Determinants of woody cover in African savannas

Nature 438, 846-849 DOI: 10.1038/nature04070

Citation Report

#	Article	IF	CITATIONS
2	Experimental study on the self-mode-locked Ti:sapphire laser. Acta Physica Sinica (overseas Edition), 1996, 5, 39-45.	0.1	1
3	A dual first-postulate basis for special relativity. European Journal of Physics, 2003, 24, 493-493.	0.3	5
4	On the ecohydrology of structurally heterogeneous semiarid landscapes. Water Resources Research, 2006, 42, .	1.7	64
5	Unravelling the effects of soil properties on water infiltration: segmented quantile regression on a large data set from arid south-west Africa. Soil Research, 2006, 44, 783.	0.6	58
6	Good, bad or 'necessary evil'? Reinterpreting the colonial burning experiments in the savanna landscapes of West Africa. Geographical Journal, 2006, 172, 271-290.	1.6	132
7	Tree growth in an African woodland savanna affected by disturbance. Journal of Vegetation Science, 2006, 17, 369-378.	1.1	31
8	Self-organized vegetation patterning as a fingerprint of climate and human impact on ssemi-arid ecosystems. Journal of Ecology, 2006, 94, 537-547.	1.9	191
9	Terraforming Africa. African Journal of Ecology, 2006, 44, 302-304.	0.4	2
10	The origin of the savanna biome. Global Change Biology, 2006, 12, 2023-2031.	4.2	310
11	Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America. Global Change Biology, 2006, 12, 2263-2271.	4.2	87
13	Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2257-2266.	1.2	357
14	Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia, 2006, 148, 564-572.	0.9	105
15	Evaluation of Algorithms for Reconstructing Electron Spectra from Their Bremsstrahlung Hard Xâ€Ray Spectra. Astrophysical Journal, 2006, 643, 523-531.	1.6	52
16	Fire Effects on Grasslands. , 2007, , 397-439.		26
18	Catchment loads: ecosystem impacts. , 0, , 127-139.		0
19	ELEPHANTS, FIRE, AND FROST CAN DETERMINE COMMUNITY STRUCTURE AND COMPOSITION IN KALAHARI WOODLANDS. , 2007, 17, 558-568.		93
20	SAVANNA RESPONSES TO FERAL BUFFALO IN KAKADU NATIONAL PARK, AUSTRALIA. Ecological Monographs, 2007, 77, 441-463.	2.4	75
21	POSTFIRE RESPONSE OF FLOOD-REGENERATING RIPARIAN VEGETATION IN A SEMI-ARID LANDSCAPE. Ecology, 2007, 88, 2094-2104.	1.5	25

#	Article	IF	CITATIONS
22	Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene. Quaternary Science Reviews, 2007, 26, 1818-1837.	1.4	159
23	Modelling Late Oligocene C4 grasses and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251, 239-253.	1.0	34
24	Trees improve grass quality for herbivores in African savannas. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8, 197-205.	1.1	106
25	EFFECTS OF FOUR DECADES OF FIRE MANIPULATION ON WOODY VEGETATION STRUCTURE IN SAVANNA. Ecology, 2007, 88, 1119-1125.	1.5	389
26	Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands. Acta Oecologica, 2007, 31, 86-92.	0.5	92
27	Resource apportionment and net primary production across the Orinoco savanna–woodland continuum, Venezuela. Acta Oecologica, 2007, 32, 243-253.	0.5	8
28	High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth and Planetary Science Letters, 2007, 256, 419-432.	1.8	54
29	Partitioning of Root and Shoot Competition and the Stability of Savannas. American Naturalist, 2007, 170, 587-601.	1.0	58
30	POSTFIRE STAND STRUCTURE IN A SEMIARID SAVANNA: CROSS-SCALE CHALLENGES ESTIMATING BIOMASS. , 2007, 17, 1899-1910.		30
31	Noise-induced vegetation patterns in fire-prone savannas. Journal of Geophysical Research, 2007, 112, .	3.3	30
32	Self-organization and productivity in semi-arid ecosystems: Implications of seasonality in rainfall. Journal of Theoretical Biology, 2007, 248, 490-500.	0.8	68
33	Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa. Remote Sensing of Environment, 2007, 106, 199-216.	4.6	133
34	A continental-scale analysis of tree cover in African savannas. Global Ecology and Biogeography, 2007, 16, 593-605.	2.7	192
35	Determinants of savanna vegetation structure: Insights from Colophospermum mopane. Austral Ecology, 2007, 32, 429-435.	0.7	19
36	Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology, 2007, 13, 990-1004.	4.2	192
37	Elevated atmospheric CO2: a nurse plant substitute for oak seedlings establishing in old fields. Global Change Biology, 2007, 13, 2308-2316.	4.2	20
38	The rhythm of savanna patch dynamics. Journal of Ecology, 2007, 95, 1306-1315.	1.9	54
39	Atmosphere, ecology and evolution: what drove the Miocene expansion of C ₄ grasslands?. Journal of Ecology, 2008, 96, 35-45.	1.9	169

#	Article	IF	CITATIONS
40	Short-term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation. Journal of Animal Ecology, 2007, 76, 1116-1127.	1.3	32
41	Land use affects rodent communities in Kalahari savannah rangelands. African Journal of Ecology, 2007, 45, 189-195.	0.4	78
42	Rainfall or price variability: what determines rangeland management decisions? A simulationâ€optimization approach to South African savannas. Agricultural Economics (United) Tj ETQq0 0 0 rgB	T (Qov erloo	:k 110 Tf 50 65
43	Responses of mammalian carnivores to land use in arid savanna rangelands. Basic and Applied Ecology, 2007, 8, 552-564.	1.2	43
44	Temporal Environmental Variability Drives the Evolution of Cooperative Breeding in Birds. Current Biology, 2007, 17, 1414-1419.	1.8	217
45	SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches. Ecological Modelling, 2007, 209, 377-391.	1.2	31
46	Orbital forcing and the spread of C4 grasses in the late Neogene: stable isotope evidence from South African speleothems. Journal of Human Evolution, 2007, 53, 620-634.	1.3	67
47	Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecological Research, 2007, 22, 228-236.	0.7	33
48	Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna. Oecologia, 2007, 153, 417-430.	0.9	48
49	An Anthropogenic Escape Route from the "Gulliver Syndrome―in the West African Savanna. Human Ecology, 2008, 36, 789-805.	0.7	20
50	Effects of Herbivory, Fire and N2-fixation on Nutrient Limitation in a Humid African Savanna. Ecosystems, 2008, 11, 991-1004.	1.6	80
51	Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance. Oecologia, 2008, 157, 141-151.	0.9	75
52	Plant compositional change over time increases with rainfall in Serengeti grasslands. Oikos, 2008, 117, 675-682.	1.2	29
53	Fire: plant functional types and patch mosaic burning in fire-prone ecosystems. Progress in Physical Geography, 2008, 32, 421-437.	1.4	22
54	Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiology, 2008, 28, 451-468.	1.4	132
55	The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany. Journal of Vegetation Science, 2008, 19, 757-768.	1.1	26
56	Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management ¹ . Agricultural Economics (United Kingdom), 2008, 38, 151-165.	2.0	143
57	Herbivores as architects of savannas: inducing and modifying spatial vegetation patterning. Oikos, 2008, 117, 543-554.	1.2	53

#	Article	IF	CITATIONS
58	Microbial contributions to climate change through carbon cycle feedbacks. ISME Journal, 2008, 2, 805-814.	4.4	888
59	Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecology and Biogeography, 2008, 17, 236-245.	2.7	444
60	Seasonal differences in spatial distribution of small carnivores in fragmented savannah landscapes. African Journal of Ecology, 2008, 46, 702-705.	0.4	2
61	Expansion of gallery forests into central Brazilian savannas. Global Change Biology, 2008, 14, 2108-2118.	4.2	125
62	Do feral buffalo (<i>Bubalus bubalis</i>) explain the increase of woody cover in savannas of Kakadu National Park, Australia?. Journal of Biogeography, 2008, 35, 1976-1988.	1.4	30
63	A Metaâ€Analysis of the Impact of African Elephants on Savanna Vegetation. Journal of Wildlife Management, 2008, 72, 892-899.	0.7	131
64	Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. Soil Biology and Biochemistry, 2008, 40, 1575-1582.	4.2	60
65	Do Fires in Savannas Consume Woody Biomass? A Comment on Approaches to Modeling Savanna Dynamics. American Naturalist, 2008, 171, 851-856.	1.0	76
66	The use of pre-dawn leaf water potential and MODIS LAI to explore seasonal trends in the phenology of Australian and southern African woodlands and savannas. Australian Journal of Botany, 2008, 56, 557.	0.3	11
67	Longâ€ŧerm sunspot forcing of savanna structure inferred from carbon and oxygen isotopes. Geophysical Research Letters, 2008, 35, .	1.5	5
68	PRIMARY PRODUCTION AND RAIN USE EFFICIENCY ACROSS A PRECIPITATION GRADIENT ON THE MONGOLIA PLATEAU. Ecology, 2008, 89, 2140-2153.	1.5	593
69	What Limits Trees in C ₄ Grasslands and Savannas?. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 641-659.	3.8	780
70	Object-Based Image Analysis. Lecture Notes in Geoinformation and Cartography, 2008, , .	0.5	183
71	Importance of woody vegetation for foraging site selection in the Southern Pied Babbler (Turdoides) Tj ETQq1 1	0.784314 1.2	rgBT /Overlo
72	Tree (Prosopis glandulosa) effects on grass growth: An experimental assessment of above- and belowground interactions in a temperate savanna. Journal of Arid Environments, 2008, 72, 314-325.	1.2	31
73	Richness and distribution of useful woody plants in the semi-arid region of northeastern Brazil. Journal of Arid Environments, 2008, 72, 652-663.	1.2	28
74	Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa's arid savannas?. Journal of Arid Environments, 2008, 72, 2017-2025.	1.2	80
75	Spacing patterns of an Acacia tree in the Kalahari over a 61-year period: How clumped becomes regular and vice versa. Acta Oecologica, 2008, 33, 355-364.	0.5	35

	CITATION RE	PORT	
# 76	ARTICLE Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities. Agricultural and Forest Meteorology, 2008, 148, 1005-1020.	IF 1.9	Citations 67
77	Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology and Evolution, 2008, 23, 211-219.	4.2	308
78	Multi-proxy evidence for competition between savanna woody species. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 63-72.	1.1	46
79	Patch and species specific responses of savanna woody vegetation to browser exclusion. Biological Conservation, 2008, 141, 489-498.	1.9	72
80	Possible impacts of 21st century climate on vegetation in Central and West Africa. Global and Planetary Change, 2008, 64, 3-15.	1.6	36
81	Interannual memory effects for spring NDVI in semiâ€∎rid South Africa. Geophysical Research Letters, 2008, 35, .	1.5	24
82	Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years. Science, 2008, 320, 765-768.	6.0	553
83	Plant community diversity and composition provide little resistance to <i>Juniperus</i> encroachment. Botany, 2008, 86, 1416-1426.	0.5	15
84	Short- and Long-Term Vegetation Change Related to Grazing Systems, Precipitation, and Mesquite Cover. Rangeland Ecology and Management, 2008, 61, 368-379.	1.1	25
85	Response to Comment on "Why Large-Scale Afforestation Efforts in China Have Failed to Solve the Desertification Problem― Environmental Science & Technology, 2008, 42, 8166-8166.	4.6	12
86	Water location, piospheres and a review of evolution in African ruminants. African Journal of Range and Forage Science, 2008, 25, 79-92.	0.6	4
87	Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic. Journal of Experimental Botany, 2008, 59, 3941-3952.	2.4	28
88	SAVANNA TREE DENSITY, HERBIVORES, AND THE HERBACEOUS COMMUNITY: BOTTOM-UP VS. TOP-DOWN EFFECTS. Ecology, 2008, 89, 2228-2238.	1.5	178
89	WOODY PLANTS IN GRASSLANDS: POSTâ€ENCROACHMENT STAND DYNAMICS. Ecological Applications, 2008, 18, 928-944.	1.8	118
90	Nitrogen availability is not affected by frequent fire in a South African savanna. Journal of Tropical Ecology, 2008, 24, 647-654.	0.5	28
91	Indexing small mammalian carnivores in the southern Kalahari, South Africa. Wildlife Research, 2008, 35, 72.	0.7	18
93	Ecoâ€Geophysical Imaging of Watershedâ€Scale Soil Patterns Links with Plant Community Spatial Patterns. Vadose Zone Journal, 2008, 7, 1132-1138.	1.3	40
94	Response of carbon fluxes to water relations in a savanna ecosystem in South Africa. Biogeosciences, 2008, 5, 1797-1808.	1.3	56

#	Article	IF	CITATIONS
95	An assessment of the implementation and outcomes of recent changes to fire management in the Kruger National Park. Koedoe, 2008, 50, .	0.3	32
96	Estimating exposed pulp lengths of tusks in the African elephant (Loxodonta africana africana) : article. Journal of the South African Veterinary Association, 2008, 79, 25-30.	0.2	10
97	Savanna. , 2008, , 3143-3154.		27
98	Historical and simulated ecosystem carbon dynamics in Ghana: land use, management, and climate. Biogeosciences, 2009, 6, 45-58.	1.3	24
99	Tropical savannas. , 0, , 248-275.		1
100	Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences, 2009, 6, 1027-1041.	1.3	106
101	Syndromes of dryland degradation in southern Africa. African Journal of Range and Forage Science, 2009, 26, 113-125.	0.6	36
102	Ecology of Plio-Pleistocene Mammals in the Omo—Turkana Basin and the Emergence of Homo. Vertebrate Paleobiology and Paleoanthropology, 2009, , 173-184.	0.1	42
103	Woody cover and heterogeneity in the Savannas of the Kruger National Park, South Africa. , 2009, , .		7
104	Grass competition suppresses savanna tree growth across multiple demographic stages. Ecology, 2009, 90, 335-340.	1.5	176
105	A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C. PLoS Biology, 2009, 7, e1000210.	2.6	232
106	Measuring Woody Encroachment along a Forest–Savanna Boundary in Central Africa. Earth Interactions, 2009, 13, 1-29.	0.7	83
107	Impact of Livestock Husbandry on Small―and Medium‣ized Carnivores in Kalahari Savannah Rangelands. Journal of Wildlife Management, 2009, 73, 60-67.	0.7	41
108	Are savannas patch-dynamic systems? A landscape model. Ecological Modelling, 2009, 220, 3576-3588.	1.2	25
109	Modelling ungulate dependence on higher quality forage under large trees in African savannahs. Basic and Applied Ecology, 2009, 10, 161-169.	1.2	14
110	Patch dynamics integrate mechanisms for savanna tree–grass coexistence. Basic and Applied Ecology, 2009, 10, 491-499.	1.2	27
111	Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology, 2010, 3, 226-237.	1.1	77
112	Resilience and Thresholds in Savannas: Nitrogen and Fire as Drivers and Responders of Vegetation Transition. Ecosystems, 2009, 12, 1189-1203.	1.6	42

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
113	The importance of nutritional regulation of plant water flux. Oecologia, 2009, 161, 15-24.	0.9	268
114	Linking fire and climate: interactions with land use, vegetation, and soil. Current Opinion in Environmental Sustainability, 2009, 1, 161-169.	3.1	27
115	Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodiversity and Conservation, 2009, 18, 1187-1199.	1.2	102
116	Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients. Climatic Change, 2009, 94, 63-76.	1.7	53
117	Interacting effects of grass height and herbivores on the establishment of an encroaching savanna shrub. Plant Ecology, 2009, 201, 553-566.	0.7	17
118	Fire responses of three co-occurring Asteraceae shrubs in a temperate savanna in South America. Plant Ecology, 2009, 202, 149-158.	0.7	17
119	Differences in growth patterns between coâ€occurring forest and savanna trees affect the forest–savanna boundary. Functional Ecology, 2009, 23, 689-698.	1.7	122
120	Droughtâ€induced tree death in savanna. Global Change Biology, 2009, 15, 380-387.	4.2	207
121	What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 2009, 15, 613-630.	4.2	590
122	Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Global Change Biology, 2009, 15, 2224-2246.	4.2	384
123	The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics. Journal of Biogeography, 2009, 36, 770-782.	1.4	107
124	Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. Journal of Biogeography, 2009, 36, 1181-1193.	1.4	97
125	Establishment and early persistence of tree seedlings in an annually burned savanna. Journal of Ecology, 2009, 97, 484-495.	1.9	102
126	Water and nutrients alter herbaceous competitive effects on tree seedlings in a semiâ€arid savanna. Journal of Ecology, 2009, 97, 430-439.	1.9	99
127	Local versus landscapeâ€scale effects of savanna trees on grasses. Journal of Ecology, 2009, 97, 1337-1345.	1.9	88
128	Ecological thresholds: an assessment of methods to identify abrupt changes in species–habitat relationships. Ecography, 2009, 32, 1075-1084.	2.1	146
129	Piosphere contribution to landscape heterogeneity: a case study of remoteâ€sensed woody cover in a high elephant density landscape. Ecography, 2009, 32, 871-880.	2.1	46
130	Decadal dynamics of tree cover in an Australian tropical savanna. Austral Ecology, 2009, 34, 601-612.	0.7	42

#	Article	IF	CITATIONS
131	Growth responses of African savanna trees implicate atmospheric [CO ₂] as a driver of past and current changes in savanna tree cover. Austral Ecology, 2010, 35, 451-463.	0.7	190
132	The impact of shrub encroachment on savanna bird diversity from local to regional scale. Diversity and Distributions, 2009, 15, 948-957.	1.9	91
133	Elephant spatial use in wet and dry savannas of southern Africa. Journal of Zoology, 2009, 278, 189-205.	0.8	54
134	Long bugs to short plants $\hat{a} \in$ " the Lon protease in protein stability and thermotolerance. New Phytologist, 2009, 181, 505-508.	3.5	2
136	Can biological invasions induce desertification?. New Phytologist, 2009, 181, 512-515.	3.5	40
137	Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications, 2009, 19, 1909-1919.	1.8	234
138	Multiscale analysis of tree cover and aboveground carbon stocks in pinyon–juniper woodlands. Ecological Applications, 2009, 19, 668-681.	1.8	47
139	A fuzzy anomaly indicator for environmental monitoring at continental scale. Ecological Indicators, 2009, 9, 92-106.	2.6	21
140	The relative influence of fire and herbivory on savanna three-dimensional vegetation structure. Biological Conservation, 2009, 142, 1693-1700.	1.9	96
141	Fences and artificial water affect African savannah elephant movement patterns. Biological Conservation, 2009, 142, 3086-3098.	1.9	187
142	Elephant seasonal vegetation preferences across dry and wet savannas. Biological Conservation, 2009, 142, 3099-3107.	1.9	102
143	Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth and Planetary Science Letters, 2009, 277, 443-452.	1.8	161
144	Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Forest Ecology and Management, 2009, 257, 66-74.	1.4	52
145	Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000Âyears with emphasis on the Pleistocene–Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271, 240-258.	1.0	79
146	The Early Holocene palaeoenvironment of Ounjougou (Mali): Phytoliths in a multiproxy context. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276, 87-106.	1.0	85
147	Isotope composition and anion chemistry of soil profiles along the Kalahari Transect. Journal of Arid Environments, 2009, 73, 480-486.	1.2	22
148	Opposing Rainfall and Plant Nutritional Gradients Best Explain the Wildebeest Migration in the Serengeti. American Naturalist, 2009, 173, 431-445.	1.0	197
149	The influence of rainfall, vegetation, elephants and people on fire frequency of miombo woodlands, Northern Mozambique. , 2009, , .		2

#	Article	IF	CITATIONS
150	The First Humans – Origin and Early Evolution of the Genus Homo. Vertebrate Paleobiology and Paleoanthropology, 2009, , .	0.1	30
151	Large-scale impacts of herbivores on the structural diversity of African savannas. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4947-4952.	3.3	234
152	Pleistocene Megafaunal Collapse, Novel Plant Communities, and Enhanced Fire Regimes in North America. Science, 2009, 326, 1100-1103.	6.0	458
153	Ecohydrological optimization of pattern and processes in waterâ€limited ecosystems: A tradeâ€offâ€based hypothesis. Water Resources Research, 2009, 45, .	1.7	71
154	Waterâ€dominated vegetation activity across biomes in midâ€latitudinal eastern China. Geophysical Research Letters, 2009, 36, .	1.5	11
155	Fire ecology and fire politics in Mali and Madagascar. , 2009, , 171-226.		33
156	Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications, 2009, 19, 95-109.	1.8	156
157	Correlates of grass-species composition in a savanna woodland in northern Australia. Australian Journal of Botany, 2009, 57, 10.	0.3	32
158	Managing the matrix: decadal responses of eucalyptâ€dominated savanna to ambient fire regimes. Ecological Applications, 2010, 20, 1615-1632.	1.8	30
159	Tree cover and biomass increase in a southern African savanna despite growing elephant population. Ecological Applications, 2010, 20, 222-233.	1.8	31
160	Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture. Food Policy, 2010, 35, 32-40.	2.8	133
161	Tree–grass co-existence in savanna: Interactions of rain and fire. Journal of Theoretical Biology, 2010, 267, 235-242.	0.8	103
162	Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia. Theoretical and Applied Climatology, 2010, 100, 423-438.	1.3	25
163	Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia, 2010, 162, 1027-1034.	0.9	84
164	Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biological Invasions, 2010, 12, 3913-3933.	1.2	93
165	Modeling to evaluate the response of savanna-derived cropland to warming–drying stress and nitrogen fertilizers. Climatic Change, 2010, 100, 703-715.	1.7	15
166	Tree-grass coexistence in a flood-disturbed, semi-arid savanna system. Landscape Ecology, 2010, 25, 315-326.	1.9	11
167	Spatial versus temporal variation in precipitation in a semiarid ecosystem. Landscape Ecology, 2010, 25, 913-925.	1.9	47

#	Article	IF	CITATIONS
168	Hierarchy and scale: testing the long term role of water, grazing and nitrogen in the savanna landscape of Limpopo National Park (Mozambique). Landscape Ecology, 2010, 25, 1529-1546.	1.9	14
169	Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. Plant and Soil, 2010, 328, 95-108.	1.8	37
170	Plant nitrogen and phosphorus limitation in 98 North American grassland soils. Plant and Soil, 2010, 334, 73-84.	1.8	74
171	Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant and Soil, 2010, 332, 207-217.	1.8	106
172	Is the lack of leguminous savanna trees in grasslands of South Africa related to nutritional constraints?. Plant and Soil, 2010, 336, 173-182.	1.8	20
173	Woody vegetation structure in conserved versus communal land in a biodiversity hotspot: A case study in Maputaland, South Africa. South African Journal of Botany, 2010, 76, 289-298.	1.2	14
174	The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African Journal of Botany, 2010, 76, 517-523.	1.2	130
175	Defensive Plant-Ants Stabilize Megaherbivore-Driven Landscape Change in an African Savanna. Current Biology, 2010, 20, 1768-1772.	1.8	106
176	From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America. Ecological Economics, 2010, 69, 2486-2494.	2.9	94
177	Patterns and implications of Plant-soil <i>î´</i> ¹³ C and <i>î´</i> ¹⁵ N values in African savanna ecosystems. Quaternary Research, 2010, 73, 77-83.	1.0	55
178	Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, 2010, 114, 73-86.	4.6	278
179	Regional aboveground live carbon losses due to drought-induced tree dieback in piñon–juniper ecosystems. Remote Sensing of Environment, 2010, 114, 1471-1479.	4.6	69
180	Dynamical phase coexistence: A simple solution to the "savanna problem― Journal of Theoretical Biology, 2010, 264, 360-366.	0.8	14
181	An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Advances in Water Resources, 2010, 33, 215-230.	1.7	68
182	A depthâ€controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytologist, 2010, 188, 199-209.	3.5	119
183	Why is Abundance of Herbaceous Legumes Low in African Savanna? A Test with Two Model Species. Biotropica, 2010, 42, 580-589.	0.8	15
184	Neighbourhood effects influence drought-induced mortality of savanna trees in Australia. Journal of Vegetation Science, 2010, 21, 573-585.	1.1	26
185	Effect of eland density and foraging on <i>Combretum apiculatum</i> physiognomy in a semiâ€arid savannah. African Journal of Ecology, 2010, 48, 45-50.	0.4	5

