Differentiation of the asteroid Ceres as revealed by its s

Nature 437, 224-226 DOI: 10.1038/nature03938

Citation Report

#	Article	IF	CITATIONS
2	â€~Planetodiversity': the variety of planets and planetary systems in the Universe. Contemporary Physics, 2006, 47, 157-165.	1.8	1
3	Ceres, Vesta, and Pallas: Protoplanets, not asteroids. Eos, 2006, 87, 105.	0.1	22
4	PLANETESIMALS TO BROWN DWARFS: What is a Planet?. Annual Review of Earth and Planetary Sciences, 2006, 34, 193-216.	11.0	56
5	Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus, 2006, 182, 143-160.	2.5	117
6	The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 2006, 185, 563-567.	2.5	144
7	Ceres: High-resolution imaging with HST and the determination of physical properties. Advances in Space Research, 2006, 38, 2039-2042.	2.6	13
9	Formation of Earth's Core. , 2007, , 51-90.		39
10	The Effect of Semicollisional Accretion on Planetary Spins. Astrophysical Journal, 2007, 658, 593-597.	4.5	46
11	Infrared Emission from the Dusty Disk Orbiting GD 362, an Externally Polluted White Dwarf. Astronomical Journal, 2007, 133, 1927-1933.	4.7	89
12	lapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 2007, 190, 179-202.	2.5	128
13	Origin of volatiles in the main belt. Monthly Notices of the Royal Astronomical Society, 0, 383, 1269-1280.	4.4	21
14	Dawn Mission to Vesta and Ceres. Earth, Moon and Planets, 2007, 101, 65-91.	0.6	125
15	Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celestial Mechanics and Dynamical Astronomy, 2007, 98, 155-180.	1.4	216
16	Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus, 2007, 187, 500-509.	2.5	170
17	Ceres lightcurve analysis—Period determination. Icarus, 2007, 188, 451-456.	2.5	44
18	Exploring the asteroid belt with ion propulsion: Dawn mission history, status and plans. Advances in Space Research, 2007, 40, 193-201.	2.6	32
19	Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris. Celestial Mechanics and Dynamical Astronomy, 2008, 100, 27-42.	1.4	58
20	Main belt binary asteroidal systems with eccentric mutual orbits. Icarus, 2008, 195, 295-316.	2.5	62

#	ARTICLE Which are the dwarfs in the Solar System?. Icarus, 2008, 195, 851-862.	IF 2.5	CITATIONS
21	Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres. Icarus, 2008, 197, 480-496.	2.5	41
23	Oxygen and Asteroids. Reviews in Mineralogy and Geochemistry, 2008, 68, 273-343.	4.8	12
24	Percolative core formation in planetesimals. Earth and Planetary Science Letters, 2008, 273, 132-137.	4.4	53
25	Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astronomy and Astrophysics, 2008, 478, 235-244.	5.1	98
26	POLLUTION OF SINGLE WHITE DWARFS BY ACCRETION OF MANY SMALL ASTEROIDS. Astronomical Journal, 2008, 135, 1785-1792.	4.7	196
27	12. Oxygen and Asteroids. , 2008, , 273-344.		4
28	Catalogue of ISO LWS observations of asteroids. Astronomy and Astrophysics, 2009, 497, 983-990.	5.1	3
29	Genetic inversion of sparse disk-integrated photometric data of asteroids: application to Hipparcos data. Astronomy and Astrophysics, 2009, 506, 935-954.	5.1	34
30	The Shape and Surface Variation of 2 Pallas from the Hubble Space Telescope. Science, 2009, 326, 275-278.	12.6	35
31	Cometary masses derived from non-gravitational forces. Monthly Notices of the Royal Astronomical Society, 2009, 393, 192-214.	4.4	35
32	Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2009, 2, 258-261.	12.9	128
33	Submillimeter photometry and lightcurves of Ceres and other large asteroids. Icarus, 2009, 202, 487-501.	2.5	21
34	On the composition and differentiation of Ceres. Icarus, 2009, 204, 183-193.	2.5	76
35	Asteroids 1 ceres and 4 vesta: Objects of the Dawn space mission. Solar System Research, 2009, 43, 475-482.	0.7	0
36	Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets. Geochimica Et Cosmochimica Acta, 2009, 73, 4558-4575.	3.9	49
37	Growth and Evolution of Asteroids. Annual Review of Earth and Planetary Sciences, 2009, 37, 413-448.	11.0	71
38	X-RAY AND INFRARED OBSERVATIONS OF TWO EXTERNALLY POLLUTED WHITE DWARFS. Astrophysical Journal, 2009, 699, 1473-1479.	4.5	69

