Chaotic capture of Jupiter's Trojan asteroids in the early

Nature 435, 462-465 DOI: 10.1038/nature03540

Citation Report

#	Article	IF	CITATIONS
2	The Instability of Venus Trojans. Astronomical Journal, 2005, 130, 2912-2915.	1.9	25
3	Spitzer Space TelescopeObservations of G Dwarfs in the Pleiades: Circumstellar Debris Disks at 100 Myr Age. Astronomical Journal, 2005, 130, 1834-1844.	1.9	45
4	Commission 16: Physical Study of Planets and Satellites. Proceedings of the International Astronomical Union, 2005, 1, 143-152.	0.0	0
5	Origin of the orbital architecture of the giant planets of the Solar System. Nature, 2005, 435, 459-461.	13.7	1,186
6	Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 2005, 435, 466-469.	13.7	1,444
7	When giants roamed. Nature, 2005, 435, 432-433.	13.7	5
8	A blank canvas no more. Nature, 2005, 435, 433-434.	13.7	5
9	Building of a Habitable Planet. , 2006, , 97-151.		1
10	Observational Constraints on Trojans of Transiting Extrasolar Planets. Astrophysical Journal, 2006, 652, L137-L140.	1.6	98
11	Nuclear Spectra of Comet 162P/Siding Spring (2004 TU12). Astronomical Journal, 2006, 132, 1346-1353.	1.9	38
12	The capture of Centaurs as Trojans. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 367, L20-L23.	1.2	64
13	On the stability of hypothetical satellites coorbital to Mimas or Enceladus. Monthly Notices of the Royal Astronomical Society, 2006, 372, 1614-1620.	1.6	3
14	The resonant structure of Jupiter's Trojan asteroids - I. Long-term stability and diffusion. Monthly Notices of the Royal Astronomical Society, 2006, 372, 1463-1482.	1.6	100
15	A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus. Nature, 2006, 439, 565-56	713.7	112
16	Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates. Icarus, 2006, 182, 496-512.	1.1	150
17	The surface composition of Jupiter Trojans: Visible and near-infrared survey of dynamical families. Icarus, 2006, 183, 420-434.	1.1	45
18	Irregular satellite capture during planetary resonance passage. Icarus, 2006, 183, 362-372.	1.1	14
19	Terrestrial planet formation with strong dynamical friction. Icarus, 2006, 184, 39-58.	1.1	372

ATION REDOR

#	Article	IF	CITATIONS
20	A distant planetary-mass solar companion may have produced distant detached objects. Icarus, 2006, 184, 589-601.	1.1	79
21	4. Building of a Habitable Planet. Earth, Moon and Planets, 2006, 98, 97-151.	0.3	30
22	A Thick Cloud of Neptune Trojans and Their Colors. Science, 2006, 313, 511-514.	6.0	116
23	PLANETARY SCIENCE: Puzzling Neptune Trojans. Science, 2006, 313, 451-452.	6.0	6
24	Pluto, Charon, and the Kuiper Belt Objects. , 2007, , 541-564.		0
25	Pluto, Charon, and the Kuiper Belt Objects. , 2007, , 653-671.		0
26	Trans-Neptunian Objects and Comets. , 2007, , .		3
27	Using Transit Timing Observations to Search for Trojans of Transiting Extrasolar Planets. Astrophysical Journal, 2007, 664, L51-L54.	1.6	112
28	Spectroscopic Search for Water Ice on Jovian Trojan Asteroids. Astronomical Journal, 2007, 134, 223-228.	1.9	37
29	Survey of the stability region of hypothetical habitableÂTrojanÂplanets. Astronomy and Astrophysics, 2007, 474, 1023-1029.	2.1	33
30	Paris to Hektor: A Concept for a Mission to the Jovian Trojan Asteroids. AIP Conference Proceedings, 2007, , .	0.3	2
31	Extrasolar Planetary Dynamics with a Generalized Planar Laplace‣agrange Secular Theory. Astrophysical Journal, 2007, 661, 1311-1322.	1.6	28
32	Mass Distribution and Planet Formation in the Solar Nebula. Astrophysical Journal, 2007, 671, 878-893.	1.6	179
33	Nuclear Spectra of Comet 28P Neujmin 1. Astronomical Journal, 2007, 134, 1626-1633.	1.9	10
34	Capture of Irregular Satellites during Planetary Encounters. Astronomical Journal, 2007, 133, 1962-1976.	1.9	181
35	Fraction of Contact Binary Trojan Asteroids. Astronomical Journal, 2007, 134, 1133-1144.	1.9	38
36	Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture. Astronomical Journal, 2007, 134, 1790-1798.	1.9	268
37	On the dynamics of Trojan planets in extrasolar planetary systems. Proceedings of the International Astronomical Union, 2007, 3, 461-468.	0.0	4

#	Article	IF	CITATIONS
38	Impacts in the primordial history of terrestrial planets. Comptes Rendus - Geoscience, 2007, 339, 907-916.	0.4	10
39	Review of the population of impactors and the impact cratering rate in the inner solar system. Meteoritics and Planetary Science, 2007, 42, 1861-1869.	0.7	16
40	Irregular Satellites of the Planets: Products of Capture in the Early Solar System. Annual Review of Astronomy and Astrophysics, 2007, 45, 261-295.	8.1	121
41	Chondrites and the Protoplanetary Disk. Annual Review of Earth and Planetary Sciences, 2007, 35, 577-620.	4.6	201
42	The origin of the high-inclination Neptune Trojan 2005 TN53. Astronomy and Astrophysics, 2007, 464, 775-778.	2.1	10
43	Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astronomy and Astrophysics, 2007, 463, 359-367.	2.1	55
44	Terrestrial Planets in Extrasolar Planetary Systems. , 0, , 27-49.		1
45	Visible spectroscopic and photometric survey of Jupiter Trojans: Final results on dynamical familiesâ~†. Icarus, 2007, 190, 622-642.	1.1	86
46	The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 2007, 191, 158-171.	1.1	211
47	A deeper look at the colors of the saturnian irregular satellites. Icarus, 2007, 191, 267-285.	1.1	20
48	The primordial excitation and clearing of the asteroid belt—Revisited. Icarus, 2007, 191, 434-452.	1.1	151
49	The long term stability of coorbital moons of the satellites of Saturn. Icarus, 2007, 192, 106-116.	1.1	6
50	The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1393-1406.	1.6	82
51	Dynamics of Jupiter Trojans during the 2:1 mean motion resonance crossing of Jupiter and Saturn. Monthly Notices of the Royal Astronomical Society, 2007, 380, 479-488.	1.6	30
52	Secondary resonances of co-orbital motions. Monthly Notices of the Royal Astronomical Society, 2007, 381, 33-40.	1.6	51
53	Constraints on the Formation Regions of Comets from their D:H Ratios. Earth, Moon and Planets, 2007, 100, 43-56.	0.3	36
54	Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus, 2007, 186, 498-516.	1.1	169
55	Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?. Icarus, 2007, 190, 203-223.	1.1	119

	CITATION RE	PORT	
#	Article	IF	CITATIONS
56	Composition of the L5 Mars Trojans: Neighbors, not siblings. Icarus, 2007, 192, 434-441.	1.1	38
57	Observations of asteroids with ALMA. Astrophysics and Space Science, 2008, 313, 191-196.	0.5	7
58	A centenary survey of orbits of co-orbitals of Jupiter. Planetary and Space Science, 2008, 56, 358-367.	0.9	13
59	Constraints from deuterium on the formation of icy bodies in the Jovian system and beyond. Planetary and Space Science, 2008, 56, 1585-1595.	0.9	14
60	Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 2008, 196, 258-273.	1.1	385
61	Physical properties and orbital stability of the Trojan asteroids. Icarus, 2008, 195, 686-697.	1.1	28
62	Oxygen and Asteroids. Reviews in Mineralogy and Geochemistry, 2008, 68, 273-343.	2.2	12
63	Asteroid families in the first-order resonances with Jupiter. Monthly Notices of the Royal Astronomical Society, 2008, 390, 715-732.	1.6	63
64	A new perspective on the irregular satellites of Saturn - I. Dynamical and collisional history. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1029-1051.	1.6	22
65	Evolution of Debris Disks. Annual Review of Astronomy and Astrophysics, 2008, 46, 339-383.	8.1	728
66	Oxygen and Other Volatiles in the Giant Planets and their Satellites. Reviews in Mineralogy and Geochemistry, 2008, 68, 219-246.	2.2	40
67	AN OUTER PLANET BEYOND PLUTO AND THE ORIGIN OF THE TRANS-NEPTUNIAN BELT ARCHITECTURE. Astronomical Journal, 2008, 135, 1161-1200.	1.9	105
68	A Comparative Study of Size Distributions for Small L4 and L5 Jovian Trojans. Publication of the Astronomical Society of Japan, 2008, 60, 297-301.	1.0	30
69	IRREGULAR SATELLITE CAPTURE BY EXCHANGE REACTIONS. Astronomical Journal, 2008, 136, 1463-1476.	1.9	39
70	Stable Lagrange points of large planets as possible regions where WIMPs could be sought. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 335201.	0.7	1
71	Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors. Astronomy and Astrophysics, 2008, 483, 911-931.	2.1	71
72	ON A SCATTERED-DISK ORIGIN FOR THE 2003 EL ₆₁ COLLISIONAL FAMILY—AN EXAMPLE OF THE IMPORTANCE OF COLLISIONS ON THE DYNAMICS OF SMALL BODIES. Astronomical Journal, 2008, 136, 1079-1088.	1.9	51
73	10. Oxygen and Other Volatiles in the Giant Planets and their Satellites. , 2008, , 219-246.		3