#	Article	IF	CITATIONS
186	Space use of the spotted sand lizard (<i>Pedioplanis l. lineoocellata</i>) under different degradation states. African Journal of Ecology, 2010, 48, 96-104.	0.4	14
187	Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Global Change Biology, 2010, 16, 331-343.	4.2	107
188	Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology, 2010, 16, 2013-2023.	4.2	60
189	Contrasting physiological responsiveness of establishing trees and a C ₄ grass to rainfall events, intensified summer drought, and warming in oak savanna. Global Change Biology, 2010, 16, 3349-3362.	4.2	55
190	An idealized model for tree–grass coexistence in savannas: the role of life stage structure and fire disturbances. Journal of Ecology, 2010, 98, 74-80.	1.9	71
191	Genomic signals of diversification along ecological gradients in a tropical lizard. Molecular Ecology, 2010, 19, 3773-3788.	2.0	99
192	Landscape genetics of the key African acacia species <i>Senegalia mellifera</i> (Vahl)– the importance of the Kenyan Rift Valley. Molecular Ecology, 2010, 19, 5126-5139.	2.0	29
193	Large herbivores facilitate savanna tree establishment via diverse and indirect pathways. Journal of Animal Ecology, 2010, 79, 372-382.	1.3	113
194	Using generalized autoregressive error models to understand fire–vegetation–soil feedbacks in a mulga–spinifex landscape mosaic. Journal of Biogeography, 2010, 37, 2169-2182.	1.4	42
195	Managing forests, livestock, and crops under global warming: a microâ€econometric analysis of land use changes in Africa*. Australian Journal of Agricultural and Resource Economics, 2010, 54, 239-258.	1.3	37
196	The evolution of fire management practices in savanna protected areas in South Africa. South African Journal of Science, 2010, 105, .	0.3	15
197	Human Impacts Flatten Rainforest-Savanna Gradient and Reduce Adaptive Diversity in a Rainforest Bird. PLoS ONE, 2010, 5, e13088.	1.1	9
198	Spatial-temporal distribution of fire-protected savanna physiognomies in Southeastern Brazil. Anais Da Academia Brasileira De Ciencias, 2010, 82, 379-395.	0.3	16
199	CO ₂ , CH ₄ and N ₂ O fluxes from soil of a burned grassland in Central Africa. Biogeosciences, 2010, 7, 3459-3471.	1.3	50
202	Termite diversity and abundance across fire-induced habitat variability in a tropical moist savanna (Lamto, Central Côte d'Ivoire). Journal of Tropical Ecology, 2010, 26, 323-334.	0.5	34
204	Effects of fire on woody vegetation structure in African savanna. Ecological Applications, 2010, 20, 1865-1875.	1.8	135
205	Variations in Subpixel Fire Properties with Season and Land Cover in Southern Africa. Earth Interactions, 2010, 14, 1-29.	0.7	15
206	Regional insight into savanna hydrogeomorphology from termite mounds. Nature Communications, 2010, 1, 65.	5.8	73

#	Article	IF	CITATIONS
207	The Independent and Interactive Effects of Treeâ€īree Establishment Competition and Fire on Savanna Structure and Dynamics. American Naturalist, 2010, 175, E44-E65.	1.0	36
208	Chapter 17 The Geologic History of C4 Plants. Advances in Photosynthesis and Respiration, 2010, , 339-357.	1.0	3
209	Environmental factors influencing the establishment, height and fecundity of the annual grass <i>Sorghum intrans</i> in an Australian tropical savanna. Journal of Tropical Ecology, 2010, 26, 313-322.	0.5	12
210	Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands. Water Resources Research, 2010, 46, .	1.7	58
211	Potential impacts of precipitation change on largeâ€scale patterns of tree diversity. Water Resources Research, 2010, 46, .	1.7	7
212	The stability of African savannas: insights from the indirect estimation of the parameters of a dynamic model. Ecology, 2010, 91, 1682-1692.	1.5	56
213	Assessment of SPOT 5 and QuickBird remotely sensed imagery for mapping tree cover in savannas. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 217-224.	1.4	49
214	Nutrient limitations on aboveground grass production in four savanna types along the Kalahari Transect. Journal of Arid Environments, 2010, 74, 284-290.	1.2	26
215	Resource partitioning and interactions enable coexistence in a grass-shrub steppe. Journal of Arid Environments, 2010, 74, 1111-1120.	1.2	13
216	Vegetation pattern divergence between dry and wet season in a semiarid savanna – Spatio-temporal dynamics of plant diversity in northwest Namibia. Journal of Arid Environments, 2010, 74, 1516-1524.	1.2	16
217	Enhanced use of beneath-canopy vegetation by grazing ungulates in African savannahs. Journal of Arid Environments, 2010, 74, 1597-1603.	1.2	28
218	Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China's re-vegetation program in the Loess Plateau: Matching model complexity to data availability. Forest Ecology and Management, 2010, 259, 1277-1290.	1.4	89
219	Long-term resilience, bush encroachment patterns and local knowledge in a Northeast African savanna. Global Environmental Change, 2010, 20, 612-626.	3.6	25
220	Dung fungi as indicators of past herbivore abundance, Kruger and Limpopo National Park. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296, 14-27.	1.0	25
221	Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 2010, 25, 119-128.	4.2	290
222	Distribution and interspecific correlation of root biomass density in an arid Elaeagnus angustifolia–Achnatherum splendens community. Acta Ecologica Sinica, 2010, 30, 45-49.	0.9	3
223	Integrated Grazing and Prescribed Fire Restoration Strategies in a Mesquite Savanna: I. Vegetation Responses. Rangeland Ecology and Management, 2010, 63, 275-285.	1.1	19
224	Temporal dynamics of shrub proliferation: linking patches to landscapes. International Journal of Geographical Information Science, 2011, 25, 913-930.	2.2	11

#	Article	IF	CITATIONS
225	The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science, 2011, 334, 230-232.	6.0	1,039
226	Woody vegetative cover dynamics in response to recent climate change on an Atlantic coast barrier island: a remote sensing approach. Geocarto International, 2011, 26, 595-612.	1.7	37
227	Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science, 2011, 334, 232-235.	6.0	954
228	Using the NDVI as auxiliary data for rapid quality assessment of rainfall estimates in Africa. International Journal of Remote Sensing, 2011, 32, 3249-3265.	1.3	10
229	Woody cover and hominin environments in the past 6 million years. Nature, 2011, 476, 51-56.	13.7	514
230	Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research, 2011, 116, .	3.3	218
231	Spatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis framework for catchment ecohydrology. Water Resources Research, 2011, 47, .	1.7	133
232	Coupling vegetation organization patterns to soil resource heterogeneity in a central Kenyan dryland using geophysical imagery. Water Resources Research, 2011, 47, .	1.7	31
233	Landscape change in the lower Omo valley, southwestern Ethiopia: burning patterns and woody encroachment in the savanna. Journal of Eastern African Studies, 2011, 5, 108-128.	0.5	20
234	A geographically scaled analysis of adaptation to climate change with spatial models using agricultural systems in Africa. Journal of Agricultural Science, 2011, 149, 437-449.	0.6	37
235	The Neogene transition from C ₃ to C ₄ grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology, 2011, 37, 50-71.	1.3	110
236	Removing forest canopy cover restores a reptile assemblage. , 2011, 21, 274-280.		85
237	A paper park—as seen from the air. Journal for Nature Conservation, 2011, 19, 368-369.	0.8	5
238	Paleontology and Geology of Laetoli: Human Evolution in Context. Vertebrate Paleobiology and Paleoanthropology, 2011, , .	0.1	10
239	Impact of China's Large-Scale Ecological Restoration Program on the Environment and Society in Arid and Semiarid Areas of China: Achievements, Problems, Synthesis, and Applications. Critical Reviews in Environmental Science and Technology, 2011, 41, 317-335.	6.6	186
240	Does browsing reduce shrub survival and vigor following summer fires?. Acta Oecologica, 2011, 37, 10-15.	0.5	7
241	Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region. Agricultural and Forest Meteorology, 2011, 151, 1409-1416.	1.9	67
242	Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa. Forest Ecology and Management, 2011, 261, 19-29.	1.4	58

#	Article	IF	CITATIONS
243	Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management, 2011, 262, 491-499.	1.4	86
244	The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast. Global and Planetary Change, 2011, 78, 162-169.	1.6	72
245	A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary Science Letters, 2011, 302, 236-246.	1.8	131
246	Changes in soil nutrients, vegetation structure and herbaceous biomass in response to grazing in a semi-arid savanna of Ethiopia. Journal of Arid Environments, 2011, 75, 662-670.	1.2	112
247	A continental analysis of correlations between tree patterns in African savannas and human and environmental variables. Journal of Arid Environments, 2011, 75, 724-733.	1.2	11
248	Seed predation and moisture limit germination of recalcitrant Dobera glabra (Salvadoraceae) seeds in the Afar rangelands, Ethiopia. Journal of Arid Environments, 2011, 75, 903-908.	1.2	5
249	Plant functional types in Brazilian savannas: The niche partitioning between herbaceous and woody species. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 201-206.	1.1	19
250	Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quaternary Science Reviews, 2011, 30, 269-272.	1.4	85
251	Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sensing of Environment, 2011, 115, 2861-2873.	4.6	226
252	Bridging the Cap Between Computational Models and Viability Based Resilience in Savanna Ecosystems. Understanding Complex Systems, 2011, , 107-130.	0.3	0
253	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.	1.5	342
254	Vegetation of the dryland regions. , 0, , 46-64.		0
255	Invasive Plant Species and Biomass Production in Savannas. , 2011, , .		1
256	A framework for deriving and triggering thresholds for management intervention in uncertain, varying and time-lagged systems. Koedoe, 2011, 53, .	0.3	17
257	Climate Change and Livestock Production in Nigeria: Issues and Concerns. African Journal Biomedical Research, 2011, 10, .	0.2	6
258	Protection from livestock fails to deter shrub proliferation in a desert landscape with a history of heavy grazing. , 2011, 21, 1629-1642.		69
259	Influence of Topography on the Colonization of Subalpine Grasslands by the Thorny Cushion Dwarf Echinospartum horridum. Arctic, Antarctic, and Alpine Research, 2011, 43, 601-611.	0.4	25
260	History matters: tree establishment variability and species turnover in an African savanna. Ecosphere, 2011, 2, art49.	1.0	25

#	Article	IF	CITATIONS
261	Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters, 2011, 14, 709-722.	3.0	864
262	When is a †forest' a savanna, and why does it matter?. Global Ecology and Biogeography, 2011, 20, 653-660.	2.7	348
263	Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 2011, 20, 744-754.	2.7	195
264	Environmental and anthropogenic determinants of vegetation distribution across Africa. Global Ecology and Biogeography, 2011, 20, 661-674.	2.7	53
265	Rodent-mediated dispersal of Acacia seeds in Kalahari savannah rangelands - implications for bush encroachment. African Journal of Ecology, 2011, 49, 119-121.	0.4	8
266	Role of Acacia and Erythrina trees in forest regeneration by vertebrate seed dispersers in Kibale National Park, Uganda. African Journal of Ecology, 2011, 49, 189-198.	0.4	5
267	Carbon storage, structure and composition of miombo woodlands in Tanzania's Eastern Arc Mountains. African Journal of Ecology, 2011, 49, 332-342.	0.4	69
268	Scale of nutrient patchiness mediates resource partitioning between trees and grasses in a semi-arid savanna. Journal of Ecology, 2011, 99, 1124-1133.	1.9	28
269	Dating the fungusâ€growing termites' mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Molecular Ecology, 2011, 20, 2619-2627.	2.0	48
270	Biome transitions as centres of diversity: habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography, 2011, 34, 177-195.	2.1	68
271	Vegetation controls vary across space and spatial scale in a historic grassland-forest biome boundary. Ecography, 2011, 34, 402-414.	2.1	31
272	Structure and biomass along an Acacia zanzibarica woodland-savanna gradient in a former ranching area in coastal Tanzania. Journal of Vegetation Science, 2011, 22, 475-489.	1.1	12
273	Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity, 2011, 107, 174-186.	1.2	49
274	Savanna domain in the herbivores-fire parameter space exploiting a tree–grass–soil water dynamic model. Journal of Theoretical Biology, 2011, 289, 74-82.	0.8	24
275	Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: A simulation approach. Ecological Modelling, 2011, 222, 2733-2750.	1.2	38
276	Water sourcing by trees in a mesic savanna: Responses to severing deep and shallow roots. Environmental and Experimental Botany, 2011, 74, 229-236.	2.0	35
277	Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1010-1035.	1.6	610
278	Frequent burning promotes invasions of alien plants into a mesic African savanna. Biological Invasions, 2011, 13, 1641-1648.	1.2	32

#	Article	IF	CITATIONS
279	Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?. Oecologia, 2011, 166, 229-239.	0.9	31
280	Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia, 2011, 165, 1095-1107.	0.9	124
281	Influence of conspecific and heterospecific adults on riparian tree species establishment during encroachment of a humid palm savanna. Oecologia, 2011, 167, 141-148.	0.9	17
282	Relative Impacts of Elephant and Fire on Large Trees in a Savanna Ecosystem. Ecosystems, 2011, 14, 1372-1381.	1.6	76
283	Potential responses of terrestrial biodiversity in Southern Africa to anthropogenic climate change. Regional Environmental Change, 2011, 11, 127-135.	1.4	51
284	3D radiative transfer modelling of fire impacts on a two-layer savanna system. Remote Sensing of Environment, 2011, 115, 1866-1881.	4.6	54
285	Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product. Remote Sensing of Environment, 2011, 115, 2008-2024.	4.6	44
286	Assessing effects of temporal compositing and varying observation periods for large-area land-cover mapping in semi-arid ecosystems: Implications for global monitoring. Remote Sensing of Environment, 2011, 115, 2445-2459.	4.6	52
287	Humanizing Savanna Biogeography: Linking Human Practices with Ecological Patterns in a Frequently Burned Savanna of Southern Mali. Annals of the American Association of Geographers, 2011, 101, 1067-1088.	3.0	48
289	Climatological determinants of woody cover in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4902-4907.	3.3	167
290	Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere, 2011, 2, art121.	1.0	91
291	How does fire intensity and frequency affect miombo woodland tree populations and biomass?. , 2011, 21, 48-60.		133
292	Managing Livestock Species under Climate Change in Australia. Animals, 2011, 1, 343-365.	1.0	6
293	Pastoralists' Perception and Ecological Knowledge on Savanna Ecosystem Dynamics in Semi-arid Botswana. Ecology and Society, 2012, 17, .	1.0	26
294	Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees. Sensors, 2012, 12, 10639-10658.	2.1	36
295	Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 601-612.	1.8	349
296	Statistical modelling of a new global potential vegetation distribution. Environmental Research Letters, 2012, 7, 044019.	2.2	32
297	Photon conversion in Bi ³⁺ /Pr ³⁺ -codoped CaTiO ₃ . Journal of Physics Condensed Matter, 2012, 24, 295502.	0.7	8

#	Article	IF	CITATIONS
298	Herbivore and human impacts on woody species dynamics in Maputaland, South Africa. Forestry, 2012, 85, 497-512.	1.2	4
299	Decision Making under Climate Risks: An Analysis of Sub-Saharan Farmers' Adaptation Behaviors. Weather, Climate, and Society, 2012, 4, 285-299.	0.5	53
300	The vegetation of Malilangwe Wildlife Reserve, south-eastern Zimbabwe. African Journal of Range and Forage Science, 2012, 29, 109-131.	0.6	32
301	Evolution of C ₄ plants: a new hypothesis for an interaction of CO ₂ and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 583-600.	1.8	172
302	Woody encroachment decreases diversity across North American grasslands and savannas. Ecology, 2012, 93, 697-703.	1.5	374
303	Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands. Environmental Conservation, 2012, 39, 72-82.	0.7	28
304	Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems. American Naturalist, 2012, 180, 211-224.	1.0	126
305	Humanizing savanna models: integrating natural factors and anthropogenic disturbance regimes to determine tree–grass dynamics in savannas. Journal of Land Use Science, 2012, 7, 459-482.	1.0	11
306	Connecting dynamic vegetation models to data – an inverse perspective. Journal of Biogeography, 2012, 39, 2240-2252.	1.4	144
307	Landscapeâ€scale effects of herbivores on treefall in African savannas. Ecology Letters, 2012, 15, 1211-1217.	3.0	141
308	Functional responses in the habitat selection of a generalist megaâ€herbivore, the African savannah elephant. Ecography, 2012, 35, 972-982.	2.1	50
309	Customary Fire Regimes and Vegetation Structure in Gabon's Bateke Plateaux. Human Ecology, 2012, 40, 943-955.	0.7	21
310	Spatial pattern analysis and competition between Acacia karroo trees in humid savannas. Plant Ecology, 2012, 213, 1609-1619.	0.7	40
311	The role of fire in preventing transitions from a grass dominated state to a bush thickened state in arid savannas. Journal of Arid Environments, 2012, 87, 1-7.	1.2	51
312	Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. International Journal of Remote Sensing, 2012, 33, 6783-6804.	1.3	28
313	Long-Term Effects of Fire, Livestock Herbivory Removal, and Weather Variability in Texas Semiarid Savanna. Rangeland Ecology and Management, 2012, 65, 21-30.	1.1	51
314	Spatial Patterns and Predictors of Forest Carbon Stocks in Western Mediterranean. Ecosystems, 2012, 15, 1258-1270.	1.6	35
315	Topography-Controlled Soil Water Content and the Coexistence of Forest and Steppe in Northern China. Physical Geography, 2012, 33, 561-573.	0.6	32

#	Article	IF	CITATIONS
316	Potential aboveground biomass in droughtâ€prone forest used for rangeland pastoralism. Ecological Applications, 2012, 22, 894-908.	1.8	19
317	Application and limitations of the <i>Artemisia</i> /Chenopodiaceae pollen ratio in arid and semi-arid China. Holocene, 2012, 22, 1385-1392.	0.9	116
318	Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quaternary Science Reviews, 2012, 34, 66-80.	1.4	123
319	Leaf area index for biomes of the Eastern Arc Mountains: Landsat and SPOT observations along precipitation and altitude gradients. Remote Sensing of Environment, 2012, 118, 103-115.	4.6	41
320	Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sensing of Environment, 2012, 124, 653-665.	4.6	54
321	Fire and fireâ€∎dapted vegetation promoted C ₄ expansion in the late Miocene. New Phytologist, 2012, 195, 653-666.	3.5	131
322	Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Diversity and Distributions, 2012, 18, 390-400.	1.9	61
323	Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-dimensional approach. Agricultural and Forest Meteorology, 2012, 152, 83-100.	1.9	112
324	Tree density and species decline in the African Sahel attributable to climate. Journal of Arid Environments, 2012, 78, 55-64.	1.2	160
325	Roads increase woody cover under varying geological, rainfall and fire regimes inÂAfrican savanna. Journal of Arid Environments, 2012, 80, 74-80.	1.2	24
326	The indirect impact of encroaching trees on gully extension: A 64year study in a sub-humid grassland of South Africa. Catena, 2012, 98, 110-119.	2.2	46
327	Cost-effective compensation payments: A model based on Buying Green Cover to sustain ecological restoration. Forest Policy and Economics, 2012, 14, 143-147.	1.5	26
328	Factors affecting intraspecific variation in home range size of a large African herbivore. Landscape Ecology, 2012, 27, 1523-1534.	1.9	34
329	The economics and institutional economics of wildlife on private land in Africa. Pastoralism, 2012, 2, 18.	0.3	55
330	Making sense of ocean biota: How evolution and biodiversity of land organisms differ from that of the plankton. Journal of Biosciences, 2012, 37, 589-607.	0.5	61
331	An ecohydrological approach to predicting hillslopeâ€scale vegetation patterns in dryland ecosystems. Water Resources Research, 2012, 48, .	1.7	25
332	Effect of plant dynamic processes on African vegetation responses to climate change: Analysis using the spatially explicit individualâ€based dynamic global vegetation model (SEIBâ€DGVM). Journal of Geophysical Research, 2012, 117, .	3.3	38
333	Woody dominance in a semi-arid savanna rangeland – Evidence for competitive self-thinning. Acta Oecologica, 2012, 45, 98-105.	0.5	14

#	Article	IF	CITATIONS
334	Windows of opportunity for Prosopis velutina seedling establishment and encroachment in a semiarid grassland. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 275-282.	1.1	12
335	The effects of fire on woody plant encroachment are exacerbated by succession of trees of decreased palatability. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 411-422.	1.1	33
336	Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sensing of Environment, 2012, 125, 214-226.	4.6	177
338	Rainfall variability and vegetation dynamics of the lower Limpopo Valley, Southern Africa, 500AD to present. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 363-364, 69-78.	1.0	26
339	Using Maximum Entropy modeling to predict the potential distributions of large trees for conservation planning. Ecosphere, 2012, 3, art56.	1.0	16
340	Evaluating Ecohydrological Theories of Woody Root Distribution in the Kalahari. PLoS ONE, 2012, 7, e33996.	1.1	32
341	perspective: Learning new tricks from old trees: revisiting the savanna question. Frontiers of Biogeography, 2012, 2, .	0.8	3
343	Assessing the impact of climate variability on catchment water balance and vegetation cover. Hydrology and Earth System Sciences, 2012, 16, 43-58.	1.9	30
344	Adapting Natural Resource Enterprises under Global Warming in South America: A Mixed Logit Analysis. Economia, 2012, 12, 111-135.	0.4	19
345	Topo-edaphic controls over woody plant biomass in South African savannas. Biogeosciences, 2012, 9, 1809-1821.	1.3	61
346	Grass competition is more important than seed ingestion by livestock for Acacia recruitment in South Africa. Plant Ecology, 2012, 213, 899-908.	0.7	50
347	Combining community-level spatial modelling and expert knowledge to inform climate adaptation in temperate grassy eucalypt woodlands and related grasslands. Biodiversity and Conservation, 2012, 21, 1627-1650.	1.2	34
348	Rainfallâ€Tuned Management Facilitates Dry Forest Recovery. Restoration Ecology, 2012, 20, 33-42.	1.4	36
349	Effects of fire and water availability on the emergence and recruitment of grasses, forbs and woody species in a semiarid Chaco savanna. Austral Ecology, 2012, 37, 452-459.	0.7	16
350	The savannaâ€grassland â€~treeline': why don't savanna trees occur in upland grasslands?. Journal of Ecology, 2012, 100, 381-391.	1.9	66
351	Environmental factors determining the phylogenetic structure of C ₄ grass communities. Journal of Biogeography, 2012, 39, 232-246.	1.4	38
352	Increased tree densities in <scp>S</scp> outh <scp>A</scp> frican savannas: >50Âyears of data suggests <scp><scp>CO</scp></scp> cod/scp> as a driver. Global Change Biology, 2012, 18, 675-684.	4.2	296
353	Variation in soil carbon stocks and their determinants across a precipitation gradient in <scp>W</scp> est <scp>A</scp> frica. Global Change Biology, 2012, 18, 1670-1683.	4.2	114

#	Article	IF	CITATIONS
354	Threatened mammals become more predatory after smallâ€scale prescribed fires in a highâ€rainfall rocky savanna. Austral Ecology, 2012, 37, 926-935.	0.7	35
355	Direct and indirect effects of grazing constrain shrub encroachment in semiâ€arid Patagonian steppes. Applied Vegetation Science, 2012, 15, 35-47.	0.9	41
356	Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes. Journal of Vegetation Science, 2012, 23, 187-197.	1.1	34
357	Selfâ€ŧhinning and Tree Competition in Savannas. Biotropica, 2012, 44, 189-196.	0.8	30
358	Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environmental and Experimental Botany, 2012, 77, 259-266.	2.0	124
359	Longâ€ŧerm variability and rainfall control of savanna fire regimes in equatorial East Africa. Global Change Biology, 2012, 18, 3160-3170.	4.2	56
360	The pyrodiversity–biodiversity hypothesis: a test with savanna termite assemblages. Journal of Applied Ecology, 2012, 49, 422-430.	1.9	87
361	Simplifying the savanna: the trajectory of fireâ€sensitive vegetation mosaics in northern Australia. Journal of Biogeography, 2012, 39, 1303-1317.	1.4	70
362	Tree cover–fire interactions promote the persistence of a fireâ€sensitive conifer in a highly flammable savanna. Journal of Ecology, 2012, 100, 958-968.	1.9	68
363	Relationships between fire history, edaphic factors and woody vegetation structure and composition in a semiâ€arid savanna landscape (<scp>N</scp> iger, <scp>W</scp> est <scp>A</scp> frica). Applied Vegetation Science, 2012, 15, 488-500.	0.9	22
364	Metaâ€analysis of <scp>ANPP</scp> and rainâ€use efficiency confirms indicative value for degradation and supports nonâ€linear response along precipitation gradients in drylands. Journal of Vegetation Science, 2012, 23, 1035-1050.	1.1	68
365	Biocomplexity in large tree mortality: interactions between elephant, fire and landscape in an African savanna. Ecography, 2012, 35, 315-321.	2.1	59
366	The historical ecology of Namibian rangelands: Vegetation change since 1876 in response to local and global drivers. Science of the Total Environment, 2012, 416, 276-288.	3.9	52
367	The interactive nutrient and water effects on vegetation biomass at two <scp>A</scp> frican savannah sites with different mean annual precipitation. African Journal of Ecology, 2012, 50, 446-454.	0.4	12
368	Adaptation behaviours across ecosystems under global warming: A spatial micro-econometric model of the rural economy in South America*. Papers in Regional Science, 2012, 91, 849-871.	1.0	29
369	Effects of fire on grassâ€layer savanna macroinvertebrates as key food resources for insectivorous vertebrates in northern Australia. Austral Ecology, 2012, 37, 733-742.	0.7	24
370	What controls the distribution of tropical forest and savanna?. Ecology Letters, 2012, 15, 748-758.	3.0	333
371	Topâ€down determinants of niche structure and adaptation among African Acacias. Ecology Letters, 2012, 15, 673-679.	3.0	80