#	Article	IF	CITATIONS
39	On the Consider Kalman Filter. , 2010, , .		41
41	Physical properties of (2) Pallas. Icarus, 2010, 205, 460-472.	2.5	58
42	Ceres' evolution and present state constrained by shape data. Icarus, 2010, 205, 443-459.	2.5	185
43	Rotationally-resolved spectra of Ceres in the 3-μm region. Icarus, 2010, 206, 327-333.	2.5	23
44	Treatment of star catalog biases in asteroid astrometric observations. Icarus, 2010, 210, 158-181.	2.5	72
45	Water ice and organics on the surface of the asteroid 24 Themis. Nature, 2010, 464, 1320-1321.	27.8	312
47	First-order rotation solution of an oblate rigid body under the torque of a perturber in circular orbit. Astronomy and Astrophysics, 2010, 519, A1.	5.1	7
48	THE SURVIVAL OF WATER WITHIN EXTRASOLAR MINOR PLANETS. Astronomical Journal, 2010, 140, 1129-1136.	4.7	54
49	ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY. Astronomical Journal, 2011, 141, 143.	4.7	94
50	Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 2011, 305, 1-10.	4.4	247
51	Impactor flux and cratering on Ceres and Vesta: implications for the early solar system. Astronomy and Astrophysics, 2011, 534, A129.	5.1	8
52	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
53	Formation and evolution. , 0, , 217-254.		3
54	Constraining Ceres' interior from its rotational motion. Astronomy and Astrophysics, 2011, 535, A43.	5.1	14
55	POSSIBLE SIGNS OF WATER AND DIFFERENTIATION IN A ROCKY EXOPLANETARY BODY. Astrophysical Journal Letters, 2011, 728, L8.	8.3	81
56	Probing the history of Solar system through the cratering records on Vesta and Ceres. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2439-2466.	4.4	54
57	Ceres' rotation solution under the gravitational torque of the Sun. Monthly Notices of the Royal Astronomical Society, 2011, 415, 461-469.	4.4	8
58	Radius and limb topography of Mercury obtained from images acquired during the MESSENGER flybys. Planetary and Space Science, 2011, 59, 1918-1924.	1.7	15

#	Article	IF	CITATIONS
59	Ceres – Neither a porous nor salty ball. Icarus, 2011, 215, 599-602.	2.5	49
60	Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy, 2011, 109, 101-135.	1.4	305
61	The Surface Composition of Ceres. Space Science Reviews, 2011, 163, 95-116.	8.1	72
62	Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. Space Science Reviews, 2011, 163, 63-76.	8.1	52
63	The Dawn Framing Camera. Space Science Reviews, 2011, 163, 263-327.	8.1	248
64	Vesta and Ceres: Crossing the History of the Solar System. Space Science Reviews, 2011, 163, 25-40.	8.1	42
65	The Dawn Gravity Investigation at Vesta and Ceres. Space Science Reviews, 2011, 163, 461-486.	8.1	62
66	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. Space Science Reviews, 2011, 163, 41-61.	8.1	65
67	The Dawn Topography Investigation. Space Science Reviews, 2011, 163, 487-510.	8.1	44
68	Forced obliquities and moments of inertia of Ceres and Vesta. Icarus, 2011, 213, 496-509.	2.5	23
69	Measuring the sizes, shapes, surface features and rotations of Solar System objects with interferometry. Icarus, 2011, 211, 1007-1021.	2.5	6
70	A SEARCH FOR WATER VAPORIZATION ON CERES. Astronomical Journal, 2011, 142, 125.	4.7	28
71	MASS DETERMINATION STUDIES OF 104 LARGE ASTEROIDS. Astronomical Journal, 2011, 142, 120.	4.7	26
72	A SEARCH FOR SATELLITES AROUND CERES. Astronomical Journal, 2011, 141, 197.	4.7	3
73	Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey. Publication of the Astronomical Society of Japan, 2011, 63, 1117-1138.	2.5	165
74	WATER FRACTIONS IN EXTRASOLAR PLANETESIMALS. Astronomical Journal, 2012, 143, 6.	4.7	84
75	Main-Belt Comets as Tracers of Ice in the Inner Solar System. Proceedings of the International Astronomical Union, 2012, 8, 212-218.	0.0	3
76	Density of asteroids. Planetary and Space Science, 2012, 73, 98-118.	1.7	453

