Plant sesquiterpenes induce hyphal branching in arbuse

Nature 435, 824-827 DOI: 10.1038/nature03608

Citation Report

#	ARTICLE	IF	CITATIONS
1	Application of natural antagonists including arthropods to resist weedy Striga (Oranbanchaceae) in tropical agroecosystems. , 0, , 423-437.		2
2	Arabidopsis ABI5 Subfamily Members Have Distinct DNA-Binding and Transcriptional Activities. Plant Physiology, 2002, 130, 688-697.	2.3	123
3	Root Communication: The Role of Root Exudates. , 2004, , 1-4.		2
4	Cue for the branching connection. Nature, 2005, 435, 750-751.	13.7	43
5	Endocytosis and Endosymbiosis. , 0, , 245-266.		1
6	Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. Journal of Plant Interactions, 2005, 1, 3-13.	1.0	51
7	Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W]. Plant Cell, 2005, 17, 3489-3499.	3.1	441
8	Agriculture in the developing world: Connecting innovations in plant research to downstream applications. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15739-15746.	3.3	143
9	The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiology, 2005, 139, 920-934.	2.3	569
10	Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Canadian Journal of Botany, 2006, 84, 1462-1477.	1.2	133
11	Rhizosphere biology and crop productivity—a review. Soil Research, 2006, 44, 299.	0.6	107
12	Reactive Oxygen Species Play a Role in Regulating a Fungus–Perennial Ryegrass Mutualistic Interaction. Plant Cell, 2006, 18, 1052-1066.	3.1	410
13	Cell Polarity in Filamentous Fungi: Shaping the Mold. International Review of Cytology, 2006, 251, 41-77.	6.2	113
14	Strigolactones in chemical ecology: waste products or vital allelochemicals?. Natural Product Reports, 2006, 23, 592.	5.2	65
15	Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-Î ³ -bisabolene synthases. Archives of Biochemistry and Biophysics, 2006, 448, 104-116.	1.4	60
16	Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Letters, 2006, 580, 1123-1130.	1.3	145
17	THE ROLE OF ROOT EXUDATES IN RHIZOSPHERE INTERACTIONS WITH PLANTS AND OTHER ORGANISMS. Annual Review of Plant Biology, 2006, 57, 233-266.	8.6	3,654
18	Fast moves in arbuscular mycorrhizal symbiotic signalling. Trends in Plant Science, 2006, 11, 369-371.	4.3	25

#	Article	IF	CITATIONS
19	Unraveling the signaling and signal transduction mechanisms controlling arbuscular mycorrhiza development. Scientia Agricola, 2006, 63, 405-413.	0.6	20
20	The Most Widespread Symbiosis on Earth. PLoS Biology, 2006, 4, e239.	2.6	63
21	Mutations in DMI3 and SUNN Modify the Appressorium-Responsive Root Proteome in Arbuscular Mycorrhiza. Molecular Plant-Microbe Interactions, 2006, 19, 988-997.	1.4	42
22	Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens*. New Phytologist, 2006, 170, 657-675.	3.5	593
23	External mycorrhizal mycelia – the importance of quantification in natural ecosystems. New Phytologist, 2006, 171, 240-242.	3.5	52
24	A fungal thread of death. New Phytologist, 2006, 171, 246-248.	3.5	1
25	Sapling strength and safety: the importance of wood density in tropical forests. New Phytologist, 2006, 171, 237-239.	3.5	35
26	Plant–fungal symbiosis en gros and en détail. New Phytologist, 2006, 171, 242-246.	3.5	12
27	Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist, 2006, 172, 22-34.	3.5	142
28	A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytologist, 2006, 172, 35-46.	3.5	132
29	What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytologist, 2006, 172, 3-6.	3.5	152
30	First encounters – deployment of defenceâ€ŧelated natural products by plants. New Phytologist, 2006, 172, 193-207.	3.5	165
31	Overyielding and stable species coexistence. New Phytologist, 2006, 172, 1-3.	3.5	37
32	Mucking through multifactor experiments; design and analysis of multifactor studies in global change research. New Phytologist, 2006, 172, 598-600.	3.5	26
33	From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium / Festuca forage and amenity grasses. New Phytologist, 2006, 172, 592-597.	3.5	98
34	More complexity in the mycorrhizal world. New Phytologist, 2006, 172, 600-604.	3.5	11
35	Ectomycorrhizas – out of Africa?. New Phytologist, 2006, 172, 589-591.	3.5	50
36	The bacteriumPaenibacillus validusstimulates growth of the arbuscular mycorrhizal fungusGlomus intraradicesup to the formation of fertile spores. FEMS Microbiology Letters, 2006, 254, 258-267.	0.7	181

#	ARTICLE	IF	CITATIONS
37	Stimulatory effect of peat on spore germination and hyphal growth of arbuscular mycorrhizal fungusGigaspora margarita. Soil Science and Plant Nutrition, 2006, 52, 168-176.	0.8	7
38	Root nitrogen concentration of sorghum above 2% produces least Striga hermonthica seed stimulation. Annals of Applied Biology, 2006, 149, 255-262.	1.3	25
39	Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant Journal, 2006, 47, 165-173.	2.8	71
40	Strigol: Biogenesis and physiological activity. Phytochemistry, 2006, 67, 636-640.	1.4	85
41	Natural sesquiterpenoids. Natural Product Reports, 2006, 23, 943.	5.2	56
42	Foliar application of aminoethoxyvinylglycine (AVG) delays fruit ripening and reduces pre-harvest fruit drop and ethylene production of bagged "Kogetsu―apples. Plant Growth Regulation, 2006, 48, 221.	1.8	92
43	Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza, 2006, 16, 509-524.	1.3	106
44	Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 2006, 9, 315-321.	3.5	476
45	Endophyte or parasite – what decides?. Current Opinion in Plant Biology, 2006, 9, 358-363.	3.5	317
46	Nuclear calcium changes at the core of symbiosis signalling. Current Opinion in Plant Biology, 2006, 9, 351-357.	3.5	228
47	Mutualism and parasitism: the yin and yang of plant symbioses. Current Opinion in Plant Biology, 2006, 9, 364-370.	3.5	124
48	Can Arbuscular Mycorrhizal Fungi Contribute to <i>Striga</i> Management on Cereals in Africa?. Outlook on Agriculture, 2006, 35, 307-311.	1.8	19
50	Significance of Microbial Interactions in the Mycorrhizosphere. Advances in Applied Microbiology, 2006, 60, 97-132.	1.3	40
51	Strigolactones: Chemical Signals for Fungal Symbionts and Parasitic Weeds in Plant Roots. Annals of Botany, 2006, 97, 925-931.	1.4	316
52	A p67Phox-Like Regulator Is Recruited to Control Hyphal Branching in a Fungal–Grass Mutualistic Symbiosis. Plant Cell, 2006, 18, 2807-2821.	3.1	174
53	Genomic and Genetic Control of Phosphate Stress in Legumes. Plant Physiology, 2007, 144, 594-603.	2.3	74
54	Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation. DNA Research, 2007, 14, 117-133.	1.5	65
55	Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence of <i>Striga hermonthica</i> . Plant Signaling and Behavior, 2007, 2, 58-62.	1.2	81

#	Article	IF	CITATIONS
	Christian and District and District 2007, 2, 162, 164		
56	Strigolactones. Plant Signaling and Behavior, 2007, 2, 163-164.	1.2	34
57	A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells. Plant Physiology, 2007, 144, 673-681.	2.3	164
58	Involvement of a Soybean ATP-Binding Cassette-Type Transporter in the Secretion of Genistein, a Signal Flavonoid in Legume-Rhizobium Symbiosis. Plant Physiology, 2007, 144, 2000-2008.	2.3	164
60	Endomycorrhizal and rhizobial symbiosis: How much do they share?. Journal of Plant Interactions, 2007, 2, 79-88.	1.0	22
61	Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 2007, 12, 224-230.	4.3	418
62	Fair Trade in the Underworld: the Ectomycorrhizal Symbiosis. , 2007, , 291-308.		17
63	Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules, 2007, 12, 1290-1306.	1.7	326
64	Technique for visual demonstration of germinating arbuscular mycorrhizal spores and their multiplication in pots. Journal of Plant Nutrition and Soil Science, 2007, 170, 659-663.	1.1	5
65	A Novel Nuclear Protein Interacts With the Symbiotic DMI3 Calcium- and Calmodulin-Dependent Protein Kinase of <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2007, 20, 912-921.	1.4	245
66	Plants and Arbuscular Mycorrhizal Fungi: Cues and Communication in the Early Steps of Symbiotic Interactions. Advances in Botanical Research, 2007, , 181-219.	0.5	36
67	Chemical Identification and Functional Analysis of Apocarotenoids Involved in the Development of Arbuscular Mycorrhizal Symbiosis. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1405-1414.	0.6	47
68	The arbuscular mycorrhizal fungus <i>Glomus intraradices</i> induces intracellular calcium changes in soybean cells. Caryologia, 2007, 60, 137-140.	0.2	7
69	A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1720-1725.	3.3	634
70	Synthesis and Seed Germination Stimulating Activity of Some Imino Analogs of Strigolactones. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2781-2786.	0.6	57
71	2′-Epi-orobanchol and Solanacol, Two Unique Strigolactones, Germination Stimulants for Root Parasitic Weeds, Produced by Tobacco. Journal of Agricultural and Food Chemistry, 2007, 55, 8067-8072.	2.4	127
72	Root Exudates and Nutrient Cycling. , 2007, , 123-157.		28
73	Biology and Management of Weedy Root Parasites. , 2007, , 267-349.		154
74	Development of the arbuscular mycorrhizal symbiosis: insights from genomics. , 2007, , 201-224.		Ο

#	Article	IF	CITATIONS
75	Arbuscular mycorrhizal fungi in chronically petroleum ontaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. Journal of Basic Microbiology, 2007, 47, 378-383.	1.8	37
76	Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: Contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry, 2007, 68, 130-138.	1.4	68
77	"Chromoplast―development in arbuscular mycorrhizal roots. Phytochemistry, 2007, 68, 92-100.	1.4	19
78	The function of terpene natural products in the natural world. Nature Chemical Biology, 2007, 3, 408-414.	3.9	1,564
79	Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cellular Microbiology, 2007, 9, 1716-1729.	1.1	140
80	Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 2007, 173, 11-26.	3.5	625
81	Chemical facilitation and induced pathogen resistance mediated by a rootâ€secreted phytotoxin. New Phytologist, 2007, 173, 852-860.	3.5	70
82	Troubles with truffles: unveiling more of their biology. New Phytologist, 2007, 174, 256-259.	3.5	36
83	Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 2007, 173, 703-712.	3.5	89
84	Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytologist, 2007, 174, 240-243.	3.5	39
85	Can we develop general predictive models of mycorrhizal fungal community–environment relationships?. New Phytologist, 2007, 174, 250-256.	3.5	79
86	Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytologist, 2007, 174, 244-250.	3.5	173
87	Trehalose synthesis in ectomycorrhizas – a driving force of carbon gain for fungi?. New Phytologist, 2007, 174, 228-230.	3.5	15
88	Host preference, niches and fungal diversity. New Phytologist, 2007, 174, 230-233.	3.5	181
89	Quantifying flows through metabolic networks and the prospects for fluxomic studies of mycorrhizas. New Phytologist, 2007, 174, 235-240.	3.5	9
90	New Phytologist – an evolving host for mycorrhizal research. New Phytologist, 2007, 174, 225-228.	3.5	91
91	Letters from ICOM – digging deeper into mycorrhizal research. New Phytologist, 2007, 174, 233-235.	3.5	0
92	What are the mechanisms and specificity of mycorrhization helper bacteria?. New Phytologist, 2007, 174, 707-710.	3.5	15

#	Article	IF	CITATIONS
93	The mycorrhiza helper <i>Pseudomonas fluorescens </i> BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus <i>Laccaria bicolor </i> S238N. New Phytologist, 2007, 175, 743-755.	3.5	156
94	Aromatic weapons: truffles attack plants by the production of volatiles. New Phytologist, 2007, 175, 381-383.	3.5	35
95	Drought and symbiosis – why is abscisic acid necessary for arbuscular mycorrhiza?. New Phytologist, 2007, 175, 383-386.	3.5	15
96	Hyphal healing mechanism in the arbuscular mycorrhizal fungiScutellospora reticulataandGlomus clarumdiffers in response to severe physical stress. FEMS Microbiology Letters, 2007, 268, 120-125.	0.7	25
97	Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmospheric Environment, 2007, 41, 2456-2466.	1.9	31
98	Seasonal soil and leaf CO2 exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmospheric Environment, 2007, 41, 2447-2455.	1.9	51
99	Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Protection, 2007, 26, 1166-1172.	1.0	83
100	Programming good relations — development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2007, 10, 98-105.	3.5	78
101	Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10, 393-398.	3.5	919
102	Root exudate-stimulated RNA accumulation in the arbuscular mycorrhizal fungus Gigaspora rosea. Soil Biology and Biochemistry, 2007, 39, 1824-1827.	4.2	14
103	Interannual and interseasonal soil CO2 efflux and VOC exchange rates in a Mediterranean holm oak forest in response to experimental drought. Soil Biology and Biochemistry, 2007, 39, 2471-2484.	4.2	68
104	Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi. Mycological Research, 2007, 111, 487-492.	2.5	19
105	Cooperation of plants and microorganisms: Getting closer to the genetic construction of sustainable agro-systems. Biotechnology Journal, 2007, 2, 833-848.	1.8	20
106	Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 2007, 187, 351-360.	1.0	374
107	Volatile Terpenoids of Endophyte-free and Infected Peppermint (Mentha piperita L.): Chemical Partitioning of a Symbiosis. Microbial Ecology, 2007, 54, 685-696.	1.4	47
109	On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant and Soil, 2007, 291, 249-261.	1.8	116
110	Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant and Soil, 2007, 296, 65-75.	1.8	101
111	Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil, 2007, 300, 9-20.	1.8	940

#	Article	IF	CITATIONS
112	Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading?. Mycorrhiza, 2007, 17, 349-353.	1.3	70
113	Further advances in orchid mycorrhizal research. Mycorrhiza, 2007, 17, 475-486.	1.3	280
114	Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador. Mycorrhiza, 2007, 17, 607-625.	1.3	18
115	Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 2007, 225, 1031-1038.	1.6	318
116	Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 2007, 227, 125-132.	1.6	353
117	Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry, 2007, 68, 33-40.	1.4	99
118	Production of (+)-5-deoxystrigol by Lotus japonicus root culture. Phytochemistry, 2008, 69, 212-217.	1.4	35
119	Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry, 2008, 69, 112-146.	1.4	244
120	Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiology and Biochemistry, 2008, 46, 617-626.	2.8	83
121	Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency. Journal of Chemical Ecology, 2008, 34, 628-635.	0.9	115
122	Glucosinolate Profiles Change During the Life Cycle and Mycorrhizal Colonization in a Cd/Zn Hyperaccumulator Thlaspi praecox (Brassicaceae). Journal of Chemical Ecology, 2008, 34, 1038-1044.	0.9	27
123	Production of Strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regulation, 2008, 55, 21-28.	1.8	101
124	Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta, 2008, 228, 789-801.	1.6	96
125	Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry, 2008, 69, 427-431.	1.4	91
126	Variability of interactions between barrel medic (<i>Medicago truncatula</i>) genotypes and <i>Orobanche </i> species. Annals of Applied Biology, 2008, 153, 117-126.	1.3	35
127	Signaling in Plant Disease Resistance and Symbiosis. Journal of Integrative Plant Biology, 2008, 50, 799-807.	4.1	37
128	Strigolactone inhibition of shoot branching. Nature, 2008, 455, 189-194.	13.7	1,910
129	Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455, 195-200.	13.7	1,765

ARTICLE IF CITATIONS Hormones branch out. Nature, 2008, 455, 176-177. 130 13.7 26 Light on the distant Universe. Nature, 2008, 455, 177-178. 13.7 Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 2008, 132 13.6 1.687 6,763-775. Orchestrating morphogenesis in mycorrhizal symbioses. New Phytologist, 2008, 177, 839-841. 133 Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate 134 3.5 419 starvation. New Phytologist, 2008, 178, 863-874. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytologist, 2008, 179, 484-494. 3.5 258 Plastidâ€derived strigolactones show the way to roots for symbionts and parasites. New Phytologist, 136 3.5 19 2008, 178, 695-698. Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of 3.5 48 <i>Clomus intraradices</i>. New Phytologist, 2008, 180, 684-695. 138 The <i>Laccaria</i> genome: a symbiont blueprint decoded. New Phytologist, 2008, 180, 296-310. 3.5 92 Knockâ€down of the MEP pathway isogene <i>1â€deoxyâ€<scp>dâ€</scp>xylulose 5â€phosphate synthaseâ€f2</i> inhibits formation of arbuscular mycorrhizaâ€induced apocarotenoids, and abolishes normal 2.8 expression of mycorrhizaâ€specific plant marker genes. Plant Journal, 2008, 56, 86-100. Fenugreek root exudates show speciesâ€specific stimulation of <i>Orobanche</i> seed germination. 140 0.8 33 Weed Research, 2008, 48, 163-168. Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). 1.0 50 Crop Protection, 2008, 27, 653-659 Butenolide from plant-derived smoke functions as a strigolactone analogue: Evidence from parasitic 142 1.2 34 weed seed germination. South African Journal of Botany, 2008, 74, 116-120. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum) Tj ETQq1 1 0.784314 rgBT/Over 143 Root Exudates Modulate Plantâ€"Microbe Interactions in the Rhizosphere. Soil Biology, 2008, , 241-252. 145 43 0.6 Mycorrhizal symbioses. Plant Ecophysiology, 2008, , 143-163. Biological Significance of Truffle Secondary Metabolites. Soil Biology, 2008, 141-165. 148 0.6 12 149 Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes., 2008, , .

#	Article	IF	CITATIONS
150	Susceptibility of the Tomato Mutant <i>High Pigment-2^{dg}</i> (<i>hp-2^{dg}</i>) to <i>Orobanche</i> spp. Infection. Journal of Agricultural and Food Chemistry, 2008, 56, 6326-6332.	2.4	38
151	Secondary Metabolites in Soil Ecology. Soil Biology, 2008, , .	0.6	13
152	Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environmental Pollution, 2008, 153, 137-147.	3.7	176
153	Strigolactones and Shoot Branching: A New Trick for a Young Dog. Developmental Cell, 2008, 15, 337-338.	3.1	28
154	Root Exudates Regulate Soil Fungal Community Composition and Diversity. Applied and Environmental Microbiology, 2008, 74, 738-744.	1.4	659
155	Molecular Responses of Sorghum to Purple Witchweed (<i>Striga hermonthica</i>) Parasitism. Weed Science, 2008, 56, 356-363.	0.8	19
156	The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology, 2008, , .	1.5	52
157	Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nature Chemical Biology, 2008, 4, 617-623.	3.9	184
158	Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway. Plant and Cell Physiology, 2008, 49, 1659-1671.	1.5	103
159	The Molecular Components of Nutrient Exchange in Arbuscular Mycorrhizal Interactions. , 2008, , 37-59.		6
160	Towards effective resistance to <i>Striga</i> in African maize. Plant Signaling and Behavior, 2008, 3, 618-621.	1.2	56
161	pH signature for the responses of arbuscular mycorrhizal fungi to external stimuli. Plant Signaling and Behavior, 2008, 3, 850-852.	1.2	4
162	Calcium opens the dialogue between plants and arbuscular mycorrhizal fungi. Plant Signaling and Behavior, 2008, 3, 229-230.	1.2	12
163	Mode of Action and Interactions of Nematophagous Fungi. , 2008, , 51-76.		58
164	Root-Microbe Communication through Protein Secretion. Journal of Biological Chemistry, 2008, 283, 25247-25255.	1.6	144
165	GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus <i>Gigaspora rosea</i> by Boosting Its Energy Metabolism Â. Plant Physiology, 2008, 148, 402-413.	2.3	243
166	Mycorrhizae: Sustainable Agriculture and Forestry. , 2008, , .		76
167	Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9823-9828.	3.3	262

#	Article	IF	CITATIONS
168	Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia, 2008, 100, 823-832.	0.8	158
169	Ion Dynamics During the Polarized Growth of Arbuscular Mycorrhizal Fungi: From Presymbiosis to Symbiosis. , 2008, , 241-260.		7
170	Colonization of Plant Roots by Pseudomonads and AM Fungi: A Dynamic Phenomenon, Affecting Plant Growth and Health. , 2008, , 601-626.		3
171	The role of biotechnology for agricultural sustainability in Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 905-913.	1.8	49
172	Unraveling the network. Plant Signaling and Behavior, 2008, 3, 936-944.	1.2	17
173	RNA Interference-Mediated Repression of <i>MtCCD1</i> in Mycorrhizal Roots of <i>Medicago truncatula</i> Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD1 Â. Plant Physiology, 2008, 148, 1267-1282.	2.3	99
174	Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Scientia Agricola, 2008, 65, 259-267.	0.6	57
176	Root Development. , 2009, , .		5
177	Synthesis and biological activity of strigolactones. Journal of Pesticide Sciences, 2009, 34, 315-318.	0.8	1
178	Regulação do desenvolvimento de micorrizas arbusculares. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1-16.	0.5	32
179	Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnology, 2009, 26, 351-358.	0.5	109
180	Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling and Behavior, 2009, 4, 172-175.	1.2	71
181	The <i>ftsZ</i> Gene of the Endocellular Bacterium â€~ <i>Candidatus</i> Glomeribacter gigasporarum' Is Preferentially Expressed During the Symbiotic Phases of Its Host Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 2009, 22, 302-310.	1.4	31
182	7-Oxoorobanchyl Acetate and 7-Oxoorobanchol as Germination Stimulants for Root Parasitic Plants from Flax (<i>Linum usitatissimum</i>). Bioscience, Biotechnology and Biochemistry, 2009, 73, 1367-1370.	0.6	44
183	Truffles Regulate Plant Root Morphogenesis via the Production of Auxin and Ethylene Â. Plant Physiology, 2009, 150, 2018-2029.	2.3	171
184	d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers. Plant and Cell Physiology, 2009, 50, 1416-1424.	1.5	560
185	Hormonal Regulation of Branching in Grasses Â. Plant Physiology, 2009, 149, 46-55.	2.3	179
186	Biological Activity of Defence-Related Plant Secondary Metabolites. , 2009, , 283-299.		8

#	Article	IF	CITATIONS
187	Computational Modeling and Molecular Physiology Experiments Reveal New Insights into Shoot Branching in Pea Â. Plant Cell, 2009, 21, 3459-3472.	3.1	61
188	Communication and Signaling in the Plant–Fungus Symbiosis: The Mycorrhiza. Signaling and Communication in Plants, 2009, , 45-71.	0.5	10
189	Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signaling and Behavior, 2009, 4, 75-77.	1.2	32
190	<i>Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7</i> Is Involved in the Production of Negative and Positive Branching Signals in Petunia. Plant Physiology, 2009, 151, 1867-1877.	2.3	121
191	Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis Â. Plant Physiology, 2009, 150, 482-493.	2.3	338
192	Regulation of Carotenoid Composition and Shoot Branching in <i>Arabidopsis</i> by a Chromatin Modifying Histone Methyltransferase, SDG8. Plant Cell, 2009, 21, 39-53.	3.1	207
193	Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Current Opinion in Plant Biology, 2009, 12, 500-507.	3.5	78
194	Strigolactones: a new hormone with a past. Current Opinion in Plant Biology, 2009, 12, 556-561.	3.5	70
195	Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of Botany, 2009, 75, 1-7.	1.2	112
196	Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2009, 9, 10.	1.6	277
197	Strigolactones: The First Members of a New Family of "Shoot Branching Hormones―in Plants?. ChemBioChem, 2009, 10, 221-223.	1.3	6
198	Wege zur Endomykorrhiza. Einladung ans Buffet. Biologie in Unserer Zeit, 2009, 39, 102-113.	0.3	1
199	Die facettenreiche Welt der Apocarotinoide. Farben, Düfte, Aromen und Hormone. Biologie in Unserer Zeit, 2009, 39, 336-344.	0.3	0
200	Plantâ€microbe symbioses: new insights into common roots. BioEssays, 2009, 31, 1233-1244.	1.2	14
201	Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Mycorrhiza, 2009, 20, 13-23.	1.3	48
202	Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza, 2009, 19, 449-459.	1.3	70
203	Rhizosphere chemical dialogues: plant–microbe interactions. Current Opinion in Biotechnology, 2009, 20, 642-650.	3.3	513
204	Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Molecular Biology, 2009, 71, 265-276.	2.0	143

ARTICLE IF CITATIONS Plant-driven selection of microbes. Plant and Soil, 2009, 321, 235-257. 205 1.8 872 Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 2009, 206 1.8 509 321, 83-115. Tryptophan dimer produced by water-stressed bahia grass is an attractant for Gigaspora margarita 207 1.7 11 and Glomus caledonium. World Journal of Microbiology and Biotechnology, 2009, 25, 1207-1215. Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds. Science in China Series C: Life Sciences, 208 2009, 52, 693-700 Arbuscular Mycorrhizas: Drivers or Passengers of Alien Plant Invasion. Botanical Review, The, 2009, 209 1.7 73 75, 397-417. Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Management Science, 2009, 65, 471-477. 1.7 99 Structure and function of natural and synthetic signalling molecules in parasitic weed germination. 211 1.7 215 Pest Management Science, 2009, 65, 478-491. Strigolactones: structures and biological activities. Pest Management Science, 2009, 65, 467-470. 1.7 160 Breeding approaches for crenate broomrape (<i>Orobanche crenata</i> Forsk.) management in pea 213 1.7 71 (<i>Pisum sativum </i> L.). Pest Management Science, 2009, 65, 553-559. The control of shoot branching: an example of plant information processing. Plant, Cell and 214 2.8 Environment, 2009, 32, 694-703. Revisiting strategies for reducing the seedbank of <i>Orobanche</i> and <i>Phelipanche</i> spp.. Weed 215 103 0.8 Research, 2009, 49, 23-33. SICCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid 2.8 216 formation in tomato. Plant Journal, 2010, 61, 300-311. Exogenous glucosinolate produced by <i>Arabidopsis thaliana</i> has an impact on microbes in the 217 4.4 237 rhizosphere and plant roots. ISME Journal, 2009, 3, 1243-1257. From plant–microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Annals of Applied Biology, 2009, 154, 341-350. 1.3 <i>Glomus intraradices</i> induces changes in root system architecture of rice independently of 219 3.5 154 common symbiosis signaling. New Phytologist, 2009, 182, 829-837. Multiple layers of incompatibility to the parasitic witchweed, <i>Striga hermonthica</i>. New 103 Phytologist, 2009, 183, 180-189. Presymbiotic factors released by the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> 221 3.5 72 induce starch accumulation in (i)Lotus japonicus (i) roots. New Phytologist, 2009, 183, 53-61. Three birds with one stone: moas, heteroblasty and the New Zealand flora. New Phytologist, 2009, 184, 282-284.