#	Article	IF	CITATIONS
372	Ecological thresholds at the savannaâ€forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters, 2012, 15, 759-768.	3.0	649
373	Abrupt shifts in African savanna tree cover along a climatic gradient. Global Ecology and Biogeography, 2012, 21, 787-797.	2.7	62
374	Temperature explains global variation in biomass among humid oldâ€growth forests. Global Ecology and Biogeography, 2012, 21, 998-1006.	2.7	59
375	Animal foraging pit soil enhances the performance of a native grass under stressful conditions. Plant and Soil, 2012, 352, 341-351.	1.8	23
376	Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biological Invasions, 2012, 14, 607-618.	1.2	39
377	Grasses and browsers reinforce landscape heterogeneity by excluding trees from ecosystem hotspots. Oecologia, 2012, 168, 749-759.	0.9	37
378	The impacts of herbivory on vegetation in Moremi Game Reserve, Botswana: 1967–2001. Regional Environmental Change, 2012, 12, 1-15.	1.4	19
379	Constraint on woody cover in relation to nutrient content of soils in western southern Africa. Oikos, 2013, 122, 136-148.	1.2	22
380	Refining spatial resolution and spillovers of a micro-econometric analysis of adapting portfolios to climate change using the global positioning system. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 1019-1034.	1.0	17
381	Nitrogen fertilisation reduces grass-induced N2 fixation of tree seedlings from semi-arid savannas. Plant and Soil, 2013, 365, 307-320.	1.8	26
382	Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agricultural and Forest Meteorology, 2013, 178-179, 31-45.	1.9	108
383	Humid savanna–forest dynamics: A matrix model with vegetation–fire interactions and seasonality. Ecological Modelling, 2013, 265, 170-179.	1.2	21
384	Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil, 2013, 373, 829-842.	1.8	132
385	Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. Catena, 2013, 109, 39-48.	2.2	87
386	Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theoretical Ecology, 2013, 6, 131-141.	0.4	45
387	Termites facilitate and ungulates limit savanna tree regeneration. Oecologia, 2013, 172, 1085-1093.	0.9	30
388	Walter's two-layer hypothesis revisited: back to the roots!. Oecologia, 2013, 172, 617-630.	0.9	182
389	The lanky and the corky: fireâ€escape strategies in savanna woody species. Journal of Ecology, 2013, 101, 1265-1272.	1.9	94

ARTICLE IF CITATIONS Carbon Storage in Terrestrial Ecosystems. , 2013, , 93-108. 390 2 Ecosystem Services of Energy Exchange and Regulation., 2013, , 81-92. 392 Ecosystem Services and Carbon Sequestration in the Biosphere., 2013, , . 27 Modeling shrub encroachment in subalpine grasslands under different environmental and management scenarios. Journal of Environmental Management, 2013, 121, 160-169. Native ungulates of diverse body sizes collectively regulate longâ€term woody plant demography and 394 1.9 115 structure of a semiâ€arid savanna. Journal of Ecology, 2013, 101, 1389-1399. Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam images. Remote Sensing of Environment, 2013, 138, 4.6 215-231. 396 Mediterranean Oak Woodland Working Landscapes. Landscape Series, 2013, , . 0.1 44 Monitoring vegetation dynamics and carbon stock density in miombo woodlands. Carbon Balance and 1.4 54 Management, 2013, 8, 11. Ten lessons for the conservation of African savannah ecosystems. Biological Conservation, 2013, 167, 398 1.9 44 224-232. Rainfall, geology and landscape position generate largeâ€scale spatiotemporal fire pattern 399 2.1 heterogeneity in an African savanna. Ecography, 2013, 36, 447-459. Economics of global warming as a global public good: Private incentives and smart adaptations. 400 21 0.8 Regional Science Policy and Practice, 2013, 5, 83-95. Water, plants, and early human habitats in eastern Africa. Proceedings of the National Academy of 3.3 94 Sciences of the United States of America, 2013, 110, 1175-1180. The size of savannah Africa: a lion's (Panthera leo) view. Biodiversity and Conservation, 2013, 22, 17-35. 402 1.2 280 Herbivore–vegetation feedbacks can expand the range of savanna persistence: insights from a simple 1.2 24 theoretical model. Oikos, 2013, 122, 441-453. Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. 404 0.9 115 Oecologia, 2013, 171, 25-37. Spatial patterns in mesic savannas: The local facilitation limit and the role of demographic stochasticity. Journal of Theoretical Biology, 2013, 333, 156-165. Hydrological Minimal Model for Savanna Fire Frequency Assessment. Procedia Environmental 406 1.32 Sciences, 2013, 19, 846-855. Carbon and water exchange of the world's tallest angiosperm forest. Agricultural and Forest Meteorology, 2013, 182-183, 215-224.

#	Article	IF	CITATIONS
408	Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas. Journal of Theoretical Biology, 2013, 332, 181-190.	0.8	27
409	Vegetation impoverishment despite greening: A case study from central Senegal. Journal of Arid Environments, 2013, 90, 55-66.	1.2	111
410	Fuel composition influences fire characteristics and understorey hardwoods in pine savanna. Journal of Ecology, 2013, 101, 192-201.	1.9	65
411	The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Global Change Biology, 2013, 19, 441-458.	4.2	21
412	Root dynamics influence tree–grass coexistence in an Australian savanna. Austral Ecology, 2013, 38, 66-75.	0.7	21
413	Potential of dendrochronology to assess annual rates of biomass productivity in savanna trees of West Africa. Dendrochronologia, 2013, 31, 41-51.	1.0	51
414	Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist, 2013, 197, 19-35.	3.5	630
415	Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and dispersal. Advances in Water Resources, 2013, 51, 317-325.	1.7	51
416	Demography and growth of subadult savanna trees: interactions of life history, size, fire season, and grassy understory. Ecological Monographs, 2013, 83, 67-93.	2.4	70
417	Testing the stress gradient hypothesis in herbivore communities: facilitation peaks at intermediate nutrient levels. Ecology, 2013, 94, 1776-1784.	1.5	26
418	Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecological Modelling, 2013, 263, 92-102.	1.2	35
419	African and Asian Savannas. , 2013, , 58-74.		22
420	Escaping the flames: large termitaria as refugia from fire in miombo woodland. Landscape Ecology, 2013, 28, 1505-1516.	1.9	40
421	Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology, 2013, 94, 1155-1164.	1.5	153
422	Increases of Soil C, N, and P Pools Along an Acacia Tree Density Gradient and Their Effects on Trees and Grasses. Ecosystems, 2013, 16, 347-357.	1.6	73
423	Effects of interannual climate variability on tropical tree cover. Nature Climate Change, 2013, 3, 755-758.	8.1	115
424	Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses. Ecology, 2013, 94, 2138-2144.	1.5	15
425	Humans, megafauna and environmental change in tropical Australia. Journal of Quaternary Science, 2013, 28, 439-452.	1.1	38

#	Article	IF	Citations
426	Impact of Prosopis invasion on a keystone tree species in the Kalahari Desert. Plant Ecology, 2013, 214, 597-605.	0.7	57
427	Large herbivores favour species diversity but have mixed impacts on phylogenetic community structure in an <scp>A</scp> frican savanna ecosystem. Journal of Ecology, 2013, 101, 614-625.	1.9	27
428	Plant competition, temporal niches and implications for productivity and adaptability to climate change in waterâ€limited environments. Functional Ecology, 2013, 27, 886-897.	1.7	48
429	Predicting aboveground biomass of woody encroacher species in semi-arid rangelands, Ethiopia. Journal of Arid Environments, 2013, 96, 64-72.	1.2	27
430	Fire and Grazing Change Herbaceous Species Composition and Reduce Beta Diversity in the Kalahari Sand System. Ecosystems, 2013, 16, 252-268.	1.6	17
431	Variable-source flood pulsing in a semi-arid transboundary watershed: the Chobe River, Botswana and Namibia. Environmental Monitoring and Assessment, 2013, 185, 1883-1906.	1.3	28
432	Shade, nutrients, and grass competition are important for tree sapling establishment in a humid savanna. Ecosphere, 2013, 4, 1-27.	1.0	33
434	Plant functional traits of a shrub invader relative to sympatric native shrubs. Ecosphere, 2013, 4, 1-11.	1.0	16
435	Woody encroachment and forest degradation in sub-Saharan Africa's woodlands and savannas 1982–2006. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120406.	1.8	104
436	The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems. Scientific Reports, 2013, 3, 2689.	1.6	64
437	DQS advisor: a visual interface and knowledge-based system to balance dose, quality, and reconstruction speed in iterative CT reconstruction with application to NLM-regularization. Physics in Medicine and Biology, 2013, 58, 7857-7873.	1.6	11
438	Unsustainable fuelwood extraction from South African savannas. Environmental Research Letters, 2013, 8, 014007.	2.2	50
439	Committed changes in tropical tree cover under the projected 21st century climate change. Scientific Reports, 2013, 3, 1951.	1.6	20
440	Woody Vegetation Persistence and Disturbance in Central Texas Grasslands Inferred From Multidecadal Historical Aerial Photographs. Rangeland Ecology and Management, 2013, 66, 297-304.	1.1	8
441	Refining thresholds in coupled fire–vegetation models to improve management of encroaching woody plants in grasslands. Journal of Applied Ecology, 2013, 50, 603-613.	1.9	99
442	Climate warming and precipitation redistribution modify tree–grass interactions and tree species establishment in a warmâ€temperate savanna. Global Change Biology, 2013, 19, 843-857.	4.2	73
443	Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120427.	1.8	148
444	Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic <scp>M</scp> innesota, <scp>USA</scp> . Journal of Vegetation Science, 2013, 24, 1129-1140.	1.1	33

#	Article	IF	CITATIONS
445	Mapping vegetation productivity dynamics and degradation trends over East Africa using a decade of medium Resolution MODIS time-series data. , 2013, , .		3
446	Assessing change in woody vegetation cover in the Kruger National Park, South Africa, using spectral mixture analysis of a Landsat TM image time series. International Journal of Environmental Studies, 2013, 70, 94-110.	0.7	3
447	Increased susceptibility to droughtâ€induced mortality in <i>Sequoia sempervirens</i> (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. American Journal of Botany, 2013, 100, 582-591.	0.8	51
448	Effect of land-cover change on Africa's burnt area. International Journal of Wildland Fire, 2013, 22, 107.	1.0	27
449	Biodiversity and the African Savanna: Problems of Definition and Interpretation. Journal of Biodiversity & Endangered Species, 2013, 01, .	0.1	0
450	Piecewise Disassembly of a Large-Herbivore Community across a Rainfall Gradient: The UHURU Experiment. PLoS ONE, 2013, 8, e55192.	1.1	80
451	Allometric Convergence in Savanna Trees and Implications for the Use of Plant Scaling Models in Variable Ecosystems. PLoS ONE, 2013, 8, e58241.	1.1	26
452	Intermediate Coupling between Aboveground and Belowground Biomass Maximises the Persistence of Grasslands. PLoS ONE, 2013, 8, e61149.	1.1	4
453	Revisiting the Two-Layer Hypothesis: Coexistence of Alternative Functional Rooting Strategies in Savannas. PLoS ONE, 2013, 8, e69625.	1.1	56
454	Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation. PLoS ONE, 2013, 8, e72348.	1.1	43
455	Local Perception of Risk to Livelihoods in the Semi-Arid Landscape of Southern Africa. Land, 2013, 2, 225-251.	1.2	19
456	Integrating Dendrochronology, Climate and Satellite Remote Sensing to Better Understand Savanna Landscape Dynamics in the Okavango Delta, Botswana. Land, 2013, 2, 637-655.	1.2	8
457	Disentangling the Relationships between Net Primary Production and Precipitation in Southern Africa Savannas Using Satellite Observations from 1982 to 2010. Remote Sensing, 2013, 5, 3803-3825.	1.8	55
458	Combined Spatial and Temporal Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna. Remote Sensing, 2013, 5, 6513-6538.	1.8	49
459	Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences, 2013, 10, 6657-6676.	1.3	158
460	Characterization of Structural Composition and Diversity of Vegetation in the Kpashimi Forest Reserve, Niger State, Nigeria. Journal of Geography and Geology, 2013, 5, .	0.4	3
461	A burning issue: community stability and alternative stable states in relation to fire. , 2013, , 63-74.		6
462	Tree-grass ratios in savannas – challenging paradigms. Frontiers of Biogeography, 2013, 5, .	0.8	0

#	Article	IF	CITATIONS
463	Forefronting the Socio-Ecological in Savanna Landscapes through Their Spatial and Temporal Contingencies. Land, 2013, 2, 452-471.	1.2	8
464	Grazing management systems and their effects on savanna ecosystem dynamics: A review. Journal of Ecology and the Natural Environment, 2013, 5, 88-94.	0.2	11
465	Exploring an extensive dataset to establish woody vegetation cover and composition in Kruger National Park for the late 1980s. Koedoe, 2014, 56, .	0.3	10
466	Situation de référence de la phytodiversité et la productivité herbacée d'un dispositif de suivi du fe de brousse au Niger. International Journal of Biological and Chemical Sciences, 2014, 8, 1165.	2U 0.1	1
467	Status of African baobab (<i>Adansonia digitata</i>) across Gonarezhou National Park, Zimbabwe. Journal of Applied Sciences and Environmental Management, 2014, 18, 129.	0.1	1
468	School Type, Parental Influence and Mathematics Attitudes-Achievement Relationship: A Quantile Analysis. Journal of Educational and Social Research, 2014, , .	0.1	0
469	How hot? How often? Getting the fire frequency and timing right for optimal management of woody cover and pasture composition in northern Australian grazed tropical savannas. Kidman Springs Fire Experiment 1993–2013. Rangeland Journal, 2014, 36, 323.	0.4	26
470	Tree Cover Bimodality in Savannas and Forests Emerging from the Switching between Two Fire Dynamics. PLoS ONE, 2014, 9, e91195.	1.1	9
471	Balancing on a threshold of alternate development paths: regime shift, traps and transformations. , 0, , 68-93.		0
472	Analyzing Vegetation Change in an Elephant-Impacted Landscape Using the Moving Standard Deviation Index. Land, 2014, 3, 74-104.	1.2	10
473	Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0). Geoscientific Model Development, 2014, 7, 821-845.	1.3	11
474	Bimodality of woody cover and biomass across the precipitation gradient in West Africa. Earth System Dynamics, 2014, 5, 257-270.	2.7	11
476	Spatial patterns of grassland–shrubland state transitions: a 74-year record on grazed and protected areas. , 2014, 24, 1421-1433.		27
477	Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa. Ecosphere, 2014, 5, 1-12.	1.0	25
478	The long-term effect of fire and grazing by wildlife on range condition in moist and arid savannas in the Kruger National Park. African Journal of Range and Forage Science, 2014, 31, 199-208.	0.6	23
479	Reply to Cerling et al Current Anthropology, 2014, 55, 473-474.	0.8	6
480	Stable Isotope Evidence for Hominin Environments in Africa. , 2014, , 157-167.		14
481	Responses to fire differ between <scp>S</scp> outh <scp>A</scp> frican and <scp>N</scp> orth <scp>A</scp> merican grassland communities. Journal of Vegetation Science, 2014, 25, 793-804.	1.1	44

~		~	
Citat	ION	KEP(ORT

#	Article	IF	CITATIONS
482	Woody cover assessments in a Southern African savanna, using hyper-temporal C-band ASAR-WS data. , 2014, , .		1
483	Can severe drought reverse woody plant encroachment in a temperate <scp>A</scp> ustralian woodland?. Journal of Vegetation Science, 2014, 25, 928-936.	1.1	9
484	Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity. Journal of Vegetation Science, 2014, 25, 1438-1449.	1.1	47
485	Ecological impacts of the <scp>l</scp> ate <scp>Q</scp> uaternary megaherbivore extinctions. New Phytologist, 2014, 201, 1163-1169.	3.5	129
486	Contrasting longâ€ŧerm records of biomass burning in wet and dry savannas of equatorial East Africa. Global Change Biology, 2014, 20, 2903-2914.	4.2	45
487	Grazing and neighborhood interactions limit woody encroachment in wet subtropical savannas. Basic and Applied Ecology, 2014, 15, 661-668.	1.2	16
488	Diversity and structure of woody vegetation across areas with different soils in Gonarezhou National Park, Zimbabwe. Southern Forests, 2014, 76, 111-116.	0.2	7
489	Increasing atmospheric <scp>CO</scp> ₂ overrides the historical legacy of multiple stable biome states in Africa. New Phytologist, 2014, 201, 908-915.	3.5	82
490	Analysis of stable states in global savannas: is the <scp>CART</scp> pulling the horse?. Global Ecology and Biogeography, 2014, 23, 259-263.	2.7	72
491	BIG FISH IN SMALL PONDS: MASSIVE STARS IN THE LOW-MASS CLUSTERS OF M83. Astrophysical Journal, 2014, 793, 4.	1.6	31
492	Role of Se vacancies on Shubnikov-de Haas oscillations in Bi ₂ Se ₃ : A combined magneto-resistance and positron annihilation study. Europhysics Letters, 2014, 108, 67008.	0.7	25
493	Effect of vegetation on soil C, N, P and other minerals in Oxisols at the forest-savanna transition zone of central Africa. Soil Science and Plant Nutrition, 2014, 60, 45-59.	0.8	27
495	Precipitation, fire and demographic bottleneck dynamics in Serengeti tree populations. Landscape Ecology, 2014, 29, 1613-1623.	1.9	23
496	Biomarkers for Terrestrial Plants and Climate. , 2014, , 395-416.		39
497	Predator-Prey Synergism in Plankton. , 2014, , 117-147.		0
498	Dynamic Landscape Modelling: The Quest for a Unifying Theory. Living Reviews in Landscape Research, 0, 8, .	0.0	7
499	Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna. Ecological Applications, 2014, 24, 741-749.	1.8	75
500	Exploring the tug of war between positive and negative interactions among savanna trees: Competition, dispersal, and protection from fire. Ecological Complexity, 2014, 17, 140-148.	1.4	20

#	Article	IF	CITATIONS
501	On the relationship between vegetation and climate in tropical and northern Africa. Theoretical and Applied Climatology, 2014, 115, 341-353.	1.3	26
502	Changing dominance of key plant species across a Mediterranean climate region: implications for fuel types and future fire regimes. Plant Ecology, 2014, 215, 83-95.	0.7	11
503	The dynamics of hollowing in annually burnt savanna trees and its effect on adult tree mortality. Plant Ecology, 2014, 215, 27-37.	0.7	23
504	Tree species from different functional groups respond differently to environmental changes during establishment. Oecologia, 2014, 174, 1345-1357.	0.9	34
505	Fire and grazing modify grass community response to environmental determinants in savannas: Implications for sustainable use. Agriculture, Ecosystems and Environment, 2014, 185, 197-207.	2.5	9
506	Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 2014, 35, 904-926.	1.3	8
507	Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Movement Ecology, 2014, 2, 2.	1.3	84
508	Cessation of Burning Dries Soils Long Term in a Tallgrass Prairie. Ecosystems, 2014, 17, 54-65.	1.6	13
509	Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology and Evolution, 2014, 29, 205-213.	4.2	423
510	The Carbon, Oxygen, and Clumped Isotopic Composition of Soil Carbonate in Archeology. , 2014, , 129-143.		7
511	Regional Variations in Biomass Distribution in Brazilian Savanna Woodland. Biotropica, 2014, 46, 125-138.	0.8	60
512	An ecohydrological framework for grass displacement by woody plants in savannas. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 192-206.	1.3	29
513	Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna. Oecologia, 2014, 174, 1107-1116.	0.9	7
514	Re-greening Sahel: 30years of remote sensing data and field observations (Mali, Niger). Remote Sensing of Environment, 2014, 140, 350-364.	4.6	253
515	Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science, 2014, 343, 548-552.	6.0	500
516	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	6.0	179
517	Evaluation of the Agro-Ecological Zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa. European Journal of Agronomy, 2014, 52, 157-165.	1.9	64
518	Perturbations in the carbon budget of the tropics. Global Change Biology, 2014, 20, 3238-3255.	4.2	145

#	Article	IF	CITATIONS
519	Fire regimes and woody biomass dynamics in Australian savannas. Journal of Biogeography, 2014, 41, 133-144.	1.4	60
520	Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu War of 1879: local or global drivers?. African Journal of Range and Forage Science, 2014, 31, 89-105.	0.6	18
521	Fire, percolation thresholds and the savanna forest transition: a neutral model approach. Journal of Ecology, 2014, 102, 1386-1393.	1.9	55
522	Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical <scp>A</scp> mericas. Journal of Ecology, 2014, 102, 1363-1373.	1.9	107
523	Effect of human disturbance and climatic variability on the population structure of Afzelia africana Sm. ex pers. (Fabaceae–Caesalpinioideae) at country broad-scale (Bénin, West Africa). South African Journal of Botany, 2014, 95, 165-173.	1.2	37
524	Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil. Ecological Modelling, 2014, 291, 224-232.	1.2	36
525	Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. Forest Ecology and Management, 2014, 331, 71-78.	1.4	16
526	Aborigineâ€managed forest, savanna and grassland: biome switching in montane eastern Australia. Journal of Biogeography, 2014, 41, 1492-1505.	1.4	25
527	Using earth observation-based dry season NDVI trends for assessment of changes in tree cover in the Sahel. International Journal of Remote Sensing, 2014, 35, 2493-2515.	1.3	44
528	Climate and CO 2 effects on the vegetation of southern tropical Africa over the last 37,000 years. Earth and Planetary Science Letters, 2014, 403, 407-417.	1.8	17
529	Climate variability as a dominant driver of post-disturbance savanna dynamics. Applied Geography, 2014, 53, 389-401.	1.7	16
530	Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 273-283.	1.0	47
531	Termite Mounds Increase Functional Diversity of Woody Plants in African Savannas. Ecosystems, 2014, 17, 808-819.	1.6	58
532	Transitions from grassland to savanna under drought through passive facilitation by grasses. Journal of Vegetation Science, 2014, 25, 937-946.	1.1	27
533	Charcoal re-combustion efficiency in tropical savannas. Geoderma, 2014, 219-220, 40-45.	2.3	34
534	Landscapeâ€scale variation in plant community composition of an African savanna from airborne species mapping. Ecological Applications, 2014, 24, 84-93.	1.8	53
535	Relating spatial patterns of fractional land cover to savanna vegetation morphology using multi-scale remote sensing in the Central Kalahari. International Journal of Remote Sensing, 2014, 35, 2082-2104.	1.3	16
536	Confronting problems of method in the study of sustainability. Forest Policy and Economics, 2014, 42, 42-50.	1.5	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
537	Eco-hydrology driven fire regime in savanna. Journal of Theoretical Biology, 2014, 355,	68-76.	0.8	7
538	Seasonality and facilitation drive tree establishment in a semi-arid floodplain savanna. 2014, 175, 261-271.	Oecologia,	0.9	19
539	Coexistence and environmental filtering of species-specific biomass in an African savar 2014, 95, 1579-1590.	ına. Ecology,	1.5	14
540	Interfacing ecology and policy: Developing an ecological framework and evidence base wildfire management in South Africa. Austral Ecology, 2014, 39, 424-436.	to support	0.7	8
541	Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangel of Arid Environments, 2014, 107, 49-56.	ands. Journal	1.2	38
542	Spatial analysis of human-induced vegetation productivity decline over eastern Africa u (2001–2011) of medium resolution MODIS time-series data. International Journal of Observation and Geoinformation, 2014, 33, 76-82.	ısing a decade Applied Earth	1.4	35
543	Do woody and herbaceous species compete for soil water across topographic gradient niche partitioning in a Neotropical savanna. South African Journal of Botany, 2014, 91,		1.2	39
544	Competitive effect and response of savanna tree seedlings: comparison of survival, gro associated functional traits. Journal of Vegetation Science, 2014, 25, 226-234.	wth and	1.1	17
545	Terrestrial and Inland Water Systems. , 0, , 271-360.			25
547	Fire regimes and variability in aboveground woody biomass in miombo woodland. Journ Geophysical Research G: Biogeosciences, 2014, 119, 1014-1029.	nal of	1.3	14
548	Soil clay influences <i>Acacia</i> encroachment in a South African grassland. Ecohydro 1474-1484.	ology, 2014, 7,	1.1	11
549	Quantifying the woody component of savanna vegetation along a density gradient in t Bushveld: a comparison of two adapted point-centered quarter methods. Rangeland Jo 91.	the Kalahari Jurnal, 2014, 36,	0.4	5
550	Analysis of stable states in global savannas: is the <scp>CART</scp> pulling the horse? Global Ecology and Biogeography, 2015, 24, 985-987.	'– a comment.	2.7	51
551	Spatial and temporal characteristics of rainfall in <scp>A</scp> frica: <scp>S</scp> um for temporal downscaling. Water Resources Research, 2015, 51, 2668-2679.	mary statistics	1.7	33
552	Relación clima-vegetación: adaptaciones de la comunidad del jarillal al clima semiár Nacional Lihué Calel, provincia de La Pampa, Argentina. Investigaciones Geográfica:		0.0	3
553	Top-down and bottom-up interactions determine tree and herbaceous layer dynamics i grasslands. , 2015, , 86-106.	in savanna		2
554	Bottom-up and top-down forces shaping wooded ecosystems: lessons from a cross-bic , 2015, , 107-133.	ome comparison.		3
555	Does fire limit tree biomass in Australian savannas?. International Journal of Wildland F	fire, 2015, 24, 1.	1.0	41