IF ARTICLE CITATIONS # 12. Oxygen and Asteroids. , 2008, , 273-344. 74 4 Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astronomy and 2.1 Astrophysics, 2008, 482, 333-340. Nebular gas drag and co-orbital system dynamics. Astronomy and Astrophysics, 2008, 481, 519-527. 76 2.1 8 DYNAMICS AND ECCENTRICITY FORMATION OF PLANETS IN OGLE-06-109L SYSTEM. Astrophysical Journal, 2009, 706, 772-784. EMPIRICAL CONSTRAINTS ON TROJAN COMPANIONS AND ORBITAL ECCENTRICITIES IN 25 TRANSITING 78 1.6 69 EXOPLANETARY SYSTEMS. Astrophysical Journal, 2009, 693, 784-793. Standing on the shoulders of giants. Astronomy and Astrophysics, 2009, 493, 1125-1139. 79 2.1 80 Protoplanetary disk evolution., 0,, 65-108. 0 SPEED LIMIT ON NEPTUNE MIGRATION IMPOSED BY SATURN TILTING. Astrophysical Journal, 2009, 702, 1.6 L19-L22. WILL THE LARGE SYNOPTIC SURVEY TELESCOPE DETECT EXTRA-SOLAR PLANETESIMALS ENTERING THE SOLAR 82 1.6 93 SYSTEM?. Astrophysical Journal, 2009, 704, 733-742. Search for cold debris disks around M-dwarfs. II. Astronomy and Astrophysics, 2009, 506, 1455-1467. 2.1 Protoplanetary disk structure., 0,, 34-64. 84 0 Observations of planetary systems., 0, , 1-33. FORMATION, SURVIVAL, AND DETECTABILITY OF PLANETS BEYOND 100 AU. Astrophysical Journal, 2009, 696, 86 1.6 130 1600-1611. CHAOTIC CAPTURE OF NEPTUNE TROJANS. Astronomical Journal, 2009, 137, 5003-5011. 87 ALBEDOS OF SMALL JOVIAN TROJANS. Astronomical Journal, 2009, 138, 240-250. 88 1.9 43 The correlated colors of transneptunian binaries. Icarus, 2009, 200, 292-303. Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 2009, 203, 90 356 1.1 644-662. E–ELT: Expected Applications to Asteroid Observations in the Thermal Infrared. Earth, Moon and Planets, 2009, 105, 235-247.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
92	On the origin of the Kuiper belt. Celestial Mechanics and Dynamical Astronomy, 2009,	104, 39-51.	0.5	14
93	Stability of Trojan planets in multi-planetary systems. Celestial Mechanics and Dynamic 2009, 104, 69-84.	cal Astronomy,	0.5	41
94	LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Prog Astronomy, 2009, 23, 849-892.	gramme. Experimental	1.6	38
95	A new perspective on the irregular satellites of Saturn - II. Dynamical and physical origi Notices of the Royal Astronomical Society, 2009, 392, 455-474.	n. Monthly	1.6	21
96	The history of the Solar system's debris disc: observable properties of the Kuiper belt. Notices of the Royal Astronomical Society, 2009, 399, 385-398.	Monthly	1.6	98
97	Origin and dynamical evolution of Neptune Trojans - I. Formation and planetary migrat Notices of the Royal Astronomical Society, 2009, 398, 1715-1729.	ion. Monthly	1.6	55
98	The resonant structure of Jupiter's Trojan asteroids - II. What happens for different con the planetary system. Monthly Notices of the Royal Astronomical Society, 2009, 399, o	figurations of 69-87.	1.6	70
99	Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 200	9, 460, 364-366.	13.7	250
100	(U)BVRI photometry of Trojan L5 asteroids. Icarus, 2009, 199, 106-118.		1.1	12
101	Did Saturn's rings form during the Late Heavy Bombardment?. Icarus, 2009, 199, 413-	428.	1.1	107
102	The colors of cometary nuclei—Comparison with other primitive bodies of the Solar S implications for their origin. Icarus, 2009, 201, 674-713.	System and	1.1	57
103	Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Tro 2009, 202, 310-315.	jans. Icarus,	1.1	55
104	Calculation of the enrichment of the giant planet envelopes during the "late heavy Planetary and Space Science, 2009, 57, 816-821.	bombardment―	0.9	17
105	SHOTPUT: A JPL Planetary Summer Science School study. , 2009, , .			0
106	Water on Planets. Proceedings of the International Astronomical Union, 2009, 5, 29-4	4.	0.0	1
107	On the origin of shocked and unshocked CM clasts in Hâ€chondrite regolith breccias. Planetary Science, 2009, 44, 701-724.	Meteoritics and	0.7	42
109	Dynamical constraints on the origin of Main Belt comets. Meteoritics and Planetary Sc 1863-1869.	ience, 2009, 44,	0.7	47
110	Dynamics, Origin, and Activation of Main Belt Comets. Proceedings of the Internationa Union, 2009, 5, 207-214.	al Astronomical	0.0	4

~	~	
$(\Box T \Delta T)$	าพ R	FPORT
CILAIN		

#	Article	IF	CITATIONS
111	Searching for minor absorptions on D-type asteroids. Proceedings of the International Astronomical Union, 2009, 5, 231-236.	0.0	0
112	MINIMUM MASS SOLAR NEBULAE AND PLANETARY MIGRATION. Astrophysical Journal, 2009, 698, 606-614.	1.6	61
113	THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS. Astrophysical Journal Letters, 2010, 723, L233-L237.	3.0	53
114	COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS. Astrophysical Journal, 2010, 713, 816-836.	1.6	422
115	Dynamics of small bodies in the solar system. European Physical Journal: Special Topics, 2010, 186, 67-89.	1.2	8
116	A coherent and comprehensive model of the evolution of the outer Solar System. Comptes Rendus Physique, 2010, 11, 651-659.	0.3	36
117	Making the Earth: Combining dynamics and chemistry in the Solar System. Icarus, 2010, 205, 321-337.	1.1	81
118	The formation of Uranus and Neptune in solid-rich feeding zones: Connecting chemistry and dynamics. Icarus, 2010, 207, 491-498.	1.1	44
119	Origin of a partially differentiated Titan. Icarus, 2010, 209, 858-862.	1.1	42
120	Where are the Uranus Trojans?. Celestial Mechanics and Dynamical Astronomy, 2010, 107, 51-62.	0.5	44
121	Benefits of the Proposed Magia Mission for Lunar Geology. Earth, Moon and Planets, 2010, 107, 267-297.	0.3	0
122	Planetesimals and Satellitesimals: Formation ofÂtheÂSatellite Systems. Space Science Reviews, 2010, 153, 431-446.	3.7	29
124	Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations. Icarus, 2010, 205, 505-515.	1.1	68
125	Phase curves of nine Trojan asteroids over a wide range of phase angles. Icarus, 2010, 207, 699-713.	1.1	10
126	Constraints on the source of lunar cataclysm impactors. Icarus, 2010, 207, 590-594.	1.1	48
127	A peculiar family of Jupiter Trojans: The Eurybates. Icarus, 2010, 209, 586-590.	1.1	23
128	The luminosity function of the hot and cold Kuiper belt populations. Icarus, 2010, 210, 944-955.	1.1	66
129	The accretion disc dynamo in the solar nebula. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	5

#	Article	IF	CITATIONS
130	The capture of Trojan asteroids by the giant planets during planetary migration. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	22
131	Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment. Nature Geoscience, 2010, 3, 164-167.	5.4	73
132	UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT. Astronomical Journal, 2010, 140, 350-369.	1.9	58
133	PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS. Astrophysical Journal, 2010, 711, 772-795.	1.6	127
134	ON THE ORBITAL EVOLUTION OF A GIANT PLANET PAIR EMBEDDED IN A GASEOUS DISK. I. JUPITER-SATURN CONFIGURATION. Astrophysical Journal, 2010, 714, 532-548.	1.6	43
135	Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs. Astronomy and Astrophysics, 2010, 522, A93.	2.1	66
136	Detection of a Trailing (L5) Neptune Trojan. Science, 2010, 329, 1304-1304.	6.0	28
137	THE IRREGULAR SATELLITES: THE MOST COLLISIONALLY EVOLVED POPULATIONS IN THE SOLAR SYSTEM. Astronomical Journal, 2010, 139, 994-1014.	1.9	103
138	EARLY DYNAMICAL EVOLUTION OF THE SOLAR SYSTEM: PINNING DOWN THE INITIAL CONDITIONS OF THE NICE MODEL. Astrophysical Journal, 2010, 716, 1323-1331.	1.6	101
139	FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE. Astronomical Journal, 2010, 140, 785-793.	1.9	185
140	HUBBLE SPACE TELESCOPE ASTROMETRY OF TRANS-NEPTUNIAN OBJECTS. Astrophysical Journal, Supplement Series, 2010, 189, 336-340.	3.0	1
141	Relativistic astrophysics with resonant multiple inspirals. Physical Review D, 2010, 81, .	1.6	26
142	The Pan-STARRS Synthetic Solar System Model: A Tool for Testing and Efficiency Determination of the Moving Object Processing System. Publications of the Astronomical Society of the Pacific, 2011, 123, 423-447.	1.0	50
143	Re-examination of the formation ages of the Apollo 16 regolith breccias. Geochimica Et Cosmochimica Acta, 2011, 75, 7208-7225.	1.6	46
144	PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER </i> FOR SOLAR SYSTEM SCIENCE. Astrophysical Journal, 2011, 731, 53.	1.6	604
145	Migration scenarii in extrasolar systems. EPJ Web of Conferences, 2011, 11, 04002.	0.1	0
146	Brown dwarfs and free-floating planets. , 0, , 209-216.		0

#	Article	IF	CITATIONS
148	Stripping a debris disk by close stellar encounters in an open stellar cluster. Astronomy and Astrophysics, 2011, 532, A120.	2.1	27
149	Evolution of Jovian planets in a self-gravitating planetesimal disk. Astronomy and Astrophysics, 2011, 528, A86.	2.1	6
150	Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy and Astrophysics, 2011, 533, A131.	2.1	60
151	<i>WISE</i> /NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS. Astrophysical Journal, 2011, 742, 40.	1.6	105
152	(65) Cybele: detection of small silicate grains, water-ice, and organics. Astronomy and Astrophysics, 2011, 525, A34.	2.1	101
153	Simultaneous formation of solar system giant planets. Astronomy and Astrophysics, 2011, 532, A142.	2.1	21
154	Organic materials in planetary and protoplanetary systems: nature or nurture?. Astronomy and Astrophysics, 2011, 533, A98.	2.1	27
155	THE CALIFORNIA PLANET SURVEY. III. A POSSIBLE 2:1 RESONANCE IN THE EXOPLANETARY TRIPLE SYSTEM HD 37124. Astrophysical Journal, 2011, 730, 93.	1.6	85
156	THE ANGLO-AUSTRALIAN PLANET SEARCH. XXI. A GAS-GIANT PLANET IN A ONE YEAR ORBIT AND THE HABITABILITY OF GAS-GIANT SATELLITES. Astrophysical Journal, 2011, 732, 31.	1.6	61
157	Exchange orbits: a possible application to extrasolar planetary systems?. Monthly Notices of the Royal Astronomical Society, 2011, 410, 455-460.	1.6	27
158	Collisional evolution of irregular satellite swarms: detectable dust around Solar system and extrasolar planets. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2137-2153.	1.6	64
159	Did the Hilda collisional family form during the late heavy bombardment?. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2716-2727.	1.6	38
160	Eurybates - the only asteroid family among Trojans?. Monthly Notices of the Royal Astronomical Society, 2011, 414, 565-574.	1.6	37
161	The origin of planetary system architectures - I. Multiple planet traps in gaseous discs. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1236-1259.	1.6	106
162	Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planetary and Space Science, 2011, 59, 1281-1292.	0.9	53
163	Effects of impacts on the atmospheric evolution: Comparison between Mars, Earth, and Venus. Planetary and Space Science, 2011, 59, 1087-1092.	0.9	24
164	Transformation of Trojans into quasi-satellites during planetary migration and their subsequent close-encounters with the host planet. Icarus, 2011, 215, 669-681.	1.1	7
165	Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus, 2011, 215, 603-607.	1.1	127

