Heat activation of TRPM5 underlies thermal sensitivity

Nature 438, 1022-1025 DOI: 10.1038/nature04248

Citation Report

#	Article	IF	CITATIONS
1	TRP ION CHANNELS AND TEMPERATURE SENSATION. Annual Review of Neuroscience, 2006, 29, 135-161.	5.0	682
2	Thermal Gating of TRP Ion Channels: Food for Thought?. Science Signaling, 2006, 2006, pe12-pe12.	1.6	12
3	Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1078-1084.	1.2	57
5	Modulation of temperature-sensitive TRP channels. Seminars in Cell and Developmental Biology, 2006, 17, 638-645.	2.3	114
6	The neural mechanisms of gustation: a distributed processing code. Nature Reviews Neuroscience, 2006, 7, 890-901.	4.9	304
7	The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.	13.7	1,361
8	TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO Journal, 2006, 25, 1804-1815.	3.5	375
9	The neurocognitive bases of human multimodal food perception: Sensory integration. Neuroscience and Biobehavioral Reviews, 2006, 30, 613-650.	2.9	315
10	From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Archiv European Journal of Physiology, 2006, 453, 313-321.	1.3	46
11	Taste perception and coding in the periphery. Cellular and Molecular Life Sciences, 2006, 63, 2000-2015.	2.4	80
12	Signaling in the Chemosensory Systems. Cellular and Molecular Life Sciences, 2006, 63, 1501-1509.	2.4	143
15	The Emerging Role of TRP Channels in Mechanisms of Temperature and Pain Sensation. Current Neuropharmacology, 2006, 4, 183-196.	1.4	66
16	Taste Receptors in the Gastrointestinal Tract. I. Bitter taste receptors and α-gustducin in the mammalian gut. American Journal of Physiology - Renal Physiology, 2006, 291, G171-G177.	1.6	197
17	Evolution of thermoTRP ion channel homologs in vertebrates. Physiological Genomics, 2006, 27, 219-230.	1.0	98
18	Differential Expression of Capsaicin-, Menthol-, and Mustard Oil-Sensitive Receptors in Naive Rat Geniculate Ganglion Neurons. Chemical Senses, 2006, 31, 681-688.	1.1	41
19	Transient receptor potential ion channels as participants in thermosensation and thermoregulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R64-R76.	0.9	340
20	New pungent and cooling compounds for use in foods. , 2007, , 146-168.		1
21	The Transduction Channel TRPM5 Is Gated by Intracellular Calcium in Taste Cells. Journal of Neuroscience, 2007, 27, 5777-5786.	1.7	174

ITATION REDO

CITATIONS 123 60 16 16
5 16
45
3 48
42
74
23
9 554
.1 1,260
) 1,768
2
70
57
5 164
) 249
) 245
451

#	Article	IF	CITATIONS
42	The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nature Reviews Drug Discovery, 2007, 6, 357-372.	21.5	754
43	Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO Journal, 2007, 26, 657-667.	3.5	288
44	TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neuroscience, 2007, 8, 49.	0.8	198
45	Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium, 2007, 42, 618-628.	1.1	116
46	ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium, 2007, 42, 427-438.	1.1	197
47	TRP proteins and cancer. Cellular Signalling, 2007, 19, 617-624.	1.7	118
48	From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Current Opinion in Neurobiology, 2007, 17, 490-497.	2.0	171
49	TRPM6: A Janus-Like Protein. , 2007, , 299-311.		5
50	An Introduction on TRP Channels. , 2007, , 1-19.		72
51	Influence of temperature on taste perception. Cellular and Molecular Life Sciences, 2007, 64, 377-381.	2.4	71
51 52	Influence of temperature on taste perception. Cellular and Molecular Life Sciences, 2007, 64, 377-381. Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv European Journal of Physiology, 2007, 454, 263-275.	2.4 1.3	71 21
	Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv		
52	Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv European Journal of Physiology, 2007, 454, 263-275. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European	1.3	21
52 53	Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv European Journal of Physiology, 2007, 454, 263-275. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European Journal of Physiology, 2007, 454, 759-776. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Archiv	1.3 1.3	21 251
52 53 54	Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv European Journal of Physiology, 2007, 454, 263-275. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European Journal of Physiology, 2007, 454, 759-776. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Archiv European Journal of Physiology, 2007, 455, 157-168. Sensing the air around us: The voltage-gated-like ion channel family. Current Allergy and Asthma	1.3 1.3 1.3	21 251 104
52 53 54 55	Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv European Journal of Physiology, 2007, 454, 263-275. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European Journal of Physiology, 2007, 454, 759-776. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Archiv European Journal of Physiology, 2007, 455, 157-168. Sensing the air around us: The voltage-gated-like ion channel family. Current Allergy and Asthma Reports, 2007, 7, 85-92. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Die	1.3 1.3 1.3 2.4	21 251 104 9
52 53 54 55 56	Effects of temperature on pacemaker potentials in the mouse small intestine. Pflugers Archiv European Journal of Physiology, 2007, 454, 263-275. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European Journal of Physiology, 2007, 454, 759-776. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Archiv European Journal of Physiology, 2007, 455, 157-168. Sensing the air around us: The voltage-gated-like ion channel family. Current Allergy and Asthma Reports, 2007, 7, 85-92. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Die Naturwissenschaften, 2008, 95, 845-850.	1.3 1.3 1.3 2.4 0.6	21 251 104 9 86