#	Article	IF	CITATIONS
556	The Pluviophone: Measuring Rainfall by Its Sound. Journal of Vibration and Acoustics, Transactions of the ASME, 2015, 137, .	1.0	6
557	A quantitative description of the interspecies diversity of belowground structure in savanna woody plants. Ecosphere, 2015, 6, 1-15.	1.0	21
558	Woody cover in wet and dry <scp>A</scp> frican savannas after six decades of experimental fires. Journal of Ecology, 2015, 103, 473-478.	1.9	31
559	Where are the â€~bad fires' in <scp>W</scp> est <scp>A</scp> frican savannas? Rethinking burning management through a space–time analysis in <scp>B</scp> urkina <scp>F</scp> aso. Geographical Journal, 2015, 181, 375-387.	1.6	18
560	No effects of fire, large herbivores and their interaction on regrowth of harvested trees in two West African savannahs. African Journal of Ecology, 2015, 53, 487-495.	0.4	5
561	Potential impact of large ungulate grazers on <scp>A</scp> frican vegetation, carbon storage and fire regimes. Global Ecology and Biogeography, 2015, 24, 991-1002.	2.7	37
562	Effects of drought and prescribed fire on energy exchange in longleaf pine ecosystems. Ecosphere, 2015, 6, 1-22.	1.0	17
563	When anthropogenicâ€related disturbances overwhelm demographic persistence mechanisms. Journal of Ecology, 2015, 103, 761-768.	1.9	4
564	Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics. Global Ecology and Biogeography, 2015, 24, 1040-1048.	2.7	28
565	Scaleâ€dependent responses of longleaf pine vegetation to fire frequency and environmental context across two decades. Journal of Ecology, 2015, 103, 998-1008.	1.9	19
566	Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction. Climate of the Past, 2015, 11, 1361-1374.	1.3	5
567	The length of the dry season may be associated with leaf scleromorphism in cerrado plants. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1691-1699.	0.3	21
568	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	1.3	55
569	Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?. Biogeosciences, 2015, 12, 2927-2951.	1.3	63
570	Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences, 2015, 12, 1833-1848.	1.3	88
571	Quantifying Environmental Limiting Factors on Tree Cover Using Geospatial Data. PLoS ONE, 2015, 10, e0114648.	1.1	12
572	Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India. PLoS ONE, 2015, 10, e0130566.	1.1	36
573	Patterns and Determinants of Habitat Occupancy by the Asian Elephant in the Western Ghats of Karnataka, India. PLoS ONE, 2015, 10, e0133233.	1.1	32

ARTICLE IF CITATIONS Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire 1.1 70 574 Frequency in African Savannas. PLoS ONE, 2015, 10, e0137857. Principle 3 –Manage slow variables and feedbacks., 2015, , 105-141. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon 576 1.4 54 rainforest. Ecological Complexity, 2015, 22, 65-75. Browsing intensity of herbaceous forbs across a semi-arid savanna catenal sequence. South African 1.2 Journal of Botany, 2015, 100, 69-74. Effects of Tree Harvest on the Stable-State Dynamics of Savanna and Forest. American Naturalist, 2015, 578 1.0 18 185, E153-E165. An operational framework for biome boundary research with examples from South Africa. South 579 1.2 African Journal of Botany, 2015, 101, 5-15. The role of environmental filters and functional traits in predicting the root biomass and 580 productivity in savannas and tropical seasonal forests. Forest Ecology and Management, 2015, 342, 1.4 22 49-55. A meta-analysis of the effects of communal livestock grazing on vegetation and soils in sub-Saharan 581 1.2 Africa. Journal of Arid Environments, 2015, 116, 18-24 Fire acting as an increasing spatial autocorrelation force: Implications for pattern formation and 582 1.4 17 ecological facilitation. Ecological Complexity, 2015, 21, 142-149. Resource availability shapes fireâ€filtered savannas. Journal of Vegetation Science, 2015, 26, 395-403. 1.1 Compositional decoupling of savanna canopy and understory tree communities in Serengeti. Journal 584 1.1 21 of Vegetation Science, 2015, 26, 385-394. Linking functional traits to impacts of invasive plant species: a case study. Plant Ecology, 2015, 216, 293-305. Long-Term Dynamics and Hotspots of Change in a Desert Grassland Plant Community. American 586 1.0 43 Naturalist, 2015, 185, E30-E43. Competitive interactions between established grasses and woody plant seedlings under elevated CO2 levels are mediated by soil water availability. Oecologia, 2015, 177, 499-506. 587 Improved models for estimating temporal changes in carbon sequestration in above-ground biomass 588 1.4 41 of mixed-species environmental plantings. Forest Ecology and Management, 2015, 338, 208-218. Tree-grass competition for soil water in arid and semiarid savannas: The role of rainfall intermittency. Water Resources Research, 2015, 51, 169-181. Grass competition and the savanna-grassland â€⁻treeline': A question of root gaps?. South African 590 1.2 30 Journal of Botany, 2015, 101, 91-97. Comparison of the driving forces of spring phenology among savanna landscapes by including 591 combined spatial and temporal heterogeneity. International Journal of Biometeorology, 2015, 59, 1.3 1373-1384.

#	Article	IF	CITATIONS
592	Environments and trypanosomiasis risks for early herders in the later Holocene of the Lake Victoria basin, Kenya. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3674-3679.	3.3	59
593	Did the elephant and giraffe mediate change in the prevalence of palatable species in an East African Acacia woodland?. Journal of Tropical Ecology, 2015, 31, 1-12.	0.5	9
594	Assessment of the mapping of fractional woody cover in southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-band images. Remote Sensing of Environment, 2015, 166, 138-153.	4.6	46
595	Ungulates as model systems for the study of disease processes in natural populations. Journal of Mammalogy, 2015, 96, 4-15.	0.6	30
596	Regional Case Studies. , 2015, , 210-264.		1
597	Facilitation in drylands: Modeling a neglected driver of savanna dynamics. Ecological Modelling, 2015, 304, 11-21.	1.2	16
598	Acacia tree density strongly affects N and P fluxes in savanna. Biogeochemistry, 2015, 123, 285-297.	1.7	10
599	Tree–grass competition varies across select savanna tree species: a potential role for rooting depth. Plant Ecology, 2015, 216, 577-588.	0.7	20
600	The ecophysiological performance of Vernonia polyanthes Less. (Asteraceae) in conserved and degraded forests in the Brazilian Cerrado. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	0
601	Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. Journal of Human Evolution, 2015, 83, 28-45.	1.3	76
602	The Human Ecology and Geography of Burning in an Unstable Savanna Environment. Journal of Ethnobiology, 2015, 35, 111.	0.8	17
603	Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Science of the Total Environment, 2015, 520, 1-12.	3.9	69
604	The effects of herbivory and nutrients on plant biomass and carbon storage in Vertisols of an East African savanna. Agriculture, Ecosystems and Environment, 2015, 208, 55-63.	2.5	9
605	Dorsal colour pattern variation in Eurasian mountain vipers (genus Montivipera): A trade-off between thermoregulation and crypsis. Zoologischer Anzeiger, 2015, 257, 1-9.	0.4	11
606	Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover. Remote Sensing of Environment, 2015, 161, 122-130.	4.6	59
607	Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Climate Change, 2015, 5, 823-829.	8.1	133
608	Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania. Carbon Balance and Management, 2015, 10, 18.	1.4	27
609	Postâ€ranching tree–grass interactions in secondary <i>Acacia zanzibarica</i> woodlands in coastal Tanzania – an experimental study. Applied Vegetation Science, 2015, 18, 297-310.	0.9	3

		CITATION REPORT	
#	Article	IF	CITATIONS
610	Fire in Australian savannas: from leaf to landscape. Global Change Biology, 2015, 21, 62-81.	4.2	88
611	Relation between rainfall intensity and savanna tree abundance explained by water use strategies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12992-12996.	3.3	44
612	Hydraulic lift as a determinant of tree–grass coexistence on savannas. New Phytologist, 2015, 207, 1038-1051.	3.5	63
613	Assessing the effect of management changes and environmental features on the spatio- temporal pattern of fire in an African Savanna. Journal for Nature Conservation, 2015, 28, 1-10.	0.8	10
614	MODIS derived vegetation greenness trends in African Savanna: Deconstructing and localizing the role of changing moisture availability, fire regime and anthropogenic impact. Remote Sensing of Environment, 2015, 169, 192-204.	4.6	38
615	Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology, 2015, 96, 2705-2714.	1.5	47
616	A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science, 2015, 350, 1056-1061.	6.0	194
617	The use of δ13C values of leporid teeth as indicators of past vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418, 245-260.	1.0	6
618	Intercontinental divergence in the climate envelope of major plant biomes. Global Ecology and Biogeography, 2015, 24, 324-334.	2.7	32
619	Effects of vegetation on soil microbial C, N, and P dynamics in a tropical forest and savanna of Central Africa. Applied Soil Ecology, 2015, 87, 91-98.	2.1	22
620	Fire and simulated herbivory have antagonistic effects on resistance of savanna grasslands to alien shrub invasion. Journal of Vegetation Science, 2015, 26, 114-122.	1.1	14
621	Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology, 2015, 96, 1275-1285.	1.5	83
622	Rangeland Degradation in a Semiâ€Arid Communal Savannah of Swaziland: Long–Term DIPâ€Tank Use Effects on Woody Plant Structure, Cover and their Indigenous Use in Three Soil Types. Land Degradation and Development, 2015, 26, 311-323.	1.8	11
623	Wavelet-based detection of bush encroachment in a savanna using multi-temporal aerial photographs and satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 209-216.	1.4	16
624	The ecohydrology of ecosystem transitions: a metaâ€analysis. Ecohydrology, 2015, 8, 911-921.	1.1	19
625	The climatic imprint of bimodal distributions in vegetation cover for western Africa. Biogeosciences, 2016, 13, 3343-3357.	1.3	4
626	A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences, 2016, 13, 3245-3265.	1.3	32
627	Dryland Vegetation Functional Response to Altered Rainfall Amounts and Variability Derived from Satellite Time Series Data. Remote Sensing, 2016, 8, 1026.	1.8	12

#	Article	IF	CITATIONS
628	Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences, 2016, 13, 761-779.	1.3	32
629	Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 2016, 13, 3717-3734.	1.3	36
631	The contribution of trees and grasses to productivity of an Australian tropical savanna. Biogeosciences, 2016, 13, 2387-2403.	1.3	35
632	Evaluating the Potential of PROBA-V Satellite Image Time Series for Improving LC Classification in Semi-Arid African Landscapes. Remote Sensing, 2016, 8, 987.	1.8	10
633	Bush Encroachment Mapping for Africa: Multi-Scale Analysis with Remote Sensing and GIS. SSRN Electronic Journal, 0, , .	0.4	4
634	Spatial Variation in Tree Density and Estimated Aboveground Carbon Stocks in Southern Africa. Forests, 2016, 7, 57.	0.9	4
635	Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna. Forests, 2016, 7, 294.	0.9	23
636	Utilizing Multiple Lines of Evidence to Determine Landscape Degradation within Protected Area Landscapes: A Case Study of Chobe National Park, Botswana from 1982 to 2011. Remote Sensing, 2016, 8, 623.	1.8	14
637	Hyper-Temporal C-Band SAR for Baseline Woody Structural Assessments in Deciduous Savannas. Remote Sensing, 2016, 8, 661.	1.8	17
638	Rapid Leaf Deployment Strategies in a Deciduous Savanna. PLoS ONE, 2016, 11, e0157833.	1.1	24
639	Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth System Dynamics, 2016, 7, 627-647.	2.7	46
640	The role of water and fire in driving tree dynamics in Australian savannas. Journal of Ecology, 2016, 104, 828-840.	1.9	5
641	Decadal changes in mean annual rainfall drive longâ€ŧerm changes in bushâ€encroached southern African savannas. Austral Ecology, 2016, 41, 690-700.	0.7	5
642	Grass Physiognomic Trait Variation in African Herbaceous Biomes. Biotropica, 2016, 48, 311-320.	0.8	4
643	Multidimensional structure of grass functional traits among species and assemblages. Journal of Vegetation Science, 2016, 27, 1047-1060.	1.1	25
644	Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biological Conservation, 2016, 201, 60-68.	1.9	42
645	Pyrogenic fuels produced by savanna trees can engineer humid savannas. Ecological Monographs, 2016, 86, 352-372.	2.4	52
646	Climate and the distribution of grasses in West Africa. Journal of Vegetation Science, 2016, 27, 306-317.	1.1	30

#	Article	IF	CITATIONS
647	Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti. Journal of Ecology, 2016, 104, 409-418.	1.9	55
648	Termite mounds alter the spatial distribution of African savanna tree species. Journal of Biogeography, 2016, 43, 301-313.	1.4	54
649	Impact of Community Conservation Management on Herbaceous Layer and Soil Nutrients in a Kenyan Semiâ€Arid Savannah. Land Degradation and Development, 2016, 27, 1820-1830.	1.8	24
650	Different drivers create spatial vegetation cover and vertical structure in semi-arid African savannas. African Journal of Range and Forage Science, 2016, 33, 91-100.	0.6	2
651	Understanding nutrient dynamics in an African savanna: local biotic interactions outweigh a major regional rainfall gradient. Journal of Ecology, 2016, 104, 913-923.	1.9	17
652	Trends toward an earlier peak of the growing season in Northern Hemisphere midâ€ l atitudes. Global Change Biology, 2016, 22, 2852-2860.	4.2	77
653	Nutrient limitation in tropical savannas across multiple scales andÂmechanisms. Ecology, 2016, 97, 313-324.	1.5	65
654	Deciphering rangeland transformation—complex dynamics obscure interpretations of woody plant encroachment. Landscape Ecology, 2016, 31, 2433-2444.	1.9	6
655	The effect of fire on tree–grass coexistence in savannas: a simulation study. International Journal of Wildland Fire, 2016, 25, 137.	1.0	13
656	A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic south–eastern Australia. Australian Journal of Botany, 2016, 64, 626.	0.3	8
657	Did early logging or changes in disturbance regimes promote high tree densities in river red gum forests?. Australian Journal of Botany, 2016, 64, 530.	0.3	10
658	Ecological legacies of civil war: 35â€year increase in savanna tree cover following wholesale largeâ€mammal declines. Journal of Ecology, 2016, 104, 79-89.	1.9	90
659	Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient—The effect of including plant heterogeneity into an ecohydrological savanna model. Ecological Modelling, 2016, 325, 47-56.	1.2	16
660	Tree–grass interaction dynamics and pulsed fires: Mathematical and numerical studies. Applied Mathematical Modelling, 2016, 40, 6165-6197.	2.2	10
661	The Ecology of Large Herbivores in South and Southeast Asia. Ecological Studies, 2016, , .	0.4	12
662	Retrieving understorey dynamics in the Australian tropical savannah from time series decomposition and linear unmixing of MODIS data. International Journal of Remote Sensing, 2016, 37, 1445-1475.	1.3	17
663	Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sensing of Environment, 2016, 185, 221-232.	4.6	107
664	Current and Future Fire Regimes and Their Influence on Natural Vegetation in Ethiopia. Ecosystems, 2016, 19, 369-386.	1.6	25

#	Article	IF	CITATIONS
666	Network based early warning indicators of vegetation changes in a land–atmosphere model. Ecological Complexity, 2016, 26, 68-78.	1.4	12
667	Shrub control by browsing: Targeting adult plants. Acta Oecologica, 2016, 70, 121-128.	0.5	2
668	Woody Encroachment of a Riparian Corridor in a Tallgrass Prairie: Dendrochronological Evidence from Kansas. Papers in Applied Geography, 2016, 2, 1-8.	0.8	8
669	Spiny plants, mammal browsers, and the origin of African savannas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5572-9.	3.3	132
670	Stable isotope dietary reconstructions of herbivore enamel reveal heterogeneous savanna ecosystems in the Plio-Pleistocene Malawi Rift. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 170-181.	1.0	14
671	Understory Responses to Mechanical Treatment of Pinyon-Juniper in Northwestern Colorado. Rangeland Ecology and Management, 2016, 69, 351-359.	1.1	26
672	Effects of rainfall intensity and intermittency on woody vegetation cover and deep soil moisture in dryland ecosystems. Journal of Hydrology, 2016, 543, 270-282.	2.3	39
673	Analysis of the pattern of potential woody cover in Texas savanna. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 527-531.	1.4	13
674	Change in woody cover at representative sites in the Kruger National Park, South Africa, based on historical imagery. SpringerPlus, 2016, 5, 1417.	1.2	7
675	The future distribution of the savannah biome: model-based and biogeographic contingency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150311.	1.8	22
676	Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150305.	1.8	126
677	Many shades of green: the dynamic tropical forest–savannah transition zones. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150308.	1.8	135
678	Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150437.	1.8	150
679	The impact of the megafauna extinctions on savanna woody cover in South America. Ecography, 2016, 39, 213-222.	2.1	57
680	Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover?. Global Ecology and Biogeography, 2016, 25, 16-25.	2.7	11
681	Geographic variation in the ecological effects of extinction of Australia's Pleistocene megafauna. Ecography, 2016, 39, 109-116.	2.1	24
682	Ecosystemâ€scale effects of megafauna in African savannas. Ecography, 2016, 39, 240-252.	2.1	81
683	The sign and magnitude of tree–grass interaction along a global environmental gradient. Global Ecology and Biogeography, 2016, 25, 1510-1519.	2.7	22

#	Article	IF	CITATIONS
684	Mammalian herbivores, grass height and rainfall drive termite activity at different spatial scales in an African savanna. Biotropica, 2016, 48, 656-666.	0.8	8
685	The relationship between satellite-derived indices and species diversity across African savanna ecosystems. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 306-317.	1.4	15
688	Utilization of the SAVANNA model to analyze future patterns of vegetation cover in Kruger National Park under changing climate. Ecological Modelling, 2016, 342, 147-160.	1.2	20
689	Vegetation, herbivores and fires in savanna ecosystems: A network perspective. Ecological Complexity, 2016, 28, 36-46.	1.4	12
690	CO2 and fire influence tropical ecosystem stability in response to climate change. Scientific Reports, 2016, 6, 29587.	1.6	24
691	Hippopotamus (H. amphibius) diet change indicates herbaceous plant encroachment following megaherbivore population collapse. Scientific Reports, 2016, 6, 32807.	1.6	15
692	Habitat associations of birds at Mara Naboisho Conservancy, Kenya. Ostrich, 2016, 87, 225-230.	0.4	5
693	Shifts and oscillations in a forest-grassland ecosystem affected by fire. AIP Conference Proceedings, 2016, , .	0.3	0
694	Bifurcation analysis of a forest-grassland ecosystem. AIP Conference Proceedings, 2016, , .	0.3	0
695	Bistability, Spatial Interaction, and the Distribution of Tropical Forests and Savannas. Ecosystems, 2016, 19, 1080-1091.	1.6	63
696	Patterns of forest composition and their long term environmental drivers in the tropical dry forest transition zone of southern Africa. Forest Ecosystems, 2016, 3, .	1.3	14
697	No evidence of intrinsic spatial processes driving Neotropical savanna vegetation on different substrates. Biotropica, 2016, 48, 433-442.	0.8	18
698	Can ecological land classification increase the utility of vegetation monitoring data?. Ecological Indicators, 2016, 69, 657-666.	2.6	8
699	Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics. Remote Sensing of Environment, 2016, 183, 215-225.	4.6	87
700	Buffering the savanna: fire regimes and disequilibrium ecology in West Africa. Plant Ecology, 2016, 217, 583-596.	0.7	20
701	Neogene biomarker record of vegetation change in eastern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6355-6363.	3.3	111
702	Climate-induced morphological variation of black plum (Vitex doniana Sw.) in Benin, West Africa. Genetic Resources and Crop Evolution, 2016, 63, 1073-1084.	0.8	18
703	Interpreting woody cover data in tropical and subtropical areas: Comparison between the equilibrium and the non-equilibrium assumption. Ecological Complexity, 2016, 25, 60-67.	1.4	5

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
704	Optimal vegetation cover in the Horqin Sands, China. Ecohydrology, 2016, 9, 700-711.	1.1	20
705	Historical Landâ€use and Vegetation Change in Northern Kwazuluâ€Natal, South Africa. Land Degradation and Development, 2016, 27, 1691-1699.	1.8	14
706	Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology, 2016, 53, 1597-1603.	1.9	44
707	Landâ€use change outweighs projected effects of changing rainfall on tree cover in subâ€Saharan Africa. Global Change Biology, 2016, 22, 3013-3025.	4.2	45
708	Seasonality of hydraulic redistribution by trees to grasses and changes in their waterâ€source use that change tree–grass interactions. Ecohydrology, 2016, 9, 218-228.	1.1	70
709	Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. Journal of Arid Environments, 2016, 125, 73-79.	1.2	47
710	A crowding-dependent population model for woody weeds – Where size does matter. Environmental Modelling and Software, 2016, 76, 108-116.	1.9	0
711	Trees, grass, and fire in humid savannas—The importance of life history traits and spatial processes. Ecological Modelling, 2016, 320, 135-144.	1.2	20
712	Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi). Journal of Human Evolution, 2016, 90, 163-175.	1.3	24
713	Association of ecological factors with Rift Valley fever occurrence and mapping of risk zones in Kenya. International Journal of Infectious Diseases, 2016, 46, 49-55.	1.5	21
714	A bibliometric analysis to illustrate the role of an embedded research capability in South African National Parks. Scientometrics, 2016, 107, 185-212.	1.6	16
715	Contribution of Acacia senegal to biomass and soil carbon in plantations of varying age in Sudan. Forest Ecology and Management, 2016, 368, 71-80.	1.4	16
716	Silvopastoral Systems in Southern South America. Advances in Agroforestry, 2016, , .	0.8	23
717	Land-use changes and the invasion dynamics of shrubs in Baringo. Journal of Eastern African Studies, 2016, 10, 111-129.	0.5	21
718	Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecology and Management, 2016, 363, 212-217.	1.4	35
719	Bibliometric analysis of ecosystem monitoring-related research in Africa: implications for ecological stewardship and scientific collaboration. International Journal of Sustainable Development and World Ecology, 2016, 23, 412-422.	3.2	19
720	Woody plant cover estimation in drylands from Earth Observation based seasonal metrics. Remote Sensing of Environment, 2016, 172, 28-38.	4.6	89
721	Mineral nutrition and specific leaf area of plants under contrasting long-term fire frequencies: a case study in a mesic savanna in Australia. Trees - Structure and Function, 2016, 30, 329-335.	0.9	10