#	Article	IF	CITATIONS
77	The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. , 2012, , .		29
78	Small Habitable Worlds. , 2012, , 201-228.		7
79	The remarkable surface homogeneity of the Dawn mission target (1) Ceres. Icarus, 2012, 217, 20-26.	2.5	9
80	Water, heat, bombardment: The evolution and current state of (2) Pallas. Icarus, 2012, 218, 478-488.	2.5	11
81	Ptolemy operations and results during the Lutetia flyby. Planetary and Space Science, 2012, 66, 179-186.	1.7	7
82	Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia. Planetary and Space Science, 2012, 66, 200-212.	1.7	49
83	A new method to determine the grain size of planetary regolith. Icarus, 2013, 223, 479-492.	2.5	160
84	Reconciling main belt asteroid spectral flux density measurements with a self-consistent thermophysical model. Icarus, 2013, 226, 1086-1102.	2.5	22
85	Evidence for Water in the Rocky Debris of a Disrupted Extrasolar Minor Planet. Science, 2013, 342, 218-220.	12.6	168
86	Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 2013, 226, 510-521.	2.5	50
87	Gas–solid carbonation as a possible source of carbonates in cold planetary environments. Planetary and Space Science, 2013, 76, 28-41.	1.7	9
88	Formation of an interconnected network of iron melt at Earth's lower mantle conditions. Nature Geoscience, 2013, 6, 971-975.	12.9	106
89	Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter. Science, 2013, 342, 220-223.	12.6	176
90	Collision parameters governing water delivery and water loss in early planetary systems. Proceedings of the International Astronomical Union, 2013, 8, 370-373.	0.0	4
91	A frequency comb calibrated solar atlas. Astronomy and Astrophysics, 2013, 560, A61.	5.1	47
92	Compositional diapirism as the origin of the lowâ€albedo terrain and vaporization at midlatitude on Ceres. Journal of Geophysical Research E: Planets, 2014, 119, 2457-2470.	3.6	11
93	Instrumental methods for professional and amateur collaborations in planetary astronomy. Experimental Astronomy, 2014, 38, 91-191.	3.7	47
94	On the origin and composition of Theia: Constraints from new models of the Giant Impact. Icarus, 2014, 242, 316-328.	2.5	49

#	ARTICLE	IF	Citations
95	Microfossils and biomolecules in carbonaceous meteorites: possibility of life in water-bearing asteroids and comets. Proceedings of SPIE, 2014, , .	0.8	1
96	Asteroids: New Challenges, New Targets. Elements, 2014, 10, 11-17.	0.5	10
97	A Sublimation-driven Exospheric Model of Ceres. Planetary and Space Science, 2014, 104, 157-162.	1.7	14
98	The Size and Shape of the Oblong Dwarf Planet Haumea. Earth, Moon and Planets, 2014, 111, 127-137.	0.6	28
99	Herschel celestial calibration sources. Experimental Astronomy, 2014, 37, 253-330.	3.7	31
100	Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres. Icarus, 2014, 228, 13-26.	2.5	47
101	Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 2014, 505, 525-527.	27.8	301
102	Solar System evolution from compositional mapping of the asteroid belt. Nature, 2014, 505, 629-634.	27.8	362
103	The nucleus of main-belt Comet P/2010 R2 (La Sagra). Icarus, 2014, 243, 16-26.	2.5	20
104	The case of the missing Ceres family. Icarus, 2014, 243, 429-439.	2.5	37
105	MULTI-LAYER HYDROSTATIC EQUILIBRIUM OF PLANETS AND SYNCHRONOUS MOONS: THEORY AND APPLICATION TO CERES AND TO SOLAR SYSTEM MOONS. Astrophysical Journal, 2014, 782, 99.	4.5	23
106	Polyhedron tracking and gravity tractor asteroid deflection. Acta Astronautica, 2014, 104, 106-124.	3.2	4
107	A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth and Planetary Science Letters, 2014, 407, 48-60.	4.4	50
108	Quantified, whole section trace element mapping of carbonaceous chondrites by Synchrotron X-ray Fluorescence Microscopy: 1. CV meteorites. Geochimica Et Cosmochimica Acta, 2014, 134, 100-119.	3.9	22
109	Asteroids. , 2014, , 365-415.		28
110	Efficient early global relaxation of asteroid Vesta. Icarus, 2014, 240, 133-145.	2.5	22
111	Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images. Icarus, 2014, 236, 28-37.	2.5	28
112	Dynamical delivery of volatiles to the outer main belt. Icarus, 2014, 232, 13-21.	2.5	14