	CITATION	Report	
#	Article	IF	CITATIONS
61	TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neuroscience, 2008, 9, 114.	0.8	63
62	TRPs in Our Senses. Current Biology, 2008, 18, R880-R889.	1.8	261
64	TRPV1 Gene Required for Thermosensory Transduction and Anticipatory Secretion from Vasopressin Neurons during Hyperthermia. Neuron, 2008, 58, 179-185.	3.8	76
65	Thermal taste, PROP responsiveness, and perception of oral sensations. Physiology and Behavior, 2008, 95, 581-590.	1.0	149
66	Cracking taste codes by tapping into sensory neuron impulse traffic. Progress in Neurobiology, 2008, 86, 245-263.	2.8	33
67	Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends in Neurosciences, 2008, 31, 287-295.	4.2	152
68	Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2008, 371, 841-845.	1.0	28
69	Transient Receptor Potential Channels in Sensory Neurons Are Targets of the Antimycotic Agent Clotrimazole. Journal of Neuroscience, 2008, 28, 576-586.	1.7	103
70	Supertasting and PROP Bitterness Depends on More Than the TAS2R38 Gene. Chemical Senses, 2008, 33, 255-265.	1.1	263
71	Distinct TRP channels are required for warm and cool avoidance in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14668-14673.	3.3	124
72	Calcium Plays a Central Role in the Sensitization of TRPV3 Channel to Repetitive Stimulations. Journal of Biological Chemistry, 2008, 283, 6162-6174.	1.6	90
73	<i>Drosophila</i> Painless Is a Ca ²⁺ -Requiring Channel Activated by Noxious Heat. Journal of Neuroscience, 2008, 28, 9929-9938.	1.7	99
74	The taste transduction channel TRPM5 is a locus for bitterâ€sweet taste interactions. FASEB Journal, 2008, 22, 1343-1355.	0.2	74
75	Herbal Compounds and Toxins Modulating TRP Channels. Current Neuropharmacology, 2008, 6, 79-96.	1.4	155
76	The Role of Natural Products in the Ligand Deorphanization of TRP Channels. Current Pharmaceutical Design, 2008, 14, 2-17.	0.9	46
77	Multiple Receptor Systems for Glutamate Detection in the Taste Organ. Biological and Pharmaceutical Bulletin, 2008, 31, 1833-1837.	0.6	51
78	Development of Transient Receptor Potential Melanostatin 5 Modulators for Sweetness Enhancement. ACS Symposium Series, 2008, , 386-399.	0.5	4
79	Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. BioTechniques, 2009, 47, iii-ix.	0.8	22

#	Article	IF	CITATIONS
80	Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion. PLoS ONE, 2009, 4, e5106.	1.1	254
81	Transient Receptor Potential (TRP) Channels and Taste Sensation. Journal of Dental Research, 2009, 88, 212-218.	2.5	64
82	TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1273-1278.	3.3	503
83	Inhibition of TRPM8 by Icilin Distinct from Desensitization Induced by Menthol and Menthol Derivatives. Journal of Biological Chemistry, 2009, 284, 4102-4111.	1.6	37
84	Multiple receptors underlie glutamate taste responses in mice. American Journal of Clinical Nutrition, 2009, 90, 747S-752S.	2.2	56
85	A temperature-sensitive TRP ion channel, Painless, functions as a noxious heat sensor in fruit flies. Communicative and Integrative Biology, 2009, 2, 170-173.	0.6	21
86	Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R960-R971.	0.9	76
87	Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light. American Journal of Physiology - Cell Physiology, 2009, 297, C679-C687.	2.1	82
88	Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium, 2009, 45, 554-565.	1.1	81
89	The gustatory cortex and multisensory integration. International Journal of Obesity, 2009, 33, S34-S43.	1.6	114
90	Transient receptor potential channels: targeting pain at the source. Nature Reviews Drug Discovery, 2009, 8, 55-68.	21.5	548
91	Structure–functional intimacies of transient receptor potential channels. Quarterly Reviews of Biophysics, 2009, 42, 201-246.	2.4	155
92	Molecular receptors of taste agents. Russian Journal of Bioorganic Chemistry, 2009, 35, 1-9.	0.3	2
93	Mammalian Bitter Taste Perception. Results and Problems in Cell Differentiation, 2009, 47, 77-96.	0.2	60
94	Chemosensory Systems in Mammals, Fishes, and Insects. Results and Problems in Cell Differentiation, 2009, , .	0.2	8
95	Thermal taster status associates with oral sensations elicited by wine. Australian Journal of Grape and Wine Research, 2010, 16, 361-367.	1.0	36
96	Multiple Umami Receptors and Their Variants in Human and Mice. Journal of Health Science, 2009, 55, 674-681.	0.9	12
97	Heating improves poor compliance with branched chain amino acid-rich supplementation in patients with liver cirrhosis: A before-after pilot study. Molecular Medicine Reports, 2009, 02, 983-7.	1.1	3

#	Article	IF	Citations
98	Physiological Roles of the TRPM4 Channel Extracted from Background Currents. Physiology, 2010, 25, 155-164.	1.6	78
99	Modulation of sweet taste sensitivity by orexigenic and anorexigenic factors. Endocrine Journal, 2010, 57, 467-475.	0.7	49
100	New Frontiers in Gut Nutrient Sensor Research: Nutrient Sensors in the Gastrointestinal Tract: Modulation of Sweet Taste Sensitivity by Leptin. Journal of Pharmacological Sciences, 2010, 112, 8-12.	1.1	33
101	é,味å⊷å®1ã®ãƒjã,«ãƒ<ã,ºãƒ ã,ªãƒ•å;œç"ã,'å¸ã,‹å^†åãë生物å┤çš,,æ"義. Kagaku To Seibutsu, 2010, 48, 41	19 61.2 03.	Ο
102	Perception of Beer Flavour Associates with Thermal Taster Status. Journal of the Institute of Brewing, 2010, 116, 239-244.	0.8	25
103	Bernd Nilius: The Bard of ion channels. Congratulations on 65th birthday. Pflugers Archiv European Journal of Physiology, 2010, 460, 691-694.	1.3	1
104	Ice cube stimulation helps to improve dysgeusia. Odontology / the Society of the Nippon Dental University, 2010, 98, 82-84.	0.9	14
105	Pharmacology of transient receptor potential melastatin channels in the vasculature. British Journal of Pharmacology, 2010, 159, 1559-1571.	2.7	34
106	Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nature Neuroscience, 2010, 13, 708-714.	7.1	193
107	Cephalic phase responses and appetite. Nutrition Reviews, 2010, 68, 643-655.	2.6	193
108	Sensopercepción Gustativa: una Revisión. International Journal of Odontostomatology, 2010, 4, 161-168.	0.0	4
109	<i>Drosophila</i> TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8440-8445.	3.3	160
110	International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family. Pharmacological Reviews, 2010, 62, 381-404.	7.1	502
111	Overexpression of Human Transient Receptor Potential M5 Upregulates Endogenous Human Transient Receptor Potential A1 in a Stable HEK Cell Line. Assay and Drug Development Technologies, 2010, 8, 695-702.	0.6	5
112	The Receptor Potential of Frog Taste Cells in Response to Cold and Warm Stimuli. Chemical Senses, 2010, 35, 491-499.	1.1	1
113	The TRPV4 cation channel. Communicative and Integrative Biology, 2010, 3, 619-621.	0.6	56
114	Current perspectives on the modulation of thermo-TRP channels: new advances and therapeutic implications. Expert Review of Clinical Pharmacology, 2010, 3, 687-704.	1.3	10
115	Increased Store-Operated Ca2+ Entry in Skeletal Muscle with Reduced Calsequestrin-1 Expression. Biophysical Journal, 2010, 99, 1556-1564.	0.2	43