#	Article	IF	CITATIONS
224	Phenotypic variability: underlying mechanisms and limits do matter. New Phytologist, 2009, 184, 277-279.	3.5	15
225	Fungal ecology catches fire. New Phytologist, 2009, 184, 279-282.	3.5	104
226	Synthetic disproof of the structure proposed for solanacol, the germination stimulant for seeds of root parasitic weeds. Tetrahedron Letters, 2009, 50, 4549-4551.	0.7	31
227	Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry, 2009, 70, 211-215.	1.4	64
228	The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry, 2009, 70, 1589-1599.	1.4	146
229	Stochastic tunneling in the colonization of mutualistic organisms: Primary succession by mycorrhizal plants. Journal of Theoretical Biology, 2009, 261, 74-82.	0.8	2
230	Plant-Microbe Interactions: Chemical Diversity in Plant Defense. Science, 2009, 324, 746-748.	6.0	307
231	Hemiparasitic Plants: Exploiting Their Host's Inherent Nature to Talk. Signaling and Communication in Plants, 2009, , 85-100.	0.5	3
232	Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis. Russian Journal of Genetics, 2009, 45, 1279-1288.	0.2	9
233	Antiquity and Function of <i>CASTOR</i> and <i>POLLUX</i> , the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants Â. Plant Physiology, 2009, 149, 306-317.	2.3	63
234	New Chemical Clues for Broomrape-Sunflower Hostâ^'Parasite Interactions: Synthesis of Guaianestrigolactones. Journal of Agricultural and Food Chemistry, 2009, 57, 5853-5864.	2.4	29
235	Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009, 14, 364-372.	4.3	230
236	Karrikins: A new family of plant growth regulators in smoke. Plant Science, 2009, 177, 252-256.	1.7	175
237	A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity. Organic and Biomolecular Chemistry, 2009, 7, 3413.	1.5	77
238	Dissection of Genetic Cell Programmes Driving Early Arbuscular Mycorrhiza Interactions. , 2009, , 33-45.		7
239	Host Location and Selection by Holoparasitic Plants. Signaling and Communication in Plants, 2009, , 101-118.	0.5	10
240	Development and Function of the Arbuscular Mycorrhizal Symbiosis in Petunia. , 2009, , 131-156.		1
241	Mycorrhizas - Functional Processes and Ecological Impact. , 2009, , .		28

ARTICLE IF CITATIONS Root Hairs. Plant Cell Monographs, 2009, , . 0.4 2 242 Establishment and Functioning of Arbuscular Mycorrhizas., 2009, , 259-274. 243 245 Plant-Environment Interactions. Signaling and Communication in Plants, 2009, , . 0.5 16 Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Annals of 246 Botany, 2009, 103, 423-431. Host-specific germination of the root holoparasite <i>Hydnora triceps</i> (Hydnoraceae). Botany, 247 0.5 19 2009, 87, 1250-1254. Quantifying the growth of arbuscular mycorrhizal fungi: usefulness of the fractal dimension. Botany, 2009, 87, 387-400. Total Synthesis of (±)-5-Deoxystrigol via Reductive Carbonâ[^]Carbon Bond Formation. Journal of 249 1.7 16 Organic Chemistry, 2009, 74, 3966-3969. Interactions between Auxin and Strigolactone in Shoot Branching Control. Plant Physiology, 2009, 250 2.3 358 151, 400-412. DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice 251 3.1 549 Tiller Bud Outgrowth Â. Plant Cell, 2009, 21, 1512-1525. Diverse Activities of Carotenoid Cleavage Oxygenases., 2009, , 389-416. Full-Size ABC Transporters from the ABCG Subfamily in <i>Medicago truncatula</i>. Molecular 253 1.4 28 Plant-Microbe Interactions, 2009, 22, 921-931. Symbiosis-Related Plant Genes Modulate Molecular Responses in an Arbuscular Mycorrhizal Fungus 254 1.4 29 During Early Root Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 341-351. 255 Lateral Root Formation., 0,, 83-126. 10 When Plants Socialize: Symbioses and Root Development., 0,, 209-238. 257 Title is missing!. Kagaku To Seibutsu, 2009, 47, 152-154. 0.0 0 æē‰ ©ã®æžå^†ã•ã,ŒæŠ'å^¶ã∱>ãf«ãf¢ãf³ã®ç™≌è¦<. Kagaku To Seibutsu, 2009, 47, 678-683. The arbuscular mycorrhizal host status of plants can not be linked with the Striga 260 seed-germination-activity of plant root exudates. Journal of Plant Diseases and Protection, 2009, 116, 9 1.6 86-89. Overview and Introduction., 2010, , 1-7.

#	Article	IF	CITATIONS
263	Diversification of P450 Genes During Land Plant Evolution. Annual Review of Plant Biology, 2010, 61, 291-315.	8.6	322
264	Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1, 48.	5.8	990
265	Strigolactones' Effect on Root Growth and Root-Hair Elongation May Be Mediated by Auxin-Efflux Carriers. Journal of Plant Growth Regulation, 2010, 29, 129-136.	2.8	166
266	Synthesis of optically active strigolactones: enzymatic resolution and asymmetric hydroxylation. Tetrahedron: Asymmetry, 2010, 21, 1166-1168.	1.8	12
267	Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta, 2010, 231, 425-436.	1.6	52
268	Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 2010, 232, 1-17.	1.6	221
269	Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture?. Plant Molecular Biology, 2010, 73, 27-36.	2.0	56
270	Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil, 2010, 329, 1-25.	1.8	292
271	New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology, 2010, 13, 34-39.	3.5	208
272	Host plant resistance to parasitic weeds; recent progress and bottlenecks. Current Opinion in Plant Biology, 2010, 13, 478-484.	3.5	120
273	Not a peripheral issue: secretion in plant–microbe interactions. Current Opinion in Plant Biology, 2010, 13, 378-387.	3.5	88
274	First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago) Tj ETQq1 1 0.78	4314 rgBT 4.2	-/Qyerlock 1(
275	Stereochemistry, Total Synthesis, and Biological Evaluation of the New Plant Hormone Solanacol. Chemistry - A European Journal, 2010, 16, 13941-13945.	1.7	52
276	Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics, 2010, 73, 753-768.	1.2	46
277	Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry, 2010, 71, 1865-1871.	1.4	33
278	Novel cyclization cascades to functionalized indanes and tetrahydronaphthalenes. Tetrahedron, 2010, 66, 6639-6646.	1.0	16
279	A new efficient synthesis of GR24 and dimethyl A-ring analogues, germinating agents for seeds of the parasitic weeds Striga and Orobanche spp Tetrahedron, 2010, 66, 7198-7203.	1.0	47
280	<i>De novo</i> biosynthesis of defense root exudates in response to <i>Fusarium</i> attack in barley. New Phytologist, 2010, 185, 577-588.	3.5	206

#	Article	IF	CITATIONS
281	Membrane steroidâ€binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in <i>Medicago truncatula</i> . New Phytologist, 2010, 185, 716-733.	3.5	115
282	Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 2010, 187, 343-354.	3.5	243
283	Modified <i>CAROTENOID CLEAVAGE DIOXYGENASE8</i> expression correlates with altered branching in kiwifruit (<i>Actinidia chinensis</i>). New Phytologist, 2010, 188, 803-813.	3.5	71
284	Flavonoidâ€induced calcium signalling in <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> . New Phytologist, 2010, 188, 814-823.	3.5	59
285	Evaluation of the potential of trap plants to detect arbuscular mycorrhizal fungi using polymerase chain reaction-denaturing gradient gel electrophoresis analysis. Soil Science and Plant Nutrition, 2010, 56, 205-211.	0.8	10
286	Reactive Oxygen Species during Plantâ€microorganism Early Interactions. Journal of Integrative Plant Biology, 2010, 52, 195-204.	4.1	275
287	Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?. FEMS Microbiology Ecology, 2010, 72, 313-327.	1.3	790
288	Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> on tomato (<i>Solanum) Tj ETQq1 1 (</i>	0. 7280 314	rg BI /Overloo
289	The roles of plant phenolics in defence and communication during <i>Agrobacterium</i> and <i>Rhizobium</i> infection. Molecular Plant Pathology, 2010, 11, 705-719.	2.0	356
290	<i>Medicago truncatula</i> Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant Journal, 2010, 61, 482-494.	2.8	198
291	Parasitic plant infection is partially controlled through symbiotic pathways. Weed Research, 2010, 50, 76-82.	0.8	21
292	Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces <i>Orobanche</i> and <i>Phelipanche</i> species seed germination. Weed Research, 2010, 50, 262-268.	0.8	57
293	Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64, 1002-1017.	2.8	354
294	A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology, 2010, 6, 741-749.	3.9	207
295	Endobacteria affect the metabolic profile of their host <i>Gigaspora margarita</i> , an arbuscular mycorrhizal fungus. Environmental Microbiology, 2010, 12, 2083-2095.	1.8	37
296	The fungal pathogen Cochliobolus heterostrophus responds to maize phenolics: novel small molecule signals in a plant-fungal interaction. Cellular Microbiology, 2010, 12, 1421-1434.	1.1	31
297	Studies on the Host Recognition Mechanism of Root Parasitic Plants. Journal of Pesticide Sciences, 2010, 35, 355-362.	0.8	1
298	Morfoanatomia do sistema subterrâneo de Smilax subsessiliflora (Smilacaceae). Rodriguesia, 2010, 61, 181-194.	0.9	3

#	Article	IF	CITATIONS
299	Structural Requirements of Strigolactones for Hyphal Branching in AM Fungi. Plant and Cell Physiology, 2010, 51, 1104-1117.	1.5	299
300	Information processing without brains – the power of intercellular regulators in plants. Development (Cambridge), 2010, 137, 1215-1226.	1.2	38
301	Differential Effects of Rare Specific Flavonoids on Compatible and Incompatible Strains in the <i>Myrica gale</i> - <i>Frankia</i> Actinorhizal Symbiosis. Applied and Environmental Microbiology, 2010, 76, 2451-2460.	1.4	62
302	Two <i>Medicago truncatula</i> Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2010, 22, 1483-1497.	3.1	223
303	Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. Journal of Pesticide Sciences, 2010, 35, 344-347.	0.8	50
304	Strigolactones Negatively Regulate Mesocotyl Elongation in Rice during Germination and Growth in Darkness. Plant and Cell Physiology, 2010, 51, 1136-1142.	1.5	109
305	Variations in the Mycorrhization Characteristics in Roots of Wild-Type and ABA-Deficient Tomato Are Accompanied by Specific Transcriptomic Alterations. Molecular Plant-Microbe Interactions, 2010, 23, 651-664.	1.4	62
306	A New Lead Chemical for Strigolactone Biosynthesis Inhibitors. Plant and Cell Physiology, 2010, 51, 1143-1150.	1.5	51
308	Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour Journal of Experimental Botany, 2010, 61, 2967-2977.	2.4	128
309	A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. Journal of Experimental Botany, 2010, 61, 1739-1749.	2.4	134
310	Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice. Plant and Cell Physiology, 2010, 51, 1118-1126.	1.5	303
311	Branching Hormone is Busy Both Underground and Overground. Plant and Cell Physiology, 2010, 51, 1091-1094.	1.5	16
312	Specific developmental pathways underlie host specificity in the parasitic plant Orobanche. Plant Signaling and Behavior, 2010, 5, 275-277.	1.2	7
314	Plant Hormones. , 2010, , 9-125.		6
315	Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. , 2010, , 193-207.		89
316	Functional diversity in arbuscular mycorrhiza – the role ofÂgene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 2010, 3, 1-8.	0.7	139
317	Interactions Between Plants and Arbuscular Mycorrhizal Fungi. International Review of Cell and Molecular Biology, 2010, 281, 1-48.	1.6	48
319	Intimate Associations of Beneficial Soil Microbes with Host Plants. , 2010, , 119-196.		34

ARTICLE IF CITATIONS # Arbuscular mycorrhizal networks: process and functions. A review. Agronomy for Sustainable 321 2.2 141 Development, 2010, 30, 581-599. The Strigolactone Story. Annual Review of Phytopathology, 2010, 48, 93-117. 3.5 621 Biosynthesis and Regulation of Carotenoids in Plantsâ€"Micronutrients, Vitamins and Health Benefits. , 323 9 2010, , 117-137. Arbuscular Mycorrhiza: The Challenge to Understand the Genetics of the Fungal Partner. Annual 324 104 Review of Genetics, 2010, 44, 271-292. Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene 325 1.6 57 contents. Journal of Plant Physiology, 2010, 167, 606-613. Strigolactones, a novel class of plant hormone controlling shoot branching. Comptes Rendus -0.1 Biologies, 2010, 333, 344-349. 327 The evolution of parasitism in plants. Trends in Plant Science, 2010, 15, 227-235. 4.3 417 Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 2010, 15, 328 4.3 732 266-274. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. 329 1.4 53 Archives of Biochemistry and Biophysics, 2010, 504, 123-131. Allelochemicals for Plantâ€"Plant and Plantâ€"Microbe Interactions., 2010, , 539-561. Soil Microbiology and Sustainable Crop Production., 2010,,. 331 17 Arbuscular Mycorrhizas: Physiology and Function., 2010,,. 333 The Chemistry of Symbiotic Interactions., 2010, , 475-510. 4 Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Natural 334 5.2 Product Reports, 2010, 27, 969 Strigolactones as Germination Stimulants for Root Parasitic Plants. Plant and Cell Physiology, 2010, 335 1.5 217 51, 1095-1103. Vestitol as a Chemical Barrier against Intrusion of Parasitic Plant<i>Striga hermonthica </i>into <i>Lotus japonicus </i>Roots. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1662-1667. Synthetic studies on the solanacol ABC ring system by cation-initiated cascade cyclization: 337 1.519 implications for strigolactone biosynthesis. Organic and Biomolecular Chemistry, 2011, 9, 5350. 338 Strigolactones: a cry for help in the rhizosphere. Botany, 2011, 89, 513-522.

		TIATION REPORT	
#	Article	IF	Citations
339	Strigolactones: a new musician in the orchestra of plant hormones. Botany, 2011, 89, 827-840.	0.5	27
340	Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiology, 2011, 156, 1050-1057.	2.3	862
341	Physical Constraints on Sesquiterpene Diversity Arising from Cyclization of the Eudesm-5-yl Carbocation. Journal of the American Chemical Society, 2011, 133, 12632-12641.	6.6	35
342	Structural Requirements of Strigolactones for Germination Induction of Striga gesnerioides Seeds. Journal of Agricultural and Food Chemistry, 2011, 59, 9226-9231.	2.4	39
343	Carotenoids and their cleavage products: Biosynthesis and functions. Natural Product Reports, 2011, 28, 663.	, 5.2	472
344	Plant ABC Transporters. The Arabidopsis Book, 2011, 9, e0153.	0.5	401
345	The role of strigolactones in host specificity of <i>Orobanche</i> and <i>Phelipanche</i> seed germination. Seed Science Research, 2011, 21, 55-61.	0.8	92
346	Strigolactone Analogs Derived from Ketones Using a Working Model for Germination Stimulants as a Blueprint. Plant and Cell Physiology, 2011, 52, 699-715.	a 1.5	44
347	Agronomic, breeding, and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany, 2011, 89, 813-826.	0.5	40
348	<i>Ent</i> -2′- <i>epi</i> -Orobanchol and Its Acetate, As Germination Stimulants for <i>Striga gesnerioides</i> Seeds Isolated from Cowpea and Red Clover. Journal of Agricultural and Food Chemistry, 2011, 59, 10485-10490.	2.4	82
349	The effects of hydroxy fatty acids on the hyphal branching of germinatedÂspores of AM fungi. Fungal Biology, 2011, 115, 351-358.	1.1	66
350	Microbe–Microbe, Microbe–Plant Biocommunication. Soil Biology, 2011, , 439-464.	0.6	4
351	Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2011, 24, 867-878.	1.4	203
352	Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology, 2011, 168, 294-297.	1.6	137
355	Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp Plant Science, 2011, 180, 414-420.	1.7	103
356	The evolutionary ecology of dust seeds. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 73-87.	1.1	112
357	Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 2011, 38, 833.	1.1	397
358	Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia, 2011, 103, 307-316.	0.8	30

#	Article	IF	CITATIONS
359	Cross-Kingdom Actions of Phytohormones: A Functional Scaffold Exploration. Chemical Reviews, 2011, 111, 2734-2760.	23.0	39
361	Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnology, 2011, 28, 429-437.	0.5	43
362	An outlook on ion signaling and ionome of mycorrhizal symbiosis. Brazilian Journal of Plant Physiology, 2011, 23, 79-89.	0.5	18
363	Effects of Triazole Derivatives on Strigolactone Levels and Growth Retardation in Rice. PLoS ONE, 2011, 6, e21723.	1.1	55
365	Activation of a <i>Lotus japonicus</i> Subtilase Gene During Arbuscular Mycorrhiza Is Dependent on the Common Symbiosis Genes and Two <i>cis</i> -Active Promoter Regions. Molecular Plant-Microbe Interactions, 2011, 24, 662-670.	1.4	26
366	Modelling Spatial Interactions in the Arbuscular Mycorrhizal Symbiosis using the Calculus of Wrapped Compartments. Electronic Proceedings in Theoretical Computer Science, EPTCS, 2011, 67, 3-18.	0.8	1
367	A Highway for War and Peace: The Secretory Pathway in Plant–Microbe Interactions. Molecular Plant, 2011, 4, 581-587.	3.9	46
368	Germinating Spore Exudates from Arbuscular Mycorrhizal Fungi: Molecular and Developmental Responses in Plants and Their Regulation by Ethylene. Molecular Plant-Microbe Interactions, 2011, 24, 260-270.	1.4	83
369	Purple witchweed (<i>Striga hermonthica</i>) germination and seedbank depletion under different crops, fallow, and bare soil. Weed Biology and Management, 2011, 11, 100-110.	0.6	18
370	Quantification of the relationship between strigolactones and <i>Striga hermonthica</i> infection in rice under varying levels of nitrogen and phosphorus. Weed Research, 2011, 51, 373-385.	0.8	112
371	Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca ²⁺ spiking in the legume and nonlegume root epidermis. New Phytologist, 2011, 189, 347-355.	3.5	165
372	Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytologist, 2011, 189, 701-709.	3.5	110
373	Ethyleneâ€dependent/ethyleneâ€independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytologist, 2011, 190, 193-205.	3.5	127
374	Preâ€attachment <i>Striga hermonthica</i> resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytologist, 2011, 192, 964-975.	3.5	109
375	Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 2011, 76, 236-244.	1.3	147
376	Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 2011, 12, 211-221.	16.1	647
377	Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 2011, 43, 1812-1836.	4.2	3,514
378	Branching in rice. Current Opinion in Plant Biology, 2011, 14, 94-99.	3.5	200

#	Article	IF	CITATIONS
379	Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2011, 14, 451-457.	3.5	135
380	Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorganic and Medicinal Chemistry, 2011, 19, 7394-7400.	1.4	46
381	New branching inhibitors and their potential as strigolactone mimics in rice. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4905-4908.	1.0	102
382	Aromatic A-ring analogues of orobanchol, new germination stimulants for seeds of parasitic weeds. Organic and Biomolecular Chemistry, 2011, 9, 2286.	1.5	20
383	Genomics of Root–Microbe Interactions. , 2011, , 73-97.		1
384	Plant Genetics for Study of the Roles of Root Exudates and Microbes in the Soil. , 2011, , 99-111.		0
385	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 24, 1345-1358.	1.4	147
386	Cytochromes P450. The Arabidopsis Book, 2011, 9, e0144.	0.5	294
387	F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8897-8902.	3.3	394
388	Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regulation, 2011, 65, 495-504.	1.8	55
389	Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 233, 209-216.	1.6	452
390	The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta, 2011, 234, 419-427.	1.6	103
391	Ecological metabolomics: overview of current developments and future challenges. Chemoecology, 2011, 21, 191-225.	0.6	204
392	Autoregulatory Properties of (+)-Thujopsene and Influence of Environmental Conditions on Its Production by Penicillium decumbens. Microbial Ecology, 2011, 62, 838-52.	1.4	24
393	Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 2011, 89, 917-930.	1.7	215
394	Proteomic analysis of secreted proteins from aseptically grown rice. Phytochemistry, 2011, 72, 312-320.	1.4	22
395	Genetic Diversity of a Parasitic Weed, Striga hermonthica, on Sorghum and Pearl Millet in Mali. Tropical Plant Biology, 2011, 4, 91-98.	1.0	16
396	A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2011, 11, 90.	1.6	35

#	Article	IF	CITATIONS
397	RNA interference as a resistance mechanism against crop parasites in Africa: a †Trojan horse' approach. Pest Management Science, 2011, 67, 129-136.	1.7	41
400	New Potent Fluorescent Analogues of Strigolactones: Synthesis and Biological Activity in Parasitic Weed Germination and Fungal Branching. European Journal of Organic Chemistry, 2011, 2011, 3781-3793.	1.2	69
401	Symbiosis and development: The hologenome concept. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 56-66.	3.6	169
402	Single step synthesis of strigolactone analogues from cyclic keto enols, germination stimulants for seeds of parasitic weeds. Bioorganic and Medicinal Chemistry, 2011, 19, 5006-5011.	1.4	40
403	Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry, 2011, 72, 624-634.	1.4	119
404	First synthesis of (±)-sorgomol, the germination stimulant for root parasitic weeds isolated from Sorghum bicolor. Tetrahedron Letters, 2011, 52, 724-726.	0.7	15
405	How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?. Plant Signaling and Behavior, 2011, 6, 1300-1304.	1.2	30
406	Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions Â. Plant Physiology, 2011, 156, 1439-1456.	2.3	81
407	Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis Â. Plant Physiology, 2011, 155, 974-987.	2.3	417
408	Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi. Botany, 2011, 89, 285-288.	0.5	12
409	Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2011, 138, 1531-1539.	1.2	228
410	Phosphate Deprivation in Maize: Genetics and Genomics. Plant Physiology, 2011, 156, 1067-1077.	2.3	83
411	Abamine as a basis for new designs of regulators of strigolactone production. Journal of Pesticide Sciences, 2011, 36, 53-57.	0.8	12
412	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
413	Strigolactones as mediators of plant growth responses to environmental conditions. Plant Signaling and Behavior, 2011, 6, 37-41.	1.2	29
414	Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis Â. Plant Physiology, 2011, 156, 1990-2010.	2.3	235
415	Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones? Â Â Â. Plant Physiology, 2011, 155, 721-734.	2.3	534
416	Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread A. Plant Physiology, 2011, 157, 2023-2043.	2.3	195

#	Article	IF	CITATIONS
417	The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 2011, 62, 1049-1060.	2.4	235
418	Macromolecular trafficking between a vesicular arbuscular endomycorrhizal fungus and roots of transgenic tobacco. Plant Signaling and Behavior, 2011, 6, 617-623.	1.2	2
419	Strigolactone Biosynthesis in <i>Medicago</i> Â <i>truncatula</i> and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2 Â. Plant Cell, 2011, 23, 3853-3865.	3.1	291
420	Influência do Ã3leo essencial na micorrização e no crescimento de mudas de eucalipto. Pesquisa Florestal Brasileira, 2011, 2011, 235-243.	0.1	0
421	Rhizobial and Fungal Symbioses Show Different Requirements for Calmodulin Binding to Calcium Calmodulin–Dependent Protein Kinase in <i>Lotus japonicus</i> Â. Plant Cell, 2012, 24, 304-321.	3.1	78
422	How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Frontiers in Plant Science, 2012, 3, 223.	1.7	81
423	Strigolactones in Root Exudates as a Signal in Symbiotic and Parasitic Interactions. Signaling and Communication in Plants, 2012, , 49-73.	0.5	10
424	The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones Â. Plant Physiology, 2012, 159, 1073-1085.	2.3	179
425	The Plant Growth Promoting Substance, Lumichrome, Mimics Starch, and Ethylene-Associated Symbiotic Responses in Lotus and Tomato Roots. Frontiers in Plant Science, 2012, 3, 120.	1.7	20
426	Strigolactone and karrikin signal perception: receptors, enzymes, or both?. Frontiers in Plant Science, 2012, 3, 296.	1.7	32
427	Transcriptional Responses toward Diffusible Signals from Symbiotic Microbes Reveal <i>MtNFP</i> - and <i>MtDMl3</i> -Dependent Reprogramming of Host Gene Expression by Arbuscular Mycorrhizal Fungal Lipochitooligosaccharides Á. Plant Physiology, 2012, 159, 1671-1685.	2.3	126
428	Inhibition of strigolactones promotes adventitious root formation. Plant Signaling and Behavior, 2012, 7, 694-697.	1.2	29
429	Karrikins force a rethink of strigolactone mode of action. Plant Signaling and Behavior, 2012, 7, 969-972.	1.2	21
430	Biology of Endophytic Fungi. Current Research in Environmental and Applied Mycology, 2012, 2, 31-82.	0.3	115
431	Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 1285-1295.	1.2	477
432	The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling and Behavior, 2012, 7, 636-641.	1.2	197
433	Recent Advances in Strigolactone Research: Chemical and Biological Aspects. Plant and Cell Physiology, 2012, 53, 1843-1853.	1.5	85
434	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	2.3	286

ARTICLE IF CITATIONS Simple Lipids with Only One Component., 2012, , 3-168. 435 0 Use of Luciferases as a Tool to Analyze Fungal Physiology in Association with Gene Transcription., 2012, , 187-202. Impacts of Diversification of Cytochrome P450 on Plant Metabolism. Biological and Pharmaceutical 438 0.6 103 Bulletin, 2012, 35, 824-832. A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. 1.8 291 Current Biology, 2012, 22, 2242-2246. Strigolactones: Destruction-Dependent Perception?. Current Biology, 2012, 22, R924-R927. 440 1.8 32 DAD2 Is an $\hat{l} \pm / \hat{l}^2$ Hydrolase Likely to Be Involved in the Perception of the Plant Branching Hormone, Strigolactone. Current Biology, 2012, 22, 2032-2036. 1.8 571 The microRNA miR171h modulates arbuscular mycorrhizal colonization of <i>Medicago truncatula</i> 442 2.8 163 by targeting <i>NSP2</i>. Plant Journal, 2012, 72, 512-522. The tomato <i><scp>CAROTENOID CLEAVAGE DIOXYGENASE</scp>8</i> (<i><scp>S</scp>l<scp>CCD</scp>8</i>) regulates rhizosphere signaling, plant architecture and 3.5 250 affects reproductive development through strigolactone biosynthesis. New Phytologist, 2012, 196, 535-547 Cellular programs for arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2012, 15, 444 3.5 151 691-698. 445 Communication Between Plant, Ectomycorrhizal Fungi and Helper Bacteria., 2012, , 229-247. The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. Signaling 446 7 0.5 and Communication in Plants, 2012, , 1-30. 1 Exploring the Genome of Glomeromycotan Fungi., 2012, , 1-21. 6 De-Constructing a Mutualist: How the Molecular Blueprints of Model Symbiotic Fungi Are Changing 448 3 Our Understanding of Mutualism., 2012, , 93-117. Growth control of root architecture., 2012, , 373-386. 449 Signals in the Rhizosphere and Their Effects on the Interactions Between Microorganisms and Plants., 450 2 2012, , 201-211. Strigolactones as small molecule communicators. Molecular BioSystems, 2012, 8, 464-469. 28 Structure-Activity Relationship Studies of Strigolactone-Related Molecules for Branching Inhibition 452 2.3173 in Garden Pea: Molecule Design for Shoot Branching Â. Plant Physiology, 2012, 159, 1524-1544. Germination Stimulants of <i>Phelipanche ramosa</i> in the Rhizosphere of <i>Brassica napus</i> Are 1.4 Derived from the Glucosinolate Pathway. Molecular Plant-Microbe Interactions, 2012, 25, 993-1004.

