Contact force measurements and stress-induced anisot

Nature

435, 1079-1082

DOI: 10.1038/nature03805

Citation Report

#	Article	IF	Citations
1	A tale of tails. Nature, 2005, 435, 1041-1042.	27.8	25
2	An intrusive chaperone. Nature, 2005, 435, 1042-1043.	27.8	2
4	Force distributions in a triangular lattice of rigid bars. Physical Review E, 2005, 72, 031306.	2.1	40
5	Friction versus texture at the approach of a granular avalanche. Physical Review E, 2005, 72, 041308.	2.1	39
6	Brownian Forces in Sheared Granular Matter. Physical Review Letters, 2006, 96, 118002.	7.8	45
7	How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies?. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P09003-P09003.	2.3	81
8	Shear resistance reduction due to vibration in simulated fault gouge. Geophysical Monograph Series, $2006, 135-142$.	0.1	2
9	Patterns and collective behavior in granular media: Theoretical concepts. Reviews of Modern Physics, 2006, 78, 641-692.	45.6	703
10	Energy Trapping and Shock Disintegration in a Composite Granular Medium. Physical Review Letters, 2006, 96, 058002.	7.8	242
11	Frequency distribution of mechanically stable disk packings. Physical Review E, 2006, 74, 061304.	2.1	77
12	Granular micro-structure and avalanche precursors. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P07014-P07014.	2.3	23
13	Scale invariance and universality of force networks in static granular matter. Nature, 2006, 439, 828-830.	27.8	124
14	Slow dynamics, aging, and glassy rheology in soft and living matter. Solid State Communications, 2006, 139, 589-598.	1.9	48
15	Stress transmission in wet granular materials. European Physical Journal E, 2006, 21, 359-69.	1.6	64
16	Measurement of Forces Inside a Three-Dimensional Pile of Frictionless Droplets. Science, 2006, 312, 1631-1633.	12.6	101
17	Self-Assembly of Particles for Densest Packing by Mechanical Vibration. Physical Review Letters, 2006, 97, 265501.	7.8	113
18	Shear strength properties of wet granular materials. Physical Review E, 2006, 73, 051304.	2.1	199
19	Measurements of the yield stress in frictionless granular systems. Physical Review E, 2006, 73, 061303.	2.1	56

#	ARTICLE	IF	Citations
20	Sheared Force Networks: Anisotropies, Yielding, and Geometry. Physical Review Letters, 2006, 96, 098001.	7.8	30
21	Bounds on the shear load of cohesionless granular matter. Journal of Statistical Mechanics: Theory and Experiment, 2007, 2007, P01023-P01023.	2.3	3
22	Force networks and the dynamic approach to jamming in sheared granular media. Europhysics Letters, 2007, 80, 58001.	2.0	18
23	Random fluctuations and oscillatory variations of drag forces on vanes rotating in granular beds. Europhysics Letters, 2007, 80, 14004.	2.0	6
24	Tail of the contact force distribution in static granular materials. Physical Review E, 2007, 75, 060302.	2.1	55
25	Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. Physical Review E, 2007, 75, 051308.	2.1	41
26	Condensation of elastic energy in two-dimensional packing of wires. Physical Review E, 2007, 75, 066113.	2.1	19
27	Universal anisotropy in force networks under shear. Physical Review E, 2007, 75, 030301.	2.1	11
28	Pattern Transformation Triggered by Deformation. Physical Review Letters, 2007, 99, 084301.	7.8	274
29	Transient filamentous network structure of a colloidal suspension excited by stepwise electric fields. Physical Review E, 2007, 75, 011409.	2.1	6
30	Stress and failure at mechanical contacts of microspheres under uniaxial compression. Journal of Applied Physics, 2007, 101, 084908.	2.5	5
31	Role of interparticle forces and interparticle friction on the bulk friction in charged granular media subjected to shearing. Physical Review E, 2007, 75, 031307.	2.1	13
32	Effect of Particle Shape on the Stress Dip Under a Sandpile. Physical Review Letters, 2007, 98, 028001.	7.8	73
33	Spatial force correlations in granular shear flow. I. Numerical evidence. Physical Review E, 2007, 76, 021302.	2.1	35
34	Anisotropy-Based Failure Criterion for Interphase Systems. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 599-608.	3.0	33
35	Rate Dependence of Acoustic Emissions Generated during Shear of Simulated Fault Gouge. Bulletin of the Seismological Society of America, 2007, 97, 1841-1849.	2.3	24
36	Jamming Transition in Granular Systems. Physical Review Letters, 2007, 98, 058001.	7.8	398
37	Effects of self-organization on transport in granular matter: A network-based approach. Europhysics Letters, 2007, 79, 24002.	2.0	15

#	Article	IF	CITATIONS
38	Chapter 26 A Mechanistic Description of Granule Deformation and Breakage. Handbook of Powder Technology, 2007, , 1055-1120.	0.1	7
39	Force transmission in a packing of pentagonal particles. Physical Review E, 2007, 76, 011301.	2.1	142
40	Friction of sheared granular layers: Role of particle dimensionality, surface roughness, and material properties. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	29
41	Shear-weakening of the transitional regime for granular flow. Journal of Fluid Mechanics, 2007, 587, 347-372.	3.4	36
42	Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philosophical Magazine, 2007, 87, 4987-5016.	1.6	213
43	Jamming, plasticity and diffusion in dense granular materials. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1090603-1090604.	0.2	0
44	Signal propagation through dense granular systems. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1090607-1090608.	0.2	0
45	Thermal expansion effects and heat conduction in granular materials. Physical Review E, 2007, 76, 041301.	2.1	72
46	Dynamical diversity and metastability in a hindered granular column near jamming. European Physical Journal B, 2007, 57, 429-451.	1.5	10
47	Some aspects of electrical conduction in granular systems of various dimensions. European Physical Journal E, 2007, 23, 255-64.	1.6	17
48	Strength and failure of cemented granular matter. European Physical Journal E, 2007, 23, 413-429.	1.6	79
49	Determining particulate–solid interphase strength using shear-induced anisotropy. Granular Matter, 2007, 9, 231-240.	2.2	29
50	A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granular Matter, 2007, 9, 183-193.	2.2	22
51	Influence of particle shape on sheared dense granular media. Granular Matter, 2007, 9, 279-291.	2.2	153
52	Development of micromechanical models for granular media. Granular Matter, 2007, 9, 337.	2.2	47
53	3D Imaging of particle motion during penetrometer testing. Granular Matter, 2007, 9, 323-329.	2.2	45
54	A physically based approach to granular media mechanics: grain-scale experiments, initial results and implications to numerical modeling. Granular Matter, 2007, 9, 309-321.	2.2	67
55	Utilizing the Explicit Finite Element Method for Studying Granular Flows. Tribology Letters, 2008, 29, 85-94.	2.6	32

#	Article	IF	Citations
56	Compaction of bidisperse cohesive powders. Granular Matter, 2008, 10, 295-299.	2.2	13
57	Biaxial test simulations using a packing of polygonal particles. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32, 143-160.	3.3	56
58	On the elastic moduli of three-dimensional assemblies of spheres: Characterization and modeling of fluctuations in the particle displacement and rotation. International Journal of Solids and Structures, 2008, 45, 1101-1123.	2.7	42
59	Micromechanical investigation of granular ratcheting using a discrete model of polygonal particles. Particuology, 2008, 6, 390-403.	3.6	26
60	On the study of local-stress rearrangements during quasi-static plastic shear of a model glass: Do local-stress components contain enough information?. European Physical Journal E, 2008, 26, 283-293.	1.6	50
61	Contact dynamics method. European Journal of Environmental and Civil Engineering, 2008, 12, 871-900.	2.1	7
62	Force chains in seismogenic faults visualized with photoelastic granular shear experiments. Journal of Geophysical Research, 2008, 113 , .	3.3	110
63	Strong-weak network anisotropy switching and hysteresis in three-dimensional granular materials. Physical Review E, 2008, 78, 021305.	2.1	6
64	Observable effects of mechanical stress induced by sample spinning in solid state nuclear magnetic resonance. Journal of Chemical Physics, 2008, 128, 052304.	3.0	12
65	Thermal fluctuations of fibrin fibres at short time scales. Soft Matter, 2008, 4, 1438.	2.7	20
66	Fluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 493-504.	3.4	34
67	The role of particle shape on the stress distribution in a sandpile. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 99-116.	2.1	53
68	Force chains in a two-dimensional granular pure shear experiment. Chaos, 2008, 18, 041107.	2.5	20
69	Rock physics modeling of unconsolidated sands: Accounting for nonuniform contacts and heterogeneous stress fields in the effective media approximation with applications to hydrocarbon exploration. Geophysics, 2008, 73, E197-E209.	2.6	128
70	Heterogeneities in granular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8244-8249.	7.1	22
71	Pre-avalanche structural rearrangements in the bulk of granular medium: Experimental evidence. Europhysics Letters, 2008, 83, 64003.	2.0	38
72	Unjamming due to local perturbations in granular packings with and without gravity. Physical Review E, 2008, 78, 011308.	2.1	12
73	Entropy Maximization in the Force Network Ensemble for Granular Solids. Physical Review Letters, 2008, 100, 238001.	7.8	72

#	Article	IF	CITATIONS
74	Characterization of interparticle forces in the packing of cohesive fine particles. Physical Review E, 2008, 78, 031302.	2.1	42
75	Stress dip under a two-dimensional semipile of grains. Physical Review E, 2008, 77, 061307.	2.1	13
76	Temporal force fluctuations measured by tracking individual particles in granular materials under shear. Physical Review E, 2008, 77, 061308.	2.1	13
77	Stress, strain, and bulk microstructure in a cohesive powder. Physical Review E, 2008, 77, 051303.	2.1	11
78	Contact Force Simulation of Granular Media Using Explicit Finite Element Method., 2008,,.		0
80	Stress correlations in granular materials: An entropic formulation. Physical Review E, 2009, 80, 060303.	2.1	19
81	Growing length scale in gravity-driven dense granular flow. Physical Review E, 2009, 79, 011303.	2.1	12
82	Subparticle stress fields in granular solids. Physical Review E, 2009, 79, 051302.	2.1	6
83	Depth dependence of vertical plunging force in granular medium. Physical Review E, 2009, 80, 021301.	2.1	35
84	Role of Particle Shape on the Stress Propagation in Granular Packings. Physical Review Letters, 2009, 103, 118001.	7.8	71
85	Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomechanics and Geoengineering, 2009, 4, 3-16.	1.8	117
86	A non-local rheology for dense granular flows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 5091-5107.	3.4	163
87	Observations of Stresses and Strains in a Granular Material. Journal of Engineering Mechanics - ASCE, 2009, 135, 1038-1054.	2.9	45
88	Grain Parameter Effects on Seismic Attributes I: Sorting. , 2009, , .		0
89	Quasistatic behavior and force transmission in packing of irregular polyhedral particles. , 2009, , .		3
90	Acoustic Probing of the Contact Network Dynamics in A Granular Medium During Shear-Band Formation. , 2009, , .		0
91	Granular lattice models with gravity. , 2009, , .		4
92	Particle scale features in shearing of glass ballotini. , 2009, , .		2

#	Article	IF	Citations
93	Rheology of granular materials: dynamics in a stress landscape. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 5073-5090.	3.4	13
94	Topological Analysis of Foams and Tetrahedral Structures. Advanced Engineering Materials, 2009, 11, 169-176.	3.5	16
95	Mechanical properties of granular materials: A variational approach to grainâ€scale simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33, 391-404.	3.3	23
96	Micromechanical analysis of failure propagation in frictional granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33, 1737-1768.	3.3	9
97	Using MR elastography to image the 3D force chain structure of a quasi-static granular assembly. Granular Matter, $2009,11,1$ -6.	2.2	27
98	Avalanches in anisotropic sheared granular media. Granular Matter, 2009, 11, 243-252.	2.2	15
99	Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granular Matter, 2009, 11, 281-292.	2.2	87
100	Goddard rattler-jamming mechanism for quantifying pressure dependence of elastic moduli of grain packs. Acta Mechanica, 2009, 205, 185-196.	2.1	15
101	Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mechanics of Materials, 2009, 41, 729-741.	3.2	186
102	Nano and neutron science applications for geomechanics. KSCE Journal of Civil Engineering, 2009, 13, 233-242.	1.9	17
103	A â€~granocentric' model for random packing of jammed emulsions. Nature, 2009, 460, 611-615.	27.8	151
104	Uniaxial compression of dense granular materials: Stress distribution and permeability. Journal of Petroleum Science and Engineering, 2009, 65, 193-207.	4.2	10
105	Contact dynamics as a nonsmooth discrete element method. Mechanics of Materials, 2009, 41, 715-728.	3.2	189
106	Microscopic interpretation of granule strength in liquid media. Powder Technology, 2009, 189, 365-375.	4.2	4
107	Force transmission in dry and wet granular media. Powder Technology, 2009, 190, 258-263.	4.2	62
108	Mechanical modeling of wheat hardness and fragmentation. Powder Technology, 2009, 190, 215-220.	4.2	22
109	Structure, anisotropy and fractals in compressed cohesive powders. Powder Technology, 2009, 189, 6-13.	4.2	9
110	On the modeling of confined buckling of force chains. Journal of the Mechanics and Physics of Solids, 2009, 57, 706-727.	4.8	161

#	ARTICLE	IF	Citations
111	Assessing continuum postulates in simulations of granular flow. Journal of the Mechanics and Physics of Solids, 2009, 57, 828-839.	4.8	62
112	Crushing of particles in idealised granular assemblies. Journal of the Mechanics and Physics of Solids, 2009, 57, 1293-1313.	4.8	67
113	Dense packings of polyhedra: Platonic and Archimedean solids. Physical Review E, 2009, 80, 041104.	2.1	144
114	Determination of mechanical stress distribution in Drosophila wing discs using photoelasticity. Mechanisms of Development, 2009, 126, 942-949.	1.7	65
116	Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides. Water Resources Research, 2009, 45, .	4.2	65
117	Jamming in Systems Composed of Frictionless Ellipse-Shaped Particles. Physical Review Letters, 2009, 102, 255501.	7.8	117
118	The frictional strength of granular fault gouge: application of theory to the mechanics of low-angle normal faults. Geological Society Special Publication, 2009, 321, 9-31.	1.3	6
119	Stick-slip instabilities and shear strain localization in amorphous materials. Physical Review E, 2009, 80, 066113.	2.1	38
120	On Granular Stress Statistics: Compactivity, Angoricity, and Some Open Issues. Journal of Physical Chemistry B, 2009, 113, 3981-3987.	2.6	71
121	Deformation, restructuring, and un-jamming of concentrated droplets in large-amplitude oscillatory shear flows. Soft Matter, 2009, 5, 2208.	2.7	12
122	Numerical study of the force network ensemble. Molecular Simulation, 2009, 35, 1168-1184.	2.0	6
123	Statistical mechanics framework for static granular matter. Physical Review E, 2009, 79, 061301.	2.1	112
124	Jamming of Granular Matter. , 2009, , 4997-5021.		10
125	Friction, force chains, and falling fruit. Physics Today, 2009, 62, 66-67.	0.3	7
126	A statistical model of contacts and forces in random granular media. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, L05001.	2.3	8
127	Heterogeneities in granular materials. Physics Today, 2009, 62, 40-45.	0.3	50
128	Computational methods to study jammed systems. , 2010, , 25-61.		6
129	Soft random solids: particulate gels, compressed emulsions, and hybrid materials. , 2010, , 62-96.		1