	CITATION REF	PORT	
#	Article	IF	CITATIONS
166	Families among high-inclination asteroids. Icarus, 2011, 216, 69-81.	1.1	75
167	The molecular composition of Comet C/2007 W1 (Boattini): Evidence of a peculiar outgassing and a rich chemistry. Icarus, 2011, 216, 227-240.	1.1	79
168	The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage. Annual Review of Astronomy and Astrophysics, 2011, 49, 471-524.	8.1	688
169	Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. Space Science Reviews, 2011, 163, 63-76.	3.7	52
170	Vesta and Ceres: Crossing the History of the Solar System. Space Science Reviews, 2011, 163, 25-40.	3.7	42
171	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. Space Science Reviews, 2011, 163, 41-61.	3.7	65
172	Space missions to small bodies: asteroids and cometary nuclei. Astronomy and Astrophysics Review, 2011, 19, 1.	9.1	43
173	The self gravity effect on the orbital stability of Twotinos. Icarus, 2011, 212, 911-919.	1.1	2
174	Optical and infrared colors of transneptunian objects observed with HST. Icarus, 2011, 213, 693-709.	1.1	32
175	Reassessing the origin of Triton. Icarus, 2011, 214, 113-130.	1.1	33
176	A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus. Astronomy and Astrophysics, 2011, 525, A31.	2.1	13
177	PHOTOEVAPORATION AS A TRUNCATION MECHANISM FOR CIRCUMPLANETARY DISKS. Astronomical Journal, 2011, 142, 168.	1.9	34
178	A NEAR-INFRARED SEARCH FOR SILICATES IN JOVIAN TROJAN ASTEROIDS. Astronomical Journal, 2011, 141, 95.	1.9	24
179	THE CANADA-FRANCE ECLIPTIC PLANE SURVEY—FULL DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT. Astronomical Journal, 2011, 142, 131.	1.9	207
180	NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS. Astronomical Journal, 2011, 141, 25.	1.9	129
181	LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK. Astronomical Journal, 2011, 142, 152.	1.9	204
182	RETENTION OF A PRIMORDIAL COLD CLASSICAL KUIPER BELT IN AN INSTABILITY-DRIVEN MODEL OF SOLAR SYSTEM FORMATION. Astrophysical Journal, 2011, 738, 13.	1.6	123
183	Trailing (L5) Neptune Trojans: 2004 KV18 and 2008 LC18. Research in Astronomy and Astrophysics, 2012, 12, 1549-1562.	0.7	9

\sim			
(΄ΙΤΛΤΙ	ON	ISED	ODT
CITAII		TTL P	OK I

#	Article	IF	CITATIONS
184	COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15-150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS. Astronomical Journal, 2012, 143, 63.	1.9	56
185	Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter. Proceedings of the International Astronomical Union, 2012, 8, 204-211.	0.0	0
186	Forming different planetary systems. Research in Astronomy and Astrophysics, 2012, 12, 1081-1106.	0.7	12
187	STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS. Astronomical Journal, 2012, 144, 117.	1.9	277
188	INSTABILITY-DRIVEN DYNAMICAL EVOLUTION MODEL OF A PRIMORDIALLY FIVE-PLANET OUTER SOLAR SYSTEM. Astrophysical Journal Letters, 2012, 744, L3.	3.0	109
189	A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b. Astrophysical Journal, 2012, 745, 77.	1.6	79
190	The new physics and the old metaphysics: an essay for the use of Christian teachers. International Studies in Catholic Education, 2012, 4, 111-121.	0.2	7
191	A DEBRIS disk around the planet hosting M-star GJÂ581 spatially resolved with <i>Herschel</i> . Astronomy and Astrophysics, 2012, 548, A86.	2.1	65
192	THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS. Astrophysical Journal, 2012, 753, 169.	1.6	79
193	ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS. Astrophysical Journal, 2012, 745, 143.	1.6	103
194	A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM. Astrophysical Journal, 2012, 754, 50.	1.6	65
195	<i>WISE</i> /NEOWISE OBSERVATIONS OF THE HILDA POPULATION: PRELIMINARY RESULTS. Astrophysical Journal, 2012, 744, 197.	1.6	69
196	The present-day flux of large meteoroids on the lunar surface—A synthesis of models and observational techniques. Planetary and Space Science, 2012, 74, 179-193.	0.9	46
197	Confusion limited surveys: using <i>WISE</i> to quantify the rarity of warm dust around <i>Kepler</i> stars. Monthly Notices of the Royal Astronomical Society, 2012, 426, 91-107.	1.6	48
198	2004 KV ₁₈ : a visitor from the scattered disc to the Neptune Trojan population. Monthly Notices of the Royal Astronomical Society, 2012, 426, 159-166.	1.6	18
199	Density of asteroids. Planetary and Space Science, 2012, 73, 98-118.	0.9	453
200	From meteorites to evolution and habitability of planets. Planetary and Space Science, 2012, 72, 3-17.	0.9	30
201	Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 2012, 74, 15-41.	0.9	104

#	Article	IF	CITATIONS
202	A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13486-13492.	3.3	40
203	Expected science return of spatially-extended in-situ exploration at small Solar system bodies. , 2012, , .		27
204	The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. , 2012, , .		29
206	Stability of the Lagrangian point <i>L</i> ₄ in the spatial restricted three-body problem – application to exoplanetary systems. Monthly Notices of the Royal Astronomical Society, 2012, 427, 397-402.	1.6	37
207	Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack― Meteoritics and Planetary Science, 2012, 47, 1941-1947.	0.7	118
208	High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 2012, 221, 1162-1172.	1.1	73
209	A sawtooth-like timeline for the first billion years of lunar bombardment. Earth and Planetary Science Letters, 2012, 355-356, 144-151.	1.8	217
211	METAL-RICH ACCRETION AND THERMOHALINE INSTABILITIES IN EXOPLANET-HOST STARS: CONSEQUENCES ON THE LIGHT ELEMENTS ABUNDANCES. Astrophysical Journal, 2012, 744, 123.	1.6	82
212	OUTWARD MIGRATION OF JUPITER AND SATURN IN EVOLVED GASEOUS DISKS. Astrophysical Journal, 2012, 757, 50.	1.6	83
213	ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY. Astrophysical Journal, 2012, 749, 113.	1.6	27
214	JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT. Astrophysical Journal, 2012, 750, 8.	1.6	50
215	<i>>WISE</i> / <i>NEOWISE</i> OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY. Astrophysical Journal, 2012, 759, 49.	1.6	90
216	The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids. Astronomy and Astrophysics, 2012, 541, A127.	2.1	32
217	Colours of minor bodies in the outer solar system. Astronomy and Astrophysics, 2012, 546, A115.	2.1	68
218	Trojan capture by terrestrial planets. Celestial Mechanics and Dynamical Astronomy, 2012, 113, 23-34.	0.5	41
219	Trojans' Odyssey: Unveiling the early history of the Solar System. Experimental Astronomy, 2012, 33, 685-721.	1.6	3
220	Rotational fission of trans-Neptunian objects: the case of Haumea. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2315-2324.	1.6	41
221	Chronology and sources of lunar impact bombardment. Icarus, 2012, 218, 69-79.	1.1	51

#	Article	IF	CITATIONS
222	Geophysical evolution of Saturn's satellite Phoebe, a large planetesimal in the outer Solar System. Icarus, 2012, 219, 86-109.	1.1	53
223	2008 LC18: a potentially unstable Neptune Trojan. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2145-2151.	1.6	27
224	Collisional evolution of trans-Neptunian object populations in a Nice model environment. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1254-1266.	1.6	24
225	(1173) Anchises - thermophysical and dynamical studies of a dynamically unstable Jovian Trojan. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2587-2596.	1.6	35
226	On the stability of possible Trojan planets in the habitable zone: an application to the systems HD 147513 and HD 210277. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3074-3082.	1.6	33
227	P/2006 VW139: a main-belt comet born in an asteroid collision?. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1432-1441.	1.6	38
228	The Science of Solar System Ices. Astrophysics and Space Science Library, 2013, , .	1.0	35
229	Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System. Icarus, 2013, 225, 40-49.	1.1	193
230	ROSINA/DFMS capabilities to measure isotopic ratios in water at comet 67P/Churyumov–Gerasimenko. Planetary and Space Science, 2013, 84, 148-152.	0.9	15
231	Analysis of a superbolide from a damocloid observed over Spain on 2012 July 13. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3656-3662.	1.6	5
232	On the chronology of lunar origin and evolution. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	25
233	Spectroscopy of planetary atmospheres in our Galaxy. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	102
234	The early impact histories of meteorite parent bodies. Meteoritics and Planetary Science, 2013, 48, 1894-1918.	0.7	49
235	Are large Trojan asteroids salty? An observational, theoretical, and experimental study. Icarus, 2013, 223, 359-366.	1.1	24
236	The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus, 2013, 226, 723-741.	1.1	302
237	Black rain: The burial of the Galilean satellites in irregular satellite debris. Icarus, 2013, 223, 775-795.	1.1	30
238	Orbital clustering of martian Trojans: An asteroid family in the inner Solar System?. Icarus, 2013, 224, 144-153.	1.1	19
239	The Eos family halo. Icarus, 2013, 223, 844-849.	1.1	35

#	Article	IF	CITATIONS
240	Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geoscience, 2013, 6, 520-524.	5.4	66
241	Mission to the Trojan asteroids: Lessons learned during a JPL Planetary Science Summer School mission design exercise. Planetary and Space Science, 2013, 76, 68-82.	0.9	1
242	The Formation and Dynamics of Super-Earth Planets. Annual Review of Earth and Planetary Sciences, 2013, 41, 469-495.	4.6	48
243	Late origin of the Saturn system. Icarus, 2013, 223, 544-565.	1.1	86
244	Irregular satellites of Jupiter: three-dimensional study of binary-asteroid captures. Monthly Notices of the Royal Astronomical Society, 2013, 433, 36-46.	1.6	26
245	Spectroscopy and orbital analysis of bright bolides observed over the Iberian Peninsula from 2010 to 2012. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2023-2032.	1.6	5
246	Constraining the primordial orbits of the terrestrial planets. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3417-3427.	1.6	71
247	TWO SUPER-EARTHS ORBITING THE SOLAR ANALOG HD 41248 ON THE EDGE OF A 7:5 MEAN MOTION RESONANCE. Astrophysical Journal, 2013, 771, 41.	1.6	46
248	A <i>HERSCHEL</i> STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUÅÃKOVÕAND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT. Astrophysical Journal Letters, 2013, 774, L3.	3.0	73
249	CAPTURE OF TROJANS BY JUMPING JUPITER. Astrophysical Journal, 2013, 768, 45.	1.6	203
250	A possible mechanism to explain the lack of binary asteroids among the Plutinos. Astronomy and Astrophysics, 2013, 558, A4.	2.1	2
251	Comparison of forming mechanisms for Sedna-type objects through an observational simulator. Astronomy and Astrophysics, 2013, 553, A110.	2.1	10
252	Similar origin for low- and high-albedo Jovian Trojans and Hilda asteroids?. Astronomy and Astrophysics, 2014, 568, L7.	2.1	12
253	On the steady state collisional evolution of debris disks around M dwarfs. Astronomy and Astrophysics, 2014, 565, A58.	2.1	13
254	Comparative orbital evolution of transient Uranian co-orbitals: exploring the role of ephemeral multibody mean motion resonances. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2280-2295.	1.6	8
255	ORBITAL PERTURBATIONS OF THE GALILEAN SATELLITES DURING PLANETARY ENCOUNTERS. Astronomical Journal, 2014, 148, 25.	1.9	57
256	DE-BIASED POPULATIONS OF KUIPER BELT OBJECTS FROM THE DEEP ECLIPTIC SURVEY. Astronomical Journal, 2014, 148, 55.	1.9	73
257	DYNAMICAL IMPLANTATION OF OBJECTS IN THE KUIPER BELT. Astronomical Journal, 2014, 148, 56.	1.9	12