		CITATION REPORT		
#	Article		IF	Citations
454	Detect thy neighbor: Identity recognition at the root level in plants. Plant Science, 201	2, 195, 157-167.	1.7	134
455	Fusicoccanes: diterpenes with surprising biological functions. Trends in Plant Science, 360-368.	2012, 17,	4.3	86
456	Role of Phytohormone Signaling During Stress. , 2012, , 381-393.			11
457	The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in New Phytologist, 2012, 194, 614-628.	ecosystems.	3.5	157
458	Origin of strigolactones in the green lineage. New Phytologist, 2012, 195, 857-871.		3.5	258
459	Strigolactones affect development in primitive plants. The missing link between plants mycorrhizal fungi?. New Phytologist, 2012, 195, 730-733.	and arbuscular	3.5	15
460	Plant Root Secretions and Their Interactions with Neighbors. Signaling and Communic 2012, , 1-26.	ation in Plants,	0.5	8
461	Natural elicitors, effectors and modulators of plant responses. Natural Product Reports 1288.	s, 2012, 29,	5.2	111
462	Regulation of Seed Germination and Seedling Growth by Chemical Signals from Burnin Annual Review of Plant Biology, 2012, 63, 107-130.	g Vegetation.	8.6	242
463	The computational-based structure of Dwarf14 provides evidence for its role as potent strigolactone receptor in plants. BMC Research Notes, 2012, 5, 307.	ial	0.6	30
464	Communication in the Rhizosphere, a Target for Pest Management. , 2012, , 109-133.			15
465	Arbuscular Mycorrhizae for Sustainable Agriculture. , 2012, , 581-618.			0
466	The <scp><scp>D3</scp> F</scp> â€box protein is a key component in host strigolact essential for arbuscular mycorrhizal symbiosis. New Phytologist, 2012, 196, 1208-121		3.5	134
468	Memory Formation: Traversing theÂHighwire. Current Biology, 2012, 22, R927-R929.		1.8	0
469	Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted. Current Biology, 201	2, 22, R997-R999.	1.8	8
470	Plants that attack plants: molecular elucidation of plant parasitism. Current Opinion in Biology, 2012, 15, 708-713.	Plant	3.5	45
471	Tripartite Association Among Plant, Arbuscular Mycorrhizal Fungi and Bacteria. , 2012,	, 243-259.		0
472	Root Exudates of Legume Plants and Their Involvement in Interactions with Soil Microb and Communication in Plants, 2012, , 27-48.	bes. Signaling	0.5	36

#	Article	IF	Citations
473	The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science, 2012, 335, 1348-1351.	6.0	809
474	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	13.7	502
475	4 Arbuscular Mycorrhiza: A Key Component of Sustainable Plant–Soil Ecosystems. , 2012, , 51-75.		34
477	Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 2012, 360, 1-13.	1.8	347
478	No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media. Plant and Soil, 2012, 360, 319-331.	1.8	23
479	Secretions and Exudates in Biological Systems. Signaling and Communication in Plants, 2012, , .	0.5	24
480	Biocommunication of Fungi. , 2012, , .		22
481	The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Frontiers in Plant Science, 2011, 2, 115.	1.7	55
482	The Role of Root-Produced Volatile Secondary Metabolites in Mediating Soil Interactions. , 0, , .		26
483	INTERACCIOÌN PLANTA-HONGOS MICORRIÌZICOS ARBUSCULARES. Revista Chapingo, Serie Ciencias Forestales Y Del Ambiente, 2012, XVIII, 409-421.	0.1	7
485	Coadaptationary Aspects of the Underground Communication Between Plants and Other Organisms. Signaling and Communication in Plants, 2012, , 361-375.	0.5	1
486	Molecular tagging and validation of microsatellite markers linked to the low germination stimulant gene (lgs) for Striga resistance in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics, 2012, 124, 989-1003.	1.8	37
487	Manipulation of Chemically Mediated Interactions in Agricultural Soils to Enhance the Control of Crop Pests and to Improve Crop Yield. Journal of Chemical Ecology, 2012, 38, 641-650.	0.9	57
488	Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, 2012, 38, 651-664.	0.9	757
489	Polyamines stimulate hyphal branching and infection in the early stage of Glomus etunicatum colonization. World Journal of Microbiology and Biotechnology, 2012, 28, 1615-1621.	1.7	13
490	Strigolactone Positively Controls Crown Root Elongation in Rice. Journal of Plant Growth Regulation, 2012, 31, 165-172.	2.8	114
491	How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?. Planta, 2012, 235, 1197-1207.	1.6	299
492	Anatomical observation of polyphenol changes in epidermal cells during the development of Quercus acutissima–Scleroderma verrucosum ectomycorrhizae. Trees - Structure and Function, 2012, 26, 301-310.	0.9	7

#	Article	IF	CITATIONS
493	The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza, 2012, 22, 259-269.	1.3	62
494	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	3.5	305
495	Arbuscule ontaining and non olonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant Journal, 2012, 69, 510-528.	2.8	220
496	The halfâ€size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal, 2012, 69, 906-920.	2.8	131
497	Association of highly and weakly mycorrhizal seedlings can promote the extra- and intraradical development of a common mycorrhizal network. FEMS Microbiology Ecology, 2012, 79, 251-259.	1.3	14
498	A model that explains diversity patterns of arbuscular mycorrhizas. Ecological Modelling, 2012, 231, 146-152.	1.2	12
499	Exploring the molecular mechanism of karrikins and strigolactones. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3743-3746.	1.0	78
500	A novel approach toward the synthesis of strigolactones through intramolecular [2+2] cycloaddition of ketenes and ketene-iminiums to olefins. Application to the asymmetric synthesis of GR-24. Tetrahedron Letters, 2012, 53, 4514-4517.	0.7	51
501	AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry, 2012, 77, 149-161.	1.4	62
502	Multicomponent symbiosis of legumes with beneficial soil microorganisms: Genetic and evolutionary bases of application in sustainable crop production. Russian Journal of Genetics: Applied Research, 2012, 2, 177-189.	0.4	4
503	Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biology and Fertility of Soils, 2012, 48, 123-149.	2.3	254
504	Synergistic interactions between Glomus mosseae and Bradyrhizobium japonicum in enhancing proton release from nodules and hyphae. Mycorrhiza, 2012, 22, 51-58.	1.3	19
505	Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta, 2012, 235, 473-484.	1.6	69
506	Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. Journal of Chemical Ecology, 2013, 39, 810-825.	0.9	209
507	Effects of single and mixed inoculation with two arbuscular mycorrhizal fungi in two different levels of phosphorus supply on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers. Plant and Soil, 2013, 372, 361-374.	1.8	12
508	Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant and Soil, 2013, 366, 83-92.	1.8	94
509	Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant and Soil, 2013, 365, 397-407.	1.8	52
510	Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science, 2013, 18, 539-545.	4.3	396

#	Article	IF	CITATIONS
511	Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. International Journal of Molecular Sciences, 2013, 14, 14950-14973.	1.8	528
512	Novel insights into strigolactone distribution and signalling. Current Opinion in Plant Biology, 2013, 16, 583-589.	3.5	104
513	A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics, 2013, 14, 306.	1.2	93
514	Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2013, 16, 473-479.	3.5	84
515	Piriformospora indica. Soil Biology, 2013, , .	0.6	19
516	Plant phenolics: Recent advances on their biosynthesis, genetics, andÂecophysiology. Plant Physiology and Biochemistry, 2013, 72, 1-20.	2.8	875
517	Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. Journal of Plant Interactions, 2013, 8, 17-33.	1.0	22
518	Strigolactones fine-tune the root system. Planta, 2013, 238, 615-626.	1.6	55
519	Tip Growth in Filamentous Fungi: A Road Trip to the Apex. Annual Review of Microbiology, 2013, 67, 587-609.	2.9	155
520	Transactions Among Microorganisms and Plant in the Composite Rhizosphere Habitat. , 2013, , 1-50.		10
521	Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta, 2013, 238, 885-894.	1.6	77
522	Synthetic approaches to polycyclic semiochemicals and their derivatives: combinatorial methods towards phytochemicals. Phytochemistry Reviews, 2013, 12, 603-651.	3.1	2
523	Strigolactones: New Physiological Roles for an Ancient Signal. Journal of Plant Growth Regulation, 2013, 32, 429-442.	2.8	45
524	Molecular Bacteria-Fungi Interactions: Effects on Environment, Food, and Medicine. Annual Review of Microbiology, 2013, 67, 375-397.	2.9	131
525	Increased hyphal branching and growth of ectomycorrhizal fungus Lactarius rufus by the helper bacterium Paenibacillus sp. Mycorrhiza, 2013, 23, 403-410.	1.3	37
526	A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genetics and Biology, 2013, 56, 67-77.	0.9	81
527	New Synthesis of Aâ€Ring Aromatic Strigolactone Analogues and Their Evaluation as Plant Hormones in Pea (<i>Pisum sativum</i>). Chemistry - A European Journal, 2013, 19, 4849-4857.	1.7	35
528	Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annual Review of Cell and Developmental Biology, 2013, 29, 593-617.	4.0	493

#	Article	IF	CITATIONS
529	Effect of Phosphorus Levels on the Protein Profiles of Secreted Protein and Root Surface Protein of Rice. Journal of Proteome Research, 2013, 12, 4748-4756.	1.8	8
530	Strigolactone/MAX2-Induced Degradation of Brassinosteroid Transcriptional Effector BES1 Regulates Shoot Branching. Developmental Cell, 2013, 27, 681-688.	3.1	249
531	Structure and Activity of Strigolactones: New Plant Hormones with a Rich Future. Molecular Plant, 2013, 6, 38-62.	3.9	182
532	Parasitic Orobanchaceae. , 2013, , .		73
533	D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504, 406-410.	13.7	669
534	Witchcraft and destruction. Nature, 2013, 504, 384-385.	13.7	9
535	DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504, 401-405.	13.7	660
536	Symbiotic Endophytes. Soil Biology, 2013, , .	0.6	6
537	Molecular mechanism of strigolactone perception by DWARF14. Nature Communications, 2013, 4, 2613.	5.8	310
538	A Dual Role of Strigolactones in Phosphate Acquisition and Utilization in Plants. International Journal of Molecular Sciences, 2013, 14, 7681-7701.	1.8	117
539	Diverse Roles of Strigolactones in Plant Development. Molecular Plant, 2013, 6, 18-28.	3.9	323
540	CERBERUS and NSP1 of Lotus japonicus are Common Symbiosis Genes that Modulate Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2013, 54, 1711-1723.	1.5	78
541	Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum. Molecular Plant, 2013, 6, 128-140.	3.9	88
542	Biochar and its effects on plant productivity and nutrient cycling: a metaâ€analysis. GCB Bioenergy, 2013, 5, 202-214.	2.5	1,175
543	Karrikin and Cyanohydrin Smoke Signals Provide Clues to New Endogenous Plant Signaling Compounds. Molecular Plant, 2013, 6, 29-37.	3.9	101
544	Strigolactones and the Regulation of Pea Symbioses in Response to Nitrate and Phosphate Deficiency. Molecular Plant, 2013, 6, 76-87.	3.9	209
545	Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses. BMC Plant Biology, 2013, 13, 224.	1.6	16
546	CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. Journal of Experimental Botany, 2013, 64, 1967-1981.	2.4	114

#	Article	IF	CITATIONS
547	Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence. New Phytologist, 2013, 199, 26-40.	3.5	31
548	Carlactoneâ€independent seedling morphogenesis inÂArabidopsis. Plant Journal, 2013, 76, 1-9.	2.8	115
549	Synthesis of 7-Oxo-5-deoxystrigol, a 7-Oxygenated Strigolactone Analog. Bioscience, Biotechnology and Biochemistry, 2013, 77, 832-835.	0.6	7
550	Structural and Functional Biodiversity of Microbial Communities in the Rhizosphere of Plants Infected with Broomrapes (Orobanchaceae). Biotechnology and Biotechnological Equipment, 2013, 27, 4082-4086.	0.5	5
551	Structure–Function Relations of Strigolactone Analogs: Activity as Plant Hormones and Plant Interactions. Molecular Plant, 2013, 6, 141-152.	3.9	40
552	Host Allelopathy and Arbuscular Mycorrhizal Fungi. , 2013, , 429-450.		4
553	The biology of strigolactones. Trends in Plant Science, 2013, 18, 72-83.	4.3	318
554	Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry, 2013, 87, 60-64.	1.4	36
555	Effect of diammonium phosphate application on strigolactone production and <i>Striga hermonthica</i> infection in three sorghum cultivars. Weed Research, 2013, 53, 121-130.	0.8	30
556	Auxin influences strigolactones in pea mycorrhizal symbiosis. Journal of Plant Physiology, 2013, 170, 523-528.	1.6	74
557	New strigolactone mimics: Structure–activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5182-5186.	1.0	50
558	Strigolactones Stimulate Internode Elongation Independently of Gibberellins Â. Plant Physiology, 2013, 163, 1012-1025.	2.3	157
559	The effects of triclosan on spore germination and hyphal growth of the arbuscular mycorrhizal fungus Glomus intraradices. Science of the Total Environment, 2013, 454-455, 51-60.	3.9	17
560	The role of carotenoids and their derivatives in mediating interactions between insects and their environment. Arthropod-Plant Interactions, 2013, 7, 1-20.	0.5	74
561	Species Interactions of Mycoheterotrophic Plants: Specialization and its Potential Consequences. , 2013, , 267-296.		22
562	Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 2013, 11, 252-263.	13.6	1,373
563	The Plant Vascular System: Evolution, Development and Functions ^F . Journal of Integrative Plant Biology, 2013, 55, 294-388.	4.1	553
564	Shortâ€chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear <scp>C</scp> a ²⁺ spiking in <i><scp>M</scp>edicago truncatula</i> roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198, 190-202.	3.5	453

#	Article	IF	CITATIONS
567	Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Applied Soil Ecology, 2013, 63, 112-119.	2.1	58
568	Strigolactones. Plant Signaling and Behavior, 2013, 8, e23168.	1.2	30
569	<scp>NSP</scp> 1 is a component of the Myc signaling pathway. New Phytologist, 2013, 199, 59-65.	3.5	95
570	Systems biology and "omics―tools: A cooperation for next-generation mycorrhizal studies. Plant Science, 2013, 203-204, 107-114.	1.7	61
572	Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in <i><scp>M</scp>edicago truncatula</i> . New Phytologist, 2013, 199, 188-202.	3.5	158
574	The Role of Hormones in Controlling Vascular Differentiation. Plant Cell Monographs, 2013, , 99-139.	0.4	31
575	Sesquiterpenoids Lactones: Benefits to Plants and People. International Journal of Molecular Sciences, 2013, 14, 12780-12805.	1.8	490
576	Strigolactones and Biological Activity. , 2013, , 3583-3604.		3
577	The role of the potato (<i><scp>S</scp>olanum tuberosum</i>) <scp><i>CCD8</i></scp> gene in stolon and tuber development. New Phytologist, 2013, 198, 1108-1120.	3.5	75
585	Grasses provide new insights into regulation of shoot branching. Trends in Plant Science, 2013, 18, 41-48.	4.3	124
586	Synthesis of the Fungal Lipo hitooligosaccharide Mycâ€₩ (C16:0, S), Symbiotic Signal of Arbuscular Mycorrhiza. European Journal of Organic Chemistry, 2013, 2013, 7382-7390.	1.2	9
587	Selective Mimics of Strigolactone Actions and Their Potential Use for Controlling Damage Caused by Root Parasitic Weeds. Molecular Plant, 2013, 6, 88-99.	3.9	71
588	Something old, something new: Auxin and strigolactone interact in the ancient mycorrhizal symbiosis. Plant Signaling and Behavior, 2013, 8, e23656.	1.2	6
589	A Fluorescent Alternative to the Synthetic Strigolactone GR24. Molecular Plant, 2013, 6, 100-112.	3.9	50
591	High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science, 2013, 4, 426.	1.7	133
592	Bioactive Molecules in Soil Ecosystems: Masters of the Underground. International Journal of Molecular Sciences, 2013, 14, 8841-8868.	1.8	39
593	The Role of Strigolactones in Nutrient-Stress Responses in Plants. International Journal of Molecular Sciences, 2013, 14, 9286-9304.	1.8	67
594	Confirming Stereochemical Structures of Strigolactones Produced by Rice and Tobacco. Molecular Plant, 2013, 6, 153-163.	3.9	152

#	Article	IF	CITATIONS
595	PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant and Cell Physiology, 2013, 54, 1391-1402.	1.5	34
596	Nature, Evolution and Characterisation of Rhizospheric Chemical Exudates Affecting Root Herbivores. Advances in Insect Physiology, 2013, , 97-157.	1.1	25
597	Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 2013, 4, 204.	1.7	121
598	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry, 2013, 288, 4502-4512.	1.6	452
599	Piriformospora indica: Perspectives and Retrospectives. Soil Biology, 2013, , 53-77.	0.6	3
600	Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Annals of Botany, 2013, 111, 769-779.	1.4	271
601	Effect of coldâ€induced changes in physical and chemical leaf properties on the resistance of winter triticale (× <i><scp>T</scp>riticosecale</i>) to the fungal pathogen <i><scp>M</scp>icrodochium nivale</i> . Plant Pathology, 2013, 62, 867-878.	1.2	29
602	A Role for <i>MORE AXILLARY GROWTH1</i> (<i>MAX1</i>) in Evolutionary Diversity in Strigolactone Signaling Upstream of <i>MAX2</i> Â Â Â. Plant Physiology, 2013, 161, 1885-1902.	2.3	89
603	Effects of strigolactone-biosynthesis inhibitor TIS108 on <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e24193.	1.2	33
604	Ethylene Regulates Root Growth and Development. , 2013, , 236-247.		Ο
604 605	Ethylene Regulates Root Growth and Development. , 2013, , 236-247. Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses. , 2013, , 353-387.		0 32
	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against	1.7	
605	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses. , 2013, , 353-387. Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant	1.7	32
605 606	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses., 2013, , 353-387. Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 2013, 4, 186. Strigolactone Analogs as Molecular Probes in Chasing the (SLs) Receptor/s: Design and Synthesis of		32 254
605 606 607	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses., 2013, , 353-387. Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 2013, 4, 186. Strigolactone Analogs as Molecular Probes in Chasing the (SLs) Receptor/s: Design and Synthesis of Fluorescent Labeled Molecules. Molecular Plant, 2013, 6, 113-127. Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. African	3.9	32 254 31
605 606 607 608	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses., 2013, , 353-387. Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 2013, 4, 186. Strigolactone Analogs as Molecular Probes in Chasing the (SLs) Receptor/s: Design and Synthesis of Fluorescent Labeled Molecules. Molecular Plant, 2013, 6, 113-127. Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. African Journal of Microbiology Research, 2013, 7, 5781-5788. Tebuconazole derivatives are potent inhibitors of strigolactone biosynthesis. Journal of Pesticide	3.9 0.4	32 254 31 28
 605 606 607 608 609 	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses., 2013, , 353-387. Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 2013, 4, 186. Strigolactone Analogs as Molecular Probes in Chasing the (SLs) Receptor/s: Design and Synthesis of Fluorescent Labeled Molecules. Molecular Plant, 2013, 6, 113-127. Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. African Journal of Microbiology Research, 2013, 7, 5781-5788. Tebuconazole derivatives are potent inhibitors of strigolactone biosynthesis. Journal of Pesticide Sciences, 2013, 38, 147-151.	3.9 0.4	 32 254 31 28 12

#	Article	IF	CITATIONS
613	Breeding to Improve Symbiotic Effectiveness of Legumes. , 2013, , .		5
614	Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication. PLoS ONE, 2014, 9, e104201.	1.1	14
615	Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotechnology, 2014, 31, 431-443.	0.5	61
616	Expanding genomics of mycorrhizal symbiosis. Frontiers in Microbiology, 2014, 5, 582.	1.5	25
617	7α- and 7β-Hydroxyorobanchyl acetate as germination stimulants for root parasitic weeds produced by cucumber. Journal of Pesticide Sciences, 2014, 39, 121-126.	0.8	8
618	Effects of Phytohormones on Nodulation and Nitrogen Fixation in Leguminous Plants. , 2014, , .		8
621	A 2-component system is involved in the early stages of thePisolithus tinctorius-Pinus greggiisymbiosis. Plant Signaling and Behavior, 2014, 9, e28604.	1.2	6
622	The Root Hair "Infectome―of <i>Medicago truncatula</i> Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection. Plant Cell, 2014, 26, 4680-4701.	3.1	313
623	Carlactone is an endogenous biosynthetic precursor for strigolactones. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1640-1645.	3.3	299
624	Identification of activation-tagArabidopsismutants with altered production of germination stimulants forPhelipanche ramosa(L.). Biotechnology and Biotechnological Equipment, 2014, 28, 199-207.	0.5	0
625	A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. Journal of Genetics, 2014, 93, 389-401.	0.4	60
627	Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. Plant Signaling and Behavior, 2014, 9, e29593.	1.2	24
628	Common symbiosis genesCERBERUSandNSP1provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses inLotus japonicus. Plant Signaling and Behavior, 2014, 9, e28544.	1.2	9
629	Biotic Interactions in the Rhizosphere: A Diverse Cooperative Enterprise for Plant Productivity. Plant Physiology, 2014, 166, 701-719.	2.3	100
630	Strigolactone Involvement in Root Development, Response to Abiotic Stress, and Interactions with the Biotic Soil Environment. Plant Physiology, 2014, 166, 560-569.	2.3	123
631	Natural variation of rice strigolactone biosynthesis is associated with the deletion of two <i>MAX1</i> orthologs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2379-2384.	3.3	138
632	Light as stress factor to plant roots ââ,¬â€œ case of root halotropism. Frontiers in Plant Science, 2014, 5, 718.	1.7	85
633	Strigolactones: Biosynthesis, Synthesis and Functions in Plant Growth and Stress Responses. , 2014, , 265-288.		6

#	Article	IF	CITATIONS
634	Action of Strigolactones in Plants. The Enzymes, 2014, 35, 57-84.	0.7	10
635	Target sites for chemical regulation of strigolactone signaling. Frontiers in Plant Science, 2014, 5, 623.	1.7	27
636	Control of arbuscular mycorrhiza development by nutrient signals. Frontiers in Plant Science, 2014, 5, 462.	1.7	83
637	Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex Â. Plant Physiology, 2014, 166, 2077-2090.	2.3	81
638	Interactions Between Arbuscular Mycorrhizal Fungi and Organic Material Substrates. Advances in Applied Microbiology, 2014, 89, 47-99.	1.3	57
639	The sucrose transporter Sl <scp>SUT</scp> 2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. Plant Journal, 2014, 78, 877-889.	2.8	99
640	Carlactone is converted to carlactonoic acid by MAX1 in <i>Arabidopsis</i> and its methyl ester can directly interact with AtD14 in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18084-18089.	3.3	363
641	Beneficial mycorrhizal symbionts affecting the production of healthâ€promoting phytochemicals. Electrophoresis, 2014, 35, 1535-1546.	1.3	107
642	Agroecological Engineering to Biocontrol Soil Pests for Crop Health. Sustainable Agriculture Reviews, 2014, , 269-297.	0.6	4
643	Adventitious Root Development in Ornamental Plants: Insights from Carnation Stem Cuttings. Soil Biology, 2014, , 423-441.	0.6	1
644	Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11199-11204.	3.3	121
645	Allelopathy of rice (<i>Oryza sativa</i> L.) root exudates and its relations with <i>Orobanche cumana</i> Wallr. and <i>Orobanche minor</i> Sm. germination. Journal of Plant Interactions, 2014, 9, 722-730.	1.0	30
646	Fungal endophytes of barley roots. Journal of Agricultural Science, 2014, 152, 602-615.	0.6	24
647	Sustainable Agriculture Reviews 14. Sustainable Agriculture Reviews, 2014, , .	0.6	6
648	The role of the cell wall compartment in mutualistic symbioses of plants. Frontiers in Plant Science, 2014, 5, 238.	1.7	53
649	Genomics of Arbuscular Mycorrhizal Fungi. Advances in Botanical Research, 2014, 70, 259-290.	0.5	13
650	Implications of non-specific strigolactone signaling in the rhizosphere. Plant Science, 2014, 225, 9-14.	1.7	28
652	Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation, Plant and Cell Physiology, 2014, 55, 928-941	1.5	14

ARTICLE IF CITATIONS # Strigolactone-Regulated Hypocotyl Elongation Is Dependent on Cryptochrome and Phytochrome 653 3.9 100 Signaling Pathways in Arabidopsis. Molecular Plant, 2014, 7, 528-540. Strigolactones and the control of plant development: lessons from shoot branching. Plant Journal, 654 2.8 2014, 79, 607-622. In-vitro characterization of the behaviour of Macrophomina phaseolina (Tassi) Goid at the rhizosphere and during early infection of roots of resistant and susceptible varieties of sesame. European Journal of Plant Pathology, 2014, 138, 361-375. 655 0.8 24 Signaling events during initiation of arbuscular mycorrhizal symbiosis. Journal of Integrative Plant 656 Biology, 2014, 56, 250-261. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014, 92, 657 0.5 547 267-275. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry, 2014, 1.4 103, 85-88 659 Root Engineering. Soil Biology, 2014, , . 0.6 7 Effect of phosphateâ€based seed priming on strigolactone production and <i><scp>S</scp>triga 0.8 19 hermonthica (i) infection in cereals. Weed Research, 2014, 54, 307-313. 661 Use of Microbes for the Alleviation of Soil Stresses., 2014,,. 15 Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings 3.3 of the National Academy of Sciences of the United States of America, 2014, 111, 851-856. Desert Truffles. Soil Biology, 2014, , . 663 0.6 12 Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids. Chemical Reviews, 664 23.0 2014, 114, 1-125. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, 665 1.4 127 phosphate, sugars and hormones play in lateral root formation?. Annals of Botany, 2014, 113, 19-33. Reprogramming of plant cells by filamentous plantâ€colonizing microbes. New Phytologist, 2014, 204, 3.5 803-814. New Strigolactone Analogs as Plant Hormones with Low Activities in the Rhizosphere. Molecular 667 3.9 84 Plant, 2014, 7, 675-690. Asymmetric synthesis of the four stereoisomers of 5-deoxystrigol. Tetrahedron Letters, 2014, 55, 23 6577-6581. Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Molecular 669 2.0 79 Ecology, 2014, 23, 733-746. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature 670 340 Chemical Biology, 2014, 10, 1028-1033.

	Сітаті	ion Report	
#	Article	IF	CITATIONS
671	Combining Metabolomics and Gene Expression Analysis Reveals that Propionyl- and Butyryl-Carnitines Are Involved in Late Stages of Arbuscular Mycorrhizal Symbiosis. Molecular Plant, 2014, 7, 554-566.	3.9	47
672	Plant Signaling under Environmental Stress. , 2014, , 541-555.		3
673	Low Strigolactone Root Exudation: A Novel Mechanism of Broomrape (<i>Orobanche</i> and) Tj ETQq0 0 Chemistry, 2014, 62, 7063-7071.	0 rgBT /Overlock 2.4	10 Tf 50 66 62
674	Broad compatibility in fungal root symbioses. Current Opinion in Plant Biology, 2014, 20, 135-145.	3.5	73
675	9 Glomeromycota. , 2014, , 251-269.		12
676	Signalling and responses to strigolactones and karrikins. Current Opinion in Plant Biology, 2014, 21, 23-29.	3.5	111
677	Strigolactone biosynthesis and perception. Current Opinion in Plant Biology, 2014, 21, 1-6.	3.5	99
678	Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in <i>Arabidopsis</i> . Journal of Proteome Research, 2014, 13, 1359-1372.	1.8	24
679	Detection of Parasitic Plant Suicide Germination Compounds Using a High-Throughput Arabidopsis HTL/KAl2 Strigolactone Perception System. Chemistry and Biology, 2014, 21, 988-998.	6.2	100
680	Characterization of expressed genes in the establishment of arbuscular mycorrhiza between Amorpha fruticosa and Glomus mosseae. Journal of Forestry Research, 2014, 25, 541-548.	1.7	8
681	Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biology, 2014, 14, 171.	1.6	50
682	MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC Plant Biology, 2014, 14, 199.	1.6	79
684	Beyond the Barrier: Communication in the Root through the Endodermis. Plant Physiology, 2014, 166, 551-559.	2.3	86
685	Quo vadis plant hormone analysis?. Planta, 2014, 240, 55-76.	1.6	72
686	Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 2014, 240, 399-408.	1.6	171
687	Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza, 2014, 24, 349-360.	1.3	47
688	Do strigolactones contribute to plant defence?. Molecular Plant Pathology, 2014, 15, 211-216.	2.0	173
689	<scp>PIN</scp> â€driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytologist, 2014, 203, 362-377.	3.5	107

#	Article	IF	CITATIONS
690	Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology, 2014, 56, 192-220.	4.1	328
691	Emerging Functions of Nodulin-Like Proteins in Non-Nodulating Plant Species. Plant and Cell Physiology, 2014, 55, 469-474.	1.5	112
692	Legume seed exudates and <i>Physcomitrella patens</i> extracts influence swarming behavior in <i>Rhizobium leguminosarum</i> . Canadian Journal of Microbiology, 2014, 60, 15-24.	0.8	22
693	Tailoring fluorescent strigolactones for in vivo investigations: a computational and experimental study. Organic and Biomolecular Chemistry, 2014, 12, 2960-2968.	1.5	28
694	Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis Â. Plant Physiology, 2014, 165, 1221-1232.	2.3	260
695	Strigolactone signalling: standing on the shoulders of DWARFs. Current Opinion in Plant Biology, 2014, 22, 7-13.	3.5	98
696	The intracellular delivery of <scp>TAT</scp> â€aequorin reveals calciumâ€mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus <i><scp>G</scp>igaspora margarita</i> . New Phytologist, 2014, 203, 1012-1020.	3.5	24
697	On the substrate―and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Letters, 2014, 588, 1802-1807.	1.3	71
698	Mycorrhizas: Novel Dimensions in the Changing World. , 2014, , .		6
699	Competing neighbors: light perception and root function. Oecologia, 2014, 176, 1-10.	0.9	91
701	Effect of Bacillus thuringiensis (Bt) maize cultivation history on arbuscular mycorrhizal fungal colonization, spore abundance and diversity, and plant growth. Agriculture, Ecosystems and Environment, 2014, 195, 29-35.	2.5	22
702	Phytohormone signaling in arbuscular mycorhiza development. Current Opinion in Plant Biology, 2014, 20, 26-34.	3.5	178
703	Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology, 2014, 34, 123-133.	5.1	69
704	Development of strigolactone function regulators. Japanese Journal of Pesticide Science, 2014, 39, 103-107.	0.0	0
705	Q&A: What are strigolactones and why are they important to plants and soil microbes?. BMC Biology, 2014, 12, 19.	1.7	34
705 708		1.7 1.6	34 104
	Biology, 2014, 12, 19. The role of ABCG-type ABC transporters in phytohormone transport. Biochemical Society		

ARTICLE IF CITATIONS # The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biology, 712 1.6 118 2015, 15, 260. å‱化ã™ã,<æ፼‰ ©ãf>ãf«ãf¢ãf³ã®å®šç¾ ©ãïç"究最å‰ç•š. Comparative Endocrinology, 2015, 41, 16-190.0 ä,låf^ãfªā,ấf©ã,¯ãf^ãf³ç"ç©¶ã®é€²å±+ãïç'°å¢få;œç"ã«ãŠãiã,‹å¼2¹å‰². Kagaku To Seibutsu, 2015, 53, 860-8650.0 714 0 Biochemical characterization and selective inhibition of βâ€carotene <i>cis–trans</i> isomerase D27 and carotenoid cleavage dioxygenase <scp>CCD</scp>8 on the strigolactone biosynthetic pathway. FEBS 39 Journal, 2015, 282, <u>3986-4000</u>. Synthesis of stable isotopically labelled $3\hat{\epsilon}$ methylfuran $\hat{\epsilon} \geq (5 < i > H < |i>) \hat{\epsilon}$ one and the corresponding 716 0.5 3 strigolactones. Journal of Labelled Compounds and Radiopharmaceuticals, 2015, 58, 355-360. Analysis of wild sunflower (<i>Helianthus annuus</i> L.) root exudates using gas chromatographyâ€mass spectrometry. Journal of Plant Nutrition and Soil Science, 2015, 178, 776-786. 1.1 24 Effect of glucose, root exudates and N forms in mycorrhizal symbiosis using Rhizophagus 718 1.7 4 intraradices. Journal of Soil Science and Plant Nutrition, 2015, , 0-0. Possible Roles of Strigolactones during Leaf Senescence. Plants, 2015, 4, 664-677. 1.6 63 Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate 720 1.5 13 Physarum polycephalum. Frontiers in Microbiology, 2015, 6, 720. Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth 721 1.1 under Low Phosphate Condition in Arabidopsis. PLoS ONE, 2015, 10, e0119724. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between 722 1.1 6 Nicotiana attenuata and Rhizophagus irregularis. PLoS ONE, 2015, 10, e0136234. Lily Cultivars Have Allelopathic Potential in Controlling Orobanche aegyptiaca Persoon. PLoS ONE, 723 1.1 2015, 10, e0142811. Strigolactones are transported from roots to shoots, although not through the xylem. Journal of 724 0.8 52 Pesticide Sciences, 2015, 40, 214-216. Apoplastic interactions between plants and plant root intruders. Frontiers in Plant Science, 2015, 6, 1.7 617 726 Forest Canopy Precipitation Partitioning. Advances in Botanical Research, 2015, 75, 215-240. 7 0.5Chemical ecology of fungi. Natural Product Reports, 2015, 32, 971-993. 126 729 Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, , . 0.6 30 The genuine structure of alectrol: end of a long controversy. Phytochemistry Reviews, 2015, 14, 3.1 835-847.

