 13, 2483-2489.	1.7	22
1714	Mixed-surfactant perovskites with enhanced photostability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129757.	2.3	0
1715	Microfluidic deformability cytometry: A review. Talanta, 2023, 251, 123815.	2.9	8
1716	Membrane lipid compositions and their difference between subcellular structures., 2023,, 7-26.		0
1717	BAR domains. , 2023, , 47-63.		0
1718	Physical principles of cellular membrane shapes. , 2023, , 393-413.		4
1719	Synthetic mimics of membrane-active proteins and peptides. , 2023, , 159-173.		0
1720	Ankyrin repeat domains with an amphipathic helix for membrane deformation., 2023,, 65-75.		0
1721	Membrane Conformation and the Modulation of Cell Function. , 2022, , .		0
1722	Spontaneous formation and growth kinetics of lipid nanotubules induced by passive nanoparticles. Soft Matter, 2022, 18, 7082-7090.	1.2	1
1723	Unravelling the orientation of the inositol-biphosphate ring and its dependence on phosphatidylinositol 4,5-bisphosphate cluster formation in model membranes. Journal of Colloid and Interface Science, 2023, 629, 785-795.	5.0	2

#	Article	IF	CITATIONS
1724	Niemann-Pick Type C Proteins Are Required for Sterol Transport and Appressorium-Mediated Plant Penetration of <i>Colletotrichum orbiculare</i>). MBio, 2022, 13, .	1.8	2
1725	Transformation of Supramolecular Membranes to Vesicles Driven by Spontaneous Gradual Deprotonation on Membrane Surfaces. Journal of the American Chemical Society, 2022, 144, 17341-17345.	6.6	4
1726	Active membrane recycling induced morphology changes in vesicles. Frontiers in Physics, 0, 10, .	1.0	3
1727	Membrane Lipids and Osmolytes Composition of Xerohalophilic Fungus Aspergillus penicillioides during Growth on High NaCl and Glycerol Media. Microbiology, 2022, 91, 503-513.	0.5	5
1728	Production of polyclonal viperin antisera using N-terminal deleted recombinant bovine viperin. Animal Biotechnology, 2023, 34, 2827-2834.	0.7	0
1729	Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Molecular Biomedicine, 2022, 3, .	1.7	21
1730	PI4P and BLOC-1 remodel endosomal membranes into tubules. Journal of Cell Biology, 2022, 221, .	2.3	7
1731	Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Frontiers in Molecular Neuroscience, $0,15,\ldots$	1.4	3
1733	TriMem: A parallelized hybrid Monte Carlo software for efficient simulations of lipid membranes. Journal of Chemical Physics, 2022, 157, .	1.2	5
1734	Modeling curvature-resisting material surfaces with isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2022, 401, 115649.	3.4	4
1735	Heterogeneity and deformation behavior of lipid vesicles. Current Opinion in Colloid and Interface Science, 2022, 62, 101646.	3.4	3
1736	A cell free biomembrane platform for multimodal study of influenza virus hemagglutinin and for evaluation of entry-inhibitors against hemagglutinin. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
1737	Strength in numbers: effect of protein crowding on the shape of cell membranes. Biochemical Society Transactions, 2022, 50, 1257-1267.	1.6	7
1738	Understanding the extracellular vesicle surface for clinical molecular biology. Journal of Extracellular Vesicles, 2022, 11, .	5.5	22
1739	Actuating tension-loaded DNA clamps drives membrane tubulation. Science Advances, 2022, 8, .	4.7	8
1740	Direct detection of cell membrane slope fluctuations upon adding Latrunculin B using optical tweezers and single probe particle. , 2022, , .		0
1741	Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20
1742	Small-molecule fluorescent probes for plasma membrane staining: Design, mechanisms and biological applications. Coordination Chemistry Reviews, 2023, 474, 214862.	9.5	17