#	Article	IF	CITATIONS
258	PROBING FOR EXOPLANETS HIDING IN DUSTY DEBRIS DISKS: DISK IMAGING, CHARACTERIZATION, AND EXPLORATION WITH <i>HST </i> /STIS MULTI-ROLL CORONAGRAPHY. Astronomical Journal, 2014, 148, 59.	1.9	169
259	CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES. Astrophysical Journal Letters, 2014, 797, L8.	3.0	21
260	THE DIFFERING MAGNITUDE DISTRIBUTIONS OF THE TWO JUPITER TROJAN COLOR POPULATIONS. Astronomical Journal, 2014, 148, 112.	1.9	41
261	MULTIPLE AND FAST: THE ACCRETION OF ORDINARY CHONDRITE PARENT BODIES. Astrophysical Journal, 2014, 791, 120.	1.6	75
262	Geochemical and Planetary Dynamical Views on the Origin of Earth's Atmosphere and Oceans. , 2014, , 1-35.		23
263	The multi-diffusion domain model: past, present and future. Geological Society Special Publication, 2014, 378, 91-106.	0.8	24
264	An unbiased study of debris discs around A-type stars with Herschel. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2558-2573.	1.6	106
265	The Geologic History of Seawater. , 2014, , 569-622.		40
266	Asteroids: New Challenges, New Targets. Elements, 2014, 10, 11-17.	0.5	10
267	OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS. Astrophysical Journal Letters, 2014, 795, L11.	3.0	91
268	The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System. Planetary and Space Science, 2014, 104, 93-107.	0.9	31
270	PHYSICAL PROPERTIES OF ASTEROIDS IN COMET-LIKE ORBITS IN INFRARED ASTEROID SURVEY CATALOGS. Astrophysical Journal, 2014, 789, 151.	1.6	30
271	TERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARS. Astrophysical Journal, 2014, 782, 31.	1.6	98
272	The Moon's Surface, Structure, and Evolution. Astronomy and Astrophysics Library, 2014, , 197-230.	0.2	0
273	PRE-LATE HEAVY BOMBARDMENT EVOLUTION OF THE EARTH'S OBLIQUITY. Astrophysical Journal, 2014, 795, 67.	1.6	7
274	THE ABSOLUTE MAGNITUDE DISTRIBUTION OF KUIPER BELT OBJECTS. Astrophysical Journal, 2014, 782, 100.	1.6	202
275	MAIN-BELT ASTEROIDS WITH <i>WISE </i> /NEOWISE: NEAR-INFRARED ALBEDOS. Astrophysical Journal, 2014, 791, 121.	1.6	86
276	CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS. Astrophysical Journal, 2014, 784, 39.	1.6	86

#	Article	IF	Citations
277	Improved signal detection algorithms for unevenly sampled data. Six signals in the radial velocity data for GJ876. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2253-2265.	1.6	37
278	THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR. Astrophysical Journal Letters, 2014, 783, L37.	3.0	54
279	Editorial: Special issue "Planetary evolution and life― Planetary and Space Science, 2014, 98, 1-4.	0.9	3
280	Unexpected D-type interlopers in the inner main belt. Icarus, 2014, 229, 392-399.	1.1	44
281	Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 2014, 392, 28-38.	1.8	67
282	Survival of water ice in Jupiter Trojans. Icarus, 2014, 231, 232-238.	1.1	21
283	Evaporating asteroid. Nature, 2014, 505, 487-488.	13.7	0
284	Solar System evolution from compositional mapping of the asteroid belt. Nature, 2014, 505, 629-634.	13.7	362
285	Design of a low cost mission to the Neptunian system. , 2014, , .		2
286	CONSTRAINTS ON PLANETESIMAL DISK MASS FROM THE CRATERING RECORD AND EQUATORIAL RIDGE ON IAPETUS. Astrophysical Journal, 2014, 792, 127.	1.6	29
287	Giga-year evolution of Jupiter Trojans and the asymmetry problem. Icarus, 2014, 243, 287-295.	1.1	22
288	THE MEASURED COMPOSITIONS OF URANUS AND NEPTUNE FROM THEIR FORMATION ON THE CO ICE LINE. Astrophysical Journal, 2014, 793, 9.	1.6	63
289	Planet Formation. , 2014, , 55-72.		7
290	The Origin and Earliest History of the Earth. , 2014, , 149-211.		12
291	Asteroids. , 2014, , 365-415.		28
292	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	3.7	108
293	Jupiter's Trojans: Physical properties and origin. Solar System Research, 2014, 48, 139-157.	0.3	12
294	Saturn Trojans: a dynamical point of view. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1420-1433.	1.6	12

#	Article	IF	CITATIONS
295	Dynamics of the Jupiter Trojans with Saturn's perturbation in the present configuration of the two planets. Celestial Mechanics and Dynamical Astronomy, 2014, 119, 119-142.	0.5	9
296	Neptune and Triton: Essential pieces of the Solar System puzzle. Planetary and Space Science, 2014, 104, 108-121.	0.9	34
297	Moon, Mars, Mercury: Basin formation ages and implications for the maximum surface age and the migration of gaseous planets. Earth and Planetary Science Letters, 2014, 400, 54-65.	1.8	36
298	Constraining the cratering chronology of Vesta. Planetary and Space Science, 2014, 103, 131-142.	0.9	41
299	The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planetary and Space Science, 2014, 103, 104-130.	0.9	80
300	Planetesimal-driven migration of terrestrial planet embryos. Icarus, 2014, 232, 118-132.	1.1	26
301	æ°´è',æ°—ã,'å™´ã出ãᠯM準æf'æ~Ÿã,±ãf¬ã,1. Nature Digest, 2014, 11, 28-29.	0.0	0
302	Glycine oligomerization up to triglycine by shock experiments simulating comet impacts. Geochemical Journal, 2014, 48, 51-62.	0.5	40
303	Can the Dustiest Main Sequence Stars Tell Us About the Rocky Planet Formation Process?. Proceedings of the International Astronomical Union, 2015, 10, 241-246.	0.0	2
304	DIVISION A COMMISSION 7: CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY. Proceedings of the International Astronomical Union, 2015, 11, 24-45.	0.0	0
306	COULD JUPITER OR SATURN HAVE EJECTED A FIFTH GIANT PLANET?. Astrophysical Journal, 2015, 813, 8.	1.6	14
307	The formation of the Galilean moons and Titan in the Grand Tack scenario. Astronomy and Astrophysics, 2015, 579, L4.	2.1	21
308	EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA. II. EFFECTS ON DISK STRUCTURE AND EVOLUTION WITH NON-UNIFORM TURBULENT VISCOSITY DUE TO THE MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2015, 815, 112.	1.6	17
309	The Gemini NICI Planet-Finding Campaign: asymmetries in the HD 141569 disc. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4446-4457.	1.6	32
310	Detectability of quasi-circular co-orbital planets. Application to the radial velocity technique. Astronomy and Astrophysics, 2015, 581, A128.	2.1	20
311	Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy and Astrophysics, 2015, 582, A99.	2.1	63
314	Re-examining the main asteroid belt as the primary source of ancient lunar craters. Icarus, 2015, 247, 172-190.	1.1	49
315	Introduction to â€~Pluto, Charon, and the Kuiper Belt Objects': Pluto on the Eve of the New Horizons Encounter. , 2015, , 637-651.		4

	CITATION RE	PORT	
#	Article	IF	CITATIONS
316	Physics of Terrestrial Planets and Moons: An Introduction and Overview. , 2015, , 1-22.		4
317	Evolution of Titan's atmosphere during the Late Heavy Bombardment. Icarus, 2015, 257, 324-335.	1.1	10
318	The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Experimental Astronomy, 2015, 40, 501-522.	1.6	20
319	Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites. Icarus, 2015, 257, 103-112.	1.1	27
320	THE COLOR–MAGNITUDE DISTRIBUTION OF SMALL JUPITER TROJANS. Astronomical Journal, 2015, 150, 174.	1.9	39
321	THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL. Astronomical Journal, 2015, 150, 186.	1.9	80
322	How the Solar System didn't form. Nature, 2015, 528, 202-203.	13.7	4
323	TILTING SATURN WITHOUT TILTING JUPITER: CONSTRAINTS ON GIANT PLANET MIGRATION. Astronomical Journal, 2015, 150, 157.	1.9	34
324	ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146. Astrophysical Journal, 2015, 798, 124.	1.6	64
325	BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM <i>NEOWISE</i> LIGHT CURVES. Astrophysical Journal, 2015, 799, 191.	1.6	15
326	SIZE AND SHAPE FROM STELLAR OCCULTATION OBSERVATIONS OF THE DOUBLE JUPITER TROJAN PATROCLUS AND MENOETIUS. Astronomical Journal, 2015, 149, 113.	1.9	35
327	A next step in exoplanetology: exo-moons. International Journal of Astrobiology, 2015, 14, 191-199.	0.9	34
328	Exoplanetary Geophysics: An Emerging Discipline. , 2015, , 673-694.		14
329	Yarkovsky-driven spreading of the Eureka family of Mars Trojans. Icarus, 2015, 252, 339-346.	1.1	20
330	Exploring the dwarf planets. Nature Physics, 2015, 11, 608-611.	6.5	0
331	Eight billion asteroids in the Oort cloud. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2059-2064.	1.6	52
332	Exogenic Dynamics, Cratering, and Surface Ages. , 2015, , 327-365.		27
333	The Origin of the Natural Satellites. , 2015, , 559-604.		20

#	Article	IF	CITATIONS
334	Asteroids and Comets. , 2015, , 487-528.		2
335	On the Evolution of Comets. Space Science Reviews, 2015, 197, 271-296.	3.7	23
336	STABILITY OF THE OUTER PLANETS IN MULTIRESONANT CONFIGURATIONS WITH A SELF-GRAVITATING PLANETESIMAL DISK. Astrophysical Journal, 2015, 804, 91.	1.6	30
337	TILTING JUPITER (A BIT) AND SATURN (A LOT) DURING PLANETARY MIGRATION. Astrophysical Journal, 2015, 806, 143.	1.6	62
338	Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2589-2609.	1.6	91
339	How Sedna and family were captured in a close encounter with a solar sibling. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3158-3163.	1.6	69
340	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. Space Science Reviews, 2015, 197, 297-342.	3.7	25
341	Origin and Evolution of the Cometary Reservoirs. Space Science Reviews, 2015, 197, 191-269.	3.7	140
342	Study of the gravitational capture of a spacecraft by Jupiter. Advances in Space Research, 2015, 55, 668-681.	1.2	9
343	The evolution of a Pluto-like system during the migration of the ice giants. Icarus, 2015, 246, 330-338.	1.1	28
344	Constraining geologic properties and processes through the use of impact craters. Geomorphology, 2015, 240, 18-33.	1.1	14
345	THE ANGLO-AUSTRALIAN PLANET SEARCH XXIV: THE FREQUENCY OF JUPITER ANALOGS. Astrophysical Journal, 2016, 819, 28.	1.6	109
346	Magnitude and timing of the giant planet instability: A reassessment from the perspective of the asteroid belt. Astronomy and Astrophysics, 2016, 592, A72.	2.1	11
347	Dynamics of the Jupiter Trojans with Saturn's perturbation when the two planets are in migration. Celestial Mechanics and Dynamical Astronomy, 2016, 125, 451-484.	0.5	6
348	GENERATION OF HIGHLY INCLINED TRANS-NEPTUNIAN OBJECTS BY PLANET NINE. Astrophysical Journal Letters, 2016, 833, L3.	3.0	77
349	Neptune trojan formation during planetary instability and migration. Astronomy and Astrophysics, 2016, 592, A146.	2.1	15
350	A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS. Astronomical Journal, 2016, 152, 90.	1.9	77
351_	Broadband linear polarization of Jupiter Trojans. Astronomy and Astrophysics, 2016, 585, A122.	2.1	8