\sim	T A T I	Repo	DT
		REDU	
	/	ILLI U	- C - L

#	Article	IF	CITATIONS
116	Cold-induced sweating syndrome: CISS1 and CISS2. Journal of the Neurological Sciences, 2010, 293, 68-75.	0.3	26
117	Association of thermal taste and PROP responsiveness with food liking, neophobia, body mass index, and waist circumference. Food Quality and Preference, 2010, 21, 589-601.	2.3	43
118	Interactions of temperature and taste in conditioned aversions. Physiology and Behavior, 2010, 99, 324-333.	1.0	12
120	Endocannabinoids selectively enhance sweet taste. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 935-939.	3.3	177
121	Multiple Roles for TRPs in the Taste System: Not Your Typical TRPs. Advances in Experimental Medicine and Biology, 2011, 704, 831-846.	0.8	7
122	The Non-selective Monovalent Cationic Channels TRPM4 and TRPM5. Advances in Experimental Medicine and Biology, 2011, 704, 147-171.	0.8	78
123	TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat. Neuron, 2011, 70, 482-494.	3.8	454
124	Methodological Considerations to Understand the Sensory Function of TRP Channels. Current Pharmaceutical Biotechnology, 2011, 12, 3-11.	0.9	13
125	The Role of Transient Receptor Potential Channel in Pain. Hanyang Medical Reviews, 2011, 31, 116.	0.4	2
126	A Basic Knowledge of Sweetness. Journal of the Brewing Society of Japan, 2011, 106, 818-825.	0.1	5
127	Why liquid energy results in overconsumption. Proceedings of the Nutrition Society, 2011, 70, 162-170.	0.4	77
128	Synergistic Effects of Sour Taste and Low Temperature in Suppressing the Bitterness of Aminoleban EN. Chemical and Pharmaceutical Bulletin, 2011, 59, 536-540.	0.6	16
129	Transient Receptor Potential Channel M4 and M5 in Magnocellular Cells in Rat Supraoptic and Paraventricular Nuclei. Journal of Neuroendocrinology, 2011, 23, 1204-1213.	1.2	32
130	TRP channels in neurogastroenterology: opportunities for therapeutic intervention. British Journal of Pharmacology, 2011, 162, 18-37.	2.7	77
131	USING NATURALLY BREWED SOY SAUCE TO REDUCE SALT IN SELECTED FOODS. Journal of Sensory Studies, 2011, 26, 429-435.	0.8	24
132	The biophysical and molecular basis of TRPV1 proton gating. EMBO Journal, 2011, 30, 994-1002.	3.5	93
133	Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. Metabolism: Clinical and Experimental, 2011, 60, 1325-1333.	1.5	47
134	Gustatory and extragustatory functions of mammalian taste receptors. Physiology and Behavior, 2011, 105, 4-13.	1.0	194

	CITATION I	Report	
#	Article	IF	CITATIONS
135	TRPM Channels in the Vasculature. Advances in Experimental Medicine and Biology, 2011, 704, 707-729.	0.8	40
136	Identification of TRPM5 Ion Channels in Type-II Taste Cells of Mice. Neurophysiology, 2011, 43, 173-181.	0.2	1
137	Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1. Pflugers Archiv European Journal of Physiology, 2011, 461, 507-513.	1.3	22
138	Prospective, Randomized, Pilot Study Evaluating the Effect of Ice Chips Administration versus None on the Bitterness of Crushed Medications in Postoperative Bariatric Patients. Bariatric Nursing and Surgical Patient Care, 2011, 6, 15-20.	0.1	3
139	Temperature Regulation and Elite Young Athletes. Medicine and Sport Science, 2011, 56, 126-149.	1.4	21
140	Strain differences in the neural, behavioral, and molecular correlates of sweet and salty taste in naive, ethanol- and sucrose-exposed P and NP rats. Journal of Neurophysiology, 2011, 106, 2606-2621.	0.9	24
141	TRPM5 is critical for linoleic acid-induced CCK secretion from the enteroendocrine cell line, STC-1. American Journal of Physiology - Cell Physiology, 2012, 302, C210-C219.	2.1	56
142	Taste/IP. , 2012, , .		31
143	Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature, 2012, 481, 76-80.	13.7	194
144	Sensory science: Partners in flavour. Nature, 2012, 486, S4-S5.	13.7	16
145	Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli. Journal of Neurophysiology, 2012, 108, 3221-3232.	0.9	11
146	Changes in the Sensory Characteristics of Mango Cultivars during the Production of Mango Purée and Sorbet. Journal of Food Science, 2012, 77, S348-55.	1.5	17
147	Nutritional Translation Blended With Food Science: 21st Century Applications. Advances in Nutrition, 2012, 3, 813-819.	2.9	7
148	<scp>TRP</scp> Channels. , 2012, 2, 563-608.		134
149	Comparison of sensory, physiological, personality, and cultural attributes in regular spicy food users and non-users. Appetite, 2012, 58, 19-27.	1.8	73
150	Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1123-1134.	1.4	34
151	Calcium Signaling at the Bloodâ \in "Brain Barrier in Stroke. , 2012, , 129-163.		2
152	6.4 Biophysics of TRP Channels. , 2012, , 68-107.		2