#	Article	IF	CITATIONS
130	Photoelastic materials., 0,, 230-247.		0
131	Photo-elastic properties of the wing imaginal disc of Drosophila. European Physical Journal E, 2010, 33, 111-115.	1.6	19
132	Plasticity and dynamical heterogeneity in driven glassy materials. European Physical Journal E, 2010, 32, 165-181.	1.6	43
133	Nonlinear elasto-plastic model for dense granular flow. International Journal of Plasticity, 2010, 26, 167-188.	8.8	93
134	Mixing and heat conduction in rotating tumblers. Chemical Engineering Science, 2010, 65, 1045-1054.	3.8	65
135	Statistical properties of a 2D granular material subjected to cyclic shear. Granular Matter, 2010, 12, 159-172.	2.2	131
136	Derivation of a Schrödinger-like equation for elastic waves in granular media. Granular Matter, 2010, 12, 417-436.	2.2	4
137	Particle dynamics in dense shear granular flow. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 91-100.	3.4	14
138	Structural signature and contact force distributions in the simulated three-dimensional sphere packs subjected to uniaxial compression. Science China: Physics, Mechanics and Astronomy, 2010, 53, 892-904.	5.1	8
139	Visualization of force networks in 2D dense granular materials. Frontiers of Architecture and Civil Engineering in China, 2010, 4, 109-115.	0.4	7
140	Simple models for granular force networks. Physica D: Nonlinear Phenomena, 2010, 239, 1818-1826.	2.8	9
141	Stress distribution in lubricated vs unlubricated pharmaceutical powder columns and their container walls during translational and torsional shear testing. Powder Technology, 2010, 203, 534-547.	4.2	11
142	From force distribution to average coordination number in frictional granular matter. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 3972-3977.	2.6	12
143	Statistics of contact force network in dense granular matter. Particuology, 2010, 8, 133-140.	3.6	17
144	Self-organization in the flow of complex fluids (colloid and polymer systems). Advances in Colloid and Interface Science, 2010, 157, 75-90.	14.7	45
145	Topological evolution in dense granular materials: A complex networks perspective. International Journal of Solids and Structures, 2010, 47, 624-639.	2.7	111
146	A scaling law for heat conductivity in sheared granular materials. Europhysics Letters, 2010, 89, 58006.	2.0	17
147	Dense granular flow down an inclined plane: A comparison between the hard particle model and soft particle simulations. Physics of Fluids, 2010, 22, .	4.0	23

#	Article	IF	CITATIONS
148	Stress-strain behavior and geometrical properties of packings of elongated particles. Physical Review E, 2010, 81, 051304.	2.1	161
149	Force Attractor in Confined Comminution of Granular Materials. Physical Review Letters, 2010, 104, 108001.	7.8	74
150	Hydrodynamic irreversibility in particle suspensions with nonuniform strain. Physical Review E, 2010, 81, 061401.	2.1	18
151	Jamming and geometry of two-dimensional foams. Europhysics Letters, 2010, 92, 34002.	2.0	79
152	THIRD ORDER LOOPS OF CONTACTS IN A GRANULAR FORCE NETWORK. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 897-903.	1.7	12
153	Force transmission in cohesive granular media. , 2010, , .		7
154	Critical jamming of frictional grains in the generalized isostaticity picture. Europhysics Letters, 2010, 90, 14003.	2.0	60
155	Granular packings of elongated faceted particles deposited under gravity. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P06025.	2.3	26
156	Anisotropic nonlinear elasticity in a spherical-bead pack: Influence of the fabric anisotropy. Physical Review E, 2010, 81, 021303.	2.1	46
157	Evolution of force chains in shear bands in sands. Geotechnique, 2010, 60, 343-351.	4.0	106
158	Centrifugal compression of soft particle packings: Theory and experiment. Physical Review E, 2010, 82, 041403.	2.1	27
159	Force cycles and force chains. Physical Review E, 2010, 81, 011302.	2.1	194
160	Unsteady Shear of Dense Assemblies of Cohesive Granular Materials under Constant Volume Conditions. Industrial & Engineering Chemistry Research, 2010, 49, 5153-5165.	3.7	6
161	Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Physical Review E, 2010, 82, 036603.	2.1	38
162	Measurement of the mechanical properties ofÂgranular packs by wavelength-scanning interferometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 789-808.	2.1	5
163	Role of local order in the small-scale plasticity of model amorphous materials. Physical Review E, 2010, 82, 066116.	2.1	49
164	Improved granular medium model for unconsolidated sands using coordination number, porosity, and pressure relations. Geophysics, 2010, 75, E91-E99.	2.6	44
165	Asymmetric velocity correlations in shearing media. Physical Review E, 2010, 82, 031303.	2.1	4

#	Article	IF	CITATIONS
166	Statistical ensemble approach to stress transmission in granular packings. Soft Matter, 2010, 6, 2884.	2.7	32
167	Jamming for a 2D granular material. Soft Matter, 2010, 6, 2982.	2.7	57
168	Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings. Soft Matter, 2010, 6, 2992.	2.7	44
169	The force network ensemble for granular packings. Soft Matter, 2010, 6, 2908.	2.7	67
170	Jamming and growth of dynamical heterogeneities versus depth for granular heap flow. Soft Matter, 2010, 6, 3023.	2.7	49
171	Spatial, dynamical and spatiotemporal heterogeneities in granular media. Soft Matter, 2010, 6, 2875.	2.7	16
172	The Effect of Local Kinematics on the Local and Global Deformations of Granular Systems. Mathematics and Mechanics of Solids, 2010, 15, 3-41.	2.4	18
173	Path to fracture in granular flows: Dynamics of contact networks. Physical Review E, 2011, 83, 061303.	2.1	35
174	Stress fluctuations in granular force networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P04002.	2.3	34
175	Compression and shear-wave velocities in discrete particle simulations of quartz granular packings: Improved Hertz-Mindlin contact model. Geophysics, 2011, 76, E165-E174.	2.6	11
176	Spherical shock-wave propagation in three-dimensional granular packings. Physical Review E, 2011, 83, 021305.	2.1	3
177	Molecular wires get connected. Nature, 2011, 480, 326-327.	27.8	11
178	Patterns and flow in frictional fluid dynamics. Nature Communications, 2011, 2, 288.	12.8	124
179	Local Anisotropy in Globally Isotropic Granular Packings. Physical Review Letters, 2011, 107, 268001.	7.8	7
180	Jamming by shear. Nature, 2011, 480, 355-358.	27.8	530
181	Marginal matters. Nature, 2011, 480, 325-326.	27.8	14
182	Multiple Scattering of Elastic Waves in Granular Media: Theory and Experiments. , 2011, , .		2
183	Dynamical regimes of a granular gas in microgravity : a molecular dynamics study. Journal of Physics: Conference Series, 2011, 327, 012035.	0.4	2

#	Article	IF	CITATIONS
184	The Study of the Influence of Stress Relaxation on the Elastic Properties of Granular Materials and the Calibration of the Effective Media Model. Chinese Journal of Geophysics, 2011, 54, 240-253.	0.2	10
185	A constitutive model with microstructure evolution for flow of rate-independent granular materials. Journal of Fluid Mechanics, 2011, 682, 590-616.	3.4	141
186	A simple analytic theory for the statistics of avalanches in sheared granular materials. Nature Physics, 2011, 7, 554-557.	16.7	226
187	Percolating contact subnetworks on the edge of isostaticity. Granular Matter, 2011, 13, 233-240.	2.2	19
188	A characteristic length scale in confined elastic buckling of a force chain. Granular Matter, 2011, 13, 215-218.	2.2	20
189	Static equations of the Cosserat continuum derived from intra-granular stresses. Granular Matter, 2011, 13, 189-196.	2.2	21
190	Exponential distribution of force chain lengths: a useful statistic that characterizes granular assemblies. Granular Matter, 2011, 13, 511-516.	2.2	15
191	Stick–Slip and the Transition to Steady Sliding in a 2D Granular Medium and a Fixed Particle Lattice. Pure and Applied Geophysics, 2011, 168, 2259-2275.	1.9	26
192	Three dimensional discrete element modeling of granular media under cyclic constant volume loading: A micromechanical perspective. Powder Technology, 2011, 212, 1-16.	4.2	44
193	Characterization of mesoscale instabilities in localized granular shear using digital image correlation. Acta Geotechnica, 2011, 6, 205-217.	5.7	61
194	Structural stability and jamming of self-organized cluster conformations in dense granular materials. Journal of the Mechanics and Physics of Solids, 2011, 59, 265-296.	4.8	88
195	Stress fields in granular solids: Effect of composition. Powder Technology, 2011, 208, 568-573.	4.2	2
196	Rheology of granular materials composed of nonconvex particles. Physical Review E, 2011, 84, 041302.	2.1	63
197	Correlations and critical behavior of theqmodel. Physical Review E, 2011, 84, 051303.	2.1	0
198	Dynamics of shear bands in a dense granular material forced by a slowly moving rigid body. Physical Review E, 2011, 84, 041304.	2.1	23
199	Fluid Flow and Solid/Fluid Suspensions Flow in 3-D Packed Beds of Spheres: The Effect of Periodicity of Fixed Beds. Defect and Diffusion Forum, 2011, 312-315, 871-876.	0.4	4
200	Study of the contact forces and grain size distribution during grain crushing. , 2011, , .		3
201	Contact Force Distribution and Induced Anisotropy in Granular Materials under Biaxial Test. Advanced Materials Research, 0, 446-449, 1927-1934.	0.3	O

#	ARTICLE	IF	CITATIONS
202	The Experimental Research about Vibration Compacting Load Transfer Spread in Roadbed. Applied Mechanics and Materials, 2012, 178-181, 1550-1554.	0.2	1
203	Numerical Simulation of Vibration Compacting Process on Hydrous Embankment by Discrete Element Method. Advanced Materials Research, 0, 594-597, 506-511.	0.3	0
204	Dynamics of the contacts reveals Widom lines for jamming. Europhysics Letters, 2012, 100, 44005.	2.0	19
205	Percolation analysis of force networks in anisotropic granular matter. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P02008.	2.3	7
206	Calculations of the structure of basin volumes for mechanically stable packings. Physical Review E, 2012, 85, 061307.	2.1	31
207	Structural responses of quasi-two-dimensional colloidal fluids to excitations elicited by nonequilibrium perturbations. Physical Review E, 2012, 86, 031403.	2.1	13
208	Deformation field in indentation of a granular ensemble. Physical Review E, 2012, 85, 061306.	2.1	23
209	Correlation between Voronoi volumes in disc packings. Europhysics Letters, 2012, 97, 34004.	2.0	21
210	3D mapping of deformation in an unconsolidated sand: A micro mechanical study. , 2012, , .		3
211	Multiscale â€~tomography-to-simulation' framework for granular matter: the road ahead. Geotechnique Letters, 2012, 2, 135-139.	1.2	17
212	Fiber bundle models for stress release and energy bursts during granular shearing. Physical Review E, 2012, 86, 061307.	2.1	16
213	Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics, 2012, 580, 1-26.	2.2	149
214	Interdependence of the Volume and Stress Ensembles and Equipartition in Statistical Mechanics of Granular Systems. Physical Review Letters, 2012, 109, 238001.	7.8	35
215	Dynamical arching in a two dimensional granular flow. Granular Matter, 2012, 14, 563-576.	2.2	52
216	Vortex formation and dissolution in sheared sands. Granular Matter, 2012, 14, 695-705.	2.2	43
217	Micromechanical modeling and analysis of different flow regimes in gas fluidization. Chemical Engineering Science, 2012, 84, 449-468.	3.8	106
218	Topological rearrangements and stress fluctuations in quasi-two-dimensional hopper flow of emulsions. Soft Matter, 2012, 8, 10486.	2.7	32
219	Transition dynamics and magic-number-like behavior of frictional granular clusters. Physical Review E, 2012, 86, 011306.	2.1	37

#	Article	IF	CITATIONS
220	Similarities between protein folding and granular jamming. Nature Communications, 2012, 3, 1161.	12.8	8
221	Probing the shear-band formation in granular media with sound waves. Physical Review E, 2012, 85, 051302.	2.1	34
222	Autoâ€acoustic compaction in steady shear flows: Experimental evidence for suppression of shear dilatancy by internal acoustic vibration. Journal of Geophysical Research, 2012, 117, .	3.3	46
223	Substrate effects from force chain dynamics in dense granular flows. Journal of Geophysical Research, 2012, 117, .	3.3	42
224	Hydromechanical triggering of landslides: From progressive local failures to mass release. Water Resources Research, 2012, 48, .	4.2	82
225	Research on the flow properties of the blended particles of rice straw and coal. Fuel, 2012, 102, 453-459.	6.4	24
226	Mechanics of shear banding in a regularized two-dimensional model of a granular medium. Philosophical Magazine, 2012, 92, 3483-3500.	1.6	6
227	The role of dilation and confining stresses in shear thickening of dense suspensions. Journal of Rheology, 2012, 56, 875-923.	2.6	248
228	Contact anisotropy and coordination number for a granular assembly: A comparison of distinct-element-method simulations and theory. Physical Review E, 2012, 85, 031304.	2.1	31
229	Topology of force networks in compressed granular media. Europhysics Letters, 2012, 97, 54001.	2.0	7 3
230	Radial force development during root growth measured by photoelasticity. Plant and Soil, 2012, 360, 19-35.	3.7	58
231	Nonlinear wall pressure of a plunged granular column. Physical Review E, 2012, 85, 021301.	2.1	12
232	Experimental Investigation of Plant Root Growth Through Granular Substrates. Experimental Mechanics, 2012, 52, 945-949.	2.0	25
233	Critical length of force chains and shear band thickness in dense granular materials. Acta Geotechnica, 2012, 7, 41-55.	5.7	47
234	"Phonon―conductivity along a column of spheres in contact. Granular Matter, 2012, 14, 203-208.	2.2	2
235	Coarse graining for an impeller-driven mixer system. Granular Matter, 2012, 14, 283-288.	2.2	15
236	Material, preparation, and cycle dependence of pressure behavior in a slowly plunged granular column. Chemical Engineering Science, 2012, 76, 165-172.	3.8	7
237	Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review. Earth-Science Reviews, 2012, 112, 97-114.	9.1	133

#	Article	IF	CITATIONS
238	Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mechanics of Materials, 2012, 44, 120-129.	3.2	75
239	Reorganization of Langmuir–Blodgett layers of silica nanoparticles induced by the low energy, high fluence ion irradiation. Thin Solid Films, 2012, 520, 4046-4056.	1.8	4
240	Dynamic simulation of granular packing of fine cohesive particles with different size distributions. Powder Technology, 2012, 218, 76-85.	4.2	29
241	Mapping forces in a 3D elastic assembly of grains. Journal of the Mechanics and Physics of Solids, 2012, 60, 55-66.	4.8	65
242	Arches and contact forces in a granular pile. European Physical Journal E, 2012, 35, 44.	1.6	25
243	Granular element method (GEM): linking inter-particle forces with macroscopic loading. Granular Matter, 2012, 14, 51-61.	2.2	39
244	Arch in granular materials as a free surface problem. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 1048-1065.	3.3	30
245	Origin of the Velocity-Strengthening Nature of Granular Friction. Pure and Applied Geophysics, 2013, 170, 3-11.	1.9	10
246	Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 2013, 33, 291-309.	5.3	428
247	Novel experimentally observed phenomena in soft matter. Pramana - Journal of Physics, 2013, 81, 3-34.	1.8	9
248	Stress transmission in internally unstable gap-graded soils using discrete element modeling. Powder Technology, 2013, 247, 161-171.	4.2	36
249	Probability analysis of contact forces in quasi-solid-liquid phase transition of granular shear flow. Science China: Physics, Mechanics and Astronomy, 2013, 56, 395-403.	5.1	12
250	Seismic response of adjacent filled parallel rock fractures with dissimilar properties. Journal of Applied Geophysics, 2013, 96, 33-37.	2.1	21
251	Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress. Nuclear Engineering and Design, 2013, 265, 69-84.	1.7	30
252	Shearâ€induced force fluctuations and acoustic emissions in granular material. Journal of Geophysical Research: Solid Earth, 2013, 118, 6086-6098.	3.4	54
253	Distribution of breakage events in random packings of rodlike particles. Physical Review E, 2013, 88, 012205.	2.1	10
254	Dynamic response of a rock fracture filled with viscoelastic materials. Engineering Geology, 2013, 160, 1-7.	6.3	58
255	Periodic Architecture for High Performance Shock Absorbing Composites. Scientific Reports, 2013, 3, 2056.	3.3	16