	CHAHON K	LPORT	
#	Article	IF	CITATIONS
113	Relationship between regolith particle size and porosity on small bodies. Icarus, 2014, 239, 291-293.	2.5	28
114	Results of two multichord stellar occultations by dwarf planet (1) Ceres. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2295-2302.	4.4	10
115	Thermal stability of ice on Ceres with rough topography. Journal of Geophysical Research E: Planets, 2015, 120, 1567-1584.	3.6	93
116	Ceres: Predictions for nearâ€surface water ice stability and implications for plume generating processes. Geophysical Research Letters, 2015, 42, 2130-2136.	4.0	27
117	Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophysical Research Letters, 2015, 42, 10,197.	4.0	69
118	Predictions for impactor contamination on Ceres based on hypervelocity impact experiments. Geophysical Research Letters, 2015, 42, 7890-7898.	4.0	28
119	Core cracking and hydrothermal circulation can profoundly affect Ceres' geophysical evolution. Journal of Geophysical Research E: Planets, 2015, 120, 123-154.	3.6	44
120	VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno. Astronomy and Astrophysics, 2015, 581, L3.	5.1	24
121	Third-order development of shape, gravity, and moment of inertia for highly flattened celestial bodies. Application to Ceres. Astronomy and Astrophysics, 2015, 584, A127.	5.1	18
122	Modelling the internal structure of Ceres: Coupling of accretion with compaction by creep and implications for the water-rock differentiation. Astronomy and Astrophysics, 2015, 584, A117.	5.1	25
123	Short-term variability on the surface of (1) Ceres. Astronomy and Astrophysics, 2015, 575, L1.	5.1	15
124	Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life, 2015, 5, 1652-1686.	2.4	55
125	Spacecraft nears dwarf planet Ceres. Nature, 2015, , .	27.8	0
126	Formation of the Earth's Core. , 2015, , 43-79.		40
127	Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters. Icarus, 2015, 260, 332-345.	2.5	20
128	The Explored Asteroids: Science and Exploration in the Space Age. Space Science Reviews, 2015, 194, 139-235.	8.1	5
129	Constraints on an exosphere at Ceres from Hubble Space Telescope observations. Geophysical Research Letters, 2016, 43, 2465-2472.	4.0	19
130	Cryogenic flow features on Ceres: Implications for craterâ€related cryovolcanism. Geophysical Research Letters, 2016, 43, 11,994.	4.0	48