#	Article	IF	CITATIONS
722	Changes in vegetation persistence across global savanna landscapes, 1982–2010. Journal of Land Use Science, 2016, 11, 7-32.	1.0	23
723	Consumption threshold used to investigate stability and ecological dominance in consumer-resource dynamics. Ecological Modelling, 2016, 319, 155-162.	1.2	10
724	Detection of subtle deforestation due to logging using satellite remote sensing in wet and dry savanna woodlands of Southern Africa. Geocarto International, 2017, 32, 514-530.	1.7	7
725	A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality. Mathematics and Computers in Simulation, 2017, 133, 265-297.	2.4	12
726	Landscape genetics indicate recently increased habitat fragmentation in African forestâ€associated chafers. Global Change Biology, 2017, 23, 1988-2004.	4.2	8
727	Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch. Ecology, 2017, 98, 940-951.	1.5	28
728	The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia. Ecosystem Services, 2017, 27, 193-202.	2.3	49
729	Determinants of woody encroachment and cover in African savannas. Oecologia, 2017, 183, 939-951.	0.9	89
730	Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form. Oecologia, 2017, 183, 953-962.	0.9	28
731	The Enemy of My Enemy Hypothesis: Why Coexisting with Grasses May Be an Adaptive Strategy for Savanna Trees. Ecosystems, 2017, 20, 1278-1295.	1.6	14
732	Effects of revegetation on soil moisture under different precipitation gradients in the Loess Plateau, China. Hydrology Research, 2017, 48, 1378-1390.	1.1	22
733	Alternative stable states and spatial indicators of critical slowing down along a spatial gradient in a savanna ecosystem. Clobal Ecology and Biogeography, 2017, 26, 638-649.	2.7	58
734	Spatial scales influence long-term response of herbivores to prescribed burning in a savanna ecosystem. International Journal of Wildland Fire, 2017, 26, 287.	1.0	8
735	Global Spatial–Temporal Variability in Terrestrial Productivity and Phenology Regimes between 2000 and 2012. Annals of the American Association of Geographers, 2017, 107, 1519-1537.	1.5	5
736	Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa. Plant and Soil, 2017, 417, 523-533.	1.8	10
737	Horses and Megafauna Extinction. The Latin American Studies Book Series, 2017, , 119-133.	0.1	0
738	Fossil Horses of South America. The Latin American Studies Book Series, 2017, , .	0.1	15
739	Savannazation of African Tropical Forest Critically Changed the Soil Nutrient Dynamics in East Cameroon. , 2017, , 165-185.		0

#	Article	IF	Citations
740	The Abiotic Template for the Hluhluwe-iMfolozi Park's Landscape Heterogeneity. , 2017, , 33-55.		12
741	Long-Term Vegetation Dynamics within the Hluhluwe iMfolozi Park. , 0, , 56-79.		3
742	Woody Plant Traits and Life-History Strategies across Disturbance Gradients and Biome Boundaries in the Hluhluwe-iMfolozi Park. , 2017, , 189-210.		6
743	Interactions between Fire and Ecosystem Processes. , 2017, , 233-262.		14
744	Variable rainfall has a greater effect than fire on the demography of the dominant tree in a semiâ€arid <i>Eucalyptus</i> Âsavanna. Austral Ecology, 2017, 42, 772-782.	0.7	20
745	A coupled vegetation/sediment transport model for dryland environments. Journal of Geophysical Research F: Earth Surface, 2017, 122, 875-900.	1.0	41
746	Calibration of hydroclimate proxies in freshwater bivalve shells from Central and West Africa. Geochimica Et Cosmochimica Acta, 2017, 208, 41-62.	1.6	32
747	Landscape degradation may contribute to large-scale die-offs of Euphorbia ingens in South Africa. South African Journal of Botany, 2017, 111, 144-152.	1.2	5
748	A phylogeny of openâ€habitat lizards (Squamata: Lacertidae: <i>Ophisops</i>) supports the antiquity of Indian grassy biomes. Journal of Biogeography, 2017, 44, 2021-2032.	1.4	36
749	Spatial heterogeneity of subsurface soil texture drives landscape-scale patterns of woody patches in a subtropical savanna. Landscape Ecology, 2017, 32, 915-929.	1.9	22
750	Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecological Monographs, 2017, 87, 363-378.	2.4	47
751	The Effects of Interannual Rainfall Variability on Tree–Grass Composition Along Kalahari Rainfall Gradient. Ecosystems, 2017, 20, 975-988.	1.6	24
752	Resource selection and landscape change reveal mechanisms suppressing population recovery for the world's most endangered antelope. Journal of Applied Ecology, 2017, 54, 1720-1729.	1.9	17
753	Rehabilitation of community-owned, mixed-use rangelands: lessons from the Ewaso ecosystem in Kenya. Plant Ecology, 2017, 218, 23-37.	0.7	12
754	Using <scp>GIS</scp> and remote sensing to explore the influence of physical environmental factors and historical land use on bushland structure. African Journal of Ecology, 2017, 55, 477-486.	0.4	5
755	Influence of abandoned cattle enclosures on plant assemblages and herbivory in a semiâ€∎rid savanna. Ecological Research, 2017, 32, 1023-1033.	0.7	7
756	Invasibility of a fire-maintained savanna–wetland gradient by non-native, woody plant species. Forest Ecology and Management, 2017, 405, 229-237.	1.4	10
757	Front propagation and effect of memory in stochastic desertification models with an absorbing state. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 083404.	0.9	1

#	ARTICLE	IF	CITATIONS
758	Termites and large herbivores influence seed removal rates in an African savanna. Ecology, 2017, 98, 3165-3174.	1.5	4
759	Strong positive effects of termites on savanna bird abundance and diversity are amplified by large herbivore exclusion. Ecology and Evolution, 2017, 7, 10079-10088.	0.8	4
760	Woody structure facilitates invasion of woody plants by providing perches for birds. Ecology and Evolution, 2017, 7, 8032-8039.	0.8	12
761	The eco-hydrological threshold for evaluating the stability of sand-binding vegetation in different climatic zones. Ecological Indicators, 2017, 83, 404-415.	2.6	24
762	Soils and fire jointly determine vegetation structure in an African savanna. New Phytologist, 2017, 216, 1151-1160.	3.5	62
763	Termite diversity along a land use intensification gradient in a semi-arid savanna. Journal of Insect Conservation, 2017, 21, 801-812.	0.8	28
764	The early/late fire dichotomy. Progress in Physical Geography, 2017, 41, 68-94.	1.4	30
765	Exploring survival strategies of African Savanna trees by partial ordering techniques. Ecological Informatics, 2017, 42, 14-23.	2.3	6
766	Assessing effect of rainfall on rate of alien shrub expansion in a southern African savanna. African Journal of Range and Forage Science, 2017, 34, 39-44.	0.6	8
767	Termite mounds vary in their importance as sources of vegetation heterogeneity across savanna landscapes. Journal of Vegetation Science, 2017, 28, 1008-1017.	1.1	28
768	Effects of climate, habitat and land use on the cover and diversity of the savanna herbaceous layer in Burkina Faso, West Africa. Folia Geobotanica, 2017, 52, 129-142.	0.4	5
769	Defining the fire trap: Extension of the persistence equilibrium model in mesic savannas. Austral Ecology, 2017, 42, 890-899.	0.7	19
770	Tree cover in Central Africa: determinants and sensitivity under contrasted scenarios of global change. Scientific Reports, 2017, 7, 41393.	1.6	13
771	Modelled responses of the Kalahari Desert to 21st century climate and land use change. Scientific Reports, 2017, 7, 3887.	1.6	23
772	Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere, 2017, 8, e01687.	1.0	29
773	Modelling tree-grass coexistence in water-limited ecosystems. Ecological Modelling, 2017, 360, 387-398.	1.2	6
774	Mid-late Holocene vegetation response to climatic drivers and biotic disturbances in the Banni grasslands of western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 869-878.	1.0	26
775	Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 77-91.	4.9	52

#	Article	IF	CITATIONS
776	The consequences of replacing wildlife with livestock in Africa. Scientific Reports, 2017, 7, 17196.	1.6	102
777	Soil phosphorus of stable fraction differentially associate with carbon in the tropical forest and savanna of eastern Cameroon. Soil Science and Plant Nutrition, 2017, 63, 616-627.	0.8	6
778	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	6.0	57
779	Functional traits of expanding, thicketâ€forming shrubs: contrasting strategies between exotic and native species. Ecosphere, 2017, 8, e01918.	1.0	4
780	Rare, Intense, Big fires dominate the global tropics under drier conditions. Scientific Reports, 2017, 7, 14374.	1.6	30
781	Aridity and hominin environments. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7331-7336.	3.3	127
782	Seed production, infestation, and viability in Acacia tortilis (synonym: Vachellia tortilis) and Acacia robusta (synonym: Vachellia robusta) across the Serengeti rainfall gradient. Plant Ecology, 2017, 218, 909-922.	0.7	7
783	Late Holocene palaeoenvironmental reconstruction from Mpumalanga Province (South Africa) inferred from geochemical and biogenic proxies. Review of Palaeobotany and Palynology, 2017, 246, 264-277.	0.8	11
784	Water flow, ecological dynamics, and management in the lower Limpopo Valley: a longâ€ŧerm view. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1228.	2.8	7
785	Fire prevents woody encroachment only at higherâ€thanâ€historical frequencies in a South African savanna. Journal of Applied Ecology, 2017, 54, 955-962.	1.9	68
786	Determinants of patchiness of woody vegetation in an African savanna. Journal of Vegetation Science, 2017, 28, 93-104.	1.1	10
787	Humans and elephants as treefall drivers in African savannas. Ecography, 2017, 40, 1274-1284.	2.1	28
788	The contribution of termite mounds to landscapeâ€scale variation in vegetation in a West African national park. Journal of Vegetation Science, 2017, 28, 105-116.	1.1	17
789	Mechanisms of bush encroachment and its inter-connection with rangeland degradation in semi-arid African ecosystems: a review. Journal of Arid Land, 2017, 9, 299-312.	0.9	42
790	Global Change and Terrestrial Ecosystems. Springer Geography, 2017, , 205-232.	0.3	0
791	Legacy effects of top–down disturbances on woody plant species composition in semiâ€arid systems. Austral Ecology, 2017, 42, 72-83.	0.7	1
792	Woody plant biomass and carbon exchange depend on elephantâ€fire interactions across a productivity gradient in African savanna. Journal of Ecology, 2017, 105, 111-121.	1.9	40
793	An impulsive modelling framework of fire occurrence in a size-structured model of tree–grass interactions for savanna ecosystems. Journal of Mathematical Biology, 2017, 74, 1425-1482.	0.8	14

# 794	ARTICLE Savanna woody encroachment is widespread across three continents. Global Change Biology, 2017, 23, 235-244.	IF 4.2	Citations
795	An ecohydrological framework to explain shifts in vegetation organization across climatological gradients. Ecohydrology, 2017, 10, e1809.	1.1	10
796	Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna. Ecology, 2017, 98, 478-488.	1.5	20
797	Spatial pattern analysis of encroaching tree species (<i>Vachellia karroo</i> and <i>Vachellia) Tj ETQq1 1 0.78431</i>	4 rgBT /C)verlock 10 T
798	Assessing the Roles of Fire Frequency and Precipitation in Determining Woody Plant Expansion in Central U.S. Grasslands. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2683-2698.	1.3	11
799	Mapping regions with different dynamics in a forest/grassland model in presence of fire. AIP Conference Proceedings, 2017, , .	0.3	0
800	Climate seasonality, fire and global patterns of tree cover. Frontiers of Biogeography, 2017, 9, .	0.8	5
801	Land Cover Change in Northern Botswana: The Influence of Climate, Fire, and Elephants on Semi-Arid Savanna Woodlands. Land, 2017, 6, 73.	1.2	35
802	Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015. Remote Sensing, 2017, 9, 5.	1.8	26
803	Scrubbing Up: Multi-Scale Investigation of Woody Encroachment in a Southern African Savannah. Remote Sensing, 2017, 9, 419.	1.8	24
804	Response of Land Surface Phenology to Variation in Tree Cover during Green-Up and Senescence Periods in the Semi-Arid Savanna of Southern Africa. Remote Sensing, 2017, 9, 689.	1.8	31
805	Patterns in woody vegetation structure across African savannas. Biogeosciences, 2017, 14, 3239-3252.	1.3	29
806	A systematic review of elephant impact across Africa. PLoS ONE, 2017, 12, e0178935.	1.1	41
807	Body-size structure of Central Iberian mammal fauna reveals semidesertic conditions during the middle Miocene Global Cooling Event. PLoS ONE, 2017, 12, e0186762.	1.1	8
808	Effect of rangeland rehabilitation on the herbaceous species composition and diversity in Suswa catchment, Narok County, Kenya. Ecological Processes, 2017, 6, .	1.6	10
809	Bush encroachment detection in Africa $\hat{a} \in$ " A multi-scale approach. , 2017, , .		0
810	Estimating Savanna Clumping Index Using Hemispherical Photographs Integrated with High Resolution Remote Sensing Images. Remote Sensing, 2017, 9, 52.	1.8	7
811	Biological properties of disturbed and undisturbed Cerrado sensu stricto from Northeast Brazil. Brazilian Journal of Biology, 2017, 77, 16-21.	0.4	3

#	ARTICLE Ecology of Woody Plants in African Savanna Ecosystems. , 2017, , .	IF	CITATIONS
813	Challenges and opportunities in land surface modelling of savanna ecosystems. Biogeosciences, 2017, 14, 4711-4732.	1.3	45
814	Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecology Letters, 2018, 21, 557-567.	3.0	55
816	Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant and Soil, 2018, 426, 1-15.	1.8	34
817	Forbs, grasses, and grassland fire behaviour. Journal of Ecology, 2018, 106, 1983-2001.	1.9	45
818	Spatial patterns in the global distributions of savanna and forest. Global Ecology and Biogeography, 2018, 27, 792-803.	2.7	33
819	Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nature Geoscience, 2018, 11, 328-333.	5.4	94
820	Agroforestry in the Sahel. Nature Geoscience, 2018, 11, 296-297.	5.4	10
821	Cyclones, fire, and termites: The drivers of tree hollow abundance in northern Australia's mesic tropical savanna. Forest Ecology and Management, 2018, 419-420, 146-159.	1.4	27
822	Effect of Climoedaphic Heterogeneity on Woody Plant Dominance in the Argentine Caldenal Region. Rangeland Ecology and Management, 2018, 71, 409-416.	1.1	4
823	Strong competitive effects of African savanna C4 grasses on tree seedlings do not support rooting differentiation. Journal of Tropical Ecology, 2018, 34, 65-73.	0.5	3
824	Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data. International Journal of Remote Sensing, 2018, 39, 2718-2745.	1.3	25
825	Assessing the sustainability of fuelwood production and its potential impact on REDD+ in Burkina Faso. International Journal of Environmental Studies, 2018, 75, 186-200.	0.7	4
826	The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nature Ecology and Evolution, 2018, 2, 241-246.	3.4	67
827	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
828	On the relationship between fire regime and vegetation structure in the tropics. New Phytologist, 2018, 218, 153-166.	3.5	64
829	An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sensing of Environment, 2018, 206, 156-173.	4.6	167
830	Tree cover shows strong sensitivity to precipitation variability across the global tropics. Global Ecology and Biogeography, 2018, 27, 450-460.	2.7	35

#	Article	IF	CITATIONS
831	Biomass valorization in the management of woody plant invaders: The case of Pittosporum undulatum in the Azores. Biomass and Bioenergy, 2018, 109, 155-165.	2.9	12
832	Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000†years ago to present. Earth-Science Reviews, 2018, 178, 322-378.	4.0	129
833	Convene to combat gender bias. Nature Geoscience, 2018, 11, 297-297.	5.4	1
834	Waxing and waning of forests: Late Quaternary biogeography of southeast Africa. Global Change Biology, 2018, 24, 2939-2951.	4.2	39
835	Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. Journal of Biogeography, 2018, 45, 1209-1218.	1.4	26
836	Emerging frameworks for understanding and mitigating woody plant encroachment in grassy biomes. Current Opinion in Environmental Sustainability, 2018, 32, 46-52.	3.1	41
838	Large decline of birds in Sahelian rangelands due to loss of woody cover and soil seed bank. Journal of Arid Environments, 2018, 155, 1-15.	1.2	25
839	Effect of original vegetation on nutrient loss patterns from Oxisol cropland in forests and adjacent savannas of Cameroon. Agriculture, Ecosystems and Environment, 2018, 257, 132-143.	2.5	10
840	An innovative approach to disentangling the effect of management and environment on tree cover and density of protected areas in African savanna. Forest Ecology and Management, 2018, 419-420, 1-9.	1.4	5
841	Multi-proxy evidence for an arid shift in the climate and vegetation of the Banni grasslands of western India during the mid- to late-Holocene. Holocene, 2018, 28, 1057-1070.	0.9	18
842	Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139, 88-102.	4.9	46
843	Determinants of savanna-fire dynamics in the eastern Lake Victoria catchment (western Kenya) during the last 1200 years. Quaternary International, 2018, 488, 67-80.	0.7	17
844	Regeneration after fire in campo rupestre: Short- and long-term vegetation dynamics. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 191-200.	0.6	33
845	Spatially explicit modelling of tree–grass interactions in fire-prone savannas: A partial differential equations framework. Ecological Complexity, 2018, 36, 290-313.	1.4	14
846	Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and Forest Meteorology, 2018, 249, 520-533.	1.9	257
847	An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: Outcomes of fire suppression policies. Journal of Environmental Management, 2018, 205, 40-49.	3.8	30
848	Prediction and scale in savanna ecosystems. New Phytologist, 2018, 219, 52-57.	3.5	49
849	The impact of inter-annual rainfall variability on African savannas changes with mean rainfall. Journal of Theoretical Biology, 2018, 437, 92-100.	0.8	12

#	Article	IF	CITATIONS
850	Lowland forest collapse and early human impacts at the end of the African Humid Period at Lake Edward, equatorial East Africa. Quaternary Research, 2018, 89, 7-20.	1.0	20
851	Soil organic carbon in savannas decreases with anthropogenic climate change. Geoderma, 2018, 309, 7-16.	2.3	21
852	Remotely sensed canopy height reveals three pantropical ecosystem states: aÂcomment. Ecology, 2018, 99, 231-234.	1.5	3
853	Paleodietary change and its implications for aridity indices derived from δ180 of herbivore tooth enamel. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 571-578.	1.0	37
854	Assessment of prescribed fire and cutting as means of controlling the invasion of subâ€ a lpine grasslands by <i>Echinospartum horridum</i> . Applied Vegetation Science, 2018, 21, 198-206.	0.9	11
855	Zooming in on coarse plant functional types—simulated response of savanna vegetation composition in response to aridity and grazing. Theoretical Ecology, 2018, 11, 161-173.	0.4	9
856	Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length. Environmental Research Letters, 2018, 13, 025013.	2.2	26
857	Estimating tree species diversity in the savannah using NDVI and woody canopy cover. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 106-115.	1.4	32
858	Herbivory and drought generate shortâ€ŧerm stochasticity and longâ€ŧerm stability in a savanna understory community. Ecological Applications, 2018, 28, 323-335.	1.8	25
859	Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna. Oecologia, 2018, 186, 269-280.	0.9	29
860	Estimation of Woody and Herbaceous Leaf Area Index in Subâ€Saharan Africa Using MODIS Data. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3-17.	1.3	20
861	Low resource availability limits weed invasion of tropical savannas. Biological Invasions, 2018, 20, 861-875.	1.2	9
862	Disturbance feedbacks on the height of woody vegetation in a savannah: a multi-plot assessment using an unmanned aerial vehicle (UAV). International Journal of Remote Sensing, 2018, 39, 4761-4785.	1.3	21
863	The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology, 2018, 42, 324-338.	0.7	20
864	Vegetation dynamics within the savanna biome in southern Mozambique during the late Holocene. Holocene, 2018, 28, 277-292.	0.9	4
865	Plant community responses to historical wildfire in a shrubland–grassland ecotone reveal hybrid disturbance response. Ecosphere, 2018, 9, e02363.	1.0	22
866	Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH. Biogeosciences, 2018, 15, 5969-5989.	1.3	10
867	Variability in fireâ€induced change to vegetation physiognomy and biomass in semiâ€arid savanna. Ecosphere, 2018, 9, e02514.	1.0	23

#	ARTICLE	IF	CITATIONS
868	Grass Species Flammability, Not Biomass, Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions. Frontiers in Forests and Global Change, 2018, 1, .	1.0	43
869	Prairie dogs and wildfires shape vegetation structure in a sagebrush grassland more than does rest from ungulate grazing. Ecosphere, 2018, 9, e02390.	1.0	16
870	Transient effects of nitrogen addition and rainfall suppression on Vachellia karroo growth under grass competition in a southern African savanna. Cogent Environmental Science, 2018, 4, 1549799.	1.6	0
871	Social–ecological landscape patterns predict woody encroachment from native tree plantings in a temperate grassland. Ecology and Evolution, 2018, 8, 9624-9632.	0.8	20
872	Determinants of Termite Assemblages' Characteristics within Natural Habitats of a Sudano-Guinean Savanna (Comoe National Park, CA`te d'lvoire). Insects, 2018, 9, 189.	1.0	5
873	Explaining Leaf Nitrogen Distribution in a Semi-Arid Environment Predicted on Sentinel-2 Imagery Using a Field Spectroscopy Derived Model. Remote Sensing, 2018, 10, 269.	1.8	27
874	Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa. PLoS ONE, 2018, 13, e0208400.	1.1	4
875	Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment. Acta Botanica Brasilica, 2018, 32, 28-36.	0.8	9
876	Rainfall trends and variation in the Maasai Mara ecosystem and their implications for animal population and biodiversity dynamics. PLoS ONE, 2018, 13, e0202814.	1.1	61
877	Spatial Gradients of Ecosystem Health Indicators across a Humanâ€Impacted Semiarid Savanna. Journal of Environmental Quality, 2018, 47, 746-757.	1.0	7
878	Product quality and sustainability: The effect of international environmental agreements on bilateral trade. World Economy, 2018, 41, 3098-3129.	1.4	8
879	Can trophic rewilding reduce the impact of fire in a more flammable world?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170443.	1.8	45
880	The mesic savannas of the Bateke Plateau: carbon stocks and floristic composition. Biotropica, 2018, 50, 868-880.	0.8	6
881	Biodiversity-rich European grasslands: Ancient, forgotten ecosystems. Biological Conservation, 2018, 228, 224-232.	1.9	105
882	Analyzing land use change to identify migration corridors of African elephants (Loxodonta africana) in the Kenyan-Tanzanian borderlands. Landscape Ecology, 2018, 33, 2121-2136.	1.9	13
883	Spatial variation in diversity of woody vegetation species within Kwara State University Malete campus, Kwara, Nigeria. International Journal of Biodiversity and Conservation, 2018, 10, 419-431.	0.4	3
884	Termites confer resistance to changes in tree composition following reduced browsing in an African savanna. Journal of Vegetation Science, 2018, 29, 989-998.	1.1	1
885	Climatic Controls on C4 Grassland Distributions During the Neogene: A Model-Data Comparison. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	15

#	Article	IF	CITATIONS
886	A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. European Journal of Soil Biology, 2018, 89, 1-8.	1.4	5
887	Ancient herders enriched and restructured African grasslands. Nature, 2018, 561, 387-390.	13.7	107
888	Marine fauna sort at fine resolution in an ecotone of shifting wetland foundation species. Ecology, 2018, 99, 2546-2557.	1.5	8
889	Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environmental Research Letters, 2018, 13, 094017.	2.2	22
890	Principaux indices de l'intensité du feu dans une savane Guinéenne d'Afrique de l'Ouest. Internat Journal of Biological and Chemical Sciences, 2018, 12, 266.	ional 0.1	5
891	Land-use and land-cover changes and their drivers in rangeland-dependent pastoral communities in the southern Afar Region of Ethiopia. African Journal of Range and Forage Science, 2018, 35, 33-43.	0.6	18
892	A lepidopteran (Imbrasia belina) might influence tree-grass balance of Colophospermum mopane savanna. Theoretical Ecology, 2018, 11, 503-513.	0.4	2
893	Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 2018, 220, 10-24.	3.5	114
894	Conservation lessons from largeâ€mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Annals of the New York Academy of Sciences, 2018, 1429, 31-49.	1.8	53
895	Tracking tree canopy cover changes in space and time in High Nature Value Farmland to prioritize reforestation efforts. International Journal of Remote Sensing, 2018, 39, 4714-4726.	1.3	14
896	Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime. Global Change Biology, 2018, 24, 4280-4292.	4.2	25
897	Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants. Ecology, 2018, 99, 1724-1736.	1.5	32
898	Above- and below-ground allocation and functional trait response to soil water inputs and drying rates of two common savanna grasses. Journal of Arid Environments, 2018, 157, 1-12.	1.2	3
899	Density-dependent spatial patterning of woody plants differs between a semi-arid and a mesic savanna in South Africa. Journal of Arid Environments, 2018, 157, 103-112.	1.2	12
900	Resilience of tropical tree cover: The roles of climate, fire, and herbivory. Global Change Biology, 2018, 24, 5096-5109.	4.2	43
901	Facultative and Obligate Trees in a Mesic Savanna: Fire Effects on Savanna Structure Imply Contrasting Strategies of Eco-Taxonomic Groups. Frontiers in Plant Science, 2018, 9, 644.	1.7	4
902	Allocation of forest biomass across broad precipitation gradients in China's forests. Scientific Reports, 2018, 8, 10536.	1.6	14
903	Social-Ecological Systems Insights for Navigating the Dynamics of the Anthropocene. Annual Review of Environment and Resources, 2018, 43, 267-289.	5.6	167