ARTICLE IF CITATIONS # The Ca2+-Activated Monovalent Cation-Selective Channels TRPM4 and TRPM5. Methods in 153 0.1 2 Pharmacology and Toxicology, 2012, , 103-125. TRPs to Cardiovascular Disease. Methods in Pharmacology and Toxicology, 2012, , 3-40. 154 0.1 TRPM4 channels in the cardiovascular system: Physiology, pathophysiology, and pharmacology. 156 2.0 87 Biochemical Pharmacology, 2012, 84, 873-881. Flavor is in the brain. Physiology and Behavior, 2012, 107, 540-552. 239 Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. 158 1.0 28 Physiology and Behavior, 2012, 107, 533-539. Influence of Stimulus Temperature on Orosensory Perception and Variation with Taste Phenotype. Chemosensory Perception, 2012, 5, 243-265. 160 Quantifying and Modeling the Temperature-Dependent Gating of TRP Channels., 2012, 162, 91-119. 50 Mutagenesis and Temperature-Sensitive Little Machines., 0,,. Orosensory and Homeostatic Functions of the Insular Taste Cortex. Chemosensory Perception, 2012, 5, 162 0.7 54 64-79. The thermoâ€TRP ion channel family: properties and therapeutic implications. British Journal of 2.7 Pharmacology, 2012, 165, 787-801. Electrical excitability of taste cells. Mechanisms and possible physiological significance. Biochemistry 164 4 0.3 (Moscow) Supplement Series A: Membrane and Cell Biology, 2012, 6, 169-185. Down-Regulation of TRPM5s During the Development of the Rat Neocortex and Hippocampus. Neurophysiology, 2013, 45, 112-119. Lipid Ion Channels and the Role of Proteins. Accounts of Chemical Research, 2013, 46, 2966-2976. 166 7.6 52 Modifying Bitterness in Functional Food Systems. Critical Reviews in Food Science and Nutrition, 2013, 5.4 53, 464-481. Spices: The Savory and Beneficial Science of Pungency. Reviews of Physiology, Biochemistry and 168 0.9 125 Pharmacology, 2013, 164, 1-76. Simulating the sensation of taste for immersive experiences., 2013,,. The Role of Allosteric Coupling on Thermal Activation of Thermo-TRP Channels. Biophysical Journal, 170 0.2 67 2013, 104, 2160-2169. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste. Clinical Therapeutics, 2013, 35, 171 1.1 196 1225-1246.

#	Article	IF	CITATIONS
172	Temperature of served water can modulate sensory perception and acceptance of food. Food Quality and Preference, 2013, 28, 449-455.	2.3	13
173	Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Developmental Dynamics, 2013, 242, 1236-1249.	0.8	36
174	Modulation of sweet responses of taste receptor cells. Seminars in Cell and Developmental Biology, 2013, 24, 226-231.	2.3	43
175	A matter of taste. Acta Physiologica, 2013, 207, 203-205.	1.8	0
176	Angiotensin II Modulates Salty and Sweet Taste Sensitivities. Journal of Neuroscience, 2013, 33, 6267-6277.	1.7	77
177	Molecular Mechanism of TRP Channels. , 2013, 3, 221-242.		284
178	Residues in the pore region of <i>Drosophila</i> transient receptor potential A1 dictate sensitivity to thermal stimuli. Journal of Physiology, 2013, 591, 185-201.	1.3	51
179	<i>N</i> -geranyl cyclopropyl-carboximide modulates salty and umami taste in humans and animal models. Journal of Neurophysiology, 2013, 109, 1078-1090.	0.9	18
180	Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. American Journal of Physiology - Cell Physiology, 2013, 304, C467-C477.	2.1	31
181	Chemosensory TRP Channels in the Respiratory Tract: Role in Toxic Lung Injury and Potential as "Sweet Spots―for Targeted Therapies. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 165, 31-65.	0.9	26
182	TRPM5-dependent amiloride- and benzamil-insensitive NaCl chorda tympani taste nerve response. American Journal of Physiology - Renal Physiology, 2013, 305, G106-G117.	1.6	14
183	Gustatory Receptor Neurons in Manduca sexta Contain a TrpA1-Dependent Signaling Pathway that Integrates Taste and Temperature. Chemical Senses, 2013, 38, 605-617.	1.1	17
184	Regulation of Cerebral Artery Smooth Muscle Membrane Potential by Ca ²⁺ â€Activated Cation Channels. Microcirculation, 2013, 20, 337-347.	1.0	17
185	Extracellular Zinc Ion Regulates Transient Receptor Potential Melastatin 5 (TRPM5) Channel Activation through Its Interaction with a Pore Loop Domain. Journal of Biological Chemistry, 2013, 288, 25950-25955.	1.6	20
186	Modulation of central gustatory coding by temperature. Journal of Neurophysiology, 2013, 110, 1117-1129.	0.9	31
187	Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons. Frontiers in Behavioral Neuroscience, 2013, 7, 193.	1.0	20
188	TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. ELife, 2013, 2, e00658.	2.8	49
189	Sensory coding of olfaction and taste. , 0, , 49-65.		1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
190	TRP Channels and Thermosensation. Handbook of Experimental Pharmacology, 2014, 2	23, 729-741.	0.9	40
191	TRPM5. Handbook of Experimental Pharmacology, 2014, 222, 489-502.		0.9	26
192	Physiological temperatures drive glutamate release onto trigeminal superficial dorsal ho Journal of Neurophysiology, 2014, 111, 2222-2231.	orn neurons.	0.9	12
193	TRPs and Pain. Handbook of Experimental Pharmacology, 2014, 223, 873-897.		0.9	20
194	Gating modulation by heat of the polycystin transient receptor potential channel PKD2 Pflugers Archiv European Journal of Physiology, 2014, 466, 1933-1940.	_1 (TRPP3).	1.3	14
195	TAS2R38 Single Nucleotide Polymorphisms Are Associated with PROP—but Not Thern Pilot Study. Chemosensory Perception, 2014, 7, 23-30.	nal—Tasting: a	0.7	16
196	Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in t olfactory epithelium. BMC Neuroscience, 2014, 15, 13.	he mouse main	0.8	67
197	Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experime Pharmacology, 2014, , .	ental	0.9	24
198	Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 ar Type 3. Chemical Senses, 2014, 39, 295-311.	Id IP3 Receptor	1.1	29
199	Gating of Thermally Activated Channels. Current Topics in Membranes, 2014, 74, 51-87		0.5	35
200	Thermally Activated TRPV3 Channels. Current Topics in Membranes, 2014, 74, 325-364		0.5	45
201	Lipid Modulation of Thermal Transient Receptor Potential Channels. Current Topics in N 2014, 74, 135-180.	1embranes,	0.5	11
202	The "Sweet―Side of Ion Channels. Reviews of Physiology, Biochemistry and Pharm 67-114.	acology, 2014, 167,	0.9	23
204	Temperature systematically modifies neural activity for sweet taste. Journal of Neuroph 112, 1667-1677.	ysiology, 2014,	0.9	17
205	Peripheral thermosensation in mammals. Nature Reviews Neuroscience, 2014, 15, 573-	589.	4.9	304
206	TRPs in Taste and Chemesthesis. Handbook of Experimental Pharmacology, 2014, 223,	827-871.	0.9	107
207	Calcium-Permeable Ion Channels in Pain Signaling. Physiological Reviews, 2014, 94, 81-	140.	13.1	249
208	Phenotypic variation in oronasal perception and the relative effects of PROP and Therm Status. Food Quality and Preference, 2014, 38, 83-91.	al Taster	2.3	31