#	Article	IF	CITATIONS
256	Evolution of ultrasonic velocity and dynamic elastic moduli with shear strain in granular layers. Granular Matter, 2013, 15, 499-515.	2.2	36
257	Revisiting localized deformation in sand with complex systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120606.	2.1	33
258	Towards realistic and interactive sand simulation: A GPU-based framework. Powder Technology, 2013, 235, 983-1000.	4.2	38
259	Strain tensor determination of compressed individual silica sand particles using high-energy synchrotron diffraction. Granular Matter, 2013, 15, 517-530.	2.2	28
260	Flow-mediated coupling on projectiles falling within a superlight granular medium. Physical Review E, 2013, 88, 032206.	2.1	11
261	Evolution of the force distributions in jammed packings of soft particles. Physical Review E, 2013, 88, 064201.	2.1	4
262	Axisymmetric computation of Taylor cylinder impacts of ductile and brittle materials using original and dual domain material point methods. International Journal of Impact Engineering, 2013, 54, 96-104.	5.0	20
263	Granular Convection in Microgravity. Physical Review Letters, 2013, 110, 018307.	7.8	58
264	Self-organized domain microstructures in a plate-like particle suspension subjected to rapid simple shear. Rheologica Acta, 2013, 52, 1-21.	2.4	15
265	Pressure distributions and force chains during simulated ice rubbling against sloped structures. Cold Regions Science and Technology, 2013, 85, 157-174.	3.5	52
266	Discrete element simulations of bed force anomalies due to force chains in dense granular flows. Journal of Volcanology and Geothermal Research, 2013, 254, 108-117.	2.1	19
267	Adapting granular materials through artificialÂevolution. Nature Materials, 2013, 12, 326-331.	27.5	116
268	The role of rolling friction in granular packing. Granular Matter, 2013, 15, 175-182.	2.2	27
269	Persistence of force networks in compressed granular media. Physical Review E, 2013, 87, 042207.	2.1	80
270	Experimental study of forces between quasi-two-dimensional emulsion droplets near jamming. Soft Matter, 2013, 9, 3424.	2.7	62
271	Reduction of compaction force in a confined bidisperse granular media. Physical Review E, 2013, 87, 052210.	2.1	3
272	An interdisciplinary approach towards improved understanding of soil deformation during compaction. Soil and Tillage Research, 2013, 128, 61-80.	5.6	78
273	Friction and Hertzian contact in granular glass. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P05009.	2.3	3

#	Article	IF	CITATIONS
274	Isostaticity at Frictional Jamming. Physical Review Letters, 2013, 110, 198002.	7.8	63
275	The signature of shear-induced anisotropy in granular media. Computers and Geotechnics, 2013, 47, 1-15.	4.7	396
276	Bridges in three-dimensional granular packings: Experiments and simulations. Europhysics Letters, 2013, 102, 24004.	2.0	22
277	Statistical mechanics as guidance for particleâ€based computational methods. Engineering Computations, 2013, 30, 301-316.	1.4	3
278	Complex force network in marginally and deeply jammed solids. Chinese Physics B, 2013, 22, 066301.	1.4	4
279	The Stress Distribution in Polydisperse Granular Packings in Two Dimensions. Chinese Physics Letters, 2013, 30, 028301.	3.3	1
280	Dynamic jamming fronts. Europhysics Letters, 2013, 102, 44001.	2.0	55
281	Fluctuations in shear-jammed states: A statistical ensemble approach. Europhysics Letters, 2013, 102, 34002.	2.0	12
282	Drag force on a spherical intruder in a granular bed at low Froude number. Physical Review E, 2013, 88, 062203.	2.1	39
283	Efficient generation of densely packed convex polyhedra for 3D discrete and finiteâ€discrete element methods. International Journal for Numerical Methods in Engineering, 2013, 94, 1-19.	2.8	7
284	Dependence of effective screening length in granular columns on bead and silo sizes and their ratio. Chinese Physics B, 2013, 22, 058301.	1.4	6
285	Numerical investigation of the interplay between wall geometry and friction in granular fault gouge. Journal of Geophysical Research: Solid Earth, 2013, 118, 878-896.	3.4	28
286	Examining evolving structural networks using minimal cycle similarity networks: applications to stick-slip granular dynamics. Nonlinear Theory and Its Applications IEICE, 2013, 4, 148-159.	0.6	3
287	Comparison of ice stress records in terms of extreme value analysis. Annals of Glaciology, 2013, 54, 291-298.	1.4	0
288	Length scales from elastic buckling of a force chain under confined axial compression. , 2013, , .		0
289	Granular statistical mechanics: Volume-stress phase space, equipartition and equations of state. , 2013, , .		1
290	Grain-based characterisation and acoustic wave propagation in a sand packing subject to triaxial compression. AIP Conference Proceedings, 2013, , .	0.4	2
291	Novel experimental apparatus for granular experiments on basal friction. AIP Conference Proceedings, 2013, , .	0.4	3

#	Article	IF	Citations
292	Field measurement of basal forces generated by erosive debris flows. Journal of Geophysical Research F: Earth Surface, 2013, 118, 589-602.	2.8	71
294	Analytical and Experimental Analysis of a Free Link in Contact with a Granular Medium. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	1
295	Force-chain identification in quasi-2D granular systems. , 2013, , .		3
296	Visualising shear stress distribution inside flow geometries containing pharmaceutical powder excipients using photo stress analysis tomography and DEM simulations. , 2013, , .		2
297	How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry. Powder Technology, 2014, 268, 253-260.	4.2	53
298	Exponential stress mitigation in structured granular composites. Extreme Mechanics Letters, 2014, 1, 23-28.	4.1	15
299	Anisotropy of force distributions in sheared soft-particle systems. Europhysics Letters, 2014, 108, 44002.	2.0	1
300	Mechanical properties of jammed packings of frictionless spheres under an applied shear stress. Chinese Physics B, 2014, 23, 116105.	1.4	4
301	Packing induced bistable phenomenon in granular flow: analysis from complex network perspective. Applied Mathematics and Mechanics (English Edition), 2014, 35, 1565-1572.	3.6	2
302	Internal Deformation Measurement and Force Chain Characterization of Mason Sand under Confined Compression using Incremental Digital Volume Correlation. Experimental Mechanics, 2014, 54, 1575-1586.	2.0	35
303	Simulation of Rockfill Materials Using Aggregates of Cement Ellipsoids. Journal of Materials in Civil Engineering, 2014, 26, 107-116.	2.9	2
304	Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading. Physical Review E, 2014, 89, 042210.	2.1	37
305	Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations. Physics of Fluids, 2014, 26, .	4.0	42
306	Penetration of spherical projectiles into wet granular media. Physical Review E, 2014, 90, 032208.	2.1	13
307	Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons. Physical Review E, 2014, 90, 042203.	2.1	15
308	Spontaneous jamming and unjamming in a hopper with multiple exit orifices. Physical Review E, 2014, 90, 020201.	2.1	26
309	Mechanical Characterization of Partially Crystallized Sphere Packings. Physical Review Letters, 2014, 113, 148001.	7.8	25
310	Angularly anisotropic correlation in granular packings. Physical Review E, 2014, 90, 062201.	2.1	12

#	ARTICLE	IF	CITATIONS
311	An unload-induced direct-shear model for granular gouge friction in rock discontinuities. Review of Scientific Instruments, 2014, 85, 093902.	1.3	12
312	Effect of cohesion on shear banding in quasistatic granular materials. Physical Review E, 2014, 90, 022202.	2.1	70
313	Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. Physical Review E, 2014, 89, 042208.	2.1	37
314	Multiscale mechanical research in a dense granular system between sheared parallel plates. Physica Scripta, 2014, 89, 105702.	2.5	8
315	Shear jamming in granular experiments without basal friction. Europhysics Letters, 2014, 107, 34005.	2.0	28
316	Nonlocal granular rheology: Role of pressure and anisotropy. Europhysics Letters, 2014, 105, 24002.	2.0	23
317	A complex systems analysis of stick-slip dynamics of a laboratory fault. Chaos, 2014, 24, 013132.	2.5	10
318	Influence of particle breakage on the dynamic compression responses of brittle granular materials. Mechanics of Materials, 2014, 68, 15-28.	3.2	65
319	Monitoring three-dimensional packings in microgravity. Granular Matter, 2014, 16, 165-173.	2.2	15
320	Micromechanics of elastic buckling of a colloidal polymer layer on a soft substrate: experiment and theory. Granular Matter, 2014, 16, 249-258.	2.2	9
321	Force-chain distributions in granular systems. Physical Review E, 2014, 89, 012203.	2.1	30
322	DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter, 2014, 16, 91-106.	2.2	136
323	Examining the behavior and mechanisms of structuration in sand under the $\$ hbox $\{K\}_{0}$ K 0 condition. Granular Matter, 2014, 16, 55-68.	2.2	10
324	Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images. Granular Matter, 2014, 16, 9-21.	2.2	77
325	Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution. Physical Review E, 2014, 89, 032205.	2.1	12
326	Dense granular flow at the critical state: maximum entropy and topological disorder. Granular Matter, 2014, 16, 499-508.	2.2	8
327	Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mechanica, 2014, 225, 2191-2198.	2.1	35
328	Overcoming paradoxes of Drucker–Prager theory for unconsolidated granular matter. International Journal of Engineering Science, 2014, 83, 174-186.	5.0	3

#	Article	IF	CITATIONS
329	Nano-scale mechanics of colloidal C–S–H gels. Soft Matter, 2014, 10, 491-499.	2.7	65
330	A comparison between bridges and force-chains in photoelastic disk packing. Soft Matter, 2014, 10, 109-114.	2.7	13
331	Influence of spontaneous percolation on apparent mass at the bottom of a Janssen granular column. Physica A: Statistical Mechanics and Its Applications, 2014, 393, 96-100.	2.6	8
332	Design and properties of a rate-dependent  dynamic ligament' containing shear thickening fluid. Smart Materials and Structures, 2014, 23, 125019.	3.5	12
333	Analysis of internal state and strains in granular material at meso-scale: influence of particle shape. Granular Matter, 2014, 16, 657-673.	2.2	13
334	Using infrared thermography to study hydrostatic stress networks in granular materials. Soft Matter, 2014, 10, 8603-8607.	2.7	21
335	Cavity method for force transmission in jammed disordered packings of hard particles. Soft Matter, 2014, 10, 7379.	2.7	13
336	Evolving design rules for the inverse granular packing problem. Soft Matter, 2014, 10, 3708.	2.7	50
337	Evolution of force networks in dense particulate media. Physical Review E, 2014, 90, 052203.	2.1	35
338	Breakdown of continuum elasticity in amorphous solids. Soft Matter, 2014, 10, 5085.	2.7	91
339	How the ideal jamming point illuminates the world of granular media. Soft Matter, 2014, 10, 1519.	2.7	28
340	Mechanisms for acoustic emissions generation during granular shearing. Granular Matter, 2014, 16, 627-640.	2.2	48
341	Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Reports on Progress in Physics, 2014, 77, 046602.	20.1	422
342	Ensemble theory for slightly deformable granular matter. European Physical Journal E, 2014, 37, 37.	1.6	1
343	Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity. Physical Review E, 2014, 90, 023206.	2.1	16
344	Revealing the Structure of a Granular Medium through Ballistic Sound Propagation. Physical Review Letters, 2014, 113, 098001.	7.8	23
345	Statistical properties of granular materials near jamming. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P06004.	2.3	30
346	[D13] Controllable surface haptics via particle jamming and pneumatics. , 2014, , .		1

#	ARTICLE	IF	CITATIONS
347	On micromechanical characteristics of the critical state of two-dimensional granular materials. Acta Mechanica, 2014, 225, 2301-2318.	2.1	48
348	Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity. Journal of the Mechanics and Physics of Solids, 2014, 63, 154-166.	4.8	82
349	Gels under stress: The origins of delayed collapse. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 126-133.	4.7	23
350	Role of filling materials in a P-wave interaction with a rock fracture. Engineering Geology, 2014, 172, 77-84.	6.3	56
351	Effects of punches with embossed features on compaction behaviour. Powder Technology, 2014, 254, 373-386.	4.2	10
352	Phase transition and bistable phenomenon of granular flows down a chute with successive turnings. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1281-1285.	2.1	5
353	Impact of the timestep in some molecular dynamics simulations on compression of granular systems. European Physical Journal E, 2014, 37, 15.	1.6	4
354	Rheological properties vs. local dynamics in model disordered materials at low temperature. European Physical Journal E, 2014, 37, 43.	1.6	17
355	Bridging percolation and particle dynamics models of the granular rigidity transition. Physica A: Statistical Mechanics and Its Applications, 2014, 410, 582-594.	2.6	4
356	Quantifying force networks in particulate systems. Physica D: Nonlinear Phenomena, 2014, 283, 37-55.	2.8	48
357	On bias of kinetic temperature measurements in complex plasmas. Physics of Plasmas, 2014, 21, 023701.	1.9	1
358	On the origin and evolution of electrical signals during frictional stick slip in sheared granular material. Journal of Geophysical Research: Solid Earth, 2014, 119, 4253-4268.	3.4	40
359	Pushing on a Nonlinear Material. Physics Magazine, 2014, 7, .	0.1	0
360	Experimental and Simulation Results for the Impact of a Rotating Flexible Link with a Granular Material. International Journal of Advanced Robotic Systems, 2014, 11, 40.	2.1	1
361	Experimental investigation into the primary fabric of stress transmitting particles. , 2014, , 1019-1024.		2
362	Physicochemical processes of frictional healing: Effects of water on stickâ€slip stress drop and friction of granular fault gouge. Journal of Geophysical Research: Solid Earth, 2014, 119, 4090-4105.	3.4	53
363	First Year Ice Rubble: Shear Resistance and Rock Berm Interaction. , 2014, , .		0
364	A depth-averaged -rheology for shallow granular free-surface flows. Journal of Fluid Mechanics, 2014, 755, 503-534.	3.4	162

#	Article	IF	CITATIONS
365	Force Chain Evolution and Force Characteristics of ÂShearing Granular Media in Taylor-Couette Geometry by ÂDEM. Tribology Transactions, 2015, 58, 197-206.	2.0	24
366	Dynamics of sediment storage and release on aeolian dune slip faces: A field study in Jericoacoara, Brazil. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1911-1934.	2.8	17
368	Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings. Physical Review E, 2015, 91, 062202.	2.1	25
369	Network flow model of force transmission in unbonded and bonded granular media. Physical Review E, 2015, 91, 062204.	2.1	33
370	Anisotropy of weakly vibrated granular flows. Physical Review E, 2015, 92, 040201.	2.1	4
371	Experimental Validation of a Nonextensive Scaling Law in Confined Granular Media. Physical Review Letters, 2015, 115, 238301.	7.8	107
372	Stick-slip behavior in a continuum-granular experiment. Physical Review E, 2015, 92, 060201.	2.1	26
373	Stress Relaxation for Granular Materials near Jamming under Cyclic Compression. Physical Review Letters, 2015, 115, 188001.	7.8	15
374	Three-dimensional experimental granular mechanics. Geotechnique Letters, 2015, 5, 236-242.	1.2	17
375	Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering. Geophysical Research Letters, 2015, 42, 9750-9757.	4.0	28
376	Enhancing the linear flow of fine granules through the addition of elongated particles. Scientific Reports, 2015, 5, 16071.	3.3	3
377	A minimum principle for contact forces in random packings of elastic frictionless particles. Granular Matter, 2015, 17, 475-482.	2.2	3
378	Slip initiation of granular gouge friction in a rock discontinuity induced by static and dynamic loads. International Journal of Rock Mechanics and Minings Sciences, 2015, 80, 196-201.	5.8	17
379	Dynamic jamming of icebergâ€choked fjords. Geophysical Research Letters, 2015, 42, 1122-1129.	4.0	28
380	Multimodal Radiation Based Tomography and Diffraction of Granular Materials Using Neutrons and Photons and Instrumented Penetration Mechanics., 2015,, 267-290.		1
381	Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force. Physics of Fluids, 2015, 27, .	4.0	19
382	Extraction of force-chain network architecture in granular materials using community detection. Soft Matter, 2015, 11, 2731-2744.	2.7	98
383	Controllable Surface Haptics via Particle Jamming and Pneumatics. IEEE Transactions on Haptics, 2015, 8, 20-30.	2.7	70