#	Article	IF	CITATIONS
731	RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in <i>Lotus japonicus</i> and <i>Rhizophagus irregularis</i> . Plant and Cell Physiology, 2015, 56, 1490-1511.	1.5	140
732	Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis. Plant and Cell Physiology, 2015, 56, 1059-1072.	1.5	91
733	Network of GRAS Transcription Factors Involved in the Control of Arbuscule Development in <i>Lotus japonicus</i> Â Â. Plant Physiology, 2015, 167, 854-871.	2.3	151
734	Lipochitooligosaccharides Modulate Plant Host Immunity to Enable Endosymbioses. Annual Review of Phytopathology, 2015, 53, 311-334.	3.5	98
735	Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2015, 66, 5123-5134.	2.4	53
736	Identification and Cloning of Tillering-Related Genes OsMAX1 in Rice. Rice Science, 2015, 22, 255-263.	1.7	14
737	Chemical Control of Root Parasitic Weeds. ACS Symposium Series, 2015, , 317-330.	0.5	4
738	Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 2015, 350, 1521-1524.	6.0	191
739	Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 2015, 196, 91-108.	1.7	483
740	Handbook of Arbuscular Mycorrhizal Fungi. , 2015, , .		32
741	Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. Plant Cell, 2015, 27, 3128-3142.	3.1	310
742	AMF's Main Structures. , 2015, , 43-63.		2
743	Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice, 2015, 8, 32.	1.7	30
744	Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. Journal of Experimental Botany, 2015, 66, 1237-1244.	2.4	40
745	Seed carotenoids: Synthesis, diversity, and functions. Russian Journal of Plant Physiology, 2015, 62, 1-13.	0.5	28
746	Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions.		
	Current Genetics, 2015, 61, 347-357.	0.8	152
747	Current Genetics, 2015, 61, 347-357. Engineering the plant rhizosphere. Current Opinion in Biotechnology, 2015, 32, 136-142.	0.8	152 70

#	Article	IF	CITATIONS
749	Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport. Current Biology, 2015, 25, 647-655.	1.8	117
750	Strigolactones, a Novel Carotenoid-Derived Plant Hormone. Annual Review of Plant Biology, 2015, 66, 161-186.	8.6	658
751	Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis. Plant Science, 2015, 233, 1-10.	1.7	52
752	Arbuscular mycorrhizal dialogues: do you speak â€~plantish' or â€~fungish'?. Trends in Plant Science, 2015 20, 150-154.	'4.3	117
753	Biosynthesis and Biological Functions of Terpenoids in Plants. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 63-106.	0.6	446
754	Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula. Phytochemistry, 2015, 111, 91-97.	1.4	45
755	Difference in <i>Striga</i> â€susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytologist, 2015, 206, 983-989.	3.5	77
756	Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta, 2015, 241, 1435-1451.	1.6	178
757	Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza, 2015, 25, 345-357.	1.3	87
758	Functional genomics and signaling events in mycorrhizal symbiosis. Journal of Plant Interactions, 2015, 10, 21-40.	1.0	39
759	Dynamics of long-distance signaling via plant vascular tissues. Frontiers in Plant Science, 2015, 6, 161.	1.7	108
760	Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science, 2015, 349, 540-543.	6.0	255
761	Parasitic Plants <i>Striga</i> and <i>Phelipanche</i> Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis. American Journal of Plant Sciences, 2015, 06, 1151-1166.	0.3	12
762	In Silico Analysis of the Genes Encoding Proteins that Are Involved in the Biosynthesis of the RMS/MAX/D Pathway Revealed New Roles of Strigolactones in Plants. International Journal of Molecular Sciences, 2015, 16, 6757-6782.	1.8	57
763	A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1240-1245.	0.6	10
764	Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Science, 2015, 230, 59-69.	1.7	49
765	Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Plant Signaling and Behavior, 2015, 10, e1028706.	1.2	18
766	Insight into the Role of Arbuscular Mycorrhizal Fungi in Sustainable Agriculture. , 2015, , 3-37.		4

#	Article	IF	CITATIONS
767	Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control. Journal of Experimental Botany, 2015, 66, 3085-3097.	2.4	32
768	The ABC of Phytohormone Translocation. Planta Medica, 2015, 81, 474-487.	0.7	18
769	Role of root microbiota in plant productivity. Journal of Experimental Botany, 2015, 66, 2167-2175.	2.4	171
770	Strigolactam: New potent strigolactone analogues for the germination of Orobanche cumana. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2184-2188.	1.0	49
771	Induced production of BE-31405 by co-culturing of Talaromyces siamensis FKA-61 with a variety of fungal strains. Journal of Antibiotics, 2015, 68, 573-578.	1.0	6
772	Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany, 2015, 119, 63-75.	2.0	124
773	Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist, 2015, 208, 79-87.	3.5	139
774	Cellular events of strigolactone signalling and their crosstalk with auxin in roots: Fig. 1 Journal of Experimental Botany, 2015, 66, 4855-4861.	2.4	58
775	Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biology, 2015, 119, 145-153.	1.1	15
778	Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Applied Microbiology and Biotechnology, 2015, 99, 4983-4996.	1.7	143
779	Emergence of terpene cyclization in Artemisia annua. Nature Communications, 2015, 6, 6143.	5.8	50
780	Frontier studies on highly selective bio-regulators useful for environmentally benign agricultural production. Bioscience, Biotechnology and Biochemistry, 2015, 79, 877-887.	0.6	12
781	Effect of volatiles versus exudates released by germinating spores ofÂGigaspora margarita on lateral root formation. Plant Physiology and Biochemistry, 2015, 97, 1-10.	2.8	22
782	Chemotropic sensing in fungus–plant interactions. Current Opinion in Plant Biology, 2015, 26, 135-140.	3.5	46
783	Hyphal branching during arbuscule development requires RAM1. Plant Physiology, 2015, 169, pp.01155.2015.	2.3	94
784	Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity. Journal of Natural Products, 2015, 78, 2624-2633.	1.5	24
785	The Eucalyptus terpene synthase gene family. BMC Genomics, 2015, 16, 450.	1.2	125
786	The rat glucocorticoid receptor integration in Nicotiana langsdorffii genome affects plant responses to abiotic stresses and to arbuscular mycorrhizal symbiosis. Plant Biotechnology Reports, 2015, 9, 209-220.	0.9	7

#	Article	IF	CITATIONS
787	Purification and characterization of a novel β-carotene-9′,10′-oxygenase from Saccharomyces cerevisiae ULI3. Biotechnology Letters, 2015, 37, 1993-1998.	1.1	4
788	Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 2015, 394, 1-19.	1.8	84
789	Priorities for research on priority effects. New Phytologist, 2015, 205, 1375-1377.	3.5	23
790	Strigolactone signaling in root development and phosphate starvation. Plant Signaling and Behavior, 2015, 10, e1045174.	1.2	32
791	Structure-function analysis identifies highly sensitive strigolactone receptors in <i>Striga</i> . Science, 2015, 350, 203-207.	6.0	227
792	The Malus carotenoid cleavage dioxygenase 7 is involved in stress response and regulated by basic pentacysteine 1. Scientia Horticulturae, 2015, 192, 264-270.	1.7	14
793	Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere, 2015, 25, 639-653.	2.1	107
794	Probing strigolactone receptors in <i>Striga hermonthica</i> with fluorescence. Science, 2015, 349, 864-868.	6.0	230
795	An alternative splicing event amplifies evolutionary differences between vertebrates. Science, 2015, 349, 868-873.	6.0	128
796	Red/Far Red Light Controls Arbuscular Mycorrhizal Colonization via Jasmonic Acid and Strigolactone Signaling. Plant and Cell Physiology, 2015, 56, pcv135.	1.5	39
797	Chemistry of the Synthetic Strigolactone Mimic GR24. Australian Journal of Chemistry, 2015, 68, 1221.	0.5	9
798	Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in <i>Lotus japonicus</i> Â. Plant Physiology, 2015, 167, 545-557.	2.3	120
799	Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta, 2015, 241, 687-698.	1.6	36
800	N–P–K ratio affects exudation of germination stimulants and resistance of tobacco seedlings to broomrapes. Plant Growth Regulation, 2015, 76, 281-288.	1.8	9
801	Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. Mycorrhiza, 2015, 25, 243-252.	1.3	44
802	From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. Journal of Experimental Botany, 2015, 66, 137-146.	2.4	97
803	Achievements and Challenges in Legume Breeding for Pest and Disease Resistance. Critical Reviews in Plant Sciences, 2015, 34, 195-236.	2.7	153
804	Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochemistry Reviews, 2015, 14, 691-711.	3.1	59

#	Article	IF	CITATIONS
805	Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: a review. Biological Agriculture and Horticulture, 2015, 31, 73-90.	0.5	42
807	Striga. , 2016, , 173-203.		11
808	A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Frontiers in Microbiology, 2016, 7, 233.	1.5	113
809	Structural diversity of strigolactones and their distribution in the plant kingdom. Journal of Pesticide Sciences, 2016, 41, 175-180.	0.8	67
810	Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species. PLoS ONE, 2016, 11, e0148280.	1.1	33
811	Molecular Parasitic Plant–Host Interactions. PLoS Pathogens, 2016, 12, e1005978.	2.1	32
812	Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone. Frontiers in Plant Science, 2015, 6, 1219.	1.7	137
813	Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones. Frontiers in Plant Science, 2015, 6, 1269.	1.7	38
814	Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. Frontiers in Plant Science, 2016, 7, 135.	1.7	100
815	Differential Gene Expression in Rhododendron fortunei Roots Colonized by an Ericoid Mycorrhizal Fungus and Increased Nitrogen Absorption and Plant Growth. Frontiers in Plant Science, 2016, 7, 1594.	1.7	21
816	Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response. Frontiers in Plant Science, 2016, 7, 1685.	1.7	41
817	NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2016, 7, 1704.	1.7	24
818	Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. International Journal of Molecular Sciences, 2016, 17, 1781.	1.8	132
820	Root signals that mediate mutualistic interactions in the rhizosphere. Current Opinion in Plant Biology, 2016, 32, 62-68.	3.5	112
821	Integrated multiâ€omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the <i>Lotus japonicus–Clomus intraradices</i> mycorrhizal symbiosis. Plant, Cell and Environment, 2016, 39, 393-415.	2.8	30
822	Strigolactones: how far is their commercial use for agricultural purposes?. Pest Management Science, 2016, 72, 2026-2034.	1.7	51
823	Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biology, 2016, 18, 552-562.	1.8	37
824	Differential behaviour of sheath blight pathogen <i>Rhizoctonia solani</i> in tolerant and susceptible rice varieties before and during infection. Plant Pathology, 2016, 65, 1333-1346.	1.2	35

#	Article	IF	CITATIONS
825	Parasitic weed management by using strigolactoneâ€degrading fungi. Pest Management Science, 2016, 72, 2043-2047.	1.7	20
826	Chemical modification of a phenoxyfuranoneâ€ŧype strigolactone mimic for selective effects on rice tillering or <i>Striga hermonthica</i> seed germination. Pest Management Science, 2016, 72, 2048-2053.	1.7	17
827	Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. Molecular Plant, 2016, 9, 1099-1118.	3.9	34
828	Influence of zygomyceteâ€derived <scp>D</scp> 'orenone on <scp>IAA</scp> signalling in <scp><i>T</i></scp> <i>richoloma</i> â€spruce ectomycorrhiza. Environmental Microbiology, 2016, 18, 2470-2480.	1.8	9
829	Common and divergent shoot–root signalling in legume symbioses. New Phytologist, 2016, 210, 643-656.	3.5	12
830	Identification and functional analysis of the <i><scp>HvD14</scp></i> gene involved in strigolactone signaling in <i>Hordeum vulgare</i> . Physiologia Plantarum, 2016, 158, 341-355.	2.6	54
831	Evidences of inhibited arbuscular mycorrhizal fungal development and colonization in multiple lines of Bt cotton. Agriculture, Ecosystems and Environment, 2016, 230, 169-176.	2.5	12
832	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. Microbiology Spectrum, 2016, 4, .	1.2	47
833	Characterization of Low-Strigolactone Germplasm in Pea (<i>Pisum sativum</i> L.) Resistant to Crenate Broomrape (<i>Orobanche crenata</i> Forsk.). Molecular Plant-Microbe Interactions, 2016, 29, 743-749.	1.4	37
834	Rhizosphere Interactions: Life Below Ground. , 2016, , 3-23.		6
835	Lotus Base: An integrated information portal for the model legume Lotus japonicus. Scientific Reports, 2016, 6, 39447.	1.6	124
836	Examining Biochar Impacts on Soil Abiotic and Biotic Processes and Exploring the Potential for Pyrosequencing Analysis. , 2016, , 133-162.		4
837	Characterization of DWARF14 Genes in Populus. Scientific Reports, 2016, 6, 21593.	1.6	26
838	Strigolactone derivatives for potential crop enhancement applications. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2392-2400.	1.0	60
839	Stereospecificity in strigolactone biosynthesis and perception. Planta, 2016, 243, 1361-1373.	1.6	95
840	<i>LATERAL BRANCHING OXIDOREDUCTASE</i> acts in the final stages of strigolactone biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6301-6306.	3.3	219
841	Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated <i>Lotus japonicus</i> . Plant Signaling and Behavior, 2016, 11, e1187356.	1.2	27
842	The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 2016, 243, 1351-1360.	1.6	57

		CITATION RE	PORT	
#	Article		IF	Citations
843	Functional biology of parasitic plants: a review. Plant Ecology and Evolution, 2016, 14	∂, 5-20.	0.3	100
844	Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae interactions. Plant and Soil, 2016, 408, 95-105.	-biochar	1.8	89
845	Efficacy of Biofertilizers: Challenges to Improve Crop Production. , 2016, , 17-40.			67
846	The Haustorium, a Specialized Invasive Organ in Parasitic Plants. Annual Review of Plar 67, 643-667.	nt Biology, 2016,	8.6	223
847	Hyphal chemotropism in fungal pathogenicity. Seminars in Cell and Developmental Bic 69-75.	ology, 2016, 57,	2.3	25
848	Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant l Current Opinion in Structural Biology, 2016, 41, 233-246.	kingdom.	2.6	135
849	DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536, 4	469-473.	13.7	399
850	Biosynthesis of Carotenoids in Plants: Enzymes and Color. Sub-Cellular Biochemistry, 2	2016, 79, 35-69.	1.0	52
851	Apocarotenoids: A New Carotenoid-Derived Pathway. Sub-Cellular Biochemistry, 2016,	79, 239-272.	1.0	62
853	Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of the Arbuscular Mycorrhizal Fungus <i>Rhizophagus irregularis</i> . Molecular Plant-Mic Interactions, 2016, 29, 277-286.		1.4	136
854	Enantioselective synthesis of the tricyclic core of (+)-strigol. Tetrahedron, 2016, 72, 66	534-6639.	1.0	10
855	Belowground communication: impacts of volatile organic compounds (VOCs) from so other soil-inhabiting organisms. Applied Microbiology and Biotechnology, 2016, 100, 8	l fungi on 8651-8665.	1.7	111
856	Cover crops to increase soil microbial diversity and mitigate decline in perennial agricu review. Agronomy for Sustainable Development, 2016, 36, 1.	lture. A	2.2	221
857	Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. N Chemical Biology, 2016, 12, 724-729.	lature	3.9	60
858	StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity an Science Advances, 2016, 2, e1601266.	d specificity.	4.7	51
859	Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor. Scientific Reports, 2016, 6, 29733.		1.6	51
860	Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Str hermonthica. Scientific Reports, 2016, 6, 31386.	iga	1.6	47
861	Microbial interactions: ecology in a molecular perspective. Brazilian Journal of Microbio 47, 86-98.	ology, 2016,	0.8	250

#	Article	IF	Citations
867	Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecology and Evolution, 2016, 6, 7253-7262.	0.8	17
868	The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports, 2016, 6, 20469.	1.6	107
869	Discovery and identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor. Journal of Pesticide Sciences, 2016, 41, 71-78.	0.8	35
870	Structure- and stereospecific transport of strigolactones from roots to shoots. Journal of Pesticide Sciences, 2016, 41, 55-58.	0.8	19
871	The role of strigolactones and ethylene in disease caused by <i>Pythium irregulare</i> . Molecular Plant Pathology, 2016, 17, 680-690.	2.0	42
872	The LysM receptorâ€like kinase Sl <scp>LYK</scp> 10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytologist, 2016, 210, 184-195.	3.5	89
873	Bioformulations: for Sustainable Agriculture. , 2016, , .		23
874	The Use of Arbuscular Mycorrhizal Fungi in Combination with Trichoderma spp. in Sustainable Agriculture. , 2016, , 137-146.		1
875	Strigolactones, super hormones in the fight against Striga. Current Opinion in Plant Biology, 2016, 33, 57-63.	3.5	38
876	Plant Hormones under Challenging Environmental Factors. , 2016, , .		17
877	Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiological and Molecular Plant Pathology, 2016, 94, 100-107.	1.3	24
878	Root Exudates and Their Molecular Interactions with Rhizospheric Microbes. , 2016, , 59-77.		19
879	Participation of Phytohormones in Adaptation to Salt Stress. , 2016, , 75-115.		4
880	Plant, Soil and Microbes. , 2016, , .		5
881	Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry, 2016, 130, 90-98.	1.4	81
882	Strigolactone versus gibberellin signaling: reemerging concepts?. Planta, 2016, 243, 1339-1350.	1.6	32
883	Genomics of Plant, Soil, and Microbe Interaction. , 2016, , 303-336.		1
884	Mycorrhizal Association and Their Role in Plant Disease Protection. , 2016, , 95-143.		5

#	Article	IF	CITATIONS
885	Root plasticity of Nicotiana tabacum in response to phosphorus starvation. Plant Biosystems, 2016, 150, 429-435.	0.8	2
886	Aromatic Compounds and Soluble Carbohydrate Profiles of Different Varieties of Tunisian Raisin (Vitis ViniferaL.). International Journal of Food Properties, 2016, 19, 339-350.	1.3	10
887	The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum. Planta, 2016, 243, 1387-1396.	1.6	38
888	Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta, 2016, 243, 1397-1406.	1.6	113
889	Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Functional Plant Biology, 2016, 43, 87.	1.1	107
890	Effects of strigolactone signaling on <i>Arabidopsis</i> growth under nitrogen deficient stress condition. Plant Signaling and Behavior, 2016, 11, e1126031.	1.2	36
891	How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?. Planta, 2016, 243, 1375-1385.	1.6	79
892	Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots. Plant Physiology, 2016, 171, 566-579.	2.3	88
893	Changes in the composition of native root arbuscular mycorrhizal fungal communities during a short-term cover crop-maize succession. Biology and Fertility of Soils, 2016, 52, 643-653.	2.3	51
894	Above- and below-ground responses of native and invasive prairie grasses to future climate scenarios. Botany, 2016, 94, 471-479.	0.5	18
895	Fineâ€ŧuning by strigolactones of root response to low phosphate. Journal of Integrative Plant Biology, 2016, 58, 203-212.	4.1	25
896	Regulation of the fungal secretome. Current Genetics, 2016, 62, 533-545.	0.8	83
897	Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Science, 2016, 245, 119-127.	1.7	61
898	ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta, 2016, 243, 1407-1418.	1.6	24
899	The Whats, the Wheres and the Hows of strigolactone action in the roots. Planta, 2016, 243, 1327-1337.	1.6	33
900	Strigolactones: new plant hormones in action. Planta, 2016, 243, 1311-1326.	1.6	95
901	Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21, 187-198.	4.3	465
902	Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling. Trends in Genetics, 2016, 32, 176-188.	2.9	90

#	Article	IF	CITATIONS
903	Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis, 2016, 68, 129-144.	1.2	29
904	Sesquiterpene Lactones: More Than Protective Plant Compounds With High Toxicity. Critical Reviews in Plant Sciences, 2016, 35, 18-37.	2.7	84
905	Regulation of sesquiterpenoid metabolism in recombinant and elicited Valeriana officinalis hairy roots. Phytochemistry, 2016, 125, 43-53.	1.4	31
906	Lipids in plant–microbe interactions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1379-1395.	1.2	99
907	Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle. Molecular Plant, 2016, 9, 338-355.	3.9	302
908	On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta, 2016, 243, 1429-1440.	1.6	61
909	Synthesis of highly enantio-enriched stereoisomers of hydroxy-GR24. Organic and Biomolecular Chemistry, 2016, 14, 1236-1238.	1.5	14
910	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	2.0	523
911	Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 2016, 40, 182-207.	3.9	238
912	Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant and Soil, 2016, 405, 279-287.	1.8	35
913	Low-cost, green synthesis of highly porous carbons derived from lotus root shell as superior performance electrode materials in supercapacitor. Journal of Energy Chemistry, 2016, 25, 26-34.	7.1	50
914	Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell and Environment, 2016, 39, 441-452.	2.8	321
915	Strigolactone biology: genes, functional genomics, epigenetics and applications. Critical Reviews in Biotechnology, 2017, 37, 151-162.	5.1	15
916	Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Current Genetics, 2017, 63, 201-213.	0.8	31
917	REVIEW: Epistasis and dominance in the emergence of catalytic function as exemplified by the evolution of plant terpene synthases. Plant Science, 2017, 255, 29-38.	1.7	10
918	ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Research, 2017, 27, 838-841.	5.7	71
919	Differential response of normal and transformed mammary epithelial cells to combined treatment of anti-miR-21 and radiation. International Journal of Radiation Biology, 2017, 93, 361-372.	1.0	7
920	Responses of Arbuscular Mycorrhizal Fungi and Grass Leersia hexandra Swartz Exposed to Soil with Crude Oil. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	10

		CITATION R	EPORT	
#	Article		IF	CITATIONS
921	Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 2017, 68, 291-3	322.	8.6	470
922	Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotroph Specific Interactions. , 2017, , 133-190.	nic, and Other		3
923	The vascular plants: open system of growth. Development Genes and Evolution, 2017,	227, 129-157.	0.4	11
924	The Plant-Dependent Life Cycle of <i>Thecaphora thlaspeos</i> : A Smut Fungus Adapt Brassicaceae. Molecular Plant-Microbe Interactions, 2017, 30, 271-282.	ed to	1.4	13
925	The Crosstalk Between Plants and Their Arbuscular Mycorrhizal Symbionts: A Mycocen 2017, , 285-308.	tric View. ,		5
926	Hydrogen Peroxide and Strigolactones Signaling Are Involved in Alleviation of Salt Stre Arbuscular Mycorrhizal Fungus in Sesbania cannabina Seedlings. Journal of Plant Grow 2017, 36, 734-742.	ss Induced by th Regulation,	2.8	54
927	From little things big things grow: karrikins and new directions in plant development. F Plant Biology, 2017, 44, 373.	runctional	1.1	13
928	Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvat contributes to resistance against phytopathogenic fungi in a moss, <i>Physcomitrella Phytologist, 2017, 216, 455-468.</i>		3.5	121
929	Insights into the formation of carlactone from inâ€depth analysis of the <scp>CCD<td>cp>8â€catalyzed</td><td>1.3</td><td>52</td></scp>	cp>8â€catalyzed	1.3	52
931	Mutation in sorghum <i>LOW GERMINATION STIMULANT 1</i> alters strigolactones a <i>Striga</i> resistance. Proceedings of the National Academy of Sciences of the Unite America, 2017, 114, 4471-4476.	nd causes ed States of	3.3	172
932	Communication Between Host Plants and Parasitic Plants. Advances in Botanical Resea	arch, 2017, 82,	0.5	15
933	Triazolide Strigolactone Mimics Influence Root Development in Arabidopsis. Journal of Products, 2017, 80, 1318-1327.	Natural	1.5	13
934	Regulation of Strigolactone Biosynthesis by Gibberellin Signaling. Plant Physiology, 20 1250-1259.	17, 174,	2.3	138
935	Found in Translation: Applying Lessons from Model Systems to Strigolactone Signaling Plants. Trends in Biochemical Sciences, 2017, 42, 556-565.	; in Parasitic	3.7	14
936	Inter- and Intraspecific Fungal Diversity in the Arbuscular Mycorrhizal Symbiosis. , 2017	7, , 253-274.		3
937	Mycorrhiza: Creating Good Spaces for Interactions. , 2017, , 39-60.			5
938	The "STAY-GREEN―trait and phytohormone signaling networks in plants under he Reports, 2017, 36, 1009-1025.	at stress. Plant Cell	2.8	145
939	Mycorrhiza - Function, Diversity, State of the Art. , 2017, , .			21

#	Article	IF	CITATIONS
940	Hormone function in plants. , 2017, , 1-38.		19
941	Ethylene Controls Adventitious Root Initiation Sites in Arabidopsis Hypocotyls Independently of Strigolactones. Journal of Plant Growth Regulation, 2017, 36, 897-911.	2.8	29
942	Role of Plant Hormones and Small Signalling Molecules in Nodulation Under P Stress. , 2017, , 153-167.		0
943	The perception of strigolactones in vascular plants. Nature Chemical Biology, 2017, 13, 599-606.	3.9	53
944	How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science, 2017, 22, 661-673.	4.3	322
945	Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. , 2017, , .		16
946	The Mycelium as a Network. Microbiology Spectrum, 2017, 5, .	1.2	57
947	The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin–antitoxin systems during the life cycle of its host. ISME Journal, 2017, 11, 2394-2398.	4.4	12
948	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	4.7	72
949	Strigolactones, karrikins and beyond. Plant, Cell and Environment, 2017, 40, 1691-1703.	2.8	61
951	Strigolactones in the Rhizosphere: Friend or Foe?. Molecular Plant-Microbe Interactions, 2017, 30, 683-690.	1.4	26
952	Small molecules belowâ€ground: the role of specialized metabolites in the rhizosphere. Plant Journal, 2017, 90, 788-807.	2.8	193
953	Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis. Scientific Reports, 2017, 7, 382.	1.6	36
954	Arbuscular Mycorrhizas and Stress Tolerance of Plants. , 2017, , .		39
955	Arbuscular Mycorrhizal Fungi and Adaption of P Stress in Plants. , 2017, , 99-130.		1
956	Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition, 2017, 63, 127-136.	0.8	27
957	Strigolactones in Plant Interactions with Beneficial and Detrimental Organisms: The Yin and Yang. Trends in Plant Science, 2017, 22, 527-537.	4.3	173
958	Characterization of a new allelic mutant of DWARF3 in rice and analysing its function and stability in the presence of strigolactone. Molecular Breeding, 2017, 37, 1.	1.0	2

ARTICLE IF CITATIONS Biocharâ€"Arbuscular Mycorrhiza Interaction in Temperate Soils., 2017, , 461-477. 959 10 Biochar amendments increase the yield advantage of legume-based intercropping systems over 2.5 74 monoculture. Agriculture, Ecosystems and Environment, 2017, 237, 16-23. 961 Strigolactones affect tomato hormone profile and somatic embryogenesis. Planta, 2017, 245, 583-594. 1.6 18 Perturbations and 3R in carbon management. Environmental Science and Pollution Research, 2017, 24, 962 2.7 4413-4432. Current Scenario of Root Exudate–Mediated Plant-Microbe Interaction and Promotion of Plant 963 10 Growth., 2017,, 349-369. Exploring the Role of Plant-Microbe Interactions in Improving Soil Structure and Function Through Root Exudation: A Key to Sustainable Agriculture. , 2017, , 467-487. 964 Phosphate Biofertilizers as Renewable and Safe Nutrient Suppliers for Cropping Systems: A Review., 965 2 2017, 113-130. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular 1.7 966 101 mycorrhizae: Basic and agronomic aspects. Plant Science, 2017, 264, 48-56. Synthesis of lipo-chitooligosaccharide analogues and their interaction with LYR3, a high affinity 967 binding protein for Nod factors and Myc-LCOs. Organic and Biomolecular Chemistry, 2017, 15, 1.5 11 7802-7812. Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing 1.5 metathesis as a key step. Organic and Biomolecular Chemistry, 2017, 15, 8218-8231. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 969 241 3.129, 2319-2335. Plant response to strigolactones: Current developments and emerging trends. Applied Soil Ecology, 970 2.1 44 2017, 120, 247-253. Expression in rice of an autoactive variant of Medicago truncatula DMI3, the 971 Ca+2/calmodulin-dependent protein kinase from the common symbiotic pathway modifies root 0.9 13 transcriptome and improves mycorrhizal colonization. Plant Biotechnology Reports, 2017, 11, 271-287. Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Current Biology, 2017, 27, R952-R963. 1.8 176 Arbuscular Mycorrhizal Symbiosis and Its Role in Plant Nutrition in Sustainable Agriculture., 2017,, 973 15 129-164. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor 974 perception. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 143 E8118-E8127. Determining the Site of Action of Strigolactones during Nodulation. Plant Physiology, 2017, 175, 975 2.385 529-542. Fostering comprehension and integration in mycorrhiza biology: conceptual scaffolding as an aid in 976 teaching and exploration < sup >, </sup >. Botany, 2017, 95, 983-1003.