# 209	ARTICLE Acid Sensing Ion Channels. , 2015, , 403-414.	IF	Citations
210	Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice. Journal of Physiology, 2015, 593, 2527-2545.	1.3	37
211	Initial basic concept of thermal sweet taste interface. , 2015, , .		3
212	Modulation of Taste Responsiveness by Angiotensin II. Food Science and Technology Research, 2015, 21, 757-764.	0.3	2
213	Oral Sensing of Food Properties. Journal of Texture Studies, 2015, 46, 138-151.	1.1	40
214	Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons. Journal of Neurophysiology, 2015, 113, 2700-2712.	0.9	17
215	Taste Bud Leptin: Sweet Dampened at Initiation Site. Chemical Senses, 2015, 40, 213-215.	1.1	4
216	Temperature Affects Human Sweet Taste via At Least Two Mechanisms. Chemical Senses, 2015, 40, 391-399.	1.1	34
217	Relationship of 6-n-Propylthiouracil Taste Intensity and Chili Pepper Use with Body Mass Index, Energy Intake, and Fat Intake within an Ethnically Diverse Population. Journal of the Academy of Nutrition and Dietetics, 2015, 115, 389-396.	0.4	24
218	Thermodynamic implications of high <i>Q</i> ₁₀ of thermoTRP channels in living cells. Biophysics (Nagoya-shi, Japan), 2015, 11, 33-38.	0.4	35
219	Functional diversity and evolutionary dynamics of thermoTRP channels. Cell Calcium, 2015, 57, 214-221.	1.1	65
220	Molecular evidence for the loss of three basic tastes in penguins. Current Biology, 2015, 25, R141-R142.	1.8	51
221	The endocrinology of taste receptors. Nature Reviews Endocrinology, 2015, 11, 213-227.	4.3	101
222	TRPM3 in temperature sensing and beyond. Temperature, 2015, 2, 201-213.	1.7	58
223	Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8. Temperature, 2015, 2, 188-200.	1.7	15
224	TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature, 2015, 2, 178-187.	1.7	102
225	Angiotensin II and taste sensitivity. Japanese Dental Science Review, 2015, 51, 51-58.	2.0	3
226	Perceptual and Neural Responses to Sweet Taste in Humans and Rodents. Chemosensory Perception, 2015, 8, 46-52.	0.7	21

#	Article	IF	CITATIONS
227	TRP Channels in the Sensation of Heat. , 2015, , 165-183.		1
228	Controversies in fat perception. Physiology and Behavior, 2015, 152, 479-493.	1.0	40
229	Separate functions for responses to oral temperature in thermo-gustatory and trigeminal neurons. Chemical Senses, 2016, 41, 457-471.	1.1	15
230	Thermal Stimulations Change Perception and Taste Thresholds. Dentistry (Sunnyvale, Calif), 2016, 6, .	0.1	1
231	Effect of Temperature on the Intensity of Basic Tastes: Sweet, Salty and Sour. Journal of Food Research, 2016, 5, 1.	0.1	16
232	Temperature Deactivation of the Depolarizing TRP Current as a Mechanism of Hypothermia-Related Inhibition of Neuronal Activity: a Model Study. Neurophysiology, 2016, 48, 324-331.	0.2	1
233	Thermal Tasting and Difference Thresholds for Prototypical Tastes in Wine. Chemosensory Perception, 2016, 9, 37-46.	0.7	17
234	Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying. International Review of Cell and Molecular Biology, 2016, 323, 71-106.	1.6	20
235	Calcium Entry Through Thermosensory Channels. Advances in Experimental Medicine and Biology, 2016, 898, 265-304.	0.8	1
236	Temperature Influences Chorda Tympani Nerve Responses to Sweet, Salty, Sour, Umami, and Bitter Stimuli in Mice. Chemical Senses, 2016, 41, 727-736.	1.1	13
237	Thermal Sweet Taste Machine for Multisensory Internet. , 2016, , .		9
238	Virtual Sweet. , 2016, , .		12
239	Variation in orosensation and liking of sampled foods with thermal tasting phenotype. Flavour, 2016, 5, .	2.3	5
240	Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annual Review of Biophysics, 2016, 45, 371-398.	4.5	51
241	Does Liking and Orosensation Intensity Elicited by Sampled Foods Vary with Thermal Tasting?. Chemosensory Perception, 2016, 9, 47-55.	0.7	11
242	The Effect of Temperature on Umami Taste. Chemical Senses, 2016, 41, 537-545.	1.1	15
243	Potential effects of pleasant and cold stimuli on nausea and vomiting induced by disgusting tastes. Journal of Neuroscience Research, 2016, 94, 366-377.	1.3	3
244	Taste information derived from T1R-expressing taste cells in mice. Biochemical Journal, 2016, 473, 525-536.	1.7	27