#	ARTICLE	IF	CITATIONS
384	The Initial Boundary-Value Problem for a Mathematical Model for Granular Medium. Applied Mechanics and Materials, 0, 725-726, 863-868.	0.2	1
385	The role of gravity or pressure and contact stiffness in granular rheology. New Journal of Physics, 2015, 17, 043028.	2.9	61
386	The Statistical Physics of Athermal Materials. Annual Review of Condensed Matter Physics, 2015, 6, 63-83.	14.5	102
387	The Force Chains and Dynamic States of Granular Flow Lubrication. Tribology Transactions, 2015, 58, 70-78.	2.0	21
388	A Master equation for the probability distribution functions of forces in soft particle packings. Soft Matter, 2015, 11, 1253-1258.	2.7	14
389	Phase transition and flow-rate behavior of merging granular flows. Physical Review E, 2015, 91, 022206.	2.1	4
390	Modeling force transmission in granular materials. Comptes Rendus Physique, 2015, 16, 3-9.	0.9	28
391	Jammed elastic shells – a 3D experimental soft frictionless granular system. Soft Matter, 2015, 11, 1800-1813.	2.7	7
392	A comparison of micromechanical assessments with internal stability/instability criteria for soils. Powder Technology, 2015, 276, 66-79.	4.2	30
393	Sensitively Photoelastic Biocompatible Gelatin Spheres for Investigation of Locomotion in Granular Media. Experimental Mechanics, 2015, 55, 427-438.	2.0	14
395	Granular Impact. , 2015, , 319-351.		1
396	Grain-Scale Measurements During Low Velocity Impact in Granular Media. , 2015, , 291-317.		2
397	Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper. Powder Technology, 2015, 284, 326-335.	4.2	18
398	Implicit frictional-contact model for soft particle systems. Journal of the Mechanics and Physics of Solids, 2015, 83, 72-87.	4.8	32
399	Probing the effect of particle shape on the rigidity of jammed granular solids with sound speed measurements. Granular Matter, 2015, 17, 419-426.	2.2	7
400	Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotechnica, 2015, 10, 399-419.	5.7	86
401	On granular elasticity. Scientific Reports, 2015, 5, 9652.	3.3	19
402	Slow granular flows: The dominant role of tiny fluctuations. Comptes Rendus Physique, 2015, 16, 37-44.	0.9	11

#	Article	IF	CITATIONS
403	Jamming in granular materials. Comptes Rendus Physique, 2015, 16, 10-25.	0.9	36
404	Stress Network Analysis of 2D Non-Cohesive Polydisperse Granular Materials using Infrared Thermography. Experimental Mechanics, 2015, 55, 761-769.	2.0	10
405	Spanning the scales of granular materials through microscopic force imaging. Nature Communications, 2015, 6, 6361.	12.8	80
406	Long-range wall perturbations in dense granular flows. Journal of Fluid Mechanics, 2015, 764, 171-192.	3.4	36
407	A fractal model of contact force distribution and the unified coordination distribution for crushable granular materials under confined compression. Powder Technology, 2015, 279, 1-9.	4.2	28
408	Contact Forces between TiO2Nanoparticles Governed by an Interplay of Adsorbed Water Layers and Roughness. Langmuir, 2015, 31, 11288-11295.	3.5	40
409	Structural Evolution of a Granular Pack under Manual Tapping. Journal of the Physical Society of Japan, 2015, 84, 094401.	1.6	17
410	Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chinese Physics B, 2015, 24, 074502.	1.4	3
411	\$\$K_{0}\$\$ K 0 of granular soils: a particulate approach. Granular Matter, 2015, 17, 703-715.	2.2	29
412	Transgranular liquation cracking of grains in the semi-solid state. Nature Communications, 2015, 6, 8300.	12.8	72
413	Pore shapes, volume distribution and orientations in monodisperse granular assemblies. Granular Matter, 2015, 17, 727-742.	2.2	30
414	Interplay between the inclusions of different sizes and their proximity to the wall boundaries on the nature of their stress distribution within the inclusions inside particulate packing. Powder Technology, 2015, 286, 98-106.	4.2	2
415	Ar+ ion irradiation-induced reorganization of colloidal silica nanoparticles in Langmuir–Blodgett monolayers. Thin Solid Films, 2015, 574, 136-145.	1.8	4
416	Facile strain analysis of largely bending films by a surface-labelled grating method. Scientific Reports, 2014, 4, 5377.	3.3	33
417	Evolution of mesoscopic granular clusters in comminution systems: a structural mechanics model of grain breakage and force chain buckling. Continuum Mechanics and Thermodynamics, 2015, 27, 105-132.	2.2	3
418	Experimental and Applied Mechanics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics, 2015, , .	0.5	0
419	Effect of Water Content on P-Wave Attenuation Across a Rock Fracture Filled with Granular Materials. Rock Mechanics and Rock Engineering, 2015, 48, 867-871.	5.4	28
420	Pore Characterisation in Monodisperse Granular Assemblies. Applied Mechanics and Materials, 2016, 846, 583-588.	0.2	0

#	Article	IF	CITATIONS
421	Compressive Behavior of Moderately Expanded Low Density Polyethylene (LDPE) Foams. Nihon Reoroji Gakkaishi, 2016, 44, 29-38.	1.0	3
422	Entangled Granular Media., 2016,, 341-354.		3
423	Emergent interparticle interactions in thermal amorphous solids. Physical Review E, 2016, 94, 051001.	2.1	9
424	Stress Wave Propagation in Two-dimensional Buckyball Lattice. Scientific Reports, 2016, 6, 37692.	3.3	13
425	Structural signature of a sheared granular flow. Powder Technology, 2016, 288, 55-64.	4.2	4
426	Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam. Scientific Reports, 2016, 6, 37506.	3.3	35
427	A viscoâ€elastoâ€plastic model for granular materials under simple shear conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 80-104.	3.3	19
428	Quantifying the effect of fillers on the breakage behaviour of needle-shaped particles. Advanced Powder Technology, 2016, 27, 1093-1100.	4.1	3
429	Benchmarking numerical models of brittle thrust wedges. Journal of Structural Geology, 2016, 92, 140-177.	2.3	81
430	Freestanding loadbearing structures with Z-shaped particles. Granular Matter, 2016, 18, 1.	2.2	35
431	Aleatory architectures. Granular Matter, 2016, 18, 1.	2.2	26
432	Continuous wire reinforcement for jammed granular architecture. Granular Matter, 2016, $18,1.$	2.2	13
433	Investigation on tensile behaviors of diamond-like carbon films. Journal of Non-Crystalline Solids, 2016, 443, 8-16.	3.1	35
434	Life in a jam. Nature Physics, 2016, 12, 726-727.	16.7	2
435	Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging. Nature Physics, 2016, 12, 757-761.	16.7	24
436	Self-driven jamming in growing microbialÂpopulations. Nature Physics, 2016, 12, 762-766.	16.7	116
437	Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material. Granular Matter, 2016, 18, 1.	2.2	11
438	The incremental response of a stressed, anisotropic granular material: loading and unloading. Journal of the Mechanics and Physics of Solids, 2016, 95, 147-168.	4.8	6

#	Article	IF	CITATIONS
439	From Liquid Helium to Granular Materials. Journal of Low Temperature Physics, 2016, 185, 230-245.	1.4	0
440	Image-based investigation into the primary fabric of stress-transmitting particles in sand. Soils and Foundations, 2016, 56, 818-834.	3.1	37
441	Topological and geometric measurements of force-chain structure. Physical Review E, 2016, 94, 032909.	2.1	30
442	Evolution of network architecture in a granular material under compression. Physical Review E, 2016, 94, 032908.	2.1	63
443	Weyl fermions go into orbit. Nature Physics, 2016, 12, 727-728.	16.7	33
444	Sheared Dense Granular Flows. , 2016, , 302-323.		0
445	Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials. Physical Review Letters, 2016, 117, 098005.	7.8	109
446	On microscale heterogeneity in granular media and its impact on elastic property estimation. Geophysics, 2016, 81, D561-D571.	2.6	25
447	Measurements of velocity and pressure of a collapsing granular pile. Powder Technology, 2016, 303, 147-155.	4.2	20
448	Tunable shear thickening in suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10774-10778.	7.1	74
449	Unexpected liquefaction under isotropic consolidation of idealized granular materials. Granular Matter, $2016,18,1.$	2.2	7
450	Scaling properties of force networks for compressed particulate systems. Physical Review E, 2016, 93, 042903.	2.1	13
451	Random three-dimensional jammed packings of elastic shells acting as force sensors. Physical Review E, 2016, 93, 062901.	2.1	5
452	Structure of force networks in tapped particulate systems of disks and pentagons. I. Clusters and loops. Physical Review E, 2016, 93, 062902.	2.1	26
453	What Determines the Static Force Chains in Stressed Granular Media?. Physical Review Letters, 2016, 116, 078001.	7.8	31
454	Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow. Physical Review Letters, 2016, 117, 028002.	7.8	13
455	Protocol dependence of the jamming transition. Physical Review E, 2016, 93, 012901.	2.1	42
456	Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space. Physical Review E, 2016, 93, 042901.	2.1	28

#	Article	IF	Citations
457	Divergence of Voronoi Cell Anisotropy Vector: A Threshold-Free Characterization of Local Structure in Amorphous Materials. Physical Review Letters, 2016, 116, 088001.	7.8	35
458	Flowâ€toâ€fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli. Geophysical Research Letters, 2016, 43, 12,071.	4.0	45
459	On weak and strong contact force networks in granular materials. International Journal of Solids and Structures, 2016, 92-93, 135-140.	2.7	17
460	Thermal performance of metallic nanoparticles in air. Applied Thermal Engineering, 2016, 105, 686-690.	6.0	25
461	Microstructure evolution of compressible granular systems under large deformations. Journal of the Mechanics and Physics of Solids, 2016, 93, 44-56.	4.8	18
462	Orientation, flow, and clogging in a two-dimensional hopper: Ellipses vs. disks. Europhysics Letters, 2016, 114, 34002.	2.0	52
463	High-resolution X-ray and neutron computed tomography of partially saturated granular materials subjected to projectile penetration. International Journal of Impact Engineering, 2016, 89, 72-82.	5.0	17
464	Heterogeneity in the Small-Scale Deformation Behavior of Disordered Nanoparticle Packings. Nano Letters, 2016, 16, 2455-2462.	9.1	9
465	Granular vortices: Identification, characterization and conditions for the localization of deformation. Journal of the Mechanics and Physics of Solids, 2016, 90, 215-241.	4.8	42
466	Evolution of the microstructure during the process of consolidation and bonding in soft granular solids. International Journal of Pharmaceutics, 2016, 503, 68-77.	5.2	25
467	Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression-Part II: Multi-scale exploration of internal physical properties. Chemical Engineering Science, 2016, 144, 421-443.	3.8	6
468	Experimental analysis of cyclic loading on a cohesionless granular system. Granular Matter, 2016, 18, 1.	2.2	2
469	Increasing †ease of sliding' also increases friction: when is a lubricant effective?. Journal of Physics Condensed Matter, 2016, 28, 134001.	1.8	4
470	"Buoyancy―in granular medium: How deep can an object sink in sand?. Physica A: Statistical Mechanics and Its Applications, 2016, 451, 560-564.	2.6	1
471	Maximum disorder model for dense steady-state flow of granular materials. Mechanics of Materials, 2016, 93, 63-80.	3.2	13
473	Dynamic Inter-Particle Force Inference in Granular Materials: Method and Application. Experimental Mechanics, 2016, 56, 217-229.	2.0	30
474	Constitutive Laws. Lecture Notes in Physics, 2016, , 63-103.	0.7	0
475	Heterogeneity in deformation of granular ceramics under dynamic loading. Scripta Materialia, 2016, 111, 114-118.	5.2	42

#	Article	IF	CITATIONS
476	Spatial Connectivity of Force Chains in a Simple Shear 3D Simulation Exhibiting Shear Bands. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	12
477	Contact Transience during Slow Loading of Dense Granular Materials. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	8
478	The role of force chains in granular materials: from statics to dynamics. European Journal of Environmental and Civil Engineering, 2017, 21, 874-895.	2.1	69
479	Partition of the contact force network obtained in discrete element simulations of element tests. Computational Particle Mechanics, 2017, 4, 145-152.	3.0	14
480	Casimir effect between pinned particles in two-dimensional jammed systems. Soft Matter, 2017, 13, 1142-1155.	2.7	4
481	Steering coefficient in ordered lattice pile of two-dimensional granular systems. Granular Matter, 2017, 19, 1.	2.2	1
482	Modeling Granular Materials: Century-Long Research across Scales. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	67
483	Unloading-induced instability of a simulated granular fault and implications for excavation-induced seismicity. Tunnelling and Underground Space Technology, 2017, 63, 154-161.	6.2	45
484	Micromechanical analyses of the effect of rubber size and content on sand-rubber mixtures at the critical state. Geotextiles and Geomembranes, 2017, 45, 81-97.	4.6	56
485	Stress-induced seismic azimuthal anisotropy, sand-shale content, and depth trends offshore North West Australia. Geophysics, 2017, 82, C77-C90.	2.6	3
486	The impact of fluid flow on force chains in granular media. Applied Physics Letters, 2017, 110, .	3.3	24
487	Anisotropy of elasticity and fabric of granular soils. Granular Matter, 2017, 19, 1.	2.2	59
488	Nonlinear friction dynamics on polymer surface under accelerated movement. AIP Advances, 2017, 7, .	1.3	32
489	A geometric exploration of stress in deformed liquid foams. Journal of Physics Condensed Matter, 2017, 29, 124004.	1.8	2
490	Evaluation of energy contributions using inter-particle forces in granular materials under impact loading. Granular Matter, 2017, 19, 1.	2.2	16
491	Granular packing as model glass formers. Chinese Physics B, 2017, 26, 014503.	1.4	4
492	Pore configuration landscape of granular crystallization. Nature Communications, 2017, 8, 15082.	12.8	92
493	Enhanced piezoluminescence in non-stoichiometric ZnS:Cu microparticle based light emitting elastomers. Journal of Materials Chemistry C, 2017, 5, 5387-5394.	5.5	27

#	Article	IF	CITATIONS
494	Axial segregation of granular mixtures as the rotational stabilization of the radial core. Granular Matter, 2017, 19, 1.	2.2	4
496	Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies. Granular Matter, $2017, 19, 1$.	2.2	98
497	The effects of rolling resistance and non-convex particle on the mechanics of the undrained granular assembles in 2D. Powder Technology, 2017, 318, 528-542.	4.2	22
498	Grain-size effect on uplift capacity of plate anchors in coarse granular soils. Geotechnique Letters, 2017, 7, 167-173.	1.2	17
499	Photoelastic force measurements in granular materials. Review of Scientific Instruments, 2017, 88, 051808.	1.3	120
500	Visualization of the three-dimensional structure and stress field of aggregated concrete materials through 3D printing and frozen-stress techniques. Construction and Building Materials, 2017, 143, 121-137.	7.2	61
501	Micromechanical Origin of Particle Size Segregation. Physical Review Letters, 2017, 118, 118001.	7.8	64
502	Properties of force networks in jammed granular media. Granular Matter, 2017, 19, 1.	2.2	6
503	Numerical investigation of the influence of particle size and particle number ratios on texture and force transmission in binary granular composites. Powder Technology, 2017, 308, 324-333.	4.2	27
504	Particle shape effects on fabric of granular random packing. Powder Technology, 2017, 310, 175-186.	4.2	166
505	Discrete element method investigation on thermally-induced shakedown of granular materials. Granular Matter, $2017,19,1.$	2.2	31
506	Force percolation transition of jammed granular systems. Physical Review E, 2017, 96, 042901.	2.1	12
507	Multi-scale mechanics of granular solids from grain-resolved X-ray measurements. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170491.	2.1	21
508	Microstructure as a function of the grain size distribution for packings of frictionless disks: Effects of the size span and the shape of the distribution. Physical Review E, 2017, 96, 042907.	2.1	13
509	Physical root–soil interactions. Physical Biology, 2017, 14, 065004.	1.8	76
510	A novel experimental device for investigating the multiscale behavior of granular materials under shear. Granular Matter, 2017, 19, 1.	2.2	19
512	Force fluctuations on a wall in interaction with a granular lid-driven cavity flow. Physical Review E, 2017, 96, 042906.	2.1	7
513	Quasi-Static Rheology of Granular Media Using the Static DEM. International Journal of Geomechanics, 2017, 17, 04017094.	2.7	8