		CITATION REPORT		
#	Article		IF	Citations
131	The missing large impact craters on Ceres. Nature Communications, 2016, 7, 12257.		12.8	84
132	SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES. Astrophysical Journal Letter	s, 2016, 817, L22.	8.3	42
133	A partially differentiated interior for (1) Ceres deduced from its gravity field and shape 537, 515-517.	. Nature, 2016,	27.8	169
134	Detection of local H ₂ O exposed at the surface of Ceres. Science, 2016,	353,.	12.6	128
135	Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 2016, 353, 1	008-1010.	12.6	178
136	Cratering on Ceres: Implications for its crust and evolution. Science, 2016, 353, .		12.6	135
137	Asteroids and the <i>James Webb Space Telescope</i> . Publications of the Astronomi Pacific, 2016, 128, 018003.	cal Society of the	3.1	23
138	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.		3.0	133
139	Design and Execution of Dawn HAMO to LAMO Transfer at Ceres. , 2016, , .			5
140	The stability of the crust of the dwarf planet Ceres. Monthly Notices of the Royal Astro Society, 2016, 463, 520-528.	pnomical	4.4	13
141	Forward modeling of Ceres' Gravity Field for Planetary Protection Assessment. , 2016,	,.		2
142	Composition and structure of the shallow subsurface of Ceres revealed by craterÂmor Nature Geoscience, 2016, 9, 538-542.	phology.	12.9	118
143	New reflectance spectra of 40 asteroids: A comparison with the previous results and a interpretation. Solar System Research, 2016, 50, 13-23.	n	0.7	4
144	Ceres water regime: surface temperature, water sublimation and transient exo(atmo)s Notices of the Royal Astronomical Society, 2016, 455, 1892-1904.	phere. Monthly	4.4	35
145	The vanishing cryovolcanoes of Ceres. Geophysical Research Letters, 2017, 44, 1243-1	.250.	4.0	56
146	Ceres interaction with the solar wind. Geophysical Research Letters, 2017, 44, 2070-2	077.	4.0	9
147	Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience,	2017, 10, 338-343.	12.9	83
148	Hyper-Velocity Impacts on Rubble Pile Asteroids. Springer Theses, 2017, , .		0.1	1

#	Article	IF	CITATIONS
149	Aqueous origins of bright salt deposits on Ceres. Icarus, 2017, 296, 289-304.	2.5	48
150	Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 2017, 288, 201-225.	2.5	69
152	Origin and Evolution of Volatile-rich Asteroids. , 2017, , 92-114.		11
153	Evidence for Differentiation among Asteroid Families. , 0, , 298-320.		4
154	Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy and Astrophysics, 2017, 598, A130.	5.1	69
155	Ceres's obliquity history and its implications for the permanently shadowed regions. Geophysical Research Letters, 2017, 44, 2652-2661.	4.0	29
156	Surface water-ice deposits in the northern shadowed regions of Ceres. Nature Astronomy, 2017, 1, .	10.1	70
157	Evidence for the Interior Evolution of Ceres from Geologic Analysis of Fractures. Geophysical Research Letters, 2017, 44, 9564-9572.	4.0	31
158	Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. Journal of Geophysical Research E: Planets, 2017, 122, 2267-2293.	3.6	117
159	Thermal evolution of transâ€Neptunian objects, icy satellites, and minor icy planets in the early solar system. Meteoritics and Planetary Science, 2017, 52, 2470-2490.	1.6	13
160	The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 2017, 476, 153-164.	4.4	117
161	Experimental study on compression property of regolith analogues. Planetary and Space Science, 2017, 149, 14-22.	1.7	17
162	Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 2017, 281, 459-475.	2.5	29
163	Self-organizing control strategy for asteroid intelligent detection swarm based on attraction and repulsion. Acta Astronautica, 2017, 130, 84-96.	3.2	9
164	The Main Belt Comets and ice in the Solar System. Astronomy and Astrophysics Review, 2017, 25, 1.	25.5	60
165	Global and local re-impact and velocity regime of ballistic ejecta of boulder craters on Ceres. Planetary and Space Science, 2018, 153, 142-156.	1.7	6
166	Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celestial Mechanics and Dynamical Astronomy, 2018, 130, 1.	1.4	163
167	The proposed Caroline ESA M3 mission to a Main Belt Comet. Advances in Space Research, 2018, 62, 1921-1946.	2.6	9