	СІТАТ	CITATION REPORT	
#	Article	IF	CITATIONS
245	Trpm5 expression in the olfactory epithelium. Molecular and Cellular Neurosciences, 2017, 80, 75-88.	1.0	17
246	Requirement of extracellular Ca ²⁺ binding to specific amino acids for heatâ€evoked activation of TRPA1. Journal of Physiology, 2017, 595, 2451-2463.	1.3	11
247	Taste Sensing Systems Influencing Metabolic Consequences. Current Oral Health Reports, 2017, 4, 79-86.	0.5	3
248	Gene expression changes of thermoâ€sensitive transient receptor potential channels in obese mice. Cell Biology International, 2017, 41, 908-913.	1.4	20
249	Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications, 2017, 8, 14733.	5.8	136
250	Do non-nutritive sweeteners influence acute glucose homeostasis in humans? A systematic review. Physiology and Behavior, 2017, 182, 17-26.	1.0	51
251	Modulation of taste processing by temperature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R305-R321.	0.9	36
252	Taste receptors in the gut – A new target for health promoting properties in diet. Food Research International, 2017, 100, 1-8.	2.9	29
253	Functional effects of cold stimulation on taste perception in humans. Odontology / the Society of the Nippon Dental University, 2017, 105, 275-282.	0.9	11
254	Actions and Regulation of Ionotropic Cannabinoid Receptors. Advances in Pharmacology, 2017, 80, 249-289.	1.2	63
255	Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-30.	0.5	20
256	Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing. Scientific Reports, 2017, 7, 9760.	1.6	7
257	Stimulus-Dependent Effects of Temperature on Bitter Taste in Humans. Chemical Senses, 2017, 42, 153-160.	1.1	20
258	TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Archiv European Journal of Physiology, 2018, 470, 745-759.	1.3	48
259	New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 1496-1505.	2.9	29
260	Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds. British Journal of Pharmacology, 2018, 175, 1039-1053.	2.7	18
261	Polymorphism of Human Thermoreceptor Genes TRPV1 and TRPA1 in Populations of the Altai-Sayan Region and the Far East. Russian Journal of Genetics, 2018, 54, 235-243.	0.2	0
262	TRPM2 and warmth sensation. Pflugers Archiv European Journal of Physiology, 2018, 470, 787-798.	1.3	26

#	Article	IF	CITATIONS
263	Variation in thermally induced taste response across thermal tasters. Physiology and Behavior, 2018, 188, 67-78.	1.0	12
264	TRPM5 in the battle against diabetes and obesity. Acta Physiologica, 2018, 222, e12949.	1.8	38
265	Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews, 2018, 47, 1592-1637.	18.7	28
266	Expression levels of tasteâ€related genes in palate and tongue tip, and involvement of transient receptor potential subfamily M member 5 (<scp>TRPM</scp> 5) in taste sense in chickens. Animal Science Journal, 2018, 89, 441-447.	0.6	12
267	Thermally activated TRP channels: molecular sensors for temperature detection. Physical Biology, 2018, 15, 021001.	0.8	80
268	New Food Products for Sensory ompromised Situations. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1625-1639.	5.9	7
269	The thermoregulation system and how it works. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 156, 3-43.	1.0	91
270	Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology. Toxins, 2018, 10, 15.	1.5	27
271	Computational modeling of the effect of temperature variations on human pancreatic β-cell activity. Journal of Thermal Biology, 2018, 75, 69-80.	1.1	2
272	Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells, 2018, 7, 62.	1.8	35
273	Role of Thermo-Sensitive Transient Receptor Potential Channels in Brown Adipose Tissue. Biological and Pharmaceutical Bulletin, 2018, 41, 1135-1144.	0.6	30
274	Ca2+ Regulation of TRP Ion Channels. International Journal of Molecular Sciences, 2018, 19, 1256.	1.8	63
275	TRP Channels as Sensors of Bacterial Endotoxins. Toxins, 2018, 10, 326.	1.5	45
276	The role of the transient receptor potential melastatin5 (TRPM5) channels in the pancreatic β-cell electrical activity: A computational modeling study. Computational Biology and Chemistry, 2018, 76, 101-108.	1.1	4
277	Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients, 2019, 11, 2251.	1.7	50
278	The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses. PLoS ONE, 2019, 14, e0222401.	1.1	2
279	The orotrigeminal system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 205-216.	1.0	15
280	The oncogenic roles of TRPM ion channels in cancer. Journal of Cellular Physiology, 2019, 234, 14556-14573.	2.0	18

#	Article	IF	Citations
281	Probing the coding logic of thermosensation using spinal cord calcium imaging. Experimental Neurology, 2019, 318, 42-49.	2.0	6
282	Ion Channels and Thermosensitivity: TRP, TREK, or Both?. International Journal of Molecular Sciences, 2019, 20, 2371.	1.8	62
283	Flavor Enhancement Techniques. , 2019, , 207-247.		1
284	Examination and Validation of Classification Schema for Determining Thermal Taste Status. Chemosensory Perception, 2019, 12, 69-89.	0.7	8
285	Transient receptor potential vanilloid 4 mediates sour taste sensing via type III taste cell differentiation. Scientific Reports, 2019, 9, 6686.	1.6	17
286	Patch-Clamp Combined with Fast Temperature Jumps to Study Thermal TRP Channels. Methods in Molecular Biology, 2019, 1987, 125-141.	0.4	3
287	What is new about mild temperature sensing? A review of recent findings. Temperature, 2019, 6, 132-141.	1.7	27
288	Mechanism for Regulation of Melanoma Cell Death via Activation of Thermo-TRPV4 and TRPV2. Journal of Oncology, 2019, 2019, 1-14.	0.6	28
289	Functional food development: Insights from TRP channels. Journal of Functional Foods, 2019, 56, 384-394.	1.6	12
290	The taste system in fishes and the effects of environmental variables. Journal of Fish Biology, 2019, 95, 155-178.	0.7	49
291	Chemosensory Function during Neurologically Healthy Aging. , 2019, , 68-94.		1
292	Selective Effects of Temperature on the Sensory Irritation but not Taste of NaCl and Citric Acid. Chemical Senses, 2019, 44, 61-68.	1.1	2
293	Tuft Cells—Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annual Review of Immunology, 2019, 37, 47-72.	9.5	109
294	Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca2+-induced mucin secretion from goblet cells. Journal of Biological Chemistry, 2019, 294, 816-826.	1.6	33
295	The role of taste in alcohol preference, consumption and risk behavior. Critical Reviews in Food Science and Nutrition, 2019, 59, 676-692.	5.4	26
296	Variation in Orosensory Responsiveness to Alcoholic Beverages and Their Constituents—the Role of the Thermal Taste Phenotype. Chemosensory Perception, 2020, 13, 45-58.	0.7	6
297	Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiological Reviews, 2020, 100, 725-803.	13.1	236
298	Intraâ€oral trigeminalâ€mediated sensations influencing taste perception: A systematic review. Journal of Oral Rehabilitation, 2020, 47, 258-269.	1.3	22