#	Article	IF	CITATIONS
514	Planar granular shear flow under external vibration. Physical Review E, 2017, 96, 022903.	2.1	1
515	Partial regularisation of the incompressible ?(<i>I</i>)-rheology for granular flow. Journal of Fluid Mechanics, 2017, 828, 5-32.	3.4	65
516	Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. International Journal of Machine Tools and Manufacture, 2017, 123, 146-159.	13.4	155
517	Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale. Scientific Reports, 2017, 7, 45206.	3.3	21
518	The sound of avalanches: from a global to a local perspective EPJ Web of Conferences, 2017, 140, 03015.	0.3	1
519	On the kinematics and dynamics of crystalâ€rich systems. Journal of Geophysical Research: Solid Earth, 2017, 122, 6131-6159.	3.4	64
520	Force distribution in a granular medium under dynamic loading. Physical Review E, 2017, 96, 012906.	2.1	5
521	Acoustic wave propagation in disordered microscale granular media under compression. Granular Matter, 2017, 19, 1.	2.2	8
522	Experimental Investigation on the Contact Mechanical Characteristics of Superconducting Strands in the CICC Cross-Section. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	3
523	Edge mode amplification in disordered elastic networks. Soft Matter, 2017, 13, 5795-5801.	2.7	8
524	Analysis of dense packing of highly deformed grains. EPJ Web of Conferences, 2017, 140, 15031.	0.3	5
525	Preface: Focus on imaging methods in granular physics. Review of Scientific Instruments, 2017, 88, 051701.	1.3	29
526	Direct observation of impact propagation and absorption in dense colloidal monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12150-12155.	7.1	19
527	Local and global avalanches in a two-dimensional sheared granular medium. Physical Review E, 2017, 96, 052902.	2.1	64
528	Computational Studies on Interactions between Robot Leg and Deformable Terrain. Procedia Engineering, 2017, 199, 2439-2444.	1.2	4
529	Experimental study on compression property of regolith analogues. Planetary and Space Science, 2017, 149, 14-22.	1.7	17
530	Dependencies of the Adhesion Forces between TiO ₂ Nanoparticles on Size and Ambient Humidity. Journal of Physical Chemistry C, 2017, 121, 15294-15303.	3.1	17
531	Force measurements in stiff, 3D, opaque granular materials. EPJ Web of Conferences, 2017, 140, 02006.	0.3	2

#	Article	IF	CITATIONS
532	Experimental studies of vibrational modes in a two-dimensional amorphous solid. Nature Communications, 2017, 8, 67.	12.8	33
533	Localization in random bipartite graphs: Numerical and empirical study. Physical Review E, 2017, 95, 052149.	2.1	6
534	Experimental soft-matter science. Reviews of Modern Physics, 2017, 89, .	45. 6	82
535	Assessing contact forces in granular materials from experimental measurements of kinematics. EPJ Web of Conferences, 2017, 140, 02012.	0.3	3
536	Fluctuation and arching formation of very dense and slow pebble flow in a silo bed. Journal of Nuclear Science and Technology, 2017, 54, 111-126.	1.3	8
537	On the mechanics of meso-scale structures in two-dimensional granular materials. European Journal of Environmental and Civil Engineering, 2017, 21, 912-935.	2.1	12
538	Emergence of Long-Ranged Stress Correlations at the Liquid to Glass Transition. Physical Review Letters, 2017, 119, 265701.	7.8	39
539	Gas-Driven Fracturing of Saturated Granular Media. Physical Review Applied, 2017, 8, .	3.8	17
540	Topology of force networks in granular media under impact. Europhysics Letters, 2017, 120, 44003.	2.0	13
541	Jamming by compressing a system of granular crosses. EPJ Web of Conferences, 2017, 140, 06014.	0.3	5
542	Damage point prediction of a force chain based on the digital image correlation method. Applied Optics, 2017, 56, 636.	2.1	2
543	Effective Thermal Expansion Property of Consolidated Granular Materials. Materials, 2017, 10, 1289.	2.9	0
544	Evolution of the Mesoscopic Parameters and Mechanical Properties of Granular Materials upon Loading. Mathematical Problems in Engineering, 2017, 2017, 1-12.	1.1	3
545	The role of force networks in granular materials. EPJ Web of Conferences, 2017, 140, 01006.	0.3	21
546	A Granular System of Ellipses under Linear Shear. EPJ Web of Conferences, 2017, 140, 06003.	0.3	2
547	Jamming Transition: Heptagons, Pentagons, and Discs. EPJ Web of Conferences, 2017, 140, 06010.	0.3	6
548	Granular mechanics of normally consolidated fine soils. EPJ Web of Conferences, 2017, 140, 12010.	0.3	1
549	Experimental observations of root growth in a controlled photoelastic granular material. EPJ Web of Conferences, 2017, 140, 14008.	0.3	4

#	Article	IF	CITATIONS
550	Quantitative Analysis on Force Chain of Asphalt Mixture under Haversine Loading. Advances in Materials Science and Engineering, 2017, 2017, 1-7.	1.8	9
551	Highly deformed grain: from the Hertz contact limitation to a new strain field description in 2D. EPJ Web of Conferences, 2017, 140, 05011.	0.3	4
552	Edwards statistical mechanics for jammed granular matter. Reviews of Modern Physics, 2018, 90, .	45.6	135
553	Network analysis of particles and grains. Journal of Complex Networks, 2018, 6, 485-565.	1.8	113
554	Numerical Investigation on Granular Flow from a Wedgeâ€Shaped Feed Hopper Using the Discrete Element Method. Chemical Engineering and Technology, 2018, 41, 913-920.	1.5	2
555	Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns. Journal of Asian Earth Sciences, 2018, 158, 18-28.	2.3	38
556	Analysis of contact zones from whole field isochromatics using reflection photoelasticity. Optics and Lasers in Engineering, 2018, 105, 86-92.	3.8	23
557	Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils. Geotechnique, 2018, 68, 1085-1098.	4.0	104
558	Characterization of force networks in a dense high-shear system. Particuology, 2018, 38, 215-221.	3.6	11
559	Elastogranular Mechanics: Buckling, Jamming, and Structure Formation. Physical Review Letters, 2018, 120, 078002.	7.8	18
560	Ultrasonic investigation of granular materials subjected to compression and crushing. Ultrasonics, 2018, 87, 112-125.	3.9	33
561	Effect of particle stiffness on contact dynamics and rheology in a dense granular flow. Physical Review E, 2018, 97, 012902.	2.1	8
562	Granular response to impact: Topology of the force networks. Physical Review E, 2018, 97, 012906.	2.1	25
563	Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotechnica, 2018, 13, 601-618.	5.7	35
564	Discrete Element Analysis of the $\langle i \rangle K \langle i \rangle \langle sub \rangle 0 \langle sub \rangle$ of Granular Soil and Its Relation to Small Strain Shear Stiffness. International Journal of Geomechanics, 2018, 18, .	2.7	14
565	Heterogeneous/particle-laden blast waves. Shock Waves, 2018, 28, 439-449.	1.9	34
566	Force-chain evolution in a two-dimensional granular packing compacted by vertical tappings. Physical Review E, 2018, 97, 032901.	2.1	12
567	Discrete geometry model of heat in granular bentonite barriers. Environmental Geotechnics, 2018, 5, 3-17.	2.3	2

#	ARTICLE	IF	CITATIONS
568	DEM and experimental studies on pellet segregation in stockpile build-up. Ironmaking and Steelmaking, 2018, 45, 264-271.	2.1	11
569	3D finite element modelling of force transmission and particle fracture of sand. Computers and Geotechnics, 2018, 94, 184-195.	4.7	27
570	Spatially Varying Small-strain Stiffness in Soils Subjected to KO Loading. KSCE Journal of Civil Engineering, 2018, 22, 1101-1108.	1.9	4
571	Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters, 2018, 482, 407-413.	4.4	87
572	Evolution of pore structure and hydraulic conductivity of randomly distributed soluble particle mixture. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42, 768-780.	3.3	1
573	In situ grain fracture mechanics during uniaxial compaction of granular solids. Journal of the Mechanics and Physics of Solids, 2018, 112, 273-290.	4.8	57
574	Micromechanics of Granular Media Characterised Using X-Ray Tomography and 3DXRD. Trends in Mathematics, 2018, , 169-176.	0.1	2
576	Induced Current Simulation of One-Dimensional Vibrating Magnetic Granular Particles System. , 2018, ,		0
577	Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model. Mathematical Medicine and Biology, 2018, 35, i1-i27.	1,2	44
578	Three dimensional discrete element method simulations of interface shear. Soils and Foundations, 2018, 58, 941-956.	3.1	26
579	Dynamics of silo deformation under granular discharge. Physical Review E, 2018, 98, .	2.1	1
580	Disentangling boson peaks and Van Hove singularities in a model glass. Physical Review B, 2018, 98, .	3.2	22
581	Crosslinker mobility weakens transient polymer networks. Physical Review E, 2018, 98, .	2.1	14
582	Rising dynamics and lift effect in dense segregating granular flows. Physics of Fluids, 2018, 30, 123303.	4.0	18
583	Stress anisotropy in shear-jammed packings of frictionless disks. Physical Review E, 2018, 98, .	2.1	22
584	Effect of Hardness on Surface Strain of PDMS Films Detected by a Surface Labeled Grating Method. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 523-526.	0.3	6
585	Energy Fluctuations in Slowly Sheared Granular Materials. Physical Review Letters, 2018, 121, 248001.	7.8	22
586	Avalanches in Solids, Theory and Experiments. , 2018, , 1-19.		1

#	Article	IF	Citations
587	Effective temperature of active fluids and sheared soft glassy materials. European Physical Journal E, 2018, 41, 117.	1.6	11
588	Influence of particle packing structure on sound velocity. Chinese Physics B, 2018, 27, 104501.	1.4	0
589	Grain Size Effect on the Mechanical Behavior of Cohesionless Coarse-Grained Soils with the Discrete Element Method. Advances in Civil Engineering, 2018, 2018, 1-6.	0.7	14
590	Suitable rolling resistance model for quasi-static shear tests of non-spherical particles via discrete element method. Granular Matter, 2018, 20, 1.	2.2	2
591	Mechanical Study on the Effect of Granular Friction in a Granular System under Biaxial Compression. Journal of the Korean Physical Society, 2018, 72, 1179-1187.	0.7	4
592	Microscopic Origins of Shear Jamming for 2D Frictional Grains. Physical Review Letters, 2018, 120, 208004.	7.8	49
593	Mechanical characterization of disordered and anisotropic cellular monolayers. Physical Review E, 2018, 97, 052409.	2.1	26
594	Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes. Physical Review Letters, 2018, 120, 218003.	7.8	14
595	Three-dimensional numerical reconstruction method for irregular structures of granular geomaterials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2018, 4, 327-341.	2.9	8
596	Crack Initiation in Viscoelastic Materials. Physical Review Letters, 2018, 120, 268002.	7.8	20
597	Shear localization and wall friction in confined dense granular flows. Journal of Fluid Mechanics, 2018, 849, 395-418.	3.4	20
598	Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. International Journal of Solids and Structures, 2018, 150, 268-281.	2.7	126
599	An instrument for studying granular media in low-gravity environment. Review of Scientific Instruments, 2018, 89, 075103.	1.3	18
600	Sinking in a bed of grains activated by shearing. Physical Review E, 2018, 98, 010901.	2.1	13
601	Application of low-order potential solutions to higher-order vertical traction boundary problems in an elastic half-space. Royal Society Open Science, 2018, 5, 180203.	2.4	3
602	Skinny emulsions take on granular matter. Soft Matter, 2018, 14, 7310-7323.	2.7	6
603	Force distributions in frictional granular media. Physical Review E, 2018, 98, 012905.	2.1	8
604	Thermal cycling leads grains to more homogeneous force networks and energy repartition. Powder Technology, 2018, 339, 111-118.	4.2	2

#	Article	IF	CITATIONS
605	Threshold of gas-like to clustering transition in driven granular media in low-gravity environment. Europhysics Letters, 2018, 123, 14003.	2.0	16
606	Numerical analysis of multi-scale mechanical theory of densified powder compaction. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	5
607	Effect of Particle Size and Cohesion on Powder Yielding and Flow. KONA Powder and Particle Journal, 2018, 35, 226-250.	1.7	77
608	Singleâ€Shot Optical Anisotropy Imaging with Quantitative Polarization Interference Microscopy. Laser and Photonics Reviews, 2018, 12, 1800070.	8.7	12
609	Universal Features of Metastable State Energies in Cellular Matter. Physical Review Letters, 2018, 120, 248001.	7.8	17
610	Rupture of granular rafts: effects of particle mobility and polydispersity. Soft Matter, 2018, 14, 6419-6430.	2.7	6
611	The physics of jamming for granular materials: a review. Reports on Progress in Physics, 2019, 82, 012601.	20.1	162
612	Particle scale force sensor based on intensity gradient method in granular photoelastic experiments. New Journal of Physics, 2019, 21, 023009.	2.9	24
613	Forecasting failure locations in 2-dimensional disordered lattices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16742-16749.	7.1	21
614	From plastic flow to brittle fracture: Role of microscopic friction in amorphous solids. Physical Review E, 2019, 100, 012908.	2.1	12
615	Enlightening force chains: a review of photoelasticimetry in granular matter. Granular Matter, 2019, 21, 1.	2.2	58
616	Jamming and irreversibility. Granular Matter, 2019, 21, 1.	2.2	13
617	Theory of elastic constants of athermal amorphous solids with internal stresses. Granular Matter, 2019, 21, 1.	2.2	14
618	Experimental study on granular biaxial test based on photoelastic technique. Engineering Geology, 2019, 260, 105208.	6.3	23
619	Photoelastic study of dense granular free-surface flows. Physical Review E, 2019, 100, 012902.	2.1	11
620	Volcanoes Erupt Stressed Quartz Crystals. Geophysical Research Letters, 2019, 46, 8791-8800.	4.0	2
621	Investigation of the fabric evolution and the stress-transmission behaviour of sands based on X-ray $1\frac{1}{4}$ CT images. Advanced Powder Technology, 2019, 30, 1858-1869.	4.1	9
622	Preferential growth of force network in granular media. Granular Matter, 2019, 21, 1.	2.2	9

#	Article	IF	CITATIONS
623	Viewing Earth's surface as a soft-matter landscape. Nature Reviews Physics, 2019, 1, 716-730.	26.6	61
624	Equilibrium configurations of hard spheres in a cylindrical harmonic potential. Europhysics Letters, 2019, 127, 44002.	2.0	10
625	Effect of Particle Breakage and Shape on the Mechanical Behaviors of Granular Materials. Advances in Civil Engineering, 2019, 2019, 1-15.	0.7	8
626	Granular scale responses in the shear band region. Granular Matter, 2019, 21, 1.	2.2	22
627	Scaling theory of giant frictional slips in decompressed granular media. Europhysics Letters, 2019, 125, 68004.	2.0	0
628	Comparison of shear and compression jammed packings of frictional disks. Granular Matter, 2019, 21, 1.	2.2	8
629	Exploration of Mechanical Behaviors of Argillaceous Siltstone through Photoelastic Model Test and DEM Modelling. Advances in Civil Engineering, 2019, 2019, 1-15.	0.7	0
630	Stress banding in compressed quasi-two-dimensional aqueous foams. Physics of Fluids, 2019, 31, 082111.	4.0	1
631	Tensile strength of cohesive powders. Advanced Powder Technology, 2019, 30, 2868-2880.	4.1	18
632	Using Acoustic Perturbations to Dynamically Tune Shear Thickening in Colloidal Suspensions. Physical Review Letters, 2019, 123, 128001.	7.8	17
633	A tensor-based analysis of stress variability in granular media subjected to various loading conditions. Powder Technology, 2019, 356, 581-593.	4.2	7
634	Jamming by shear in a dilating granular system. Granular Matter, 2019, 21, 1.	2.2	8
635	Betweenness centrality as predictor for forces in granular packings. Soft Matter, 2019, 15, 1793-1798.	2.7	28
636	Normal stress anisotropy and marginal stability in athermal elastic networks. Soft Matter, 2019, 15, 1666-1675.	2.7	14
637	Contact tribology also affects the slow flow behavior of granular emulsions. Journal of Rheology, 2019, 63, 275-283.	2.6	13
638	Protocol Dependence and State Variables in the Force-Moment Ensemble. Physical Review Letters, 2019, 122, 038001.	7.8	23
639	Variational Methods for Discrete Models of Granular Materials. , 2019, , 1-14.		0
640	Induced force chain anisotropy of cohesionless granular materials during biaxial compression. Granular Matter, 2019, 21, 1.	2.2	25