#	Article	IF	CITATIONS
168	Dawn mission's search for satellites of Ceres: Intact protoplanets don't have satellites. Icarus, 2018, 316, 191-204.	2.5	6
169	Introduction: The geologic mapping of Ceres. Icarus, 2018, 316, 1-13.	2.5	45
170	Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust. Icarus, 2018, 316, 28-45.	2.5	20
171	Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. Icarus, 2018, 316, 167-190.	2.5	23
172	The Ac-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus, 2018, 316, 63-83.	2.5	21
173	Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres' present-day shape and gravity. Icarus, 2018, 299, 430-442.	2.5	18
174	The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 2018, 299, 411-429.	2.5	65
175	Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus, 2018, 307, 327-346.	2.5	43
176	Ceres' Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater. Icarus, 2018, 316, 46-62.	2.5	21
177	AstroGen $\hat{a} \in \hat{P}$ Procedural Generation of Highly Detailed Asteroid Models. , 2018, , .		0
178	True polar wander of Ceres due to heterogeneous crustal density. Nature Geoscience, 2018, 11, 819-824.	12.9	12
179	The impact crater at the origin of the Julia family detected with VLT/SPHERE?. Astronomy and Astrophysics, 2018, 618, A154.	5.1	29
181	Radial velocities. , 0, , 17-80.		0
182	Astrometry. , 0, , 81-102.		Ο
183	Timing. , 0, , 103-118.		0
184	Microlensing. , 0, , 119-152.		0
186	Host stars. , 0, , 373-428.		0
187	Brown dwarfs and free-floating planets. , 0, , 429-448.		0

#	Article	IF	CITATIONS
188	Formation and evolution. , 0, , 449-558.		0
189	Interiors and atmospheres. , 0, , 559-648.		0
190	The solar system. , 0, , 649-700.		0
196	Polluted white dwarfs: constraints on the origin and geology of exoplanetary material. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3814-3841.	4.4	76
199	Habitability of Exoplanet Waterworlds. Astrophysical Journal, 2018, 864, 75.	4.5	76
200	New Constraints on the Abundance and Composition of Organic Matter on Ceres. Geophysical Research Letters, 2018, 45, 5274-5282.	4.0	37
201	Ceres's internal evolution: The view after Dawn. Meteoritics and Planetary Science, 2018, 53, 1778-1792.	1.6	20
202	Constraints on the pre-impact orbits of Solar system giant impactors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2924-2936.	4.4	46
203	Transits. , 0, , 153-328.		0
204	Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (<scp>VIR</scp>). Meteoritics and Planetary Science, 2018, 53, 1844-1865.	1.6	29
205	Introduction to the Special Issue: Ice on Ceres. Journal of Geophysical Research E: Planets, 2019, 124, 1639-1649.	3.6	1
206	Evidence of thrust faulting and widespread contraction of Ceres. Nature Astronomy, 2019, 3, 916-921.	10.1	5
207	Fluidized Appearing Ejecta on Ceres: Implications for the Mechanical Properties, Frictional Properties, and Composition of its Shallow Subsurface. Journal of Geophysical Research E: Planets, 2019, 124, 1819-1839.	3.6	19
208	The Mystery of Ceres' Activity. Journal of Geophysical Research E: Planets, 2019, 124, 205-208.	3.6	6
209	Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust. Journal of Geophysical Research E: Planets, 2019, 124, 1512-1524.	3.6	16
210	Dawn at Ceres: The first exploration of the first dwarf planet discovered. Acta Astronautica, 2022, 194, 334-352.	3.2	6
211	High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus, 2019, 319, 812-827.	2.5	51
212	Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 2019 320 110-118	2.5	44