ARTICLE IF CITATIONS Physical Characterization of TNOs with the <i>James Webb Space Telescope</i>. Publications of the 352 1.0 11 Astronomical Society of the Pacific, 2016, 128, 018010. The effect of orbital damping during planet migration on the inclination and eccentricity distributions of Neptunian Trojans. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1.6 4277-4284. GPU-enabled N -body simulations of the Solar System using a VOVS Adams integrator. Journal of 354 1.5 1 Computational Science, 2016, 16, 89-97. Asteroid 4 Vesta: Dynamical and collisional evolution during the Late Heavy Bombardment. Icarus, 1.1 2016, 271, 170-179. OBSERVATIONAL CONSTRAINTS ON PLANET NINE: ASTROMETRY OF PLUTO AND OTHER TRANS-NEPTUNIAN 356 1.9 48 OBJECTS. Astronomical Journal, 2016, 152, 80. RECONCILING THE ORBITAL AND PHYSICAL PROPERTIES OF THE MARTIAN MOONS. Astrophysical Journal, 1.6 2016, 828, 109. Hektor – an exceptional D-type family among Jovian Trojans. Monthly Notices of the Royal 358 1.6 19 Astronomical Society, 2016, 462, 2319-2332. Relating binary-star planetary systems to central configurations. Monthly Notices of the Royal 1.6 Astronomical Society, 2016, 462, 3368-3375. Asteroids and the <i>James Webb Space Telescope</i>. Publications of the Astronomical Society of the 360 1.0 23 Pacific, 2016, 128, 018003. The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653. 1.5 133 THE PAN-STARRS 1 DISCOVERIES OF FIVE NEW NEPTUNE TROJANS. Astronomical Journal, 2016, 152, 147. 363 1.9 11 The Moon: An Archive of Small Body Migration in the Solar System. Earth, Moon and Planets, 2016, 118, 0.3 364 133-158. ELECTRON IRRADIATION AND THERMAL PROCESSING OF MIXED-ICES OF POTENTIAL RELEVANCE TO JUPITER 365 1.6 13 TROJAN ASTEROIDS. Astrophysical Journal, 2016, 820, 141. A panoptic model for planetesimal formation and pebble delivery. Astronomy and Astrophysics, 2016, 2.1 586, A20. On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma 367 1.6 18 source. Monthly Notices of the Royal Astronomical Society, 2016, 461, 988-999. Formation of terrestrial planets in disks with different surface density profiles. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 235-268. OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS. 369 1.9 19 Astronomical Journal, 2016, 151, 39. The fragility of the terrestrial planets during a giant-planet instability. Monthly Notices of the Royal 370 1.6 Astronomical Society, 2016, 455, 3561-3569.

	_
CITATION	DEDODT
ULIATION	KFPURI
onnon	

#	Article	IF	CITATIONS
371	Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life. Astrobiology, 2016, 16, 311-323.	1.5	2
372	Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3942-3967.	1.6	95
373	The <i>James Webb Space Telescope</i> 's Plan for Operations and Instrument Capabilities for Observations in the Solar System. Publications of the Astronomical Society of the Pacific, 2016, 128, 018001.	1.0	25
374	EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION. Astrophysical Journal, 2016, 818, 15.	1.6	33
375	Photometric colors of the brightest members of the Jupiter L5 Trojan cloud. Icarus, 2016, 271, 158-169.	1.1	2
376	Dynamical dispersal of primordial asteroid families. Icarus, 2016, 266, 142-151.	1.1	22
377	Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Science Reviews, 2017, 209, 1-42.	3.7	66
378	THE COLOR–MAGNITUDE DISTRIBUTION OF HILDA ASTEROIDS: COMPARISON WITH JUPITER TROJANS. Astronomical Journal, 2017, 153, 69.	1.9	14
379	Trojan Asteroids in the Kepler Campaign 6 Field. Astronomical Journal, 2017, 153, 116.	1.9	27
380	The Structure of the Distant Kuiper Belt in a Nice Model Scenario. Astronomical Journal, 2017, 153, 127.	1.9	38
381	Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths. Astrophysical Journal Letters, 2017, 836, L25.	3.0	18
382	Constraining the Giant Planets' Initial Configuration from Their Evolution: Implications for the Timing of the Planetary Instability. Astronomical Journal, 2017, 153, 153.	1.9	84
383	The Bimodal Color Distribution of Small Kuiper Belt Objects*. Astronomical Journal, 2017, 153, 145.	1.9	46
384	Prevalence of chaos in planetary systems formed through embryo accretion. Icarus, 2017, 288, 88-98.	1.1	7
385	Modeling the Historical Flux of Planetary Impactors. Astronomical Journal, 2017, 153, 103.	1.9	70
386	Hyper-Velocity Impacts on Rubble Pile Asteroids. Springer Theses, 2017, , .	0.0	1
387	New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations. Astronomical Journal, 2017, 153, 265.	1.9	55
388	Cometary science after Rosetta. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170001.	1.6	6

ARTICLE IF CITATIONS # Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during 389 1.6 24 the Depletion of the Solar Nebula. Astrophysical Journal, 2017, 836, 207. Composition of Solar System Small Bodies., 2017, , 269-297. 14 Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection 392 39 1.1 inhibition can affect the derivation of deep oxygen abundances. Icarus, 2017, 291, 1-16. Pseudo-Newtonian planar circular restricted 3-body problem. Physics Letters, Section A: General, 0.9 Atomic and Solid State Physics, 2017, 381, 563-567. Scenarios for the dynamics of comet 67P/Churyumovâ€"Gerasimenko over the past 500 kyr. Monthly 394 1.6 8 Notices of the Royal Astronomical Society, 2017, 469, S321-S328. Details of Resonant Structures within a Nice Model Kuiper Belt: Predictions for High-perihelion TNO 38 Detections. Astronomical Journal, 2017, 154, 171. Formation of solar system analogues $\hat{a} \in I$. Looking for initial conditions through a population 396 1.6 44 synthesis analysis. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2753-2770. Formation of the Proto-Earth in the Solar Nebula., 2017, , 25-58. 397 Accretion of Saturn's Inner Mid-sized Moons from a Massive Primordial Ice Ring. Astrophysical 398 1.6 48 Journal, 2017, 836, 109. Production of Sulfur Allotropes in Electron Irradiated Jupiter Trojans Ice Analogs. Astrophysical 399 1.6 Journal, 2017, 846, 148. Small Jupiter Trojans Survey with the Subaru/Hyper Suprime-Cam^{*}. Astronomical Journal, 400 1.9 54 2017, 154, 71. Origin and Evolution of Short-period Comets. Astrophysical Journal, 2017, 845, 27. 1.6 106 Hydrogen and Hydrocarbon Gases, Polycyclic Aromatic Hydrocarbons, and Amorphous Carbon 402 Produced by Multiple Shock Compression of Liquid Benzene up to 27.4 GPa. Journal of Physical 1.1 7 Chemistry Á, 2017, 121, 6471-6480. ALMA Discovery of Dust Belts around Proxima Centauri. Astrophysical Journal Letters, 2017, 850, L6. 59 A pebbles accretion model with chemistry and implications for the Solar system. Monthly Notices of 404 1.6 21 the Royal Astronomical Society, 2017, 464, 4282-4298. On Mercury's past rotation, in light of its large craters. Icarus, 2017, 281, 1-18. 1.1 Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 2017, 281, 406 1.1 29 459-475. Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. 1.1 Icarus, 2017, 282, 195-213.

#	Article	IF	CITATIONS
408	Stratospheric balloon observations of comets C/2013 A1 (Siding Spring), C/2014 E2 (Jacques), and Ceres. Icarus, 2017, 281, 404-416.	1.1	6
409	Stochasticity and predictability in terrestrial planet formation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2170-2188.	1.6	39
410	The asteroid belt outer region under jumping-Jupiter migration. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2680-2686.	1.6	21
411	0.7–2.5 μm Spectra of Hilda Asteroids. Astronomical Journal, 2017, 154, 104.	1.9	6
412	Simulations of the Solar System's Early Dynamical Evolution with a Self-gravitating Planetesimal Disk. Astrophysical Journal Letters, 2017, 851, L37.	3.0	32
413	The heart of the swarm: K2 photometry and rotational characteristics of 56 Jovian Trojan asteroids. Astronomy and Astrophysics, 2017, 599, A44.	2.1	27
414	Asteroid 2014 YX\$_mathbf {49}\$: a large transient Trojan of Uranus. Monthly Notices of the Royal Astronomical Society, 0, , stx197.	1.6	3
415	Small D-type asteroids in the NEO population: new targets for space missions. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4481-4487.	1.6	18
416	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76
417	Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun. Astrophysical Journal, 2018, 856, 37.	1.6	44
418	Colors and Shapes of the Irregular Planetary Satellites. Astronomical Journal, 2018, 155, 184.	1.9	14
419	Ancient Bombardment of the Inner Solar System: Reinvestigation of the "Fingerprints―of Different Impactor Populations on the Lunar Surface. Journal of Geophysical Research E: Planets, 2018, 123, 748-762.	1.5	47
420	Multi-band photometry of trans-Neptunian objects in the Subaru Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	10
421	Rotationally resolved spectroscopy of Jupiter Trojans (624) Hektor and (911) Agamemnon. Monthly Notices of the Royal Astronomical Society, 2018, 475, 974-980.	1.6	5
422	Long-term self-modification of irregular satellite groups. Icarus, 2018, 310, 77-88.	1.1	3
423	The timeline of the lunar bombardment: Revisited. Icarus, 2018, 305, 262-276.	1.1	186
424	The Trojan Color Conundrum. Astronomical Journal, 2018, 155, 56.	1.9	29
425	Mars' growth stunted by an early giant planet instability. Icarus, 2018, 311, 340-356.	1.1	108