#	Article	IF	Citations
641	Packing and flow profiles of soft grains in 3D silos reconstructed with X-ray computed tomography. Granular Matter, 2019, 21 , 1 .	2.2	18
642	Continuously Sheared Granular Matter Reproduces in Detail Seismicity Laws. Physical Review Letters, 2019, 122, 218501.	7.8	44
643	Origin of Slow Stress Relaxation in the Cytoskeleton. Physical Review Letters, 2019, 122, 218102.	7.8	44
644	Visualization and measurement of load transmission in granular assemblies using mechanoluminescent-coated particles. Granular Matter, 2019, 21, 1.	2.2	5
645	Vibration can enhance stick-slip behavior for granular friction. Granular Matter, 2019, 21, 1.	2.2	9
646	Biomechanical Feedback Strengthens Jammed Cellular Packings. Physical Review Letters, 2019, 122, 208102.	7.8	11
647	3D DEM investigation on the morphology and structure of landslide dams formed by dry granular flows. Engineering Geology, 2019, 258, 105151.	6.3	33
648	Disorder-induced topological transition in porous media flow networks. Journal of Non-Newtonian Fluid Mechanics, 2019, 268, 66-74.	2.4	7
649	Capturing the inter-particle force distribution in granular material using LS-DEM. Granular Matter, 2019, 21, 1.	2.2	25
650	Rapid In Situ Characterization of Soil Erodibility With a Field Deployable Robot. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1261-1280.	2.8	9
651	Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Current Opinion in Colloid and Interface Science, 2019, 43, 94-112.	7.4	45
652	Particle rotations and energy dissipation during mechanical compression of granular materials. Journal of the Mechanics and Physics of Solids, 2019, 129, 19-38.	4.8	30
653	Structural similarity between dry and wet sphere packings. New Journal of Physics, 2019, 21, 043020.	2.9	3
654	Emergence of Goldstone excitations in stress correlations of glass-forming colloidal dispersions. Europhysics Letters, 2019, 125, 68003.	2.0	10
655	Fluctuation and self-diffusion research about dry granular materials under shearing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	3
656	Analysis of the pebble burnup profile in a pebble-bed nuclear reactor. Nuclear Engineering and Design, 2019, 345, 233-251.	1.7	14
657	Distinct element analysis of the microstructure evolution in granular soils under cyclic loading. Granular Matter, 2019, 21, 1.	2.2	36
658	Root growth and force chains in a granular soil. Physical Review E, 2019, 99, 042903.	2.1	9

#	Article	IF	Citations
659	In situ investigation of stress-induced martensitic transformation in granular shape memory ceramic packings. Acta Materialia, 2019, 168, 362-375.	7.9	21
660	A nature inspired modularity function for unsupervised learning involving spatially embedded networks. Scientific Reports, 2019, 9, 2631.	3.3	7
661	Deformation Field in Diametrically Loaded Soft Cylinders. Experimental Mechanics, 2019, 59, 453-467.	2.0	15
662	Characterising 3D spherical packings by principal component analysis. Engineering Computations, 2019, 37, 1023-1041.	1.4	2
663	Connecting the Drops: Observing Collective Flow Behavior in Emulsions. Frontiers in Physics, 2019, 7, .	2.1	2
664	Force chains in cell–cell mechanical communication. Journal of the Royal Society Interface, 2019, 16, 20190348.	3.4	32
665	Preferential flow pathways in a deforming granular material: self-organization into functional groups for optimized global transport. Scientific Reports, 2019, 9, 18231.	3.3	14
666	Fluid load support does not explain tribological performance of PVA hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 284-294.	3.1	18
667	Confocal Microscopy and Digital Volume Correlation Methods for Intergranular Force Transmission Experiments. Experimental Techniques, 2019, 43, 457-468.	1.5	2
668	The deformation of granular materials under repeated traffic load by discrete element modelling. European Journal of Environmental and Civil Engineering, 2020, 24, 1135-1160.	2.1	8
669	Influence of Stress on Void Ratios of Compacted Crushed Rock Masses in Coal Mine Gobs. Natural Resources Research, 2020, 29, 1361-1373.	4.7	9
670	An assessment of discrete element approaches to infer intergranular forces from experiments on 2D granular media. International Journal of Solids and Structures, 2020, 187, 48-57.	2.7	6
671	InÂSitu X-ray Tomography and 3D X-ray Diffraction Measurements of Cemented Granular Materials. Jom, 2020, 72, 18-27.	1.9	16
672	Effect of particle roughness on the bulk deformation using coupled boundary element and discrete element methods. Computational Particle Mechanics, 2020, 7, 603-613.	3.0	15
673	Using Mechanoluminescent Materials to Visualize Interparticle Contact Intensity in Granular Media. Experimental Mechanics, 2020, 60, 51-64.	2.0	3
674	DEM investigation of angle of repose for super-ellipsoidal particles. Particuology, 2020, 50, 53-66.	3.6	35
675	A micro finite-element model for soil behaviour: experimental evaluation for sand under triaxial compression. Geotechnique, 2020, 70, 931-936.	4.0	11
676	The helical motions of roots are linked to avoidance of particle forces in soil. New Phytologist, 2020, 225, 2356-2367.	7. 3	8

#	Article	IF	CITATIONS
677	Steady state rheology of homogeneous and inhomogeneous cohesive granular materials. Granular Matter, 2020, 22, 1.	2.2	17
678	Compaction of elastic granular materials: inter-particles friction effects and plastic events. Soft Matter, 2020, 16, 679-687.	2.7	13
679	Transparent experiments: releasing data from mechanical tests on three dimensional hydrogel sphere packings. Granular Matter, 2020, 22, 21.	2.2	6
680	Continuum theory for dense gas-solid flow: A state-of-the-art review. Chemical Engineering Science, 2020, 215, 115428.	3.8	200
681	Shear of granular materials composed of ellipses. Granular Matter, 2020, 22, 1.	2.2	9
682	Morphodynamics of a dense particulate medium under radial explosion. Soft Matter, 2020, 16, 1498-1517.	2.7	5
683	Statistical model predicts softening and fluidization induced by vibration in granular materials. International Journal of Mechanical Sciences, 2020, 171, 105373.	6.7	7
684	Experimental study of dry stone masonry walls using digital reflection photoelasticity. Strain, 2020, 56, e12372.	2.4	6
685	Machine learning and fault rupture: A review. Advances in Geophysics, 2020, , 57-107.	2.8	18
686	Additive manufacturing meta-functional composites for engineered bridge bearings: A review. Construction and Building Materials, 2020, 262, 120535.	7.2	19
687	3D shape quantification and random packing simulation of rock aggregates using photogrammetry-based reconstruction and discrete element method. Construction and Building Materials, 2020, 262, 119986.	7.2	39
688	The Effect of a Liquid Phase on Force Distribution During Deformation in a Granular System. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019771.	3.4	9
689	Microscopic Picture of Erosion and Sedimentation Processes in Dense Granular Flows. Physical Review Letters, 2020, 125, 208002.	7.8	3
690	Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEM. Granular Matter, 2020, 22, 1.	2.2	14
691	Inter-particle friction and particle sphericity effects on isotropic compression behavior in real-shaped sand assemblies. Computers and Geotechnics, 2020, 126, 103741.	4.7	13
692	Stochastic Approach to the Solution of Boussinesq-Like Problems in Discrete Media. Journal of Elasticity, 2020, 141, 301-319.	1.9	1
693	Governing equations for stress distribution in rhombic disk packings. Physica A: Statistical Mechanics and Its Applications, 2020, 558, 124911.	2.6	4
694	Quantification of photoelastic fringe orders using polarized light camera and continuous loading. Optics and Lasers in Engineering, 2020, 134, 106263.	3.8	21

#	ARTICLE	IF	CITATIONS
695	Quantitative distribution characteristics of force chains for asphalt mixtures with three skeleton structures using discrete element method. Granular Matter, 2020, 22, 1.	2.2	12
696	Emergent solidity of amorphous materials as a consequence of mechanical self-organisation. Nature Communications, 2020, 11 , 4863.	12.8	26
697	Connecting shear localization with the long-range correlated polarized stress fields in granular materials. Nature Communications, 2020, 11 , 4349.	12.8	14
698	Emergent Elasticity in Amorphous Solids. Physical Review Letters, 2020, 125, 118002.	7.8	26
699	Cyclic Bi-Axial Tests on Assembly of Metal Rods Under Constant-Volume Condition to Study Re-Liquefaction Behavior. Transportation Infrastructure Geotechnology, 2020, 7, 478-495.	3.1	5
700	Tensile strength of granular aggregates: Stress chains across particle phase versus stress concentration by pores. Physical Review E, 2020, 102, 022906.	2.1	7
701	Investigation on the Friction Mechanism and Its Relation to the Force Chains during Powder Compaction. Journal of the Physical Society of Japan, 2020, 89, 124602.	1.6	6
702	Contact criterion for suspensions of smooth and rough colloids. Soft Matter, 2020, 16, 4980-4989.	2.7	12
703	Tunable solidification of cornstarch under impact: How to make someone walking on cornstarch sink. Science Advances, 2020, 6, eaay6661.	10.3	9
704	Stress driven fractionalization of vacancies in regular packings of elastic particles. Soft Matter, 2020, 16, 5633-5639.	2.7	1
705	Discontinuous shear thickening in concentrated mixtures of isotropic-shaped and rod-like particles tested through mixer type rheometry. Journal of Rheology, 2020, 64, 817-836.	2.6	5
706	Coherent Force Chains in Disordered Granular Materials Emerge from a Percolation of Quasilinear Clusters. Physical Review Letters, 2020, 124, 198002.	7.8	11
707	Structured randomness: jamming of soft discs and pins. Soft Matter, 2020, 16, 5305-5313.	2.7	3
708	Digital photoelasticity: Recent developments and diverse applications. Optics and Lasers in Engineering, 2020, 135, 106186.	3.8	70
709	Fracture plugging zone for lost circulation control in fractured reservoirs: Multiscale structure and structure characterization methods. Powder Technology, 2020, 370, 159-175.	4.2	29
710	Quantification of fabric in cemented granular materials. Computers and Geotechnics, 2020, 125, 103644.	4.7	6
711	Scaling in Colloidal and Biological Networks. Entropy, 2020, 22, 622.	2.2	8
712	Depletion attraction impairs the plasticity of emulsions flowing in a constriction. Soft Matter, 2020, 16, 3294-3302.	2.7	11

#	Article	IF	Citations
713	3D Experimental Measurements of Evolution of Force Chains in Natural Silica Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, 04020027.	3.0	8
714	Investigation of arch structure of granular assembly in the trapdoor test using digital RGB photoelastic analysis. Powder Technology, 2020, 366, 560-570.	4.2	14
715	Experimental Study on Distribution of Landslide Thrust in Pile-Anchor Structure based on Photoelastic Technique. Materials, 2020, 13, 1358.	2.9	6
716	Evolution of internal granular structure at the flow-arrest transition. Granular Matter, 2020, 22, 1.	2.2	5
717	The unusual problem of upscaling isostaticity theory for granular matter. Granular Matter, 2020, 22, 1.	2.2	2
718	Strong contacts, connectivity and fabric anisotropy in granular materials: A 3D perspective. Powder Technology, 2020, 366, 747-760.	4.2	31
719	Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nature Communications, 2020, 11, 1216.	12.8	88
720	Investigative approaches I: experimental imaging techniques. , 2020, , 37-74.		0
721	Finite size effects in critical fiber networks. Soft Matter, 2020, 16, 6784-6793.	2.7	13
723	Analysis of consistent soil–structure interface response in multi–directional shear tests by discrete element modeling. Transportation Geotechnics, 2020, 24, 100379.	4.5	19
724	The influence of packing structure and interparticle forces on ultrasound transmission in granular media. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16234-16242.	7.1	13
725	A non-local constitutive model for slow granular flow that incorporates dilatancy. Journal of Fluid Mechanics, 2020, 888, .	3.4	26
726	Unsteady flow, clusters, and bands in a model shear-thickening fluid. Physical Review E, 2020, 101, 012602.	2.1	9
727	Poreâ€Scale Investigation Of Methane Hydrateâ€Bearing Sediments Under Triaxial Condition. Geophysical Research Letters, 2020, 47, e2019GL086448.	4.0	45
728	Athermal Fracture of Elastic Networks: How Rigidity Challenges the Unavoidable Size-Induced Brittleness. Physical Review Letters, 2020, 124, 018002.	7.8	15
729	Mechanics of randomly packed filamentsâ€"The "bird nest―as meta-material. Journal of Applied Physics, 2020, 127, .	2.5	32
730	Nonlinear Poisson Effect Governed by a Mechanical Critical Transition. Physical Review Letters, 2020, 124, 038002.	7.8	12
731	Asperity Failure Control of Stick–Slip Along Brittle Faults. Pure and Applied Geophysics, 2020, 177, 3225-3242.	1.9	33

#	ARTICLE	IF	CITATIONS
732	Residual Stress, Thermomechanics & Difference Imaging and Inverse Problems, Volume 6. Conference Proceedings of the Society for Experimental Mechanics, 2020, , .	0.5	2
733	Force chains in top coal caving mining. International Journal of Rock Mechanics and Minings Sciences, 2020, 127, 104218.	5.8	18
734	Arching effect analysis of granular media based on force chain visualization. Powder Technology, 2020, 363, 621-628.	4.2	27
735	On the Mechanism of Laboratory Earthquake Nucleation Highlighted by Acoustic Emission. Scientific Reports, 2020, 10, 7245.	3.3	7
736	Force chains and networks: wet suspensions through dry granular eyes. Granular Matter, 2020, 22, 1.	2.2	9
737	Effects of stress state and fine fraction on stress transmission in internally unstable granular mixtures investigated via discrete element method. Powder Technology, 2020, 367, 659-670.	4.2	16
738	Thermally Activated Jamming in Ultrasonic Powder Compaction. Advanced Engineering Materials, 2021, 23, .	3.5	2
739	Viscosity of cohesive granular flows. Soft Matter, 2021, 17, 165-173.	2.7	17
740	Dynamic characteristics of multiscale longitudinal stress and particle rotation in ballast track under vertical cyclic loads. Acta Geotechnica, 2021, 16, 1527-1545.	5.7	13
741	In-situ 3D visualization of compression process for powder beds by synchrotron-radiation X-ray computed laminography. Powder Technology, 2021, 380, 265-272.	4.2	5
742	Nonlocality in granular complex networks: Linking topology, kinematics and forces. Extreme Mechanics Letters, 2021, 42, 101041.	4.1	10
743	Subduction in the Earth's Lithosphere, Modeled as a Compressed Flow of Cubes Using the Discrete Element Method. Advances in Intelligent Systems and Computing, 2021, , 192-202.	0.6	0
744	Force chains in crystalline and frustrated packing visualized by stress-birefringent spheres. Soft Matter, 2021, 17, 4317-4327.	2.7	5
745	Stress-path-dependent effective medium model for granular media — Comparison with experimental data. Geophysics, 2021, 86, MR39-MR52.	2.6	1
746	Static and dynamic features of granular material failure due to upward pulling of a buried sphere by a slowly increasing force. Soft Matter, 2021, 17, 2832-2839.	2.7	1
747	Acoustic localisation in a two-dimensional granular medium. EPJ Web of Conferences, 2021, 249, 15005.	0.3	0
748	X-Ray Tomography Investigation of Cyclically Sheared Granular Materials. Physical Review Letters, 2021, 126, 048002.	7.8	18
749	Spread of in-plane anisotropy in CsPbBr ₃ /ReS ₂ heterostructures by proximity effect. Journal of Materials Chemistry C, 0, , .	5 . 5	4