#	Article	IF	Citations
904	Optimisation of Savannah Land Cover Characterisation with Optical and SAR Data. Remote Sensing, 2018, 10, 499.	1.8	27
905	Rainfall Variability, Wetland Persistence, and Water–Carbon Cycle Coupling in the Upper Zambezi River Basin in Southern Africa. Remote Sensing, 2018, 10, 692.	1.8	6
906	Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sensing, 2018, 10, 1013.	1.8	14
907	Woody Encroachment as a Social-Ecological Regime Shift. Sustainability, 2018, 10, 2221.	1.6	30
908	Reviews of resilience theories and mathematical generalization. , 2018, , 17-78.		2
909	The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas. Ecological Modelling, 2018, 379, 1-9.	1.2	12
910	Not only trees: Grasses determine African tropical biome distributions via water limitation and fire. Global Ecology and Biogeography, 2018, 27, 714-725.	2.7	28
911	Cattle select African savanna termite mound patches less when sharing habitat with wild herbivores. Ecology and Evolution, 2018, 8, 9074-9085.	0.8	1
912	Climate–fire interactions constrain potential woody plant cover and stature in North American Great Plains grasslands. Global Ecology and Biogeography, 2018, 27, 936-945.	2.7	26
913	Effects of increased N and P availability on biomass allocation and root carbohydrate reserves differ between Nâ€fixing and nonâ€Nâ€fixing savanna tree seedlings. Ecology and Evolution, 2018, 8, 8467-8476.	0.8	16
914	Grassland fragmentation and its influence on woody plant cover in the southern Great Plains, USA. Landscape Ecology, 2018, 33, 1785-1797.	1.9	19
915	Fire Season, Overstory Density and Groundcover Composition Affect Understory Hardwood Sprout Demography in Longleaf Pine Woodlands. Forests, 2018, 9, 423.	0.9	16
916	Soil texture mediates tree responses to rainfall intensity in African savannas. New Phytologist, 2018, 219, 1363-1372.	3.5	42
917	The positive carbon stocks–biodiversity relationship in forests: coâ€occurrence and drivers across five subclimates. Ecological Applications, 2018, 28, 1481-1493.	1.8	45
918	Woody encroachment in African savannas: Towards attribution to multiple drivers and a mechanistic model. Journal of Biogeography, 2018, 45, 1231-1233.	1.4	4
919	A dominance shift in arid savanna: An herbaceous legume outcompetes local C ₄ grasses. Ecology and Evolution, 2018, 8, 6779-6787.	0.8	5
920	Mechanisms, monitoring and modeling of shrub encroachment into grassland: a review. International Journal of Digital Earth, 2019, 12, 625-641.	1.6	25
921	Savanna. , 2019, , 623-633.		8

#	Article	IF	CITATIONS
922	Grass competition overwhelms effects of herbivores and precipitation on early tree establishment in Serengeti. Journal of Ecology, 2019, 107, 216-228.	1.9	42
923	Elevated CO2 does not offset effects of competition and drought on growth of shea (Vitellaria) Tj ETQq1 1 0.784	4314 rgBT	Överlock 1
924	Evaluating the use of fire to control shrub encroachment in global drylands: A synthesis based on ecosystem service perspective. Science of the Total Environment, 2019, 648, 285-292.	3.9	18
926	The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images. Fire, 2019, 2, 37.	1.2	8
927	Contrasting responses of steppe Stipa ssp. to warming and precipitation variability. Ecology and Evolution, 2019, 9, 9061-9075.	0.8	8
928	Response of vegetation cover to CO2 and climate changes between Last Glacial Maximum and pre-industrial period in a dynamic global vegetation model. Quaternary Science Reviews, 2019, 218, 293-305.	1.4	17
929	Forest understories controlled the soil organic carbon stock during the fallow period in African tropical forest: a 13C analysis. Scientific Reports, 2019, 9, 9835.	1.6	12
930	Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nature Geoscience, 2019, 12, 657-660.	5.4	79
931	Emergence of the African savannah. Nature Geoscience, 2019, 12, 588-589.	5.4	4
932	Remote sensing for updating the boundaries between the brazilian Cerrado-Amazonia biomes. Environmental Science and Policy, 2019, 101, 383-392.	2.4	38
933	Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area. Land, 2019, 8, 111.	1.2	7
934	Droughts and the ecological future of tropical savanna vegetation. Journal of Ecology, 2019, 107, 1531-1549.	1.9	65
935	Prairie Dog (Cynomys ludovicianus) Influence on Forage Quantity and Quality in a Grazed Grassland-Shrubland Ecotone. Rangeland Ecology and Management, 2019, 72, 360-373.	1.1	16
936	Environmental constraints' sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecological Indicators, 2019, 107, 105644.	2.6	21
938	Forest restoration: Overlooked constraints. Science, 2019, 366, 315-315.	6.0	23
939	An Assessment of Multiple Drivers Determining Woody Species Composition and Structure: A Case Study from the Kalahari, Botswana. Land, 2019, 8, 122.	1.2	12
942	Determinants of tree cover in tropical floodplains. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191755.	1.2	10
947	Mapping and Monitoring Fractional Woody Vegetation Cover in the Arid Savannas of Namibia Using LiDAR Training Data, Machine Learning, and ALOS PALSAR Data. Remote Sensing, 2019, 11, 2633.	1.8	14

	CHAHON		
#	Article	IF	CITATIONS
948	Browsers and Grazers Drive the Dynamics of Ecosystems. Ecological Studies, 2019, , 405-445.	0.4	6
949	Conservation through Biocultural Heritage—Examples from Sub-Saharan Africa. Land, 2019, 8, 5.	1.2	25
950	Palaeo-trajectories of forest savannization in the southern Congo. Biology Letters, 2019, 15, 20190284.	1.0	11
951	Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes. Sensors, 2019, 19, 3456.	2.1	7
952	Assessment of nitrogen application limits in agro-livestock farming areas using quantile regression between nitrogen loadings and groundwater nitrate levels. Agriculture, Ecosystems and Environment, 2019, 286, 106660.	2.5	22
953	Early hominins evolved within non-analog ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21478-21483.	3.3	73
954	Vegetation changes over the past two decades in a West African savanna ecosystem. Applied Vegetation Science, 2019, 22, 230-242.	0.9	14
956	Constraints on shrub cover and shrub–shrub competition in a U.S. southwest desert. Ecosphere, 2019, 10, e02590.	1.0	18
957	Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia, 2019, 190, 471-483.	0.9	15
958	Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 39, 125460.	1.1	20
959	Applicability analysis of MODIS tree cover product in Texas savanna. International Journal of Applied Earth Observation and Geoinformation, 2019, 81, 186-194.	1.4	8
960	Vegetation structure shapes small mammal communities in African savannas. Journal of Mammalogy, 2019, 100, 1243-1252.	0.6	17
961	Forb ecology research in dry African savannas: Knowledge, gaps, and future perspectives. Ecology and Evolution, 2019, 9, 7875-7891.	0.8	47
962	Remotely sensed albedo allows the identification of two ecosystem states along aridity gradients in <scp>Africa</scp> . Land Degradation and Development, 2019, 30, 1502-1515.	1.8	8
963	Alternative Vegetation States in Tropical Forests and Savannas: The Search for Consistent Signals in Diverse Remote Sensing Data. Remote Sensing, 2019, 11, 815.	1.8	9
964	African dryland ecosystem changes controlled by soil water. Land Degradation and Development, 2019, 30, 1564-1573.	1.8	18
965	Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10681-10685.	3.3	30
966	Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sensing, 2019, 11, 576.	1.8	28

#	Article	IF	CITATIONS
967	Rapid response of habitat structure and above-ground carbon storage to altered fire regimes in tropical savanna. Biogeosciences, 2019, 16, 1493-1503.	1.3	16
968	Inferring critical thresholds of ecosystem transitions from spatial data. Ecology, 2019, 100, e02722.	1.5	21
969	Tree recruitment dynamics in fireâ€prone eucalypt savanna. Ecosphere, 2019, 10, e02649.	1.0	8
970	Savanna canopy trees under fire: longâ€ŧerm persistence and transient dynamics from a stageâ€based matrix population model. Ecosphere, 2019, 10, e02706.	1.0	18
971	Spatial feedbacks and the dynamics of savanna and forest. Theoretical Ecology, 2019, 12, 237-262.	0.4	20
972	Assembly of modern mammal community structure driven by Late Cretaceous dental evolution, rise of flowering plants, and dinosaur demise. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9931-9940.	3.3	34
973	Impact of Soil Reflectance Variation Correction on Woody Cover Estimation in Kruger National Park Using MODIS Data. Remote Sensing, 2019, 11, 898.	1.8	4
974	Time series harmonic regression analysis reveals seasonal vegetation productivity trends in semi-arid savannas. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 94-101.	1.4	9
975	Rabbits and livestock grazing alter the structure and composition of mid-storey plants in a wooded dryland. Agriculture, Ecosystems and Environment, 2019, 277, 53-60.	2.5	15
976	The nature of the Old World savannah palaeobiome. Nature Ecology and Evolution, 2019, 3, 504-504.	3.4	9
977	Post-burn and long-term fire effects on plants and birds in floodplain wetlands of the Russian Far East. Biodiversity and Conservation, 2019, 28, 1611-1628.	1.2	17
978	Rate of forest recovery after fire exclusion on anthropogenic savannas in the Democratic Republic of Congo. Biological Conservation, 2019, 233, 118-130.	1.9	12
979	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	1.9	18
980	Effect of local topographic heterogeneity on tree species assembly in an <i>Acacia</i> -dominated African savanna. Journal of Tropical Ecology, 2019, 35, 46-56.	0.5	10
981	The variation of vegetation productivity and its relationship to temperature and precipitation based on the GLASS-LAI of different African ecosystems from 1982 to 2013. International Journal of Biometeorology, 2019, 63, 847-860.	1.3	14
982	Fractional Woody Cover Mapping of Texas Savanna at Landsat Scale. Land, 2019, 8, 9.	1.2	10
983	Effects of Mineral Nitrogen Partitioning on Tree–Grass Coexistence in West African Savannas. Ecosystems, 2019, 22, 1676-1690.	1.6	6
984	Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. Journal of Biogeography, 2019, 46, 1652-1663.	1.4	47

#	Article	IF	Citations
985	Spatial Microanalysis of Natural ¹³ C/ ¹² C Abundance in Environmental Samples Using Laser Ablation-Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2019, 91, 6225-6232.	3.2	27
986	Competition suppresses shrubs during early, but not late, stages of arid grassland–shrubland state transition. Functional Ecology, 2019, 33, 1480-1490.	1.7	16
987	Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone. Southern Forests, 2019, 81, 235-245.	0.2	12
988	Reconstructing past biomes states using machine learning and modern pollen assemblages: A case study from Southern Africa. Quaternary Science Reviews, 2019, 212, 1-17.	1.4	17
989	Indirect effect of nitrogen enrichment modified invertebrate herbivory through altering plant community composition in an alpine meadow. Journal of Plant Ecology, 2019, 12, 693-702.	1.2	6
990	Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. Journal of Applied Ecology, 2019, 56, 629-639.	1.9	19
991	Why a Book on Paleoenvironmental Reconstruction from Faunal Remains?. , 2019, , 1-11.		0
992	Fundamentals of Ecology and Biogeography. , 2019, , 12-47.		1
993	Analytical Assumptions. , 2019, , 48-76.		0
994	Background of Select Paleozoological Samples. , 2019, , 77-91.		0
995	Environmental Reconstructions Based on the Presence/Absence of Taxa. , 2019, , 92-122.		0
996	Environmental Reconstruction Based on Taxonomic Abundances. , 2019, , 123-154.		0
997	Taxon-Free Techniques. , 2019, , 155-196.		0
998	Environmental Inferences Based on Taxonomic Diversity. , 2019, , 197-233.		0
999	Transfer Functions and Quantitative Paleoenvironmental Reconstruction. , 2019, , 234-265.		1
1000	Size Clines as Paleoenvironmental Indicators. , 2019, , 266-300.		0
1001	Some Final Thoughts. , 2019, , 301-310.		0
1004	Bautin bifurcations in a forest-grassland ecosystem with human-environment interactions. Scientific Reports, 2019, 9, 2665.	1.6	3

#	Article	IF	CITATIONS
1005	Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Scientific Reports, 2019, 9, 2334.	1.6	17
1006	Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nature Communications, 2019, 10, 671.	5.8	39
1007	<i>Vachellia sieberiana</i> var. <i>woodii</i> , a high-altitude encroacher: the effect of fire, frost, simulated grazing and altitude in north-western KwaZulu-Natal, South Africa. African Journal of Range and Forage Science, 2019, 36, 169-180.	0.6	7
1008	Woody plant encroachment restructures bird communities in semiarid grasslands. Biological Conservation, 2019, 240, 108276.	1.9	22
1010	Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia. Frontiers in Plant Science, 2019, 10, 1411.	1.7	17
1011	Assessing rangeland health under climate variability and change. , 2019, , 293-309.		1
1012	Local topographic and edaphic factors largely predict shrub encroachment in Mediterranean drylands. Science of the Total Environment, 2019, 657, 310-318.	3.9	17
1013	Disturbance types, herbaceous composition, and rainfall season determine exotic tree invasion in novel grassland. Biological Invasions, 2019, 21, 1351-1363.	1.2	12
1014	A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 2019, 46, 454-465.	1.4	17
1015	Water availability is a principal driver of large-scale land cover spatial heterogeneity in sub-Saharan savannahs. Landscape Ecology, 2019, 34, 131-145.	1.9	7
1016	Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quaternary International, 2019, 500, 108-119.	0.7	24
1017	Humboldt and the reinvention of nature. Journal of Ecology, 2019, 107, 1031-1037.	1.9	109
1018	Elephant-induced landscape heterogeneity change around artificial waterholes in a protected savanna woodland ecosystem. Remote Sensing Applications: Society and Environment, 2019, 13, 97-105.	0.8	3
1019	Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. Journal of Ecology, 2019, 107, 1051-1066.	1.9	21
1020	Shrub encroachment is not always land degradation: Insights from groundâ€dwelling beetle species niches along a shrub cover gradient in a semiâ€arid Namibian savanna. Land Degradation and Development, 2019, 30, 14-24.	1.8	27
1021	Impact of seasonal water-level fluctuations on autumn vegetation in Poyang Lake wetland, China. Frontiers of Earth Science, 2019, 13, 398-409.	0.9	24
1022	Long term impact of Acacia auriculiformis woodlots growing in rotation with cassava and maize on the carbon and nutrient contents of savannah sandy soils in the humid tropics (Democratic Republic) Tj ETQq0 0	0 og®T /O	ve zlo ck 10 Tf
	Carbon dunamics in cases agrefatestry systems in Control Compression afferentation of covernables a		

1023	sequestration opportunity. Agroforestry Systems, 2019, 93, 851-868.	0.9	18

#	Article	IF	CITATIONS
1024	Revisiting the pedogenic carbonate isotopes and paleoenvironmental interpretation of Kanapoi. Journal of Human Evolution, 2020, 140, 102549.	1.3	16
1025	How eddy covariance flux measurements have contributed to our understanding of <i>Global Change Biology</i> . Global Change Biology, 2020, 26, 242-260.	4.2	216
1026	Fixed and variable components of evapotranspiration in a Mediterranean wild-olive - grass landscape mosaic. Agricultural and Forest Meteorology, 2020, 280, 107769.	1.9	17
1027	A semi-automated approach for quantitative mapping of woody cover from historical time series aerial photography and satellite imagery. Ecological Informatics, 2020, 55, 101012.	2.3	10
1028	Spatial transitions in tree cover are associated with soil hydrology, but not with grass biomass, fire frequency, or herbivore biomass in Serengeti savannahs. Journal of Ecology, 2020, 108, 586-597.	1.9	13
1029	Effects of pruning on <i>Colophospermum mopane</i> leaf phenology and production. African Journal of Ecology, 2020, 58, 145-148.	0.4	0
1030	Alternative Biome States in Terrestrial Ecosystems. Trends in Plant Science, 2020, 25, 250-263.	4.3	103
1031	Spatial self-organisation enables species coexistence in a model for savanna ecosystems. Journal of Theoretical Biology, 2020, 487, 110122.	0.8	18
1032	Frost tolerance in Vachellia sieberiana var. woodii in the high-altitude grasslands of southern Africa. South African Journal of Botany, 2020, 128, 239-245.	1.2	1
1033	On the importance of root traits in seedlings of tropical tree species. New Phytologist, 2020, 227, 156-167.	3.5	35
1034	Appropriate spatial scale for potential woody cover observation in Texas savanna. Landscape Ecology, 2020, 35, 101-112.	1.9	9
1035	Global convergence but regional disparity in the hydrological resilience of ecosystems and watersheds to drought. Journal of Hydrology, 2020, 591, 125589.	2.3	26
1036	Improving Estimation of Seasonal Evapotranspiration in Australian Tropical Savannas using a Flexible Drought Index. Agricultural and Forest Meteorology, 2020, 295, 108203.	1.9	4
1037	Modelling land use change effects on ecosystem functions in African Savannas – A review. Global Food Security, 2020, 26, 100421.	4.0	5
1038	Anthropogenic Fires in West African Landscapes: A Spatially Explicit Model Perspective of Humanized Savannas. Fire, 2020, 3, 62.	1.2	6
1039	Bush encroachment and impacts on grass biomass in Senkelle Swayne's Hartebeest Sanctuary, Ethiopia. Biodiversity, 2020, 21, 217-226.	0.5	0
1040	A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 2020, 68, 473.	0.3	38
1041	Groundwater–surface water interactions in an ephemeral savanna catchment, Kruger National Park. Koedoe, 2020, 62, .	0.3	7

#	Article	IF	CITATIONS
1042	Growth and functional traits of Julbernardia globiflora (Benth) resprouts and seedlings in response to fire frequency and herbivory in miombo woodlands. South African Journal of Botany, 2020, 135, 476-483.	1.2	5
1043	Effects of Fire Frequency on Woody Plant Composition and Functional Traits in a Wet Savanna Ecosystem. International Journal of Ecology, 2020, 2020, 1-11.	0.3	5
1044	Spatial distribution and anthropogenic threats facing medicinal plant Zanthoxylum chalybeum in Simanjiro Area, Northern Tanzania Scientific African, 2020, 10, e00562.	0.7	4
1045	Sudanian versus Zambezian woodlands of Africa: Composition, ecology, biogeography and use. Acta Oecologica, 2020, 107, 103599.	0.5	11
1046	Rootâ€niche separation between savanna trees and grasses is greater on sandier soils. Journal of Ecology, 2020, 108, 2298-2308.	1.9	31
1047	A Tale of Grass and Trees: Characterizing Vegetation Change in Payne's Creek National Park, Belize from 1975 to 2019. Applied Sciences (Switzerland), 2020, 10, 4356.	1.3	6
1048	The role of spatial self-organization in the design of agroforestry systems. PLoS ONE, 2020, 15, e0236325.	1.1	10
1049	Mammal functional diversity and habitat heterogeneity: Implications for hominin habitat reconstruction. Journal of Human Evolution, 2020, 146, 102853.	1.3	9
1050	Climate more important than soils for predicting forest biomass at the continental scale. Ecography, 2020, 43, 1692-1705.	2.1	37
1051	Leaf Wax Lipid Extraction for Archaeological Applications. Current Protocols in Plant Biology, 2020, 5, e20114.	2.8	4
1052	PioLaG: a piosphere landscape generator for savanna rangeland modelling. Landscape Ecology, 2020, 35, 2061-2082.	1.9	9
1053	Floristic evidence for alternative biome states in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28183-28190.	3.3	41
1054	Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models. Frontiers in Environmental Science, 2020, 8, .	1.5	6
1055	Sustainability Challenges in Sub-Saharan Africa I. Science for Sustainable Societies, 2020, , .	0.2	4
1056	Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands. , 2020, , .		15
1057	Soilâ€ŧexture affects the influence of termite macropores on soil water infiltration in a semiâ€arid savanna. Ecohydrology, 2020, 13, e2249.	1.1	7
1058	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	1.0	24
1059	Using palaeoecology to explore the resilience of southern African savannas. Koedoe, 2020, 62, .	0.3	3

#	Article	IF	CITATIONS
1060	How widespread are recruitment bottlenecks in fragmented populations of the savanna tree Banksia marginata (Proteaceae)?. Plant Ecology, 2020, 221, 545-557.	0.7	4
1061	Global ecosystems and fire: Multiâ€model assessment of fireâ€induced treeâ€cover and carbon storage reduction. Global Change Biology, 2020, 26, 5027-5041.	4.2	55
1062	Mythâ€busting tropical grassy biome restoration. Restoration Ecology, 2020, 28, 1067-1073.	1.4	50
1063	An Evaluation of Vegetation Health in and around Southern African National Parks during the 21st Century (2000–2016). Applied Sciences (Switzerland), 2020, 10, 2366.	1.3	10
1064	Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology, 2020, 101, e03107.	1.5	9
1065	Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change Biology, 2020, 26, 5106-5124.	4.2	35
1066	Pantropical geography of lightningâ€caused disturbance and its implications for tropical forests. Global Change Biology, 2020, 26, 5017-5026.	4.2	20
1067	Multiâ€decadal stability of woody cover in a mesic eucalypt savanna in the Australian monsoon tropics. Austral Ecology, 2020, 45, 621-635.	0.7	4
1068	A Healthy Park Needs Healthy Vegetation: The Story of Gorongosa National Park in the 21st Century. Remote Sensing, 2020, 12, 476.	1.8	15
1069	The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate, 2020, 8, 43.	1.2	39
1070	The Amazonian Savannas of French Guiana: Cultural and Social Importance, Biodiversity, and Conservation Challenges. Tropical Conservation Science, 2020, 13, 194008291990047.	0.6	18
1071	Rainforest expansion reduces understorey plant diversity and density in open forest of eastern Australia. Austral Ecology, 2020, 45, 557-571.	0.7	13
1072	Woody Cover Fractions in African Savannas From Landsat and High-Resolution Imagery. Remote Sensing, 2020, 12, 813.	1.8	9
1073	Response of potential woody cover of Texas savanna to climate change in the 21st century. Ecological Modelling, 2020, 431, 109177.	1.2	1
1074	Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem. Remote Sensing of Environment, 2020, 247, 111953.	4.6	28
1075	Shared Insights across the Ecology of Coral Reefs and African Savannas: Are Parrotfish Wet Wildebeest?. BioScience, 2020, 70, 647-658.	2.2	8
1076	Periodic Relations between Terrestrial Vegetation and Climate Factors across the Globe. Remote Sensing, 2020, 12, 1805.	1.8	7
1077	Quantifying nutrient re-distribution from nutrient hotspots using camera traps, indirect observation and stable isotopes in a miombo ecosystem, Tanzania. Global Ecology and Conservation, 2020, 23, e01073.	1.0	1

#	Article	IF	CITATIONS
1078	C4 grass functional traits are correlated with biotic and abiotic gradients in an African savanna. Plant Ecology, 2020, 221, 241-254.	0.7	2
1079	Toward Operational Mapping of Woody Canopy Cover in Tropical Savannas Using Google Earth Engine. Frontiers in Environmental Science, 2020, 8, .	1.5	38
1080	Restoring the fire–grazing interaction promotes tree–grass coexistence by controlling woody encroachment. Ecosphere, 2020, 11, e02993.	1.0	13
1081	Basal stem area is a better measure of woodiness than canopy cover in the savannas of the Kruger National Park. South African Journal of Science, 2020, 116, .	0.3	0
1082	Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 2020, 29, 925-943.	2.7	105
1083	Dispersal Increases the Resilience of Tropical Savanna and Forest Distributions. American Naturalist, 2020, 195, 833-850.	1.0	13
1084	Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion. Remote Sensing, 2020, 12, 302.	1.8	45
1085	Individual shrubs, large scale grass cover and seasonal rainfall explain invertebrate-derived macropore density in a semi-arid Namibian savanna. Journal of Arid Environments, 2020, 176, 104101.	1.2	13
1086	Woody plant encroachment may decrease plant carbon storage in grasslands under future drier conditions. Journal of Plant Ecology, 2020, 13, 213-223.	1.2	2
1087	If the trees burn, is the forest lost? Past dynamics in temperate forests help inform management strategies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190115.	1.8	11
1088	Characterisation of alternative stable vegetation assemblages in a mesic savannah in Kenya. African Journal of Ecology, 2020, 58, 492-502.	0.4	1
1089	Fire differentially affects mortality and seedling regeneration of three woody invaders in forest–grassland mosaics of the southern Western Ghats, India. Biological Invasions, 2020, 22, 1623-1634.	1.2	4
1090	Accelerating savanna degradation threatens the Maasai Mara socio-ecological system. Global Environmental Change, 2020, 60, 102030.	3.6	20
1091	Woody encroachment and related soil properties in different tenure-based management systems of semiarid rangelands. Geoderma, 2020, 372, 114399.	2.3	11
1092	Precipitation-Sensitive Dynamic Threshold: A New and Simple Method to Detect and Monitor Forest and Woody Vegetation Cover in Sub-Humid to Arid Areas. Remote Sensing, 2020, 12, 1231.	1.8	9
1093	Does rapid utilization of elevated nutrient availability allow eucalypts to dominate in the tropical savannas of Australia?. Ecology and Evolution, 2020, 10, 4021-4030.	0.8	5
1094	Livestock browsing affects the species composition and structure of cloud forest in the Dhofar Mountains of Oman. Applied Vegetation Science, 2020, 23, 363-376.	0.9	10
1095	Termite mound vegetation patterns are largely driven by stochastic rather than deterministic processes at regional scale in Africa: A metaâ€analysis. Journal of Vegetation Science, 2020, 31, 540-550.	1.1	2