ARTICLE IF CITATIONS Accessing Single Enantiomer Strigolactones: Progress and Opportunities. European Journal of 977 1.2 17 Organic Chemistry, 2017, 2017, 5712-5723. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in 978 229 rice. Cell Research, 2017, 27, 1128-1141. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic 979 2.8 119 acid in drought. Plant Physiology and Biochemistry, 2017, 119, 59-69. Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds. Microorganisms for Sustainability, 2017, , 391-430. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria 981 1.6 115 synergistically enhance host plant defences against pathogens. Scientific Reports, 2017, 7, 16409. Phytomicrobiome: A Reservoir for Sustainable Agriculture., 2017, , 117-132. Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New 983 3.5 53 Phytologist, 2017, 213, 531-536. Contrasting plant–microbe interrelations on soil Di-(2-ethylhexyl) phthalate and pyrene degradation by three dicotyledonous plant species. Acta Agriculturae Scandinavica - Section B Soil and Plant 984 0.3 Science, 2017, 67, 175-183. <i>Slâ€IAA27</i> regulates strigolactone biosynthesis and mycorrhization in tomato (var.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 422 Td 985

986	Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48. Chinese Journal of Oceanology and Limnology, 2017, 35, 658-663.	0.7	4
987	Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. South African Journal of Botany, 2017, 108, 15-22.	1.2	23
988	Involvement of STH7 in light-adapted development in <i>Arabidopsis thaliana</i> promoted by both strigolactone and karrikin. Bioscience, Biotechnology and Biochemistry, 2017, 81, 292-301.	0.6	10
989	Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, 2017, , .	0.4	14
990	Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production. Microorganisms for Sustainability, 2017, , 99-126.	0.4	11
991	Belowground Microbial Crosstalk and Rhizosphere Biology. , 2017, , 695-752.		6
992	Structural diversity of strigolactones and their distribution in the plant kingdom. Japanese Journal of Pesticide Science, 2017, 42, 10-16.	0.0	1
993	Omics-based exploration for identification of targets for herbicides selective to root parasitic weeds. Japanese Journal of Pesticide Science, 2017, 42, 84-90.	0.0	0
994	Commonalities in Symbiotic Plant-Microbe Signalling. Advances in Botanical Research, 2017, , 187-221.	0.5	9

#	Article	IF	CITATIONS
995	Strigolactone Signaling in Plants. , 2017, , .		1
996	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6
997	The Mycelium as a Network. , 0, , 335-367.		15
998	Transgenic Bt cotton inhibited arbuscular mycorrhizal fungus differentiation and colonization. Plant, Soil and Environment, 2017, 63, 62-69.	1.0	5
999	The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. Frontiers in Plant Science, 2017, 8, 124.	1.7	100
1000	The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants. Frontiers in Plant Science, 2017, 8, 392.	1.7	51
1001	A Taylor-Made Design of Phenoxyfuranone-Type Strigolactone Mimic. Frontiers in Plant Science, 2017, 8, 936.	1.7	33
1002	Non-chemical Control of Root Parasitic Weeds with Biochar. Frontiers in Plant Science, 2017, 8, 939.	1.7	16
1003	Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula). Frontiers in Plant Science, 2017, 8, 1074.	1.7	35
1004	Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Frontiers in Plant Science, 2017, 8, 1487.	1.7	82
1005	DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice. Frontiers in Plant Science, 2017, 8, 1935.	1.7	37
1006	Quantitative analysis of plant hormones based on LC-MS/MS. , 2017, , 471-537.		17
1007	Transgenic approaches for improving phosphorus use efficiency in plants. , 2017, , 323-338.		3
1008	Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. Agronomy, 2017, 7, 75.	1.3	98
1009	Genome-Wide Identification and Characterization of the GmSnRK2 Family in Soybean. International Journal of Molecular Sciences, 2017, 18, 1834.	1.8	30
1010	New Strigolactone Mimics as Exogenous Signals for Rhizosphere Organisms. Molecules, 2017, 22, 961.	1.7	15
1011	Strigolactones. , 2017, , 327-359.		7
1012	Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida. BMC Genomics, 2017, 18, 589.	1.2	72

#	Article	IF	CITATIONS
1013	Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis MAX mutants and GmMAX3 in soybean nodulation. BMC Plant Biology, 2017, 17, 259.	1.6	42
1015	Chemical genetics and strigolactone perception. F1000Research, 2017, 6, 975.	0.8	7
1017	Strigolactone receptors in <i>Striga hermonthica </i> . Plant Morphology, 2017, 29, 33-37.	0.1	0
1019	Which are the major players, canonical or non-canonical strigolactones?. Journal of Experimental Botany, 2018, 69, 2231-2239.	2.4	149
1020	The dynamics of strigolactone perception in Striga hermonthica: a working hypothesis. Journal of Experimental Botany, 2018, 69, 2281-2290.	2.4	10
1021	Strigolactones affect the translocation of nitrogen in rice. Plant Science, 2018, 270, 190-197.	1.7	25
1022	Strigolactones are common regulators in induction of stomatal closure <i>in planta</i> . Plant Signaling and Behavior, 2018, 13, e1444322.	1.2	58
1023	Structural diversity in the strigolactones. Journal of Experimental Botany, 2018, 69, 2219-2230.	2.4	115
1024	Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany, 2018, 69, 2367-2378.	2.4	41
1025	Conversion of carlactone to carlactonoic acid is a conserved function of <scp>MAX</scp> 1 homologs in strigolactone biosynthesis. New Phytologist, 2018, 218, 1522-1533.	3.5	147
1026	A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 2018, 70, 62-93.	5.3	634
1027	Chemical regulators of plant hormones and their applications in basic research and agriculture*. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1265-1300.	0.6	83
1028	The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nature Communications, 2018, 9, 1615.	5.8	170
1029	The tomato <i>MAX1</i> homolog, <i>SIMAX1</i> , is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 2018, 219, 297-309.	3.5	55
1030	The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics. New Phytologist, 2018, 220, 1135-1140.	3.5	54
1031	Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. Journal of Experimental Botany, 2018, 69, 2241-2254.	2.4	27
1032	Transcription factors network in root endosymbiosis establishment and development. World Journal of Microbiology and Biotechnology, 2018, 34, 37.	1.7	34
1033	Fungal effectors at the crossroads of phytohormone signaling. Current Opinion in Microbiology, 2018, 46, 1-6.	2.3	60

#	Article	IF	CITATIONS
1034	The elusive ligand complexes of the DWARF14 strigolactone receptor. Journal of Experimental Botany, 2018, 69, 2345-2354.	2.4	36
1035	Biologically functional molecules from mushroom-forming fungi*. Bioscience, Biotechnology and Biochemistry, 2018, 82, 372-382.	0.6	5
1036	Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of Experimental Botany, 2018, 69, 2391-2401.	2.4	64
1037	Plant Hormone Cross Talk with a Focus on Strigolactone and Its Chemical Dissection in Rice. , 2018, , 113-127.		1
1038	Strigolactones: new plant hormones in the spotlight. Journal of Experimental Botany, 2018, 69, 2205-2218.	2.4	72
1039	Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. Journal of Experimental Botany, 2018, 69, 2291-2303.	2.4	49
1040	Discovery of Shoot Branching Regulator Targeting Strigolactone Receptor DWARF14. ACS Central Science, 2018, 4, 230-234.	5.3	29
1041	Transcriptional Regulation of Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2018, 59, 678-695.	1.5	86
1042	Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. Journal of Experimental Botany, 2018, 69, 2355-2365.	2.4	40
1043	Computational investigation of small RNAs in the establishment of root nodules and arbuscular mycorrhiza in leguminous plants. Science China Life Sciences, 2018, 61, 706-717.	2.3	9
1044	Strigolactone Biosynthesis Genes of Rice are Required for the Punctual Entry of Arbuscular Mycorrhizal Fungi into the Roots. Plant and Cell Physiology, 2018, 59, 544-553.	1.5	108
1045	From carotenoids to strigolactones. Journal of Experimental Botany, 2018, 69, 2189-2204.	2.4	173
1046	Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. Journal of Experimental Botany, 2018, 69, 2305-2318.	2.4	43
1047	Seed germination in parasitic plants: what insights can we expect from strigolactone research?. Journal of Experimental Botany, 2018, 69, 2265-2280.	2.4	39
1048	Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2018, 69, 2175-2188.	2.4	115
1049	Spatial regulation of strigolactone function. Journal of Experimental Botany, 2018, 69, 2255-2264.	2.4	19
1050	Soyasaponins: A New Class of Root Exudates in Soybean (Glycine max). Plant and Cell Physiology, 2018, 59, 366-375.	1.5	58
1051	Rationally Designed Strigolactone Analogs as Antagonists of the D14 Receptor. Plant and Cell Physiology, 2018, 59, 1545-1554.	1.5	27

#	Article	IF	CITATIONS
1052	Morphological and Physiological Aspects of Symbiotic Plant–Microbe Interactions and Their Significance. Soil Biology, 2018, , 367-407.	0.6	3
1053	Effects of Strigolactones on Plant Roots. Soil Biology, 2018, , 43-63.	0.6	4
1054	Upregulation of <i><scp>DWARF</scp>27</i> is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct, 2018, 2, e00050.	0.8	41
1055	The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Scientific Reports, 2018, 8, 6504.	1.6	34
1056	Strigolactones as Regulators of Symbiotrophy of Plants and Microorganisms. Russian Journal of Plant Physiology, 2018, 65, 151-167.	0.5	4
1057	Azolla: A Model System for Symbiotic Nitrogen Fixation and Evolutionary Developmental Biology. , 2018, , 21-46.		8
1058	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	1.4	147
1059	Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: Structural and functional insights. Journal of Biological Chemistry, 2018, 293, 6530-6543.	1.6	37
1060	The interaction of strigolactones with abscisic acid during the drought response in rice. Journal of Experimental Botany, 2018, 69, 2403-2414.	2.4	80
1061	Stability of strigolactone analog GR24 toward nucleophiles. Pest Management Science, 2018, 74, 896-904.	1.7	24
1062	Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphateâ€poor soils. New Phytologist, 2018, 217, 784-798.	3.5	48
1063	Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytologist, 2018, 217, 1254-1266.	3.5	36
1064	Strigolactoneâ€ŧriggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acidâ€independent manner. New Phytologist, 2018, 217, 290-304.	3.5	121
1065	Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbial Pathogenesis, 2018, 114, 420-430.	1.3	41
1066	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	18.7	149
1067	Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica). Plant Physiology and Biochemistry, 2018, 123, 81-93.	2.8	40
1068	Arbuscular mycorrhizal fungus causes increased condensed tannins concentrations in shoots but decreased in roots of Lotus japonicus L. Rhizosphere, 2018, 5, 32-37.	1.4	8
1069	The genetic and molecular basis of crop height based on a rice model. Planta, 2018, 247, 1-26.	1.6	106

#	Article	IF	Citations
1070	Recent advances in molecular basis for strigolactone action. Science China Life Sciences, 2018, 61, 277-284.	2.3	30
1071	Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Plant Science, 2018, 267, 1-10.	1.7	18
1072	Effects of soil nitrogen availability on rhizodeposition in plants: a review. Plant and Soil, 2018, 423, 59-85.	1.8	45
1073	AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 2018, 102, 36-45.	1.3	107
1076	Biosynthesis of Carotenoids and Apocarotenoids by Microorganisms and Their Industrial Potential. , 0, , .		18
1077	Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum infection. Journal of Integrative Agriculture, 2018, 17, 2160-2171.	1.7	26
1079	Methyl phenlactonoates are efficient strigolactone analogs with simple structure. Journal of Experimental Botany, 2018, 69, 2319-2331.	2.4	50
1080	Evolution of the Symbiosis-Specific GRAS Regulatory Network in Bryophytes. Frontiers in Plant Science, 2018, 9, 1621.	1.7	17
1081	Hormonal Regulation of Cold Stress Response. , 2018, , 65-88.		6
1082	Effect of the strigolactone analogs methyl phenlactonoates on spore germination and root colonization of arbuscular mycorrhizal fungi. Heliyon, 2018, 4, e00936.	1.4	20
1083	Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature, 2018, 563, 652-656.	13.7	138
1084	High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC Plant Biology, 2018, 18, 308.	1.6	26
1085	Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science, 2018, 9, 1800.	1.7	91
1086	Low Infection of Phelipanche aegyptiaca in Micro-Tom Mutants Deficient in CAROTENOID CLEAVAGE DIOXYGENASE 8. International Journal of Molecular Sciences, 2018, 19, 2645.	1.8	10
1087	Fungal Production and Manipulation of Plant Hormones. Current Medicinal Chemistry, 2018, 25, 253-267.	1.2	21
1088	Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget, 2018, 9, 35813-35829.	0.8	36
1089	A femtomolar-range suicide germination stimulant for the parasitic plant <i>Striga hermonthica</i> . Science, 2018, 362, 1301-1305.	6.0	101
1090	Can witchweed be wiped out?. Science, 2018, 362, 1248-1249.	6.0	1

#	Article	IF	CITATIONS
1091	Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nature Communications, 2018, 9, 3947.	5.8	73
1092	Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza, 2018, 28, 747-759.	1.3	23
1093	Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis. Molecular Plant, 2018, 11, 1344-1359.	3.9	94
1094	Chemodivergent and Diastereoselective Synthesis of Î ³ -Lactones and Î ³ -Lactams: A Heterogeneous Palladium-Catalyzed Oxidative Tandem Process. Journal of the American Chemical Society, 2018, 140, 14604-14608.	6.6	64
1095	The Role of Plant Transporters in Mycorrhizal Symbioses. Advances in Botanical Research, 2018, , 303-342.	0.5	9
1096	Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 2018, 19, 3146.	1.8	93
1097	Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. Npj Microgravity, 2018, 4, 20.	1.9	13
1098	The Arabidopsis DWARF27 gene encodes an all-trans-/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Science, 2018, 277, 33-42.	1.7	59
1099	Soluble Compounds of Filamentous Fungi Harm the Symbiotic Fungus of Leafcutter Ants. Current Microbiology, 2018, 75, 1602-1608.	1.0	7
1100	Beneficial Services of Arbuscular Mycorrhizal Fungi – From Ecology to Application. Frontiers in Plant Science, 2018, 9, 1270.	1.7	337
1101	Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere, 2018, 8, 12-26.	1.4	53
1102	The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytologist, 2018, 220, 982-995.	3.5	53
1103	The effect of auxin and strigolactone on ATP/ADP isopentenyltransferase expression and the regulation of apical dominance in peach. Plant Cell Reports, 2018, 37, 1693-1705.	2.8	13
1104	Host recognition and infection mechanism by parasitic Orobanchaceae plants. Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2018, 84, 267-274.	0.1	0
1105	Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 2018, 220, 1031-1046.	3.5	188
1106	<i>Physcomitrella patens</i> MAX2 characterization suggests an ancient role for this Fâ€box protein in photomorphogenesis rather than strigolactone signalling. New Phytologist, 2018, 219, 743-756.	3.5	35
1107	Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 2018, 56, 135-160.	3.5	116
1108	Small Molecule Toolbox for Strigolactone Biology. Plant and Cell Physiology, 2018, 59, 1511-1519.	1.5	10

#	Article	IF	Citations
1109	Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. Frontiers in Plant Science, 2018, 9, 255.	1.7	53
1110	Additional AM Fungi Inoculation Increase Populus cathayana Intersexual Competition. Frontiers in Plant Science, 2018, 9, 607.	1.7	26
1111	Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping?. Frontiers in Plant Science, 2018, 9, 752.	1.7	89
1112	Genome-wide analysis and identification of the SMXL gene family in apple (Malus × domestica). Tree Genetics and Genomes, 2018, 14, 1.	0.6	12
1113	GR24, a synthetic analog of Strigolactones, alleviates inflammation and promotes Nrf2 cytoprotective response: In vitro and in silico evidences. Computational Biology and Chemistry, 2018, 76, 179-190.	1,1	22
1114	Plant Secondary Metabolite Diversity and Species Interactions. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 115-138.	3.8	243
1115	Stereospecific reduction of the butenolide in strigolactones in plants. Bioorganic and Medicinal Chemistry, 2018, 26, 4225-4233.	1.4	4
1116	Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics. Frontiers in Microbiology, 2018, 9, 8.	1.5	62
1117	The Role of Strigolactone in the Cross-Talk Between Arabidopsis thaliana and the Endophytic Fungus Mucor sp Frontiers in Microbiology, 2018, 9, 441.	1.5	66
1118	Symbiotic Tripartism in the Model Plant Family of Legumes and Soil Sustainability. , 2018, , 173-203.		1
1119	An allelic series at the <i><scp>KARRIKIN INSENSITIVE</scp>Â2</i> locus of <i>Arabidopsis thaliana</i> decouples ligand hydrolysis and receptor degradation from downstream signalling. Plant Journal, 2018, 96, 75-89.	2.8	41
1120	Regulation of Root Development and Architecture by Strigolactones under Optimal and Nutrient Deficiency Conditions. International Journal of Molecular Sciences, 2018, 19, 1887.	1.8	38
1121	Inner Leaf Gel of Aloe striata Induces Adhesion-Reducing Morphological Hyphal Aberrations. Journal of Fungi (Basel, Switzerland), 2018, 4, 23.	1.5	0
1122	Irreversible strigolactone recognition: a non-canonical mechanism for hormone perception. Current Opinion in Plant Biology, 2018, 45, 155-161.	3.5	20
1123	Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology, 2018, 94, .	1.3	37
1124	Enantioselective total synthesis and biological evaluation of (â^')-solanacol. Organic and Biomolecular Chemistry, 2018, 16, 5500-5507.	1.5	5
1125	Early Events in Plant Abiotic Stress Signaling: Interplay Between Calcium, Reactive Oxygen Species and Phytohormones. Journal of Plant Growth Regulation, 2018, 37, 1033-1049.	2.8	78
1126	Innate Immunity Engaged or Disengaged in Plant-Microbe Interactions â~†. , 2018, , 107-144.		0

#	Article	IF	CITATIONS
1127	Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology, 2018, 18, 74.	1.6	87
1128	<i>Nonâ€dormant Axillary Bud 1</i> regulates axillary bud outgrowth in sorghum. Journal of Integrative Plant Biology, 2018, 60, 938-955.	4.1	12
1129	An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods, 2018, 14, 34.	1.9	34
1130	Agrobacterium rhizogenes transformed calli of the holoparasitic plant Phelipanche ramosa maintain parasitic competence. Plant Cell, Tissue and Organ Culture, 2018, 135, 321-329.	1.2	11
1131	Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants. Journal of Pesticide Sciences, 2018, 43, 198-206.	0.8	21
1132	Potential contribution of strigolactones in regulating scion growth and branching in grafted grapevine in response to nitrogen availability. Journal of Experimental Botany, 2018, 69, 4099-4112.	2.4	22
1133	Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant, Cell and Environment, 2018, 41, 2227-2243.	2.8	155
1134	The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells. PLoS ONE, 2018, 13, e0191841.	1.1	9
1135	Regioselective Synthesis of \hat{I}^3 -Lactones by Iron-Catalyzed Radical Annulation of Alkenes with \hat{I}_{\pm} -Halocarboxylic Acids and Their Derivatives. Organic Letters, 2018, 20, 3848-3852.	2.4	32
1136	A comparison of the biogenic volatile organic compound emissions from the fine roots of 15 tree species in Japan and Taiwan. Journal of Forest Research, 2018, 23, 242-251.	0.7	7
1137	Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture. Physiologia Plantarum, 2019, 165, 58-72.	2.6	16
1138	Risk versus reward: host dependent parasite mortality rates and phenotypes in the facultative generalist Triphysaria versicolor. BMC Plant Biology, 2019, 19, 334.	1.6	3
1139	Can Soil Microorganisms Reduce Broomrape (Orobanche spp.) Infestation in Cropping Systems?. , 2019, , 385-402.		3
1140	Perceptions of Microbe–Microbe and Plant–Microbiome Interfaces: The Metagenomic Maneuver. , 2019, , 483-505.		0
1141	Microbes: An Important Resource for Sustainable Agriculture. , 2019, , 53-77.		2
1142	Plant Nutrient Management Through Inoculation of Zinc-Solubilizing Bacteria for Sustainable Agriculture. Soil Biology, 2019, , 173-201.	0.6	10
1143	AM Fungi and Trichoderma Interaction for Biological Control of Soilborne Plant Pathogen Fusarium oxysporum. , 2019, , 95-128.		3
1144	Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Scientific Reports, 2019, 9, 11186.	1.6	20

	CHATON R	LFORT	
#	Article	IF	Citations
1145	Hybridâ€ŧype strigolactone analogues derived from auxins. Pest Management Science, 2019, 75, 3113-3121.	1.7	9
1146	The Beneficial Influence of Microbial Interactions on Plant Diseases and Plant Growth Promoting Effect. , 2019, , 151-166.		1
1147	Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed (Arundo donax L.) Plants Grown Under Low Phosphorus by Reducing Leaf Na+ Concentration and Improving Phosphorus Use Efficiency. Frontiers in Plant Science, 2019, 10, 843.	1.7	33
1148	Strigolactones positively regulate defense against Magnaporthe oryzae in rice (Oryza sativa). Plant Physiology and Biochemistry, 2019, 142, 106-116.	2.8	23
1149	NADPH Oxidases Have Key Roles in Mutulistic Associations with Rhizobia or with Mycorrhizal Fungi in Root Legumes. Sustainability in Plant and Crop Protection, 2019, , 19-28.	0.2	1
1150	Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Frontiers in Microbiology, 2019, 10, 1807.	1.5	39
1151	Strigolactone: Pflanzenhormone mit vielversprechenden Eigenschaften. Angewandte Chemie, 2019, 131, 12909-12917.	1.6	3
1152	Effect of High-Temperature Stress on the Metabolism of Plant Growth Regulators. , 2019, , 485-591.		4
1153	The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 2019, 97, 1-136.	4.7	459
1154	Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 2019, 442, 23-48.	1.8	133
1155	Strigolactones: Plant Hormones with Promising Features. Angewandte Chemie - International Edition, 2019, 58, 12778-12786.	7.2	54
1156	Total Synthesis and Biological Evaluation of Heliolactone. Helvetica Chimica Acta, 2019, 102, e1900211.	1.0	15
1157	Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status. Mycorrhiza, 2019, 29, 581-589.	1.3	13
1158	Design Principles of Branching Morphogenesis in Filamentous Organisms. Current Biology, 2019, 29, R1149-R1162.	1.8	22
1159	Interactions between abscisic acid and other hormones. Advances in Botanical Research, 2019, 92, 255-280.	0.5	9
1160	Microbial secondary metabolites and plant–microbe communications in the rhizosphere. , 2019, , 93-111.		5
1161	In vitro Propagation of Arbuscular Mycorrhizal Fungi May Drive Fungal Evolution. Frontiers in Microbiology, 2019, 10, 2420.	1.5	26
1163	Harnessing the microbiome to control plant parasitic weeds. Current Opinion in Microbiology, 2019, 49, 26-33.	2.3	37

ARTICLE IF CITATIONS # Apocarotenoids Involved in Plant Development and Stress Response. Frontiers in Plant Science, 2019, 1.7 116 1164 10, 1168. Apocarotenoids: Old and New Mediators of the Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant 1.7 74 Science, 2019, 10, 1186. Contalactone, a contaminant formed during chemical synthesis of the strigolactone reference GR24 1166 1.4 21 is also a strigolactone mimic. Phytochemistry, 2019, 168, 112112. A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants, 2019, 5, 933-939. Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen. Plant and 1168 1.5 16 Cell Physiology, 2019, 60, 2797-2811. Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biology, 2019, 17, 70. 1.7 Effect of D-ring C-3' methylation of strigolactone analogs on their transcription regulating activity 1170 1.2 1 in rice. Plant Signaling and Behavior, 2019, 14, 1668234. Strigolactone Signaling Genes Showing Differential Expression Patterns in Arabidopsis max Mutants. 1171 1.6 14 Plants, 2019, 8, 352. More Transporters, More Substrates: TheÂArabidopsis Major Facilitator Superfamily Revisited. 1172 3.9 79 Molecular Plant, 2019, 12, 1182-1202. Plant Genomics: Evolution and Development of a Major Crop Parasite. Current Biology, 2019, 29, 1173 1.8 R868-R871. 1174 Synthetic Switches and Regulatory Circuits in Plants. Plant Physiology, 2019, 179, 862-884. 2.353 Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens. Cell 2.9 Reports, 2019, 26, 855-865.e5. Mycorrhiza response and phosphorus acquisition efficiency of sorghum cultivars differing in 1176 1.8 8 strigolactone composition. Plant and Soil, 2019, 437, 55-63. The Influence of Contrasting Microbial Lifestyles on the Pre-symbiotic Metabolite Responses of 1.1 Eucalyptus grandis Roots. Frontiers in Ecology and Evolution, 2019, 7, . Strigolactones enhance rootâ€knot nematode (<i>Meloidogyne graminicola</i>) infection in rice by 1178 3.547 antagonizing the jasmonate pathway. New Phytologist, 2019, 224, 454-465. Molecular Dialog Between Parasitic Plants and Their Hosts. Annual Review of Phytopathology, 2019, 1179 74 57, 279-299. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nature 1180 5.958 Microbiology, 2019, 4, 1654-1660. Effector proteins of Rhizophagus proliferus: conserved protein domains may play a role in 1181 host-specific interaction with different plant species. Brazilian Journal of Microbiology, 2019, 50, 593-601.