#	ARTICLE	IF	CITATIONS
426	Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt	16	15
120	Objects and Jupiter Trojans. Astrophysical Journal, 2018, 856, 124.	1.0	10
427	Constraining the Time Interval for the Origin of Life on Earth. Astrobiology, 2018, 18, 343-364.	1.5	71
428	2004 EW ₉₅ : A Phyllosilicate-bearing Carbonaceous Asteroid in the Kuiper Belt. Astrophysical Journal Letters, 2018, 855, L26.	3.0	15
429	Dynamical evolution of a fictitious population of binary Neptune Trojans. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3912-3920.	1.6	2
430	KIC 8462852: Will the Trojans return in 2021?. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L21-L25.	1.2	40
431	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	0.9	69
432	The Castalia mission to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research, 2018, 62, 1947-1976.	1.2	27
433	PRIMASS visits Hilda and Cybele groups. Icarus, 2018, 311, 35-51.	1.1	23
434	The <i>TROY </i> project: Searching for co-orbital bodies to known planets. Astronomy and Astrophysics, 2018, 609, A96.	2.1	28
435	Colors of Centaurs observed by the Subaru/Hyper Suprime-Cam and implications for their origin. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	1
436	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
437	Feedstocks of the Terrestrial Planets. Space Science Reviews, 2018, 214, 1.	3.7	15
438	A Tale of "Two―Comets: The Primary Volatile Composition of Comet 2P/Encke Across Apparitions and Implications for Cometary Science. Astronomical Journal, 2018, 156, 251.	1.9	27
439	OSSOS. VIII. The Transition between Two Size Distribution Slopes in the Scattering Disk. Astronomical Journal, 2018, 155, 197.	1.9	54
440	The Solar System as a Benchmark for Exoplanet Systems Interpretation. , 2018, , 421-444.		0
441	Origin of 1I/'Oumuamua. I. An Ejected Protoplanetary Disk Object?. Astrophysical Journal, 2018, 866, 131.	1.6	40
442	The Influence of Planet Nine on the Orbits of Distant TNOs: The Case for a Low-perihelion Planet. Astronomical Journal, 2018, 156, 157.	1.9	5
443	The TROY project. Astronomy and Astrophysics, 2018, 618, A42.	2.1	21

#	Article	IF	CITATIONS
444	When did the planets migrate?. Nature Astronomy, 2018, 2, 858-859.	4.2	0
446	Radial velocities. , 0, , 17-80.		0
447	Astrometry. , 0, , 81-102.		0
448	Timing. , 0, , 103-118.		0
449	Microlensing. , 0, , 119-152.		0
451	Host stars. , 0, , 373-428.		0
452	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
453	Formation and evolution. , 0, , 449-558.		0
454	Interiors and atmospheres. , 0, , 559-648.		0
455	The solar system. , 0, , 649-700.		0
463	Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nature Astronomy, 2018, 2, 878-882.	4.2	104
464	Formation of Terrestrial Planets. , 2018, , 1-59.		0
465	Size Distribution of Small Hilda Asteroids ^{â^—} . Astronomical Journal, 2018, 156, 30.	1.9	8
466	A Brief History of Spacecraft Missions to Asteroids and Protoplanets. , 2018, , 1-57.		4
467	Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination. Astronomical Journal, 2018, 156, 81.	1.9	42
468	Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail. Planetary and Space Science, 2018, 161, 99-106.	0.9	31
469	Saturn's Formation and Early Evolution at the Origin of Jupiter's Massive Moons. Astronomical Journal, 2018, 155, 224.	1.9	26
470	Cladistical Analysis of the Jovian and Saturnian Satellite Systems. Astrophysical Journal, 2018, 859, 97.	1.6	11

#	Article	IF	CITATIONS
471	Transits. , 0, , 153-328.		0
472	Outer Solar System Possibly Shaped by a Stellar Fly-by. Astrophysical Journal, 2018, 863, 45.	1.6	35
473	Constructing a refined model of small bodies in the solar system. Astronomy and Astrophysics, 2018, 616, A70.	2.1	8
474	Lunar impact history constrained by GRAIL-derived basin relaxation measurements. Icarus, 2018, 314, 50-63.	1.1	20
475	Dynamical Evolution of the Early Solar System. Annual Review of Astronomy and Astrophysics, 2018, 56, 137-174.	8.1	173
476	Observations of Cometary Organics: A Post Rosetta Review. ACS Earth and Space Chemistry, 2019, 3, 1773-1791.	1.2	8
477	Introduction to the Special Issue: Ice on Ceres. Journal of Geophysical Research E: Planets, 2019, 124, 1639-1649.	1.5	1
478	History of the Terminal Cataclysm Paradigm: Epistemology of a Planetary Bombardment That Never (?) Happened. Geosciences (Switzerland), 2019, 9, 285.	1.0	40
479	Origin and Classification of Impacting Objects, and their Effects on the Earth Surface. , 2019, , 7-18.		0
480	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19.	1.9	3
480 481	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132.	1.9 1.9	3 19
480 481 482	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132. Compositional Constraints for Lucy Mission Trojan Asteroids via Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 204.	1.9 1.9 1.9	3 19 16
480 481 482 483	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132. Compositional Constraints for Lucy Mission Trojan Asteroids via Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 204. Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population". Icarus, 2019, 334, 79-88.	1.9 1.9 1.9 1.1	3 19 16 1
480 481 482 483 483	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132. Compositional Constraints for Lucy Mission Trojan Asteroids via Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 204. Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population". Icarus, 2019, 334, 79-88. Positions of the secular resonances in the primordial Kuiper Belt disk. Icarus, 2019, 334, 99-109.	1.9 1.9 1.9 1.1	3 19 16 1
480 481 482 483 483 484	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132. Compositional Constraints for Lucy Mission Trojan Asteroids via Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 204. Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population". Icarus, 2019, 334, 79-88. Positions of the secular resonances in the primordial Kuiper Belt disk. Icarus, 2019, 334, 99-109. Probabilities of Collisions of Planetesimals from Different Regions of the Feeding Zone of the Terrestrial Planets with the Forming Planets and the Moon. Solar System Research, 2019, 53, 332-361.	1.9 1.9 1.9 1.1 1.1 0.3	3 19 16 1 3
480 481 482 483 483 484 485 485	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132. Compositional Constraints for Lucy Mission Trojan Asteroids via Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 204. Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population". Icarus, 2019, 334, 79-88. Positions of the secular resonances in the primordial Kuiper Belt disk. Icarus, 2019, 334, 99-109. Probabilities of Collisions of Planetesimals from Different Regions of the Feeding Zone of the Terrestrial Planets with the Forming Planets and the Moon. Solar System Research, 2019, 53, 332-361. Evidence for multiple 4.0àće"3.7ÂCa impact events within the Apollo 16 collection. Meteoritics and Planetary Science, 2019, 54, 675-698.	1.9 1.9 1.9 1.1 1.1 0.3 0.7	3 19 16 1 3 3 7
480 481 482 483 483 484 485 485 486	The Case for a Large-scale Occultation Network. Astronomical Journal, 2019, 158, 19. OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132. Compositional Constraints for Lucy Mission Trojan Asteroids via Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 204. Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population". Icarus, 2019, 334, 79-88. Positions of the secular resonances in the primordial Kulper Belt disk. Icarus, 2019, 334, 99-109. Probabilities of Collisions of Planetesimals from Different Regions of the Feeding Zone of the Terrestrial Planets with the Forming Planets and the Moon. Solar System Research, 2019, 53, 332-361. Evidence for multiple 4.0âC"3.7ÂGa impact events within the Apollo 16 collection. Meteoritics and Planetary Science, 2019, 54, 675-698. The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 2019, 321, 778-790.	1.9 1.9 1.9 1.1 1.1 0.3 0.7 1.1	3 19 16 1 3 7 10 72

	CITATION REPORT	
Article	IF	CITATIONS
Multiband Photometry of a Patroclus–Menoetius Mutual Event: Constraints on Surface Heterogeneity. Astronomical Journal, 2019, 157, 203.	1.9	4
Detecting Solar system objects with convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5831-5842.	1.6	24
Excitation and Depletion of the Asteroid Belt in the Early Instability Scenario. Astronomical Journal, 2019, 157, 38.	1.9	42
Binary survival in the outer solar system. Icarus, 2019, 331, 49-61.	1.1	39
JWST/NIRSpec Prospects on Transneptunian Objects. Frontiers in Astronomy and Space Sciences, 2 6, .	2019, 1.1	4
Oort cloud asteroids: collisional evolution, the Nice Model, and the Grand Tack. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5511-5518.	f 1.6	9
Dynamical Constraints on Mercury's Collisional Origin. Astronomical Journal, 2019, 157, 208.	1.9	23
Geophysical evidence that Saturn's Moon Phoebe originated from a C-type asteroid reservoir. N Notices of the Royal Astronomical Society, 2019, 486, 538-543.	Monthly 1.6	12
Consequences of planetary migration on the minor bodies of the early solar system. Astronomy an Astrophysics, 2019, 623, A169.	.d 2.1	51
Hubble Ultraviolet Spectroscopy of Jupiter Trojans. Astronomical Journal, 2019, 157, 161.	1.9	13
What Factors Affect the Duration and Outgassing of the Terrestrial Magma Ocean?. Astrophysical Journal, 2019, 875, 11.	1.6	52
Instabilities in the Early Solar System Due to a Self-gravitating Disk. Astronomical Journal, 2019, 15	o7, 67. 1.9	24
IDP-like Asteroids Formed Later than 5 Myr After Ca–Al-rich Inclusions. Astrophysical Journal, 201 875, 30.	19, 1.6	13
A comparative study of size frequency distributions of Jupiter Trojans, Hildas and main belt asteroid A clue to planet migration history. Planetary and Space Science, 2019, 169, 78-85.	ds: 0.9	12
Orbital stability of Earth Trojans. Astronomy and Astrophysics, 2019, 622, A97.	2.1	27
Brangäe: a new family of Barbarian asteroids. Monthly Notices of the Royal Astronomical Society, 2019, 485, 570-576.	1.6	6
Early Observations of the Interstellar Comet 21/Borisov. Geosciences (Switzerland), 2019, 9, 519.	1.0	1

506	Masses of the Trojan Groups of Jupiter, Astronomy Letters, 2019, 45, 855-860.	0.1	8
000		0.1	0

#

#	Article	IF	CITATIONS
507	On the inclinations of the Jupiter Trojans. Astronomy and Astrophysics, 2019, 631, A89.	2.1	16
508	Spectral Analyses of Asteroids. , 2019, , 393-412.		1
509	Are Saturn's rings actually young?. Nature Astronomy, 2019, 3, 967-970.	4.2	25
510	Dynamical effects on the classical Kuiper belt during the excited-Neptune model. Icarus, 2019, 334, 89-98.	1.1	6
511	Olivine-dominated A-type asteroids in the main belt: Distribution, abundance and relation to families. Icarus, 2019, 322, 13-30.	1.1	49
512	Evidence for color dichotomy in the primordial Neptunian Trojan population. Icarus, 2019, 321, 426-435.	1.1	17
513	The dynamical evolution of escaped Jupiter Trojan asteroids, link to other minor body populations. Icarus, 2019, 319, 828-839.	1.1	25
514	Analysis in the visible range of NASA Lucy mission targets: Eurybates, Polymele, Orus and Donaldjohanson Icarus, 2020, 338, 113463.	1.1	10
515	Tilting Ice Giants with a Spin–Orbit Resonance. Astrophysical Journal, 2020, 888, 60.	1.6	25
516	Dynamical evidence for an early giant planet instability. Icarus, 2020, 339, 113605.	1.1	60
517	Primordial organic matter in the xenolithic clast in the Zag H chondrite: Possible relation to D/P asteroids. Geochimica Et Cosmochimica Acta, 2020, 271, 61-77.	1.6	12
518	Secular resonance sweeping and orbital excitation in decaying disks. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	0.5	7
519	A record of the final phase of giant planet migration fossilized in the asteroid belt's orbital structure. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 492, L56-L60.	1.2	21
520	Kuiper belt: Formation and evolution. , 2020, , 25-59.		44
521	Evolution of the Earth's atmosphere during Late Veneer accretion. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5334-5362.	1.6	17
522	Spitzer's Solar System studies of asteroids, planets and the zodiacal cloud. Nature Astronomy, 2020, 4, 940-946.	4.2	7
523	Reference Model Payload for Ice Giant Entry Probe Missions. Space Science Reviews, 2020, 216, 1.	3.7	4
524	Stability of Jovian Trojans and their collisional families. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4085-4097.	1.6	17