	CIT	CITATION REPORT	
#	Article	IF	Citations
299	A structural overview of the ion channels of the TRPM family. Cell Calcium, 2020, 85, 102111.	1.1	126
300	Thermal Taster Subgroups and Orosensory Responsiveness Dataset. Data in Brief, 2020, 33, 106325.	0.5	1
301	An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Archiv European Journal of Physiology, 2020, 472, 1667-1691.	1.3	6
302	Temperature Is Sufficient to Condition a Flavor Preference for a Cold-Paired Solution in Rats. Chemical Senses, 2020, 45, 563-572.	1.1	5
303	Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells. European Journal of Pharmacology, 2020, 872, 172956.	1.7	5
304	TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 782.	1.4	46
305	Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. International Journal of Molecular Sciences, 2020, 21, 5929.	1.8	35
306	Homogeneity of thermal tasters and implications for mechanisms and classification. Physiology and Behavior, 2020, 227, 113160.	1.0	4
307	TRPM Channels in Human Diseases. Cells, 2020, 9, 2604.	1.8	36
308	Temperatureâ€sensitive transient receptor potential vanilloid channels: structural insights into ligandâ€dependent activation. British Journal of Pharmacology, 2022, 179, 3542-3559.	2.7	6
309	Temperature and Sweet Taste Integration in Drosophila. Current Biology, 2020, 30, 2051-2067.e5.	1.8	23
310	Factors influencing the choice of beer: A review. Food Research International, 2020, 137, 109367.	2.9	66
311	TRP Channels, Conformational Flexibility, and the Lipid Membrane. Journal of Membrane Biology, 2020, 253, 299-308.	' 1.0	6
312	Sweet Thermal Taste: Perceptual Characteristics in Water and Dependence on TAS1R2/TAS1R3. Chemi Senses, 2020, 45, 219-230.	cal 1.1	5
313	Make It Hot? How Food Temperature (Mis)Guides Product Judgments. Journal of Consumer Research, 2020, 47, 523-543.	3.5	30
314	Transgene-free remote magnetothermal regulation of adrenal hormones. Science Advances, 2020, 6, eaaz3734.	4.7	52
315	Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. Annual Review of Physiology, 2021, 83, 205-230.	5.6	47
316	Thermosensitivity of the voltage-dependent activation of calcium homeostasis modulator 1 (calhm1) ion channel. Biochemical and Biophysical Research Communications, 2021, 534, 590-596.	1.0	4

		Citation Report		
#	Article		IF	CITATIONS
317	Thermosensation involving thermo-TRPs. Molecular and Cellular Endocrinology, 2021,	520, 111089.	1.6	18
318	Thermal taster status: Temperature modulation of cortical response to sweetness perc Physiology and Behavior, 2021, 230, 113266.	eption.	1.0	3
319	TRPM3 in Brain (Patho)Physiology. Frontiers in Cell and Developmental Biology, 2021,	9, 635659.	1.8	21
320	Bacterial cyclic diguanylate signaling networks sense temperature. Nature Communica 1986.	tions, 2021, 12,	5.8	35
321	Temperature of sugar solutions during tasting affects sweetness difference thresholds Science and Technology, 2021, 138, 110676.	. LWT - Food	2.5	2
322	From receptors to the brain: psychophysical clues to taste physiology. Current Opinior 2021, 20, 154-158.	in Physiology,	0.9	2
323	Thermosensitive TRPV4 channels mediate temperature-dependent microglia movemen the National Academy of Sciences of the United States of America, 2021, 118, .	t. Proceedings of	3.3	24
324	Acceptance of oatâ€based beverages tailored for patients with cancer. Journal of Food 2671-2683.	Science, 2021, 86,	1.5	2
325	Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Human Neuroscience, 2021, 15, 667709.	Frontiers in	1.0	22
326	TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation. Into Journal of Molecular Sciences, 2021, 22, 8502.	ernational	1.8	24
327	Cell death modulation by transient receptor potential melastatin channels TRPM2 and underlying molecular mechanisms. Biochemical Pharmacology, 2021, 190, 114664.	TRPM7 and their	2.0	12
328	Hair Follicle Chemosensation: TRPM5 Signaling Is Required for Anagen Maintenance. Jo Investigative Dermatology, 2021, 141, 2300-2303.	ournal of	0.3	6
329	Comparing a new rapid combined method (RapCoTT) with traditional approaches for p thermal taste. Physiology and Behavior, 2021, 238, 113482.	henotyping	1.0	2
330	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene Pain, 2022, 163, 1139-1157.	-targeted screen.	2.0	4
331	Involvement of pore helix in voltage-dependent inactivation of TRPM5 channel. Heliyor	ı, 2021, 7, e06102.	1.4	0
332	Mental stress and physical activity interact with the genetic risk scores of the genetic v related to sweetness preference in high sucroseâ€containing food and glucose toleran and Nutrition, 2020, 8, 3492-3503.		1.5	5
333	TRP Channels. , 2007, , 399-423.			2
334	Mechanisms of Thermosensation in TRP Channels. Springer Series in Biophysics, 2008,	, 101-120.	0.4	5