#	Article	IF	CITATIONS
1182	A Stimulatory Role for Cytokinin in the Arbuscular Mycorrhizal Symbiosis of Pea. Frontiers in Plant Science, 2019, 10, 262.	1.7	18
1183	The Control of Zealactone Biosynthesis and Exudation is Involved in the Response to Nitrogen in Maize Root. Plant and Cell Physiology, 2019, 60, 2100-2112.	1.5	19
1184	Strigolactones shape the rhizomicrobiome in rice (Oryza sativa). Plant Science, 2019, 286, 118-133.	1.7	34
1185	Role and exploitation of underground chemical signaling in plants. Pest Management Science, 2019, 75, 2455-2463.	1.7	37
1186	Chemical synthesis and characterization of a new quinazolinedione competitive antagonist for strigolactone receptors with an unexpected binding mode. Biochemical Journal, 2019, 476, 1843-1856.	1.7	5
1187	Filling the Gap: Functional Clustering of ABC Proteins for the Investigation of Hormonal Transport in planta. Frontiers in Plant Science, 2019, 10, 422.	1.7	29
1188	Strigolactones and their crosstalk with other phytohormones. Annals of Botany, 2019, 124, 749-767.	1.4	54
1189	A novel <scp>CO</scp> ₂ â€responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist, 2019, 224, 106-116.	3.5	28
1190	Synthesis and Biological Evaluation of Novel Triazole Derivatives as Strigolactone Biosynthesis Inhibitors. Journal of Agricultural and Food Chemistry, 2019, 67, 6143-6149.	2.4	17
1191	A Phosphate-Dependent Requirement for Transcription Factors IPD3 and IPD3L During Arbuscular Mycorrhizal Symbiosis in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1277-1290.	1.4	11
1192	Petunia PLEIOTROPIC DRUG RESISTANCE 1 Is a Strigolactone Short-Distance Transporter with Long-Distance Outcomes. Plant and Cell Physiology, 2019, 60, 1722-1733.	1.5	17
1193	How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034686.	2.3	19
1194	An Improved Mesocotyl Elongation Assay for the Rapid Identification and Characterization of Strigolactone-Related Rice Mutants. Agronomy, 2019, 9, 208.	1.3	5
1195	Root renovation: how an improved understanding of basic root biology could inform the development of elite crops that foster sustainable soil health. Functional Plant Biology, 2019, 46, 597.	1.1	7
1196	Spatial Effects and GWA Mapping of Root Colonization Assessed in the Interaction Between the Rice Diversity Panel 1 and an Arbuscular Mycorrhizal Fungus. Frontiers in Plant Science, 2019, 10, 633.	1.7	18
1197	Aquaponic trends and challenges – A review. Journal of Cleaner Production, 2019, 228, 1586-1599.	4.6	168
1198	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	3.5	49
1199	Plant terpenes that mediate belowâ€ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Management Science, 2019, 75, 2368-2377.	1.7	52

#	Article	IF	CITATIONS
1200	Hyphal branching in filamentous fungi. Developmental Biology, 2019, 451, 35-39.	0.9	26
1201	Regulation of biosynthesis, perception, and functions of strigolactones for promoting arbuscular mycorrhizal symbiosis and managing root parasitic weeds. Pest Management Science, 2019, 75, 2353-2359.	1.7	22
1202	Distinct roles for strigolactones in cyst nematode parasitism of Arabidopsis roots. European Journal of Plant Pathology, 2019, 154, 129-140.	0.8	23
1203	Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034603.	2.3	53
1204	Identification of Populus Small RNAs Responsive to Mutualistic Interactions With Mycorrhizal Fungi, Laccaria bicolor and Rhizophagus irregularis. Frontiers in Microbiology, 2019, 10, 515.	1.5	17
1205	Methylation at the C-3′ in D-Ring of Strigolactone Analogs Reduces Biological Activity in Root Parasitic Plants and Rice. Frontiers in Plant Science, 2019, 10, 353.	1.7	20
1206	Tackling Plant Phosphate Starvation by the Roots. Developmental Cell, 2019, 48, 599-615.	3.1	99
1207	Identification and Expression Analysis of GRAS Transcription Factor Genes Involved in the Control of Arbuscular Mycorrhizal Development in Tomato. Frontiers in Plant Science, 2019, 10, 268.	1.7	33
1208	Strigolactones and Parasitic Plants. , 2019, , 89-120.		12
1209	Seed exudates of Sesbania virgata (Cav.) Pers. stimulate the asymbiotic phase of the arbuscular mycorrhizal fungus Gigaspora albida Becker & Hall. Hoehnea (revista), 2019, 46, .	0.2	7
1210	Strigolactone Biosynthesis and Signal Transduction. , 2019, , 1-45.		15
1211	Strigolactones as Plant Hormones. , 2019, , 47-87.		9
1212	Strigolactones - Biology and Applications. , 2019, , .		13
1213	The Role of Strigolactones in Plant–Microbe Interactions. , 2019, , 121-142.		11
1214	Suicidal germination as a control strategy for <i>Striga hermonthica</i> (Benth.) in smallholder farms of subâ€6aharan Africa. Plants People Planet, 2019, 1, 107-118.	1.6	70
1215	The Chemistry of Strigolactones. , 2019, , 163-198.		3
1216	The Infection Unit: An Overlooked Conceptual Unit for Arbuscular Mycorrhizal Function. , 2019, , .		3
1217	The Ectomycorrhizal Fungus <i>Laccaria bicolor</i> Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize <i>Populus</i> Roots. Plant Cell, 2019, 31, 2386-2410.	3.1	73

		CITATION REPORT		
#	Article		IF	CITATIONS
1218	Crying out for help with root exudates: adaptive mechanisms by which stressed plants health-promoting soil microbiomes. Current Opinion in Microbiology, 2019, 49, 73-82.		2.3	231
1219	Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses. Journal of Molecular Sciences, 2019, 20, 6270.	International	1.8	36
1220	Interaction between arbuscular mycorrhizal fungi andÂBacillusÂspp. in soil enhancing plants. Fungal Biology and Biotechnology, 2019, 6, 23.	growth of crop	2.5	98
1222	Microbial Genomics in Sustainable Agroecosystems. , 2019, , .			5
1223	Arbuscular mycorrhizal phenotyping: the dos and don'ts. New Phytologist, 2019, 221,	1182-1186.	3.5	23
1224	Strigolactones positively regulate defense against root-knot nematodes in tomato. Jou Experimental Botany, 2019, 70, 1325-1337.	rnal of	2.4	59
1225	Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding regionâ€relate positively regulates symbiosis. New Phytologist, 2019, 222, 1030-1042.	d gene that	3.5	34
1226	Design and visualization of secondâ€generation cyanoisoindoleâ€based fluorescent st analogs. Plant Journal, 2019, 98, 165-180.	rigolactone	2.8	6
1227	High plant density inhibits vegetative branching in cotton by altering hormone contemported photosynthetic production. Field Crops Research, 2019, 230, 121-131.	ts and	2.3	29
1228	Lotuslactone, a non-canonical strigolactone from Lotus japonicus. Phytochemistry, 20	19, 157, 200-205.	1.4	44
1229	Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisi overview on the mechanisms involved. Plant Science, 2019, 280, 441-447.	tion: An	1.7	124
1230	Chemical screening of novel strigolactone agonists that specifically interact with DWA Bioorganic and Medicinal Chemistry Letters, 2019, 29, 938-942.	RF14 protein.	1.0	11
1231	Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nature 2019, 10, 191.	Communications,	5.8	198
1233	The ability of plants to produce strigolactones affects rhizosphere community compos but not bacteria. Rhizosphere, 2019, 9, 18-26.	ition of fungi	1.4	59
1234	Plantâ€mediated effects of soil phosphorus on the rootâ€associated fungal microbiota thaliana. New Phytologist, 2019, 221, 2123-2137.	a in <i>Arabidopsis</i>	3.5	46
1235	A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fung Rhizophagus irregularis. Mycoscience, 2019, 60, 63-70.	gus,	0.3	15
1236	A new UHPLCâ€MS/MS method for the direct determination of strigolactones in root e extracts. Phytochemical Analysis, 2019, 30, 110-116.	exudates and	1.2	26
1237	Strigolactoneâ€nitric oxide interplay in plants: The story has just begun. Physiologia Pl 165, 487-497.	antarum, 2019,	2.6	27

#	Article	IF	Citations
1238	Arbuscular mycorrhizal dependency and phosphorus responsiveness of released, landrace and wild Sudanese sorghum genotypes. Archives of Agronomy and Soil Science, 2020, 66, 706-716.	1.3	5
1239	GmMAX2–D14 and –KAI interactionâ€mediated SL and KAR signaling play essential roles in soybean root nodulation. Plant Journal, 2020, 101, 334-351.	2.8	35
1240	Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydrate Polymers, 2020, 229, 115505.	5.1	22
1241	Fellowship of the rings: a saga of strigolactones and other small signals. New Phytologist, 2020, 225, 621-636.	3.5	70
1242	Soil Health Restoration and Management. , 2020, , .		4
1243	Changes in root architecture and productivity of melon (Cucumis melo L. cv. Hispano Nunhems) promoted by Glomus iranicum var. tenuihypharum. Journal of Horticultural Science and Biotechnology, 2020, 95, 364-373.	0.9	4
1244	The root endophytic fungus Serendipita indica improves resistance of Banana to Fusarium oxysporum f. sp. cubense tropical race 4. European Journal of Plant Pathology, 2020, 156, 87-100.	0.8	39
1245	The Many Models of Strigolactone Signaling. Trends in Plant Science, 2020, 25, 395-405.	4.3	98
1246	Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus. Planta, 2020, 251, 40.	1.6	37
1247	Underlying mechanism of plant–microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	29
1248	Highly Diastereoselective Palladium-Catalyzed Oxidative Cascade Carbonylative Carbocyclization of Enallenols. Organic Letters, 2020, 22, 417-421.	2.4	8
1249	Enantioselective synthesis of chiral multicyclic γ-lactones <i>via</i> dynamic kinetic resolution of racemic γ-keto carboxylic acids. Organic Chemistry Frontiers, 2020, 7, 104-108.	2.3	11
1256	Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. Plant and Cell Physiology, 2020, 61, 565-575.	1.5	18
1257	BES1 Functions as the Co-regulator of D53-like SMXLs to Inhibit BRC1 Expression in Strigolactone-Regulated Shoot Branching in Arabidopsis. Plant Communications, 2020, 1, 100014.	3.6	31
1258	The role of plant hormones in tree-ring formation. Trees - Structure and Function, 2020, 34, 315-335.	0.9	46
1259	Comparative metabolomics implicates threitol as a fungal signal supporting colonization of <i>Armillaria luteobubalina</i> on eucalypt roots. Plant, Cell and Environment, 2020, 43, 374-386.	2.8	19
1260	Nitrogen input through chemical and biological pathway affects arbuscular mycorrhizal fungal communities in forage grass cultivation in southwest China. Applied Soil Ecology, 2020, 150, 103454.	2.1	9
1261	Mechanistic Insights into Strigolactone Biosynthesis, Signaling, and Regulation During Plant Growth and Development. Journal of Plant Growth Regulation, 2020, 40, 1836.	2.8	14

#	Article	IF	CITATIONS
1262	Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nature Communications, 2020, 11, 5158.	5.8	37
1263	Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25779-25788.	3.3	67
1264	ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Molecular Plant, 2020, 13, 1784-1801.	3.9	70
1265	Conversion of methyl carlactonoate to heliolactone in sunflower. Natural Product Research, 2022, 36, 2215-2222.	1.0	9
1266	Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 2020, 241, 126589.	2.5	64
1268	Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18, 649-660.	13.6	277
1269	Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management. Sustainability, 2020, 12, 5446.	1.6	40
1270	Biochar: A Vital Source for Sustainable Agriculture. , 2020, , .		6
1271	Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell, 2020, 32, 2780-2805.	3.1	65
1272	Foliar-Applied GR24 and Salicylic Acid Enhanced Wheat Drought Tolerance. Russian Journal of Plant Physiology, 2020, 67, 733-739.	0.5	33
1273	Diverse Roles of MAX1 Homologues in Rice. Genes, 2020, 11, 1348.	1.0	17
1274	Development of potent inhibitors for strigolactone receptor DWARF 14. Chemical Communications, 2020, 56, 14917-14919.	2.2	3
1275	Triflumizole as a Novel Lead Compound for Strigolactone Biosynthesis Inhibitor. Molecules, 2020, 25, 5525.	1.7	8
1276	The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. International Journal of Molecular Sciences, 2020, 21, 9013.	1.8	16
1277	Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synthetic Biology, 2020, 9, 2107-2118.	1.9	20
1278	Arbuscular Mycorrhizal Fungi: Abundance, Interaction with Plants and Potential Biological Applications. Microorganisms for Sustainability, 2020, , 105-143.	0.4	5
1279	Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, 2020, ,	0.4	10
1280	Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes. Frontiers in Plant Science, 2020, 11, 1167.	1.7	16

#	Article	IF	CITATIONS
1281	Rice <i>GROWTH-REGULATING FACTOR 7</i> controls tiller number by regulating strigolactone synthesis. Plant Signaling and Behavior, 2020, 15, 1804685.	1.2	3
1282	Nitrogenâ€induced acidification, not Nâ€nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biology, 2020, 26, 6568-6580.	4.2	64
1283	Inâ€silico analysis of the strigolactone ligandâ€receptor system. Plant Direct, 2020, 4, e00263.	0.8	8
1284	Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region. Planta, 2020, 252, 61.	1.6	27
1285	An improved strategy to analyse strigolactones in complex sample matrices using UHPLC–MS/MS. Plant Methods, 2020, 16, 125.	1.9	31
1286	Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition. Plant Direct, 2020, 4, e00259.	0.8	35
1287	The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. International Journal of Molecular Sciences, 2020, 21, 5926.	1.8	32
1288	Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores. PLoS Biology, 2020, 18, e3000830.	2.6	18
1289	Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites, 2020, 10, 335.	1.3	125
1290	Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis. Plant Cell, 2020, 32, 2251-2270.	3.1	103
1291	Hydroxyl carlactone derivatives are predominant strigolactones in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00219.	0.8	60
1292	Analytical methods in strigolactone research. Plant Methods, 2020, 16, 76.	1.9	17
1295	Strigolactones Control Root System Architecture and Tip Anatomy in Solanum lycopersicum L. Plants under P Starvation. Plants, 2020, 9, 612.	1.6	29
1296	Barley strigolactone signalling mutant <i>hvd14.d</i> reveals the role of strigolactones in abscisic acidâ€dependent response to drought. Plant, Cell and Environment, 2020, 43, 2239-2253.	2.8	25
1297	Mitochondrial Inheritance in Phytopathogenic Fungi—Everything Is Known, or Is It?. International Journal of Molecular Sciences, 2020, 21, 3883.	1.8	15
1298	Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching. Mycorrhiza, 2020, 30, 491-501.	1.3	7
1299	A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops. Journal of Integrative Agriculture, 2020, 19, 866-880.	1.7	29
1300	Arbuscular mycorrhiza, a fungal perspective. , 2020, , 241-258.		1

	CHAHON K		
#	Article	IF	CITATIONS
1301	The chemical warfare involved in endophytic microorganisms-plant associations. , 2020, , 125-159.		5
1302	Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus. Phytochemistry, 2020, 174, 112349.	1.4	34
1303	Structural Aspects of Plant Hormone Signal Perception and Regulation by Ubiquitin Ligases. Plant Physiology, 2020, 182, 1537-1544.	2.3	31
1304	Plant Microbe Symbiosis. , 2020, , .		13
1305	A plant's diet, surviving in a variable nutrient environment. Science, 2020, 368, .	6.0	241
1306	Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice. Frontiers in Plant Science, 2020, 11, 135.	1.7	21
1307	The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. Frontiers in Plant Science, 2020, 11, 18.	1.7	43
1308	Hairy Root Cultures Based Applications. Rhizosphere Biology, 2020, , .	0.4	8
1309	Root secondary growth: an unexplored component of soil resource acquisition. Annals of Botany, 2020, 126, 205-218.	1.4	36
1310	Metabolomic and Gene Expression Studies Reveal the Diversity, Distribution and Spatial Regulation of the Specialized Metabolism of Yacón (Smallanthus sonchifolius, Asteraceae). International Journal of Molecular Sciences, 2020, 21, 4555.	1.8	13
1311	The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiological Research, 2020, 240, 126552.	2.5	61
1312	Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. Trends in Plant Science, 2020, 25, 1087-1106.	4.3	62
1313	<i>ZmCCD10a</i> Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate. Plant Physiology, 2020, 184, 374-392.	2.3	25
1314	Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 2020, 11, 1298.	1.5	131
1315	The microbial symbionts: Potential for crop improvement in changing environments. , 2020, , 233-240.		19
1316	Concise synthesis of heliolactone, a non-canonical strigolactone isolated from sunflower. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1113-1118.	0.6	9
1317	Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners. Journal of Biological Chemistry, 2020, 295, 4181-4193.	1.6	19
1318	Environmental constraints and stress physiology. , 2020, , 279-356.		1

#	Article	IF	CITATIONS
1319	On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. Journal of Molecular Evolution, 2020, 88, 253-283.	0.8	38
1320	Genomics of sorghum local adaptation to a parasitic plant. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4243-4251.	3.3	57
1321	Crystal structure and biochemical characterization of Striga hermonthica HYPO-SENSITIVE TO LIGHT 8 (ShHTL8) in strigolactone signaling pathway. Biochemical and Biophysical Research Communications, 2020, 523, 1040-1045.	1.0	10
1322	Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza, 2020, 30, 5-22.	1.3	57
1323	Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Science Advances, 2020, 6, eaax8254.	4.7	60
1324	Root flavonoids are related to enhanced AMF colonization of an invasive tree. AoB PLANTS, 2020, 12, plaa002.	1.2	39
1325	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
1326	Lack of fungal cultivar fidelity and low virulence of Escovopsis trichodermoides. Fungal Ecology, 2020, 45, 100944.	0.7	6
1327	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 2020, 11, 2114.	5.8	101
1329	A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research. Frontiers in Plant Science, 2020, 11, 434.	1.7	19
1330	Overexpression of Strigolactone-Associated Genes Exerts Fine-Tuning Selection on Soybean Rhizosphere Bacterial and Fungal Microbiome. Phytobiomes Journal, 2020, 4, 239-251.	1.4	30
1331	CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta, 2020, 251, 97.	1.6	69
1332	The CLE53–SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. Journal of Experimental Botany, 2020, 71, 4972-4984.	2.4	36
1333	Recent progress in the chemistry and biochemistry of strigolactones. Journal of Pesticide Sciences, 2020, 45, 45-53.	0.8	46
1334	Molecular biology of Crocus sativus. , 2020, , 247-258.		0
1335	Strigolactone and Methyl Jasmonate-Induced Antioxidant Defense and the Composition Alterations of Different Active Compounds in Dracocephalum kotschyi Boiss Under Drought Stress. Journal of Plant Growth Regulation, 2021, 40, 878-889.	2.8	23
1336	Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant – microbiome – soil continuum. FEMS Microbiology Ecology, 2021, 97, .	1.3	18
1337	Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany, 2021, 72, 57-69.	2.4	124

#	Article	IF	Citations
1338	Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2021, 72, 1546-1557.	2.4	9
1339	Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant Journal, 2021, 105, 351-375.	2.8	112
1340	Metabolomics in plant-microbe interactions in the roots. Advances in Botanical Research, 2021, 98, 133-161.	0.5	11
1341	On the outside looking in: roles of endogenous and exogenous strigolactones. Plant Journal, 2021, 105, 322-334.	2.8	28
1342	Orobanchaceae parasite–host interactions. New Phytologist, 2021, 230, 46-59.	3.5	40
1343	Ligand–receptor interactions in plant hormone signaling. Plant Journal, 2021, 105, 290-306.	2.8	27
1344	Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541.	2.8	115
1345	Prohexadione calcium is herbicidal to the sunflower root parasite Orobanche cumana. Pest Management Science, 2021, 77, 1893-1902.	1.7	1
1346	Strigolactone biosynthesis, transport and perception. Plant Journal, 2021, 105, 335-350.	2.8	107
1347	On improving strigolactone mimics for induction of suicidal germination of the root parasitic plant Striga hermonthica. ABIOTECH, 2021, 2, 1-13.	1.8	6
1349	Overexpression of <i>MdIAA24</i> improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. Tree Physiology, 2021, 41, 134-146.	1.4	23
1350	Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Annals of Botany, 2021, 127, 155-166.	1.4	44
1351	DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist, 2021, 229, 548-562.	3.5	22
1352	Synthesis of Simple Strigolactone Mimics. Methods in Molecular Biology, 2021, 2309, 31-36.	0.4	1
1353	Epigenetic Control of Carotenogenesis During Plant Development. Critical Reviews in Plant Sciences, 2021, 40, 23-48.	2.7	16
1354	Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiology, 2021, 185, 902-913.	2.3	30
1356	Biofertilizers: Microbes for Agricultural Productivity. Sustainable Development and Biodiversity, 2021, , 407-469.	1.4	3
1357	Beneficial plant-associated bacteria modulate host hormonal system enhancing plant resistance toward abiotic stress. , 2021, , 113-151.		3

	CITATION	Report	
#	Article	IF	Citations
1358	Phytohormone transporters during abiotic stress response. , 2021, , 235-260.		0
1359	The Hormonal Signals that Regulate Plant Vascular Differentiation. , 2021, , 55-96.		2
1360	Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development. Methods in Molecular Biology, 2021, 2309, 157-177.	0.4	9
1361	Potential effect of microbial biostimulants in sustainable vegetable production. , 2021, , 193-237.		3
1362	Rhizosphere Metagenomics: Methods and Challenges. Rhizosphere Biology, 2021, , 1-20.	0.4	0
1363	Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants, and Potential Applications. Fungal Biology, 2021, , 35-83.	0.3	0
1364	Role of Plant Growth Hormones During Soil Water Deficit: A Review. , 2021, , 489-583.		2
1365	Synthesis of Analogs of Strigolactones and Evaluation of Their Stability in Solution. Methods in Molecular Biology, 2021, 2309, 37-55.	0.4	2
1366	Evaluation and Quantification of Natural Strigolactones from Root Exudates. Methods in Molecular Biology, 2021, 2309, 3-12.	0.4	4
1367	Plant Stress Hormones Nanobiotechnology. , 2021, , 349-373.		9
1368	Relevance of Metatranscriptomics in Symbiotic Associations Between Plants and Rhizosphere Microorganisms. , 2021, , 59-90.		2
1369	Evaluation of the Effect of Strigolactones and Synthetic Analogs on Fungi. Methods in Molecular Biology, 2021, 2309, 75-89.	0.4	3
1370	Access to benzene-modified 2nd generation strigolactams and GR24 by merging C–H olefination with decarboxylative Giese cyclization. Organic and Biomolecular Chemistry, 2021, 19, 7141-7146.	1.5	7
1371	Estimation of Total Phenolic Compounds and Non-Targeted Volatile Metabolomics in Leaf Tissues of American Chestnut (<i>Castanea dentata</i>), Chinese Chestnut (<i>Castanea) Tj ETQq1 1 0.7 Environment, 2021, 10, 222-256.</i>	′843]4 rgB 0.2	T /Qverlock 1(
1372	Shoot has important roles in strigolactone production of rice roots under sulfur deficiency. Plant Signaling and Behavior, 2021, 16, 1880738.	1.2	4
1373	Current progress in <i>Striga</i> management. Plant Physiology, 2021, 185, 1339-1352.	2.3	37
1374	Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME Journal, 2021, 15, 1919-1930.	4.4	92
1375	Main drivers of broomrape regulation. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	13

#	Article	IF	CITATIONS
1376	The mechanism of host-induced germination in root parasitic plants. Plant Physiology, 2021, 185, 1353-1373.	2.3	40
1377	Are strigolactones a key in plant–parasitic nematodes interactions? An intriguing question. Plant and Soil, 2021, 462, 591-601.	1.8	9
1379	Desmethyl butenolides are optimal ligands for karrikin receptor proteins. New Phytologist, 2021, 230, 1003-1016.	3.5	29
1381	The Structure of Rhizosphere Fungal Communities of Wild and Domesticated Rice: Changes in Diversity and Co-occurrence Patterns. Frontiers in Microbiology, 2021, 12, 610823.	1.5	29
1382	Yield and Quality of Inflorescences in the Zantedeschia albomaculata (Hook.) Baill. â€~Albomaculata' after the Treatment with AMF and GA3. Agronomy, 2021, 11, 644.	1.3	7
1383	Applications of the Dess-Martin Oxidation in Total Synthesis of Natural Products. Current Organic Synthesis, 2021, 18, 125-196.	0.7	8
1384	The influence of competing root symbionts on belowâ€ground plant resource allocation. Ecology and Evolution, 2021, 11, 2997-3003.	0.8	5
1385	Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape. Agronomy, 2021, 11, 501.	1.3	6
1386	Studies on strigolactone BC-ring formation: Chemical conversion of an 18-hydroxycarlactonoate derivative into racemic 4-deoxyorobanchol/5-deoxystrigol via the acid-mediated cascade cyclization. Tetrahedron Letters, 2021, 68, 152922.	0.7	8
1387	Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports, 2021, 40, 1305-1329.	2.8	113
1388	Impacts of Arbuscular Mycorrhizal Fungi on Rice Growth, Development, and Stress Management With a Particular Emphasis on Strigolactone Effects on Root Development. Communications in Soil Science and Plant Analysis, 2021, 52, 1591-1621.	0.6	21
1390	Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. Frontiers in Plant Science, 2021, 12, 662025.	1.7	6
1391	Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2021, 33, 2395-2411.	3.1	28
1393	Lichens and biofilms: Common collective growth imparts similar developmental strategies. Algal Research, 2021, 54, 102217.	2.4	13
1394	Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039990.	2.3	30
1395	Microbiome for sustainable agriculture: a review with special reference to the corn production system. Archives of Microbiology, 2021, 203, 2771-2793.	1.0	13
1396	Efficient Heterogeneous Palladium Catalysts in Oxidative Cascade Reactions. Accounts of Chemical Research, 2021, 54, 2275-2286.	7.6	36
1397	Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil. Agriculture (Switzerland), 2021, 11, 310.	1.4	24

	CITATION	Report	
#	Article	IF	CITATIONS
1398	Regulation of Plant Mineral Nutrition by Signal Molecules. Microorganisms, 2021, 9, 774.	1.6	29
1399	How Sorghum Root Traits Can Contribute to Cereal Yield Increase. , 0, , .		2
1400	Arabidopsis Carboxylesterase 20 Binds Strigolactone and Increases Branches and Tillers When Ectopically Expressed in Arabidopsis and Maize. Frontiers in Plant Science, 2021, 12, 639401.	1.7	8
1401	Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. Horticulture Research, 2021, 8, 84.	2.9	11
1402	A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana. Plant Molecular Biology, 2021, 106, 319-334.	2.0	22
1404	Strigolactone Alleviates Herbicide Toxicity via Maintaining Antioxidant Homeostasis in Watermelon (Citrullus lanatus). Agriculture (Switzerland), 2021, 11, 419.	1.4	6
1405	Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	45
1407	Auxin: An emerging regulator of tuber and storage root development. Plant Science, 2021, 306, 110854.	1.7	34
1408	Germination stimulatory activity of bacterial butenolide hormones from <i>Streptomyces albus</i> J1074 on seeds of the root parasitic weed <i>Orobanche minor</i> . Journal of Pesticide Sciences, 2021, 46, 242-247.	0.8	8
1409	Plant lipids enticed fungi to mutualism. Science, 2021, 372, 789-790.	6.0	4
1411	Non-host plants: Are they mycorrhizal networks players?. Plant Diversity, 2022, 44, 127-134.	1.8	18
1412	A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume–rhizobium symbioses. Plant Physiology, 2021, 187, 2071-2091.	2.3	29
1413	Alkaline extract of the seaweed Ascophyllum nodosum stimulates arbuscular mycorrhizal fungi and their endomycorrhization of plant roots. Scientific Reports, 2021, 11, 13491.	1.6	6
1414	Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 2021, 184, 3542-3558.e16.	13.5	237
1415	Root architectural traits of rooted cuttings of two fig cultivars: Treatments with arbuscular mycorrhizal fungi formulation. Scientia Horticulturae, 2021, 283, 110083.	1.7	15
1418	Role of Mycorrhizal Pathways in Plant Phosphorous and Zinc Uptake. Biomedical Journal of Scientific & Technical Research, 2021, 36, .	0.0	1
1419	<i>OsRAM2</i> Function in Lipid Biosynthesis Is Required for Arbuscular Mycorrhizal Symbiosis in Rice. Molecular Plant-Microbe Interactions, 2022, 35, 187-199.	1.4	18
1420	From the ground up: Building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. Climate Change Ecology, 2021, 1, 100013.	0.9	12

#	Article	IF	CITATIONS
1421	Tryptophan derivatives regulate the seed germination and radicle growth of a root parasitic plant, Orobanche minor. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128085.	1.0	5
1422	Functional identification of MdSMXL8.2, the homologous gene of strigolactones pathway repressor protein gene in Malus × domestica. Horticultural Plant Journal, 2021, 7, 275-285.	2.3	5
1423	Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. Journal of Ecology, 2021, 109, 3699-3709.	1.9	48
1424	Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms, 2021, 9, 1557.	1.6	9
1425	Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta, 2021, 254, 28.	1.6	44
1426	GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells. Frontiers in Plant Science, 2021, 12, 675981.	1.7	9
1427	Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules, 2021, 26, 4579.	1.7	18
1428	Low temperature effects on carotenoids biosynthesis in the leaves of green and albino tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2021, 285, 110164.	1.7	25
1430	Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. Current Opinion in Plant Biology, 2021, 62, 102071.	3.5	13
1431	The <i>Physcomitrium</i> (<i>Physcomitrella</i>) <i>patens</i> PpKAl2L receptors for strigolactones and related compounds function via MAX2-dependent and -independent pathways. Plant Cell, 2021, 33, 3487-3512.	3.1	26
1433	Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. Journal of Hazardous Materials, 2021, 415, 125589.	6.5	32
1434	How to resist parasitic plants: pre- and post-attachment strategies. Current Opinion in Plant Biology, 2021, 62, 102004.	3.5	19
1435	Plant Communication. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 1-24.	3.8	43
1436	Multiple analysis of root exudates and microbiome in rice (Oryza sativa) under low P conditions. Archives of Microbiology, 2021, 203, 5599-5611.	1.0	7
1437	Characterization of growth and development of sorghum genotypes with differential susceptibility to <i>Striga hermonthica</i> . Journal of Experimental Botany, 2021, 72, 7970-7983.	2.4	4
1438	Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant, Cell and Environment, 2021, 44, 3628-3642.	2.8	17
1439	Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase. Planta, 2021, 254, 88.	1.6	18
1440	Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. Plant Cell, 2021, 33, 3470-3486.	3.1	42