CITATION REPORT ARTICLE IF CITATIONS Orbital Precession in the Distant Solar System: Further Constraining the Planet Nine Hypothesis with 1.9 13 Numerical Simulations. Astronomical Journal, 2020, 159, 285. Very Slow Rotators from Tidally Synchronized Binaries. Astrophysical Journal Letters, 2020, 893, L16. Rotational Properties of Hilda Asteroids Observed by the K2 Mission. Astrophysical Journal, 3.0 10 Supplement Series, 2020, 247, 34. Setting the Stage: Planet Formation and Volatile Delivery. Space Science Reviews, 2020, 216, 1. 24 Giant-planet Influence on the Collective Gravity of a Primordial Scattered Disk. Astronomical Journal, 1.9 10 2020, 160, 50. Capture and migration of Jupiter and Saturn in mean motion resonance in a gaseous protoplanetary 1.6 disc. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6007-6018. Systematic survey of the dynamics of Uranus Trojans. Astronomy and Astrophysics, 2020, 633, A153. 2.1 6 Observations of Planetary Systems., 2020, , 1-48. Terrestrial Planet Formation., 2020, , 181-219. 0 Protoplanetary Disk Structure., 2020, , 49-85. Protoplanetary Disk Evolution., 2020, , 86-140. 0 Planetesimal Formation., 2020, , 141-180. Giant Planet Formation., 2020, , 220-246. 0 Early Evolution of Planetary Systems., 2020, , 247-300. Search for L5 Earth Trojans with DECam. Monthly Notices of the Royal Astronomical Society, 2020, 1.6 17 492, 6105-6119.

545	The transient Jupiter Trojan-like orbit of P/2019 LD2 (ATLAS). Icarus, 2021, 354, 114019.	1.1	14
546	Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch. Icarus, 2021, 355, 114087.	1.1	17
547	Born eccentric: Constraints on Jupiter and Saturn's pre-instability orbits. Icarus, 2021, 355, 114122.	1.1	22

#

525

527

529

531

533

536

537

538

		ATION REPORT	
#	Article	IF	CITATIONS
548	Formation of Venus, Earth and Mars: Constrained by Isotopes. Space Science Reviews, 2021, 217, 1.	3.7	22
549	Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective. Space Science Reviews, 2021, 217, 1.	3.7	11
550	Orbital analysis of small bodies in co-orbital motion with Jupiter through the torus structure. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2183-2197.	1.6	4
551	Chromium Isotopic Evidence for Mixing of NC and CC Reservoirs in Polymict Ureilites: Implications for Dynamical Models of the Early Solar System. Planetary Science Journal, 2021, 2, 13.	1.5	11
552	Future missions. , 2021, , 207-222.		2
553	A Feasible Study of <i>In-Situ</i> Measurements of Light Isotopes and Organic Molecules with High Resolution Mass Spectrometer MULTUM on the OKEANOS Mission. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2021, 19, 477-484.	0.1	0
554	Testing Short-term Variability and Sampling of Primary Volatiles in Comet 46P/Wirtanen. Planetary Science Journal, 2021, 2, 20.	1.5	10
555	Initial Characterization of Active Transitioning Centaur, P/2019 LD ₂ (ATLAS), Using Hubble Spitzer, ZTF, Keck, Apache Point Observatory, and GROWTH Visible and Infrared Imaging and Spectroscopy. Astronomical Journal, 2021, 161, 116.	2, 1.9	13
556	Assessment of Cr Isotopic Heterogeneities of Volatile-rich Asteroids Based on Multiple Planet Formation Models. Astrophysical Journal, 2021, 908, 64.	1.6	6
557	Zwicky Transient Facility Observations of Trojan Asteroids: A Thousand Colors, Rotation Amplitudes, and Phase Functions. Planetary Science Journal, 2021, 2, 40.	1.5	9
558	A thermophysical and dynamical study of the Hildas, (1162) Larissa, and (1911) Schubart. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4981-4992.	1.6	1
559	The Fundamental Connections between the Solar System and Exoplanetary Science. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006643.	1.5	15
560	Evidence for differentiation of the most primitive small bodies. Astronomy and Astrophysics, 2021, 650, A129.	, 2.1	17
561	NASA's Lucy Mission to the Trojan Asteroids. , 2021, , .		4
562	Astrocladistics of the Jovian Trojan Swarms. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1571-1608.	1.6	7
563	Tilting Uranus: Collisions versus Spin–Orbit Resonance. Planetary Science Journal, 2021, 2, 78.	1.5	9
564	Small All-Range Lidar for Asteroid and Comet Core Missions. Sensors, 2021, 21, 3081.	2.1	6
565	Apsidal asymmetric-alignment of Jupiter Trojans. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1730-1741.	1.6	3

~			~	
C^{+}		ON	REDC	DT
\sim	плі		NLFC	

#	Article	IF	CITATIONS
566	The Tarda Meteorite: A Window into the Formation of D-type Asteroids. Astrophysical Journal Letters, 2021, 913, L9.	3.0	20
567	Effect of H ₂ S on the Near-infrared Spectrum of Irradiation Residue and Applications to the Kuiper Belt Object (486958) Arrokoth. Astrophysical Journal Letters, 2021, 914, L31.	3.0	3
568	Activity of the Jupiter co-orbital comet P/2019 LD2 (ATLAS) observed with OSIRIS at the 10.4 m GTC. Astronomy and Astrophysics, 2021, 650, A79.	2.1	0
569	Thermophysical evolution of planetesimals in the primordial disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5654-5685.	1.6	29
570	Jupiter's "cold―formation in the protosolar disk shadow. Astronomy and Astrophysics, 2021, 651, L2.	2.1	11
571	Can a jumping-Jupiter trigger the Moon's formation impact?. Monthly Notices of the Royal Astronomical Society, 2021, 507, 539-547.	1.6	10
572	The 13CO-rich atmosphere of a young accreting super-Jupiter. Nature, 2021, 595, 370-372.	13.7	35
573	Physical characterization of equal-mass binary near-Earth asteroid 2017 YE5: a possible dormant Jupiter-family comet. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5403-5414.	1.6	4
574	Lucy Mission to the Trojan Asteroids: Science Goals. Planetary Science Journal, 2021, 2, 171.	1.5	54
575	Collisional Growth within the Solar System's Primordial Planetesimal Disk and the Timing of the Giant Planet Instability. Astrophysical Journal Letters, 2021, 917, L8.	3.0	6
577	The Orbit and Density of the Jupiter Trojan Satellite System Eurybates–Queta. Planetary Science Journal, 2021, 2, 170.	1.5	10
578	Oort cloud Ecology. Astronomy and Astrophysics, 2021, 652, A144.	2.1	11
579	Migration processes in the Solar System and their role in the evolution of the Earth and planets. Physics-Uspekhi, 2023, 66, 2-31.	0.8	8
580	FOSSIL. I. The Spin Rate Limit of Jupiter Trojans. Planetary Science Journal, 2021, 2, 191.	1.5	11
581	VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy and Astrophysics, 2021, 654, A56.	2.1	50
582	Born extra-eccentric: A broad spectrum of primordial configurations of the gas giants that match their present-day orbits. Icarus, 2021, 367, 114556.	1.1	7
583	The early instability scenario: Mars' mass explained by Jupiter's orbit. Icarus, 2021, 367, 114585.	1.1	11
585	Icy Satellites of Saturn: Impact Cratering and Age Determination. , 2009, , 613-635.		29

#	Article	IF	CITATIONS
586	Origin of the Saturn System. , 2009, , 55-74.		3
587	The Kuiper Belt and Other Debris Disks. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 53-100.	0.3	7
588	Planetesimals and Satellitesimals: Formation ofÂtheÂSatellite Systems. Space Sciences Series of ISSI, 2010, , 429-444.	0.0	1
589	Geology of Icy Bodies. Astrophysics and Space Science Library, 2013, , 279-367.	1.0	8
591	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. , 2011, , 41-61.		1
592	Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. , 2011, , 63-76.		31
593	Kuiper Belt and Comets: An Observational Perspective. , 2008, , 1-78.		4
594	Comets and Their Reservoirs: Current Dynamics and Primordial Evolution. , 2008, , 79-163.		4
595	Chaotic Di?usion of Asteroids. , 2007, , 111-150.		6
596	An Introduction to the Dynamics of Trojan Asteroids. Lecture Notes in Physics, 2010, , 195-227.	0.3	11
597	Cometary Dynamics. Lecture Notes in Physics, 2009, , 341-399.	0.3	4
598	An Overview of the Asteroids and Meteorites. , 2013, , 376-429.		1
601	Visible spectroscopy of the new ESO large programme onÂtrans-Neptunian objects and Centaurs: final results. Astronomy and Astrophysics, 2009, 508, 457-465.	2.1	52
602	Transneptunian objects and Centaurs from light curves. Astronomy and Astrophysics, 2009, 505, 1283-1295.	2.1	52
603	Probing the relation between the structure of initial proto-planetary disc and the Oort-cloud formation. Astronomy and Astrophysics, 2010, 509, A48.	2.1	5
604	Effects of the planetary migration on some primordial satellites of the outer planets. Astronomy and Astrophysics, 2011, 536, A57.	2.1	18
605	Constraining the parameter space for the solar nebula. Astronomy and Astrophysics, 2020, 640, A61.	2.1	18
606	Full wavefield simulation versus measurement of microwave scattering by a complex 3D-printed asteroid analogue. Astronomy and Astrophysics, 2020, 643, A68,	2.1	5

#	Article	IF	CITATIONS
607	Dust trapping around Lagrangian points in protoplanetary disks. Astronomy and Astrophysics, 2020, 642, A224.	2.1	18
608	The size of the stability regions of Jupiter Trojans. Astronomy and Astrophysics, 2006, 453, 353-361.	2.1	18
609	The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems. Astronomy and Astrophysics, 2007, 472, 1003-1015.	2.1	46
610	On the growth and stability of Trojan planets. Astronomy and Astrophysics, 2009, 493, 1141-1147.	2.1	35
611	THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM. Astrophysical Journal, 2012, 749, 39.	1.6	82
612	RESONANCES REQUIRED: DYNAMICAL ANALYSIS OF THE 24 Sex AND HD 200964 PLANETARY SYSTEMS. Astrophysical Journal, 2012, 761, 165.	1.6	55
613	Late evolution of planetary systems. Physica Scripta, 2008, T130, 014028.	1.2	4
614	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
615	Solar system science with the Wide-Field Infrared Survey Telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4, 1.	1.0	5
616	Small bodies science with the Twinkle space telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.0	3
617	System Designing of Solar Power Sail-craft for Jupiter Trojan Asteroid Exploration. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2018, 16, 328-333.	0.1	9
618	The Compositional Structure of the Asteroid Belt. , 2015, , .		249
619	Astronomical Observations of Volatiles on Asteroids. , 2015, , .		22
620	The Complex History of Trojan Asteroids. , 2015, , .		12
621	Asteroid Systems: Binaries, Triples, and Pairs. , 2015, , .		30
622	Formation and Evolution of Binary Asteroids. , 2015, , .		13
623	Surveys, Astrometric Follow-Up, and Population Statistics. , 2015, , .		10
624	THE 3–4Âμm SPECTRA OF JUPITER TROJAN ASTEROIDS. Astronomical Journal, 2016, 152, 159.	1.9	25