		CITATION REPORT		
#	Article		IF	CITATIONS
335	Oral and Extraoral Bitter Taste Receptors. Results and Problems in Cell Differentiation, 2	011, 52, 87-99.	0.2	82
336	Reciprocal Modulation of Sweet Taste by Leptin and Endocannabinoids. Results and Prol Differentiation, 2011, 52, 101-114.	blems in Cell	0.2	21
337	TRPM4. Handbook of Experimental Pharmacology, 2014, 222, 461-487.		0.9	56
338	Gustatory and reward brain circuits in the control of food intake. Advances and Technica in Neurosurgery, 2011, 36, 31-59.	l Standards	0.2	27
339	The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cellular ar Life Sciences, 2020, 77, 3469-3502.	d Molecular	2.4	39
340	Structural mechanisms of transient receptor potential ion channels. Journal of General P 2020, 152, .	hysiology,	0.9	59
341	The Pharmacology and Signaling of Bitter, Sweet, and Umami Taste Sensing. Molecular I Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 87-98.	nterventions:	3.4	63
342	The Ca2+-Activated TRP Channels. Frontiers in Neuroscience, 2006, , 203-211.		0.0	8
343	The Role of TRP Channels in Thermosensation. Frontiers in Neuroscience, 2006, , 271-28	6.	0.0	17
344	Dopamine Signalling in Mushroom Bodies Regulates Temperature-Preference Behaviour PLoS Genetics, 2011, 7, e1001346.	in Drosophila.	1.5	58
345	Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Resp Nicotine, Ethanol and Acetylcholine. PLoS ONE, 2015, 10, e0127936.	onses to	1.1	9
346	TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontan metastasis in mouse B16-BL6 melanoma cells. Oncotarget, 2017, 8, 78312-78326.	eous	0.8	32
347	Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pha Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	rmacology	0.2	7
348	Protein kinase C modulation of thermo-sensitive transient receptor potential channels: In for pain signaling. Journal of Natural Science, Biology and Medicine, 2011, 2, 13.	mplications	1.0	34
349	Thermodynamic and structural basis of temperature-dependent gating in TRP channels. Society Transactions, 2021, 49, 2211-2219.	Biochemical	1.6	4
350	Aging cats prefer warm food. Journal of Veterinary Behavior: Clinical Applications and Re 47, 86-92.	search, 2022,	0.5	11
351	Signal Molecules and Calcium. , 2009, , 489-508.			0
354	TRP Channels in Transduction for Responses to Odorants and Pheromones. , 2015, , 111	-125.		1

#	Article	IF	Citations
355	Biophysical and Molecular Features of Thermosensitive TRP Channels Involved in Sensory Transduction. , 2015, , 1-39.		4
356	TRP Channels as Targets for Modulation of Taste Transduction. , 2015, , 127-140.		2
357	Thermal Taste Interface. Human-computer Interaction Series, 2018, , 69-92.	0.4	1
358	Sweet and Umami Taste. , 2020, , 211-230.		0
360	Unexpected expression of heat-activated transient receptor potential (TRP) channels in winter torpid bats and cold-activated TRP channels in summer active bats. Zoological Research, 2022, 43, 52-63.	0.9	3
361	Cortical Hub for Flavor Sensation in Rodents. Frontiers in Systems Neuroscience, 2021, 15, 772286.	1.2	11
362	Trpm5 channels encode bistability of spinal motoneurons and ensure motor control of hindlimbs in mice. Nature Communications, 2021, 12, 6815.	5.8	8
363	Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals, 2022, 12, 106.	1.0	25
364	Characterization of bitter taste theacrine in Pu-erh tea. Journal of Food Composition and Analysis, 2022, 106, 104331.	1.9	5
365	Chicken taste receptors and perception: recent advances in our understanding of poultry nutrient-sensing systems. World's Poultry Science Journal, 2022, 78, 5-20.	1.4	1
367	Sensation of dietary nutrients by gut taste receptors and its mechanisms. Critical Reviews in Food Science and Nutrition, 2023, 63, 5594-5607.	5.4	4
368	Evolution of Transient Receptor Potential (TRP) Ion Channels in Antarctic Fishes (Cryonotothenioidea) and Identification of Putative Thermosensors. Genome Biology and Evolution, 2022, 14, .	1.1	8
369	Selection of both habitat and genes in specialized and endangered caribou. Conservation Biology, 2022, 36, .	2.4	1
370	Distribution and Assembly of TRP Ion Channels. Advances in Experimental Medicine and Biology, 2021, 1349, 111-138.	0.8	6
371	Coassembly of Warm Temperature–Sensitive Transient Receptor Potential Vanilloid (TRPV) 3 and TRPV4 Channel Complexes with Distinct Functional Properties. Molecular Pharmacology, 2022, 101, 390-399.	1.0	1
372	Preparation and application of taste bud organoids in biomedicine towards chemical sensation mechanisms. Biotechnology and Bioengineering, 2022, 119, 2015-2030.	1.7	2
373	Single Cell RNA Sequencing Reveals Deep Homology of Dental Cell Types Across Vertebrates. Frontiers in Dental Medicine, 2022, 3, .	0.5	0
374	Differential effects of <scp>TRPM4</scp> channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4â€chloroâ€2â€{2â€{2â€{2â€chloroâ€phenoxy)â€acetylamino]â€benzoic	: adid () Tj	ETQq1 1 0.7

	CITATION	ation Report		
#	Article	IF	Citations	
375	Physicochemical, antioxidant and sensory properties of Mango Sorbet containing L-theanine as a potential functional food product. Journal of Food Science and Technology, 2022, 59, 4833-4843.	1.4	2	
376	High-sucrose diet exposure is associated with selective and reversible alterations in the rat peripheral taste system. Current Biology, 2022, 32, 4103-4113.e4.	1.8	12	
377	<i>TRPM4</i> gene variation associated with climatic conditions in Chinese cattle. Animal Biotechnology, 0, , 1-5.	0.7	0	
378	Chemotherapy-induced Dysgeusia. Japanese Journal of Oral Diagnosis / Oral Medicine, 2022, 35, 173-182.	0.0	0	
379	Regulation of transient receptor potential channels by traditional Chinese medicines and their active ingredients. Frontiers in Pharmacology, 0, 13, .	1.6	0	
380	Role of feeding specialization in taste receptor loss: insights from sweet and umami receptor evolution in Carnivora. Chemical Senses, 2022, 47, .	1.1	0	
381	Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6	
382	On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Frontiers in Oncology, 0, 12, .	1.3	5	
384	Vitamin C Deficiency in Osteogenic Disorder Shionogi/Shi Jcl- <i>od</i> / <i>od</i> Rats: Effects on Sour Taste Preferences, Lick Rates, Chorda Tympani Nerve Responses, and Taste Transduction Elements. Chemical Senses, 0, , .	1.1	0	
385	The role of endothelial TRP channels in age-related vascular cognitive impairment and dementia. Frontiers in Aging Neuroscience, 0, 15, .	1.7	4	
387	Genomics of adaptive evolution in the woolly mammoth. Current Biology, 2023, 33, 1753-1764.e4.	1.8	9	
396	TRPM channels in health and disease. Nature Reviews Nephrology, 2024, 20, 175-187.	4.1	2	
401	TRP Channels in Stroke. Neuroscience Bulletin, 0, , .	1.5	0	