#	Article	IF	CITATIONS
1441	In Vitro Effects of Leaf Extracts from Brassica rapa on the Growth of Two Entomopathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 779.	1.5	2
1442	Impacts of Decaying Aromatic Plants on the Soil Microbial Community and on Tomato Seedling Growth and Metabolism: Suppression or Stimulation?. Plants, 2021, 10, 1848.	1.6	5
1443	An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Molecular Biotechnology, 2022, 64, 109-129.	1.3	0
1444	Improving Fungal Cultivability for Natural Products Discovery. Frontiers in Microbiology, 2021, 12, 706044.	1.5	15
1445	Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 2022, 27, 80-91.	4.3	152
1446	Strigolactone biosynthesis catalyzed by cytochrome P450 and sulfotransferase in sorghum. New Phytologist, 2021, 232, 1999-2010.	3.5	28
1447	Establishment of strigolactone-producing bacterium-yeast consortium. Science Advances, 2021, 7, eabh4048.	4.7	27
1448	Studies on Strigolactone Based on Synthetic Organic Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 819-828.	0.0	0
1449	Potential hazards of biochar: The negative environmental impacts of biochar applications. Journal of Hazardous Materials, 2021, 420, 126611.	6.5	118
1450	Strigolactones, how are they synthesized to regulate plant growth and development?. Current Opinion in Plant Biology, 2021, 63, 102072.	3.5	68
1451	Biogas slurry nutrient removal and biogas upgrade in co-cultivated microalgae and fungi by induction with strigolactone. Algal Research, 2021, 59, 102467.	2.4	4
1452	Involvement of strigolactone hormone in root development, influence and interaction with mycorrhizal fungi in plant: Mini-review. Current Research in Microbial Sciences, 2021, 2, 100026.	1.4	23
1454	Application of Strigolactones to Plant Roots to Influence Formation of Symbioses. Methods in Molecular Biology, 2021, 2309, 179-187.	0.4	1
1455	Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in <i>Striga</i> . Plant Physiology, 2021, 185, 1411-1428.	2.3	32
1456	How Vascular Differentiation in Hosts Is Regulated by Parasitic Plants and Gall-Inducing Insects. , 2021, , 293-307.		1
1457	Chemotropic Assay for Testing Fungal Response to Strigolactones and Strigolactone-Like Compounds. Methods in Molecular Biology, 2021, 2309, 105-111.	0.4	1
1458	Role of phytohormones as master regulators during the abiotic stress. , 2021, , 347-369.		1
1461	Fungal Recognition Responses to Host Derived Signals by Arbuscular Mycorrhizal Fungi. , 2006, , 223-243.		1

		CITATION REPORT		
#	Article		IF	CITATIONS
1462	Symbiotic Associations. , 2008, , 403-443.			4
1463	Maize Under Phosphate Limitation. , 2009, , 381-404.			9
1464	The Role of Natural Products in Plant-Microbe Interactions. , 2009, , 301-320.			6
1465	The Effect of Host-Root-Derived Chemical Signals on the Germination of Parasitic Plan	ts. , 0, , 39-54.		7
1466	Ectomycorrhizae and Their Importance in Forest Ecosystems. , 2008, , 241-285.			20
1467	Parasitic Plants in Agriculture: Chemical Ecology of Germination and Host-Plant Location for Sustainable Control: A Review. Sustainable Agriculture Reviews, 2009, , 123-136.	on as Targets	0.6	9
1468	Analysis of Carotenoids and Tocopherols in Plant Matrices and Assessment of Their In Antioxidant Capacity. Methods in Molecular Biology, 2014, 1153, 77-97.	Vitro	0.4	6
1469	Mycorrhizal Fungi to Alleviate Compaction Stress on Plant Growth. , 2014, , 165-174.			4
1470	Pathways for Carotenoid Biosynthesis, Degradation, and Storage. Methods in Molecul 2020, 2083, 3-23.	ar Biology,	0.4	25
1471	Impact of Arbuscular Mycorrhizal Fungi (AMF) in Global Sustainable Environments. Fur 2019, , 419-436.	ıgal Biology,	0.3	2
1473	Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis. , 2020, , 75-103.			3
1474	Allelopathy: The Chemical Language of Plants. Progress in the Chemistry of Organic Na 2020, 112, 1-84.	atural Products,	0.8	10
1475	ABCG Transporters and Their Role in the Biotic Stress Response. Signaling and Commu Plants, 2014, , 137-162.	inication in	0.5	4
1476	Defence, Symbiosis and ABCG Transporters. Signaling and Communication in Plants, 2	014, , 163-184.	0.5	11
1477	Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrop Specific Interactions. , 2016, , 1-58.	nic, and Other		5
1478	Response of Arbuscular Mycorrhizal Fungi to Global Climate Change and Their Role in Ecosystem C and N Cycling. , 2017, , 305-327.	Terrestrial		4
1479	Arbuscular Mycorrhiza: A Tool for Enhancing Crop Production. , 2017, , 235-250.			16

Dynamics of Arbuscular Mycorrhizal Symbiosis and Its Role in Nutrient Acquisition: An Overview. , 2017, , 21-43.

#	Article	IF	Citations
1481	Arbuscular Mycorrhiza Mediated Control of Plant Pathogens. , 2017, , 131-160.		22
1482	A Sentinel Role for Plastids. Plant Cell Monographs, 2009, , 267-292.	0.4	11
1483	Reconstructing Soil Biology. Soil Biology, 2008, , 75-97.	0.6	1
1484	Root Hair Colonization by Mycorrhizal Fungi. Plant Cell Monographs, 2009, , 315-338.	0.4	6
1485	Communication of Fungi on Individual, Species, Kingdom, and Above Kingdom Levels. , 2009, , 79-106.		14
1486	At the Crossroads of Metal Hyperaccumulation and Glucosinolates: Is There Anything Out There?. Soil Biology, 2010, , 139-161.	0.6	6
1487	Signalling and the Re-structuring of Plant Cell Architecture in AM Symbiosis. Signaling and Communication in Plants, 2012, , 51-71.	0.5	4
1488	Endocytic Accommodation of Microbes in Plants. , 2012, , 271-295.		4
1489	Induction of Germination. , 2013, , 167-194.		21
1490	Chemical Signalling in the Arbuscular Mycorrhizal Symbiosis: Biotechnological Applications. Soil Biology, 2013, , 215-232.	0.6	12
1491	Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Soil Biology, 2013, , 289-307.	0.6	28
1492	Pre-symbiotic Interactions Between the Desert Truffle Terfezia boudieri and Its Host Plant Helianthemum sessiliflorum. Soil Biology, 2014, , 81-92.	0.6	4
1493	Strigolactones Involvement in Root Development and Communications. Soil Biology, 2014, , 203-219.	0.6	1
1494	Management of the Arbuscular Mycorrhizal Symbiosis in Sustainable Crop Production. Soil Biology, 2014, , 89-118.	0.6	8
1495	Plant, Mycorrhizal Fungi, and Bacterial Network. , 2014, , 315-325.		4
1496	Biotic Environment of the Arbuscular Mycorrhizal Fungi in Soil. , 2010, , 209-236.		12
1497	Functional Categories of Root Exudate Compounds and their Relevance to AM Fungal Growth. , 2010, , 33-56.		10
1498	The Making of Symbiotic Cells in Arbuscular Mycorrhizal Roots. , 2010, , 57-71.		24

#	Article	IF	CITATIONS
1499	Strigolactones and Their Role in Arbuscular Mycorrhizal Symbiosis. , 2010, , 73-90.		8
1500	Nutrient Uptake: The Arbuscular Mycorrhiza Fungal Symbiosis as a Plant Nutrient Acquisition Strategy. , 2010, , 137-167.		29
1501	Arbuscular Mycorrhizal Networks: Process and Functions. , 2011, , 907-930.		13
1502	Plastid Signaling During the Plant Life Cycle. Advances in Photosynthesis and Respiration, 2013, , 503-528.	1.0	7
1503	Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability. Microorganisms for Sustainability, 2019, , 111-168.	0.4	5
1504	Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. , 2020, , 17-43.		26
1505	Arbuscular Mycorrhizal Colonization and Activation of Plant Defense Responses Against Phytopathogens. , 2019, , 219-240.		2
1506	Diversity of Arbuscular Mycorrhizal Fungi in Relation to Sustainable Plant Production Systems. , 2019, , 167-186.		12
1507	Molecular Mechanisms of Plant–Microbe Interactions in the Rhizosphere as Targets for Improving Plant Productivity. Rhizosphere Biology, 2021, , 295-338.	0.4	8
1508	Plant and Microbial Genomics in Crop Improvement. , 2019, , 215-230.		1
1509	Growth of chamomile (Matricaria chamomilla L.) and production of essential oil stimulated by arbuscular mycorrhizal symbiosis. Rhizosphere, 2020, 15, 100208.	1.4	7
1510	SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. Nature Plants, 2020, 6, 646-652.	4.7	49
1511	Genetic supressors of Lotus japonicus har1-1 hypernodulation show altered interactions with Glomus intraradices. Functional Plant Biology, 2006, 33, 749.	1.1	7
1512	The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato. Journal of Experimental Botany, 2021, 72, 1702-1713.	2.4	15
1513	Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant Physiology, 2021, 185, 1292-1308.	2.3	48
1523	Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 2020, 71, 327-353.	8.6	169
1524	Chemical Signals in the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , 297-330.	0.1	3
1525	Isolation of indigenous arbuscular mycorrhizal fungi and selection of host plant for inoculum production. International Journal of Biosciences, 2014, 5, 116-122.	0.4	1

#	Article	IF	CITATIONS
1526	Effects of Arbuscular Mycorrhizal Fungi (AMF) and Bacterial Strains on Orobanche crenata Forsk, on Faba Bean. Universal Journal of Applied Science, 2013, 1, 27-32.	0.3	7
1527	Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLoS Biology, 2006, 4, e226.	2.6	693
1528	Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genetics, 2020, 16, e1009249.	1.5	26
1529	An Active Factor from Tomato Root Exudates Plays an Important Role in Efficient Establishment of Mycorrhizal Symbiosis. PLoS ONE, 2012, 7, e43385.	1.1	22
1530	Reduced Germination of Orobanche cumana Seeds in the Presence of Arbuscular Mycorrhizal Fungi or Their Exudates. PLoS ONE, 2012, 7, e49273.	1.1	38
1531	An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon. PLoS ONE, 2014, 9, e97163.	1.1	37
1532	Strigolactones Inhibit Caulonema Elongation and Cell Division in the Moss Physcomitrella patens. PLoS ONE, 2014, 9, e99206.	1.1	41
1533	Characterization of MORE AXILLARY GROWTH Genes in Populus. PLoS ONE, 2014, 9, e102757.	1.1	23
1534	Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS ONE, 2020, 15, e0240886.	1.1	63
1535	Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sciences, 2020, 15, 217-228.	0.6	41
1537	Structural diversity and distribution of strigolactones in the plant kingdom. Journal of Pesticide Sciences, 2009, 34, 302-305.	0.8	3
1538	Strigolactones as a host-derived signal in the arbuscular mycorrhizal symbiosis. Journal of Pesticide Sciences, 2009, 34, 306-309.	0.8	1
1539	Characterization of mRNAs encoding ethylene biosynthesis enzymes in the root holoparasitic plants Orobanche. Journal of Pesticide Sciences, 2007, 32, 24-31.	0.8	1
1540	Tolerancia a metales pesados a través del uso de micorrizas arbusculares en plantas cultivadas. Revista Colombiana De Ciencias HortÃcolas, 2013, 5, 141-154.	0.2	3
1541	Abscisic acid - an overlooked player in plant-microbe symbioses formation?. Acta Biochimica Polonica, 2016, 63, 53-58.	0.3	29
1542	Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 2015, 9, 1-7.	0.2	107
1543	Señales de reconocimiento entre plantas y hongos formadores de micorrizas arbusculares. Ciencia Tecnologia Agropecuaria, 2014, 11, 53-60.	0.3	1
1544	Hongos formadores de micorrizas arbusculares: una alternativa biologica para la sostenibilidad de los agroecosistemas de praderas en el caribe colombiano. Revista Colombiana De Ciencia Animal Recia, 2011, 3, 366.	0.2	13

#	Article	IF	CITATIONS
1545	Enviromental factors that determine responsiveness of plants to arbuscular mycorrhizal fungal inoculation. Root Research, 2019, 28, 23-37.	0.1	3
1546	Do Phosphate and Cytokinin Interact to Regulate Strigolactone Biosynthesis or Act Independently?. Frontiers in Plant Science, 2020, 11, 438.	1.7	26
1547	The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots. Frontiers in Plant Science, 2020, 11, 578.	1.7	48
1548	Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy, 2020, 10, 106.	1.3	141
1549	A review of the influence of root-associating fungi and root exudates on the success of invasive plants. NeoBiota, 0, 14, 21-45.	1.0	10
1550	Detection of a Histidine Kinase mRNA in Extraradical Mycelium of Pisolithus tinctorius Induced by the Plant Metabolites. Pakistan Journal of Biological Sciences, 2009, 12, 189-191.	0.2	1
1551	Mutual Information Flow between Beneficial Microorganisms and the Roots of Host Plants Determined the Bio-Functions of Biofertilizers. American Journal of Plant Sciences, 2012, 03, 1115-1120.	0.3	22
1552	Synthetic Studies on Allelopathic Terpenoids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 819-826.	0.0	4
1553	Design and Synthesis of Function Regulators of Plant Hormones and their Application to Physiology and Genetics. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 36-49.	0.0	3
1554	Neighboring Plants Alleviate Aluminum Toxicity on The External Hyphae of Gigaspora margarita. Microbiology Indonesia, 2009, 3, 42-46.	0.2	2
1555	Response of wild and weedy broomrapes to synthetic strigolactone analogue GR24. Journal of Central European Agriculture, 2014, 15, 72-82.	0.3	2
1556	Biochar-Rhizosphere Interactions – a Review. Polish Journal of Microbiology, 2017, 66, 151-161.	0.6	11
1557	Genetic Characterization of a Novel Composite Transposon Carrying <i>arm</i> A and <i>aac</i> (<i>6</i>) <i>-lb</i> Genes in an <i>Escherichia coli</i> Isolate from Egypt. Polish Journal of Microbiology, 2017, 66, 163-169.	0.6	20
1559	Impact of arbuscular mycorrhizal fungi on the growth and related physiological indexes of Amorpha fruticosa. Journal of Medicinal Plants Research, 2012, 6, .	0.2	1
1560	Strigo-D2—a bio-sensor for monitoring spatio-temporal strigolactone signaling patterns in intact plants. Plant Physiology, 2022, 188, 97-110.	2.3	7
1561	Synthesis of racemic orobanchols via acid-mediated cascade cyclization: Insight into the process of BC-ring formation in strigolactone biosynthesis. Tetrahedron Letters, 2021, 85, 153469.	0.7	3
1562	Responses of Arbuscular Mycorrhizal Fungi Diversity and Community to 41-Year Rotation Fertilization in Brown Soil Region of Northeast China. Frontiers in Microbiology, 2021, 12, 742651.	1.5	10
1564	Strigolactones: Extraction and Characterization. Springer Protocols, 2022, , 283-288.	0.1	0

#	Article	IF	Citations
1565	Abscisic acid supports colonization of <i>Eucalyptus grandis</i> roots by the mutualistic ectomycorrhizal fungus <i>Pisolithus microcarpus</i> . New Phytologist, 2022, 233, 966-982.	3.5	12
1566	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	3.5	216
1567	Integrated Transcriptomics and Metabolomics Analyses Provide Insights Into the Response of Chongyi Wild Mandarin to Candidatus Liberibacter Asiaticus Infection. Frontiers in Plant Science, 2021, 12, 748209.	1.7	4
1568	ATPâ€binding cassette transporters in nonmodel plants. New Phytologist, 2022, 233, 1597-1612.	3.5	22
1569	A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 2021, 184, 5527-5540.e18.	13.5	151
1572	Mycorrhizal Fungi. Books in Soils, Plants, and the Environment, 2007, , 201-236.	0.1	2
1574	A Sentinel Role for Plastids. Plant Cell Monographs, 2008, , 267.	0.4	0
1575	Parasitic Associations. , 2008, , 491-503.		0
1576	MOLECULAR STRATEGIES AND AGRONOMIC IMPACTS OF PLANT-MICROBE SYMBIOSES. Ecological Genetics, 2008, 6, 49-60.	0.1	0
1577	Discovery of strigolactones as a new hormone class that inhibits shoot branching. Journal of Pesticide Sciences, 2009, 34, 310-314.	0.8	1
1578	Improvement of floral scent of ornamentals via metabolic engineering. Journal of Plant Biotechnology, 2010, 37, 1-11.	0.1	3
1579	Multi-component symbiosis of Legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production. Ecological Genetics, 2011, 9, 80-94.	0.1	1
1580	Rhizosphere Microorganisms. , 2012, , 105-121.		0
1581	Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible?. , 2012, , 199-211.		0
1583	Erythropoietic and Bone Marrow Stimulating Activity of Terminalia catappa Extract: Possible Role of Nitric Oxide Signaling. International Blood Research & Reviews, 2013, 1, 1-13.	0.1	0
1584	Genetic Basis of High-Tillering Dwarf Trait in Rice DUS Test Standard Variety Cong'ai 2. Acta Agronomica Sinica(China), 2013, 38, 1766-1774.	0.1	0
1585	Mycorrhizas in Relation to Plant Rarity and Invasiveness. , 2014, , 25-44.		0
1586	Mycorrhizas: An Overview. , 2014, , 5-12.		3

# 1587	ARTICLE Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions. Reference Series in Phytochemistry, 2016, , 1-58.	IF 0.2	CITATIONS
1588	Fungi as Scavengers. , 2016, , 91-110.		Ο
1589	Molecular Markers for the Identification and Diversity Analysis of Arbuscular Mycorrhizal Fungi (AMF). Fungal Biology, 2017, , 177-199.	0.3	2
1591	The Mechanisms of Nutrient Uptake by Arbuscular Mycorrhizae. , 2017, , 1-19.		9
1592	Soil fungi as a biotic factor affecting on the plants. Agroecological Journal, 2017, .	0.0	0
1593	Agroecological Engineering in Rhizosphere Biocontrol Plants and Formation of Soil Health. MikrobiolohichnyA-Zhurnal, 2017, 79, 88-109.	0.2	3
1595	Adverse Soil Mineral Availability. , 2019, , 203-256.		1
1596	Laboratory and Field Studies of <i>Trichoderma harzianum</i> , Bacterial Strains and Imazethapyr on <i>Orobanche crenata</i> Forsk Infesting <i>Vicia faba</i> . Asian Journal of Agriculture and Food Science, 2018, 6, .	0.2	Ο
1597	Biotic Influences: Symbiotic Associations. , 2019, , 487-540.		3
1598	UNDERGROUND COMMUNICATION - THE NEW ELEMENTS OF SIGNALLING PATHWAYS OF ARBUSCULAR MYCORRHIZAL SYMBIOSIS. Postepy Mikrobiologii, 2019, 56, 275-281.	0.1	Ο
1599	VAM-Assisted Adaptive Response and Tolerance Mechanism of Plants Under Heavy Metal Stress: Prospects for Bioremediation. , 2019, , 217-236.		1
1600	Bioenergy: Plants and Products. , 2019, , 335-418.		Ο
1601	Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency. , 2019, , 17-47.		4
1602	Plant-Microbe Communication: New Facets for Sustainable Agriculture. , 2019, , 547-573.		2
1603	A Tale of Sugars and Hormones: Perception and Responses. , 2019, , 323-360.		0
1604	å¹³æ^30年度論文賞å⁻¾è±¡è«–æ–‡ã®æ¦,è¦ãëãã®ç"ç©¶èfŒæ™⁻. Japanese Journal of Pesticide Science, 2	0109044,2	24-@7.
1606	Soil Microbial Ecology and Its Role in Soil Carbon Sequestration in Sustainable Agroecosystems Under Climate Change. , 2020, , 249-291.		1
1607	Relevance of Microbial Diversity in Implicating Soil Restoration and Health Management. , 2020, , 161-202.		0

#	Article	IF	Citations
1609	Quantification of Strigolactones. Methods in Molecular Biology, 2020, 2083, 199-208.	0.4	1
1610	Determination of In Vitro and In Vivo Activities of Plant Carotenoid Cleavage Oxygenases. Methods in Molecular Biology, 2020, 2083, 63-74.	0.4	3
1611	Development of Mycorrhiza and their Influence on Nutrient Status, Plant Growth and Innate Immunity. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1886-1891.	0.0	0
1612	Role of Algae–Fungi Relationship in Sustainable Agriculture. Fungal Biology, 2020, , 227-254.	0.3	0
1613	A Low-volume Hydroponic Protocol for Maize and A Sensitive Bud-length Assay for Root-to-Shoot Impacts of The Strigolactone Analog, rac-GR24. Bio-protocol, 2020, 10, .	0.2	0
1614	Contribution of Human and Animal to the Microbial World and Ecological Balance. , 2020, , 1-18.		Ο
1618	Auxinâ€mediated regulation of arbuscular mycorrhizal symbiosis: A role of SlGH3.4 in tomato. Plant, Cell and Environment, 2022, 45, 955-968.	2.8	20
1619	Allelopathic Activity of Strigolactones on the Germination of Parasitic Plants and Arbuscular Mycorrhizal Fungi Growth. Agronomy, 2021, 11, 2174.	1.3	11
1620	Arbuscular mycorrhizal associations and the major regulators. Frontiers of Agricultural Science and Engineering, 2020, 7, 296.	0.9	6
1622	Root Phenolics Profile Modulates Microbial Ecology of Rhizosphere. , 2020, , 555-578.		4
1624	Signaling in the Rhizosphere for Better Plant and Soil Health. Microorganisms for Sustainability, 2020, , 149-173.	0.4	4
1625	Biotechnological Interventions for Arbuscular Mycorrhiza Fungi (AMF) Based Biofertilizer: Technological Perspectives. , 2020, , 161-191.		2
1626	Structure and Function of Rhizobiome. , 2020, , 241-261.		4
1627	TRICHODERMA HARZIANUM AND BACTERIAL STRAINS AS BIOAGENTS FOR SUPPRESSING OROBANCHE CRENATA GROWTH AND PARASITISM IN FABA BEAN. International Journal of Agriculture Environment and Bioresearch, 2020, 05, 10-20.	0.0	0
1629	Diversity and Community Structure of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Salt-Affected Soils. Microorganisms for Sustainability, 2020, , 453-470.	0.4	2
1630	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas. , 2020, , 143-172.		0
1631	Genetic and Management Options for Controlling Striga. , 2020, , 421-451.		3
1632	Soil Microbes and Plant Health. Sustainability in Plant and Crop Protection, 2020, , 111-135.	0.2	4

#	Article	IF	CITATIONS
1633	Functional Analysis of Plant Genes Related to Arbuscular Mycorrhiza Symbiosis Using Agrobacterium rhizogenes-Mediated Root Transformation and Hairy Root Production. Rhizosphere Biology, 2020, , 191-215.	0.4	1
1634	Tripartite interaction between <i>Striga</i> spp., cereals, and plant root-associated microorganisms: a review. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	6
1635	Modern concepts of auxin's action. 2. Mechanisms of auxin signal transduction and physiological action. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ BìologiÁ¢, 2021, 2021,	98 :1 37.	0
1636	Arbuscular Mycorrhizal Fungi in Agriculture. Encyclopedia, 2021, 1, 1132-1154.	2.4	11
1639	Root Hair Colonization by Mycorrhizal Fungi. Plant Cell Monographs, 2009, , 315.	0.4	0
1641	Fungal association in hotspot of rhizosphere. , 2022, , 97-116.		0
1642	Identification of Conserved and Divergent Strigolactone Receptors in Sugarcane Reveals a Key Residue Crucial for Plant Branching Control. Frontiers in Plant Science, 2021, 12, 747160.	1.7	2
1643	Lightâ€dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. New Phytologist, 2022, 233, 1900-1914.	3.5	30
1644	Phosphorus Dynamics in the Soil–Plant–Environment Relationship in Cropping Systems: A Review. Applied Sciences (Switzerland), 2021, 11, 11133.	1.3	12
1645	Strigolactone breakdown. Nature Plants, 2021, 7, 1443-1444.	4.7	1
1646	Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators that Link <i>rac</i> -GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density. Plant and Cell Physiology, 2022, 63, 104-119.	1.5	5
1647	Catabolism of strigolactones by a carboxylesterase. Nature Plants, 2021, 7, 1495-1504.	4.7	18
1648	Involvement of α-galactosidase OmAGAL2 in planteose hydrolysis during seed germination of <i>Orobanche minor</i> . Journal of Experimental Botany, 2022, 73, 1992-2004.	2.4	5
1649	Precise Role of Strigolactones and Its Crosstalk Mechanisms in Root Development. Signaling and Communication in Plants, 2021, , 253-270.	0.5	2
1650	ã,¢ãf¼ãfã,¹ã,ãf¥ãf©ãf¼èŒæ¹å±ç"Ÿã«ãŠã'ã,‹å±ç"Ÿã,∙ã,ºãfŠãf«ãëã⊷ã┥ã®ã,¹ãf^ãfªã,′ãf©ã,~ãf^ãf³. Kagal	ruđ .o Seib	ut o u, 2021, 5
1651	Research progress in biosynthesis and regulation of plant terpenoids. Biotechnology and Biotechnological Equipment, 2021, 35, 1799-1808.	0.5	11
1653	The reliance of phytohormone biosynthesis on primary metabolite precursors. Journal of Plant Physiology, 2022, 268, 153589.	1.6	15
1654	Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones. Current Opinion in Plant Biology, 2022, 65, 102154.	3.5	19

#	Article	IF	CITATIONS
1655	Root colonization by arbuscular mycorrhizal fungi (AMF) in various age classes of revegetation post-coal mine. Biodiversitas, 2020, 21, .	0.2	5
1656	Knockdown of <i>GmD53a</i> confers strigolactones mediated rhizobia interaction and promotes nodulation in soybean. PeerJ, 2022, 10, e12815.	0.9	3
1657	Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications Biology, 2022, 5, 43.	2.0	22
1658	Harnessing phytomicrobiome signals for phytopathogenic stress management. Journal of Biosciences, 2022, 47, 1.	0.5	2
1659	Successional adaptive strategies revealed by correlating arbuscular mycorrhizal fungal abundance with host plant gene expression. Molecular Ecology, 2023, 32, 2674-2687.	2.0	11
1660	Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist, 2022, 234, 672-687.	3.5	27
1661	Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. , 2022, , 1-72.		7
1662	Strigolactones: regulation of biosynthesis, hormonal crosstalk, and its role in abioticÂstress adaptation. , 2022, , 287-302.		1
1664	Integrated management of Striga gesnerioides in cowpea using resistant varieties, improved crop nutrition and rhizobium inoculants. Plant and Soil, 0, , 1.	1.8	5
1665	Plant carotenoids: recent advances and future perspectives. Molecular Horticulture, 2022, 2, .	2.3	118
1666	Strategies for the synthesis of canonical, non-canonical and analogues of strigolactones, and evaluation of their parasitic weed germination activity. Phytochemistry Reviews, 2022, 21, 1627-1659.	3.1	14
1667	Emerging roles of strigolactones in plant responses toward biotic stress. , 2022, , 205-214.		2
1668	Genome wide analysis of DWARF27 genes in soybean and functional characterization of GmD27c reveals eminent role of strigolactones in rhizobia interaction and nodulation in Glycine max. Molecular Biology Reports, 2022, 49, 5405-5417.	1.0	3
1669	The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. Plant Communications, 2022, 3, 100303.	3.6	29
1670	PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications, 2022, 13, 477.	5.8	81
1671	Microtubule cytoskeleton and mycorrhizal roots. Plant Signaling and Behavior, 2022, 17, 2031504.	1.2	1
1672	Genome-wide analyses of the Nodulin-like gene family in bread wheat revealed its potential roles during arbuscular mycorrhizal symbiosis. International Journal of Biological Macromolecules, 2022, 201, 424-436.	3.6	4
1673	Synchronisation of zinc application rates with arbuscular mycorrhizal fungi and phosphorus to maximise wheat growth and yield in zinc-deficient soil. Crop and Pasture Science, 2023, 74, 157-172.	0.7	5