#	Article	IF	CITATIONS
750	Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers, 2021, 13, 538.	4.5	105
751	Frictional Granular Matter: Protocol Dependence of Mechanical Properties. Physical Review Letters, 2021, 126, 075501.	7.8	10
752	Inertial Force Transmission in Dense Granular Flows. Physical Review Letters, 2021, 126, 118002.	7.8	8
753	Evolution of granular materials under isochoric cyclic simple shearing. Physical Review E, 2021, 103, 032904.	2.1	16
754	A versatile 3D computational model based on molecular dynamics for real-time simulation of the automatic powder filling processes. Powder Technology, 2021, 381, 141-163.	4.2	1
755	Resolving tensions surrounding massive pulleys. American Journal of Physics, 2021, 89, 277-283.	0.7	0
756	Effect of lognormal particle size distributions on particle spreading in additive manufacturing. Advanced Powder Technology, 2021, 32, 1127-1144.	4.1	7
757	Experimental investigation of granular friction behaviors during reciprocating sliding. Friction, 2022, 10, 732-747.	6.4	6
758	An extended numerical manifold method for unsaturated soilâ€water interaction analysis at microâ€scale. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 1500-1525.	3.3	12
759	Contact model for elastically anisotropic bodies and efficient implementation into the discrete element method. Granular Matter, 2021, 23, 1.	2.2	1
760	On the evolution law of a contact normal-based fabric tensor for granular materials. Computers and Geotechnics, 2021, 132, 103857.	4.7	4
761	Dynamic interactions of a driven pendulum with photoelastic granular media. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 396, 127244.	2.1	0
762	An enhanced tool for probing the microscopic behavior of granular materials based on X-ray micro-CT and FDEM. Computers and Geotechnics, 2021, 132, 103974.	4.7	33
763	Fluid flow assisted mixing of binary granular beds using CFD-DEM. Powder Technology, 2021, 383, 183-197.	4.2	7
764	Micromechanical investigation of particle breakage behavior in confined compression tests. Computers and Geotechnics, 2021, 133, 104075.	4.7	1
766	Spatiotemporal slope stability analytics for failure estimation (SSSAFE): linking radar data to the fundamental dynamics of granular failure. Scientific Reports, 2021, 11, 9729.	3.3	10
767	Force chain structure in a rod-withdrawn granular layer. Modern Physics Letters B, 0, , 2150206.	1.9	0
768	Quantifying the effects of elongation and flatness on the shear behavior of realistic 3D rock aggregates based on DEM modeling. Advanced Powder Technology, 2021, 32, 1318-1332.	4.1	15

#	ARTICLE	IF	CITATIONS
769	Influence of Particle-Scale Properties on Fracture Behavior of Silica Sand. International Journal of Geomechanics, 2021, 21, .	2.7	O
770	Investigation of the flow and force chain characteristics of metal powder in high-velocity compaction based on a discrete element method. Journal of the Korean Physical Society, 2021, 79, 455-467.	0.7	2
771	A Granular Jamming Model for Lowâ€Frequency Earthquakes. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021963.	3.4	8
772	Evolution of granular media under constant-volume multidirectional cyclic shearing. Acta Geotechnica, 2022, 17, 779-802.	5.7	10
773	Force chain characteristics of dense particles sheared between parallel-plate friction system. Results in Physics, 2021, 25, 104328.	4.1	10
774	Getting jammed in all directions: Dynamic shear jamming around a cylinder towed through a dense suspension. Physical Review Fluids, 2021, 6, .	2.5	7
775	Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	29
776	Evolution of a contact force network in a 2D granular assembly: an examination using neutron diffraction. Granular Matter, 2021, 23, 1.	2.2	3
777	Bounding the Multi-Scale Domain in Numerical Modelling and Meta-Heuristics Optimization: Application to Poroelastic Media with Damageable Cracks. Materials, 2021, 14, 3974.	2.9	5
778	DEM exploration of confining stress effect in cyclic liquefaction of granular soils. Computers and Geotechnics, 2021, 136, 104214.	4.7	6
780	Constituent effect on mechanical performance of crushed demolished construction waste/silt mixture. Construction and Building Materials, 2021, 294, 123567.	7.2	12
781	An Experimental Study of the Effect of Particle Shape on Force Transmission and Mobilized Strength of Granular Materials. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	6
782	Structured fabrics with tunable mechanical properties. Nature, 2021, 596, 238-243.	27.8	155
783	Photoporomechanics: An Experimental Method to Visualize the Effective Stress Field in Fluid-Filled Granular Media. Physical Review Applied, 2021, 16, .	3.8	4
785	Disorder-induced vibrational anomalies from crystalline to amorphous solids. Physical Review Research, 2021, 3, .	3.6	5
786	The Change in Geomechanical Properties of Gas Saturated Methane Hydrateâ€Bearing Sand Resulting From Water Saturation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022245.	3.4	8
787	Discrete element modelling of the 4-sided impact roller. Computers and Geotechnics, 2021, 137, 104250.	4.7	4
788	An insight into the meso-scale topological structure nature of granular materials subjected to quasi-static shearing. Computers and Geotechnics, 2021, 137, 104257.	4.7	7

#	Article	IF	CITATIONS
789	Nonequilibrium characteristics and spatiotemporal long-range correlations in dense gas-solid suspensions. International Journal of Multiphase Flow, 2021, 142, 103731.	3.4	6
790	Critical numerical analysis of quasi-two-dimensional silo-hopper discharging. Granular Matter, 2021, 23, 1.	2.2	2
791	Machine learning approach to force reconstruction in photoelastic materials. Machine Learning: Science and Technology, 2021, 2, 045030.	5.0	6
792	Influence of Sand Morphology on Interparticle Force and Stress Transmission Using Three-Dimensional Discrete- and Finite-Element Methods. Journal of Engineering Mechanics - ASCE, 2021, 147, .	2.9	2
793	Dynamics of short fiber/polymer composite particles in paving process of additive manufacturing. Additive Manufacturing, 2021, 47, 102246.	3.0	6
794	Emerging contact force heterogeneity in ordered soft granular media. Mechanics of Materials, 2021, 162, 104055.	3.2	3
795	Tactile Perception for Teleoperated Robotic Exploration within Granular Media. ACM Transactions on Human-Robot Interaction, 2021, 10, 1-27.	4.1	3
796	Impact of friction coefficient on the mesoscale structure evolution under shearing of granular plugging zone. Powder Technology, 2021, 394, 133-148.	4.2	6
797	Flow characteristics and mechanical mechanism analysis in a dense sheared granular system. Powder Technology, 2022, 395, 71-82.	4.2	2
798	Dilation as a precursor in a continuous granular fault. EPJ Web of Conferences, 2021, 249, 15006.	0.3	1
799	Granular Mechanics of the Active Lateral Pressure on Retaining Walls Rotating About the Top. Lecture Notes in Civil Engineering, 2021, , 127-135.	0.4	0
800	A microâ€macromechanical compression model of crushing in granular materials based on a probabilistic approach and energy aspects. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 753-775.	3.3	7
801	Photoelasticity. Springer Handbooks, 2008, , 701-742.	0.6	32
802	Material Science and Engineering with Neutron Imaging. Neutron Scattering Applications and Techniques, 2009, , 209-227.	0.2	7
804	Thermo-mechanical Behavior of Confined Granular Systems. Lecture Notes in Applied and Computational Mechanics, 2016, , 41-57.	2.2	1
805	Measuring Force-Chains in Opaque Granular Matter Under Shear. Springer Series in Geomechanics and Geoengineering, 2017, , 441-444.	0.1	1
806	Granular Shearing and Barkhausen Noise. , 2007, , 91-100.		1
807	Influence of Particle Shape on Shear Stress in Granular Media. , 2009, , 497-505.		5

#	Article	IF	CITATIONS
808	Rubble-Pile Near Earth Objects: Insights from Granular Physics. , 2013, , 271-286.		5
809	Variational Methods for Discrete Models of Granular Materials. , 2020, , 2621-2634.		7
810	Interaction between granular flows and flexible obstacles: A grain-scale investigation. Computers and Geotechnics, 2020, 128, 103800.	4.7	7
812	Capillary bulldozing of sedimented granular material confined in a millifluidic tube. Physical Review Fluids, 2020, 5, .	2.5	4
813	Multiphase flow and granular mechanics. Physical Review Fluids, 2020, 5, .	2.5	18
814	Rigidity percolation control of the brittle-ductile transition in disordered networks. Physical Review Materials, 2019, 3, .	2.4	16
815	Particle Breakage of Cement Ellipsoid Aggregateâ€"Part I: Triaxial Compression Tests. Journal of Testing and Evaluation, 2014, 42, 20120283.	0.7	2
816	Uncovering the secrets to relieving stress: discrete element analysis of force chains in particulate media. ANZIAM Journal, 0, 47, 355.	0.0	3
819	Towards a Mathematical Model for Elastic Wave Propagation in Granular Materials. Engineering, 2012, 04, 972-979.	0.8	3
820	Invited review: Clogging of granular materials in bottlenecks. Papers in Physics, 0, 6, 060014.	0.2	57
821	Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 134502.	0.5	6
822	Lateral pressure distribution and steering coefficient in two-dimensional lattice pile of granular material. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 134502.	0.5	6
823	Three-dimensional clogging structures of granular spheres near hopper orifice. Chinese Physics B, 2022, 31, 014501.	1.4	3
824	Mapping Function from Dynamics: Future Challenges for Network-Based Models of Protein Structures. Frontiers in Molecular Biosciences, 2021, 8, 744646.	3.5	1
825	A public health perspective. Journal of Gambling Issues, 2005, , .	0.3	32
826	Are we there yet? Following the energy trail in cohesionless granular solids. , 2009, , 47-83.		0
827	On seismic P- and S-wave velocities in unconsolidated sediments., 2009,, 239-251.		0
828	Photoelastic study of force chains. , 2010, , 445-448.		0

#	Article	IF	Citations
829	Acoustic probing of the granular solid system under direct shear. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 234501.	0.5	4
830	Normal force distribution in two-dimensional granular system of compositional disorder. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 104501.	0.5	0
831	Research on size effect of direct shear test. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 244504.	0.5	6
832	Shear wave radiation from dynamically induced frictional slip on simulated granular gouges. , 2013, , 263-268.		0
833	Thermoelastic stress analysis of composite granular materials. , 2014, , .		0
835	Dynamic Jamming Fronts in a Model 2D System. Springer Theses, 2015, , 33-45.	0.1	0
836	Darwin's Reports on Catastrophic Natural Phenomena and Modern Science: Topographic Effect and Local Circumstances. , 2015, , 81-140.		0
837	CROSS-PROPERTY CONNECTION BETWEEN HEAT AND FORCE NETWORKS IN THERMALLY-ASSISTED COMPACTION OF GRANULAR MATERIALS. , 2015, , .		0
839	Study on the Microstructure and Load Bearing Properties of Granular Material. International Journal of Structural and Civil Engineering Research, 2016, , .	0.1	0
840	Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 234501.	0.5	0
841	Experimental and Numerical Determination of Apparent Mass Variation of Granular Media Confined in Silo Geometry. Acta Physica Polonica A, 2016, 129, 378-382.	0.5	2
842	Dynamically induced gouge degradation and implications for fault instability. , 2016, , 203-208.		0
843	Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique. Journal of the Korean Society of Civil Engineers, 2016, 36, 471-491.	0.1	0
844	Identification and Analysis of Force Chain Structures in Photoelastic Experiments. Springer Proceedings in Physics, 2017, , 1441-1445.	0.2	0
847	Analog experiments of lava flow emplacement. Annals of Geophysics, 2019, 61, .	1.0	3
849	Effect of Initial Granular Structure on the Evolution of Contact Force Chains. Applied Sciences (Switzerland), 2019, 9, 4735.	2.5	4
850	Avalanches in Solids. , 2020, , 1-19.		0
851	Crushing Mechanism for Soil Particles. World Journal of Mechanics, 2020, 10, 69-82.	0.4	0

#	Article	IF	CITATIONS
852	Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors. Sensors, 2021, 21, 7214.	3.8	3
853	Link between packing morphology and the distribution of contact forces and stresses in packings of highly nonconvex particles. Physical Review E, 2020, 102, 062902.	2.1	9
854	Avalanches in Solids. , 2020, , 125-142.		0
855	Stress Determination for Granular Materials Using TSA: An Inverse Approach. Conference Proceedings of the Society for Experimental Mechanics, 2020, , 111-117.	0.5	0
856	Influence of interactions between multiple point defects on wave scattering in granular media. Granular Matter, 2022, 24, 1.	2.2	3
857	DEM investigation of strain behaviour and force chain evolution of gravel–sand mixtures subjected to cyclic loading. Particuology, 2022, 68, 13-28.	3.6	25
858	Expanded scaling relations for locomotion in sloped or cohesive granular beds. Physical Review Fluids, 2020, 5, .	2.5	4
860	A topological view on microscopic structural evolution for granular material under loading and unloading path. Computers and Geotechnics, 2022, 141, 104530.	4.7	7
861	Contact force measurements and local anisotropy in ellipses and disks. Physical Review Research, 2021, 3, .	3.6	5
862	Viscous flow around three-dimensional macroscopic cavities in a granular material. Journal of Fluid Mechanics, 2022, 931, .	3.4	3
863	Creep of clayey soil induced by elevated pore-water pressure: Implication for forecasting the time of failure of rainfall-triggered landslides. Engineering Geology, 2022, 296, 106461.	6.3	10
864	Prediction of 3D contact force chains using artificial neural networks. Engineering Geology, 2022, 296, 106444.	6.3	2
865	Estimation of contact forces of granular materials under uniaxial compression based on a machine learning model. Granular Matter, 2022, 24, 1.	2.2	9
866	Aging-induced dynamics for statically indeterminate systems. Physical Review E, 2021, 104, 054902.	2.1	0
867	Shockwaves in Jammed Ductile Granular Media. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	2
868	Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting. Powder Technology, 2022, 397, 117081.	4.2	4
869	Experiment and discrete element modeling of particle breakage in coral sand under triaxial compression conditions. Marine Georesources and Geotechnology, 2023, 41, 142-151.	2.1	5
870	Clogging and avalanches in quasi-two-dimensional emulsion hopper flow. Physical Review E, 2022, 105, 014603.	2.1	4

#	Article	IF	CITATIONS
871	DEM Analyses of Cemented Granular Fault Gouges at the Onset of Seismic Sliding: Peak Strength, Development of Shear Zones and Kinematics. Pure and Applied Geophysics, 2022, 179, 679-707.	1.9	7
872	Directional strengthening and weakening in hydrodynamically sheared granular beds. Physical Review Fluids, 2022, 7, .	2.5	1
873	Effect of Particle Shape on Soil Arching in the Pile-Supported Embankment by 3D Discrete-Element Method Simulation. International Journal of Geomechanics, 2022, 22, .	2.7	7
874	Experimental and Numerical Analysis on Mesoscale Mechanical Behavior of Coarse Aggregates in the Asphalt Mixture during Gyratory Compaction. Processes, 2022, 10, 47.	2.8	19
876	Tools, behavior, and materials: What should we learn from animal nest construction?., 2022,, 183-214.		2
877	Contacts, motion, and chain breaking in a two-dimensional granular system displaced by an intruder. Physical Review E, 2022, 105, 034903.	2.1	3
878	Insight Into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	19
879	Force-Chain-Based Analysis of Factors Influencing Pressure Arch Around Tunnel Under Earthquake. Frontiers in Earth Science, 2022, 10, .	1.8	1
880	Characteristics of particle breakage and constitutive model of coarse granular material incorporating gradation evolution. Geotechnique, 0, , 1-43.	4.0	0
881	Transient Evolution of Rheological Properties of Dense Granular Inertial Flow Under Plane Shear. Tribology Letters, 2022, 70, 1.	2.6	4
882	Collisional regime during the discharge of a two-dimensional silo. Physical Review E, 2022, 105, 044901.	2.1	6
883	Interaction of Soil Arching under Trapdoor Condition: Insights from 2D Discrete-Element Analysis. International Journal of Geomechanics, 2022, 22, .	2.7	5
884	How fines content affects granular plasticity of under-filled binary mixtures. Acta Geotechnica, 2022, 17, 2449-2463.	5.7	6
885	A three-dimensional DEM modelling of triaxial test on gas hydrate-bearing sediments considering flexible boundary condition. Marine Georesources and Geotechnology, 2022, 40, 1470-1489.	2.1	3
886	Analyzing Bulk Flow Characteristics of Debris Flows Using Their High Frequency Seismic Signature. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	11
887	Stick-slip Dynamics in Penetration Experiments on Simulated Regolith. Planetary Science Journal, 2021, 2, 243.	3.6	4
888	The hydra string method: a novel means to explore potential energy surfaces and its application to granular materials. Granular Matter, 2022, 24, 1.	2.2	0
892	é«~̃速远笫滑å¶é¢—ç²'æμç"究进展. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal o Geosciences, 2022, 47, 893.	f China Ur 0.5	niversity of