#	Article	IF	CITATIONS
625	Hypervolatiles in a Jupiter-family Comet: Observations of 45P/Honda–Mrkos–Pajdušáková Using iSHELL at the NASA-IRTF. Astronomical Journal, 2017, 154, 246.	1.9	34
626	OSSOS XX: The Meaning of Kuiper Belt Colors. Astronomical Journal, 2020, 160, 46.	1.9	26
627	Inclination Excitation of Solar System Debris Disk Due to Stellar Flybys. Astrophysical Journal, 2020, 901, 92.	1.6	9
628	Nekhoroshev Estimates for the Survival Time of Tightly Packed Planetary Systems. Astrophysical Journal Letters, 2020, 892, L11.	3.0	7
629	An Extremely Temporary Co-orbital: The Dynamical State of Active Centaur 2019 LD2. Research Notes of the AAS, 2020, 4, 74.	0.3	8
630	Could the Migration of Jupiter Have Accelerated the Atmospheric Evolution of Venus?. Planetary Science Journal, 2020, 1, 42.	1.5	9
631	Convex Shape and Rotation Model of Lucy Target (11351) Leucus from Lightcurves and Occultations. Planetary Science Journal, 2020, 1, 73.	1.5	11
632	Volatile-rich Asteroids in the Inner Solar System. Planetary Science Journal, 2020, 1, 82.	1.5	7
633	Trans-Neptunian Objects as Natural Probes to the Unknown Solar System. Monographs on Environment Earth and Planets, 2012, 1, 121-186.	9.0	9
634	GAUSS - genesis of asteroids and evolution of the solar system. Experimental Astronomy, 0, , 1.	1.6	5
635	OSSOS. XXIII. 2013 VZ ₇₀ and the Temporary Coorbitals of the Giant Planets. Planetary Science Journal, 2021, 2, 212.	1.5	3
636	Sample return of primitive matter from the outer Solar System. Experimental Astronomy, 0, , 1.	1.6	2
637	Leveraging the ALMA Atacama Compact Array for Cometary Science: An Interferometric Survey of Comet C/2015 ER61 (PanSTARRS) and Evidence for a Distributed Source of Carbon Monosulfide. Astrophysical Journal, 2021, 921, 14.	1.6	8
638	Planetary billiards answer Solar System riddle. Nature, 0, , .	13.7	0
639	Asteroid escorts spotted in neptune's orbit. Nature, 0, , .	13.7	0
640	DYNAMICAL SYSTEMS, STABILITY, AND CHAOS. , 2007, , .		1
641	A Brief History of the Earth. , 2008, , 13-52.		0
642	Orbital Dynamics, Chaos in. , 2009, , 6425-6452.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
643	Extrasolar Planetary Systems. Astronomy and Astrophysics Library, 2010, , 337-390.		0.2	0
644	Enigma of the Birth and Evolution of Solar Systems May Be Solved by Invoking Planetary-Sa Dynamics. , 0, , .	atellite		0
645	Turbulent Chaos and Self-Organization in Cosmic Natural Media. Astrophysics and Space S Library, 2013, , 1-144.	cience	1.0	0
647	Nice Model. , 2015, , 1680-1682.			0
648	Assembly. , 2016, , 27-38.			0
650	On the Evolution of Comets. , 2017, , 271-296.			0
651	Origin and Evolution of the Cometary Reservoirs. , 2017, , 191-269.			0
652	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Sate 2017, , 297-342.	ellites. ,		0
653	The Solar System as a Benchmark for Exoplanet Systems Interpretation. , 2018, , 1-24.			0
654	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 20	018, , 291-314.	0.0	0
655	Multi-rendezvous Solar Electric Propulsion Mission Opportunities to Jupiter Trojans. , 2018	,,837-854.		0
656	1995–2015: Something Completely New: Exoplanets. Historical & Cultural Astronomy, 2	.018, , 361-379.	0.1	0
657	The proposed origin of our solar system with planet migration. The Proceedings of the Inte Conference on Creationism, 2018, 8, 71-81.	rnational	0.0	0
658	Overview of Primitive Object Volatile Explorer (PrOVE) CubeSat or Smallsat concept. , 2018	8, , .		0
660	Xenoliths in ordinary chondrites and ureilites: Implications for early solar system dynamics. Meteoritics and Planetary Science, 2021, 56, 1949-1987.		0.7	3
662	Formation and early evolution of Io. , 2007, , 61-88.			3
663	Characterisation of the main belt asteroid (223) Rosa. Astronomy and Astrophysics, 2021,	656, L18.	2.1	9
665	Col-OSSOS: Probing Ice Line/Color Transitions within the Kuiper Belt's Progenitor Popu Planetary Science Journal, 2022, 3, 9.	lations.	1.5	3

#	Article	IF	CITATIONS
666	Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 3-82.	1.0	16
667	FOSSIL. II. The Rotation Periods of Small-sized Hilda Asteroids. Astrophysical Journal, Supplement Series, 2022, 259, 7.	3.0	3
668	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
669	Remote Observations of the Main Belt. , 2022, , 3-25.		0
670	Dynamical origin of the Dwarf Planet Ceres. Icarus, 2022, 379, 114933.	1.1	6
671	Lucy and Jupiter – understanding the planetary origins. Nature Communications, 2021, 12, 7346.	5.8	0
672	Size Distribution of Small Jupiter Trojans in the L ₅ Swarm*. Astronomical Journal, 2022, 163, 213.	1.9	6
673	Stability Analysis of Earth Co-orbital Objects. Astronomical Journal, 2022, 163, 211.	1.9	11
674	SPH simulations of high-speed collisions between asteroids and comets. Icarus, 2022, 383, 115064.	1.1	2
675	Colors of Irregular Satellites of Saturn with the Dark Energy Camera. Astronomical Journal, 2022, 163, 274.	1.9	1
676	HD 83443c: A Highly Eccentric Giant Planet on a 22 yr Orbit. Astronomical Journal, 2022, 163, 273.	1.9	4
677	Water and organics in meteorites. , 2022, , 67-110.		4
678	Collisional evolution of the trans-Neptunian region in an early dynamical instability scenario. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4876-4893.	1.6	3
679	CHAPTER 1. Origin of the Universe and Planetary Systems. Chemical Biology, 2022, , 1-20.	0.1	0
680	Inferring Late-stage Enrichment of Exoplanet Atmospheres from Observed Interstellar Comets. Astrophysical Journal Letters, 2022, 933, L7.	3.0	2
681	An ALMA Search for High-albedo Objects Among the Midsized Jupiter Trojan Population. Astronomical Journal, 2022, 164, 23.	1.9	1
682	Asteroid taxonomy from cluster analysis of spectrometry and albedo. Astronomy and Astrophysics, 2022, 665, A26.	2.1	26
683	The Volatile Carbon-to-oxygen Ratio as a Tracer for the Formation Locations of Interstellar Comets. Planetary Science Journal, 2022, 3, 150.	1.5	10

#	Article	IF	CITATIONS
684	Ultraviolet Spectroscopy of Lucy Mission Targets with the Hubble Space Telescope. Planetary Science Journal, 2022, 3, 190.	1.5	2
685	Implications for the Collisional Strength of Jupiter Trojans from the Eurybates Family. Astronomical Journal, 2022, 164, 167.	1.9	7
686	Tilting Uranus via Spin–Orbit Resonance with Planet Nine. Planetary Science Journal, 2022, 3, 221.	1.5	2
687	MEGASIM: Lifetimes and Resonances of Earth Trojan Asteroids—The Death of Primordial ETAs?. Astrophysical Journal, 2022, 938, 9.	1.6	2
688	Physical Considerations for an Intercept Mission to a 11/'Oumuamua-like Interstellar Object. Journal of Astronomical Instrumentation, 0, , .	0.8	0
689	From planetary exploration goals to technology requirements. , 2023, , 177-248.		1
690	From science questions to Solar System exploration. , 2023, , 65-175.		0
691	A Survey of CO, CO ₂ , and H ₂ O in Comets and Centaurs. Planetary Science Journal, 2022, 3, 247.	1.5	17
692	Asymmetry in the number of L4 and L5 Jupiter Trojans driven by jumping Jupiter. Astronomy and Astrophysics, 2023, 669, A68.	2.1	6
693	OSSOS. XXVI. On the Lack of Catastrophic Collisions in the Present Kuiper Belt. Astronomical Journal, 2022, 164, 261.	1.9	2
694	The equilibrium shape of (65) Cybele: primordial or relic of a large impact?. Astronomy and Astrophysics, 0, , .	2.1	0
695	Photometric Confirmation and Characterization of the Ennomos Collisional Family in the Jupiter Trojans. Astronomical Journal, 2023, 165, 15.	1.9	2
696	Detection of the Irregular Shape of the Southern Limb of Menoetius from Observations of the 2017–2018 Patroclus–Menoetius Mutual Events. Planetary Science Journal, 2022, 3, 267.	1.5	3
697	The stability of Uranus Trojans over the age of the Solar system. Monthly Notices of the Royal Astronomical Society, 2022, 519, 812-820.	1.6	0
698	Photometric Properties of Jupiter Trojans Detected by the Dark Energy Survey. Planetary Science Journal, 2022, 3, 269.	1.5	1
699	The Effects of Early Collisional Evolution on Amorphous Water Ice Bodies. Planetary Science Journal, 2023, 4, 4.	1.5	3
700	Reflection, emission, and polarization properties of surfaces made of hyperfine grains, and implications for the nature of primitive small bodies. Icarus, 2023, 395, 115492.	1.1	10
701	Mercury's formation within the early instability scenario. Icarus, 2023, 394, 115445.	1.1	0

#	Article	IF	CITATIONS
702	Late accretion of Ceres-like asteroids and their implantation into the outer main belt. Nature Astronomy, 2023, 7, 524-533.	4.2	5
703	Near-ultraviolet absorption distribution of primitive asteroids from spectrophotometric surveys. Astronomy and Astrophysics, 2023, 672, A189.	2.1	0
704	The Dynamical Consequences of a Super-Earth in the Solar System. Planetary Science Journal, 2023, 4, 38.	1.5	3
705	Collisional heating of icy planetesimals – I. Catastrophic collisions. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2484-2503.	1.6	4
706	The Hot Main Kuiper Belt Size Distribution from OSSOS. Astrophysical Journal Letters, 2023, 947, L4.	3.0	1
711	Setting the Stage: Formation and Earliest Evolution of Io. Astrophysics and Space Science Library, 2023, , 41-93.	1.0	1
715	Nice Model. , 2023, , 2059-2061.		0