#	Article	IF	CITATIONS
1096	Movement ecology of large herbivores in African savannas: current knowledge and gaps. Mammal Review, 2020, 50, 252-266.	2.2	17
1097	Knowledge coproduction improves understanding of environmental change in the Ethiopian highlands. Ecology and Society, 2020, 25, .	1.0	17
1098	Rooting depth as a key woody functional trait in savannas. New Phytologist, 2020, 227, 1350-1361.	3.5	47
1099	Environmental comparisons of the Awash Valley, Turkana Basin and lower Omo Valley from upper Miocene to Holocene as assessed from stable carbon and oxygen isotopes of mammalian enamel. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110099.	1.0	9
1100	Responses and feedbacks of African dryland ecosystems to environmental changes. Current Opinion in Environmental Sustainability, 2021, 48, 29-35.	3.1	16
1101	A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology, 2021, 29, e13292.	1.4	45
1102	Influences of dietary niche expansion and Pliocene environmental changes on the origins of stone tool making. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110074.	1.0	6
1103	Relationships of reproductive performance indicators in black rhinoceros (<i>Diceros bicornis) Tj ETQq1 1 0.78431 Journal of Ecology, 2021, 59, 2-16.</i>		verlock 10 5
1104	Effects of vegetation on bacterial communities, carbon and nitrogen in dryland soil surfaces: implications for shrub encroachment in the southwest Kalahari. Science of the Total Environment, 2021, 764, 142847.	3.9	15
1105	Detecting phenological changes in plant functional types over West African savannah dominated landscape. International Journal of Remote Sensing, 2021, 42, 567-594.	1.3	6
1106	Grass species richness decreases along a woody plant encroachment gradient in a semi-arid savanna grassland, South Africa. Landscape Ecology, 2021, 36, 617-636.	1.9	18
1107	A minimalistic model of vegetation physiognomies in the savanna biome. Ecological Modelling, 2021, 440, 109381.	1.2	6
1108	Rock Water as a Key Resource for Patchy Ecosystems on Shallow Soils: Digging Deep Tree Clumps Subsidize Surrounding Surficial Grass. Earth's Future, 2021, 9, e2020EF001870.	2.4	11
1109	Faunal responses to fire in Australian tropical savannas: Insights from field experiments and their lessons for conservation management. Diversity and Distributions, 2021, 27, 828-843.	1.9	36
1110	Assessment of trace element concentrations in sediment and vegetation of mesic and arid African savannahs as indicators of ecosystem health. Science of the Total Environment, 2021, 760, 143358.	3.9	7
1111	Grass competition is more important than fire for suppressing encroachment of Acacia sieberiana seedlings. Plant Ecology, 2021, 222, 149-158.	0.7	9
1112	Fineâ€scale habitat heterogeneity influences browsing damage by elephant and giraffe. Biotropica, 2021, 53, 86-96.	0.8	7
1113	Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel. Biogeosciences, 2021, 18, 77-93.	1.3	11

#	Article	IF	CITATIONS
1114	No room to move: bat response to rainforest expansion into long-unburnt eucalypt forest. Pacific Conservation Biology, 2021, 27, 13.	0.5	8
1115	Polar Microbes as Climate-Resilient Pathways for Mitigation of Climate Change. , 2021, , 93-102.		1
1116	Chapter 8 Terrestrial CO2-Concentrating Mechanisms in a High CO2 World. Advances in Photosynthesis and Respiration, 2021, , 193-250.	1.0	4
1117	Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete and Continuous Dynamical Systems, 2021, 41, 4145.	0.5	2
1118	Climate Effects on Prey Vulnerability Modify Expectations of Predator Responses to Short- and Long-Term Climate Fluctuations. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	5
1119	Dendrochronological Potential and Impact of Climate Factors on Radial Growth of Two Species in the Sahelian Zone: <i>Boscia senegalensis</i> (Pers.) Lam. ex Poir and <i>Sclerocarya birrea</i> (A. Rich) Hoscht (Ferlo Nord/Senegal). American lournal of Plant Sciences. 2021. 12. 498-517.	0.3	1
1120	Root vascular traits differ systematically between African savanna tree and grass species, with implications for water use. American Journal of Botany, 2021, 108, 83-90.	0.8	6
1121	The distinct roles of water table depth and soil properties in controlling alternative woodland-grassland states in the Cerrado. Oecologia, 2021, 195, 641-653.	0.9	9
1122	Vegetation classification for the management of large mammalian herbivores: a case study at Mushingashi Conservancy, Central Province, Zambia. African Journal of Range and Forage Science, 2021, 38, 247-269.	0.6	0
1123	Spatial heterogeneity in nitrification and soil exploration by trees favour source–sink dynamics in a humid savanna: A modelling approach. Functional Ecology, 2021, 35, 976-988.	1.7	4
1124	A New Automatic Statistical Microcharcoal Analysis Method Based on Image Processing, Demonstrated in the Weiyuan Section, Northwest China. Frontiers in Earth Science, 2021, 9, .	0.8	3
1125	Impacts of grazing on vegetation dynamics in a sediment transport complex model. Earth Surface Dynamics, 2021, 9, 29-45.	1.0	0
1126	Nutrient deposition enhances postâ€fire survival in nonâ€Nâ€fixing savanna tree seedlings. Journal of Vegetation Science, 2021, 32, e13020.	1.1	0
1127	Herbivore dung stoichiometry drives competition between savanna trees and grasses. Journal of Ecology, 2021, 109, 2095-2106.	1.9	6
1128	Measuring savanna woody cover at scale to inform ecosystem restoration. Ecosphere, 2021, 12, e03437.	1.0	3
1129	Emergence of Cross-Scale Structural and Functional Processes in Ecosystem Science. , 2021, , 140-201.		0
1130	Communityâ€level responses to increasing dryness vary with plant growth form across an extensive aridity gradient. Journal of Biogeography, 2021, 48, 1788-1796.	1.4	3
1131	Contracting eastern African C4 grasslands during the extinction of Paranthropus boisei. Scientific Reports, 2021, 11, 7164.	1.6	11

#	Article	IF	CITATIONS
1132	Diversity, population structure and regeneration status of woody species in different habitats in Maun Educational Park, northern Botswana. Journal of Forest Research, 2021, 26, 294-302.	0.7	2
1133	Accounting for land cover changes and degradation in the Katse and Mohale Dam catchments of the Lesotho highlands. African Journal of Range and Forage Science, 2021, 38, 53-66.	0.6	9
1134	Fractional vegetation cover estimation in southern African rangelands using spectral mixture analysis and Google Earth Engine. Computers and Electronics in Agriculture, 2021, 182, 105980.	3.7	17
1136	The importance of buffer zones in woody vegetation conservation in areas that combine mega-fauna and anthropogenic disturbance: The case of Save Valley landscape, south-eastern Zimbabwe. Global Ecology and Conservation, 2021, 26, e01503.	1.0	2
1137	Hydrologic Changes Drove the Late Miocene Expansion of C ₄ Grasslands on the Northern Indian Subcontinent. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004108.	1.3	14
1138	Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India. Scientific Reports, 2021, 11, 9032.	1.6	15
1139	Modeling the biomass allocation of tree resprout in a fire-prone savanna. Ecological Modelling, 2021, 448, 109527.	1.2	1
1141	Differential effects of nutrient addition and woody plant encroachment on grassland soil, litter and plant dynamics across a precipitation gradient. Pedobiologia, 2021, 85-86, 150726.	0.5	4
1142	What shapes fire size and spread in African savannahs?. Remote Sensing in Ecology and Conservation, 2021, 7, 610-620.	2.2	3
1143	Woody-biomass projections and drivers of change in sub-Saharan Africa. Nature Climate Change, 2021, 11, 449-455.	8.1	23
1144	Monitoring of Vegetation Disturbance around Protected Areas in Central Tanzania Using Landsat Time-Series Data. Remote Sensing, 2021, 13, 1800.	1.8	6
1145	Coppicing and productivity of two indigenous tree species under different forest management regimes in Tanzania. Trees, Forests and People, 2021, 4, 100088.	0.8	0
1146	Investigating the Relationship between Tree Species Diversity and Landsat-8 Spectral Heterogeneity across Multiple Phenological Stages. Remote Sensing, 2021, 13, 2467.	1.8	14
1147	Seasonal Spectral Separation of Western Snowberry and Wolfwillow in Grasslands with Field Spectroradiometer and Simulated Multispectral Bands. Environments - MDPI, 2021, 8, 60.	1.5	Ο
1148	Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation. Communications Biology, 2021, 4, 745.	2.0	2
1149	Fire and water: the role of grass competition on juvenile tree growth and survival rates in a mesic savanna. Plant Ecology, 2021, 222, 861-875.	0.7	3
1150	Opportunities and challenges for savanna burning emissions abatement in southern Africa. Journal of Environmental Management, 2021, 288, 112414.	3.8	29
1151	Adaptive management in restoration initiatives: Lessons learned from some of South Africa's projects. South African Journal of Botany, 2021, 139, 352-361.	1.2	5

#	Article	IF	CITATIONS
1152	Do Woody Tree Thinning and Season Have Effect on Grass Species' Composition and Biomass in a Semi-Arid Savanna? The Case of a Semi-Arid Savanna, Southern Ethiopia. Frontiers in Environmental Science, 2021, 9, .	1.5	4
1153	Fire and browsing interact to alter intra-clonal stem dynamics of an encroaching shrub in tallgrass prairie. Oecologia, 2021, 196, 1039-1048.	0.9	4
1154	Climatic and non-climatic vegetation cover changes in the rangelands of Africa. Global and Planetary Change, 2021, 202, 103516.	1.6	7
1155	Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. Journal of Environmental Management, 2021, 290, 112568.	3.8	34
1156	Effects comparison of co-occurring Vachellia tree species on understory herbaceous vegetation biomass and soil nutrient: Case of semi-arid savanna grasslands in southern Ethiopia. Journal of Arid Environments, 2021, 190, 104527.	1.2	2
1157	Browsing wildlife and heavy grazing indirectly facilitate sapling recruitment in an East African savanna. Ecological Applications, 2021, 31, e02399.	1.8	7
1158	Aboveground biomass estimates over Brazilian savannas using hyperspectral metrics and machine learning models: experiences with Hyperion/EO-1. GIScience and Remote Sensing, 2021, 58, 1112-1129.	2.4	14
1159	From colonial forestry to 'community-based fire management': the political ecology of fire in Belize's coastal savannas, 1920 to present. Journal of Political Ecology, 2021, 28, .	0.4	2
1160	Eastern African environmental variation and its role in the evolution and cultural change of Homo over the last 1 million years. Journal of Human Evolution, 2021, 157, 103028.	1.3	26
1161	Fine-scale structures as spots of increased fish concentration in the open ocean. Scientific Reports, 2021, 11, 15805.	1.6	16
1162	Bayesian change point quantile regression approach to enhance the understanding of shifting phytoplankton-dimethyl sulfide relationships in aquatic ecosystems. Water Research, 2021, 201, 117287.	5.3	7
1163	The coupling effects of pyrodiversity and land use on termite assemblages in semi-arid savanna. Global Ecology and Conservation, 2021, 28, e01643.	1.0	1
1164	Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals. Plant Cell, 2021, 33, 3391-3401.	3.1	33
1166	Fire and herbivory drive fungal and bacterial communities through distinct above- and belowground mechanisms. Science of the Total Environment, 2021, 785, 147189.	3.9	9
1167	Large herbivores suppress liana infestation in an African savanna. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
1168	Woody encroachment happens via intensification, not extensification, of species ranges in an African savanna. Ecological Applications, 2021, 31, e02437.	1.8	9
1169	Forms of Savanna: From Woodland to Grassland. , 2021, , 69-96.		0
1170	Land degradation in South Africa: Justice and climate change in tension. People and Nature, 2021, 3, 978-989.	1.7	14

#	Article	IF	CITATIONS
1171	Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China. Journal of Hydrology, 2021, 600, 126580.	2.3	30
1172	Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review. Remote Sensing, 2021, 13, 3870.	1.8	5
1173	Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina. Journal of Arid Land, 0, , 1.	0.9	0
1174	Chimpanzees (<scp> <i>Pan troglodytes </i> </scp>) in savanna landscapes. Evolutionary Anthropology, 2021, 30, 399-420.	1.7	17
1175	Monsoon driven ecosystem and landscape change in the 'Top End' of Australia during the past 35 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583, 110659.	1.0	3
1176	Medicinal service supply by wild plants in Samburu, Kenya: Comparisons among medicinal plant assemblages. Global Ecology and Conservation, 2021, 30, e01749.	1.0	1
1177	Forage quality in grazing lawns and tall grasslands in the subtropical region of Nepal and implications for wild herbivores. Global Ecology and Conservation, 2021, 30, e01747.	1.0	9
1178	No changes in soil organic carbon and nitrogen following long-term prescribed burning and livestock exclusion in the Sudan-savanna woodlands of Burkina Faso. Basic and Applied Ecology, 2021, 56, 165-175.	1.2	3
1179	Usually hated, sometimes loved: A review of wild ungulates' contributions to people. Science of the Total Environment, 2021, 801, 149652.	3.9	13
1180	Dynamics of the ground layer communities of tropical eucalypt woodlands of northern Queensland. Australian Journal of Botany, 2021, 69, 85.	0.3	1
1181	Integrated Fire Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 509-597.	0.1	2
1182	Changes in annual extreme temperature and heat indices in Limpopo province: period 1941–2016. Theoretical and Applied Climatology, 2021, 143, 1327-1339.	1.3	2
1183	Terrestrial Laser Scanning for Vegetation Analyses with a Special Focus on Savannas. Remote Sensing, 2021, 13, 507.	1.8	15
1184	Biogeochemical Evidence for the Environments of Early Homo in South Africa. Vertebrate Paleobiology and Paleoanthropology, 2009, , 185-194.	0.1	6
1186	Population Dynamics of Browsing and Grazing Ungulates in the Anthropocene. Ecological Studies, 2019, , 155-179.	0.4	7
1187	Community Dynamics of Browsing and Grazing Ungulates. Ecological Studies, 2019, , 181-196.	0.4	2
1188	Scenarios for Just and Sustainable Futures in the Miombo Woodlands. , 2020, , 191-234.		8
1189	Woody Plant Encroachment: Causes and Consequences. Springer Series on Environmental Management, 2017, , 25-84.	0.3	266

		TION REPORT	
#	Article	IF	CITATIONS
1190	Grazers and Browsers in a Changing World: Conclusions. Ecological Studies, 2008, , 309-321.	0.4	4
1191	Structural biodiversity monitoring in savanna ecosystems: Integrating LiDAR and high resolution imagery through object-based image analysis. Lecture Notes in Geoinformation and Cartography, 2008, , 477-491.	0.5	14
1192	Contribution of Stable Light Isotopes to Paleoenvironmental Reconstruction. , 2015, , 441-464.		1
1193	Serengeti Micromammal Communities and the Paleoecology of Laetoli, Tanzania. Vertebrate Paleobiology and Paleoanthropology, 2011, , 253-263.	0.1	3
1194	Age-Dependent Changes in Environmental Influences on Tree Growth and Their Implications for Forest Responses to Climate Change. Tree Physiology, 2011, , 455-479.	0.9	29
1195	Natural Hazards Mitigation Services of Carbon-Rich Ecosystems. , 2013, , 221-293.		11
1196	Overstory–Understory Relationships. Landscape Series, 2013, , 145-179.	0.1	17
1197	Grazing and Fire Effects on Community and Ecosystem Processes in a Tall-Grass Mesic Savanna Ecosystem in Southern India. Ecological Studies, 2016, , 187-205.	0.4	3
1198	Inferring critical transitions in paleoecological time series with irregular sampling and variable time-averaging. Quaternary Science Reviews, 2019, 207, 49-63.	1.4	10
1200	Tropical Moist Forests. Issues in Environmental Science and Technology, 2007, , 161-192.	0.4	3
1201	Interactions between dense Callitris regeneration and Eucalyptus and Callitris canopy trees in semiarid woodlands. Australian Journal of Botany, 2012, 60, 549.	0.3	3
1202	Inability of fire to control vegetation dynamics in low-productivity mulga (Acacia aneura)-dominated communities of eastern Australia. International Journal of Wildland Fire, 2017, 26, 896.	1.0	3
1203	Savannas and Grasslands. , 2014, , 403-412.		2
1204	Fire and biodiversity. , 2010, , 163-180.		15
1207	Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Global Change Biology, 2020, 26, 4495-4505.	4.2	34
1208	Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management. Agricultural Economics (United Kingdom), 2008, 38, 151-165.	2.0	119
1209	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	4.7	82
1210	Woody Plant Cover Estimation in Texas Savanna from MODIS Products. Earth Interactions, 2019, 23, 1-14.	0.7	10

#	Article	IF	CITATIONS
1211	The effects of bush control methods on encroaching woody plants in terms of die-off and survival in Borana rangelands, southern Ethiopia. Pastoralism, 2020, 10, .	0.3	8
1212	Tree–Grass Interactions in Savannas: Paradigms, Contradictions, and Conceptual Models. , 2010, , 79-94.		17
1213	Land Use Change and the Carbon Budget in the Brazilian Cerrado. , 2010, , 407-422.		9
1214	Tree–Grass Interactions in Savannas. , 2010, , 39-53.		4
1215	Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems. PLoS ONE, 2013, 8, e54045.	1.1	33
1216	Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient. PLoS ONE, 2013, 8, e57025.	1.1	57
1217	Relationships between Human Population Density and Burned Area at Continental and Global Scales. PLoS ONE, 2013, 8, e81188.	1.1	72
1218	Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen. PLoS ONE, 2015, 10, e0109063.	1.1	39
1219	Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands. PLoS ONE, 2015, 10, e0127093.	1.1	30
1220	Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds. PLoS ONE, 2015, 10, e0145192.	1.1	17
1221	Estimating and Analyzing Savannah Phenology with a Lagged Time Series Model. PLoS ONE, 2016, 11, e0154615.	1.1	15
1222	Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery. PLoS ONE, 2017, 12, e0185468.	1.1	15
1223	Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition. PLoS ONE, 2017, 12, e0189058.	1.1	12
1224	Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park. PLoS ONE, 2018, 13, e0191396.	1.1	11
1225	Status of Woody Vegetation along Riparian Areas in Gonarezhou National Park, Zimbabwe. , 2013, 3, 592-597.		2
1226	Climate change adaptation in Africa : a microeconomic analysis of livestock choice. Policy Research Working Papers, 2007, , .	1.4	35
1227	The impact of climate change on livestock management in Africa : a structural Ricardian analysis. Policy Research Working Papers, 2007, , .	1.4	18
1228	Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands. Tropical Grasslands - Forrajes Tropicales, 2013, 1, 215.	0.1	15

#	Article	IF	Citations
1229	ELEPHANT POPULATION BIOLOGY AND ECOLOGY., 2008, 84-145.		23
1230	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.	1.5	60
1231	Dynamics of an Insularized and Compressed Impala Population: Rainfall, Temperature and Density Influences. Open Ecology Journal, 2012, 5, 1-17.	2.0	10
1232	A Meta-Analysis of the Impact of African Elephants on Savanna Vegetation. Journal of Wildlife Management, 2008, 72, 892.	0.7	26
1233	Fire management in a changing landscape: a case study from Lopé National Park, Gabon. Parks, 2014, 20, 39-52.	1.2	24
1234	Trends of phanerophyte encroacher species along an aridity gradient on Kalahari sands, central Namibia. European Journal of Ecology, 2018, 4, 41-48.	0.1	7
1235	On the transpiration of wild olives under water-limited conditions in a heterogeneous ecosystem with shallow soil over fractured rock. Journal of Hydrology and Hydromechanics, 2020, 68, 338-350.	0.7	7
1236	Biodiversity, threats and conservation challenges in the Cerrado of AmapÃ;, an Amazonian savanna. Nature Conservation, 0, 22, 107-127.	0.0	41
1237	Influence of fire frequency on <i>Colophospermum mopane</i> and <i>Combretum apiculatum</i> woodland structure and composition in northern Gonarezhou National Park, Zimbabwe. Koedoe, 2009, 51, .	0.3	51
1238	Vegetation structure and spatial heterogeneity in the Granite Supersite, Kruger National Park. Koedoe, 2020, 62, .	0.3	5
1239	Biotic and abiotic connections on a granitic catena: Framework for multidisciplinary research. Koedoe, 2020, 62, .	0.3	2
1240	Short term effects of fire intensity and fire regime on vegetation dynamic in a tropical humid savanna (Lamto, central Côte d'Ivoire). Natural Science, 2012, 04, 1056-1064.	0.2	10
1252	Modeling long-term fire impact on ecosystem characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-Fire v1.0. Geoscientific Model Development, 2020, 13, 6029-6050.	1.3	6
1253	Short-Term Plant Community Responses to Warming and Defoliation in a Northern Temperate Grassland. ISRN Ecology, 2011, 2011, 1-8.	1.0	6
1254	Pathways for Positive Cattle–Wildlife Interactions in Semiarid Rangelands. Smithsonian Contributions To Zoology, 2011, , 55-71.	1.0	41
1255	Identification of Culturable Bioaerosols Collected over Dryland in Northwest China: Observation using a Tethered Balloon. Asian Journal of Atmospheric Environment, 2011, 5, 172-180.	0.4	4
1256	Bush encroachment in relation to rangeland management systems and environmental conditions in Kalahari ecosystem of Botswana. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	22
1258	Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking. PeerJ, 2016, 4, e1767.	0.9	10

ARTICLE

IF CITATIONS

Determinants of seasonal changes in availability of food patches for elephants (<i>Loxodonta) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742

1260	Shrub encroachment into grasslands: end of an era?. PeerJ, 2018, 6, e5474.	0.9	23
1261	Sustainable use of Savanna Vegetation in West Africa in the Context of Climate and Land use Change. , 2021, , 45-64.		1
1262	Climate Change and Nutrients Dynamics of Soil. Soil Biology, 2021, , 521-549.	0.6	0
1263	Aridification and orbital forcing of eastern African climate during the Plio-Pleistocene. Global and Planetary Change, 2022, 208, 103684.	1.6	13
1265	Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance and Management, 2021, 16, 31.	1.4	8
1266	Vegetation structure, diversity and site conditions in the south of the Diambour Forest Reserve, southeastern Senegal (West Africa). Tropics, 2007, 17, 25-41.	0.2	0
1267	Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology, 2007, .	4.2	0
1268	A Meta-Analysis of the Impact of African Elephants on Savanna Vegetation. Journal of Wildlife Management, 2008, 72, 892.	0.7	9
1269	Interacting effects of grass height and herbivores on the establishment of an encroaching savanna shrub. , 2008, , 189-202.		2
1270	Herbivores as architects of savannas: inducing and modifying spatial vegetation patterning. Oikos, 2008, .	1.2	1
1271	Plant compositional change over time increases with rainfall in Serengeti grasslands. Oikos, 2008, .	1.2	0
1272	Fuzzy integration of satellite data for detecting environmental anomalies across Africa. International Society for Photogrammetry and Remote Sensing, 2009, , 147-159.	0.0	0
1273	Concepts, approche bioclimatique et typologie des savanes.Application aux savanes américaines. Cahiers D'Outre-Mer, 2009, 62, 175-218.	0.0	0
1275	Conserving Wildlife in African Landscapes: Kenya's Ewaso Ecosystem. Smithsonian Contributions To Zoology, 2011, , 1-123.	1.0	2
1276	Fire Part I: Introduction and History. , 2012, , 251-292.		Ο
1277	The Trypanosomiases II. , 2012, , 949-1010.		0
1278	Relationship Between Canopy and Leaf Spectral Response In Savanna. Revista Brasileira De Geografia Fisica, 2013, 6, 341-355.	0.0	0