#	Article	IF	CITATIONS
213	Introduction to the special issue: The formation and evolution of Ceres' Occator crater. Icarus, 2019, 320, 1-6.	2.5	7
214	Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. Icarus, 2019, 318, 22-41.	2.5	47
215	The composition and structure of Ceres' interior. Icarus, 2020, 335, 113404.	2.5	19
216	Ceres: Astrobiological Target and Possible Ocean World. Astrobiology, 2020, 20, 269-291.	3.0	43
217	Landslide Morphology and Mobility on Ceres Controlled by Topography. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006640.	3.6	7
218	Continuousâ€Flow Extraction of Adjacent Metals—A Disruptive Economic Window for Inâ€Situ Resource Utilization of Asteroids?. Angewandte Chemie - International Edition, 2021, 60, 3368-3388.	13.8	13
219	Kontinuierliche Extraktion benachbarter Metalle im Durchstrombetrieb – ein disruptiver ökonomischer Ansatz zur Inâ€situâ€Rohstoffgewinnung auf Asteroiden?. Angewandte Chemie, 2021, 133, 3408-3431.	2.0	0
220	Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using Deep Reinforcement Learning. IEEE Transactions on Robotics, 2022, 38, 317-328.	10.3	44
221	Ceres, a wet planet: The view after Dawn. Chemie Der Erde, 2022, 82, 125745.	2.0	1
222	Calathus: A sample-return mission to Ceres. Acta Astronautica, 2021, 181, 112-129.	3.2	8
223	Spectral deconvolution analysis on Olivine-Orthopyroxene mixtures with simulated space weathering modifications. Research in Astronomy and Astrophysics, 2021, 21, 127.	1.7	1
224	VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy and Astrophysics, 2021, 654, A56.	5.1	50
225	The morphologic and morphometric characteristics of craters on Ceres and implications for the crust. Icarus, 2021, 368, 114428.	2.5	8
227	The Dawn Framing Camera. , 2011, , 263-327.		10
228	The Dawn Gravity Investigation at Vesta and Ceres. , 2011, , 461-486.		3
229	The Dawn Topography Investigation. , 2011, , 487-510.		7
231	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. , 2011, , 41-61.		1
232	Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. , 2011, , 63-76.		31

# 233	ARTICLE The Surface Composition of Ceres. , 2010, , 95-116.	IF	CITATIONS 3
234	An Overview of the Asteroids and Meteorites. , 2013, , 376-429.		1
236	Thermal rotational lightcurve of dwarf-planetÂ(1) Ceres at 235ÂGHz with the Submillimeter Array. Astronomy and Astrophysics, 2010, 516, L10.	5.1	5
237	Ceres' sunlight atlas. Astronomy and Astrophysics, 2011, 525, A74.	5.1	17
238	A new equation of state applied to planetary impacts. Astronomy and Astrophysics, 2020, 643, A40.	5.1	7
239	Chapter 9 Sample Handling and Instruments for the In Situ Exploration of Ice-Rich Planets. , 2016, , 229-270.		1
240	Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code. NeuroQuantology, 2011, 9, .	0.2	12
241	Asteroid Models from Multiple Data Sources. , 2015, , .		15
243	4.2.2 Basic data of planetary bodies. Landolt-Bâ^šâ^,rnstein - Group VI Astronomy and Astrophysics, 2009, , 208-229.	0.1	0
244	The Worlds Out There. Astronomy and Astrophysics Library, 2010, , 289-335.	0.1	0
245	Ceres. , 2014, , 1-4.		0
246	Ceres. , 2015, , 421-423.		0
249	Geomorphology of Ceres. , 2022, , 143-158.		0
250	Geophysics of Vesta and Ceres. , 2022, , 173-196.		0
251	Remote Observations of the Main Belt. , 2022, , 3-25.		0
252	The origin of mascons on Ceres as constrained by crater morphology. Icarus, 2022, , 115024.	2.5	0
253	Dynamical origin of the Dwarf Planet Ceres. Icarus, 2022, 379, 114933.	2.5	6
254	Evidence for widely-separated binary asteroids recorded by craters on Mars. Icarus, 2022, 383, 115045.	2.5	1

#	Article	IF	CITATIONS
255	Formation of Vitreous Salt Hydrates Under Conditions Relevant to Europa. Planetary Science Journal, 2022, 3, 151.	3.6	4
256	Modelling internal structure of differentiated asteroids via data-driven approach. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
257	Could near-Earth watery asteroid Ceres be a likely ocean world and habitable?. , 2023, , 523-544.		0
258	Technical progress in the utilization and exploitation of small celestial body resources. Acta Astronautica, 2023, 208, 219-255.	3.2	1
259	Ceres. , 2022, , 1-3.		1
260	Guidance and Control design for CubeSat small body landing using discrete firings of sliding mode control. Advances in Space Research, 2023, 72, 284-298.	2.6	0
261	Ceres. , 2023, , 527-530.		0
262	Ceres—A volatile-rich dwarf planet in the asteroid belt. , 2024, , 221-259.		0
263	The evolution of collision debris near the ν6 secular resonance and its role in the origin of terrestrial water. Monthly Notices of the Royal Astronomical Society, 2024, 528, 3171-3185.	4.4	0