#	Article	IF	Citations
893	Deep learning assisted particle identification in photoelastic images of granular flows. Granular Matter, 2022, 24, 1.	2.2	4
894	Direct imaging of contacts and forces in colloidal gels. Journal of Chemical Physics, 2022, 156, .	3.0	11
895	The rheology of confined colloidal hard disks. Journal of Chemical Physics, 2022, 156, 184902.	3.0	5
896	Experimental study on nonlinear friction behavior of granular flow lubrication. Results in Physics, 2022, 38, 105598.	4.1	2
897	Measuring Terzaghi's effective stress by decoding force transmission in fluid-saturated granular media. Journal of the Mechanics and Physics of Solids, 2022, 165, 104912.	4.8	4
898	Jamming of Granular Matter. , 2009, , 397-426.		1
899	Rigidity Percolation and FrictionalÂJamming. , 2022, , 427-448.		0
900	Experimental observations of marginal criticality in granular materials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
901	Experimental study on dynamic response of micron aluminum powder. Granular Matter, 2022, 24, .	2.2	1
902	Force inference in granular materials: Uncertainty analysis and application to three-dimensional experiment design. Physical Review E, 2022, 105, .	2.1	1
903	Strain hardening by sediment transport. Physical Review Research, 2022, 4, .	3.6	4
904	Memory effect in the plasticity of a silicate glass densified at room temperature. Physical Review B, 2022, 105, .	3.2	O
905	Stress transmission in entangled granular structures. Granular Matter, 2022, 24, .	2.2	6
906	Robust prediction of force chains in jammed solids using graph neural networks. Nature Communications, 2022, 13, .	12.8	10
907	Unified creeping model identifying the critical state of granular materials. Journal of Applied Physics, 2022, 132, .	2.5	1
908	Structure and Dynamics of Force Clusters and Networks in Shear Thickening Suspensions. Physical Review Letters, 2022, 129, .	7.8	15
909	Effects of ore-rock falling velocity on the stored materials and the force on the shaft wall in a vertical orepass. Mechanics of Advanced Materials and Structures, 0, , 1-8.	2.6	1
911	A Minimally Cemented Shallow Crust Beneath InSight. Geophysical Research Letters, 2022, 49, .	4.0	8

#	Article	IF	CITATIONS
912	Ultrastable Shear-Jammed Granular Material. Physical Review X, 2022, 12, .	8.9	3
913	A generalized 3DLS-DEM scheme for grain breakage. Computer Methods in Applied Mechanics and Engineering, 2022, 399, 115383.	6.6	4
914	Dynamic breakage of double glass spheres chain subjected to impacting loading. International Journal of Mechanical Sciences, 2022, 232, 107610.	6.7	5
915	Photoelastic Organogel with Multiple Stimuli Responses. Small, 2022, 18, .	10.0	5
916	Evolution of Force Chains Explains the Onset of Strain Stiffening in Fiber Networks. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	7
917	Effect mechanism of contact sliding state on rheological properties of dense granular inertial flow. Powder Technology, 2022, 411, 117946.	4.2	3
918	Vertical velocity at hydrostatic and anisotropic stresses. Frontiers in Earth Science, 0, 10, .	1.8	0
920	Ordered domains in sheared dense suspensions: The link to viscosity and the disruptive effect of friction. Journal of Rheology, 2022, 66, 1055-1065.	2.6	5
921	Unjamming strongly compressed rafts: Effects of the compression direction. Physical Review E, 2022, 106, .	2.1	0
922	Influence of mineral mesoscopic structure on rock dynamic fragmentation under compression. Geotechnique Letters, 2022, 12, 232-238.	1.2	1
923	Effects of reconsolidation degree on reliquefaction resistance under mainshock–aftershock sequences: A DEM investigation. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46, 3028-3051.	3.3	0
924	Jammed solids with pins: Thresholds, force networks, and elasticity. Physical Review E, 2022, 106, .	2.1	3
925	Study on the Contact Stress Distribution Model of Asphalt Mixture Particles. Advances in Materials Science and Engineering, 2022, 2022, 1-12.	1.8	0
926	Athermal fluctuations in three dimensional disordered crystals. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 103201.	2.3	1
927	Relationship Between the State of a Shear Crack in a Granulated Material and Acoustic Emission and Deformation Data. Acoustical Physics, 2022, 68, 496-501.	1.0	0
928	A network-based investigation on the strong contact system of granular materials under isotropic and deviatoric stress states. Computers and Geotechnics, 2023, 153, 105077.	4.7	7
929	Rigidity transitions in zero-temperature polygons. Physical Review E, 2022, 106, .	2.1	0
930	Microscopic reversibility and emergent elasticity in ultrastable granular systems. Frontiers in Physics, 0, 10 , .	2.1	1

#	Article	IF	CITATIONS
931	Collaborative behavior of intruders moving amid grains. Physics of Fluids, 2022, 34, .	4.0	3
932	Building block properties govern granular hydrogel mechanics through contact deformations. Science Advances, 2022, 8, .	10.3	15
933	The Influence of Particle Size and Hydrate Formation Path on the Geomechanical Behavior of Hydrate Bearing Sands. Energies, 2022, 15, 9632.	3.1	1
934	First-contact-breaking distributions in strained disordered crystals. Physical Review E, 2022, 106, .	2.1	1
935	Drag force on cylindrical intruders in granular media: Experimental study of lateral vs axial intrusion and high grain-size polydispersity. Powder Technology, 2023, 415, 118194.	4.2	3
936	A machine learning-based strategy for experimentally estimating force chains of granular materials using X-ray micro-tomography. Geotechnique, 0 , , 1 - 13 .	4.0	6
937	The prediction of contact force networks in granular materials based on graph neural networks. Journal of Chemical Physics, 2023, 158, .	3.0	1
938	Comparison of compression versus shearing near jamming, for a simple model of athermal frictionless disks in suspension. Physical Review E, 2023, 107, .	2.1	1
939	Particle shape transforms the driving of shear stress in granular materials. Powder Technology, 2023, 416, 118235.	4.2	2
940	Quantifying fabric anisotropy of granular materials using wave velocity anisotropy: a numerical investigation. Geotechnique, 0, , 1-13.	4.0	3
941	Granular stresses in granular flows subjected to different obstacles. International Journal of Mechanical Sciences, 2023, 247, 108190.	6.7	4
942	Characterizing dynamic load propagation in cohesionless granular packing using force chain. Particuology, 2023, 81, 135-148.	3.6	1
943	Evolution of Void Fabrics and Their Effects on Liquefaction Behaviors of Granular Soils: Insight from DEM-Clump Simulation. Journal of Engineering Mechanics - ASCE, 2023, 149, .	2.9	2
944	Automatic extraction method of force chain information and its application in the flow photoelastic experiment of granular matter. Particuology, 2023, 83, 142-155.	3.6	2
945	Emergence of transient reverse fingers during radial displacement of a shear-thickening fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 130926.	4.7	1
946	Arching Propagation and Safety in Underground Mining. Rock Mechanics and Rock Engineering, 0, , .	5.4	0
947	é«~频低幅æŒ-动下颗粒ææ−™æŠ—剪强度衰å‡ç»†è§,机ç†ç"ç©¶. Zhongguo Kexue Jishu Kexue	/Sobentia S	ini o a Technolo
948	Viscous flow through macroscopic spherical cavities in an arbitrary configuration in a granular material. Fluid Dynamics Research, 2023, 55, 025502.	1.3	О

#	Article	IF	Citations
949	Two slip regimes in sheared granular fault. Earth and Planetary Science Letters, 2023, 608, 118086.	4.4	0
950	Micro-mechanical insights into the stress transmission in strongly aggregating colloidal gel. Journal of Chemical Physics, 2023, 158, .	3.0	3
951	Explosive dispersal of granular media. Journal of Fluid Mechanics, 2023, 959, .	3.4	0
952	Development of a biaxial apparatus for jamming profiles of photoelastic granular media. Review of Scientific Instruments, 2023, 94, 035110.	1.3	0
953	Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design. Shape Memory and Superelasticity, 2023, 9, 116-126.	2.2	1
954	SuperDEM Simulation and Experiment Validation of Nonspherical Particles Flows in a Rotating Drum. Industrial & Drum; Engineering Chemistry Research, 0, , .	3.7	1
955	Mechanical basis and topological routes to cell elimination. ELife, 0, 12, .	6.0	3
956	Evolution of the Soil Arching Effect in a Pile-Supported Embankment Considering the Influence of Particle Breakage. International Journal of Geomechanics, 2023, 23, .	2.7	3
957	Modeling shear-induced solid-liquid transition of granular materials using persistent homology. Journal of the Mechanics and Physics of Solids, 2023, 176, 105307.	4.8	1
958	Viscous flow around three-dimensional macroscopic cavities in a granular material: asymptotic theory for two sufficiently distant spherical cavities of arbitrary configuration. Journal of Fluid Mechanics, 2023, 964, .	3.4	0
959	Discrete element modelling of the effect of aspect ratio on compaction and shear behaviour of aggregates. Computers and Geotechnics, 2023, 161, 105558.	4.7	5
960	Effect of non-simultaneous movement of adjacent twin-trapdoor on soil arching effect through discrete-element method simulation. Transportation Geotechnics, 2023, 41, 101007.	4.5	1
961	Discrete element numerical analysis for bearing characteristics of coral sand foundation considering particle breakage. Marine Georesources and Geotechnology, 0, , 1-12.	2.1	2
962	A new method for DEM simulation of dust-bearing granular flow – Modeling the effect of dust on the change in granule friction coefficient. Advanced Powder Technology, 2023, 34, 104156.	4.1	0
963	Kinetics of Grain Size Reduction in Minerals Undergoing Ball Milling. Transactions of the Indian Institute of Metals, 0, , .	1.5	0
964	How Ice Particles Increase Mobility of Rockâ€lce Avalanches: Insights From Chute Flows Simulation of Granular Rockâ€lce Mixtures by Discrete Element Method. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	1
965	The micro-mechanical behaviour of sand–rubber mixtures under shear: A numerical study based on X-ray micro-tomography. Computers and Geotechnics, 2023, 163, 105714.	4.7	2
966	A photoelastic method for stress analysis of granular terrain beneath a wheel. Journal of Terramechanics, 2023, 110, 69-78.	3.1	0

#	Article	IF	CITATIONS
967	Force transmission during repose of flexible granular chains. Soft Matter, 0, , .	2.7	0
969	Evolution law and transformation mechanism of force chains in the flow of photoelastic particles under a flexible barrier. Powder Technology, 2023, 430, 118994.	4.2	0
970	DEM study on the effect of particle shape on the shear behaviour of granular materials. Computational Particle Mechanics, 2024, 11, 447-466.	3.0	2
971	Effect of cohesion on structure of powder layers in additive manufacturing. Granular Matter, 2023, 25, .	2.2	1
972	Emergence of rigidity percolation in flowing granular systems. Science Advances, 2023, 9, .	10.3	0
973	Epithelia are multiscale active liquid crystals. Nature Physics, 2023, 19, 1773-1779.	16.7	6
974	From stress concentrations between inclusions to probability of breakage: A two-dimensional peridynamic study of particle-embedded materials. Physical Review E, 2023, 108, .	2.1	0
975	Soil arching in ground with tunnel: Effect of distance between tunnel and trapdoor. Computers and Geotechnics, 2023, 164, 105800.	4.7	2
976	Characteristics of force chains in the flow of photoelastic particles under a barrier. Particulate Science and Technology, 0 , 0 , 0 .	2.1	0
977	MICROSCOPIC MECHANISMS OF PARTICLE SIZE EFFECT ON 2D ARCHING EFFECT DEVELOPMENT AND DEGRADATION IN GRANULAR MATERIALS. International Journal for Multiscale Computational Engineering, 2024, 22, 91-108.	1.2	1
978	Bidisperse beds sheared by viscous fluids: Grain segregation and bed hardening. Physics of Fluids, 2023, 35, .	4.0	0
979	Spatio-temporal evolution laws of storage coefficient of coal mine underground reservoir and contact network of crushed rock. PLoS ONE, 2023, 18, e0293611.	2.5	0
980	Particle breakage and its mechanical response in granular soils: A review and prospect. Construction and Building Materials, 2023, 409, 133948.	7.2	2
981	Investigation on cushioning effect and force chain characteristics of cushion material of shed-hole structure under impact load. Case Studies in Construction Materials, 2023, 19, e02652.	1.7	0
982	Growth of force chain network upon non-Bagnold transition of inclined surface granular flows via discrete element simulation. Journal of Mechanics, 2023, 39, 431-441.	1.4	0
983	The role of physical lost circulation materials type on the evolution of strong force chains of plugging zone in deep fractured tight reservoir. Powder Technology, 2024, 432, 119149.	4.2	0
984	Lessons learned from matching 3D DEM and experiments at macro, meso and fabric scales for triaxial compression tests on lentils. Journal of the Mechanics and Physics of Solids, 2024, 183, 105494.	4.8	0
985	Stress-activated friction in sheared suspensions probed with piezoelectric nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0

#	Article	IF	CITATIONS
986	Clarify the effect of fracture propagation on force chains evolution of plugging zone in deep fractured tight gas reservoir based on photoelastic experiment., 2024, 233, 212558.		0
987	Application of artificial neural networks to predict the particle-scale contact force of photoelastic disks. Advanced Powder Technology, 2024, 35, 104284.	4.1	0
988	Mechanism of the post-suffusion mechanical response of gap-graded soils from the perspective of force-chain evolution. Computers and Geotechnics, 2024, 165, 105946.	4.7	1
989	Stability of a tilted granular monolayer: How many spheres can we pick before the collapse?. Physical Review E, 2023, 108, .	2.1	O
990	Properties of interaction networks in compressed two and three dimensional particulate systems. Granular Matter, 2024, 26, .	2.2	0
991	Disclinations in vibration-induced size segregation. Europhysics Letters, 2023, 144, 27001.	2.0	O
992	Buckling of a monolayer of platelike particles trapped at a fluid-fluid interface. Physical Review E, 2024, 109, .	2.1	0
993	Flow regimes and basal normal stresses in rock–ice avalanches by experimental rotating drum tests. Cold Regions Science and Technology, 2024, 218, 104081.	3.5	O
994	Framework for incorporating multi-level morphology of particles in DEM simulations: independent control of polydisperse distributions of roundness and roughness while preserving form distributions in granular materials. Acta Geotechnica, 0, , .	5.7	0
995	Granular solids transmit stress as two-phase composites. Physical Review E, 2024, 109, .	2.1	O
996	Understanding the interplay between particle shape, grading and sample density on the behaviour of granular assemblies: A DEM approach. Granular Matter, 2024, 26, .	2.2	1
997	Estimating shallow compressional velocity variations in California's Central Valley. Geophysical Journal International, 2024, 236, 1680-1698.	2.4	O
998	Hydrodynamics and multiscale order in confluent epithelia. ELife, 0, 13, .	6.0	0
999	Formation and mechanics of fire ant rafts as an active self-healing membrane. Physical Review E, 2024, 109, .	2.1	1
1000	Arching of force chains in excavated granular material. Frontiers in Earth Science, 0, 11, .	1.8	1
1001	Exploring the role of particle-form polydispersity in the fabric of granular packing: Insights from DEM simulations with ellipsoidal particle assemblies. Powder Technology, 2024, 435, 119402.	4.2	O
1002	Minimally rigid clusters in dense suspension flow. Nature Physics, 2024, 20, 653-659.	16.7	1
1003	Mechanical mechanism investigation on the influence of inter-particle friction in the triaxial powder pressing system. Journal of Mechanical Science and Technology, 2024, 38, 735-747.	1.5	O

#	Article	IF	CITATIONS
1004	Interparticle normal force in highly porous granular matter during compression. Physical Review E, 2024, 109, .	2.1	0
1005	Mechanical model of evolution of granular matter force chains. Granular Matter, 2024, 26, .	2.2	0
1006	Shape-induced clusters of ellipsoids during triaxial compression: A multiscale analysis using LS-DEM. Computers and Geotechnics, 2024, 169, 106235.	4.7	0
1007	Investigation on the rheological properties of dense granular inertial flow based on the contact features of four dual-partitioned subnetworks. Tribology International, 2024, 195, 109581.	5.9	0
1008	Dynamic imaging of force chains in 3D granular media. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1009	An inclusion model for predicting granular elasticity incorporating force chain mechanics. Granular Matter, 2024, 26, .	2.2	0
1010	Fabric-based jamming phase diagram for frictional granular materials. Soft Matter, 2024, 20, 3175-3190.	2.7	0