		CITATION REPORT		
#	Article		IF	Citations
1279	Contribution of Stable Light Isotopes to Paleoenvironmental Reconstruction. , 2013, ,	1-22.		0
1281	Geographical variability of relationships among black carbon from wildfires, climate and in Africa. Climate Research, 2013, 57, 221-231.	d vegetation	0.4	0
1282	The Theory of the Micro-behavioral Economics of Global Warming. Advances in Global Research, 2015, , 11-28.	Change	1.6	1
1287	Changes in Elemental Dynamics After Reclamation of Forest and Savanna in Cameroor with the Case in Southeast Asia. , 2017, , 209-228.	n and Comparison		0
1288	Vegetation change on an urban coastal dune system. Papers and Proceedings - Royal S Tasmania, 2018, 152, 1-8.	Society of	0.2	1
1290	Evolving fire management strategies and their impact on the occurrence and spatial ex unplanned wildfires in a large African savanna park. Territorium: Revista Portuguesa De Prevenção E Segurança, 2019, , 19-27.		0.1	0
1291	Effects of Grazing and Browsing on Tropical Savanna Vegetation. Ecological Studies, 2	019, , 237-257.	0.4	3
1292	Savannah. , 2019, , 1-9.			0
1293	Cascading effects of termite mounds in African savannas. New Zealand Journal of Bota 167-193.	ny, 2020, 58,	0.8	6
1295	The role of precipitation and woody cover deficit in juniper encroachment in Texas save of Arid Environments, 2020, 180, 104196.	anna. Journal	1.2	7
1296	Evidence of nutrient translocation in response to smoke exposure by the East African a Vachellia drepanolobium. Ecology and Evolution, 2022, 12, e8244.	ant acacia,	0.8	1
1297	Emerging palaeoecological frameworks for elucidating plant dynamics in response to f disturbance. Global Ecology and Biogeography, 2022, 31, 138-154.	ire and other	2.7	13
1299	Drivers and impacts of changes in China's drylands. Nature Reviews Earth & Enviro 858-873.	nment, 2021, 2,	12.2	255
1300	Limitations of soil moisture and formation rate on vegetation growth in karst areas. So Total Environment, 2022, 810, 151209.	ience of the	3.9	38
1301	A Synthetic Overview of Lamto Savanna Ecology: Importance of Structure-Functioning Relationships. , 0, , 381-392.	;-Dynamics		0
1302	Predicting land degradation using Sentinel-2 and environmental variables in the Lepella of the Greater Sekhukhune District, South Africa. Physics and Chemistry of the Earth, 2		1.2	10
1303	Paleovegetation and paleo-pedogenic properties from the upper Miocene Coffee Ranc the North American Great Plains. Palaeogeography, Palaeoclimatology, Palaeoecology, 110760.		1.0	1
1304	The importance of history in understanding large tree mortality in African savannas. Ec 2022, .	ography, 2022,	2.1	4

#	Article	IF	CITATIONS
1305	Root traits reveal safety and efficiency differences in grasses and shrubs exposed to different fire regimes. Functional Ecology, 2022, 36, 368-379.	1.7	5
1306	Analysis of habitat suitability of birds family Accipitridae in the forest park of Pocut Meurah Intan. IOP Conference Series: Earth and Environmental Science, 2021, 922, 012056.	0.2	0
1307	A triangulation approach for assessing and mapping land degradation in the Lepellane catchment of the greater Sekhukhune District, South Africa. Southern African Geographical Journal, 2022, 104, 514-538.	0.9	2
1308	Could CO ₂ -induced changes to C ₄ grass flammability aggravate savanna woody encroachment?. African Journal of Range and Forage Science, 2022, 39, 82-95.	0.6	4
1309	Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102621.	1.4	3
1310	Atmospheric humidity deficits tell us how soil moisture deficits down-regulate ecosystem evaporation. Advances in Water Resources, 2022, 159, 104100.	1.7	8
1311	An insight into the patterns and controls of the structure of South America <i>n Chaco</i> woodlands. Land Degradation and Development, 2022, 33, 723-738.	1.8	2
1312	Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity. Journal of Human Evolution, 2022, 163, 103076.	1.3	8
1313	A new protocol for estimation of woody aboveground biomass in disturbance-prone ecosystems. Ecological Indicators, 2022, 135, 108466.	2.6	4
1316	Improving Spatial Representation of Soil Moisture Through the Incorporation of Single-Channel Algorithm With Different Downscaling Approaches. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	5
1317	Modelling Aboveground Biomass and Productivity Variation in Mediterranean Forests of South Spain. SSRN Electronic Journal, 0, , .	0.4	0
1318	Contrasting effects of grazing on the early stages of woody encroachment in a Neotropical savanna. Basic and Applied Ecology, 2022, 60, 13-24.	1.2	9
1319	Natureâ€based framework for sustainable afforestation in global drylands under changing climate. Global Change Biology, 2022, 28, 2202-2220.	4.2	30
1320	Water availability, bedrock, disturbance by herbivores, and climate determine plant diversity in South-African savanna. Scientific Reports, 2022, 12, 338.	1.6	7
1321	Savanna tree abundance and spatial patterns are strongly associated with river networks in Serengeti National Park, Tanzania. Landscape Ecology, 0, , .	1.9	0
1322	Experimental drought suppresses grass productivity and passive warming promotes tree sapling performance: Insights from African savanna species. Acta Oecologica, 2022, 114, 103813.	0.5	1
1323	Demography of the dominant perennial grass species of a humid African savanna. Acta Oecologica, 2022, 114, 103816.	0.5	1
1324	Woody plant decline in the Sahel of western Niger (1996–2017):is it driven by climate or land use changes?. Journal of Arid Environments, 2022, 200, 104719.	1.2	3

#	Article	IF	CITATIONS
1325	Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada. Land, 2021, 10, 1355.	1.2	2
1326	The effect of changes in human drivers on the fire regimes of South African grassland and savanna environments over the past 100 years. African Journal of Range and Forage Science, 2022, 39, 107-123.	0.6	6
1327	High-intensity fire experiments to manage shrub encroachment: lessons learned in South Africa and the United States. African Journal of Range and Forage Science, 2022, 39, 148-159.	0.6	8
1329	Sahel Afforestation and Simulated Risks of Heatwaves and Flooding Versus Ecological Revegetation That Combines Planting and Succession. Journal of Geoscience and Environment Protection, 2022, 10, 94-108.	0.2	1
1330	New approaches: Use of assisted natural succession in revegetation of inhabited arid drylands as alternative to large-scale afforestation. SN Applied Sciences, 2022, 4, 1.	1.5	3
1331	Characterizing the Response of Vegetation Cover to Water Limitation in Africa Using Geostationary Satellites. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	3
1332	The burning island: Spatiotemporal patterns of fire occurrence in Madagascar. PLoS ONE, 2022, 17, e0263313.	1.1	13
1333	Quantifying Woody Plant Encroachment in Grasslands: A Review on Remote Sensing Approaches. Canadian Journal of Remote Sensing, 2022, 48, 337-378.	1.1	5
1334	Landscape heterogeneity increases survival of <i>Pinus caribaea</i> var. <i>hondurensis</i> juveniles in a frequently burned, humid savanna. Biotropica, 0, , .	0.8	0
1335	Do large termite mounds effect woody plant phylogenetic diversity and endemism across African savannas?. Diversity and Distributions, 0, , .	1.9	0
1336	Constraining a land cover map with satellite-based aboveground biomass estimates over Africa. Geoscientific Model Development, 2022, 15, 2599-2617.	1.3	1
1337	Tipping points induced by palaeo-human impacts can explain presence of savannah in Malagasy and global systems where forest is expected. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212771.	1.2	10
1338	Limited increases in savanna carbon stocks over decades of fire suppression. Nature, 2022, 603, 445-449.	13.7	36
1339	The influence of contrasting fire management practice on bush encroachment: Lessons from Bwabwata National Park, Namibia. Journal of Vegetation Science, 2022, 33, .	1.1	4
1340	<scp>CO₂</scp> â€stimulation of savanna tree seedling growth depends on interactions with local drivers. Journal of Ecology, 2022, 110, 1090-1101.	1.9	10
1341	Determinants of livestock species ownership at household level: Evidence from rural OR Tambo District Municipality, South Africa. Pastoralism, 2022, 12, .	0.3	13
1342	MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. Biogeosciences, 2022, 19, 1377-1394.	1.3	7
1343	Effects of large mammalian herbivory, previous fire, and year of burn on fire behavior in an African savanna. Ecosphere, 2022, 13, .	1.0	4

#	Article	IF	CITATIONS
1344	Fire, grazers, and browsers interact with grass competition to determine tree establishment in an African savanna. Ecology, 2022, 103, e3715.	1.5	9
1345	Composition and structural patterns of encroaching woody plant species along riparian zones of the Molopo River, North-West Province, South Africa. South African Journal of Botany, 2022, 147, 652-658.	1.2	4
1346	Longâ€ŧerm high densities of African elephants clear the understorey and promote a new stable savanna woodland community. Journal of Vegetation Science, 2021, 32, .	1.1	2
1347	Do Bush Control Techniques Have an Effect on the Density, Cover and Recruitment of Woody Plants in a Semi-Arid Savanna? The Case of a Semi-Arid Savanna, Southern Ethiopia. Frontiers in Environmental Science, 2021, 9, .	1.5	0
1348	Fire and forage quality: Postfire regrowth quality and pyric herbivory in subtropical grasslands of Nepal. Ecology and Evolution, 2022, 12, e8794.	0.8	12
1349	A nonanalog Pliocene ungulate community at Laetoli with implications for the paleoecology of Australopithecus afarensis. Journal of Human Evolution, 2022, 167, 103182.	1.3	3
1350	Large-scale climatic drivers of bison distribution and abundance in North America since the Last Glacial Maximum. Quaternary Science Reviews, 2022, 284, 107472.	1.4	9
1351	Monitoring vegetation dynamics with open earth observation tools: the case of fire-modulated savanna to forest transitions in Central Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188, 142-156.	4.9	12
1365	Assessing Change of Lamto Reserve Area Based on the MODIS Time Series Data and Bioclimatic Factors Using BFAST Algorithms. American Journal of Plant Sciences, 2022, 13, 517-540.	0.3	1
1366	Regional fire occurrence in Southern Africa using BFAST iterative break detection in seasonal and trend components of a MODIS time series. Southern African Geographical Journal, 0, , 1-22.	0.9	0
1367	A stronger role for long-term moisture change than for CO ₂ in determining tropical woody vegetation change. Science, 2022, 376, 653-656.	6.0	25
1368	Flora and fire in an old-growth Central African forest-savanna mosaic: a checklist of the Parc National des Plateaux Batéké (Gabon). Plant Ecology and Evolution, 2022, 155, 189-206.	0.3	3
1369	Reduced fire frequency over three decades hastens loss of the grassy forest habitat of an endangered songbird. Biological Conservation, 2022, 270, 109570.	1.9	5
1370	Collaborative agent-based modeling for managing shrub encroachment in an Afroalpine grassland. Journal of Environmental Management, 2022, 316, 115040.	3.8	6
1371	Savannah. , 2022, , 6226-6234.		0
1372	Modelling Aboveground Biomass and Productivity and the Impact of Climate Change in Mediterranean Forests of South Spain. SSRN Electronic Journal, 0, , .	0.4	0
1373	The environmental drivers of tree cover and forest–savanna mosaics in Southeast Asia. Ecography, 2022, 2022, .	2.1	9
1374	Increased precipitation attenuates shrub encroachment by facilitating herbaceous growth in a Mongolian grassland. Functional Ecology, 0, , .	1.7	2

<u> </u>			-	
CI	ΓΑΤΙ	ION.	REPC	\mathbf{RT}
\sim				

#	Article	IF	CITATIONS
1376	Landsat time series reveal forest loss and woody encroachment in the Ngorongoro Conservation Area, Tanzania. Remote Sensing in Ecology and Conservation, 2022, 8, 808-826.	2.2	3
1377	Satellite Remote Sensing of Savannas: Current Status and Emerging Opportunities. Journal of Remote Sensing, 2022, 2022, .	3.2	8
1378	The absence of alternative stable states in vegetation cover of northeastern India. Royal Society Open Science, 2022, 9, .	1.1	3
1379	Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years. Quaternary Science Reviews, 2022, 288, 107578.	1.4	4
1380	Quantitative reconstruction of atmospheric pCO2 sources during Eocene hyperthermal events based on data from the Fushun Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111099.	1.0	7
1381	Dynamic analysis for a class of hydrological model with time delay under fire disturbance. Electronic Research Archive, 2022, 30, 3290-3319.	0.4	0
1383	Landscape Function Analysis: Responses to Bush Encroachment in a Semi-Arid Savanna in the Molopo Region, South Africa. Sustainability, 2022, 14, 8616.	1.6	2
1384	Firstâ€year <i>Acacia</i> seedlings are anisohydric "waterâ€spenders―but differ in their rates of water use. American Journal of Botany, 2022, 109, 1251-1261.	0.8	5
1385	Using Multi-decadal Satellite Records to Identify Environmental Drivers of Fire Severity Across Vegetation Types. Remote Sensing in Earth Systems Sciences, 0, , .	1.1	0
1386	Fire Regions as Environmental Niches: A New Paradigm to Define Potential Fire Regimes in Africa and Australia. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2
1387	A modern twoâ€layer hypothesis helps resolve the â€~savanna problem'. Ecology Letters, 2022, 25, 1952-196	503.0	6
1388	Encroachment diminishes herbaceous plant diversity in grassy ecosystems worldwide. Global Change Biology, 2022, 28, 5532-5546.	4.2	16
1389	An analysis of the recent fire regimes in the Angolan catchment of the Okavango Delta, Central Africa. Fire Ecology, 2022, 18, .	1.1	4
1390	Natural regeneration of woody plant species along an elevational and disturbance gradient at Mt. Kilimanjaro. Forest Ecology and Management, 2022, 520, 120404.	1.4	3
1391	Dryland Ecosystems of the Sudano-Sahel: A Vegetation Model Perspective. Afrika Focus, 2022, 35, 199-212.	0.1	0
1392	Vegetation Greenness Trend in Dry Seasons and Its Responses to Temperature and Precipitation in Mara River Basin, Africa. ISPRS International Journal of Geo-Information, 2022, 11, 426.	1.4	1
1393	How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forestâ€steppe. Biological Reviews, 2022, 97, 2195-2208.	4.7	18
1394	Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000â€⁻years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, , 111190.	1.0	3

# 1395	ARTICLE Does resilience to fire confer resilience to grazing in savanna ant communities of Northern Australia?. Journal of Insect Conservation, 2023, 27, 107-115.	IF 0.8	Citations
1396	Inferring plant–plant interactions using remote sensing. Journal of Ecology, 2022, 110, 2268-2287.	1.9	7
1397	Wildfire history and savanna expansion across southern Africa since the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 603, 111189.	1.0	1
1398	Analysis of Kenya's Atmospheric Moisture Sources and Sinks. Earth Interactions, 2022, 26, 139-150.	0.7	1
1399	Agriculture and food security in Northern Nigeria, part II: The implications of climate change. Advances in Food Security and Sustainability, 2022, , .	0.7	1
1401	Diversity in habit expands the environmental niche of <i>Ziziphus</i> (Rhamnaceae). Biotropica, 2022, 54, 1285-1299.	0.8	0
1402	Mean height increase in saplings of a keystone woody savanna species over 15 years similar to that over a single season. Ecosphere, 2022, 13, .	1.0	4
1403	Geodiversity inclusiveness in biodiversity assessment. Progress in Physical Geography, 2023, 47, 414-437.	1.4	6
1404	Assessing the driving forces of Guinea savanna transition using geospatial technology and machine learning in Old Oyo National Park, Nigeria. Geocarto International, 2024, 37, 17242-17259.	1.7	1
1405	Savanna vegetation increase triggers freshwater community shifts. Global Change Biology, 0, , .	4.2	0
1406	Managing biodiversity in the Anthropocene: discussing the Nature Futures Framework as a tool for adaptive decision-making for nature under climate change. Sustainability Science, 0, , .	2.5	10
1407	Integrating plant wax abundance and isotopes for paleo-vegetation and paleoclimate reconstructions: a multi-source mixing model using a Bayesian framework. Climate of the Past, 2022, 18, 2181-2210.	1.3	5
1408	Incipient woody plant encroachment signals heightened vulnerability for an intact grassland region. Journal of Vegetation Science, 0, , .	1.1	1
1410	Climate Change Impacts on the Water Resources and Vegetation Dynamics of a Forested Sardinian Basin through a Distributed Ecohydrological Model. Water (Switzerland), 2022, 14, 3078.	1.2	1
1411	On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests. Remote Sensing, 2022, 14, 4893.	1.8	2
1412	<scp> CO ₂ </scp> â€fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology, 0, , .	1.7	3
1413	C4 plant food loss probably influenced Paranthropus boisei's extinction: A reply to Patterson etÂal.'s commentary on Quinn and Lepre (2021). Journal of Human Evolution, 2022, , 103269.	1.3	1
1414	Veld restoration strategies in South African semi-arid rangelands. Are there any successes?—A review. Frontiers in Environmental Science, 0, 10, .	1.5	1

#	Article	IF	CITATIONS
1415	Fire and Herbivory Interactively Suppress the Survival and Growth of Trees in an African Semiarid Savanna. Fire, 2022, 5, 169.	1.2	3
1416	Madagascar's grassy biomes are ancient and there is much to learn about their ecology and evolution. Journal of Biogeography, 2023, 50, 614-621.	1.4	12
1417	Desert ecosystems in China: Past, present, and future. Earth-Science Reviews, 2022, 234, 104206.	4.0	14
1418	The effects of fire, climate, and species composition on longleaf pine stand structure and growth rates across diverse natural communities in Florida. Forest Ecology and Management, 2022, 526, 120568.	1.4	4
1419	The Demographic Response of Grass Species to Fire Treatments in a Guinean Savanna. Fire, 2022, 5, 193.	1.2	1
1420	Land use land cover change in and around Chebera Churchura National Park, Southwestern Ethiopia: implications for management effectiveness. Environmental Systems Research, 2022, 11, .	1.5	1
1421	Should we burn the Cerrado? Effects of fire frequency on open savanna plant communities. Journal of Vegetation Science, 2022, 33, .	1.1	4
1422	Quantifying the sensitivity of L-Band SAR to a decade of vegetation structure changes in savannas. Remote Sensing of Environment, 2023, 284, 113369.	4.6	3
1423	First validation of GEDI canopy heights in African savannas. Remote Sensing of Environment, 2023, 285, 113402.	4.6	8
1424	Soil colloidal particles in a subtropical savanna: Biogeochemical significance and influence of anthropogenic disturbances. Geoderma, 2023, 430, 116282.	2.3	1
1425	The size of topographic depressions in a Sahelian savanna is a driver of woody vegetation diversity. Journal of Arid Environments, 2023, 210, 104923.	1.2	2
1426	Nutrient addition, fire and grass competition affects biological nitrogen fixation in Vachellia sieberiana, and associated soil respiration. Pedobiologia, 2023, 96, 150848.	0.5	1
1427	Contextualizing the Factors Affecting Species Diversity and Composition in the African Savanna. , 0, , .		0
1428	Woody plant encroachment reduces density of most grassland specialists in a desert grassland but has limited influence on nest survival. Condor, 2023, 125, .	0.7	1
1429	Linking resource―and disturbanceâ€based models to explain tree–grass coexistence in savannas. New Phytologist, 2023, 237, 1966-1979.	3.5	14
1430	Ecological thresholds in Brazilian savanna: Environmental conditions modulating the composition of woody species in different substrates. Flora: Morphology, Distribution, Functional Ecology of Plants, 2023, 299, 152210.	0.6	1
1431	Remote Sensing-Based Monitoring of Postfire Recovery of Persistent Shrubs: The Case of Juniperus communis in Sierra Nevada (Spain). Fire, 2023, 6, 4.	1.2	0
1432	Indirect interactions between climate and cropland distribution shape fire size in West African grasslands. Landscape Ecology, 2023, 38, 517-532.	1.9	2

#	Article	IF	CITATIONS
1433	Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	1
1434	Grassland-woodland transitions over decadal timescales in the Terai-Duar savanna and grasslands of the Indian subcontinent. Forest Ecology and Management, 2023, 530, 120764.	1.4	1
1435	Structural changes in Mangroves of Sundarban in Bangladesh: effects of climate change and human disturbances. Modeling Earth Systems and Environment, 0, , .	1.9	0
1436	A Functional Trait-Based Approach to Evaluate the Resilience of Key Ecosystem Functions of Tropical Savannas. Forests, 2023, 14, 291.	0.9	1
1437	Solar Energy, Temperature and Rainfall. , 2023, , 95-125.		1
1438	Seasonal variation of environment and conspecific density-dependence effects on early seedling growth of a tropical tree in semi-arid savannahs. Global Ecology and Conservation, 2023, 43, e02455.	1.0	1
1439	Do limits exist on potential woody cover of Brazilian savanna?. Ecological Indicators, 2023, 150, 110220.	2.6	0
1440	Modeling and formal analysis of meta-ecosystems with dynamic structure using graph transformation. Ecological Informatics, 2023, 75, 101908.	2.3	0
1442	Using a demographic model to project the longâ€ŧerm effects of fire management on tree biomass in Australian savannas. Ecological Monographs, 2023, 93, .	2.4	4
1443	Ecological restoration exacerbates the agriculture-induced water crisis in North China Region. Agricultural and Forest Meteorology, 2023, 331, 109341.	1.9	15
1444	Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?. Journal of Vegetation Science, 2023, 34, .	1.1	1
1445	Research Progress of Grassland Ecosystem Structure and Stability and Inspiration for Improving Its Service Capacity in the Karst Desertification Control. Plants, 2023, 12, 770.	1.6	7
1446	Integrating random forest and synthetic aperture radar improves the estimation and monitoring of woody cover in indigenous forests of South Africa. Applied Geomatics, 2023, 15, 209-225.	1.2	1
1447	The Influence of Lablab Purpureus Growth on Nitrogen Availability and Mineral Composition Concentration in Nutrient Poor Savanna Soils. Agronomy, 2023, 13, 622.	1.3	5
1449	Relative abundance of grazing and browsing herbivores is not a direct reflection of vegetation structure: Implications for hominin paleoenvironmental reconstruction. Journal of Human Evolution, 2023, 177, 103328.	1.3	7
1450	Land use land cover change and socio-economic activities in the Burunge Wildlife Management Area ecosystem during COVID-19. Heliyon, 2023, 9, e14064.	1.4	2
1451	The rising impact of urbanization-caused CO2 emissions on terrestrial vegetation. Ecological Indicators, 2023, 148, 110079.	2.6	11
1452	Nodulation alleviates the stress of lower water availability in Vachellia sieberiana. Plant Ecology, 2023, 224, 387-402.	0.7	0

#	Article	IF	CITATIONS
1453	The Mesic Savanna Biome. , 2023, , 313-338.		0
1454	Examining the relationship between vegetation decline and precipitation in the national parks of the Greater Limpopo Transfrontier Conservation Area during the 21st century. Frontiers in Environmental Science, 0, 11, .	1.5	0
1455	On Transient Semiâ€Arid Ecosystem Dynamics Using Landlab: Vegetation Shifts, Topographic Refugia, and Response to Climate. Water Resources Research, 2023, 59, .	1.7	0
1456	Palaeobotanical evidence reveals the living conditions of Miocene Lufengpithecus in East Asia. BMC Plant Biology, 2023, 23, .	1.6	1
1457	Great Green Walls: Hype, Myth, and Science. Annual Review of Environment and Resources, 2023, 48, 263-287.	5.6	7
1458	A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT. Earth System Science Data, 2023, 15, 1577-1596.	3.7	0
1465	The Southern Steppes and Other Grassy Oddballs of the Southern Hemisphere. , 2023, , 153-172.		0
1466	Southern Hot Tropical Biomes. , 2023, , 23-64.		0
1510	African and Asian Savannas. , 2013, , 363-381.		0
1523	Managing Southern African Rangeland Systems in the Face of Drought: A Synthesis of Observation, Experimentation and Modeling for Policy and Decision Support. Ecological Studies, 2024, , 439-470.	0.4	0
1525	Unique Southern African Terrestrial and Oceanic Biomes and Their Relation to Steep Environmental Gradients. Ecological Studies, 2024, , 23-88.	0.4	0
1526	Biodiversity and Ecosystem Functions in Southern African Savanna Rangelands: Threats, Impacts and Solutions. Ecological Studies, 2024, , 407-438.	0.4	0