#	Article	IF	Citations
1674	Role of AM fungi in growth promotion of high-value crops. , 2022, , 121-144.		0
1675	Insect growth regulators with hydrazide moiety inhibit strigolactone biosynthesis in rice. Journal of Pesticide Sciences, 2022, 47, 43-46.	0.8	3
1677	A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen <i>Cryphonectria parasitica</i> . New Phytologist, 2022, 234, 1003-1017.	3.5	6
1678	Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech, 2022, 12, 57.	1.1	9
1679	Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiology Ecology, 2022, 98, .	1.3	29
1680	OsADK1, a novel kinase regulating arbuscular mycorrhizal symbiosis in rice. New Phytologist, 2022, 234, 256-268.	3.5	15
1681	Structure Elucidation and Biosynthesis of Orobanchol. Frontiers in Plant Science, 2022, 13, 835160.	1.7	10
1682	Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. Communications Biology, 2022, 5, 126.	2.0	18
1684	Brassinosteroids and Strigolactone Signaling in Plants. , 2022, , 81-99.		1
1686	Germination Stimulant Activity of Isothiocyanates on Phelipanche spp Plants, 2022, 11, 606.	1.6	9
1687	Quercetin and 1-methyl-2-oxindole mimic root signaling that promotes spore germination and mycelial growth of Gigaspora margarita. Mycorrhiza, 2022, 32, 177-191.	1.3	2
1688	Stimulation of Hyphal Ramification and Sporulation in Funneliformis mosseae by Root Extracts Is Host Phosphorous Status-Dependent. Journal of Fungi (Basel, Switzerland), 2022, 8, 181.	1.5	2
1691	A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111565119.	3.3	35
1692	Synthesis and Solvent Dependent Fluorescence of Some Piperidine-Substituted Naphthalimide Derivatives and Consequences for Water Sensing. International Journal of Molecular Sciences, 2022, 23, 2760.	1.8	7
1693	Crossroads in the evolution of plant specialized metabolism. Seminars in Cell and Developmental Biology, 2023, 134, 37-58.	2.3	39
1694	Potential Applications of Rhizobacteria as Eco-Friendly Biological Control, Plant Growth Promotion and Soil Metal Bioremediation. , 0, , .		1
1695	Rapid analysis of strigolactone receptor activity in a <i>Nicotiana benthamiana dwarf14</i> mutant. Plant Direct, 2022, 6, e389.	0.8	6
1696	TOPLESS in the regulation of plant immunity. Plant Molecular Biology, 2022, 109, 1-12.	2.0	9

#	Article	IF	CITATIONS
1697	Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141.	1.2	43
1698	Colonization of Mutualistic Mycorrhizal and Parasitic Blast Fungi Requires OsRAM2-Regulated Fatty Acid Biosynthesis in Rice. Molecular Plant-Microbe Interactions, 2022, 35, 178-186.	1.4	10
1699	Conserved and Diverse Transcriptional Reprogramming Triggered by the Establishment of Symbioses in Tomato Roots Forming Arum-Type and Paris-Type Arbuscular Mycorrhizae. Plants, 2022, 11, 747.	1.6	8
1700	Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Frontiers in Microbiology, 2022, 13, 826571.	1.5	19
1701	A New Series of Strigolactone Analogs Derived From Cinnamic Acids as Germination Inducers for Root Parasitic Plants. Frontiers in Plant Science, 2022, 13, 843362.	1.7	4
1702	Adhesion as a Focus in Trichoderma–Root Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 372.	1.5	6
1703	Exogenous Strigolactone (GR24) Positively Regulates Growth, Photosynthesis, and Improves Glandular Trichome Attributes for Enhanced Artemisinin Production in Artemisia annua. Journal of Plant Growth Regulation, 2023, 42, 4606-4615.	2.8	19
1704	The Gastrodia menghaiensis (Orchidaceae) genome provides new insights of orchid mycorrhizal interactions. BMC Plant Biology, 2022, 22, 179.	1.6	13
1705	<i>LATERAL BRANCHING OXIDOREDUCTASE</i> , one novel target gene of Squamosa Promoter Binding Proteinâ€like 2, regulates tillering in switchgrass. New Phytologist, 2022, 235, 563-575.	3.5	7
1707	Targeted metabolomic and transcript level analysis reveals the effects of exogenous strigolactone and methyl jasmonate on grape quality. Scientia Horticulturae, 2022, 299, 111009.	1.7	8
1708	Structural and configurational diversity of strigolactones. Japanese Journal of Pesticide Science, 2021, 46, 136-142.	0.0	0
1709	Origins of strigolactone and karrikin signaling in plants. Trends in Plant Science, 2022, 27, 450-459.	4.3	24
1710	Conservation and Diversity in Gibberellin-Mediated Transcriptional Responses Among Host Plants Forming Distinct Arbuscular Mycorrhizal Morphotypes. Frontiers in Plant Science, 2021, 12, 795695.	1.7	8
1711	Potential Role of Plant Growth Regulators in Administering Crucial Processes Against Abiotic Stresses. Frontiers in Agronomy, 2021, 3, .	1.5	50
1712	Synthetic Strigolactone GR24 Improves Arabidopsis Somatic Embryogenesis through Changes in Auxin Responses. Plants, 2021, 10, 2720.	1.6	8
1713	Localized expression of the <i>Dwarf14-like2a</i> gene in rice roots on infection of arbuscular mycorrhizal fungus and hydrolysis of <i>rac</i> -GR24 by the encoded protein. Plant Signaling and Behavior, 2021, 16, 2009998.	1.2	6
1714	SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis. Plant Cell, 2022, 34, 2671-2687.	3.1	10
1715	Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis, 2022, 86, 155-168.	1.2	20

#	Article	IF	CITATIONS
1716	Dual Roles of OsGH3.2 in Modulating Rice Root Morphology and Affecting Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2022, 13, 853435.	1.7	3
1778	Role of acetosyringone in the accumulation of a set of RNAs in the arbuscular mycorrhiza fungus Glomus intraradices. International Microbiology, 2008, 11, 275-82.	1.1	2
1779	Regulatory role of microbial inoculants to induce salt stress tolerance in horticulture crops. , 2022, , 125-155.		1
1780	Synthesis and signalling of strigolactone and KAI2-ligand signals in bryophytes. Journal of Experimental Botany, 2022, 73, 4487-4495.	2.4	10
1781	Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 5246.	1.8	13
1782	The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiological Research, 2022, 261, 127056.	2.5	7
1783	A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. Nature Plants, 2022, 8, 561-573.	4.7	24
1784	Revisiting soil-plant-microbes interactions: Key factors for soil health and productivity. , 2022, , 125-154.		1
1786	Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress. Plant Physiology, 2022, 189, 2481-2499.	2.3	12
1787	Functions of arbuscular mycorrhizal fungi in horticultural crops. Scientia Horticulturae, 2022, 303, 111219.	1.7	16
1788	Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 2022, 23, 5960.	1.8	23
1789	Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiology Reviews, 2022, 46, .	3.9	14
1790	The tomato cytochrome <scp>P450 CYP712G1</scp> catalyses the double oxidation of orobanchol <i>en route</i> to the rhizosphere signalling strigolactone, solanacol. New Phytologist, 2022, 235, 1884-1899.	3.5	19
1791	Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives. New Phytologist, 2022, 236, 1140-1153.	3.5	24
1792	Expansion of the Strigolactone Profluorescent Probes Repertory: The Right Probe for the Right Application. Frontiers in Plant Science, 2022, 13, .	1.7	4
1793	Plant–microbe interactions that have impacted plant terrestrializations. Plant Physiology, 2022, 190, 72-84.	2.3	10
1795	Strigolactone signaling complex formation in yeast: A paradigm for studying hormone-induced receptor interaction with multiple downstream proteins. Methods in Enzymology, 2022, , .	0.4	0
1796	The Role of Phytohormones in Cross-communication Between Plants and Rhizo-Microbes. Rhizosphere Biology, 2022, , 59-97.	0.4	1

ARTICLE

IF CITATIONS

Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 7 Effects of Conventional and Organic Agriculture on Soil Arbuscular Mycorrhizal Fungal Community

1799	in Low-Quality Farmland. Frontiers in Microbiology, 0, 13, .	1.5	11
1800	<i>MAX2</i> -dependent competence for callus formation and shoot regeneration from <i>Arabidopsis thaliana</i> root explants. Journal of Experimental Botany, 2022, 73, 6272-6291.	2.4	4
1801	Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell, 2022, 34, 3168-3182.	3.1	37
1802	Deciphering the role of phytohormones in the regulation of arbuscular mycorrhizal fungal symbiosis and mechanisms involved. , 2022, , 427-447.		0
1803	The impact of host plant (<i>Pinus thunbergii</i>) on the mycelial features of the ectomycorrhizal fungus <i>Rhizopogon roseolus</i> . Mycologia, 2022, 114, 670-681.	0.8	0
1804	Root Exudates: Mechanistic Insight of Plant Growth Promoting Rhizobacteria for Sustainable Crop Production. Frontiers in Microbiology, 0, 13, .	1.5	74
1805	Noncanonical Strigolactone Analogues Highlight Selectivity for Stimulating Germination in Two <i>Phelipanche ramosa</i> Populations. Journal of Natural Products, 2022, 85, 1976-1992.	1.5	7
1806	Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. Frontiers in Plant Science, 0, 13, .	1.7	0
1807	A <i>KARRIKIN INSENSITIVE2</i> paralog in lettuce mediates highly sensitive germination responses to karrikinolide. Plant Physiology, 2022, 190, 1440-1456.	2.3	7
1808	Supra-organismal regulation of strigolactone exudation and plant development in response to rhizospheric cues in rice. Current Biology, 2022, 32, 3601-3608.e3.	1.8	12
1809	Strigolactones and Cytokinin Interaction in Buds in the Control of Rice Tillering. Frontiers in Plant Science, 0, 13, .	1.7	14
1810	An ancestral function of strigolactones as symbiotic rhizosphere signals. Nature Communications, 2022, 13, .	5.8	55
1811	Environmental strigolactone drives early growth responses to neighboring plants and soil volume in pea. Current Biology, 2022, 32, 3593-3600.e3.	1.8	13
1813	Strigolactones: A new player in regulating adventitious root formation. , 2023, , 343-366.		0
1814	Development of Strigolactones as Novel Autophagy/Mitophagy Inhibitors against Colorectal Cancer Cells by Blocking the Autophagosome–Lysosome Fusion. Journal of Medicinal Chemistry, 2022, 65, 9706-9717.	2.9	8
1815	Functions of Lipids in Development and Reproduction of Arbuscular Mycorrhizal Fungi. Plant and Cell Physiology, 2022, 63, 1356-1365.	1.5	16
1816	Plant development: Sizing up the competition withÂstrigolactones. Current Biology, 2022, 32, R884-R886.	1.8	3

ARTICLE IF CITATIONS Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants. Nature 1817 16 5.8 Communications, 2022, 13, . Las micorrizas como una herramienta para la restauraci \tilde{A}^3 n ecol \tilde{A}^3 gica. Acta Botanica Mexicana, 2022, , . 1818 0.1 Flavonoids affect the endophytic bacterial community in Ginkgo biloba leaves with increasing 1819 1.7 8 altitude. Frontiers in Plant Science, 0, 13, . Cloning and Prokaryotic Expression of Carotenoid Cleavage Dioxygenases from Mulberry (Morus) Tj ETQq1 1 0.7843 14 rgBT Overloc Non-volatile signals and redox mechanisms are required for the responses of Arabidopsis roots 1821 2.4 1 to<i>Pseudomonas oryzihabitans</i>. Journal of Experimental Botany, 2022, 73, 6971-6982. Strigolactones interact with other phytohormones to modulate plant root growth and development. 2.3 24 Crop Journal, 2022, 10, 1517-1527 Spatial range, temporal span, and promiscuity of CLE-RLK signaling. Frontiers in Plant Science, 0, 13, . 1823 1.7 6 Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. Plant Journal, 2022, 1824 2.8 111, 1688-1700. Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application. 1825 7 1.0 Journal of Plant Interactions, 2022, 17, 824-839. Mycorrhiza: An Ecofriendly Bio-Tool for Better Survival of Plants in Nature. Sustainability, 2022, 14, 1.6 10220. Functional diversity and metabolic engineering of plant specialized metabolites., 0,,. 1827 2 Molecular and Enzymatic Characterization of 9-Cis-epoxycarotenoid Dioxygenases from Mulberry. 0.7 Protein Journal, 2022, 41, 504-514. Nanosensor Applications in Plant Science. Biosensors, 2022, 12, 675. 1829 2.3 8 Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. 2.5 23 Microbiological Research, 2022, 265, 127199. 1832 Arbuscular Mycorrhizal Fungi in Phytoremediation., 2022, , 153-183. 1 Strigolactones Stimulate High Light Stress Adaptation by Modulating Photosynthesis Rate in 2.8 Arabidopsis. Journal of Plant Growth Regulation, 2023, 42, 4818-4833. 9-cis-Î²-Apo-10Ê¹-carotenal is the precursor of strigolactones in planta. Planta, 2022, 256, . 1834 1.6 12 Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of 1.8 MAMP receptors. Current Biology, 2022, 32, 4428-4437.e3.

#	Article	IF	Citations
1836	CpMAX1a, a Cytochrome P450 Monooxygenase Gene of Chimonanthus praecox Regulates Shoot Branching in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 10888.	1.8	4
1837	Strigolactone agonists/antagonists for agricultural applications: New opportunities. , 2022, 1, 61-72.		6
1838	Distinct Responses to Pathogenic and Symbionic Microorganisms: The Role of Plant Immunity. International Journal of Molecular Sciences, 2022, 23, 10427.	1.8	4
1839	A mathematical model for strigolactone biosynthesis in plants. Frontiers in Plant Science, 0, 13, .	1.7	1
1840	Crystal structure of <i>Arabidopsis</i> DWARF14‣IKE2 (DLK2) reveals a distinct substrate binding pocket architecture. Plant Direct, 2022, 6, .	0.8	1
1841	Genome-Wide Identification of SMXL Gene Family in Soybean and Expression Analysis of GmSMXLs under Shade Stress. Plants, 2022, 11, 2410.	1.6	6
1842	"The Key Influencers―of Rhizosphere Microbial Population Dynamics. Microorganisms for Sustainability, 2022, , 123-132.	0.4	0
1843	Strigolactones: Current research progress in the response of plants to abiotic stress. , 2023, 78, 307-318.		5
1844	The Perspective of Arbuscular Mycorrhizal Symbiosis in Rice Domestication and Breeding. International Journal of Molecular Sciences, 2022, 23, 12383.	1.8	4
1845	PANOMICS at the interface of root–soil microbiome and BNI. Trends in Plant Science, 2023, 28, 106-122.	4.3	12
1846	Are the cyst nematode hatching factor eclepins rhizosphere signalling molecules? Solanoeclepin A regulates gene expression in plants. Open Research Europe, 0, 2, 122.	2.0	0
1847	The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress. The EuroBiotech Journal, 2022, 6, 174-182.	0.5	1
1848	A phosphate starvation responseâ€regulated receptorâ€like kinase, <scp>OsADK1,</scp> is required for mycorrhizal symbiosis and phosphate starvation responses. New Phytologist, 2022, 236, 2282-2293.	3.5	12
1849	Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant, Cell and Environment, 2022, 45, 3611-3630.	2.8	17
1850	Factors Affecting Mycorrhizal Activity. , 0, , .		0
1851	<i>ZAXINONE SYNTHASE 2</i> regulates growth and arbuscular mycorrhizal symbiosis in rice. Plant Physiology, 2023, 191, 382-399.	2.3	9
1852	Production and stably maintenance of strigolactone by transient expression of biosynthetic enzymes in Nicotiana benthamiana. Frontiers in Plant Science, 0, 13, .	1.7	0
1853	Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. Plants, 2022, 11, 2604.	1.6	26

#	Article	IF	CITATIONS
1854	Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. Science Advances, 2022, 8, .	4.7	34
1855	Characterization of Conyza bonariensis Allelochemicals against Broomrape Weeds. Molecules, 2022, 27, 7421.	1.7	5
1857	Adaptive Responses of Crop Species Against Phosphorus Deficiency. Sustainable Agriculture Reviews, 2023, , 69-91.	0.6	1
1858	Plant specialized metabolites in the rhizosphere of tomatoes: secretion and effects on microorganisms. Bioscience, Biotechnology and Biochemistry, 2022, 87, 13-20.	0.6	13
1860	Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome. Microbiome, 2022, 10, .	4.9	14
1861	Soil microbiota promotes early developmental stages of Phelipanche ramosa L. Pomel during plant parasitism on Brassica napus L Plant and Soil, 0, , .	1.8	5
1862	Epigenetic Regulation of Fungal Genes Involved in Plant Colonization. , 2023, , 255-281.		0
1863	Phenotypic Diversity in Pre- and Post-Attachment Resistance to Striga hermonthica in a Core Collection of Rice Germplasms. Plants, 2023, 12, 19.	1.6	3
1864	Longâ€lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in <i>Medicago truncatula</i> . New Phytologist, 2023, 237, 2316-2331.	3.5	14
1865	Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications. Earth Systems and Environment, 2023, 7, 321-345.	3.0	23
1866	Comprehensive analysis of the carboxylesterase gene reveals that NtCXE22 regulates axillary bud growth through strigolactone metabolism in tobacco. Frontiers in Plant Science, 0, 13, .	1.7	1
1868	Improving the adventitious rooting ability of hard-to-root olive (Olea europaea L.) cultivar cuttings through inhibiting strigolactone biosynthesis. Frontiers in Life Sciences and Related Technologies, 2022, 3, 134-137.	0.4	1
1869	The effects of strigolactones on some biochemical traits in calcified media on grapevine. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12816.	0.5	0
1870	Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals. Bioscience, Biotechnology and Biochemistry, 2023, 87, 247-255.	0.6	2
1871	Shaping effects of rice, wheat, maize, and soybean seedlings on their rhizosphere microbial community. Environmental Science and Pollution Research, 2023, 30, 35972-35984.	2.7	1
1872	Volatile organic compounds shape belowground plant–fungi interactions. Frontiers in Plant Science, 0, 13, .	1.7	5
1873	Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. Journal of Experimental Botany, 2023, 74, 6104-6118.	2.4	7
1874	Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency. Current Microbiology, 2023, 80, .	1.0	7

#	Article	IF	CITATIONS
1875	Identification of novel canonical strigolactones produced by tomato. Frontiers in Plant Science, 0, 13,	1.7	6
1876	Specialized metabolites as versatile tools in shaping plant–microbe associations. Molecular Plant, 2023, 16, 122-144.	3.9	10
1877	Local and systemic targets of the MtCLE35-SUNN pathway in the roots of Medicago truncatula. Journal of Plant Physiology, 2023, 281, 153922.	1.6	0
1878	Plants Recruit Peptides and Micro RNAs to Regulate Nutrient Acquisition from Soil and Symbiosis. Plants, 2023, 12, 187.	1.6	3
1879	Maize resistance to witchweed through changes in strigolactone biosynthesis. Science, 2023, 379, 94-99.	6.0	22
1880	Flavonoids promote Rhizophagus irregularis spore germination and tomato root colonization: A target for sustainable agriculture. Frontiers in Plant Science, 0, 13, .	1.7	2
1881	Strigolactone regulates adventitious root formation via the MdSMXL7â€MdWRKY6â€ <i>MdBRC1</i> signaling cascade in apple. Plant Journal, 2023, 113, 772-786.	2.8	3
1882	Physical and Biochemical Changes Induced by Strigolactones on Calcareous Environments in Grapevine. Erwerbs-Obstbau, 2023, 65, 1941-1953.	0.5	0
1883	Roles of Long-Distance Signals in Nitrogen, Phosphorus, and Sulfur Uptake and Sensing in Plants. , 2023, , 273-300.		0
1884	Population Response of Rhizosphere Microbiota of Garden Pea Genotypes to Inoculation with Arbuscular Mycorrhizal Fungi. International Journal of Molecular Sciences, 2023, 24, 1119.	1.8	0
1885	The utilization and molecular mechanism of arbuscular mycorrhizal symbiosis in vegetables. Vegetable Research, 2023, 3, 1-7.	0.2	0
1886	The smartest plant?. Plant and Soil, 0, , .	1.8	1
1887	Nutritional and tissue-specific regulation of cytochrome P450 CYP711A <i>MAX1</i> homologues and strigolactone biosynthesis in wheat. Journal of Experimental Botany, 2023, 74, 1890-1910.	2.4	8
1888	Arbuscular mycorrhizal fungi symbiosis and food security. , 2023, , 227-244.		0
1889	Fungal mycorrhizae from plants roots. , 2023, , 133-160.		0
1890	Byâ€Products of <i>Zea mays</i> L.: A Promising Source of Medicinal Properties with Phytochemistry and Pharmacological Activities: A Comprehensive Review. Chemistry and Biodiversity, 2023, 20, .	1.0	2
1891	Multifaceted roles of root exudates in light of plant-microbe interaction. , 2023, , 49-76.		4
1892	Strigolactones: diversity, perception, and hydrolysis. Phytochemistry Reviews, 2023, 22, 339-359.	3.1	12

#	Article	IF	CITATIONS
1893	Water stress protection by the arbuscular mycorrhizal fungus <i>Rhizoglomus irregulare</i> involves physiological and hormonal responses in an organâ€specific manner. Physiologia Plantarum, 2023, 175, .	2.6	8
1895	Rhizosphere biology. , 2023, , 587-614.		0
1896	A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Frontiers in Microbiology, 0, 13, .	1.5	5
1897	Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966.	2.3	6
1898	Rhizosphere Mycobiome: Roles, Diversity, and Dynamics. , 2023, , 47-61.		0
1899	Desmethyl type germinone, a specific agonist for the HTL/KAI2 receptor, induces the Arabidopsis seed germination in a gibberellin-independent manner. Biochemical and Biophysical Research Communications, 2023, 649, 110-117.	1.0	0
1900	Arbuscular Mycorrhizal Fungi (AMF) for Improved Plant Health and Production. , 2021, , 147-169.		1
1901	Performance of different bacteria-microalgae-fungi consortium cultivation in nutrient removal and biogas upgrading by induction of GR24 and 5-Deoxystrigol. Journal of Cleaner Production, 2023, 392, 136292.	4.6	6
1902	Examination of Different Sporidium Numbers of Ustilago maydis Infection on Two Hungarian Sweet Corn Hybrids' Characteristics at Vegetative and Generative Stages. Life, 2023, 13, 433.	1.1	0
1904	Dynamic variation of Paris polyphylla root-associated microbiome assembly with planting years. Planta, 2023, 257, .	1.6	6
1906	Regulatory role of phytohormones in plant growth and development. , 2023, , 1-13.		1
1907	Does zaxinone counteract strigolactones in shaping rice architecture?. Plant Signaling and Behavior, 2023, 18, .	1.2	0
1908	Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 2023, 74, 569-607.	8.6	48
1909	SIIAA23â€SIARF6 module controls arbuscular mycorrhizal symbiosis by regulating strigolactone biosynthesis in tomato. Plant, Cell and Environment, 2023, 46, 1921-1934.	2.8	2
1910	Adaptation of Antioxidant Enzymes in Robinia Pseudoacacia L. Grown in Cadmium-Contaminated Soils under Elevated CO2 to Arbuscular Mycorrhizal Symbiosis. Journal of Soil Science and Plant Nutrition, 2023, 23, 2451-2464.	1.7	0
1911	Role of strigolactones in rhizobiology: Plant-microbe interactions. , 2023, , 13-25.		1
1912	Novel and efficient stereoselective synthesis of (±)-orobanchol, a representative canonical strigolactone, based on acid-mediated cascade cyclization. Tetrahedron Letters, 2023, 120, 154454.	0.7	1
1914	Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum lycopersicum through Reducing the Oxidative Damage. Sustainability, 2023, 15, 5805.	1.6	5

#	Article	IF	Citations
1915	Individual and combined effects of arbuscular mycorrhizal fungi and phytohormones on the growth and physiobiochemical characteristics of tea cutting seedlings. Frontiers in Plant Science, 0, 14, .	1.7	1
1916	Plant latent defense response against compatibility. ISME Journal, 2023, 17, 787-791.	4.4	3
1918	Engineering Approach for Production of Arbuscular Mycorrhizal Inoculum Adapted to Saline Soil Management. Stresses, 2023, 3, 404-423.	1.8	1
1919	Synthesis of Carlactone Derivatives to Develop a Novel Inhibitor of Strigolactone Biosynthesis. ACS Omega, 2023, 8, 13855-13862.	1.6	0
1921	A Divergent Clade KAI2 Protein in the Root Parasitic Plant <i>Orobanche minor</i> Is a Highly Sensitive Strigolactone Receptor and Is Involved in the Perception of Sesquiterpene Lactones. Plant and Cell Physiology, 2023, 64, 996-1007.	1.5	7
1922	Lessons from a century of apical dominance research. Journal of Experimental Botany, 2023, 74, 3903-3922.	2.4	10
1923	Mechanistic basis of the symbiotic signaling pathway between the host and the pathogen. , 2023, , 375-387.		0
1933	Animal and plant hormone. , 2023, , 151-175.		0
1934	Gene Expression Profiling in Orchid Mycorrhizae to Decipher the Molecular Mechanisms of Plant–Fungus Interactions. , 2023, , 145-162.		1
1940	Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Functional and Integrative Genomics, 2023, 23, .	1.4	8
1941	Development and Resource Exchange Processes in Root Symbioses of Legumes. , 0, , .		0
1942	Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals. , 2023, , 179-211.		1
1956	Trichoderma-Based Bioinoculant: A Potential Tool for Sustainable Rice Cultivation. , 2023, , 239-264.		1
1959	Primary and Secondary Metabolites in <i>Lotus japonicus</i> . Journal of Agricultural and Food Chemistry, 2023, 71, 11277-11303.	2.4	3
1960	Molecular genetics of arbuscular mycorrhizal symbiosis. , 2023, , 67-97.		0
1961	Signaling in arbuscular mycorrhizal association. , 2023, , 127-135.		0
1962	Signaling in mycorrhizal symbioses. , 2023, , 117-126.		0
1976	Role of soil abiotic processes on phosphorus availability and plant responses with a focus on strigolactones in tomato plants. Plant and Soil, 2024, 494, 1-49.	1.8	3

		CITATION REPORT	
#	Article	IF	CITATIONS
1979	Plant health: Feedback effect of root exudates and rhizobiome interactions. , 2023, , 345-375.		0
1993	Prospects for the Use of Metabolomics Engineering in Exploring and Harnessing Chemical Sign Root Galls. , 2023, , 309-338.	naling in	0
1999	Significance and Exploitation of Rhizosphere Chemical Signaling Metabolites for Enhancing Sc Nutrient Transformation. Journal of Soil Science and Plant Nutrition, 0, , .	oil 1.7	0
2010	Striga Germination Stimulant Analysis. , 2024, , 115-141.		0
2014	Plant-associated Arbuscular mycorrhizal fungi: their role in plant nutrition. , 2024, , 65-79.		0
2018	Signaling Events During the Establishment of Symbiosis Between Arbuscular Mycorrhizal Fung Plant Roots. , 2024, , 67-97.	çi and	0
2019	Roles of Arbuscular Mycorrhizal Fungi for Essential Nutrient Acquisition Under Nutrient Deficie in Plants. , 2024, , 123-148.	ency	0
2023	Signals and Host Cell Remodeling in Arbuscular Mycorrhizal Symbiosis. , 2024, , 231-247.		0
2024	Masters of Manipulation: How Our Molecular Understanding of Model Symbiotic Fungi and Th Hosts Is Changing the Face of "Mutualism― , 2024, , 249-272.	ıeir	0
2026	Arbuscular Mycorrhizal Fungi: A Potential Agent for Phytonematodes Management in Diverse Agro-climatic Zones. , 2024, , 147-169.		0
2032	Plant Phenolics: Role in Biotic Stress Alleviation and Plant Microbe Interactions. , 2024, , 95-11	19.	0
2033	Role of Phenolics in Establishing Mycorrhizal Association in Plants for Management of Biotic S 2024, , 35-74.	tress.,	0
2038	Strigolactones as plant hormone: An overview. , 2024, , 1-13.		0
2039	Role of strigolactones signals in plant roots for fungal symbionts and parasitic weeds. , 2024,	, 75-88.	0
2040	Regulatory role of strigolactones in abiotic stress tolerance. , 2024, , 201-220.		0
2041	Regulatory role of strigolactones in biotic stress tolerance. , 2024, , 189-200.		0
2042	Strigolactones: Biosynthesis, regulation, signaling, roles, and response to stress. , 2024, , 147	-188.	0
2043	Nature and biosynthesis of strigolactones in plants. , 2024, , 15-41.		0

#	Article	IF	CITATIONS
2044	Strigolactones interplay with signaling molecules of plant. , 2024, , 127-145.		0
2045	Implications of strigolactones in plant biology: Achievements, future perspectives, and challenges. , 2024, , 221-236.		0