#	Article	IF	Citations
1743	Endoplasmic reticulum stress and lipids in health and diseases. Progress in Lipid Research, 2023, 89, 101198.	5. 3	23
1744	A Membrane Curvature Modulated Lipopeptide to Broadly Combat Multidrug-Resistant Bacterial Pneumonia with Low Resistance Risk. ACS Nano, 2022, 16, 20545-20558.	7.3	8
1745	Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics, 2022, 11, 1636.	1.5	10
1746	Preface to Special Issue on Protein-Mediated Membrane Remodeling. Journal of Membrane Biology, 2022, 255, 633-635.	1.0	2
1747	How binding to surfaces affects disorder?. , 2023, , 455-489.		2
1748	Post-Golgi Transport - Cargo, Carriers, and Pathways. , 2016, , 507-515.		0
1749	Membrane domain formation induced by binding/unbinding of curvature-inducing molecules onto both membrane surfaces. Soft Matter, 0 , , .	1.2	0
1750	Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. Advanced Materials, 2023, 35, .	11.1	34
1751	Stabilizing Differential Interfacial Curvatures by Mismatched Molecular Geometries: Toward Polymers with Percolating 1 nm Channels of Gyroid Minimal Surfaces. ACS Nano, 2022, 16, 21139-21151.	7.3	2
1753	Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 247-260.	0.3	0
1754	Studying the Role of Lipid Geometry in COPI Vesicle Formation. Methods in Molecular Biology, 2023, , 519-528.	0.4	0
1756	Analysis of HIV-1 envelope cytoplasmic tail effects on viral replication. Virology, 2023, 579, 54-66.	1.1	1
1757	Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock. Fungal Biology, 2023, 127, 909-917.	1.1	3
1759	Membrane-Mediated Interactions Between Nonspherical Elastic Particles. ACS Nano, 2023, 17, 1935-1945.	7.3	5
1761	The interplay of geometry and coarsening in multicomponent lipid vesicles under the influence of hydrodynamics. Physics of Fluids, 2023, 35, .	1.6	3
1762	SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion. Experimental and Molecular Medicine, 2023, 55, 779-793.	3.2	3
1763	Structural Dissection of Epsinâ€1 Nâ€Terminal Helical Peptide: The Role of Hydrophobic Residues in Modulating Membrane Curvature. Chemistry - A European Journal, 2023, 29, .	1.7	3
1764	Orexin A, an amphipathic α-helical neuropeptide involved in pleiotropic functions in the nervous and immune systems: Synthetic approach and biophysical studies of the membrane-bound state. Biophysical Chemistry, 2023, 297, 107007.	1.5	1

#	Article	IF	CITATIONS
1765	Coarse-grained methods for heterogeneous vesicles with phase-separated domains: Elastic mechanics of shape fluctuations, plate compression, and channel insertion. Mathematics and Computers in Simulation, 2023, 209, 342-361.	2.4	0
1766	Disappearance, division, and route change of excitable reaction-diffusion waves in deformable membranes. Scientific Reports, $2023,13,.$	1.6	2
1767	Recent Advances in PROTAC-Based Antiviral Strategies. Vaccines, 2023, 11, 270.	2.1	13
1768	Effective quantum dynamics in curved thin-layer systems with inhomogeneous confinement. Physical Review A, 2023, 107, .	1.0	4
1770	Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes. Nature Communications, 2023, 14, .	5.8	14
1771	Propranolol induces large-scale remodeling of lipid bilayers: tubules, patches, and holes. RSC Advances, 2023, 13, 7719-7730.	1.7	1
1772	Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses, 2023, 15, 776.	1.5	7
1773	Use of niosomes for the treatment of intracellular pathogens infecting the lungs. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	3.3	0
1774	Comparison of thermal and athermal dynamics of the cell membrane slope fluctuations in the presence and absence of Latrunculin-B. Physical Biology, $0, , .$	0.8	1
1775	Phosphatidylinositol 4,5-Bisphosphate Sensing Lipid Raft via Inter-Leaflet Coupling Regulated by Acyl Chain Length of Sphingomyelin. Langmuir, 2023, 39, 5995-6005.	1.6	3
1783	Anammox Cell Biology, Metabolism, Growth, and Genetics., 2023,, 51-71.		0
1789	Binding and Characterization of DNA Origami Nanostructures on Lipid Membranes. Methods in Molecular Biology, 2023, , 231-255.	0.4	0
1795	Structural Role of Silicon-Mediated Cell Wall Stability for Ammonium Toxicity Alleviation. , 2023, , 209-236.		0
1812	The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. Journal of Membrane Biology, 0, , .	1.0	0
1823	Cellular lipids and viral infection. , 2023, , 455-482.		0
1824	Elementary Concepts and Definitions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2023, , 9-65.	0.7	0
1857	Dissecting membrane interfacial cellular processes: an in vitro reconstitution approach. European Physical Journal: Special Topics, 0, , .	1.2	0